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Abstract
Due to COVID-19, new lifestyles are being accepted to our society which encourage non-

contact and non-face-to-face, such as a remote work and an online meeting. This social
situation change has led to grow a demand for mobile robot application to replace labors
where worked not only in factories but also in human living environments.

As robots become more widely used in our living environment, we expect that the future
society in which humans and robots’ symbioses, where teleoperated mobile robots controlled
by a remote human operator or autonomous mobile robots move on the same sidewalks
in a city. However, it is still a big challenge for robots to move freely in a human living
environment.

The existence of humans makes harder robots to move around. It is more difficult for
robots to recognize irregularly moving pedestrians and predict their future trajectories than
to simply avoid static obstacles. Even if a robot can successfully recognize human actions
and complete path planning, this is just one direction of the solutions for the robot navigation.
As the other direction, it is important that human sides perceive the robot’s behavior as well
and move cooperatively without getting in the way of the robot.

The interaction between mobile robots and humans should be to keep a minimum since a
moving robot is essentially an obstacle for humans. Most of the humans in the same envi-
ronment with the robot have different purposes, and there is almost no benefit to interacting
with the robot. Even if the robot tries to send some cues to the humans nearby, humans might
not make any effort to catch the signals.

Gait, which is a pattern of limb movements made during locomotion, is a main factor
to enable human pedestrian collaborative mobility in a society. Humans convey various
information to the surrounding others from gaits while walking, and observers can perceive
and understand meanings from their gait. This interaction is performed in unconscious.
With this, pedestrians spontaneously form a walking flow and achieve high-density and high-
efficiency mobility while avoiding collisions with each other.

This thesis aims to propose that a wheeled android expresses an upper body motion in-
duced by a human gait during movement and to validate whether humans who see the body
expressions can perceive the meanings or change their behavior.

We have developed a wheeled mobile android, ibuki, who is equipped with a mechanism
that replicates a human-like upper body oscillating motion induced by gait in the mobility
unit. We call Vertical-Oscillation Mechanism for this mechanism. With the combination of
motions through the vertical-oscillation mechanism and joints of the upper body, the android
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generates a human gait-like motion while moving despite being wheel driven. We call this
gait-like upper body motion a gait-induced upper body motion in this thesis. As I named
the title of this thesis “Perception and Behavior”, we evaluated the effectiveness of the gait-
induced upper body motion of the android from two perspectives: emotion perception and
gait synchronization.

For the emotion perception, firstly we show an importance of the body even for a human-
like facial expression, which is the most characteristic part of an android. We validated that
an ambiguous facial expression of an android could be perceived more clearly by viewers
when body postures and movements were added. The experiment result shows that the facial
valence distribution of the Intense emotion had the highest entropy with high intensity, as
has been reported in previous human studies. This facial valence of Intense could be clearly
distinguished by adding body postures and movements. Viewers were able to distinguish the
ambiguous facial valence with specific combinations of neck, arm, and vertical motion.

Secondly, we implemented in the android three types of emotional gait-induced upper
body motions (anger, happiness, and sadness), and validated how viewers perceive the emo-
tion and their confidence level in their answer. The experiment result shows that the emo-
tional expression of happiness using the vertical oscillation was better perceived by viewers
(with higher recognition rates and higher confidence levels) than that of without vertical
oscillation. The incongruent application of anger/happiness vertical oscillation decreased
the recognition rate of happiness/anger emotional expression. Furthermore, the emotional
expression of happiness using the vertical oscillation for anger decreased the confidence lev-
els; however, the emotional expression of anger using the vertical oscillation for happiness
increased the confidence levels.

For the gait synchronization, we validated the synchronization of gait phases between a
human and a wheeled android. We measured the gait phase difference between the android
and a human walking behind. The moving android operated its upper body in three distinct
types of motion patterns: no-motion, arm-swinging, and arms-swinging with a periodic ver-
tical oscillation. The experiment result shows that a significant distributional bias due to the
phase locking by the gait synchronization was confirmed when participants were walking
only with the android controlled in the third motion pattern with the vertical oscillation.

Lastly, we discussed the implicitly control for both of robots and humans as a new social
navigation strategy. This strategy regards the entire environment surrounding the robot as a
system having weak controllability. In order to successfully move not only robots but also
the surrounding humans, it is important to increase the controlability of human side. For this,
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robots must have capability to convey the intention to humans through such as the emotional
empathy and gait synchronization which we investigated in this thesis.
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Chapter 1

Introduction

1.1 Mobile robots in our daily lives
In response to the rapid growth of global economy and the workforce shortage against it due
to the declining birthrate, aging society and rising worker wages, various countries all over
the world are investing in the field of robotics to develop robots which become the alterna-
tives of humans. One market research company reported that the global robotics market is
valued at 27.7 billion USD in 2020 and is expected to grow up to 74.1 billion USD by 2026
[1]. And they also analyzed that there are significant increasing investments in industrial
robots across the globe.

The reason why the investments are concentrated in industrial robotics applications in a
factory is due to the ease of designing the working task and environment. Let’s take an
arm robot as an example of a typical industrial robot, although the grasping ability of robot
hands has not yet reached the level of humans, we can predetermine what to be grasped and
adopt the suitable grippers as a robot hand to effectively grasp certain objects. In the case
of mobile robots in a factory, to improve the transportation efficiency, we can adopt special
travel lanes and specially designed cargo racks to make it easier and faster for robots to carry
products. Designing an efficient work environment is also easier in a factory. To increase
the work speed, even if each robot works at a limited slow speed, an operator just needs to
install multiple robots as many as meeting the required work speed. Or a robot can move as
much fast as required, if it works in which separated from human workers where unexpected
collisions are not occurred. Furthermore, as many sensors as needed for the robot operation
such as cameras for vision can be installed anywhere whether on the robot body or outside.

Due to COVID-19, new lifestyles are being accepted to our society which encourage non-
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contact and non-face-to-face, such as a remote work and an online meeting. This social
situation change has led to grow a demand for the mobile robot application to replace labors
where previously humans worked not only in factories but also in human living environ-
ments. In particular, the demand for mobile service robots is rapidly increasing to replace
for professional jobs such as cleaning, building maintenance, field research, and logistic, for
household jobs such as automatic vacuum cleaners, security monitoring devices and nursing
care, and for entertainment applications such as hobbies and education usages.

As robots become more widely used in our living environments, we expect that the future
society in which humans and robots’ symbioses, where teleoperated mobile robots controlled
by a remote human operator or autonomous mobile robots move on the same sidewalks in a
city. Automobiles and trains are representative examples of the symbiosis between humans
and machines in the current society. Cars go on the road and trains run on the rail; their
working environment of such mobile machines is designed clearly separated from where
humans walk. However, it is necessary that mobile robots, which are required to work as
alternatives of humans, can move in the same space where humans are as shown in Figure
1.1. As other examples, a robot which displays items in a supermarket needs to move in
a narrow aisle while avoiding shoppers. A service robot which carries goods to a guest
room in a hotel is required to move around the floor where humans come and go, and to
ride an elevator to reach the destination. Therefore, the boundaries which have separated the
working environments of humans and robots will become even more blurred, and technology
will be required to realize symbiosis between humans and robots in the next era.

It is still a big challenge to achieve robots moving freely in a large pedestrian crowd such
as Figure 1.1. The existence of humans makes harder robots to move around. It is much
more difficult for robots to recognize irregularly moving pedestrians and predict their future
trajectories than it is for them to simply avoid static obstacles. When the moving robot is
surrounded by many humans, it is necessary to consider how far away pedestrians should be
recognized and included in the robot’s path planning. In addition, there are often unexpected
situations where the robot cannot accurately recognize the surrounding humans nearby, such
as when the robot’s visibility is poor due to bad weather or when there is a wall at a corner.
Furthermore, changing environments caused by humans are also critical issues for robots.
Robots must deal with unexperienced situations such as an obstacle placed by a human on
the way of robot’s path and a construction work which requires a detour. What much more
difficulty for mobile robots is that robots are required to move in the same way without
disturbing the pedestrian flow as where pedestrians move in a high dense and fast flow such
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Fig. 1.1
Where robots should be operated in the next era. This figure shows a large crowd
of humans in an underground space of a train station rushes to walk towards their
destinations. Both of humans and robots need to move together within the same
crowd.

as a train station or an airport. These are the major reasons why it is difficult to realize a
robot which can move freely in a human living environment and why it is still being actively
researched.

Robot navigation strategies in human living environments are mainly categorized into two
approaches. The first strategy is for a long term, related to path planning and self-localization
necessary for a robot to move to its destination. This strategy has been actively researched at
the topic of Simultaneous Localization and Mapping (SLAM) and has applied to industrial
mobile robots and self-driving cars. The second strategy is for a short term required a more
real time control, regarding as a collision avoidance. Although this strategy is not directly
related to the main robot goal of moving to the destination, it is necessary for achieving safe
mobility in our society. Therefore, collision avoidance methods for human safe have been
researched, by estimating a human position and future trajectory which is difficult to predict.
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For example, a simple navigation method accompanying to a specific person who seems to go
to the same destination [2, 3], a path planning method to calculate an artificial potential field
based on human positions around the robot and generate a safe trajectory without contacting
a person [4], and a pedestrian’s path prediction method using a neural network [5, 6] have
been proposed. Although enormous research has been made to model pedestrian behaviors
and to use it for a robot navigation, there are still issues difficult to solve such as the freezing
robot problem, in which a robot falls in a deadlock state and move nowhere as a result of
recognizing pedestrian around it.

Considering practical usage, those approaches described above which the robots precisely
perceive human behaviors and behave appropriately are just one direction of the solutions
for a robot navigation in a human living environment. As the other direction, it is important
that human sides perceive the robot’s behavior and move cooperatively without getting in
the way of the robots. While the robot is perceiving the human’s behavior and taking action
to avoid collision, the human is also perceiving the robot’s behavior and taking the next step
as the same way of the robot to avoid collision. Although this human cognitive property has
often been ignored in traditional mobile robot research, some studies have successfully taken
advantage of utilizing this cognitive property for mobile robots. As an example, that is easy
to implement in a robot, a method has been proposed that uses technical expressions such as
light cues to make humans aware of the robot’s approach and destination [7, 8].

From the human side, a moving robot is essentially an obstacle. Therefore, the interaction
between a mobile robot and a human should be to keep a minimum. Except to operators
and collaborators who are directly involved with the robot’s task, most of the humans in the
same environment with the robot have different purposes, and there is almost no benefit to
interacting with the robot. Even if the robot tries to send some cues to the humans nearby,
humans might not make any effort to catch the signals. Taking an example of the freezing
robot problem described earlier, when there are many pedestrians moving around and the
robot stops on the spot to avoid contact with pedestrians, it could be solved if some pedestri-
ans around the robot open a space for the robot to move. However, in the most cases, humans
do not care about the robot’s behavior and keep walking, so the robot cannot escape from
that situation.

