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Abstract

Quantum computers are expected to provide an exponential speedup compared
to classical computers for specific problems, including factoring and quantum
simulations. These facts have motivated us to develop quantum computers.
Google Quantum Al team has demonstrated that their quantum processor with
53 qubits can perform a specific task in about 200 seconds, although their tensor-
network-based simulator on a state-of-the-art supercomputer at that time would
take 10000 years to complete. (After this experiment, better tensor-network-
based methods have been developed, and the current best record of the classical
simulation has reduced to 304 seconds.) The quantum supremacy experiment
has shown that current or near-future quantum computers may solve certain
problems faster than classical computers. However, current or near-term quan-
tum computers suffer from noise. Thus, they cannot run complicated algorithms
such as Shor’s algorithm. To run complicated algorithms, we need a full-fledged
fault-tolerant quantum computer with quantum error correction (QEC). How-
ever, decades may be necessary to implement enough qubits for it.

Instead of waiting for the realization of large-scale fault-tolerant quantum
computers, many researchers have been trying to use existing quantum comput-
ing devices without QEC, namely, noisy intermediate-scale quantum (NISQ)
devices, for practical purposes. One of the most promising algorithms is the
variational quantum algorithms (VQAs). Many VQAs have been proposed
for practical applications, including machine learning, quantum chemistry, and
quantum simulation. However, it is still not clear what kind of quantum circuits
under how low error rates can demonstrate quantum advantages. A sufficient
condition for a quantum advantage is hard to identify since it depends on the
choice of the classical best counterpart. Still, we can quantify a quantumness
in the sense that how a given quantum algorithm or quantum circuit itself is
hard to be simulated classically, which is a necessary condition for a quantum
advantage.

On the other hand, in the context of the realization of a fault-tolerant quan-
tum computer, an experimental demonstration of QEC is a near-term milestone
in the NISQ era. The surface code is a promising candidate for the implemen-
tation of QEC. Numerical calculations exploiting the classical simulatability of
Clifford circuits showed that the threshold error rate of the surface codes is
high, around 1%, by assuming stochastic Pauli noise. However, in practice,
quantum devices suffer from more general noise, such as an over-rotation error,
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which cannot be described by Clifford operations. As an opposite demand to
the quantum advantage mentioned above, we need an efficient classical simula-
tion method that can take such coherent noise into consideration to analyze the
performance of QEC in a realistic situation.

In this thesis, we address these two opposing issues: (i) how to quantify
the difficulty of the classical simulation of a NISQ-oriented algorithm possess-
ing a quantum advantage and (ii) how to simulate QEC under a realistic noise
efficiently. These issues are addressed by providing quasiprobability-sampling-
based simulators and quantifying their simulation costs. Here, the quasiprob-
ability method is a Monte-Carlo method that samples a classically simulatable
class of quantum computations, including negative coefficients. More precisely,
by choosing a set of states or operations in a classically simulatable class such
that they span an overcomplete basis, any quantum operation can be simulated.
Of course, it is not possible to simulate an arbitrary quantum computation effi-
ciently. The sampling cost diverges exponentially as it deviates from a classically
simulatable one. Therefore, the sampling cost allows us to evaluate the hardness
of a classical simulation.

Regarding (i), we extend a quasiprobability-based simulation method based
on the classical simulatability of Clifford circuits to noisy quantum circuits by
actively using noise to reduce simulation costs. We estimate the classical sam-
pling costs of noisy quantum circuits and compare the costs with those of an
existing quasiprobability-based simulator. Studying the sampling cost of a noisy
rotation gate found that a quantum circuit composed of many small rotation
gates can be made classically simulatable by a small amount of noise. We also
find that, at a low error rate, our extended algorithm is more efficient than
the existing quasiprobability-based simulator for noisy quantum circuits. We
believe that these methods and results help to narrow down the candidates for
a quantum advantage.

Regarding (ii), we apply the proposed quasiprobability-based algorithm to
simulate QEC with the planar surface codes under a realistic noise model, in-
cluding coherent and Pauli noise. We perform a numerical calculation with 81
qubits, whose dimension of the state vector is enormous, and a full state-vector
simulation never works. In our estimation, our method can cope with the surface
code with O(1000) qubits under such noise with an experimentally motivated
noise parameter. We believe that this work helps to analyze the performance of
near-term and small-scale QEC codes.

The simulation of fermionic systems with NISQ devices is one of the most
promising applications to demonstrate a quantum advantage. Thus, it is also
important to quantify the classical simulation costs of such quantum circuits.
However, the above methods are unsuitable to do so because the quantum cir-
cuits for simulation of fermionic systems have many rotation gates, which in-
creases the classical simulation costs if we employ the classical simulatability
of the Clifford circuits. Thus, we need a more efficient quasiprobability-based
algorithm to simulate noisy quantum circuits for fermionic systems. In order to
analyze quantum algorithms for fermionic systems regarding (i), we further con-
struct another quasiprobability-based simulation method based on the classical
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simulatability of free fermionic dynamics. We investigate the sampling cost of
a chemically inspired ansatz circuit for VQAs under stochastic noise to assess
a potential quantum advantage there, and the result suggests that one should
choose Hamiltonians of strongly correlated materials to demonstrate quantum
advantages; otherwise, a small amount of noise makes the quantum circuits
classically efficiently simulable, and hence one fails to demonstrate quantum
advantages with the quantum circuits.

The proposed method for simulating noisy quantum circuits is helpful as a
Monte-Carlo type simulation that successfully benchmarks a large system with
reasonable overhead. It is expected that more and more research on the applica-
tion of quantum devices will be carried out in the future, and we expect that the
simulation methods we have developed will be useful. On the other hand, as for
the classical simulation cost as an indicator for a possible quantum advantage,
we found that if the fermionic nonlinearity in ansatz is small, the classical sim-
ulation is tractable in the presence of noise. It is important to choose the target
systems so that they essentially require a high fermionic nonlinearity in order to
achieve a quantum advantage. Furthermore, the quasi-probability method has
also been applied for a Monte-Carlo method using actual quantum devices, such
as an error mitigation method. It will be interesting to see future development
by combining our methods with sampling on actual quantum devices.
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Chapter 1

Introduction

1.1 Goal of Quantum Computers

Academia, industry, and government are actively developing quantum comput-
ers because quantum computers are theoretically guaranteed to execute specific
problems exponentially faster than classical (conventional) computers, such as
supercomputers. Problems suited to quantum computers are roughly divided
into two types:

(i) Problems contain a “good” linear algebraic structure.
(ii) Problems are to simulate quantum phenomena.

Shor’s algorithm [1, 2] is a typical example of (i). It can solve the factoring
problem exponentially faster than the best classical algorithm. Additionally,
the Harrow-Hassidim-Loyd (HHL) algorithm is an exponentially faster quan-
tum algorithm for linear systems of equations [3]. As for (ii), Ref. [4] originally
proposed a simulation of the dynamics of a quantum system on a quantum com-
puter. The required memory of a classical computer increases exponentially as a
function of the size of a target quantum system if all entries of a quantum state
vector are stored. However, quantum computers can only use a polynomial num-
ber of qubits. This quantum algorithm has the potential to solve the problems
of quantum many-body systems and quantum chemistry intractable for classi-
cal computers. Consequently, quantum computers should impact many fields,
including security, machine learning, quantum physics, and quantum chemistry.
This is our motivation to build quantum computers.

To execute the above quantum algorithms, the quantum error correction
(QEQ) is essential because quantum information is vulnerable to environmental
noise. QEC prevents noise by encoding quantum information into the subspace
of a collection of qubits, allowing computations to be performed with arbitrary
precision [5, 6]. Although QEC is a necessary ingredient for a scalable fault-
tolerant quantum computer, a massive amount of qubits have to be prepared
when the above algorithms are executed under QEC. For instance, the authors
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of Ref. [7] showed that (’)(107) physical qubits would be required to factor a
2048-bit number into its primes. Considering that the number of qubits of the
current quantum computers is from O(10) to O(100), it will take decades to run
these quantum algorithms with theoretically proven speedup with QEC codes.

1.2 Near-term Quantum Computations

Although we are short of sufficient qubits to perform error-corrected quantum
algorithms, current quantum computers might solve the problems intractable
for classical computers. John Preskill coined two terminologies [8]: Noisy
Intermediate-Scale Quantum (NISQ) devices, which stands for quantum com-
puters that consist of about 50 to several hundred qubits and that are limited
performance due to the intrinsic noise, and quantum supremacy, which stands
for the demonstration that quantum computers can perform an intractable task
for classical computers. In 2019, the Google Quantum Al team announced that
their quantum processor demonstrated quantum supremacy by performing a
classically intractable task that would take 10,000 years even with a state-of-
the-art supercomputer [9]. Although the task does not aim to solve a practical
problem, this experiment has shown that NISQ devices have the potential to
tackle applied problems. After this experiment, better tensor-network-based
methods have been developed, and the current best record of the classical sim-
ulation has reduced to 304 seconds [10]. However, it will not be able to clas-
sically simulate the experiment when the number of qubits increases and the
gate fidelity improves. Toward the demonstration of quantum supremacy with
practical problems, i.e., quantum advantage, many NISQ algorithms have been
proposed. Examples include quantum chemistry [11] and quantum machine
learning [12]. However, it is still unclear what kind of quantum circuits under
how low error rates can demonstrate quantum advantages. Although it is im-
portant to figure out such a sufficient condition of a quantum advantage, such
a kind of approach is hard to solve in general. On the other hand, one can con-
sider, as a necessary condition of a quantum advantage, the classical simulation
cost of a given quantum circuit, and it is helpful to design quantum circuits that
have the potential to demonstrate quantum advantages.

Along with the development of NISQ algorithms, we should also continue to
study QEC toward the realization of fault-tolerant quantum computers. The
surface code is one of the most promising candidates for the implementation of
the QEC code in NISQ devices due to the high threshold error rate and easiness
of physical implementation [13]. Numerical calculations reveal that the thresh-
old error rate under the Pauli noise is around 1%, which is almost approaching
the gate and measurement error rate of state-of-the-art NISQ devices [14, 15].
Moreover, the d = 5 rotated surface code requires 49 qubits, which is also al-
most the same as the number of the qubits achieved with NISQ devices. These
facts have motivated us to implement a small-scale surface code as a testbed for
large-scale QEC circuits in the future, resulting in massive experimental efforts
devoted in recent years [16-18]. Although the numerical simulations exploited
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the efficient simulability of Pauli noise, NISQ devices suffer from more general
noise, such as an over-rotation noise [19], which cannot be described by Clifford
operations. Some numerical calculations have considered such noise [20-23].
However, these methods fail to simulate the QEC code suitable to NISQ de-
vices, such as a surface code, with faulty syndrome measurements. Therefore,
we need a classical simulation method that can simulate QEC codes under co-
herent noise to implement and benchmark small-scale fault-tolerant quantum
computers.

1.3 Overview of this thesis

Based on the above discussion, at least the quantum circuits that have the po-
tential quantum advantages should be difficult to simulate classically. Thus, we
need to (i) clarify and extend the classical simulatable regime, thereby narrow-
ing down the candidates for quantum advantages. As for QEC, it is essential
to (ii) benchmark the performance of QEC codes under more realistic noise.
This is because most numerical studies on QEC exploited the efficient classi-
cal simulability of stochastic Pauli noise, although quantum devices suffer from
more realistic noise, including an over-rotation noise, which cannot be repre-
sented by Clifford operations. In this thesis, we address these two problems
using quasiprobability-based sampling algorithms, which is one of the classi-
cal simulation algorithms. In the quasiprobability-based simulation, a quantum
channel £ is decomposed over a discrete set of classically tractable channels {S;}
ie., &€ =73",¢S;. Because the coefficients {¢;} is not always positive, they are
called quasiprobability. A classically tractable channel S; is sampled and exe-
cuted instead of £ with probability |g;|/ >, |¢i|. As explained later, the L1 norm
of the quasiprobability >, |¢;| determines the sampling cost of the simulation.
We extend an existing quasiprobability simulation algorithm to noisy quantum
circuits, thereby quantifying and estimating the classical simulation costs of
noisy quantum circuits in terms of sampling costs. As a practical application
of the extended quasiprobability simulation algorithm, we propose a sampling-
based simulation for fault-tolerant QEC under coherent noise. We provide a
quasiprobability-based simulation algorithm tailored to variational quantum al-
gorithms (VQAs) for fermionic Hamiltonians and the corresponding quantifier,
i.e., the measure for the simulation cost for the quasiprobability-based simula-
tion algorithm.
As summarized in Fig. 1.1, the rest of this thesis is organized as follows:

Chapter 2: Preliminaries

We introduce the basis of quantum computations relevant to our work and the
notion of the quasiprobability simulation algorithm, which plays a central role
in this thesis.

Chapter 3: Comparative Study of Sampling-Based Simulation Costs
of Noisy Quantum Circuits
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We extend an existing quasiprobability simulation algorithm to noisy quantum
circuits and estimate the classical sampling costs of noisy random quantum
circuits. In addition, we compare the sampling costs with those for another
quasiprobability simulation algorithm. We find that, at a low error rate, our
extended algorithm surpasses the compared one. Moreover, we showed that
a small amount of stochastic Pauli noise makes quantum circuits composed of
many small-angle rotation gates classically simulable. Since some VQE ansatze
are such quantum circuits, one should carefully design quantum circuits for
demonstrating quantum advantages. This chapter is based on [Hakkaku and
Fujii, Phys. Rev. Applied 15, 064027 (2021)] with slight modifications to fit in
the context.

Chapter 4: Sampling-Based Quasiprobability Simulation for Fault-
tolerant Quantum Error Correction on the Surface Codes under Co-
herent Noise

We propose a sampling-based simulation for fault-tolerant QEC under coher-
ent noise as a practical application of the extended quasiprobability simulation
algorithm introduced in the previous chapter. Using our proposed method, we
simulate the planar surface code with 81 qubits under coherent noise within a
reasonable computational time. We find that the coherent noise increases the
logical error rate. Furthermore, we estimate the size of the classically simulable
planar surface code with the use of a high-performance parallel computer of 10°
CPU cores and find that the surface code with over 1000 qubits at a specific
realistic parameter set can be simulable by our proposed method. We believe
that our proposed method is useful to analyze the implementation of a QEC
code by NISQ devices. This chapter is based on [Hakkaku, Mitarai, and Fujii,
Phys. Rev. Research, 3, 043130 (2021)] with slight modifications to fit in the
context.

Chapter 5: Quantifying Fermionic Nonlinearity of Fermionic Quan-
tum Circuits

We provide a quasiprobability-based simulation algorithm tailored to VQAs for
fermionic Hamiltonians and the corresponding quantifier. With the quantifier,
we estimate the classical sampling cost of an ansatz quantum circuit for prepar-
ing the ground state of fermionic Hamiltonians and find that strongly-correlated
materials are suitable for demonstrating quantum advantages. Although we es-
timate the classical simulation cost of such an ansatz in this chapter, classical
simulation costs of quantum circuits for the dynamics of fermionic Hamiltonians
can also be estimated through our method. This chapter is based on [Hakkaku,
Tashima, Mitarai, Mizukami, and Fujii, arXiv:2111.14599].

Chapter 6: Conclusion
We summarize the thesis and state future directions.
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Chapter 2

Preliminary

This chapter summarizes the basics of quantum computation. We define a
quantum state and review the description of the dynamics of a quantum state,
including quantum measurement. First, we introduce gate teleportation [24].
The gate teleportation replaces a quantum gate with a preparation of a resource
state and plays a central role in a quasiprobability-based algorithm, as we will
see later. Then, we review two existing efficient simulatable quantum circuits:
Clifford circuits and fermionic linear optics. Finally, existing quasiprobability-
based algorithms are reviewed.

2.1 Quantum State

In classical information theory, the elementary unit of information is a bit. The
state of a bit can be represented by 0 or 1. In contrast, the elementary unit of
information in the quantum world is a qubit, whose state can be represented by
a superposition of |0) and |1). The state of a single qubit system is represented
by a unit vector in two-dimensional complex vector space C2. For example, the
state vector of a single-qubit can be given by

) = a|0) + B[1),

where o, 8 € C and |04|2 + \ﬁ|2 = 1. The state of an n-qubit system is described
by a tensor product space of n vector spaces C>":

[v) = Z Lig,.in |10, -+ 58n)

20,00y in=0,1

where 35 o [T, [P = 1 and [v9) = [¢) @ [¢).

A more convenient way to describe a quantum state is to use a density
operator. A density operator can represent an ensemble of state vectors. A
density operator is defined as

p= Zpi i)l Zpi =1.
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The density operator satisfies the following properties:
p>0, Tr(p)=1,

where p > 0 means (¢|p|y)) > 0 for all |¢). Note that an operator A satisfying
A > 0 is referred to as a positive operator. We say that a quantum state is a
pure state if p? = p, and hence can be written as p = [1)(1|.

2.2 Quantum Gate

Quantum circuits consist of input states, unitary gates, and measurements.
Here, we describe the various unitary gates and give their definitions. Later,
we will see the quantum measurements and quantum noise which are parts of
quantum dynamics but nonunitary processes.

We introduce the most important quantum gates, single-qubit Pauli gates:
I, X,Y, and Z:

10 0 1 0 —i 10
o e A s A I S

The computational states {|0), |1)} are defined as the eigenstates of the Z gate.
The X gate flips the computational states:

X10)=11), X[1)=10).