There is another factor which makes it difficult for mobile robots to cooperate with hu-
mans. In the case of home appliances and cars, humans spend time to learn how to use those,
however, the human facing the robot is not given the opportunity to learn the principles of
its operation and must successfully interact with the robot in the situation of first meeting it.
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In general, it takes several hours for a human to learn how to operate a home appliance such
as a washing machine, and several dozen hours to learn how to operate a car. Normally, a
training period is necessary for successful interaction between humans and machines, but we
do not have the opportunity to train smoothly behaving with a robot which we meet on the
street in advance. Since it is not possible to learn in advance what cues the robot shows, in
research on communication robots, it has been reported that it is easier to convey intentions
to a human facing to the robot expresses itself in a human-like manner such as gestures,
rather than using robot-specific functions such as glowing eyes [9].

Why can pedestrians successfully collaborate to walk in the crowd? Gait is a main fac-
tor to enable the pedestrian collaborative mobility in a society. A gait is a pattern of limb
movements made during locomotion. Humans convey various information to the surround-
ing others from gaits while walking, and observers can perceive and understand meanings
from their gait. With this, pedestrians spontaneously form a walking flow and achieve high-
density and high-efficiency movement while avoiding collisions with each other. The in-
formation conveyed by a human gait can be classified into physical property such as the
orientation of the destination, a walking speed, and a walking cycle, as well as psychological
property such as the personal space and the purpose at there. From the viewpoint of each
part of the body during walking, the orientations of the head and torso implicitly indicate the
destination. On the other hand, the orientation of the lower limbs indicates the short-term
destination in which the legs will step next. It is known that the personal space, which is
the space where we feel uncomfortable when we are approached by others, increases as the
walking speed increases. The pitch, stride and the joint amplitude of arm swing depend on
gender and age [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In addition, a gait changes greatly
with emotions. Roughly, positive emotions accelerate the gait cycle, incline the upper body
backward, and increase the body swing when stepping. Vice versa for negative emotions
[20, 21, 22, 23, 24]. Interestingly, those characteristics are expressed almost unconsciously.
As an interesting example, from images taken by a security camera installed in a store, it is
possible to detect shoplifters with analyzing their suspicious gaits. Since a gait is expressed
with the whole body, it can be perceived from a long distance. Therefore, it is said to be able
to identify individuals with their gaits far from 50 to 100 meters, depending on the resolu-
tions of the camera used for the gait recognition, compared to a fingerprint recognition and
face recognition which are effective only at a short distance.
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1.2 Research topics
If mobile robots can influence the perception and behavior of humans who firstly meet the
robot by performing a body expression comparable to a human gait (gait-like motion), it
will be useful to convey information from the robot to humans. This gait-like motion is
intuitive even for humans who are interacting with the robot for the first time, without having
any specialized knowledge about robots. And it is possible to convey various information
continuously and extensively to the surrounding humans at once, as described above. The
gait-like motion can be expected to implement for whichever robots if it has a human-like
body by simply controlling the robot’s body periodically as it moves. By using the robot
gait-like motion while moving, humans can recognize the meaning of the robot’s action.
With using this, the robot can elicit human actions which the robot wants. Furthermore, it
can be a natural starting point for the next interaction while performing the task of moving.
For example, moving while scurrying and looking around can tell the others that the robot is
not familiar with where it is and expects human’s help.

We believe that a gait-like motion by a mobile robot during moving can be applied as a
new navigation strategy in mid-term of Figure 1.2. This mid-term strategy enables the robot
to interact with humans farther away in advance before performing the short-term strategy.
In Figure 1.2, all the mobile robot and humans have each long-term navigation task and move
to different destinations each other under the same environment (green circle). During this,
it is sometimes unavoidable to approach others (red circle). Therefore, the robot must plan a
short-term navigation strategy to avoid collisions with others. If the robot can elicit human
actions which the robot want through the gait-like motion in advance (blue circle), the robot
can minimize short-term collision avoidance events which may occur due to the unexpected
action of the robot and humans and concentrate on performing a long-term navigation task.

Can wheeled mobile robots, which are more common than bipedal legged robots, express
the gait induced by the leg movements? We can easily imagine the gait-like of a bipedal
robot, however most of mobile humanoid robots designed to be applied in human living en-
vironments have a wheeled mechanism as the lower body and the anthropomorphic face and
arms as the upper body. It is worthwhile to study this question and the application of the
gait-like motion for mobile humanoid robots. The wheel mechanism is safe and easy to con-
trol as a robot mobile mechanism. Wheels have stability with a low risk of falling and keeps
standing even when the power is off. In the case of a human size robot, the joint structure of
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Short-term

Long-term

Mid-term

Fig. 1.2
Navigation strategies with three stages for a mobile robot in human living envi-
ronments. Our proposed body expression during moving can be categorized into
a strategy in mid-term.

the wheeled mechanism is simpler than that of the legged and the energy efficiency during
movement is usually higher. Thus, most mobile robots have no legged but wheeled. Due
to the kinematic wheel-axis stability, wheeled robots do not swing the upper body which
human legs induce during walking. Furthermore, the anthropomorphic upper body is useful
for working in a human living environment because many things around us are designed to
be easy for humans to handle. Taking the door-opening task as an example, a human needs
to manipulate a doorknob by grasping it with the hand and pulling it open with the arm. In
addition, the face can be useful for interpersonal communication and teleoperation. For these
reasons, a wheeled humanoid with the anthropomorphic upper body is a practical body con-
figuration for applications in a human living environment. Therefore, investigating whether
a wheeled humanoid can express the upper body motion induced by a gait is useful for real
world robot applications.



8 Chapter 1 Introduction

This thesis aims to propose that a wheeled android expresses an upper body motion in-
duced by a human gait during moving and to validate whether humans who see the upper
body motions can perceive the meanings or change their behavior. Firstly, we have developed
a wheeled mobile android, ibuki [25], who is equipped with a vertical oscillation mechanism
which creates upper body motion like that of the human upper body while moving in its mo-
bility unit. With the combination of motions through the vertical oscillation mechanism and
the joints of the upper body, the android generates a human gait-like motion while moving
despite being wheel driven. We call this gait-like upper body motion gait-induced upper
body motion in this thesis. From the viewpoint of practicality, we evaluated the effective-
ness of the gait-induced upper body motion of the android from two perspectives: emotion
perception and gait synchronization, with three research.

For emotion perception (Research 1 & 2), we focused on that human gaits are emotionally
expressive. Humans walk in various ways depending on their emotions and viewers can per-
ceive the emotions from others through their gaits. We believe that these various expressions
through the gait are crucial to achieve a smooth crowd movement as for forming a pedestrian
flow or adjusting the distance between each other. Before implementing emotion expressions
into the upper body motion, we verified whether the body is essential for a human-like facial
expression, which is the most characteristic part of androids (Research 1). And then, we im-
plemented in the android emotion expressions of gait-induced upper body motions (Research
2).

At Research 1 of Chapter 4 shows that an ambiguous facial expression of an android
can be perceived more clearly by viewers when body postures and movements are added.
It is widely recognized that facial expressions are important for judging human emotions.
However, recent research has found some cases in which emotions may not be clearly dis-
tinguishable from facial expressions [26]. Aviezer found that when participants were shown
peak expressive reactions to winning and losing points in professional high-stakes tennis
matches, it was difficult for participants to correctly judge whether the emotion was positive
or negative through intense facial expressions alone, however, they could perceive emotions
when these were seen with the body [27]. It was found that humans recognize facial emotions
by unconsciously considering factors other than facial expression. In previous research on
robots that have emotional expression functions, facial expressions have been used to convey
emotions on the assumption that facial expressions have a one-to-one correspondence with
certain emotions. Thus, it still has not been investigated whether robots can express the am-
biguous facial expressions with no clear valence which humans sometimes show, and what
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these look like. Furthermore, it has also not been investigated whether the robot’s emotional
valence can be clearly determined from such expressions by adding body expressions. This
research claims that the importance of the body for the android and enforces the importance
of investigating a gait-induced upper body motion to express emotions.

At Research 2 of Chapter 5, we implemented in the android three types of gait-induced
upper body motions (anger, happiness, and sadness), and validated how viewers perceive the
emotion and their confidence level in their answer. Many studies have been conducted to in-
vestigate the characteristics of emotional gaits [20, 21, 24, 28]. For human-robot interaction,
considering the expression of various gaits, including emotional gaits, is valuable to build
deep human-robot relationships. In the field of bipedal robots, some research has been con-
ducted to realize human-like gaits [29] and further emotional gaits [30, 31]. However, to our
best knowledge, the human perception of emotion expressions of wheeled mobile humanoid
robots while its moving has not been studied yet. If the robot could express its intentions and
emotions while moving, humans could act appropriately according to that information. As
a result, robots and humans could achieve orderly interactions by being able to predict and
understand each other’s behavior in various situations.

For the gait synchronization, at Research 3 of Chapter 6, we investigated the synchro-
nization of gait phases between a human and a wheeled humanoid robot. We measured the
gait phase difference between the robot and a human walking behind the robot. It is known
that humans walking in large crowds can walk collectively, as they unconsciously synchro-
nize their gait with the surrounding pedestrians [32, 33, 34]. Previous studies on pedestrian
gait synchronization have reported that gait phase synchronization is more likely to occur
in high-density groups and that pedestrian synchronization also maximizes the walking flow
efficiency [35, 36]. If humans can synchronize a gait phase with robots, we can imagine
applications with smooth robot-human mobility in our daily lives. In particular, if wheeled
robots can synchronize gait phases by utilizing upper body motions, robots can move by
taking advantage of the human ability to walk skillfully in the crowd.

1.3 Thesis outline
The outline of this thesis is followed; Chapter 1 described the challenges for social imple-
mentation of mobile robots especially when moving in a large pedestrian crowd, the impor-
tance of the human-like gait expression, and the three research topics of this thesis. Chapter 2
introduces related research focusing on body expressions, including gaits, in mobile robots.
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Chapter 3 describes a development of the wheeled child android (ibuki). Chapter 4 shows
that an ambiguous facial expression of an android can be perceived more clearly with adding
body postures and movements (Research 1). Chapter 5 shows that the implementation three
types of emotional gait-induced upper body motions and investigated whether viewers can
perceive the original emotion with high confidence (Research 2). Chapter 6 verifies whether
the gait phases of humans who follow the android which performed the periodic upper body
motions while moving can be synchronized for that of the android (Research 3). Chapter 7
discusses the importance of the proposed gait-induced upper body motion for wheeled mo-
bile robots and shows the future direction of this thesis. Chapter 8 summarizes this thesis at
the end.
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Chapter 2

Related research

This chapter introduces related research focusing on body expressions of mobile robots. For
this purpose, firstly we will briefly explain the history of robotics and challenges which
needed to be solved in our current society, focusing on the field of mobile robots and hu-
manoid robots.