We call Ug a Clifford gate iff U(TJIPU@ € P’ , where P and P’ are n-qubit
Pauli operators, elements of {£1,+i} x {I, XY, Z}®n. Single-qubit Pauli gates
mentioned above are elements of Clifford gates. Important single-qubit Clifford
gates, Hadamard gate H and phase gate S, are defined as follows:

nei 1) s=h

The actions of the Hadamard gate H and the phase gate S by conjugation on
single-qubit Pauli gates are given by

HZH'=X, SXST=Y.

To simulate any quantum phenomena, quantum computers should imple-
ment arbitrary unitary operators, i.e., universal quantum computation. How-
ever, Clifford and Pauli gates cannot even make an arbitrary single-qubit gate.
To do so, we need a single-qubit non-Clifford gate [25]. The T gate is a typical
example of a non-Clifford gate and is defined as
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One can create an arbitrary single-qubit unitary operator if we have the gate
set {H,T} by the Solovay-Kitaev theorem [26]. To create an n-qubit unitary
operator, we also need a CNOT gate, which is a two-qubit Clifford gate and is
helpful to create an entangled state. A CNOT gate A, ((X) is given by

Aea(X) = 0)O], I, + 1)1, Xo,

where A; indicates that A acts on qubit ¢. The gate set {H,T,CNOT} forms a
universal set of gates and can perform universal quantum computation.

2.3 Quantum dynamics

The dynamics of the density operator p under a unitary gate U are described
as a super-operator A, which maps a density operator to another:

A:p—UpUT.

Any quantum dynamics can be described as a unitary process if the whole system
including a system of interest and its environment is considered. However,
it is sometimes difficult to describe the whole quantum system including the
environmental systems. In such a case, a non-unitary operation is useful to
describe the target system considering the environmental effect. In general, a
physical quantum operation A is described as the Kraus representation:

Ap) =D VeV, Do ViVi=1,

K3

where V; is called the Kraus operator. A quantum operation is also called a
quantum channel. A quantum operation £ has the following properties:

e A preserves the trace of the input operator A i.e., Tr(A(A)) = Tr(A).
Thus, £ is a trace-preserving map.

e £(A) > 0 for any positive operator A. Thus, & is a positive map.

o Let &€ be defined in the Hilbert space Harget, and let I be the identity chan-
nel in the Hilbert space Hancilla. Suppose A is defined in Hiarget © Hancilla,
(E®1I)(A) > 0 for any positive operator A. Thus, £ is a completely posi-
tive map.

Therefore, a quantum operation is a completely positive trace-preserving (CPTP)
map. The next section provides non-unitary processes.

2.3.1 Quantum Noise

A target quantum system often interacts with an environmental system un-
expectedly. The quantum operation in a system of interest caused by such an
interaction is called quantum noise. Quantum noise leaks the quantum informa-
tion of the state into the environmental system and causes the error of quantum
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computation. The quantum noise often decoheres the quantum state, i.e., maps
the pure states to mixed states and is modeled by simple stochastic Pauli oper-
ations. Here we give examples of the quantum noise models causing quantum
decoherence.

The bit-flip noise is given by

Evit-tip(p) = (1 — p)p+ pX pX.

This noise flips |0) to |1) and vice versa. Another example is the depolarizing
noise. The depolarizing noise for a single-qubit gate is given by

1
gdepolarizing(p) = (1 - P)P + pﬁ' (21)
This noise replaces a given state p with the completely mixed state /2 with
probability p. The form in Eq. (2.1) can be rewritten as the following form in
the operator-sum representation as

3
gdepolarizing(p) = (1 - 4p) p+ %(XpX +YpY + ZpZ).

The above quantum noise models are called incoherent or stochastic Pauli noise
since Pauli operators are applied with a certain probability.

On the other hand, quantum devices suffer from noise which cannot be
described by the incoherent noise. The over-rotation noise is a typical example.
A faulty calibration causes the over-rotation noise, which rotates a quantum
state unexpectedly when one acts a rotation gate to the quantum state. The
rotation gate about the Z axis being subject to over-rotation noise about the Z
axis is modeled by

0 . o
—i5Z —i5Z —i2Zz
Eover-rotation © [6 2 ] = [6 2 ] o {6 2 }7

where [A]p = ApAT, and we use the notation £ o N to denote the composition
of £ with NV, defined by (£ o N)(p) = EN(p)). Eover-rotation TOtates the given
quantum state € more than a desired rotation angle 6.

2.4 Quantum Measurement

We obtain classical information from a quantum state by performing a quantum
measurement. The measurement is performed by measurement operators {V;,, },
which satisfies ), V! V,, = I. Here, m indicates a label of each measurement
outcome. Given a state p, the probability of obtaining outcome m is calculated
as

Pm = Tr(VinpVih).
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Figure 2.1: One-bit teleportation.

Figure 2.2: T gate teleportation.

The post-measurement state is given by
VinpV),
Tr (Vmpvn];)

In particular, if the measurement operators are projection operators { Py, } (i.e.,
PP}, = 6 Pp and >, Pp, = I), then the post-measurement state is given
by

PppPp,

Tr(Prp)
with probability
Pm = Tr (Pm )7

where we used P,, = Pl = P2. Such a measurement is called a projective
measurement.

2.5 Gate Teleportation

Here, we introduce gate teleportation [24]. Quantum teleportation is a quan-
tum communication protocol, where one can send a quantum state to another
by sharing a maximally entangled state firstly and communicating classically.
In this protocol, one can teleport a quantum gate by preparing an appropri-
ate entangled state instead of the maximally entangled state, which is the gate
teleportation. Expanding on this notion, it turns out that universal quantum
computation can be performed by first preparing a large entangled state, called
a cluster state, and then measuring it adaptively. The scheme of universal quan-
tum computation is called measurement-based quantum computation (MBQC)
[27]. Note that the gate teleportation technique is useful not only for MBQC
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but also for the implementation of a non-Clifford gate in topological QEC codes
[15].

We briefly explain how a quantum gate can be transformed into a resource
state. The quantum circuit shown in Fig. 2.1 depicts the one-bit teleportation,
which is the building block of the gate teleportation. The quantum state |¢)
in qubit 1 is teleported to qubit 2 by the preparation of |+) with the Clifford
circuit and the Pauli Z measurement. Using this technique, the T gate can be
implemented by preparing the corresponding resource state T' |+)and a Clifford
circuit shown in Fig. 2.2. In the middle quantum circuit, the T' gate in the lower
wire can be moved backward because the T gate commutes with |0)X0| or |1)(1].

The gate teleportation also plays a vital role in a classical simulation. By
using the gate teleportation, an arbitrary quantum circuit can be transformed
into a Clifford circuit with the preparation of a resource state of non-Clifford
gates. It is known that a Clifford circuit with a stabilizer state can be classically
efficiently simulatable, as will be discussed in the next section. Thus, the non-
Clifford resource state stands for the difficulty of a classical simulation. In
Section 2.7, we will show that a quantum circuit composed of a Clifford circuit
with a non-Clifford resource state can be classically simulated by repeatedly
sampling a stabilizer state and setting it to the Clifford circuit. Furthermore, we
will explain that the classical simulation cost of a quantum circuit is quantified
by the non-Clifford resource state.

2.6 Efficiently simulatable quantum circuits

It is known that certain restricted states and their dynamics can be simulated
efficiently (polynomial time) in the number of qubits. Here, we explain two such
classes of classically and efficiently tractable quantum circuits: Clifford circuits
and fermionic linear optics (FLO).

2.6.1 Stabilizer Formalism and Classical Simulation of Clif-
ford Circuits

Stabilizer formalism [28] provides us to write a restricted type of entangled states
efficiently. It is used for many applications, including QEC and a quasiprobability-
based classical simulation. Here we review stabilizer formalism and stabilizer
code, which is a class of QEC codes.

Stabilizer State
The n-qubit Pauli group P, is defined as follow:
P, = {£1,+i} x {I,X,Y, Z}®".

The n-qubit stabilizer group S, = {s;} is a subgroup of P, and satisfies the
following properties:

S; € Pn, Vij[si,sj] = O7 S 75 —1.
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0) ——P—

Figure 2.3: Quantum circuit to create the Bell state.

The condition s; # —I makes every s; hermitian, resulting that the eigenvalue
of s; is either 1 or —1. We say that G = {g1,...gn} are the stabilizer generators
of a stabilizer group S, if an arbitrary element of .S,, can be written by a product
of elements in G and an arbitrary element of G cannot be written by a product
of other elements in G. The stabilizer group S,, is said to be generated by
{91, -.,9n} and is sometimes denoted by S, = (g1,...,gn). A stabilizer state
is defined as the simultaneous eigenstate of all elements of S,, with the eigenstate
1 and is given as

vSiGSk Si |w>stab = |w>stab .

Let k be the number of the stabilizer generators in G. If the system is
composed of n qubits, k is at most n. This is because stabilizer operators
commute with each other, and k stabilizer generators divide the Hilbert space
of an n-qubit system by 2* orthogonal subspaces. Thus, the dimension of the
space spanned by the stabilizer states is 277%, and, when n = k, the stabilizer
state is uniquely determined. For example, consider a two-qubit stabilizer group
Spen = {XX,ZZ,-YY,II} = (XX, ZZ). The stabilizer state is given by

S+ XXII+ZZ _ [00)+[11)
[} pen = V2—— 5 \00>—T-

Clifford gate

Here, we explain how to describe the action of the Clifford gates on a stabilizer
state. A Clifford gate is an operation that maps a Pauli operator to another
Pauli operator by conjugation. Consider a Clifford gate U and a stabilizer state
|1} stabilized by S = (g1,...,gn). The stabilizer state after applying U can be
written as

Ul) =Ug; [4) = UgU'U [9) = giU [4) , (2.2)

where g/ = Ug;UT. From Eq. (2.2), we observe that U [¢)) can be stabilized by
(g4, .- gh). Therefore, the action of a Clifford gate on a stabilizer state can be
described by the transformation of stabilizer generators of S under conjugation
of Clifford gates. In the stabilizer formalism, we only need to keep track of the
dynamics of n operators to calculate the output state after a sequence of Clifford
gates, while the full-vector simulation stores exponential entries of a vector. To
be more concrete, let us consider the transformation of Pauli operators under
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some Clifford gates, a Hadamard gate, and a CNOT gate. The Hadamard gate
H acts on single-qubit Pauli operators, X, Y, and Z by conjugation as follows:

HXH =2, HZH=X. (2.3)

As for the CNOT gate, the Pauli operators transform under conjugation as
follows:

[A12(X)]) X1 =X 1Xo, [A2(X)]Z =24,
A12(X)]Xe = Xo, [A2(X)]Zy = 2125, (2.4)

where A; By := A® B and the indices 1 and 2 label the qubits to be acted. Using
Egs. (2.3) and (2.4), let us consider the output state of the quantum circuit
shown in Fig. 2.3. The output state of the quantum circuit is the Bell state,
[) gent- Lt us see this in the stabilizer formalism. The initial state is stabilized
by (Z1,7Z2). Zi is transformed through the quantum circuit Z; — Z;Z,, and
Zs is transformed Z; — X5 — X1 X5. Thus, the output state has a stabilizer
(2122, X1X5), whose stabilizer state is 1)),

Pauli measurement

A quantum measurement can also be described within the stabilizer formalism
if the measurement is done in the Pauli basis. Here, consider how stabilizer
generators transform due to a quantum measurement. Let (g1,...,g,) be the
stabilizer group of the output state of a Clifford circuit. We measure a Pauli
operator P € P, as an observable on the stabilizer state. There are two possi-
bilities for the transformation of the generators:

1. P commutes with all the stabilizer generators in (g1, ..., g,). In this case,
Por —Pisin (g1,...,9,). If P isincluded in (g1,...,g,), the measure-
ment output is 0 with probability 1, where the measurement outcomes of
0 and 1 correspond to the eigenvalues of P, +1 and —1, respectively. The
stabilizer generators remain after the measurement.

2. P anticommutes with at least one stabilizer generator, say ¢;. In such a
case, we can redefine the generators so that only g; anticommutes with P,
and all others {go, ..., gn} commute with P. In this case, the measurement
outcome m is 0 or 1 with probability 1/2. After the measurement, gy is
replaced with (—1)" P. Thus, the post-measurement state is stabilized by

<P7927---agn>'

Gottesman-Knill theorem

Stabilizer formalism can represent the restricted dynamics of the specific states
without storing exponential entries of a vector. The authors of Refs. [29, 30]
go much further. They show that classical computers can simulate a Clifford
circuit with the preparation of a stabilizer state:
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Theorem 2.1. A Clifford circuit with the preparation of the stabilizer state fol-
lowed by the measurement with a Pauli operator P can be classically efficiently
simulatable in the strong sense.

Here, a strong simulation of a quantum circuit is a classical computation that
can calculate both the output probability p(x) for a given bitstring x and all its
marginal probabilities [31]. This theorem is referred to as the Gottesman-Knill
theorem.

Proof. Without loss of generality, we can assume that the initial state is [0™),
whose stabilizer is (Zp, ..., Z,—1), and every qubit is measured in the compu-
tational basis. We denote the stabilizer of the output state before the measure-
ments S = (g1,...,9,) and denote measurement outcomes {z; = 0,1}. Let
pr, be the probability of obtaining measurement outcomes {z;} and set po = 1.
Then p,, can be calculated as follows:

1. For k=0,...,n — 1, repeat the following procedures.

(a) If (=1)**Z;, € S, the measurement outcome xy, is obtained with
probability 1. Thus, set p(¥+1) = p(F) and SE+D = k),

(b) If (=1)"*®' € §() | the measurement outcome z, is never obtained.
Thus, set pk+1) = 0.

(c) If Z; anticommutes with at least one stabilizer generator of S,
say g1, we can redefine the stabilizer generators so that only g; anti-
commutes with Z, and all the others {go,...g,} commute with Zj.
The measurement outcome 1z, is obtained with probability 1/2. Set
S+ by removing g; and adding (—1)%* Z, instead. In addition,
set pF+D) = p(k) /2,

2. Return p(™.
O

A Clifford circuit with the preparation of a stabilizer state can also be effi-
ciently simulated in the weak sense. Here, the weak simulation of a quantum
circuit is a classical computation that samples an outcome x from a probability
distribution p(x).

Theorem 2.2. A Clifford circuit with the preparation of the stabilizer state fol-
lowed by the measurement with a Pauli operator P can be classically efficiently
simulatable in the weak sense.

Proof. We assume that the initial state is |0™), whose stabilizer is (Zy, ..., Z,—1),
and every qubit is measured in the computational basis. We denote the stabi-
lizer of the output state before the measurements S(© = (gy,...,g,) and denote
measurement outcomes {z; = 0,1}. The measurement outcomes {x;} can be
sampled as follows:

1. For k=0,...,n — 1, repeat the following procedures.
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(a) If (=1)"* Z;, € S™ | the measurement outcome xy, is obtained deter-
ministically.

(b) If Z, anticommutes with at least one stabilizer generator of S*), say
g1, we can redefine the stabilizer generators so that only g; anticom-
mutes with Z, and all the others {ga,...,g,} commute with Zj.
Sample x; = 0,1 with probability 1/2. Set S*+1) by removing g,
and adding (—1)** Z, instead.

2. Return xq,...,x,_1.

O

The stabilizer generators {gi,...g,} can be written by an n X 2n binary
matrix whose rows correspond to the stabilizer generators g; through g¢,. If g;
contains an I on the qubit j then the jth and n+ jth column elements are 0; if it
contains an X on the qubit j then the jth column element is a 1 and the n+ jth
column element is a 0; if it contains a Z on the qubit j then the jth column
element is 0 and the n + j column element is 1. Combining this representation
with the Gottesman-Knill theorem, the overhead of updating the stabilizer gen-
erators for each gate is O(n) (where n is the number of qubits). A measurement
is performed in O(n?’) steps when one uses the Gaussian elimination or (’)(nQ)
steps when one uses the CNOT-Hadamard-phase (CHP) simulator proposed in
Ref. [30].

Quantum Error Correction

Wy, B[ | ot | | 9ns

0, [H}———— A

|O>An_k —-H ® H /$=

Figure 2.4: Syndrome measurement circuit of an [[n, k]| stabilizer code.

One of the most important applications of the stabilizer formalism is quan-
tum error correction (QEC). QEC is a scheme to protect qubits from environ-
mental noise and is a necessary ingredient for fault-tolerant quantum computers.
Here, we briefly review the stabilizer code, which is a class of QEC codes. Let us
consider an [[n, k]] stabilizer code composed of n —k stabilizer generators, where
n is the number of qubits, and £ < n. The dimension of the subspace spanned
by the stabilizer states is 2" /2"~% = 2% Thus the subspace can be regarded as a



2.6. EFFICIENTLY SIMULATABLE QUANTUM CIRCUITS 17

logical k-qubit system. To execute quantum information processing in this logi-
cal qubit system, we introduce 2k logical Pauli operators {Lx,, L Zi}le. These
logical operators commute with all of the generators g1, ..., g, and anticommute
with each other:

Lx,Lz, = (—1)" Ly, Lx,.

Lx, and Lz, behave like Pauli operators in the ¢th logical qubit. Let m;
be a binary value, 0 or 1, the computational basis states of the code space
|m1, ..., my); is defined by the stabilizer (g1, ..., gn—k, (—1)" Lz, ..., (=1)"*Lz,).

One can check whether the logical state has been deteriorated by Pauli error
E € P, by performing projective measurements of g using n—k ancilla qubits as
shown in Fig. 2.4. We call the projective measurement of a stabilizer generator
syndrome measurement. If g; anticommutes with E, E'|¢), is the eigenstate of
g; with eigenvalue —1. Thus, the measurement outcome of the ancilla qubit A;
is 1, and one can detect the error from the outcome. The outcome is referred
to as a syndrome.

With the collection of the outcomes of stabilizer measurements, one can
determine the recovery operation R to minimize the logical error. One way to
estimate which qubits are subject to errors is to estimate the most likely error
pattern being subject to the syndrome condition. It is known that this problem
can be solved by minimum-weight perfect matching (MWPM) algorithm. From
the result by MWPM algorithm, one can determine the recovery operation R.
This error correction step is referred to as a decoding step. See [32, 33] for the
details of the construction of the recovery operation.

In order to specify QEC capability, there is a metric called a code distance
d, which is defined as follows. We introduce the weight wt(P) of a Pauli string
P, which is the number of single-qubit Pauli operators in P. For example,
wt(X 1Y) = 2. The code distance d is then defined as follows

d:= min wt(L).
L: Logical operators
The code distance measures the “distance” between two different states in the
code space in a sense that the code distance represents the minimum number
of single-qubit Pauli operators to map a code state to a different code state. If
less than |(d — 1)/2] single-qubit Pauli errors act on the logical state, one can
find a unique recovery operation that maps the erroneous state into the code
space. Therefore, the number of correctable errors ¢ is defined by

-

2.6.2 Fermiunic Linear Optics

We briefly review efficient simulatability of fermionic linear optics (FLO), which
represents the dynamics of free fermions, based on Refs. [34, 35]. We define
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{62}1221 as the Majorana fermion operators that satisfy

{éi, é]'} = 2(5@',

AT
Ci = C;,

2
¢ =1,

where {@,b} denotes the anticommutator i.c., {a,b} := ab + ba. The fermionic
covariance matrix of a pure state is defined as

o —illes &]le)
(/A I
! 2 (Wly)
where [, b] denotes the commutator i.e., [a,b] = ab—ba. We call [)) a fermionic

Gaussian state (FGS) iff its covariance matrix M satisfies MM?T = I. The
important property of an FGS is the fact that the dynamics of the FGS are
fully described by its covariance matrix M and norm T' = [[|¢)||>. An operator
G is called a fermionic Gaussian operator iff it maps one FGS to another FGS,

and an arbitrary FGO is written as exp{ziq 9i;CiC; } Note that FGOs are not

always unitary. Consider an FGO G and how it maps FGS |¢) characterized
by (M,T"). Let |¢a) be the fermionic maximally entangled state, and it is

characterized by
I
MM = (I ) )

Ta =1,

where M), is a 4n X 4n covariance matrix. By calculating the Choi state of the
FGO G ® I 1), the corresponding 4n X 4n covariance matrix Mg and norm

I'¢ are given by
A B
Mg = (_BT D) )

Lo =G @ I [ar)”,

where A, B, and D are 2n x 2n submatrices. Using these submatrices, the
resultant FGS G [¢) is specified by

M’ =A—-B(M - D) 'BT,
I' = ITg+/det (M — D).

We call this formalism fermionic linear optics (FLO). The computational com-
plexity of the matrix multiplication is O(n?’ ) The computational complexity of
the determinant operation is also O(nj) by the LU decomposition. Therefore,
we can efficiently update (M,T") to (M',I) by G.

FLO has been applied to quantum information processing, including QEC
[21, 23, 35] and the calibration of the quantum operations [36]. In Ref. [21], the
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efficient simulation method of the 1D repetition code under over-rotation noise
has been proposed. The authors of Ref. [23] simulated the surface code under
coherent noise with ideal syndrome measurements. Furthermore, FLO can be
used for the decoder of the surface code [35]. Besides QEC, FLO is also used
for a randomized benchmarking method of continuously parametrized gate sets
[36].

2.7 Quasiprobability-based Simulation

In this section, we briefly review the central idea of quasiprobability-based sim-
ulation algorithms for quantum computations [37-41]. Quasiprobability-based
methods have a long history in quantum optics [42]. A well-known example
is the Wigner function. It maps a given quantum state to a real phase-space
function, and it takes some negative values when the quantum state has no clas-
sical model. Recently, the ideas of quasiprobability-based methods have been
imported into quantum computation [37, 38], and many such algorithms have
been proposed [39-41]. These methods can simulate the quantum circuits which
the Gottesman-Knill theorem fails to simulate with an additional sampling cost.

Let {B;} be a set of classically simulatable operations such as Clifford gates
or FLOs, and let £ be an arbitrary target operation, which is not necessarily in
{B;}. Let p be an initial state that is a classical tractable state. The task we
would like to do here is to simulate

{(A) = Tr[AE(p)]

by sampling B; with an appropriate post-processing. To this end, we decompose
& over B; as follows:

€= aBi D> a=1

where ¢; is real. The coefficients of the decomposition {¢;} are called “quasi-
probability distribution”, which is not a probability distribution because ¢; can
be negative. Using this decomposition, (A) can be rewritten as

(4) = 3 4 Tr (4B ()

-y ”';’ﬁ'l sign(a)llall, Tr (AB(p)), (2.5)

where ||¢|l; == >, |¢;|. Suppose that Tr[AB;(p)] can be classically efficiently
calculated. From Eq. (2.5), we can calculate calculate the desired quantity
Tr(AE(p)) by sampling an index ¢ with probability |g;|/||g||; and calculating
llql|;sign(g;) Tr(AB;(p)). Thus, ||¢||;sign(g;) Tr(AB;(p)) is an unbiased estimator
of Tr(AE(p)). Let C be max; |Tr (AB;)|, the unbiased estimator is bounded in
the interval [—||¢||,C, ||¢||;C], and thus the Hoeffding inequality [43] shows that
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to estimate Tr(AE(p)) within additive error at most ¢ with probability at least
1 — §, we must set the number of samples N such that

2

5

Thus, |lq||; quantifies the sampling cost of a quasiprobability-based simulation
algorithm. Let us see the state version of the quasiprobability-based simulation
algorithm. The value we would like to estimate is again

(4) = Tr(AE(p)).

1
N = 2|q}C* 5 n

Now & is supposed to be a classically simulatable operation, but p is not the
case. In such a case, a set of classically simulatable state {o;} is defined, and p
is decomposed into a linear combination of them:

p= Z(h’ai-
i

With a similar argument, (A) can be simulated by sampling an index ¢ with
probability |¢;|/[|¢||; and calculating sign(g;)|¢||; Tr(AE(03)).

Let us see a concrete example, where {8;} is chosen to be over completely
stabilizer preserving (CSP) channels [39]. Roughly speaking, CSP channels are
quantum channels that map a stabilizer state to another stabilizer state. To
define CSP channels precisely, we introduce STAB,, to be the set of n-qubit
stabilizer states and SP, , to be the set of n-qubit operations £ such that
ERIno € STAB, , for all 0 € STAB,,+1,. A quantum channel £ is completely
stabilizer-preserving channel if £ € SP,, ,, for all m. Moreover, the authors of
Ref. [39] shows the following relation:

€ is an n-qubit CSP channel. <= V,,;€ ® I,,, € STAB,, ,,
< £ € STAB,,
<= The Choi state of £ is a stabilizer state.

Combining this relation with single-qubit stabilizer states, one can find that the
Clifford gates, [I], [Z], [S], and [SZ] are enough single-qubit CSP channels to
decompose a single-qubit diagonal channel. Thus, £ can be decomposed over
the four Clifford gates as follows:

&= Z%[Um i, AUari}, =1{1,2,5,5Z}.

Similarly, one can confirm that single-qubit CSP channels for decomposing a
non-diagonal single-qubit quantum channel are Clifford operations. Note that
n-qubit CSP channels for n > 2 do not coincide Clifford operations [44].

Let us consider the task to estimate the expectation value of a Pauli operator
Tr(PE(0)), where € is a single-qubit quantum channel, ¢ is a stabilizer state,
and P is a Pauli operator. The expectation value can be written as

£

Tr(PE(0)) = Z mHQHﬁigH(Qi)TT(P[Um ilo), (2.6)
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where [|g||; == ", [¢i|.- From Eq. (2.6), we can calculate calculate the desired
quantity Tr(PE&(0)) by sampling an index ¢ with probability |¢;|/||¢||, and cal-
culating ||¢||,sign(¢;) Tr(P[Uci|o). Thus, ||q||;sign(g;) Tr(P[Uci ;]o) is an unbi-
ased estimator of Tr(PE&(o)). The unbiased estimator is bounded in the interval
[—llglly; llglly], and thus the Hoeffding inequality [43] shows that to estimate
Tr(PE(0)) within additive error at most e with probability at least 1 — J, we
must set the number of samples N such that

2
5

With the use of the minimization of all possible single-qubit CSP channels,
the channel robustness of a single-qubit quantum channel £ is defined as follows:

R(E) = f{%i?{|Q||1;5 = Z [Ua J}
The channel robustness satisfies the submultiplicativity under composition:

R(EoN) < R(E)RN).

1
2
N > 2jgl o

In the following, we give other examples of the quasiprobability methods.
First, we review the stabilizer-state sampling. In contrast to the previous
quasiprobability-based simulation algorithm using CSP channels, £ is converted
into a resource state by the gate teleportation. Then the resource state is de-
composed over stabilizer states, and one of the stabilizer states is to be sampled.
Next, we review the Heisenberg propagation, which decomposes an observable
to be measured over Pauli operators.

2.7.1 Stabilizer-state sampling

Here, we explain stabilizer-state sampling based on Ref. [38]. In general, a
quantum circuit can be decomposed into Clifford gates and non-Clifford gates.
Clifford gates can be simulated efficiently by the Gottesman-Knill theorem [30],
whereas non-Clifford gates, such as the T' gate cannot. To handle this situation,
we use gate teleportation [24], which replaces a quantum gate with a Clifford
circuit and the preparation of a resource state. More concretely, a single-qubit
rotation through angle 6 around the z axis

U(6) = 0)(0] + e [1)(1] (2.7)
can be replaced with the preparation of the resource state
U(9)) =U(0)|+), (2.8)

where

1

+) = —=(10) + 1)),

Sl

2
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0]
U()|+) j

Figure 2.5: Top: Single-qubit rotation gate about the z axis, U(#). Bottom:
Gate teleportation of U(#) composed of a CNOT gate and measurement in the Z
basis with the nonstabilizer resource state U () |[+). The state is postselected on
the measurement outcome 0. This is justified because we are using teleportation
just to translate a quantum circuit for classical simulation. In the following
figures, projections to |0) are made in the same way.

via gate teleportation as shown in Fig. 2.5. The gate teleportation consists of a
CNOT gate, measurement in the Z basis, and the preparation of the resource
state |[U(6)). On the measurement, the state is projected to |0) so that there is no
by-product. This is justified because the teleportation is used just to translate
a quantum circuit for a classical simulation. In the following figures, projections
to |0) are made in the same way. When 6 = 7/4, U(w/4) is specifically called
the “T gate,” and its corresponding resource state is

T) =U(r/4) |+) .

This is called the “magic state” [25]. Because the resource state is not a stabilizer
state, it cannot be simulated efficiently. To handle this, we decompose the
resource state into a linear combination of stabilizer states by using the fact
that stabilizer states form an overcomplete basis on the operator space. In the
case of the magic state, we have

1+\/§<I+X+I+Y)+1—\/§(I—X I—Y)

T
ITXT] 4 2 2 4 2+2

where each term of the right-hand side is a stabilizer state. Note that the

coefficients are no longer positive and form a quasiprobability distribution.
Consider an arbitrary n-qubit universal quantum circuit U, where we want

to calculate the expectation value of a Pauli operator A € P,, .= {I, X,Y, Z}®n:

(A) = (0]%" UTAU [0)".

By decomposing the quantum circuit U into Clifford and T gates, we can rewrite
the expectation value (A) as

(4) = 21T [ (4.2 |0X01*") Uar (00" [TXTI*") U]
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where ¢ is the number of T' gates and Ug; is a Clifford circuit (we assume that
there is a local description of U so that we can efficiently decompose U into
Clifford and T gates.). The projector [0)0|®" is used for the gate teleportation,
and 2! is due to its normalization. Although we decompose the given quantum
circuit into Clifford and T gates for simplicity, any diagonal non-Clifford gate,
e~ /22 can be used straightforwardly instead of using 7' gates.

A classical simulation based on stabilizer-state sampling runs as follows:

1. Let {o;} be a set of pure t-qubit stabilizer states. The product of the
magic states |T>®t as a resource state is now decomposed into a linear
combination of stabilizer states as

ITXT | = Zl’m, (2.9)

where ). z; = 1.
2. Sample a stabilizer state o; with probability

|i]

pi = :
EEDIAE

3. Calculate M; = sign(x;) >, |zi|(A)s,, where (A),, is defined as
(A),, =2 Tr [ (A @ [0)01™ ) Ua (J0X0I*" @ 3 ) U, (2.10)

and can be calculated efficiently.

4. By repeating steps 2 and 3, the expectation value Ex(M;) of M; is esti-
mated.

From Egs. (2.9) and (2.10), we have

(4) =23 T (4@ 040" ) U (J0X0I*" ) U

= Zpi Z |z;] | sign(w;) <A>a,-
= Zlel

Therefore, M; is an unbiased estimator of (A). Since the sampling according
to quasiprobability distribution is simulated by the postprocessing, we call it a
“quasiprobability method.”

By use of the Hoeffding inequality [43], the number of samples necessary to
obtain the expectation value within an additive error § with probability of at
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least 1 — € is given by

2
2 2
Nstabilizcr - (Z |£E1|> 57 In <6) .

The sampling cost is proportional to the square of ), |z;|.

Until now, we have considered that the resource state is in a pure state
|TXT|. However, in general, the resource state can be in a mixed state possibly
due to noise on the T' gate. In the following, we simply denote a resource state
by p in general. If p is a probabilistic mixture of stabilizer states, for example,
all the coefficients x; are positive by definition, and ), [;] = 1. Hence, the
sampling cost does not increase. Otherwise, some coefficients are inevitably
negative, and the sampling cost Nggabilizer iNCreases according to the amount
of 37, |z;|. In this sense, >, |z;| quantifies the simulation cost of the universal
quantum computation.

With use of the minimization for all possible stabilizer decompositions, the
Robustness of Magic (ROM) of a resource state p is defined as follows

R(p) = H}Dm {Z |lzil; p = szﬂz},

which determines the minimum cost to simulate a Clifford circuit with an in-
put state p by stabilizer-state sampling. However, calculation of the ROM is
intractable if the number of qubits increases. Even in this case, we can calculate
an upper bound of the ROM by using the submultiplicativity,

R(p®p') < R(p)R(P).
Specifically, for the resource state |T)T|®", it has been estimated that
R(|TXT|®") = 3.68705

and hence

{R(|T)(T|®t) }2 < {R(|T)<T|®5)}% o 9075298t

as explained in Ref. [38]. On the other hand, the upper bound of the cost of the
resource state |T)T|*" is 2¢ if we use R(|TYT|) = v/2. Consequently, optimizing
the stabilizer decomposition over multiple copies of a resource state significantly
reduces the simulation cost. In Ref. [39], it is shown that the channel robustness
of € is equal or lower than the robustness of magic of the Choi state |Ug)Uel:

R(E) > R(|We)Vel).

This is because more stabilizer states are used to calculate RoM than channel
robustness. Moreover, if the unitary operation U is in the third level of the
Clifford hierarchy, then

RU) = R(|Pu(Pul)-
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2.7.2 Heisenberg propagation

Let us review Heisenberg propagation as proposed in Ref. [40]. In Heisenberg
propagation, an observable to be measured evolves in the Heisenberg picture. In
general, such a calculation requires exponential time. To handle this, we decom-
pose the observable into a linear combination of Pauli operators. As described
below, one Pauli operator is sampled at each step by using quasiprobability
method as follows.

Consider an n-qubit quantum circuit consisting of d quantum channels {Ai}f:l.
Each quantum channel acts on a constant number of qubits. We assume that
both the initial state of the circuit p and an observable A are products of oper-
ators acting on a finite number of qubits. The expectation value of A is written
as

(4) = Tr (Ahgo -0 Ag 0 A (p)
=Tr (pAI 0---0 Aj;_l o AL(A)),
where AT is the adjoint of A; that is,
Tr [CA(B)] = Tr [AT(C)B],

for any operators B and C.
The Heisenberg propagation algorithm is as follows:

1. Decompose A into Pauli operators o € P, = {I, X,Y, Z}*"™:

AW = Z Cy0,

o€Pn
where A®) = A and A® (i =1,...,d) is defined recursively below.
2. Sample a Pauli operator o(?) with probability
o] _ |Tr(A%0)]|
Sep, leo]  2°D(A0) |

where D(A) == 27" [Tr(Ac)| = >, cp. |co|, which is called the “sta-
bilizer norm” in Ref. [45].