2.1 Current situation of robotics
The term of “Robot” was first used in R.U.R., a play by Czech writer Karel Čapek in 1920
[37]. In the play, robots were used as machines which imitated the human appearance to
work as alternatives of humans. The definition of robot has been described in various fields
since then, but generally speaking, it is safe to say that a robot is a machine that has the
three elements of calculator, sensor, and actuator. For example, an industrial arm robot
working in a factory is a robot because it works by repeating a process in which a control
computer (calculator) estimates the working environment and the current state of the robot,
based on information from joint angle sensors and camera image sensors (sensor), and sends
the motion commands necessary for performing the task to the motors that drive each joint
(actuator). A flying drone in the air is also a robot because it uses IMU, gyro, and GPS
sensors to sense its own posture and position in the air, and based on that information a
control computer sends the motor commands to the motors that drive its propellers in order
for balancing itself or flying to the destination. Nowadays, robotics, as a discipline which
deals with technologies related to robots, sometimes covers a wider range of subjects, such
as robots which do not have a calculator, sensor, or actuator [38, 39, 40]. Although many
robots have been studied, the realization of robots which can replace humans is still one of
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the ultimate goals of robotics research, even after 100 years have passed since the term was
first coined. Next, we introduce the development of the robotics field which aimed to this
goal, especially mobile robots in a human living environment. And also, we will clarify what
has been achieved so far in robotics technology and what issues need to be addressed for the
future social implementation.

In the 1960s, SRI International developed the world’s first mobile robot, which senses an
environment and navigates itself, known as Shakey. Through the development of this robot,
essential technologies for autonomous mobile robots, such as environment recognition and
path planning, were studied [41]. On the other hand, a science fiction anime Astro Boy
was broadcast in Japan and the U.S., which is one of the most successful manga and anime
franchises in the world and have sold over 100 million copies worldwide. Its popularity
led to the cultural familiarization of robots. While research on robots which could move in
human living environments began in earnest, robots got culturally accepted.

In the 1970s, Waseda University started research on a human-size humanoid robot,
WABOT-1 [42]. It was developed under the design concept that a robot working in a place
of humans needs to have the same body and perception as humans, with the ultimate goal of
creating “My Robot” that is as close to a human as possible. In the 1980s, Honda started to
develop the E series of bipedal robots, which later became Asimo, and through the research
of the E series robots, the basis of the currently widely used walking control algorithms
for legged robots, such as the idea of static walking, dynamic walking, and the target zero
moment point control, was developed. In the 1990s, Sony announced the concept of aibo
which was a household pet robot [43].

In the 2000s, Honda developed Asimo [44], which gave a significant impact on later hu-
manoid research, and the way Asimo poured water into a cup and moved upstairs in situa-
tions which replicated our living environments minded us of the availability and challenges
of robots in our society. In the same decade, aibo, the household pet robot, and Rumba,
iRobot’s automatic vacuum cleaner, went on sale, and robots which could operate in our
house became popular.

In 2011, the Tohoku Earthquake and the Fukushima Daiichi nuclear disaster occurred,
where Packbot and Quince were used to investigate the inside of the nuclear power plant
building at which radiation leaked [45, 46]. In response to this accident, the DARPA Robotics
Challenge was held from 2013 to 2015, where several humanoids performed tasks required
of humans, such as opening doors, opening valves, driving cars, and walking rough terrain
[47].
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In recent years, humanoid robots with human-like appearance and expressive capability
have been presented mainly in the entertainment field, such as Audio-Animatronics of Dis-
ney [48, 49], Sophia by Hanson Robotics [50], and Pepper by Softbank Robotics [51]. In
the field of mobile robots, numerous autonomous mobile robots have been developed for
applications such as product delivery in hotels and disinfection cleaning in hospitals. Fur-
thermore, response to needs for robot applications in the service industry, several mobile
humanoid robots, which are designed to interact with humans and work in a place of hu-
mans, have been developed. Telexistence Model-T and Model-H are humanoids designed
to work in environments where humans work. OriHime-D is a tele-operated mobile robot
which can express emotions, although it does not have much freedom of physical expressions
[52, 53, 54].

2.2 Importance of robot’s body expressions
Many studies have pointed out the importance of nonverbal communication for robots to
communicate smoothly with humans in society. The modalities used for nonverbal com-
munication are diverse, including facial expression, breathing, gaze, gesture, posture, and
distance. In addition, nonverbal communication is essential not only for humans, but also be-
tween humans and animals (e.g. pets and their owners). It is the same for different species of
animals (e.g. predators and preys in nature). Nonverbal communication is usually expressed
and conveyed unconsciously to the other human and the person also infer unconsciously the
intentions and feelings. The expressions of nonverbal communication are difficult to control
by oneself, and humans tend to regard that the nonverbal expressions express the true inten-
tions and feelings more than the verbal. To utilize this embodiment-based communication
between humans and robots (or computers), enormous efforts have been made in both di-
rections: one direction is that robots attempt to recognize nonverbal expressions by humans
and the other opposite direction is that robots attempt to express in nonverbal to humans. In
recent years, with the significant improvement of computing power, image and voice recog-
nition technologies based on deep reinforcement learning technology have been applied into
practical use in our society. This has made computers possible to recognize such as the
meaning of human nonverbal gestures and the emotions from human faces or voices. With
this, many robotics studies have been conducted by recognizing human nonverbal commu-
nication for a robot’s behavior. On the other hand, there are relatively less studies on robots
expressing nonverbal expressions to humans, especially focused on body expressions.
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The most well-studied situation in which a robot tries to convey something to a human
through a nonverbal expression is where a human and a robot face up each other with having
their interaction already started. It is considered that robots which interact with humans
should physically express internal states such as reactions and emotions to regulate human
behavior who see the expressions for improving the task performance and impression. As
the physical expression, facial expression, gaze, posture, and gesture are mainly focused to
research in robotics. Compared to the facial expression and gaze which require a precise
control of expressions, body expressions of posture and gesture can be easily implemented
even with a limited degree of freedom if a robot has an anthropomorphic appearance.

Emotional expressions in nonverbal communication are crucial for deep relationship be-
tween robots and humans. Previous research has been studied methods to convey emotions
through body expressions by humanoids. For example, it is reported that the implementation
method of emotional expressions for a tabletop humanoid robot Nao by combining human-
like body motions with robot-specific sound and light functions [55]. As research on imple-
menting emotion expressions for a real human size humanoid, a bipedal humanoid Kobian is
known [30]. The research team investigated that the recognition rates of Kobian’s emotion
expressions by the face-only, body-only, and combining both as the whole body [56]. Later,
they developed an additional humanoid, Habian, in which the upper body was the same with
Kobian but the legs were replaced by a wheeled unit, to investigate the recognition difference
of emotional expressions by legged and wheeled humanoids [57].

From the viewpoint of effectiveness against human actions, body expressions by hu-
manoids have also been studied, such as combining gestures and utterances when explaining
directions [58]. Even handing and receiving an object by a humanoid arm, the applications
of human-like body expressions have been reported effective. It is reported that a human re-
acted faster for an object when the person was receiving it from a humanoid hand which the
hand trajectory was controlled in a minimum jerk as the way a human does [59]. In addition,
it is also reported that a human felt more comfortable when the person was handing an object
to a humanoid robot which reacts it with a time delay in perceptual response like a human
[60]. For dance teaching, a wheeled mobile humanoid has been developed which utilizes the
human-like upper body and waist joints with torque-controlling those joints while dancing
with a human practician [61, 62].

Several studies validated effectiveness of body expressions by humanoid robots while
moving. Emotion expressions through gaits by bipedal humanoid robots have been reported
[30, 31, 63]. It is reported that a humanoid robot enables to express the intention to require
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a person standing in its path makes room for the robot, by raising the arms forward during
moving. In this method, if the person still does not notice the robot intention, the robot di-
rectly touches and moves the human to make space for the robot [64]. A robot’s backward
motion for giving way was also studied. This motion shows the intention, by a human-like
manner, to avoid collisions when the moving trajectory interferes with that of a human [65].
(Note that, the experiment was conducted with using a simple wheeled mobile robot attach-
ing a monitor on top.) In addition, it has been reported that when a robot and a person pass
each other on a narrow path, such as a store aisle, the impression of the robot was improved
if the robot rotates the body to open a space [66].

There has been no research on body expressions of a walking manner by a wheeled hu-
manoid during moving. Previous study was limited to study the emotion perception by
changing parameters of the moving speed and direction [67]. As mentioned in the previ-
ous chapter, if a wheeled humanoid expresses the upper body motion which induced by
human gait and humans can perceive the meanings and make behave as the robot wants, this
expression is useful as the way interacting humans around the robot while moving. Most
of commercialized robots do not equip upper limbs because what robots can do is limited
compared to the cost of implementation. Or even those with upper limbs have difficulties in
performing quick and smooth human-like movements due to the heavy weight and limited
motor power supplied by batteries. In the first place, a mobile robot equipped with the up-
per body in human-size was expensive and as big as making difficult to handle in research.
Therefore, it was necessary to develop a new wheeled mobile humanoid robot which can
perform dynamic upper body motion as like a human for this thesis. In the next chapter, we
introduce the wheeled humanoid robot which we developed to validate the usefulness of the
aforementioned body expression, and in particular, we explain the mechanism to realize the
upper body motion induced by a human gait during moving.
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Chapter 3

Development of ibuki

This chapter shows an electrically driven childlike android named ibuki equipped with a
wheeled mobility unit and a human-like upper body. ibuki can perform various human-like
body expressions and move in human living environments with using 46 degrees of free-
dom. Since the mobility unit includes a vertical oscillation mechanism, ibuki can replicate
the movements of the human center of mass, and can express human-like upper-body move-
ments even when moving by wheels. In the latter half of this chapter, we will describe this
mechanism and the gait-induced upper body motion which performs the upper body behave
as if the motion were induced by leg walking.

3.1 Background
An android, which has a human-like appearance, can interact with humans naturally owing
to various features. For example, the expressive face, which has multiple degrees of freedom
covered with human-like skin, can convey its internal states and emotions through chang-
ing facial expressions. Humans use such expressions in the daily communication, and they
can therefore intuitively understand these expressions even if which are expressed by robots.
This rich-expressiveness ability should contribute to establishing a deeper relationship be-
tween humans and robots. Various androids have been introduced so far [68, 69], most of
them representing adult persons who has a specific role, such as a fashion model [70], a
conversation partner [71], and a salesperson [72], to embed androids in a daily life. Due to
implement androids into a pre-designed situation as a particular role, most of androids were
fixed a place in the working space and do not have a capable of mobility.

Since most androids do not require mobility for the applications, hydraulic and pneumatic
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Fig. 3.1 Introducing ibuki: a childlike android with mobility.

actuators with an external large compressor are commonly employed to realize robots’ joint
drive. Relatively less electric-drive androids with a moving mechanism have been intro-
duced. A cybernetic human HRP-4C is a humanoid robot that has a human-like face and
hands and can walk using legs [73]. EveR-4 is an android with a wheeled mobile mechanism
[74]; however, the studies dedicated to this robot have mainly focused on analyzing its facial
expressions, and the details concerning its ability to perform wheel movement have not been
reported.