Po =

3. Define AG+D = AT, (A®).

%

4. Repeat steps 1-3 for i = 0,...,d to obtain A1 which is an operator
still acting on a finite number of qubits. Then we calculate

M ({o0}) = v [a005] TT [siantenn D (4)].

5. Repeat step 4 to estimate the expectation value of M({o;}).
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The expectation value is given by

> | (1o Jr(})

{o} L\i=0
where ) {o® indicates the summation taken over all possible trajectories. We

used the fact that sign [’IT (A(i)o(i))} D(A(i)) is an unbiased estimator for A in
step 3. The number of samples required for an additive error § with probability
of at least 1 — e is bounded by the Hoeffding inequality [43]

Niteisonbers = (D(A) ﬁp(AI))Q; In <§) (2.11)

i=1

:<A>a

where the channel stabilizer norm for a channel A is defined by

D(A) = anéaﬁ)i DI[A(0)]. (2.12)

Since
D(Ao A') <D(A)D(A),

we should choose the channel A to be simulated appropriately so that the
channel stabilizer norm is minimized while the dimension of A is maintained
tractable.

2.8 Summary and Discussion

In this chapter, we have reviewed the basics of quantum computation and then
classically efficiently simulable quantum circuits, Clifford circuits and fermionic
linear optics (FLO). Moreover, we review the quasiprobability-based sampling
simulation algorithms, which sample a CSP channel, a stabilizer state, or a Pauli
operator.

Through the stabilizer-state sampling simulation algorithm, the classical
computation cost of a quantum circuit can be quantified as the sampling cost
of the simulation. However, unlike the Heisenberg propagation, the existing
stabilizer-state sampling has not been optimized to simulate noisy quantum cir-
cuits. In Chapter 3, we will extend the stabilizer-state sampling to the noisy
case and compare the extended stabilizer-state sampling with the Heisenberg
propagation in terms of the sampling cost. Furthermore, we will show that pos-
sible quantum advantages can be squeezed by estimating the sampling cost of
the stabilizer-state sampling algorithm.

Clifford circuits are classically efficiently simulatable by the Gottesman-Knill
theorem. One of the most important applications of Clifford circuits is quan-
tum error correction (QEC). Whereas most of numerical calculations of QEC
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assume that the noise is described by Pauli operators, quantum devices suffer
from coherent noise, which cannot be represented by Pauli operators, such as
an over-rotation noise. Based on the review of quasiprobability-based simu-
lation algorithms, we expect that coherent noise can be simulated by decom-
posing the noise over CSP channels, thereby sampling one CSP channel. We
will see the simulation method for QEC under the over-rotation noise using the
quasiprobability-based simulation algorithm in Chapter 4.

Although we have reviewed the quasiprobability-based simulation algorithms
based on Clifford circuits, the classically efficiently simulable quantum circuit
should be chosen according to a quantum algorithm or a quantum circuit. The
simulation of fermionic systems is one of the most promising candidates for
demonstrating quantum advantages, and the Google Quantum AI group per-
formed several quantum simulations of a fermionic system recently [46], which is
composed of free fermions. To narrow down possible quantum advantages by the
simulation of fermionic systems, a quasiprobability-based simulation algorithm
based on FLO would be more useful. We will show the quasiprobability-based
simulation algorithm based on FLO and estimate the sampling cost of a concrete
quantum circuit in Chapter 5.
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Chapter 3

Comparative Study of
Sampling-Based Simulation
Costs of Noisy Quantum
Circuits

In this chapter, we extend the stabilizer-state sampling to the noisy case, and
compare its simulation cost with that of Heisenberg propagation. Noise in quan-
tum operations often negates the advantage of quantum computation. However,
most classical simulations of quantum computers calculate the ideal probability
amplitudes either storing full state vectors or using sophisticated tensor network
contractions. Here, we investigate sampling-based classical simulation methods
for noisy quantum circuits. Specifically, we characterize the simulation costs
of two major schemes, stabilizer-state sampling of magic states and Heisenberg
propagation, for quantum circuits being subject to stochastic Pauli noise, such
as depolarizing and dephasing noise. To this end, we introduce several tech-
niques for the stabilizer-state sampling to reduce the simulation costs under
such noise. It revealed that in the low noise regime, stabilizer-state sampling
results in a smaller sampling cost, while Heisenberg propagation is better in
the high noise regime. Furthermore, for a high depolarizing noise rate ~ 10%,
these methods provide better scaling compared to that given by the low-rank
stabilizer decomposition. We believe that these knowledge of classical simula-
tion costs is useful to squeeze possible quantum advantage on near-term noisy
quantum devices as well as efficient classical simulation methods. This chapter
is based on [Hakkaku and Fujii, Phys. Rev. Applied 15, 064027 (2021)] with
slight modifications to fit in the context.

29
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3.1 Introduction

Quantum computers are expected to provide an exponential speedup compared
to classical computers for certain problems such as factoring problems and quan-
tum simulations. Recently, extensive effort has been expended for the realiza-
tion of quantum computers, and the number of qubits is now more than 50
[9, 46-49]. Unfortunately, such a number of qubits is still too small to run
sophisticated quantum algorithms such as Shor’s algorithm for factorization.
Nevertheless, quantum devices that have already been realized or will be real-
ized soon. are thought to achieve quantum computational supremacy, providing
an output of a particular task much faster than the known best effort on a clas-
sical computer. Recently, Google demonstrated a sampling task on its quantum
processor, Sycamore, consisting of 53 qubits with high-fidelity single-qubit and
two-qubit gates [9]. While Sycamore takes about 200 s to conduct the task,
a state-of-the-art supercomputer would take, according to Google’s estimation,
approximately 10,000 years. After this experiment, IBM and Alibaba rebutted
the estimated time for a classical simulation [50, 51]. Specifically, Alibaba es-
timated that the simulation takes less than 20 days by use of a sophisticated
designed tensor network-based classical simulation algorithm [51]. While noise
on quantum operations deteriorates the quantumness, which would reduce the
classical simulation cost, the effect of the noise is not fully used in the above-
mentioned classical simulations. To compare quantum and classical computers
fairly, a more-refined classical approach should be used to simulate quantum
computers.

There has been another classical simulation approach based on sampling.
Instead of computing the full probability amplitudes, a class of classically sim-
ulatable quantum computations, which is called a Clifford circuit, is used to
save memory during a classical simulation [38]. More precisely, a quantum cir-
cuit is decomposed into the Clifford circuits and the preparation of a resource
state which is the so-called magic state [25]. Then, by decomposition of the
resource state into a linear combination of stabilizer states with a quasiproba-
bility distribution, the resource state is replaced by sampling a stabilizer state
with an appropriate postprocessing, where the Gottesman-Knill theorem [30]
can efficiently simulate each realization. We refer to this sampling algorithm as
“stabilizer-state sampling.” The sampling cost of this quantum computation is
determined by a measure called the “robustness of magic (ROM).”

Another sampling-based classical simulation algorithm is based on evolving
a measured observable in the Heisenberg picture [40]. The observable evolved
by an adjoint quantum channel is decomposed over the Pauli operators, and
one of them is sampled by the quasiprobability method similarly to stabilizer-
state sampling. This sampling algorithm is called “Heisenberg propagation.”
The simulation costs are characterized by a measure called a “stabilizer norm.”
A study on the simulation cost of a depolarized rotation gate showed that the
depolarizing noise decreases the simulation costs [40]. However, it remains un-
clear whether Heisenberg propagation can simulate noisy quantum circuits more
efficiently than stabilizer-state sampling.
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In this study, we investigate the simulation costs of noisy quantum circuits in
further detail. Specifically, we consider two algorithms, stabilizer-state sampling
and Heisenberg propagation, to quantify the sampling costs of quantum circuits
subject to stochastic Pauli noise. Unfortunately, the existing stabilizer-state
sampling has not been optimized to simulate noisy quantum circuits. Unlike
Heisenberg propagation, stabilizer-state sampling is not directly applicable to
quantum circuits where nondiagonal noise, such as Pauli X and Y errors, oc-
curs. Moreover, noise on the Clifford gates has yet to be fully used to reduce
simulation costs. To address the former problem, we use the gate-teleportation
technique [24] to transform the nondiagonal part to a diagonal noise. For the
latter issue, we propose a method to collect noise on Clifford gates into a resource
state. These techniques reduce the simulation costs for stabilizer-state sampling
and allows us to compare the two sampling-based simulation algorithms. In ad-
dition, we introduce a reduced stabilizer basis to calculate a reasonable upper
bound of the ROM for multiple copies of a noisy magic state in a feasible way.

For these two major sampling-based classical simulation algorithms, we com-
pare the costs to simulate noisy quantum circuits and identify the more-suitable
approach in different situations. Specifically, we consider noisy quantum cir-
cuits where each gate is followed by dephasing or depolarizing noise. We quan-
titatively analyze how such noise decreases the simulation costs for the two
sampling-based simulation algorithms. We find that there is a crossover in the
performance: up to a particular error rate, stabilizer-state sampling has better
performance; however, as the error rate becomes higher, Heisenberg propaga-
tion outperforms stabilizer-state sampling. This knowledge is useful to pursue
a better approach to simulate a noisy quantum circuit. Furthermore, specified
classically simulatable regions would be also helpful to design quantum circuits
that potentially have a quantum advantage avoiding these sampling-based clas-
sical simulations.

The rest of this chapter is organized as follows. In Section 2.7, we review two
existing classical simulation algorithms: stabilizer-state sampling and Heisen-
berg propagation. The analysis includes the simulation costs, ROM and stabi-
lizer norm. Then, in Section 3.3, we explain how to calculate the ROM of noisy
quantum circuits through some examples. Finally, in Section 3.4, we compare
the two sampling-based algorithms via noisy random quantum circuits (RQCs).
Section V is devoted to the conclusions and a discussion.

3.2 Qualitative comparison of the two algorithms

The staiblizer-state sampling and Heisenberg propagation discussed in Section
2.7 are similar in the sense that if a quantum circuit consists only of Clifford
gates, then the overhead does not grow exponentially. Both algorithms require
an optimization procedure to estimate the simulation costs. That is, the size
of the resource state in stabilizer-state sampling or the size of the support of
the channel must be small to feasibly calculate the ROM or a channel stabilizer
norm , respectively. For stabilizer-state sampling, the computationally hard
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part is imposed by the preparation of a resource state, which can reduce the
simulation cost for an arbitrary quantum circuit by preparing multiple copies
of the resource state and decomposing them over stabilizer states. This could
be advantageous against Heisenberg propagation because its simulation cost
explicitly depends on the quantum circuit to be simulated instead of a resource
state.

On the other hand, it is easier for Heisenberg propagation to use the noise
effect to reduce the simulation cost. For example, depolarizing noise, which ap-
pears after the Clifford gate, helps to reduce the overhead in a straightforward
manner. However stabilizer-state sampling requires a special treatment, as de-
veloped in the next section. Because of these complicated factors, it remains
unclear which algorithm is better suited for a given noisy quantum circuit. This
is one of the main targets to be clarified in this chapter.

3.3 Stabilizer-state sampling for noisy quantum
circuits

Heisenberg propagation can simulate noisy quantum circuits straightforwardly.
However, it is not straightforward for stabilizer-state sampling to use the noise
effect, especially on the Clifford gate, to reduce the simulation cost. Here we
provide several techniques to extend stabilizer-state sampling to the noisy case.

Below, we first consider the simulation cost of a diagonal gate followed by
diagonal noise, such as dephasing noise. Second, we calculate the simulation cost
when stochastic Pauli noise occurs after a non-Clifford gate. Third, we explain
noise fusion, where the noise occurring in different gates is merged so that the
noise on the Clifford gates can reduce the simulation cost of a non-Clifford gate.
Finally, we explain how to reduce the number of stabilizer states as a basis to
calculate a reasonable upper bound of the ROM of the noisy resource states,
since an exact calculation of the ROM is hard.

3.3.1 Noise teleportation

Consider a single-qubit rotation gate about the z axis subject to the dephasing
noise. The ideal rotation gate and the corresponding resource state are defined
in Egs. (2.7) and (2.8), respectively. The single-qubit dephasing noise is defined
as

Edephasing(p) = (1 —p)p +pZpZ. (3.1)

The Z error in Eq. (3.1) acts as the Z operator on the resource state |U(0)), as
shown in Fig. 3.1. Thus, the resource state of the noisy rotation gate is given
by

p=1=p)[UO)NUO)+pZ U@O)XU(O)] 2.
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Figure 3.1: Top: Single-qubit rotation gate about the z axis U(#) followed by
the Z error. Bottom: Pushing the Z error into the resource state.

Figure 3.2 shows the ROM of the resource state corresponding to the noisy
rotation gate R(p), where we use a convex-optimization solver, CVXPY [52, 53],
to calculate the ROM. As shown in Fig. 3.2, the ROM decreases as the error rate
of the dephasing noise increases. Additionally, the smaller the rotation angle,
the more easily the noise makes the ROM unity; that is, such a noisy resource
state becomes a probabilistic mixture of stabilizer states. One implication of this
is that we have to carefully design quantum circuits for noisy near-term quantum
devices so that they cannot be simulated easily. For example, the variational
quantum eigensolver (VQE) uses parameterized quantum circuits consisting of
many rotation gates, whose angles are often small. A small amount of noise
would be enough to make such circuits classically simulatable. It would be
interesting to characterize applications of noisy near-term quantum devices in
terms of the ROM if they satisfy the necessary condition for quantum advantage.

In the above case, the noise effect is considered straightforwardly by virtue
of the dephasing noise. However, this argument is not directly applicable for
an X error or a Y error because they are not diagonal with respect to the
computational basis. To handle this, we propose a way to deal with nondiagonal
errors through gate teleportation. Consider a diagonal non-Clifford single-qubit
gate U followed by the single-qubit depolarizing noise

gdepol(p) = (1 - ip)p + g Z [A]p
AE{X,Y,Z}

=1 -pp+ pg
where [A] is a superoperator defined by [A]p = ApAT. A Z error is treated
in the same way as mentioned before. Figure 3.3a corresponds to the gate
teleportation of a diagonal gate U followed by an X error, where the X error
is rewritten as HZH. In Figure 3.3a the first H gate is replaced by the gate
teleportation of the H gate (Fig. 3.3b). As a result, the X error is taken as the
Z operator on the second ancilla qubit. Similarly, we treat the Y error as the
correlated Z operator on the two ancilla qubits. In this way, the depolarizing
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Figure 3.2: ROM of the resource state Eqephasing||U(0)XU(0)]], which corre-
sponds to the rotation gate about the z axis followed by the dephasing noise
with error rate p. The horizontal axis shows the angle 6 of the rotation. The
vertical axis shows the ROM, which quantifies the simulation cost of a Clifford
circuit with a non-Clifford resource state for stabilizer-state sampling. The leg-
end shows the error rates of the dephasing noise. The sampling cost increases as
ROM becomes larger. When the ROM of a circuit is unity, the noisy resource
state is a probabilistic mixture of stabilizer states.

noise is translated into correlated diagonal errors £ on the ancilla qubits as
follows:

= 3
&= (1- D) uon+ 5zl + 12+ 122,
This gives us the noisy resource state as

~ 3
G0 = (1- 0o+ hzl+ 12+ 2zl

The noisy resource state obtained above is equivalent to the Choi state of
the quantum channel Eqepo1 oU, where U(p) = UpU' up to a local Clifford gate:

& (PCZ\U}H)) = [I] @ ([H] o Eaepor © [U]) (P\\P*))’
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Figure 3.3: Noise teleportation of a diagonal gate U followed by an X error. (a)
Gate teleportation of U followed by an HZH operator. (b) Gate teleportation
of U and an X error by replacement of the first H gate shown in (a) with the
gate teleportation of the H gate.

where

ey = KL
00 11
gy o 100+ 111)
V2
and CZ indicates the controlled-Z gate. More generally, for a diagonal single-

qubit gate U and single-qubit stochastic Pauli noise £, the classical simulation
cost via the noise teleportation is quantified by a ROM of

[I] ® (50 [UDP|\1;+>.

Recently, a similar measure for a quantum channel was developed in Ref. [39],
which is called the “channel robustness.” The channel robustness is also cal-
culated from the ROM of the Choi state except the stabilizer states used to
decompose the Choi state must satisfy the trace-preserving condition. Seddon
and Campbell [39] show that for any n-qubit CPTP (completely positive trace-
preserving) maps £, ROM of the Choi state R(pg), and channel robustness
R.(E), the following inequality holds:

R(pe) < R4(E),
where

PE = (g ® I®n) |Qn><Qn|7
2" —1

2,) = jgf S 91

J=0
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Figure 3.4: Noise fusion. (a) Depolarizing noise occurs at every gate. (b) Noise
is collected around the T gate to reduce the simulation cost of the T' gate.

We confirmed that the ROM of p = & (|T+)XT+]|), which is the resource state of
the T gate followed by the depolarizing noise, is equal to its channel robustness
by numerical calculations. However, the ROM of the product state p®" may
be lower than the channel robustness of p®". This is because the stabilizer
states that do not result in trace-preserving operations are used in the stabilizer
decomposition when a resource state is multiple copies of a state.