Figure 3.1 shows our developed electrically driven childlike android with a mobility unit,
named ibuki (ibuki means breathing in Japanese). To investigate human–android interaction
in our daily living, we adopted a childlike appearance for ibuki. We expect the child android
to be naturally accepted in society without the need for a specific role as children do. To en-
sure the mobility and stability in a human living environment, we adopted a wheeled mobile
mechanism as its lower body. A wheel mechanism of a large diameter enables to move not
only on a robot-friendly flat floor but also on a slightly rough outdoor road. It is essential
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for androids to provide not only a human-like appearance but also human-like behavior. We
developed a mobility unit, which enables ibuki to mimic movements corresponding to human
gait-induced upper body motion and to imitate walking even though it is wheel-driven.

In sum up, we believe that ibuki would have advantages in terms of the following two
aspects: (1) Childlike appearance to easy acceptance in human society. As expectations
corresponding to children’s abilities are below than those of adults, a childlike android may
be acceptable even if it is inferior to humans. This covers technological gap between what
the current robots can do and what people expect for robots. (2) High mobility of a wheeled
mobility unit. The wheeled mobility is deemed more stable than bipedal locomotion. Even
if power is not supplied, a robot can keep standing still without falling. When unexpectedly
contacting with a human, the childlike body reduces this risk owing to its small size and
weight.

3.2 Child android ibuki
The child-like mobile android (Figure 3.1) that we developed called ibuki, is 120 cm tall
and is comprised of two parts, a mobility unit (lower part) and the upper body, which is
designed based on a Japanese boy. The face and hands are covered with silicone skin to have
a human-like appearance. An electric motor drives each joint, and mobile batteries are used
as the power supply. Table 3.1 and Table 3.2 outline the basic specifications and the degrees
of freedom of ibuki.

The dimensions of ibuki’s body are specified according to the average parameters of a
ten years old Japanese boy [75]. We decided to cover only the minimum areas with skin,
the head and both hands, so as not to lose the human-likeness of ibuki. Facial appearance
is crucial to express emotions. Hands with flexible skin can be utilized to touch humans,
as when shaking hands or during other such interactions. In the design of other body areas,
the mechanical parts are intentionally exposed to reduce the uncanny. To achieve lightweight
and high strength, we adopted glass fiber reinforced nylon and carbon fiber reinforced plastic
parts for the body. Also we reduced the number of parts by using a 3D printer to print several
parts in one piece.

Figure 3.2 represents the mechanical structure of ibuki. It has a total of 46 DoF, including
two driven wheels (See Table 3.2). Table 3.3 provides the principal joint specifications. The
joint range shows a structurally movable angle range at the time of design. All actuators are
DC geared motors and motor driver modules equipped with current sensors enable ibuki to
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Table 3.1 Basic Specifications of the Mobile Android ibuki
Height 1200 [mm]
Weight with batteries 38.6 [kg]
Processor Jetson AGX Xavier (NVIDIA Corp.)
Microcontrollers mbed LPC1768 (ARM Ltd.)

Sensors

Joint

- Potentiometer
(SVK3A103AEA01 and
SVM4A103A0L17R00, Murata
Manufacturing Co., Ltd.)
- Current sensor
(INA226, Texas Instruments Inc.)

Head - Built-in RGB camera × 2

Upper-body

- RGB-D camera
(Intel RealSense Depth Camera D435,
Intel Corp.)
- IMU sensor module × 2
(RT-USB-9axisIMU2, RT Corp.)

Mobility unit

- LRF (RPLIDAR A3,
Shanghai Slamtec Co., Ltd.)
- Microphone array
(ReSpeaker Mic Array v2.0,
Seeed Technology Co., Ltd.)
- IMU sensor module
- Wheel: Absolute magnetic rotary
encoder (AEAT-6012, Broadcom)
- Linear motion: Linear potentiometer
(LP-150FJ-1K, MIDORI PRECISIONS)

Audio Upper-body
- Speaker (JBL Clip2, Harman
International Industries, Inc.)

Batteries

Actuation +
USB power
source (5V)

Li-ion DC 25.2 V battery × 2
(7LPL0678G8C1-1P01, Maxell, Ltd.)

Xavier
Li-ion AC 100V battery
(RP-PB055, Sunvalleytek
International, Inc.)
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Table 3.2 Degrees of Freedom of the Mobile Android ibuki
Description DOF
Total 46
Head 15
Neck 3
Arm 6 × 2
Hand 5 × 2
Waist 3
Mobility unit Wheel 1 × 2 + Linear motion 1

control its joint torque. The central computer sends reference values to each microcomputer
via Ethernet. The angle of each joint is controlled at 100 Hz.

Hand
Linear actuator

Eyes

Head

Neck

Hand
Passive
joint

Passive
joint

Driving wheel Driving wheel

Passive wheels
z

y

x

Yaw
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Roll
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{
{
{
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Elbow

Shoulder

Fig. 3.2
The mechanical structure of ibuki. The wrist roll axes of both arms are specified
as passive joints. Mechanical springs are attached to each joint.

Figure 3.3 (a) represents a 3D CAD image of the waist; (b) represents the schematic
image of the structure; and (c) shows the photograph of the joint. We designed ibuki’s waist
with three DOF joints with three orthogonal intersecting axes. For the roll and pitch joints,
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Table 3.3 Principal Joint Specifications
Description Joint range [degree] Max torque [Nm]

Eyes
Pitch -20 to 10 0.3
Yaw -40 to 40 0.1

Neck
Roll -12 to 5 0.3
Pitch -30 to 40 1.5
Yaw -90 to 90 4.4

Shoulder
Roll -162 to 11 4.9
Pitch -180 to 180 6.7
Yaw -90 to 90 1.8

Elbow Pitch -132 to 90 1.8

Wrist
Roll -106 to 115 1.0
Yaw -80 to 80 1.0

Waist
Roll -38 to 48 7.3
Pitch -20 to 23 7.3
Yaw -180 to 180 3.6

mechanical springs and dampers are attached to reduce passive vibration of the upper body
while moving. For the yaw joint, a motor driving is transmitted by a belt from a motor whose
rotational axis is placed along the x-axis. For further details of the upper body joint structure,
please refer to our paper [25].

Potentiometer

Belt drive
Waist yaw

Motor

LRF

x

yz

(a)

x

yz

(b)

Belt

x

y
z

Spring

Spring
Motor

Motor

Motor driver module

Damper

(c)

Fig. 3.3
Waist joints: (a) three-dimensional computer-aided design of the waist joint mech-
anism; (b) a schematic image of the waist joint; (c) a photograph of the waist joint.
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Figure 3.4 represents the electrical system embedded into ibuki. The utilized on-board
main computer, Jetson AGX Xavier, is mounted on the mobility unit. Since ibuki was devel-
oped to move around in a human living environment, it is necessary to ensure ibuki working
even when the network connection becomes unstable. Thus, this on-board computer is used
for applications where relying on the computational power of the cloud or server would delay
the response time. The other additional calculations are performed on an external computer.
Each motor driver module is connected via Ethernet, and the sensors are connected via USB.

Built-in
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Fig. 3.4 Electrical system of ibuki.

Figure 3.5 outlines the arrangement of sensors and other devices within ibuki. The laser
range finder (LRF) senses the surrounding obstacles and people. The RGB-Depth camera on
the torso detects a person in front of the android. A small USB camera mounted inside each
eye detects a face or an object and execute the gaze control.



24 Chapter 3 Development of ibuki

Built-in RGB camera

Speaker
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Fig. 3.5 Sensors and other devices embedded into ibuki.

3.3 Mobility unit
Figure 3.6 shows a three-dimensional computer-aided design (3D CAD) image of the mobil-
ity unit composed of a wheel unit and a vertical oscillation mechanism (VOM). The wheel
unit comprises two driving wheels at the front and two omnidirectional wheels as auxiliary
wheels at the rear. The rotation angle of each driving wheel is measured by a magnetic rotary
encoder (AEAT-6012, Broadcom). Figure 3.7 shows a 3D CAD image of VOM. The vertical
oscillation is generated by a linear actuator using a motor-driven slide screw. The displace-
ment is measured by means of a linear potentiometer (LP-150FJ-1K, Midori Precisions).
Table 3.4 shows the specifications of the mobility unit.

Table 3.4 Principal Specifications of the Mobility Unit
Description Value

Outline dimensions
Height (z-axis) [mm] 370
Width (y-axis) [mm] 441
Depth (x-axis) [mm] 503

Driving wheel
Radius [mm] 153
Max torque [Nm] 6.0

VOM
Stroke [mm] 124 (150*)
Max force [N] 733

* Stroke [mm] without stopper.
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Fig. 3.6 Three-dimensional computer-aided design image of the mobility unit.

3.4 Gait-induced upper body motion
Before we introduce the implementation of gait-induced upper body motion in our mobile
humanoid robot using the VOM, we describe the principle of human walking, especially
focus on the movement of center of mass.

When humans walk, all body parts move simultaneously except in particular situations.
As the CoM is located near the center of the pelvis, its position is affected by the lower limbs.
We modeled the trajectory of the human CoM during walking and controlled the position of
the mobile humanoid robot’s apparent-CoM (aCoM) to achieve human gait-induced upper
body motion (Figure 3.8). The aCoM is essentially the same as the root (null) joint used
widely in robot and animation motion generation, but adjusted according to the analogy with
characteristics of human walking, which is why we use the term aCoM.

One gait cycle starts at the heel strike of a foot and continues until the heel strike of the
same foot for the next step. Thus, a human moves two steps forward in one gait cycle. In
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Fig. 3.7
Three-dimensional computer-aided design image of vertical-oscillation mecha-
nism.

each single support phase, the ankle and knee joints of each support leg flex and then extend,
and the pelvis rotates slightly. As a result, the human CoM oscillates twice on the sagittal
plane in one gait cycle. The trajectory of the CoM oscillation on the sagittal plane can be
modeled as a cosine or cycloid curve (Figure 3.8 (A)) [76, 77]. The amplitude is about 40
mm in adult males [78]. Due to the characteristics of the CoM movement, the horizontal
moving displacement of the aCoM and the vertical oscillation caused by the gait described
above are calculated according to the target gait stride and speed (or frequency). Thus, we
can generate the gait-induced upper body motion by controlling wheel angles and VOM
displacement based on aCoM (Figure 3.8 (B)). Note that the displacement of the robot’s
head driven by the VOM is larger than that of an actual human during walking. In the case of
human walking, the spine and neck joints of the body compensate for the upper body motion
to keep the eye sight at a constant height and angle.