3.3.2 Noise fusion

In general, a quantum circuit consists of Clifford and non-Clifford gates. Both of
these gates are subject to noise. Since Clifford gates can be simulated efficiently,
noise on the Clifford gates should not directly reduce the classical simulation
costs for stabilizer-state sampling. To reduce the ROM of a resource state, we
construct a method to merge the noise on Clifford gates with the noise on a
neighboring non-Clifford gate as follows.

Consider a quantum circuit consisting of arbitrary single-qubit and two-qubit
gates, followed by single-qubit and two-qubit depolarizing noise, respectively.
The single-qubit depolarizing noise and two-qubit depolarizing noise are given
by

upr = (1-J0) U145 14l

Ae{X,Y,Z}

15 p
gdcpo2 = (1 — 16p> [I®2] -+ E Z [A ® B}

(A,B)#£(I,I)

Let U; and Us; be arbitrary single-qubit and two-qubit gates, respectively. The
unitary operator Uy (Uz) commutes with the depolarizing channel Eqepo1 (Edepoz)
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(a)

gdepol @ gdepol_

(b)

Figure 3.5: Circuits illustrating noise teleportation and noise fusion. (a) T' gate
and H gate followed by a single-qubit depolarizing channel. (b) Two single-
qubit depolarizing channels are merged by the noise fusion.

as

5dep01 0 [Ul] = [Ul} © 8depola
5depo2 o [U2] = [UQ} o gdep02~ (32)

For example, consider the circuit shown in Fig. 3.4a. The two-qubit depolarizing
noise forward is commuted with use of Eq. (3.2), which merges the single-qubit
depolarizing noise and the two-qubit depolarizing noise [Fig. 3.4b]. In general,
for a given noise channel

&= Z[El]v
by replacing £ with a unitary gate U, we have
EolU]l=[U]o&,
where
g =Y [UTEU].

If channel £ is a stochastic Pauli channel and if U is a gate in the third or
lower level of the Clifford hierarchy, including the T gate, then £’ is a stochastic
Clifford channel. In this case, the merging process reduces the ROM of the
resource state. For clarity, we consider the simplest case, the depolarizing noise,
below.

3.3.3 Illustrative example of noise teleportation and noise
fusion

To confirm that noise teleportation and noise fusion can reduce the ROM, we
calculate the ROM of the noisy circuit shown in Fig. 3.5a. We assume that
single-qubit depolarizing noise always occurs after a single-qubit gate. The
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Figure 3.6: Comparison of the ROM with and without noise fusion. The hor-
izontal axis shows the error rates of the single-qubit depolarizing noise. The
vertical axis shows the ROM. The orange circles and blue squares correspond
to the ROM defined in Eq. (3.3) with noise fusion and the ROM defined in
Eq. (3.4) without noise fusion, respectively.

ROM of the resource state of the quantum channels surrounded by the dashed
rectangle in Fig. 3.5a is given as

R(51(|T+><T+|)). (3.3)

We replace the single-qubit depolarizing noise backward using the noise fusion
as shown in Fig. 3.5b. The ROM of the resource state of the quantum channels
surrounded by the dashed rectangle in Fig. 3.5b is given as

R(g] o 51(|T+><T+|)). (3.4)

The ROM of the resource state is calculated in both cases with noise fusion and
without noise fusion. The blue squares and orange circles in Fig. 3.6 correspond
to the ROM defined in Egs. (3.3) and (3.4), respectively. The ROM shown in
Eq. (3.3) is unity when the error rate p is equal to or greater than 0.34. On the
other hand, the ROM shown in Eq. (3.4) is unity when the error rate p is equal
to or greater than 0.2. Hence, noise fusion successfully reduces the ROM.
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Figure 3.7: Comparison of the number of the stabilizer states used to calculate
the exact ROM of n-fold copies of the magic state and the number of stabilizer
states used to calculate its upper bound by our proposed method. The horizontal
axis indicates the number of qubits. The vertical axis indicates the number of
stabilizer states. Blue squares and orange circles correspond to the total number
of stabilizer states and the number of stabilizer states needed to calculate the
upper bound, respectively.

3.3.4 Reducing basis for stabilizer-state decomposition

Simulation costs can be reduced by decomposing n-fold copies of a resource state
p®™ instead of decomposing p. Unfortunately, the number of stabilizer states
used in the decomposition grows superexponentially as the number of qubits
increases [30, 54]:

2" ﬁ (2" +1). (3.5)
k=1

Thus, it becomes intractable to calculate R(|T)<T|®") exactly as n increases.

However, not all stabilizer states contribute to the decomposition of the ten-
sor product of the magic states. The decomposition of the magic state |TT|
requires only X and Y components of stabilizer states. Hence, the stabilizer
states whose stabilizer operators include X and Y operators are engaged in the
decomposition.

Consider the upper bound of the ROM of two-copies of a magic state |T)T|*>.
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Table 3.1: Comparison of the exact ROM of n-fold copies of the magic state |T')
and their upper bounds calculated by our proposed method.

n | Proposed method Exact

1 1.414214 1.414214
2 1.747547 1.747547
3 2.218951 2.218951
4 2.862742 2.862742
5 3.689298 3.687052

We use separable stabilizer states, all twofold tensor products of {|£) , |£i)} and
the entangled stabilizer states stabilized by

(XX,YY), (-XX,-YY),
(XY, YX), (=XY,-YX). (3.6)

Using these stabilizer states, we numerically find that the upper bound of the
ROM of |TXT|®? is almost the same as the exact value. On the basis, we use the
separable stabilizer states and bipartite entangled stabilizer states with respect
to X and Y operators. To decompose |T)T|®™ over certain stabilizer states,
we use the stabilizer states stabilized by one of the stabilizer groups shown in
Eq. (3.6), for up to L%J pairs. Thus, the number of basis elements to decompose

|TXT|®" from Eq. (3.5) is reduced to

n/2) B
amnl " {8k (n — 2k)!} .

k=0
Figure 3.7 compares the number of the stabilizer states used to calculate the
ROM of n-fold copies of the magic state R(|T><T|®”) and its upper bound by

our proposed method. The horizontal axis indicates the number of stabilizer
states, while the vertical axis indicates the number of qubits. The blue squares
and orange circles correspond to the total number of stabilizer states and the
number of stabilizer states used by our proposed method, respectively. Our
method uses fewer stabilizer states than the total number of stabilizer states.
Table 3.1 compares the upper bounds of the ROM of n-fold copies of the magic
state for our proposed method with the exact ROM calculated with all stabilizer
states. The upper bound of the ROM is sufficiently close to the exact ROM up
to four qubits. For n = 5, the upper bound of the ROM is slightly larger than
the exact ROM. Therefore, our method provides a reasonable upper bound of
the ROM.

This method is used in Sect. 3.4 in the caluclation of the ROM of twofold
copies of the resource state of the depolarized T gates. A more-efficient and
more-precise method for calculating the upper bound of the ROM of n-fold
copies of the magic state was proposed in Ref. [55], but the noisy case was not
considered there.
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Figure 3.8: Three patterns of the unit cell constituting our RQCs: (a) unit cell
1, (b) unit cell 2, and (c¢) unit cell 3. Cl denotes a Clifford gate.

3.4 Comparison of sampling-based simulation al-
gorithms

Here we compare the two sampling-based algorithms by calculating the simula-
tion cost concretely for RQCs, which are similar to the circuits used in the quan-
tum computational supremacy experiment [9], consisting of Clifford and T gates
followed by single-qubit or two-qubit depolarizing noise. We construct RQCs by
alternately applying single-qubit gates chosen from {\/)7 VY, T} to each qubit,
and then applying two-qubit Clifford gates to nonoverlapping nearest-neighbor
pairs of two qubits. We call the sequential operations of applying single-qubit
and two-qubit gates in turn a “cycle”. After a certain number of cycles, all
qubits are measured to obtain an expectation value of Pauli operator P.

The expectation value of P with respect to an output state of a RQC becomes
exponentially close to zero as the depth of a RQC increases. However, this is
not the point in our comparison. The RQCs are just chosen as a representative
of hardware-efficient quantum circuits that are expected to be used in near-
term quantum devices. Regarding a single-qubit gate, the T gate is the most
adversarial in classical simulation, since the ROM of the associated resource
state is the highest. We expect that the ROM of the hardware-efficient ansatz
with the same arrangement of qubits will be much smaller. Therefore, our result
will also give some insights into classical simulatability of such an ansatz.

The unit cell of these RQCs comprises two single-qubit gates followed by one
two-qubit Clifford gate. We assume that single-qubit and two-qubit depolariz-
ing noise occurs after each single-qubit gate and two-qubit gate, respectively.
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Figure 3.8 shows the three patterns of the unit cell. Unit cell 1 consists of only
Clifford gates. Unit cell 2 consists of one T gate and two Clifford gates, while
unit cell 3 consists of two T gates and one Clifford gate. This structure can
provide the upper bound for the simulation cost of a noisy RQC.

In the case of Heisenberg propagation, the upper bound of the simulation
cost of n RQC can be estimated from the simulation costs of unit cells 1, 2,
and 3 straightforwardly by Eq. (2.11). First we calculate the channel stabilizer
norm using the Pauli transfer matrix (PTM) of a quantum channel [40]. For a
quantum channel A that takes n qubits to n qubits, the corresponding PTM is
defined as

(Ra),, = 2in T [BA(P)).

Combining the definition of the PTM with that of the channel stabilizer norm
[see Eq. (2.12)], we obtain

D(AT) = |[Ral
where |[|-||  is the largest row’s L1 norm of the matrix Ry. The PTMs of the T’

gate, single-qubit depolarizing noise, and two-qubit depolarizing noise are given
by

1 0 0 0
0o - —-L o
V22
0 0 0 1
Rdepol = dlag(l,l —pl,l —p1,1 —pl), (38)
Riepoz = diag(1,1 —po,...,1 — pa), (3.9)

respectively. The PTMs of Clifford gates do not need to be considered because
they are signed permutation matrices and the depolarizing noise is symmetric.
Because unit cell 1 includes only Clifford gates, its channel stabilizer norm is
unity. By multiplying the PTMs in Egs. (3.7) to (3.9), the PTMs of unit cells
2 and 3 are written, respectively, as

Runit 2 = (RT ® 14)(Rdep01 & 14)(14 & Rdepol)Rdep027
Runit 3 = (R ® I4)(14 ® Rr)
(Rdepol & 14)(14 X Rdepol)Rdepo2-

The channel stabilizer norms of unit cells 2 and 3 are given, respectively, by
Danit 2 = max (1, V2(pr = 1)(p2 — 1) ).

Dunie s = max (1, V2(p1 = 1)(p2 = 1), =201 = 1)’ (p2 = 1)).
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On the other hand, for stabilizer-state sampling, we calculate the ROM of
unit cells 2 and 3 with the depolarizing noise. The error-free resource states of
unit cells 2 and 3 are given by

piT+++) = |T +++XT + ++],
pirsryy = T +T+XT + T+,

respectively. We add the correlated diagonal noise on them to consider the
depolarizing noise, and calculate the ROM of depolarized unit cells 2 and 3.
The noisy resource states of unit cells 2 and 3 are given, respectively, by

punitz = €20 (51 ® I) o (I ® 51) (Prr+4)s
Punits = E2 0 (51 ® I) o (I ® gl) (Pi7+74))5

where

s _(, 15 o4, P
Ey = (1 16p>[[ }4—16 > Aw®B,
(A,B)eS

S = {(A, B)|A, B € {I?,Z,, Z5, 1 Z5} } \ { (I®?, 1%?)}

To reduce the simulation cost, we also calculate the upper bound for the ROM of
twofold copies of puniti (1 = 2,3). We call stabilizer-state sampling with twofold
copies of a resource state “optimized stabililzer—state sampling.” In this case, the
RoM per unit cell 7 is given by {R(p?fiti) }5. The corresponding simulation cost
of unit ¢ is proportional to R(pﬁfiti). Throughout the optimization, we use the
basis reduction method as explained in Section 3.3.4 because the decomposition
of an eight-qubit resource state is intractable for a current classical computer.
To decompose the resource states of depolarized Clifford+T circuits over certain
stabilizer states, we use the stabilizer states stabilized by one of the stabilizer
groups shown in Eq. (3.6) for the qubit pairs applied by the T' gate in the
resource state. For the other qubits, which are not applied by the T" gate in the
resource state, we use the stabilizer state |[+) or |-).

The ratio of the simulation cost of a circuit for calculating the expectation
value of P via Heisenberg propagation to that via stabilizer-state sampling is
given by

d T
NHeisenberg o Hi:l P (A’L )

Nstabilizer R(p) ’

where we use D(P) = 1. Therefore, we can compare the simulation costs for
the two sampling-based classical simulation methods by calculating the ROM
and the product of channel stabilizer norms.

Figure 3.9 (a) and (b) show the resultant simulation costs of unit cells 2 and
3, respectively. For simplicity, we assume that p; = po = p. The blue squares,
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Figure 3.9: Comparison of the simulation costs of faulty unit cell 2 (a) and
faulty unit cell 3 (b). The horizontal axis displays the error rates of the single-
qubit and two-qubit depolarizing noise. The vertical axis displays the ROM,
the upper bound of the ROM, or the channel (ch.) stabilizer norms, each of
which quantifies the simulation cost of the corresponding method under con-
sideration. The Blue squares, orange triangles, and green circles stand for sim-
ulation costs for stabilizer-state sampling [R(puniti)], optimized stabilizer-state

1
sampling ({R(puniti)m} ’ ) , and Heisenberg propagation (Dynit; ), respectively,

where i = 2, 3.

orange triangles, and green circles stand for simulation costs for stabilizer-state
1
sampling [R(puniti)], optimized stabilizer-state sampling ({R(punm)®2} 2) ,

and Heisenberg propagation (Dupit;), respectively, where ¢ = 2,3. In the low-
noise region, the simulation costs for stabilizer-state sampling are much smaller
than those of Heisenberg propagation. This is because the simulation costs are
reduced by optimization of the stabilizer-state decomposition by use of multiple
copies of a resource state. However, this is not the case for Heisenberg prop-
agation. Suppose a channel stabilizer norm is calculated for a merged channel
over several patterns of the unit cell. In this case, the simulation cost should
be further reduced, whereas the dimensions of the PTM increase exponentially.
However, we do not consider merging multiple patterns of the unit cell because
the simulation cost of Heisenberg propagation depends explicitly on quantum
channels. The dependence on quantum channels makes optimization of the
channel stabilizer norm by merging the quantum channels problematic due to
the enormous number of possible merging patterns.

In the high-noise region, Heisenberg propagation provides lower simulation
costs. This is attributed to the difference in the effect of the depolarizing noise
in both algorithms. To explain this in detail, we first consider the simulation
cost of £4 o [T] for stabilizer-state sampling, where we set £4 (A = X,Y,Z) a
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single-qubit general dephasing noise:
Ea=(1-p)] +plA]l

We numerically calculate the ROM of the resource states of £4 o [T] for A = X,
Y, and Z. The ROM of the resource state of £z o [T] is smallest for all p. As a
result, for stabilizer-state sampling, the Z error in the single-qubit depolarizing
noise has a larger impact on the simulation costs of noisy quantum circuits
compared with other Pauli errors: the X and Y errors. On the other hand, for
Heisenberg propagation, the two Pauli errors in the depolarizing noise always
help reduce the simulation costs. Let Apay; be the single-qubit stochastic Pauli
noise defined as follows:

+py +
APauli = (1 - po4YpZ> [I} + Z Z%LA]
A=XY,Z
The PTM of Apay; o [T] is given by

1 0 0 0

0 L/L%(l _ py-i&-pz) ?(1 py-gl;pz) 0 |
0 ﬁ(l _ %) ﬁ(l pXQPZ) 0

0 0 0 1 — pxdey

i D(Apai o [T]) = max{1,\/§(1 - 1”‘2W>,\/§(1 - 7’Y2“’Z>}.

We see that the two Pauli errors, {X,Y} or {Y, Z}, decrease the simulation cost
of Apauio[T] for Heisenberg propagation. This explains why the simulation costs
for Heisenberg propagation decrease faster than for stabilizer-state sampling
according to the error rate of the depolarizing noise.

In short, in Fig. 3.9, there is a crossover between which algorithm is bet-
ter. In the low-noise region, stabilizer-state sampling outperforms Heisenberg
propagation. However, the opposite is observed in the high-noise region. The
crossover appears around p > 0.05 for unit cell 2 and p > 0.11 for unit cell 3.

Next we calculate the total amount of simulation costs of the noisy RQCs on
a rectangular lattice consisting of m x n qubits and d cycles. The total number
of unit cells is roughly D = mnd/2. The numbers of unit cells 1, 2, and 3
are roughly %D, %D, and éD, respectively, since single-qubit gates are chosen

randomly from {\/X NY, T } The simulation costs for Heisenberg propagation
are proportional to

[{max (1, V2(p — 1)2) }% {max (1, (p—1)>% —2(p— 1)3) }’3} 2.

On the other hand, the simulation costs for stabilizer-state sampling are pro-
portional to
}2

ol

4D
|:R(punit2) o R(punit3)
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Since the number of T' gates t is relevant in the comparison of the simulation
costs in both algorithms, we calculate the simulation costs as a function of ¢,
which is related to D by %D. Figure 3.10 shows the simulation costs of the
two algorithms for p = 0,0.05,0.1,0.15,0.2. The blue, orange, and green lines
correspond to the simulation costs as a function of ¢ for stabilizer-state sampling,
optimized stabilizer-state sampling, and Heisenberg propagation, respectively.
If the error rate p is low, the optimized stabilizer-state sampling is the best
choice [Figs. 3.10a and 3.10b], otherwise, Heisenberg propagation is superior to
stabilizer-state sampling [Figs. 3.10c to 3.10e].