Here, we show our implementation of gait-induced upper body motion. When we approx-
imated the trajectory of the human CoM on the sagittal plane during walking by a cosine
wave, the position of the VOM d(t) can be expressed as follows:
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Fig. 3.8

Kinematic relationship between (A) human gait and (B) gait-induced upper body
motion of mobile humanoid robot equipped with vertical oscillation mechanism.

d(t) = −dA cos(4πpt) + d0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3.4.1)

where dA and d0 are the amplitude and baseline of the VOM position, respectively. Here,
p is the walking pitch of walking; t is time. In a single gait cycle, aCOM oscillates once per
step. Therefore, the frequency of VOM is twice as large as that of the gait. The arm and
torso motion (joint angle θ(t)) is defined as follows:

θ(t) = θA sin(2πpt + ϕ) + θ0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3.4.2)

where θA and θ0 are the amplitude and baseline; respectively, ϕ is phase difference.
Figure 3.9 represents the movements of ibuki. We used a prototype model of ibuki’s

mobility unit in this experiment. This mobility unit had two eccentric wheels for realizing
motion in a coronal plane, i.e., lateral swinging, by the wheels rotating. If normal wheels
were employed, the waist roll joint could be utilized to realize the same lateral swinging. For
the joint control, since one wheel rotation corresponded one gait cycle, we calculated pt in
Equation 3.4.1 and Equation 3.4.2 base on the measured wheel angle.
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Fig. 3.9 Time series photographs of the gait-induced upper-body motion.

In addition, we measured the trajectories of the upper body and the mobility unit on the
coronal plane during movement. Figure 3.10 (a) shows the time series photographs during
the movement. A motion capture system (OptiTrack V120: Trio, NaturalPoint, Inc.) was
used for this measurement. Figure 3.10 (b) shows the arrangement of two reflection markers
(A and B). The marker A was for the mobility unit and the marker B was for the upper body.
ibuki moved towards the motion capture camera. The trajectory of the movement on the
horizontal plane is shown in Figure 3.10 (c). The trajectory of each marker was examined
in the interval beginning with a circle and ending with a diamond. Figure 3.10 (d) and
Figure 3.10 (e) show the trajectories of the markers A and B projected on the coronal plane,
respectively. These trajectories are as seen from the diamond side. The trajectory of marker
B is longer horizontally than that of marker A because of the passive swing of the roll axis
of the waist during movement.
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Fig. 3.10
The measurement of the gait-induced upper-body motion: (a) time series pho-
tographs of the motion; (b) arrangement of the reflection markers; (c) trajectory
of the ibuki’s movement on the horizontal plane; (d) trajectory of the marker A;
(e) trajectory of the marker B.
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Chapter 4

Research1

This chapter shows that an ambiguous facial expression of an android can be perceived more
clearly by viewers when body postures and movements are added. Recent research on human
behavior reveals that some emotional expressions, such as the emotion “intense”, are difficult
to judge as positive or negative by just looking at the facial expression alone. We conducted
three experiments and online surveys. In Experiment 1, we validated facial expressions
which cannot be clearly discriminated to be either positive or negative, and in Experiment 2
and 3, we validated the possibility of clearly perceiving ambiguous facial expressions of the
android by adding postures or movements. In order to investigate only the perception of the
peak moment of the android’s emotional expressions, we showed posture photos to partic-
ipants in Experiment 2. Then, in order to investigate the perception of practical emotional
expressions, we showed movement movies to participants in Experiment 3.

4.1 Background
Numerous studies have pointed out that nonverbal communication from robots to humans is
as important for robots to communicate smoothly with humans in society as it is in human-to-
human communication [79, 80, 81, 82]. Facial expressions and gestures are representative
of the nonverbal communication that people often use to convey their emotions [83, 84].
Therefore, it has been actively studied how robots’ facial expressions and gestures can con-
vey emotions to achieve meaningful communication with humans [85, 86, 87]. For exam-
ple, humanoids’ human-like upper body gestures (nonverbal communication) leads people
to perceive a higher animacy of the robot, and the gestures also affect the emotional state
and self-disclosure, compared to robot-specific nonverbal behavior (such as LED-eyes color
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changes) [9]. Also, humanoids’ facial expressions lead to an increase in people’s desire to
interact again with the robot [88]. While there are many findings showing that nonverbal ex-
pressions by robots play an important role in human-robot communication, it is also reported
that slight differences in expression can lead to the conveyance of significant misinformation
[89]. Thus, there is still room for further investigation into the implementation of robotic
facial expression, and the human perception of such expressions.

It is widely recognized that facial expressions are important for judging human emotions
objectively and clearly. In the 19th century, Darwin already described how facial expres-
sions are associated with certain emotions [90]. Subsequently, Ekman suggested that facial
expressions had universality, and classified six types of basic emotions by different facial
expressions [91]. Russell explained the correspondence of facial expressions and emotions
by using two dimensional affective scales: valence (positive to negative) and arousal (high to
low) [92]. All of this research focused on mapping facial expressions to basic emotions, as-
suming that there are specific facial muscle activation patterns for each emotional expression,
and that other people can perceive these emotions by reading these patterns. This method of
mapping facial expressions to certain emotions has also been used in research that enables
robots to communicate their emotions to humans. Breazeal pioneered research on machines
imitating emotional expressions, arguing for the importance of facial expressions and eye
gaze for a social robot [93]. Later humanoid robots, such as Kobian, Flobi, Bert2, and iCub,
would also use this mapping method, with all four having human-like facial features that
allowed for basic emotional expressions [56, 94, 95, 96]. The android robots developed in
our research group, such as Geminoid, took this one step further, with a realistic appearance
created by using silicon-made skin and an original actuation mechanism for the face [97].
This allowed the android to express emotions through facial expressions to an almost human
degree [98].

Recent research has found some cases in which emotions may not be clearly distinguish-
able from facial expressions [26]. Meeren reported that emotional perception is hindered
when facial expression differs from body expression (for example, an angry face, but a fright-
ened body posture or vice versa) [99]. Van den Stock also reported that the perception of
emotions from facial expressions is strongly influenced by body posture [100]. Aviezer
found that when participants were shown peak expressive reactions to winning and losing
points in professional high-stakes tennis matches, it was difficult for participants to correctly
judge whether the emotion was positive or negative (i.e. a win or a loss) through intense
facial expressions alone, however, they could perceive emotions when these were seen with
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the body [27]. Aviezer stated that although the faces were inherently ambiguous, viewers
erroneously reported perceiving valence in the face and this process seemed to be automatic
as participants had little awareness of the actual facial ambiguity and the original diagnostic
source of the valence. In addition, later research also showed that intense emotions cannot
be judged solely by facial expressions [101].

It was found that humans recognize facial emotions by unconsciously considering factors
other than facial expression. In previous research on robots that have emotional expression
functions, facial expressions have been used to convey emotions on the assumption that facial
expressions have a one-to-one correspondence with certain emotions. Thus, it still has not
been investigated whether robots can express the ambiguous facial expressions with no clear
valence which humans sometimes show, and what these look like. Furthermore, it has also
not been investigated whether the robot’s emotional valence can be clearly determined from
such expressions by adding body expressions.

What we validate in this chapter are the following: 1) what kind of facial expression of an
android is indistinguishable (ambiguous) in the scale of positive to negative emotions?, and
2) with an indistinguishable facial expression, do postures and movements solve the facial
ambiguity? We believe that the investigation of ambiguity expressed by the facial expres-
sions of an android and the clear emotional expressions (positive and negative) achieved by
adding body modality can help to realize smooth communication between social robots and
humans.

4.2 Method
The protocol was approved by the ethics committee for research involving human subjects
at the Graduate School of Engineering Science, Osaka University (#R1-6). We recruited
separate samples of participants using Amazon Mechanical Turk. The number of participants
in each assessment is as follows: 94 people in Experiment 1 (41 females and 53 males, Mean
age (M) = 35.5 years old, Standard Deviation (SD) = 10.72), 114 people in Experiment 2 (44
females and 70 males, M = 34.9, SD = 9.93), and 114 people in Experiment 3 (53 females
and 61 males, M = 35.4, SD = 9.92).

In Experiment 1, participants were asked to answer the following two questions, corre-
sponding to the emotional state consisting of two dimensions: valence and intensity, after
viewing ibuki’s facial expressions:

1. To rate the robot’s facial emotion (negative to positive valence) from a scale of -4 to
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4.
2. To rate the intensity of the robot’s facial expression from a scale of 1 to 9.

In Experiment 2 and 3, participants were asked to watch a photo or movie that showed the
moment ibuki reacted to the result of a game and instructed to guess whether ibuki had won
or lost the game based on its facial expression. In addition to the questions from Experiment
1, two more questions were added (interpretation of the game result and human-likeness):

1. To guess whether they think the robot has won or lost the game.
2. To rate the robot’s facial emotion (negative to positive valence) from a scale of -4 to

4.
3. To rate the intensity of the robot’s facial expression from a scale of 1 to 9.
4. To rate the human-likeness of the robot’s facial expression from a scale of 1 to 9.

The question about human-likeness was added to confirm that the human likeness of ibuki
did not affect the assessment of the valence, since the postures and movements were manually
created by the authors.

4.2.1 Procedure

In Experiment 1, we investigated whether there are ambiguous facial expressions which
cannot be determined by the facial expression alone. For facial expressions, we created
nine facial expressions, namely: anger, disgust, fear, happiness, sadness, surprise, contempt,
neutral, which are representative emotions in facial expression studies, and intense. For facial
expressions except intense, we operated actuators with reference to the Emotional Facial
Action Coding System, which explains the characteristics of actual human facial movements.
For intense, we created the intense facial expression as an expression of high muscle activity
that expresses the excitement immediately after a game result was decided. It was created to
look like an emotion in which the eyes are closed strongly and the mouth expresses shouting
(See Figure 4.1) based on the paper of Aviezer [27].

From those eight expressions except neutral, we selected one facial expression with the
highest entropy of the valence in order to use it in Experiment 2 and 3. Since entropy is
a physical property that represents a state of disorder of the system, for this research, we
defined the indistinguishable (ambiguous) facial expression as having the highest entropy
of the facial valence distributions. The entropy S of each facial expression is calculated by
Equation 4.2.1:
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Anger

Happiness

Contempt Disgust Fear

Intense Sadness Surprise Neutral

Fig. 4.1 Nine facial expressions of ibuki.

S = −
4∑

xi=−4

P(xi) log2 P(xi) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (4.2.1)

where xi = {−4,−3, · · · , 3, 4} is the possible facial valence, P(xi) is the probability which the
facial valence is rated as xi.

Taking the example of intense facial expressions, the probability P(xi) to be assessed as
valence xi was shown in Table 4.1. In this case, the entropy S of Equation 4.2.1 is calculated
as follows:

S = −
4∑

xi=−4

P(xi) log2 P(xi) (4.2.2)

= − 0.096 log2 0.096 − 0.160 log2 0.160 − 0.149 log2 0.149

− 0.085 log2 0.085 − 0.117 log2 0.117 − 0.170 log2 0.170

− 0.128 log2 0.128 − 0.074 log2 0.074 − 0.021 log2 0.021

= 3.032

In Experiment 1, one photo of the eight emotions (350 x 450 pixels size) was displayed
beside the neutral face on each page in a random order. After each viewing, participants were
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Table 4.1 The probability of participants’ answers for each valence of intense
xi -4 -3 -2 -1 0 1 2 3 4

P(xi) 0.096 0.160 0.149 0.085 0.117 0.170 0.128 0.074 0.021

asked to answer the facial valence and intensity by answering the two questions mentioned
in the Materials and Methods section, taking into account that the valence and intensity of
the neutral face was 0 and 1, respectively.

Together with the highest entropy facial expression in Experiment 1, we took photos of
15 types of postures by ibuki for Experiment 2. In addition, we took movies of 30 types
of movements performed by ibuki. Firstly, we constructed three arm poses (AP; labeled as
A, B, and C) and five head angles (HA; labeled as -43, -17, 0, 17, and 43, which are head
inclination degrees at the sagittal plane). HA consist of the neck joint angle θ1 and waist joint
angle θ2 as shown in Figure 4.2. Table 4.2 shows the angles of the head, neck, and waist.

Fig. 4.2
The body expression with the ambiguous facial expression and the configu-
ration of HA, AP, and VM.

Secondly, we created 30 movements by combining the previous 15 postures and two types
of vertical motions (VM) of the upper body: one was a +40 mm upward motion, the other
was a -40 mm downward motion (VM; labeled as 40 and -40). Then, we placed two cam-



4.2 Method 37

Table 4.2
The relationship among head angle, the neck, and waist joint. All angles are
shown in degrees.

Head angle HA -43 -17 0 17 43
Neck angle θ1 -30 -30 0 30 30
Waist angle θ2 -13 13 0 -13 13

eras – in front of and 40 degrees diagonally to ibuki – to take photos and movies of ibuki’s
emotional expressions. Both cameras were installed at a height of 100 cm – assuming the
position of an adult on the knees looking at a child 140 cm away (Figure 4.3). Behind ibuki
was a neutral green screen. For Experiment 2, we took two photos of each of ibuki’s postures
from the front and diagonal angles, resulting in 30 photos. Figure 4.4 shows 15 postures from
the front view. For Experiment 3, we took two movies of each movement from the front and
diagonal angles, resulting in 60 movies. Each movie was edited to a length of three seconds.
The first 0.5 seconds of the movie showed ibuki in the neutral posture before moving towards
the target posture. Again, the same fixed facial expression was used for both Experiment 2
and 3.

Android

Front cameraDiagonal camera

40deg
140cm

140cm

Fig. 4.3 An overview of shooting environment.

In Experiment 2 and 3, we investigated whether the indistinguishable facial expression
can be distinguished by adding body postures and movements. Participants were asked to
look at the photos or movies. To eliminate the influence on the assessment of valence due
to viewpoint changes, one participant group (57 people) only saw the front angle photos,
and the other participant group (57 people) looked at photos taken from the diagonal angle.
In order for participants to understand the contents of the questions, we used a context that
evaluate the reaction of the child android at the moment when the win or loss of a game
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Fig. 4.4 15 postures from the front view.

was decided. At the beginning of each assessment, the neutral upright posture of ibuki was
shown as a reference. For both experiments, a photo or movie was displayed on each page
in random order one by one. After each viewing, participants were asked to answer the
aforementioned four questions (interpretation of the game result, facial valence, intensity
and human-likeness).

For the processing of the data of each experiment, only participants who answered the
manipulation check questions correctly were counted as valid answers (this question asked
participants to answer with a certain score as was instructed in the movie to check if the
participants properly watched the movies). In addition, in Experiment 2, the neutral posture
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with the neutral face that was shown at first as a reference was shown twice during the task,
and participants who rated the valence of the neutral posture as -4 or 4 had their answers
excluded (resulting in 10 exclusions). In Experiment 3, the movie of condition HA/AP/VM:
-17/A/40 was shown three times during the task, and participants who provided answers with
a more than five points difference were excluded (resulting in 23 exclusions).

4.2.2 Analysis

In Experiment 1, distributions of both valence and intensity were analyzed to check the
characteristics of ibuki’s facial expressions. Then we calculated the entropy for the facial
valences of each expression to verify the indistinguishable facial expressions, which have a
high entropy.

In Experiment 2, the mean facial valences and entropy were analyzed to check the in-
fluence of android body expressions. Two-way repeated measures analyses of variance
(ANOVA) were conducted with HA and AP as two within-subjects factors. The significance
level was set at 0.05. Partial eta-squared (ηp

2) was reported to demonstrate the effect size
in ANOVA. Then Tukey’s HSD test (HSD test) was performed for multiple comparisons to
verify our hypothesis that adding postures or movements contributes to the clear perception
of the ambiguous facial expression. In addition, the percentage that assessed as won at each
posture was also calculated to verify the distinguishable face due to body expressions.

As an android can control each component of the body individually – e.g. facial expres-
sion, head angles and arm poses – instead of in conjunction with other joints and other parts
of the body like humans, the postures and movements of ibuki cannot be guaranteed to be
intense and human-like. Therefore, we calculated correlations between facial valence with
intensity and human-likeness to confirm whether the effect of intensity and human-likeness
on the assessment of facial valence was small or not.

In Experiment 3, we analyzed the data following the same analysis procedure used in
Experiment 2.

4.3 Result

4.3.1 Experiment 1

Figure 4.5 shows the distribution of assessed facial valence for eight emotions in Experiment
1. The horizontal axis shows the assessed facial valence (-4 to 4) and the vertical axis shows
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the normalized number of responses. The dotted line of the histogram shows the mean facial
valence. In order to select the most ambiguous face, we calculated the entropy of each
distribution, which is shown in the upper left of the histogram. The highest was intense
(3.032). With this result, we decided to use intense as the ambiguous facial expression for
the next experiments.
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Fig. 4.5
Distributions of the assessed facial valence in Experiment 1.
The horizontal axis shows the assessed facial valence (-4 to 4) and the vertical
axis shows the normalized number of responses. The dotted line shows the mean
facial valence. The entropy is shown in the upper left of each histogram.

Figure 4.6 shows the distribution of assessed facial intensity for the eight emotions in
Experiment 1. As in the previous valence result (Figure 4.5), the horizontal axis shows
the assessed facial intensity (1 to 9) and the vertical axis shows the normalized number of
responses. The dotted line in the histogram shows the mean facial intensity.

4.3.2 Experiment 2

In Experiment 2, ibuki’s posture photos were shown to participants in order to investigate
only the perception of the peak moment of emotional expressions. We validated that postures
contribute to the perception of the indistinguishable facial expression. Figure 4.7 shows
the distribution of assessed facial valence in Experiment 2. The horizontal axis shows the
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Fig. 4.6
Distributions of the assessed facial intensity in Experiment 1.
The horizontal axis shows the assessed facial intensity (1 to 9) and the vertical
axis shows the normalized number of responses. The dotted line shows the mean
facial intensity.

facial valence as assessed by participants and the vertical axis shows the normalized number
of answers for each posture. The red line histogram shows the result of the intense facial
expressions in Experiment 1 as a reference. We calculated the entropy of each distribution,
which is shown in the upper left of the histogram. The highest was -43/B and the lowest was
0/A.

In order to investigate whether the mean values difference of facial valences were affected
by HA and AP, we ran a two-way repeated measures ANOVA with HA and AP. For the
assessment of facial valence, there were significant main effects of HA (F (4, 113) = 23.86,
p < 0.001, ηp

2 = 0.034) and AP (F (2, 113) = 86.16, p < 0.001, ηp
2 = 0.202) and there

was also a significant interaction effect of the HA/AP (F (8, 113) = 9.89, p < 0.001, ηp
2

= 0.055). Then, we ran HSD test to verify the difference of the mean values for the 15
postures. Table 4.3 shows the mean differences for each posture. The highest valence (most
positively perceived) posture was HA: -17 degrees and AP: A (Figure 4.8a, Mean value =
1.89, Standard Error = 0.19), while the lowest valence (most negatively perceived) posture
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Fig. 4.7
Distributions of the assessed facial valence in Experiment 2.
The horizontal axis shows the assessed facial valence (-4 to 4) and the vertical
axis shows the normalized number of responses. The dotted line shows the mean
facial valence. The red line on the histogram shows the result of the intense facial
expressions in Experiment 1 as a reference. The entropy is shown in the upper left
of each histogram.

was HA: 43 degrees and AP: C (Figure 4.8b, M = -1.40, SE = 0.22), with a significant
difference of 3.29 between these two postures (p < 0.001).

Table 4.4 shows the percentages of people that assessed each posture as won in Experiment
2. AP: A was assessed as won between 54.1 % and 83.7 %, in contrast AP: B and AP: C
were assessed as lost (lower than 50 %). The result is also consistent with the assessment
tendency of the facial valence.

Looking at HA: -17, the maximum value (83.7%) was under AP: A, on the contrary, the
same HA: -17 was also the minimum value (27.6%) under AP: C. Interestingly, there was a
56.1 points gap between AP: A and AP: C even with the same HA.

Figure 4.9 and Figure 4.10 show the distribution of facial intensity and human-likeness in
Experiment 2. The total average of intensity was 6.14 with SE = 0.04 and human-likeness
was 6.43 with SE = 0.04. Furthermore, the facial valence had a low correlation with intensity
(r = 0.163, p < 0.001) and with human-likeness (r = 0.138, p < 0.001).
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a b

Fig. 4.8
Two representative postures which have distinguishable facial expressions by
adding body expressions.
(a) The posture -17/A at the highest facial valence / (b) The posture 43/C at the
lowest facial valence.

Table 4.4
Percentage of participants that judged each posture as won a game in Exper-
iment 2.

HA
-43 -17 0 17 43

AP
A 61.2 83.7 82.7 54.1 55.1
B 50.0 36.7 35.7 25.5 5.1
C 49.0 27.6 42.9 6.1 7.1



4.3 Result 45

Intensity

Th
e 
no

rm
al
ize

d 
nu

m
be

r o
f r

es
po

ns
es

 [-
]

0.00

0.25

0.50 -43/A

0.00

0.25

0.50 -43/B

1 5 9
0.00

0.25

0.50 -43/C

-17/A

-17/B

1 5 9

-17/C

0/A

0/B

1 5 9

0/C

17/A

17/B

1 5 9

17/C

43/A

43/B

1 5 9

43/C

Fig. 4.9
Distributions of the assessed facial intensity in Experiment 2.
The horizontal axis shows the assessed facial intensity (1 to 9) and the vertical
axis shows the normalized number of responses. The dotted line shows the mean
facial intensity.