We also investigate the scaling factor o of the simulation costs 2¢* with vari-
ous error rates of the single-qubit and two-qubit depolarizing noise p (Fig. 3.11).
The blue, orange, and green lines correspond to the scaling for stabilizer-state
sampling, optimized stabilizer-state sampling, and Heisenberg propagation, re-
spectively. The sampling cost of error-free RQCs for the optimized stabilizer-
state sampling is the lowest, while that for Heisenberg propagation is the high-
est. In this case, the scaling based on Heisenberg propagation is 2¢, which is the
same as the scaling based on stabilizer-state sampling when the resource state is
decomposed over only separable stabilizer states. Furthermore, when the error
rate is high, the simulation costs of noisy quantum circuits for stabilizer-state
sampling and Heisenberg propagation are lower than the simulation costs for the
stabilizer rank algorithm 20468t [56, 57], which is a well-known sampling-based
simulator for pure states. Specifically, scaling based on Heisenberg propagation
and optimized stabilizer-state sampling is lower than scaling based on the sta-
bilizer rank when p > 0.1 and p > 0.13, respectively. Additionally, Fig. 3.11
confirms that the threshold error rate of classical simulatability of Heisenberg
propagation is lower than that of stabilizer-state sampling.

Finally, we consider the time required to calculate these noisy RQCs. We
assume that we can estimate the expectation value within an additive error
d = 1073, with a success probability of at least 1 —e = 1 — 10~2 and the error
rate of the single-qubit and two-qubit depolarizing noise p = 0.05. For p = 0.05,
a = 0.66 and o = 0.73 for optimized stabilizer-state sampling and Heisenberg
propagation, respectively. Combining the above information, we find that the
simulation of the noisy random circuits with ¢t = 40 requires approximately
8.9 x 10 samples for the optimized stabilizer-state sampling and 6.2 x 10'°
samples for Heisenberg propagation. We also assume that we have a classical
computer with 105 CPU cores, and each CPU core takes 1 ms to calculate one
sample, which is what a typical implementation of this algorithm takes. In this
case, the computer needs about 10 s using optimized stabilizer-state sampling
and 70 s using Heisenberg propagation.

3.5 Conclusions and discussion
We evaluate the simulation costs of noisy quantum circuits by two sampling-

based classical algorithms: stabilizer-state sampling and Heisenberg propaga-
tion. We extend and improve the existing stabilizer-state sampling algorithm
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for noisy quantum circuits. To compare the two sampling-based classical simu-
lation algorithms, we also investigate the simulation costs of noisy RQCs. We
find that for a low error rate, stabilizer-state sampling is the better algorithm,
otherwise, Heisenberg propagation is the better. Scaling based on the simulation
costs of noisy RQCs via Heisenberg propagation and optimized stabilizer-state
sampling is lower than that by the stabilizer-rank simulator [56, 57] when p < 0.1
and p < 0.13, respectively.

Recently, Seddon et al. [41] presented classical sampling algorithms and their
associated magic monotones, where a resource state is decomposed, instead
of using density operators of stabilizer states, into a matrix spanned by pure
stabilizer states, so-called stabilizer dyads. Since they showed that the dyadic
frame simulator is faster than stabilizer-state sampling, it will be interesting to
apply a dyadic frame simulator for noisy quantum circuits.

We believe that the knowledge obtained regarding the sampling-based clas-
sical simulation methods is useful not only for the classical simulation itself but
also for designing applications of near-term quantum devices. Specifically, one
of the most-promising applications of near-term quantum devices, VQE, uses
parameterized quantum circuits, which consist of many rotation gates. In par-
ticular, the angles of the rotation gates of the unitary coupled-cluster ansatz
with the Trotter decomposition are typically very small. As discussed in Sec-
tion 3.3, a small-angle rotation gate can be easily simulated by stabilizer-state
sampling. Even if a unitary coupled-cluster ansatz without Trotterization or a
hardware-efficient ansatz is used, the angles would be small if a target molecule
is a weakly correlated electron system, where the Hartree-Fock method gives a
good approximation. This is because a Hartree-Fock state as the initial state of
the VQE is a good approximation of the ground state. In Ref. [58], a perturba-
tive approach is sufficient to describe the VQE with a hardware-efficient ansatz,
implying the rotations are very small. Furthermore, for the unitary coupled-
cluster ansatz, many two-qubit Clifford gates are used to construct the ansatz.
Noise on two-qubit Clifford gates deteriorates the ROM of the rotation gates,
which would make the parameterized circuit classically simulatable more easily.
With these points in mind, we have to design the parameterized quantum cir-
cuits under noise carefully so that the VQE has a potential quantum advantage.
It would be interesting to characterize the Hamiltonian and the ansatz of the
VQE with respect to the ROM of the quantum circuit generating an optimal
variational solution.
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Figure 3.10: Comparison of the simulation costs of depolarized RQCs with var-
ious error rates of the single-qubit and two-qubit depolarizing noise p through
stabilizer-state sampling and Heisenberg propagation. The horizontal axis shows
the number of T gates ¢ in the circuits. The vertical axis shows the squared
products of the upper bounds of the ROM or those of the channel stabilizer
norms. Both are proportional to the simulation costs. Blue, orange, and green
lines correspond to the simulation costs as a function of t for stabilizer-state
sampling, optimized stabilizer-state sampling, and Heisenberg propagation, re-
spectively. The simulation costs with p = 0,0.05,0.1,0.15, 0.2 are shown in from
(a) to (e), respectively.
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Figure 3.11: Scaling factors of the simulation costs as a function of the error
rate p of single-qubit and two-qubit depolarizing noise. The horizontal axis
shows the error rates of the depolarizing noise p. The vertical axis shows the
prefactor of the exponent « of the simulation costs 2°%, where ¢ is the number of
T gates in a RQC. Blue, orange, and green lines correspond to the scaling using
stabilizer-state sampling, optimized stabilizer-state sampling, and Heisenberg
propagation, respectively.
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Chapter 4

Sampling-Based
Quasiprobability Simulation
for Fault-Tolerant Quantum
Error Correction on the
Surface Codes under
Coherent Noise

We propose a sampling-based simulation for fault-tolerant quantum error correc-
tion under coherent noise. A mixture of incoherent and coherent noise, possibly
due to over-rotation, is decomposed into Clifford channels with a quasiproba-
bility distribution. Then, an unbiased estimator of the logical error probability
is constructed by sampling Clifford channels with an appropriate postprocess-
ing. We characterize the sampling cost via the channel robustness and find that
the proposed sampling-based method is feasible even for planar surface codes
with relatively large code distances intractable for full state-vector simulations.
As a demonstration, we simulate repetitive faulty syndrome measurements on
the planar surface code of distance 5 with 81 qubits. We find that the co-
herent error increases the logical error rate. This is a practical application of
the quasiprobability simulation for a meaningful task and would be useful to ex-
plore experimental quantum error correction on the near-term quantum devices.
This chapter is based on [Hakkaku, Mitarai, and Fujii, Phys. Rev. Research, 3,
043130 (2021)] with slight modifications to fit in the context.

51
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4.1 Introduction

Quantum error correction (QEC) is an essential ingredient for developing scal-
able fault-tolerant quantum computers because quantum information is vulner-
able to environmental noise [5, 6]. QEC counteracts noise by encoding quantum
information into a subspace of multiple qubits, which assures computation with
arbitrary precision in quantum computers. Massive experimental efforts have
been devoted to demonstrating small-scale QEC circuits as testbeds toward
large-scale QEC circuits in the future as well as numerical simulations [16-18].
It is thus important to investigate performances of QEC codes theoretically to
establish a plausible goal for experiments.

Most numerical studies for QEC have been conducted by assuming stochas-
tic Pauli noise to exploit the efficient simulatability of stabilizer states [29,
30]. Specifically, Ref. [14] numerically calculated the threshold error rate of
the rotated surface code under single- and two-qubit depolarizing channels with
circuit-level noise and observed a threshold error rate of 0.57%. This result
suggests that the surface code can cope with the error rate that current state-
of-the-art quantum computers are reaching [18, 49]. While the computational
overhead increases when compared with the Pauli noise, we can also efficiently
simulate the Clifford noise such as stochastic Clifford gates and Pauli projec-
tions.

In practice, however, quantum devices often suffer from noise that cannot be
described by Clifford operations. A major type of such noise is coherent unitary
noise which is caused by the miscalibration of quantum gates which leads to
over- or under-rotations. Reference [19] has developed a method to detect over-
rotation errors using randomized benchmarking and detected w/128 over- or
under-rotation errors in their superconducting qubit. While the error has been
calibrated subsequently in Ref. [19], one can expect that a small amount of such
errors beyond the experimental sensitivity are still present.

Analysis of the performance of QEC in such realistic situations still remains
a challenge. QEC circuits under non-Clifford noise have been investigated ei-
ther by brute-force simulations [20, 22] or by exploiting exact solvability of free
fermion dynamics [21, 23]. However, full state-vector simulations require ex-
ponential computational resources with respect to the code distance and are
currently limited to distance-3 surface code which uses 25 qubits [20]. While
the use of approximate simulation using a tensor network [22] has pushed the
limit to 153 qubits with perfect syndrome measurements, it is still difficult
to scale up the simulation. On the other hand, free fermion simulations can
handle coherent errors in a scalable manner. However, their usage is limited
to certain cases: one-dimensional repetition codes with faulty syndrome mea-
surements [21] which can only correct X errors and surface codes with perfect
syndrome measurements [23].

In this chapter, we propose a sampling-based simulation method widely ap-
plicable for fault-tolerant QEC circuits under a mixture of coherent and incoher-
ent noise with multiple rounds of faulty syndrome measurements. The central
idea is to decompose (possibly non-Clifford) noise channels into the sum of com-
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pletely stabilizer preserving (CSP) channels [39]. We simulate the circuits by
sampling CSP channels according to quasiprobability distributions, which are
obtained from the decompositions [39, 59]. Each realization is efficiently simu-
lable since the simulation of CSP channels involves only stabilizer states. Note
that Bennink et al. have conducted similar simulations for small systems such
as Steane’s seven-qubit code [59]. We significantly improve the computational
cost required for the simulation by providing more efficient decomposition of
noise channels than Ref. [59]. This reveals that we can perform an efficient
simulation in the presence of coherent errors without any additional overhead
for a wide range of practically interesting parameter regions. Furthermore, even
outside this region, the proposed quasiprobability method enables us to simu-
late a surface code of distance 5 with 81 qubits on a single workstation within
a reasonable computational time.

As demonstrations, we simulate the planar surface code under the code ca-
pacity coherent noise with distance up to d = 7 and under the phenomenological
coherent noise with distance up to d = 5. The result shows that such non-
Clifford noise deteriorates the logical error rate as expected. We also evaluated
how many samples are required to simulate the logical error rate reliably as a
function of the noise parameters and the code distance. This reveals that the
proposed method allows us to simulate the planar surface code with relatively
large code distances, which are intractable for full state-vector simulations, with
a reasonable computational overhead. The proposed method provides a bench-
mark for building small-scale fault-tolerant quantum computers in the noisy
intermediate-sclae quantum (NISQ) era.

4.2 Simulation of QEC circuits under coherent
noise

In this section, we discuss how to calculate a logical error rate of a QEC code by
simulating quantum circuits with a quasiprobability sampling of CSP channels.
QEC requires two types of qubits: data qubits, which constitute logical qubits,
and measurement qubits, which are used for detecting errors on data qubits. The
measurements extract eigenvalues of code stabilizers by measuring the latter,
and these eigenvalues are called error syndromes. For a distance d code, we
repeat such measurements for d rounds. We use a (noisy) Clifford circuit Eyndg
for the repetitive syndrome measurements. The measurement qubits of different
rounds are to be treated as different qubits to simplify the notation. Let b be
the error syndrome in space and time. When data qubits are initialized to |0y,),
the probability of obtaining a specific error syndrome b is given by

p(b) = (b Traata [Esyna(|OXO[)]|D) -

where |b) and [0/°) are final and initial states of the measurement qubits, re-
spectively, and |0) := [0.) ® |0I°l) After the extraction of the error syndrome,
we feed b to decoding algorithms such as a minimum-weight perfect-matching
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algorithm to find a possible recovery operation R, which corrects errors on data
qubits. The error corrected state pcorrected 1S given by

Pcorrected = Z Rb © Pb © 5Synd(|0><0|)’
b

where Py, is the projection onto |b)b|. Since the data qubits of peorrected are in the
code space, the logical fidelity can be expressed by (0r|Trmeas (Pcorrected)|0L)-
Therefore the logical error rate p;, can be written as

pr=1-— <OL|Trrneas (pcorrected)|OL>

=1- Z (0| Trmeas (Rp © Pp © Esyna(]0X0]))|0L) - (4.1)
b

If the noise introduced in Egyng is a stochastic Pauli or Clifford error, one can
simulate Eyna efficiently and can estimate the logical error rate pr. However,
efficient simulatability vanishes if noise involves non-Clifford channels.

We now describe an idea to deal with more general noise by a quasiprobabil-
ity method [37-39, 41, 59-62]. Egyna can be decomposed into (noisy) elementary
operations as Esyng = EL) o...0 M) Here L is the total number of quantum
operations in Esyng. € (@) can be decomposed over CSP and completely positive

trace-preserving (CPTP) channels Slgi) in terms of a quasiprobability distribu-
()

tion ¢;” as
g — Z cg)sg).
k
This decomposition can alternatively be written as
el — Zp;:)R* (g(i)>sgn (Cii)>81gi)7
k
where

R.(&) = ?Sg{%z ekl; € = ;Ck&c},
(4)

o ’ck

© S R(E0)

R.(€) is called channel robustness [39], the square of which characterizes the
sampling cost, as will be seen later. Using this decomposition for each £,
Esyna becomes

Ssynd = ZPER*tot)\ESEa (42)
E
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Finally, combining Egs. (4.1) and (4.2), we conclude

pr=1— ZPER*totAE <0L|T‘rmeas (Rb oPyo SE(|0><0|)) |0L> :
b,k

This implies that, when & is sampled from P> 1= Rutot Az (01| Trmeas (R 0 Py, 0 Sz(]0X0]))[0L)
is an unbiased estimator for pr. Since it is bounded in a range [— Rutot, Rstot),

from Hoeffding inequality [43], the number of samples M needed to estimate pr,

within additive error € with probability at least 1 — § is given by

2 2
M = :Qthot In <5). (4.3)

Note that, when we only consider Clifford noise, 6% In (%) samples suffice to
achieve the same accuracy. Therefore R2, , quantifies the additional overhead
required for including the effect of non-Clifford channels.

4.3 Planar surface codes under coherent noise

To demonstrate the feasibility of the proposed method, we consider the planar
surface code introduced in Ref. [13], which is thought to be one of the most
promising candidates for an experimental realization of QEC, as they require
only single- and nearest-neighbor two-qubit gates on two-dimensional arrays of
qubits [14, 63]. The planar surface code with code distance d has a (2d — 1) x
(2d — 1) square grid of qubits of which d? + (d — 1)? data qubits are used to
encode the logical qubit and 2d(d — 1) measurement qubits are used to extract
the syndromes. In Fig. 4.1, we show the layout of d = 3 planar surface code as
an example.

In numerical simulations, the ideal logical state |0), followed by single-qubit
noise is prepared as the initial state. We assume two types of noise model:
a code-capacity noise model, where the noise occurs in all data qubits with
perfect syndrome measurements, and a phenomenological noise model, where
the noise occurs in all data qubits and measurement qubits just before the
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Figure 4.1: Layout of d = 3 planar surface code. The white and black circles
represent data and measurement qubits, respectively. The light blue square and
triangular patches show X stabilizers. The red square and triangular patches
show Z stabilizers.

syndrome measurements. The number of rounds of the syndrome measurement
in the latter case is d. We also assume that the syndrome measurements are
performed perfectly at the final cycle. In both cases, Z-type and X-type errors
are uncorrelated, and hence only X-type errors and syndrome measurements
are simulated for simplicity. The specific noise channel N ., simulated in this
chapter is a mixture of coherent and incoherent noise which is modeled by the
over-rotation noise followed by the bit-flip X error as

Moh = Nbit-ﬂip o Nover-rota
. ir0 X
Nover-rot = [6" ]7

Nuie-aip = (1 — p)[I] + p[X],

where 6 is chosen such that p = sin?f. We vary the parameters (r,p) and
evaluate the performance of the code by using the method described in Sec. 4.2.

We first examine the sampling cost of our simulation which is characterized
by the channel robustness Rxcon(7,p) of Meon [38, 39, 61]. The CSP channels
employed to decompose Neop are [I], [X], [e’i(”/‘l)x], and [Xe*i(”/‘l)X]. Fig-
ure 4.2 shows the values of Rxon(r,p). From Fig. 4.2, we confirm that the
channel robustness increases as the noise coherence becomes larger as expected.
Importantly, for a small r with a sufficiently large p, the channel robustness
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decreases and hits unity, where an efficient simulation of coherent errors can
be performed. This is because rf is small in this region, resulting in the low
channel robustness of Myyerrot- Thus, the bit-flip noise with large p can easily
make the channel robustness unity. On the other hand, at p = 0, the channel
robustness of Noverrot 1S unity even if » > 0 since we set p = sin® 0. Therefore
a certain mixture of incoherent and coherent errors, for example, with p = 1%
(0.1%) and r = 0.10 (r = 0.46), can be efficiently simulated without any ad-
ditional overhead, which is in an experimentally important parameter region.
This greatly improves the simulation cost over Ref. [59] which is a result of
decomposing Non as a whole rather than decomposing Nover-rot and Npis-aip
individually.
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Figure 4.2: Channel robustness of the coherent noise Rx.op, (7, p). The horizon-
tal and vertical axes display the noise coherence r and physical error rate p,
respectively. Numbers in each cell show the value of Rx.oy,(r,p).

The number of samples needed for accurate results is determined by R, via

Eq. (4.3). In the case of the code capacity noise, Neop, is applied d? + (d — 1)
times, which corresponds to the number of data qubits. Therefore R% , =

(Rxcon(r, p))Q(d2+(d_1)2). In the case of the phenomenological noise, Niopn is
applied to each of the d2+(d—1)2 data qubits d times and to each of the d(d — 1)*
measurement qubits for X-type errors d — 1 times since we assume perfect
measurement in the final round. Overall, NV, is applied al(3d2 —4d + 2) times,

which means R2, = (Rxcon (T, p))2d(3d2_4d+2)

" in this case. These formulas for
R2,.. provide us estimates of the simulation cost for a given (p,r,d), based on
which we choose the parameter range investigated below.

Figure 4.3 shows the logical error rate p; as a function of physical error
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rate p and noise coherence r, where the parameters are chosen such that our
workstation with Intel Xeon CPU v4 CPU (E5-2687W), 24 cores, 3.00GHz, can
calculate each point within a few days at most. We confirmed that the stan-
dard error of each data point is below 1073, From Fig. 4.3, the logical error rate
increases as the noise coherence grows, which implies that the impact of the co-
herent noise on the logical error probability is not negligible even for a relatively
large code distance. Note that the d = 5 code, which requires 81 qubits, is well
beyond the reach of naive full state-vector simulation. Furthermore, it is the
first analysis of this region with faulty syndrome measurements to the best of
our knowledge. Finally, let us discuss with which parameters and code distance
the proposed method works. Figure 4.4 shows the dependence of thot with
respect to d for the phenomenological noise model. Note that for the parame-
ters where Rxcon(r,p) = 1 in Fig. 4.2, we can simulate without any additional
overhead as mentioned before. We will be able to simulate large code distances
in that region. Outside of that, we expect that regions with R« < 103 are
within reach if a high-performance parallel computer of 105 CPU cores is avail-
able. For example, realistic parameters such as (p,r,d) = (1.5%,0.15,7) and
= (0.2%, 0.05, 13) result in R« < 103. Full state-vector simulation would not
work for these numbers of qubits; we need 169 qubits for d = 7 and 625 qubits
for d = 13.

4.4 Conclusion

We have proposed a sampling-based method to estimate the logical error rate of
QEC codes under coherent noise such as an over-rotation error. The simulation
protocol is based on the quasiprobability decomposition of noise channels into
Clifford operations. It is interesting to note that the QEC process is simulated
as usual for sampled CSP channels, and hence the probability distribution for
the syndrome measurements is far different from the true one p(b). However,
if we sample whether the decoding successds or fails with the quasiprobabil-
ity method, we can estimate the logical error rate. By calculating the channel
robustness for the mixture of coherent and incoherent errors, we reduce the sim-
ulation costs substantially, which allows us to simulate a practically important
parameter region with a relatively large code distance without any additional
overhead or with a reasonable additional overhead. While we have only con-
sidered the phenomenological noise model, it is straightforward to extend our
method to the circuit-level noise model, where each elementary gate is followed
by noise. We leave these problems for future works. We believe that this chapter
helps to analyze the performance of the near-term small-scale QEC in realistic
situations.
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Figure 4.3: Logical X error rate of the planar surface code under the coherent
noise as a function of the physical error rate p and noise coherence r in the case
of code capacity (a) and phenomenological (b) noise. The horizontal axis shows
the physical error rate p, and the vertical axis shows the logical X error rate
pr. The triangles, crosses, and circles stand for d = 3,5, 7, respectively. The
color shows the noise coherence.
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Figure 4.4: Scaling of the overhead caused by the quasiprobability sampling,
R%mt, as a function of the code distance d.



Chapter 5

Quantifying Fermionic
Nonlinearity of Fermionic
Quantum Circuits

In this chapter, we propose another quasiprobability-based simulation method
using fermionic linear optics. Variational quantum algorithms (VQAs) have
been proposed as one of the most promising approaches to demonstrate quan-
tum advantage on noisy intermediate-scale quantum (NISQ) devices. However,
it has been unclear whether VQA can maintain quantum advantage under the
intrinsic noise of the NISQ devices, which deteriorates the quantumness. Here
we propose a measure, called fermionic nonlinearity, to quantify the classical
simulatability of quantum circuits designed for simulating fermionic Hamiltoni-
ans. Specifically, we construct a Monte-Carlo type classical algorithm based on
the classical simulatability of fermionic linear optics, whose sampling overhead
is characterized by the fermionic nonlinearity. As a demonstration of these tech-
niques, we calculate the upper bound of the fermionic nonlinearity of a rotation
gate generated by four-body fermionic interaction under the dephasing noise.
Moreover, we estimate the sampling costs of the unitary coupled cluster sin-
gles and doubles (UCCSD) quantum circuits for hydrogen chains subject to the
dephasing noise. We find that, depending on the error probability and atomic
spacing, there are regions where the fermionic nonlinearity becomes very small
or unity, and hence the circuits are classically simulatable. We believe that our
method and results help to design quantum circuits for fermionic systems with
potential quantum advantages. This chapter is based on [Hakkaku, Tashima,
Mitarai, Mizukami, and Fujii, arXiv:2111.14599].

61
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5.1 Introduction

Quantum computers have attracted much attention because of their capability
to solve classically intractable problems. Among them, the first industrial appli-
cation is expected to be a quantum chemistry calculation, which uses quantum
computers for simulating fermionic many-body systems. It has been predicted
that a fault-tolerant quantum computer with about a million physical qubits can
simulate both Fermi-Hubbard and molecular electronic structure Hamiltonians
beyond classical approaches [64]. The application has also been anticipated for
NISQ devices through the variational quantum eigensolver (VQE) [11, 65-71].

It is essential to predict at what scale quantum computers can have ad-
vantages over classical ones for those applications. One way is to estimate the
computational cost required for fault-tolerant quantum computers to simulate
fermionic systems that are well beyond the reach of classical supercomputers
[64, 72, 73]. However, this approach highly depends both on the objective sys-
tem and algorithms employed in classical or quantum computers. As another
approach, we can ask a question the other way around; given a quantum circuit
that simulates a fermionic system, what is the cost of classical computation
to simulate that circuit? If there exists a quantum advantage, at least such a
quantum circuit has to be hard for a classical computer to be simulated.

One way to evaluate the classical simulatability of quantum circuits is to
quantify the simulation cost of a specific quasiprobability-based simulator [37—
41, 61]. The central idea of quasiprobability simulators is to decompose a com-
plex operator (operation) A over a discrete set of classically tractable operators
(operations) {B;}, i.e., A =3, ¢;B;. The examples of the classically tractable
operators {B;} are pure stabilizer states [38, 61] and Pauli operators [40]. The
coefficients of the decomposition {¢;} are called “quasiprobability distribution”,
and the L1 norm of the quasiprobability distribution ), |g;| determines a sam-
pling cost. Any set of operations that can be efficiently simulated by classical
computers can be used as operators {B;} in a quasiprobability-based simula-
tor. Over the past years, Clifford circuits have become a popular class of such
channels. [38, 39, 41, 61].

Here, we consider another popular class of classically simulatable circuits:
fermionic linear optics (FLO) and matchgates [34, 74-76]. These classes repre-
sent the dynamics of free fermions, generated by quadratic fermionic Hamilto-
nians. It represents a restricted class of quantum circuits in the sense that, in
general, natural fermionic interactions are described by not only two-body but
also four-body fermion operators. For example, the four-body interactions ap-
pear in quantum circuits tailored to simulate fermionic systems, such as unitary
coupled cluster (UCC) [11, 77] and Hamiltonian variational ansatze [67, 78].
Such four-body interactions make the quantum dynamics or variational circuit
ansatze hard to be simulated on classical computers, which provides a potential
advantage of using quantum computers. However, the required amount of the
four-body interactions is limited in a certain (but common) situation where the
Hartree-Fock calculation provides a good approximation. Hence, one may be
able to classically simulate quantum circuits for such systems.
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This paper presents a quasiprobability-based simulator exploiting FL.O and
the corresponding measure that quantifies the sampling cost. This simulator
decomposes a fermionic non-Gaussian operation, such as a four-body fermionic
interaction, over all possible free operations of FLO. The simulation cost is char-
acterized by “fermionic nonlinearity,” defined as the minimum of the L1 norm
of the quasiprobability distribution. We calculate the upper bound of fermionic
nonlinearity of a four-body fermionic interaction under stochastic Pauli noise
as an example, thereby estimating the sampling cost to simulate famous VQE
ansatzes for fermionic Hamiltonian. More specifically, we estimate the sampling
cost of the noisy UCCSD quantum circuits for the hydrogen chain up to Hg
with several spacings using the optimized variational parameters obtained by
full-vector simulations. A rough extrapolation from the results shows us that the
noisy UCCSD quantum circuits for the hydrogen chain with the spacing of 0.8 A
at the error rate of the two-qubit dephasing noise p = 0.02 can be simulated up
to Hyo within a reasonable sampling cost. Furthermore, if p = 0.03, the noisy
UCCSD quantum circuit for the arbitrary-length hydrogen chain can be simu-
lated because of vanishing fermionic nonlinearity. We believe that our method
and results are helpful to design quantum circuits that simulate fermionic sys-
tems for potential quantum supremacy or quantum advantages.

5.2 Fermionic Nonlinearity of Quantum Circuits

5.2.1 Definition of fermionic nonlinearity

We describe a quasiprobability-based simulation method of general fermionic in-
teractions via FLO. Given a non-FGO £ and a set of all possible trace-preserving
FGOs {8}, we seek to express & as,

&= ZQZ‘&‘

= ZPinIIﬁign(%)& (5.1)

K3

where

lally = lail,
1

. a
;= .
||Q||1

p; is a probability distribution because p; is non-negative and sum to unity.
If this decomposition can be made, we can simulate the non-FGO by sam-
pling a trace-preserving FGO with probability p; and multiplying the coefficient
llq||1sign(g;) to the results afterwards. The square of the L1 norm ||¢||,; quantifies
the classical simulation cost of this Monte-Carlo type simulation.
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To be more concrete, let us consider the expectation value of a two-body
fermionic interaction ¢é,¢, with respect to £(p) for an FGS state p and a non-
FGO channel £. The desired quantity can be written as,

(Euty) = Te(E(p)euty)
= _pillallsign(a:) (¢uén) s

K3

where

(), = TH(Si(p)éycs).

From Eq. (5.2), we can calculate the desired quantity (¢,¢,) by sampling an
index ¢ with probability p; and calculating ||q||;sign(g:) (¢.¢.) s, efficiently, since
(¢uéy) s, only involves an FGS and an FGO. Let N be the number of samples.
Then, |[lq||;sign(q;) (¢u¢v)s, is an unbiased estimator of the desired quantity
(utu). llall sign(gi) (¢uéu) s, is bounded in the interval [—[|g||,, [lq[l,], and thus
the Hoeffding inequality shows that to estimate (¢,¢,) within additive error at
most € with probability at least 1 — d, we must set the number of samples such
that

1. 2
N >2[q|li < In %
> 2ql} o >
Note that the expectation value of higher-order correlation function can be
estimated in a similar way exploiting Wick’s theorem.
Having seen that ||¢||; determines the sampling cost for simulations, we define
the fermionic nonlinearity of a quantum channel £ as follows:

W(E) = r{r;iil;{llqllllrf = ZQiSi}- (5.3)

W (E) quantifies the minimum number of samples to execute the Monte-Carlo
type simulation of a quantum circuit with FLO. Moreover, fermionic nonlinear-
ity is submultiplicative under composition, i.e., W (&3 0 &1) < W(E)W (&) (See
Ref. [79]). This property helps to estimate the upper bound of the sampling
cost of an n-mode fermionic quantum channel when n is too large to calculate
the fermionic nonlinearity directly.

5.2.2 Concrete decomposition for four-body interactions

So far, we have assumed that there exists a decomposition of non-FGO in the
form of Eq. (5.1). Here we consider how to explicitly calculate the decompo-
sition and the fermionic nonlinearity of four-body fermionic interactions in the
form of exp(ifé;¢;égé;). This type of operations appears in the simulation of
interacting fermions and in VQE ansatze such as the UCC ansatz [11], and its
variant, Jastrow-type ansatz [66, 80], or Hamiltonian variational ansatz (HVA)
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[67, 78]. Without loss of generality, we consider the decomposition of the fol-
lowing operator,

where [A]p = ApAT. This is because we can always perform transformation
¢ —+ ¢1, ¢j = &2, € — €3, and ¢ — ¢4 by FGOs for mutually distinct indices
i, j, k, and [. The four-body fermionic interaction operator ¢;ézézés4 can be
mapped to a Pauli operator by the Jordan-Wigner transformation. It maps ¢
as follows.

Cor—1 = Xy, H Z;,
j<k
o = Vi H Z;.
j<k
Hence, the fermionic interaction &4t can be rewritten as

Erot = [exp (102 ® Z)].

Theoretically, the fermionic nonlinearity should be calculated using all possible
FGOs. However, in practice, it is difficult to calculate the fermionic nonlinearity
using all possible FGOs because the number of all possible FGOs is infinite.
Therefore, here we calculate the upper bound of the fermionic nonlinearity using
a discrete set of the FGOs. Below, we will omit the term “upper bound” if there
is no risk of confusion.

We adopt the following trace-preserving fermionic Gaussian channels as the
basis channels to decompose E,ot:

{[257], 17, 12]}% U{K 1,0, Ko ala = £1}
U{[e*"59]|G € {XX,YY, XY, YX}}, (5.4)

where

I1+Z - I1-Z o
Kia = {J; ®e’a4z] + [2 ®e’a4z],

- I+7 o 1-7
Koo = |20 I3 2] 4 [tz o 122,

)

2 2

The sets of the channels in Eq. (5.4), { [e*"1Z],[I], [Z]}®2 and {K1 o, K24}, are
adopted from Ref. [81], where the authors provided the way to simulate a two-
qubit gate, such as &, by sampling a single-qubit operation. Besides them, we
add exp(=+im/4G) because they are the generators of FGOs and may be used
for the decomposition. All of the elements in Eq. (5.4) are FGOs. Indeed, 17,
XX, XY, YX, YY, ZI can be rewritten as

I Zyq = —tCopy1Conya, XiXpt1 = —iCorCopy,
XYt = —iCorCopt2, YirXpy1 = 1Cak—1C2k+1,

YiYii1 =iCok1Cokt2, Zrliy1 = —1Cagp—1Cor.
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Figure 5.1: Fermionic nonlinearity of &, = [ewclc?%c“] as a function of the
angle #. The horizontal axis shows the angle . The vertical axis shows the
fermionic nonlinearity. The blue circle illustrates the fermionic nonlinearity
obtained by the basis channels in Eq. (5.4). The orange triangle shows the
fermionic nonlinearity obtained by the decomposition in Ref. [81].

Thus the exponentials of these operators in Eq. (5.4) are FGOs. Moreover, the
projective measurements in KC; o (i = 1,2) are FGOs [34].

We calculate the fermionic nonlinearity of &.,¢ by solving the minimization
problem in Eq. (5.3) using the basis channels in Eq. (5.4). To calculate fermionic
nonlinearity, we use a convex-optimization solver CVXPY [52, 53]. The results
are shown in Fig. 5.1. Also the fermionic nonlinearity using the decomposition
in Ref. [81] is shown in Fig. 5.1 to compare with our results. According to
Fig. 5.1, the fermionic nonlinearity is the same as when one uses the decomposi-
tion in Ref. [81]. Also, we have confirmed that the generators exp(+im/4G) for
G e{XX,XY,YX,YY} do not contribute to the decomposition by examining
the coefficients of the decomposition. Moreover, we have numerically checked
that the fermionic nonlinearity does not decrease even if we add the basis chan-
nels whose rotation angles are changed from /4 to 7/8, or m/16 in Eq. (5.4).
Therefore, a measurement of a qubit in Z basis, +7/2 rotations around the Z
axis, and Pauli Z contribute significantly to the fermionic nonlinearity.
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Figure 5.2: Fermionic nonlinearity of Enoisy rot = Maep ©Erot as a function of the
angle 6 of &£t and the error rate p of the two-qubit dephasing noise Ngep. The
horizontal axis shows the angle 0 of &,o¢. The vertical axis shows the fermionic
nonlinearity. The basis channels decomposing Epeisy rot are shown in Eq. (5.4).
The legend shows the error rate p of Nyep.