4.3.3 Experiment 3

In Experiment 3, ibuki’s movement movies were shown to participants in order to investigate
the perception of emotional expressions. We validated that movements contribute to the
perception of the indistinguishable facial expression. Figure 4.11 shows the distribution
of assessed facial valence for the condition VM: 40 and -40 mm in Experiment 3. The
horizontal axis shows the facial valence as assessed by participants and the vertical axis
shows the normalized number of answers for each movement. The red line histogram shows
the result of intense facial expression in Experiment 1 as a reference. We calculated the
entropy of each distribution, which is shown in the upper left of the histogram. The highest
was -43/C/-40 and the lowest was 43/A/40.

In order to investigate whether the mean values difference of facial valence were affected
by HA, AP, and VM, we ran a three-way repeated measures ANOVA with HA, AP, and VM.
For the assessment of facial valence, there were significant main effects for all three: HA (F
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Fig. 4.10
Distributions of the assessed facial human-likeness in Experiment 2.
The horizontal axis shows the assessed facial human-likeness (1 to 9) and the
vertical axis shows the normalized number of responses. The dotted line shows
the mean facial human-likeness.

(4, 113) = 11.68, p < 0.001, ηp
2 = 0.020), AP (F (2, 113) = 52.82, p < 0.001, ηp

2 = 0.044),
and VM (F (1, 113) = 17.35, p < 0.001, ηp

2 = 0.007). Also there were significant interaction
effects of the HA/AP (F (8, 113) = 3.29, p = 0.001, ηp

2 = 0.011) and the AP/VM (F (2, 113)
= 3.99, p = 0.021, ηp

2 = 0.003). On the other hand, no significance was found in the HA/VM
(F (4, 113) = 0.48, p = 0.748, ηp

2 = 0.001) or the HA/AP/VM (F (8, 113) = 0.57, p = 0.806,
ηp

2 = 0.002).
Thus, we ran Tukey’s HSD tests to verify the difference of the mean values at each inter-

action effect of HA/AP and AP/VM. The result of HA/AP is shown in Table 4.5 and AP/VM
is shown in Table 4.6. Under the condition of HA and AP, the highest valence movement
was HA: 0 degrees and AP: A (M = 1.28, SE = 0.18), while the lowest valence movement
was HA: 43 degrees and AP: B (M = -1.14, SE = 0.17), with a significant difference of
2.42 between these two movements (p < 0.001). Also under the condition of AP and VM,
the highest valence movement was AP: A and VM: 40 mm (M = 0.90, SE = 0.12), while
the lowest valence movement was AP: B and VM: -40 mm (M = -0.69, SE = 0.12), with a
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(a) condition VM: 40 mm

(b) condition VM: -40 mm

Fig. 4.11
Distributions of the assessed facial valence in Experiment 3.
The horizontal axis shows the facial valence as assessed by participants and the
vertical axis shows the normalized number of answers at each movement. The
dotted line shows the mean facial valence. The red line on the histogram shows
the result of intense facial expression in Experiment 1 as a reference. The entropy
is shown in the upper left of each histogram.
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significant difference of 1.59 between these two movements (p < 0.001).
Table 4.7 shows the percentages of people that assessed each movement as won in Exper-

iment 3.
As in Experiment 2, different AP leads to the exact opposite judgement for the game result.

For example, under HA: 17, there is a 39.5 points gap between A/40 (63.2 %) and B/40 (23.7
%) and a 51.3 points gap between A/-40 (65.8 %) and B/-40 (14.5 %).

Figure 4.12 and Figure 4.13 show the distribution of facial intensity and human-likeness
in Experiment 3. The total average of intensity was 6.00 with SE = 0.04 and human-likeness
was 6.02 with SE = 0.04. Furthermore, the facial valence had a low correlation with intensity
(r = 0.164, p < 0.001) and with human-likeness (r = 0.196, p < 0.001).

4.4 Discussion
In the past, research on robots expressing emotions has been based on the assumption that
a certain expression is equivalent to a certain emotion (e.g. a smiling indicates happiness).
However, there has been no investigation into whether robots can also express ambiguous fa-
cial expressions with no clear valence. Additionally, for ambiguous facial expressions, there
has been no investigation into whether the addition of expressions such as body expression
can make the robot’s emotional valence clearer to humans.

In Experiment 1, we validated that the distributions of valence and intensity were different
depending on the facial emotion expressions. In particular, according to the results of the
entropy of facial valences, participants could not distinguish the facial valence of the intense
emotion as positive or negative. The previous study by Aviezer found that it is difficult to
judge the valence of intense facial expressions when only the facial expression can be seen
[27]. Our experiment corroborates this phenomenon in the case of androids. The histogram
of the facial valence of intense emotion in Figure 4.5 seems to have two peaks in both sides
positive (1) and negative (-3). We believe that this is because the participants were mainly
divided into two groups who perceived the intense facial expression positively or negatively.
Thus, the entropy of intense got the highest value of the eight emotions.

In Experiment 2 and 3, it was found that both body postures and body movements changed
the facial valence of the intense emotion and contributed to the lower entropy in the valence
assessments. In other words, postures and movements can improve the perception of the am-
biguous facial expression. As mentioned in the result, the maximum difference in the mean
facial valences was 3.29 for the posture and 2.42 for the movement. Although the number
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(a) condition VM: 40 mm

(b) condition VM: -40 mm

Fig. 4.12
Distributions of the assessed facial intensity in Experiment 3.
The horizontal axis shows the facial intensity as assessed by participants and the
vertical axis shows the normalized number of answers at each movement. The
dotted line shows the mean facial intensity.
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(a) condition VM: 40 mm

(b) condition VM: -40 mm

Fig. 4.13
Distributions of the assessed facial human-likeness in Experiment 3.
The horizontal axis shows the facial human-likeness as assessed by participants
and the vertical axis shows the normalized number of answers at each movement.
The dotted line shows the mean facial human-likeness.
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Table 4.6
The mean difference of facial valence among arm poses and vertical motions
in Experiment 3.

A/40 A/-40 B/40 B/-40 C/40 C/-40

A/40 0.19 1.14∗∗∗ 1.59∗∗∗ 1.27∗∗∗ 1.35∗∗∗

A/-40 0.96∗∗∗ 1.40∗∗∗ 1.08∗∗∗ 1.16∗∗∗

B/40 0.44 0.12 0.21
B/-40 -0.32 -0.24
C/40 0.08

C/-40

Each label shows AP/VM. ∗∗∗: p < 0.001.

Table 4.7
Percentage of participants that judged each movement as won a game in Ex-
periment 3.

HA
-43 -17 0 17 43

AP/VM

A/40 69.7 64.5 76.3 63.2 50.0
B/40 47.4 43.4 46.1 23.7 11.9
C/40 52.6 28.9 40.8 23.7 18.4

A/-40 68.4 63.2 75.0 65.8 43.4
B/-40 39.5 30.3 25.0 14.5 17.1
C/-40 51.3 31.6 30.3 30.3 13.2

of facial expressions and postures used in the experiment is different, as a reference, those
mean differences are as close as the mean difference of 2.3 points in the previous human
study by Aviezer in which they exchanged win and lose body postures against intense face in
a tennis match. Looking at the histograms of facial emotional values in Figure 4.7 of Exper-
iment 2, under postures which had lower entropy than that of the intense facial expression in
Experiment 1, such as -17/A (0.486 lower) and 0/A (0.556 lower), those distributions only
had a one side peak. On the other hand, under postures which had little lower entropy, such
as -43/B and -17/B, those distributions still had two peaks in both positive and negative sides
as in Experiment 1. However, -17/B/-40 (the movement of -17/B with VM: -40) tended to be
perceived more negatively due to the effect of the downward vertical motion in Experiment
3. Thus, -17/B/-40 had a further lower entropy than that of Experiment 2.

From the ηp
2 values in ANOVA, we can deduce that participants’ assessments were most
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affected by AP, then HA and, finally, by VM. Our findings are consistent with several pre-
vious studies on human emotion expressions. As for AP, when the arms are located ver-
tically upwards or move upwards from the body, the posture tends to be perceived as joy
[102, 103] and joy corresponds to positive valence [92]. As for HA, raised head angles are
associated with positive emotions such as joy [104]. As for VM, rising upper body motion
corresponds to happiness, and sinking body motion corresponds to sadness [105]. However,
in this research, we only controlled the displacement and not the speed and acceleration
of the movement. It has been found that the human perception of robots is negatively im-
pacted if human-like robots perform robot-like movements which contradict its appearance
[106]. This might be the reason why VM comes last. Motion activity, including how fast and
smooth a person or android is moving, is said to be one of the important factors for emotion
recognition [107].

Since interaction effects were confirmed between AP and HA, and AP and VM from
the results of ANOVA, we argue that robot developers should not separately design facial
expressions from body expressions when designing robots for the application of human-robot
interaction, as there are expressions that cannot be distinguished by the facial expressions
alone, such as the intense emotion discussed in this chapter. Strong emotions influence
human social decision making [108], enhancement on memory [109], and time perception
[110]. In the same way, strong emotion expressions by robots are expected to enhance the
relationship between humans and robots [111].

One limitation was that ibuki was based on a young Asian male child. In past studies on
recognition of human emotions, it has been reported that age, gender, and ethnicity can in-
fluence emotional perception [112, 113]. Therefore, it is necessary to further investigate how
our finding applies to other common humanoids and robots universally. Previous research
on humans shows that humans can perceive emotions even from point-light displayed facial
expressions or body movements [83, 114]. We expect that this capability is also applicable
for the emotion perception of robot faces.
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Chapter 5

Research2

This chapter shows ibuki’s three types of gait-induced upper body motions to express anger,
happiness, and sadness. Our hypothesis is that a gait-induced upper body motion with verti-
cal oscillation enhances human perception of a mobile robot’s emotional expressions. Thus,
we confirmed whether the presence of ibuki’s motion with vertical oscillation enhances the
participants’ perception in Experiment 1 and whether the congruence of ibuki’s motion
with vertical oscillation enhances the participants’ perception in Experiment 2.

5.1 Background
Humans express their intentions and emotions with facial expressions and gestures [27],
even while walking with various gaits (a person’s manner of walking). These emotional
expressions are thought to contribute significantly to building interpersonal relationships and
our interactions with others [115]. Some researchers have previously investigated human
intentions expressed through human gait. Frohnwieser showed that people gave different
allowances of personal space according to differences in walking behavior [11]. Park found
that human body posture indicated their destination and direction [13].

Human gaits are emotionally expressive, and people may walk in various ways depending
on their emotions. People can perceive the emotions from others through their gait. For
example, when you see your friend walking with a perceived happy gait, you might ask, ”Did
something good happen?”. When you perceive a friend’s step as mournful, you might put
a comforting hand on her or his shoulder. Many studies have been conducted to investigate
the characteristics of emotional gaits [20, 21, 24, 28]. Karg reported that various parts of
the upper body, such as the arms and head, express internal states during walking [116].
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Michalak measured the motions of humans in sad and happy moods, and found that there
is a significant difference in vertical upper body movement when expressing these emotions
[22].