5.2.3 Fermionic nonlinearity of noisy channels and appli-
cation to the VQE simulation

Next, we consider the fermionic nonlinearity of &,,4 being subject to noise:
Snoisy rot *— Ndep O Crot

where Ngep is the two-qubit dephasing noise
Naep = (1= p)[1%%] + £([12] + [21] + [22))

p is the error rate of the dephasing noise. Figure 5.2 shows the fermionic non-
linearity of Enoisy rot as a function of the angle of & and the error rate of
Ndcp. We see that the fermionic nonlinearity decreases as the error rate of Ndcp
increases. In addition, the smaller the rotation angle, the more easily the noise
makes the fermionic nonlinearity unity, that is, such a noisy fermionic interac-
tion becomes a probabilistic mixture of FGOs. One implication of these results
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is as follows. For VQEs of fermionic problems, if the Hartree-Fock approach is
a good first-order approximation and hence fermionic nonlinearity of the ansatz
stays small even after the optimization, such a quantum circuit is fragile against
noise in the sense that it readily becomes simulatable by the proposed sampling
method.

To analyze more practical cases, we estimate the sampling cost of VQE that
aims to obtain the ground state of the electronic Hamiltonian of the hydrogen
chain H,,. Such a Hamiltonian is often used to benchmark the performance of
classical quantum chemistry simulations [82-90] and VQE [58] numerically. This
is because it exhibits rich phenomena, including metal-insulator transitions, and
one can benchmark methods in both strong and weak correlation regimes. In
particular, the Hamiltonian of the hydrogen chain with the use of the STO-3G
basis set has a connection with the Hubbard model; the large spacing of the
hydrogen chain corresponds to the Hubbard model in the large coupling limit,
and vice versa. As for VQE, the authors of Ref. [46] have demonstrated that
their quantum computer can prepare the Hartree-Fock state of Hys using VQE,
although their variational ansatz circuit is classically efficiently simulatable by
FLO because the quantum circuit consists of two-body fermionic interactions.
In the following numerical simulation, the Hamiltonians are generated by Open-
Fermion [91] and PySCF [92, 93] with the use of the STO-3G basis set, and then
the Jordan-Wigner transformation maps them to qubit Hamiltonians, resulting
in 2m-qubit Hamiltonian for an m-hydrogen chain H,,. We take the Hartree-
Fock (HF) state |HF) as the reference state for the VQE.

We consider the UCC ansatz [94-99], which is a chemically inspired ansatz
and often used in VQEs [11, 77]. In particular, we consider the UCCSD ansatz
that only includes single and double excitations. The UCCSD ansatz is defined
as

U = o(T-T) ()

T1 = Z tai dldi 5

a€virt,i€occ
_ 3 Stata o
T2 = tabijaZabaiaj7
a,bevirt,i,jEocc

where occ and virt represent the sets of occupied and virtual orbitals, respec-
tively, and ¢,; and tq;; are variational parameters. Usually, the UCCSD is
implemented as a quantum circuit by Trotter expansion of U:

7 tai At A At A
U= H exp (Ntmt (ala; — aZaa)>

a€virt,i€occ

Ntrot

a,bevirt,i,jEocc

In the following, we consider the UCCSD ansatz with Nyt = 1. Note that the
fermion operator a; is associated with the Majorana fermion operators ¢o;_1, C2;
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as follows:

W st

C2i—1 = a; + a;,
6o: = —ila —al
2 = —i(a; —a) ).

Using this relation, a four-body interaction constituting U can be rewritten by
the Majorana fermion operators as follows:

etabij (dld

.tabij ~ A o ctabij 4 N PO
—e 'T 8 C2a-1C20-1C2i-1C2j o175 C2a—-1C2b-1C2iC25 -1

tabij topis
-tabij 4 A A A -Yabij A Aa_ A
e "8 . C2a-1C2bC2i-1C2j—1 05 L Goq 1801822 (55)

o o
-tabij A - ~ ~ -tabij A A A A
et s = €2alap-182i—182j-1 i3 L 84 8op—182iC2j

o o
-tabij A A A ~ stabij A A A a
eiTE L 82q82pC2i—182; P L 8q8opC2iCaj—1

We consider the sampling cost for simulating UCCSD circuits when each of the
Majorana rotation gates in Eq. (5.5) are subjected to dephasing noise.

The sampling cost of a UCCSD quantum circuit can be given by the upper
bound of the fermionic nonlinearity, which can be calculated by the product of
the fermionic nonlinearity of the four-body fermionic interactions. Note that, as
mentioned before, the HF states used as the reference states are FGSs; therefore,
there are no sampling costs due to the input states. We use the optimized
variational parameters of error-free UCCSD quantum circuits, calculated by
the full-vector simulations performed with Qulacs [100].

Figure 5.3 shows the upper bound of fermionic nonlinearity of the UCCSD
quantum circuit as a function of the length m of the hydrogen chains H,, and
the error rate of the dephasing noise at different spacings of the hydrogen atoms.
In the case of 0.5 A and 0.8 A, the Hamiltonian for the hydrogen chain embodies
a weakly correlated electronic system. In contrast, the Hamiltonian in the case
of 1.5 A provides a strongly correlated electronic system. From Fig. 5.3, we
find that the fermionic nonlinearity is smaller when the spacing of the hydrogen
chain is smaller. This reflects that an HF state is a good approximation of the
ground state when the spacing is small.

Finally, we discuss the size of the hydrogen chain that can be simulated
within one day using 105 CPU cores. Suppose that we want to estimate the ex-
pectation value of the Hamiltonian H for the hydrogen chain within an additive
erTor € = ||H||Op10_3, with a success probability of at least 1 — ¢ = 1 — 1072,
where [ A[[,, is the operator norm of A. Assuming that each core takes at most
1 ms to calculate one sample of a quasiprobability distribution, a UCCSD quan-
tum circuit whose fermionic nonlinearity is upper-bounded by 3 x 102 could be
simulated within one day. We estimate the fermionic nonlinearity for m > 8
using the geometrical mean of fermionic nonlinearity of Eoisy rot in the noisy

UCCSD quantum circuit at m = 8, W (&noisy rot),,,_g- Let Ny be the number
of four-body Majorana operators in 15 — 1! 2T . We estimate the upper bound of
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fermionic nonlinearity of H,, (m > 8) by

(W ey s

At p = 0.02 and the spacing of 0.8 A, W (Enoisy rot),,_g 15 1.00012. Therefore,
we estimate the UCCSD circuits for hydrogen chains under such conditions can
be simulated up to m = 22 if this mean stays at the same level at larger m.
Furthermore, we find W (Enoisy rot)m:ss = 11if p > 0.03 and the spacing is less
than 0.8 A, or if p > 0.07 and the spacing is 1.5 A. We hence expect that the
UCCSD circuits under such conditions can be simulated for arbitrary m.

Note that the energy expectation value obtained from simulations of noisy
UCCSD circuits is slightly biased from the true value (HF|UTHU|HF). If we
allow such a bias, we can take an alternative approach; we can utilize the clas-
sical coupled cluster (CC) theory to simulate UCC circuits. It is known that
the CC theory can simulate up to large UCC systems with a small perturbative
error when tq;; (and ¢,;) are small (i.e., small rotation angles #). The conven-
tional CC can be solved in polynomial time using a non-variational projection
method, assuming the Hartree-Fock state to be a good reference wave function.
If this assumption holds, the accuracy of the non-variational CC is almost as
good as that of variational UCC [101, 102]. An established way to diagnose the
correctness of the premise is by examining the magnitude of the parameters of
the CC wave function [103-108]. According to the rule of thumb in the classical
CC, the maximum t,p;; is about 0.1 or less in the region where non-variational
CC works well [108]. Besides, in systems where classical CC fails, the maxi-
mum t,5;; tends to be larger than 0.15 [108]. Our UCC calculations show that
for m = 8, the maximum ¢p;; is about 0.08 when the distance between the
hydrogens is 0.8 A and about 0.18 when the distance is 1.5 A. Therefore, our
results are in line with the empirical trend in classical computing.

Our results indicate that, to demonstrate the quantum supremacy or quan-
tum advantages with the UCCSD ansatz, one has to choose target Hamiltonians
that exhibit strong electronic correlations and execute the quantum circuits with
sufficiently low error rates. Note that even if the gate error of a device is 1%,
the effective physical error rate of the two-qubit dephasing noise in Enpisy rot
would be much higher because, in general, the noise on the entangling gates
to simulate non-local fermionic two-body or four-body rotations by physically
allowed operations accumulates.

We note that we have discussed the classical simulatability of noisy UCCSD
ansatz using the optimized variational parameters obtained by the error-free
simulations and found that, under certain circumstances, they become clas-
sically simulatable. In such cases, even if sophisticated error mitigation and
optimization strategies allowed us to perform the VQE successfully, we cannot
achieve a quantum advantage because the resulting circuit can be simulated
classically.
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5.3 Conclusion

In this chapter, we propose a quasiprobability-based simulation algorithm using
FLO and quantify its simulation cost by establishing the corresponding measure,
fermionic nonlinearity W (£). The sampling cost of the quasiprobability-based
simulator is proportional to W(é’)z. As an example, we calculate the upper
bound of fermionic nonlinearity of the noisy rotation gate generated by a four-
body Majorana fermionic operator, which often appears in the parametrized
quantum circuits in VQE. We find that the fermionic nonlinearity increases
as the rotation angle becomes larger and decreases as the error rate of the
dephasing noise increases. Based on the above observation, we discuss the sim-
ulatability of the quantum circuits for quantum chemistry with our proposed
method. We estimate the sampling costs of the noisy UCCSD quantum circuits
for the hydrogen chain, and discuss whether they can be simulated within one
day when 106 CPU cores are available. We find that the UCCSD circuits with
the dephasing error rate p = 0.02 for hydrogen chains with the spacing of 0.8 A
can be simulated up to Hao. Furthermore, if p > 0.03, the noisy UCCSD circuits
for hydrogen chain of arbitrary length with the same spacing can be simulated.
Although this numerical result is pessimistic, it stimulates to investigate or de-
sign another VQE ansatz that retains quantumness against noise with the use
of our results and method.

Our work leaves several open questions. Although we use the basis channels
based on Ref. [81] to decompose the four-body Majorana fermionic interaction,
there may exist more optimal basis channels. It is an interesting and nontriv-
ial problem to choose the optimal discrete set of FGOs to decompose a given
non-FGO. We formulate the classical simulatability of a quantum circuit for
fermionic Hamiltonians in the channel picture, but it is also of great interest to
establish such a formulation in the state picture, which should be compatible
with the results shown in Ref. [109].
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Figure 5.3: Upper bound of the fermionic nonlinearity of the UCCSD quantum
circuit for the hydrogen chain up to Hg at different spacings, 0.5 A, 0.8 A, and
1.5 A. The horizontal axis shows the length of the hydrogen chain. The vertical
axis shows the upper bound of the fermionic nonlinearity. The legend shows the
error rate p of the dephasing noise Ngep.
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Conclusion

In this thesis, we have benchmarked noisy quantum computers through quasi-
probability-based simulation algorithms. The reason for using the quasiprob-
ability distribution is that it is possible to quantify the simulation cost of an
arbitrary quantum computation based on a given class of classically simulat-
able quantum circuits. Moreover, the notion of a quasiprobability simulation
algorithm allows us to systematically propose a better classical simulation al-
gorithm by using a more suitable classically simulatable quantum circuit for
each situation. Furthermore, quasiprobability simulation algorithms naturally
incorporate the fact that noise reduces a quantumness of a quantum circuit
and make the quantum circuit to be simulated more easily. Thus, through the
quasiprobability-based simulation methods, we investigated whether quantum
algorithms under noise have quantum advantages or not, and we also proposed
a large-scale classical simulation method for noisy quantum computers. The
details are as follows:

In Chap. 3, we extended the stabilizer-state sampling algorithm to the noisy
case and compared the sampling cost with that of Heisenberg propagation.
Many NISQ-oriented algorithms have recently been proposed to demonstrate
a quantum advantage. However, researchers do not fully understand what kind
of quantum circuits under how low error rates are sufficient. We improved the
stabilizer-state sampling to simulate noisy quantum circuits more efficiently.
Our improved algorithm surpasses Heisenberg propagation when the error rate
of a stochastic Pauli noise is low by the numerical calculation. We also showed
that quantum circuits that have many small-angle rotation gates can be clas-
sically efficiently simulated with a small amount of stochastic Pauli noise. It
means that such quantum circuits are not suitable for demonstrating quantum
advantage. We believe our proposed methods and results will help to design
quantum circuits with the potential to demonstrate a quantum advantage.

In Chap. 4, we used the extended algorithm proposed in Chap. 3 to simulate
a planar surface code under coherent noise. QEC is essential for building fault-
tolerant quantum computers, and many analytical and numerical studies have
been shown. Almost all of these studies used stochastic Pauli noise, although
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quantum devices suffer from more general noise, such as over-rotation noise. We
showed that our extended algorithm enables us to investigate a QEC code under
the mixture of over-rotation noise and Pauli noise. We simulated repetitive
faulty syndrome measurements on the planar surface code of distance 5 with 81
qubits. We have confirmed that the logical error rate increases as the strength of
coherent noise grows. Moreover, we estimated that our method would simulate
the planar surface code with O(1000) qubits using 10 CPU cores. Although
we have simulated the planar surface code, the rotated surface code is more
suitable to simulate a larger code distance because the number of qubits of the
rotated surface code is less than that of the planar surface code, which can be
investigated by applying our method directly. Moreover, it is straightforward to
extend our method to the more realistic noise allocation, i.e., circuit-level noise
model, where each elementary gate is followed by noise. We believe that our
simulation method sheds light on implementing and benchmarking a small-scale
QEC code under realistic noise in the NISQ era.

In Chap. 5, we proposed a quasiprobability algorithm using free fermions
and estimated the simulation cost of a quantum circuit for a fermionic Hamil-
tonian. Researchers anticipate an application to simulate fermionic many-body
systems with a NISQ device. Thus, it is important to investigate how likely
such a quantum circuit can demonstrate a quantum advantage. We presented
the quasiprobability simulation algorithm using free fermions. This algorithm is
better suitable to simulate a quantum circuit for a fermionic Hamiltonian than
the existing quasiprobability algorithms. We investigated the simulation cost
of UCCSD ansatz for the hydrogen chain quantitatively and discussed whether
they can be simulated within one day if 106 CPU cores are available. We found
that one needs more sampling costs to simulate the UCCSD ansatz for the
hydrogen chain with larger spacing. Combining these observations with the
fact that the hydrogen chain with a large spacing corresponds to the strongly
correlated material [90], we suggested that one should choose Hamiltonians of
strongly correlated materials to demonstrate quantum advantage. Moreover, we
found that, if the error rate of the two-qubit dephasing noise p > 0.03, the noisy
UCCSD circuits for hydrogen chain of arbitrary length with the 0.8 can be sim-
ulated. Note that even if the gate error rate of a device is 1%, the effective noise
in the two-qubit dephasing noise much higher because the noise on entangling
gates to simulate non-local fermionic two-body or four-body rotations accu-
mulates. Thus, we have to execute UCCSD ansatz with sufficiently low error
rates. Whereas we have investigated the sampling cost of the UCCSD ansatz,
it should be interesting to estimate the sampling cost of a quantum circuit to
simulate the dynamics of a fermionic system. We believe that our algorithm
and results are naturally helpful to demonstrate quantum advantage with the
simulation of a fermionic Hamiltonian. Moreover, our proposed method is also
interesting in the context of quantum resource theory. It is another interesting
direction to establish a quasiprobability-based simulation algorithm that decom-
poses non-FGS over FGSs. With the quasiprobability simulation algorithm, one
would estimate the “fermionic RoM” of molecular ground states and find the
appropriate molecules to demonstrate a quantum advantage.
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Quantum technology has progressed enough to execute the quantum supremacy
experiment. It leads us to expect that NISQ devices will demonstrate a quan-
tum advantage in a few decades. If such a quantum algorithm is developed,
many practical quantum algorithms will be proposed and have an impact on
other fields. To accelerate the movement, researchers should pursue the classical
benchmarking methods to clarify and extend the classical simulatable regime
and narrow down the candidates for quantum advantages. While researchers
pursue the demonstration of quantum advantages, low-distance QEC codes are
being implemented. Such low-distance QEC codes not only provide important
insights for building large-scale fault-tolerant quantum computers but also may
be used for practical application. To unlock the power of such a quantum com-
puter, many error mitigation methods have been proposed. The probabilistic
error cancellation is the error mitigation method using quasiprobability method
[110]. In Ref. [111], it is shown that the probabilistic error cancellation can
increase the code distance of a QEC code effectively. In Ref. [112], another
application using the quasiprobability-based method to a quantum device has
been proposed. The authors have proposed the quantum-assisted robustness of
magic, which quantifies the overhead of simulating ideal resource states with
noisy resource ones via quasiprobability-based simulation algorithms. There-
fore, although we have seen the quasiprobability-based simulation algorithms are
beneficial to benchmark quantum computers through their classical simulation,
novel and useful applications have been emerging by combining quasiprobability-
based simulation algorithms with quantum devices. We anticipate that our
proposed quasiprobability simulation methods, when combined with quantum
devices, could also be useful and interpolate between early fault-tolerant quan-
tum computers and long-term fault-tolerant quantum computers.
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