For human-robot interaction (HRI) in real-world environments, considering the expression
of various gaits, including emotional gaits, is valuable to build deep human-robot relation-
ships. In the field of bipedal robots, some research has been conducted to realize human-like
gaits [29] and further emotional gaits [30, 31]. Destephe created emotional gait, which ex-
pressed happiness, sadness, and neutral emotion, by using the bipedal humanoid Wabian-2R,
and investigated the human perceptions and psychological influences by using a question-
naire survey [30]. Izui reported the characteristics of emotional expression based on the
human walking motion. They implemented those characteristics on the small humanoid Nao
as emotional gaits and investigated the recognition rates of the person who saw gait motions
expressing emotions [31].

Since wheel-based motion has moving efficiency and stability on flat ground, it has been
actively used for robots operating in real-world environments. However, while some of these
mobile robots have a human-like upper body, in most cases, their human-like movements,
such as gestures, are realized without wheel-based motion [51, 58, 117].

In research of a robot’s expression with wheel-based motion, Nakata investigated a mo-
bile robot’s joint angle and velocity parameters based on the Laban theory. They theorized
that those parameters are useful in allowing a wheeled robot to express emotions [118].
Granados has developed a wheeled dance-teaching robot that has a waist joint that uses a
parallel-link mechanism to allow dancing with a human partner. Furthermore, other stud-
ies have examined the emotional expression by wheeled humanoid robots [61]. Zecca cre-
ated expressions of emotions based on human data by using a wheeled humanoid Habian.
They reported recognition rates for emotional body expressions performed by the standing
robot [57]. Tsiourti created emotion expressions through five modalities (face, head, body,
voice, locomotion) by using wheeled humanoids and confirmed that even a simple locomo-
tion modality can convey a robot’s emotion [67].

However, to our best knowledge, the human perception of emotion expressions of wheeled
mobile humanoid robots while its moving has not been studied yet. If the robot could express
its intentions and emotions while moving, humans could act appropriately according to that
information. As a result, robots and humans could achieve orderly interactions by being able
to predict and understand each other’s behavior in various situations.
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5.2 Method
In this section, we describe the implementation of gait-induced upper body motion in our
mobile humanoid robot using a vertical-oscillation-mechanism (VOM). The movement of
this mechanism was based on human center-of-mass (CoM) motion. We also describe how
we applied human-motion data to enable ibuki to move with emotional expressions.

5.2.1 Motion generation

We chose anger, happiness, and sadness as they are some of the basic human emotional
expressions. The purpose of this research is to confirm whether a wheeled android can
express emotions by the gait-induced upper body motions while moving. Therefore, we
decided to implement emotions that people can express while walking. A previous study
has investigated four emotions (anger, happiness, sadness, and fear) and they concluded the
perception of fear depends on a specified context [20]. Thus, we decided to exclude fear and
used three expressions of emotions: anger, happiness, and sadness in this research.

The author filmed himself walking a 5 m distance on a flat floor in our laboratory while
expressing these emotions and neutral emotion as a reference. For these expressions, we used
[20] as a reference to determine inclination angles of head and torso and walking speeds of
the human body. Walking motions were filmed on the sagittal plane of the body for all three
emotions, with a camera fixed at 0.9 m in height and 2.6 m away from the middle of the route
(filming was repeated three times per emotion).

Joint position time series data was obtained by human pose recognition software Openpose
[119]. The sampling rate was 30 Hz and all the data were filtered with a 3 Hz low-pass filter.
Reference joint angle values for two gait cycles of the neck, right shoulder, right elbow, and
waist in the pitch axis of ibuki were calculated from this data. The reference joint angle of
the left shoulder θL(t) was calculated by the following equation θL(t) = 2θ̄ − θR(t), where
θR(t) is the joint angle of the right shoulder and θ̄ is the average angle at all times. The
reference joint angle of the right elbow was calculated in the same way. In order to achieve
the aCoM trajectory, we obtained the human CoM height z(t) on the waist position. We
determined that ibuki’s aCoM located at the center of the waist (545 mm height) like in
humans. In this case, we could control the height by using the VOM joint displacement d(t).
The displacement of VOM d(t) was reduced to 0.71 times by taking the ratio of the height of
human and ibuki. Due to the limitation of the joint range (maximum was 40 and minimum
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was -40 mm), we adjusted the average height of a CoM to be d(t) = 0. Thus, we calculated
the VOM displacement by the following equation: d(t) = 0.71(z(t) − z̄).

Figure 5.1 shows comparisons of reference joint values and measured values of three gait-
induced upper body motions for each emotion. The upper body is tilted forward for anger and
sadness, while in happiness, it is tilted backward. The upper body and neck are tilted forward
with a comparatively large angle for sadness. As reported by [22], amplitudes for anger and
happiness are larger than that of sadness. The error between the reference and the measured
value in Figure 5.1 were caused by factors such as the joint friction, dampers installed to
reduce unnatural vibrations on the upper body, and the delay due to P-D control for joint
angles. Although there was a delay in the entire orbit, we concluded that the difference in
waveform between the reference and the measured value was small. Therefore, we conducted
the experiments using those motions.

Anger

#1

#2

#3

Happiness Sadness

Neck reference
Neck measured

Shoulder reference
Shoulder measured

Elbow reference
Elbow measured

Waist reference
Waist measured

VOM reference
VOM measured

Fig. 5.1
Gait-induced upper body motions of anger, happiness, and sadness emotion. The
vertical axis represents joint angles [deg] about two cycle gaits of the neck, right
shoulder, right elbow, waist, and displacement [mm] of the vertical oscillation.
The horizontal axis represents time [s]. The dotted lines show the reference joint
angles, and the solid lines show the measured angles. (The fluctuation of the
measured sensor value was due to the electrical noise.)

The human walking speed in the traveling direction is not usually constant due to the
reaction force on the sole of the foot. However, for a practical and easy integration with
other robot systems, the angular velocities of wheels were approximated as a constant speed
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and we used an average horizontal speed of aCoM except for the neutral emotion.
We filmed ibuki’s emotional gait-induced upper body motions by using the motion data

above (Figure 5.2). The same shooting environment as for the original human motion data
was used. Two cameras were installed at the front and side. The front camera was at a height
of 0.9 m, placed in front of the walking route. The side camera was at a height of 0.9 m,
placed 2.6 m away from the middle of the walking route. The output of the motor that drives
the VOM at happiness motion was insufficient, so in actual shooting, the robot was moved at
1/3 speed, and 3x speed videos were shown to participants, thus mimicking the same speed
as humans when walking. ibuki’s face was covered with paper to ensure participants did not
judge the emotion based on the facial expression.

5.2.2 Procedure

The purpose of this research is to investigate the human perception of the gait-induced upper
body motions with the VOM to achieve emotional expressions when a wheeled android is
moving. In Experiment 1, we investigated whether the presence or absence of the vertical
oscillation improves the human perception of ibuki’s emotional expressions through the gait-
induced upper body motions.

In both Experiment 1 and 2, we recruited all the participants by using Amazon Mechanical
Turk. To control the regional influence on the survey, we limited the survey target to North
America because it had the largest available pool of participants. In our preliminary survey,
we chose participants from other areas and confirmed that the perception result did not have
any large changes. Before starting the experiment, we explained the experiments’ purpose
to all the participants and obtained consent forms. The protocol was approved by the ethics
committee for research involving human subjects at the Graduate School of Engineering
Science, Osaka University (#R1-6).

Firstly, we checked the recognition rates and confidence levels of side views of the original
human gait motions used for ibuki. 79 people participated in this survey (29 females and 50
males, average age = 36.2, Standard Deviation (SD) = 10.1). At the beginning of the survey,
the neutral emotion gait motion was shown as a reference. After that, a video of the nine
original human gait (3 emotions x 3 motions) was displayed on each page in random order
one at a time. Each video was looped three times. After each viewing, participants were
asked to: 1) Assess which emotion was expressed from four choices: anger, happiness,
sadness, and other; 2) Indicate the confidence level of their choice from a range of totally not
confident (1) to highly confident (5).
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(A) Anger (B) Anger of ibuki

(C) Happiness (D) Happiness of ibuki

(E) Sadness (F) Sadness of ibuki
Fig. 5.2

Representative frames of the original human emotional expressions and ibuki’s
gait-induced upper body motions expressing emotions. Anger (A) (B), happiness
(C) (D), and sadness (E) (F). (A), (C), and (E) also show the results of pose recog-
nition.

Secondly, we investigated the recognition rates and confidence levels of ibuki’s emotion
expressions by the gait-induced upper body motions. As we assumed the hypothesis that the
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presence of a vertical oscillation enhances the participants’ perception, we conducted the
survey under two condition of emotion expressions with and without the vertical oscillation.
The significance level was 5.000 % (the marginally significance level was 10.000 %), the
detection power was 90 %, and we conducted the survey with a sample size of 150 partici-
pants. We divided the new participants in two different groups: one group of 178 people (76
females and 102 males, average age = 36.3, SD = 9.68) saw the videos with vertical oscilla-
tion, and the other group of 177 people (68 females and 109 males, average age = 36.6, SD
= 10.6) saw the videos without vertical oscillation.

For both with and without vertical oscillation conditions, we prepared nine videos of
ibuki’s gait-induced upper body motions, combining three motions per emotion from a side
view. To prevent participants from just watching side view motions, we also prepared nine
videos from the front view as dummy trials which are not used in the result analysis. In total,
each participant watched 18 videos.

Like in the previous survey with the human data, at the beginning of each condition, the
gait-induced upper body motion of neutral emotion without vertical oscillation was shown as
a reference. For both with and without vertical oscillation conditions, a video was displayed
on each page in random order one at a time. Each video was looped three times. After
each viewing, participants were asked to: 1) Assess which emotion was expressed from four
choices: anger, happiness, sadness, and other, 2) Indicate the confidence level of their choice
from a range of totally not confident (1) to highly confident (5).

5.3 Result

5.3.1 Experiment 1

For the original human gait motions, the average recognition rates of anger, happiness, and
sadness were 97.0 %, 93.2 %, and 96.2 %, respectively. The average confidence levels of
anger, happiness, and sadness expressing motions were 4.51 (SD = 0.70), 4.44 (SD = 0.66),
and 4.49 (SD = 0.73), respectively. Table 5.1 shows the confusion matrices of the recognition
rates for the three emotions.

For the ibuki’s gait-induced upper body motions, Table 5.2 and Table 5.3 show the confu-
sion matrices of the average recognition rates for the three emotions (anger, happiness and
sadness) for both with and without vertical oscillation conditions. In the with vertical oscilla-
tion condition (Table 5.2), recognition rates are: 56.0 % for anger, 77.7 % for happiness, and
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Table 5.1
Confusion matrix of recognition rates of the original human emotional expres-
sions in Experiment 1. Expressed emotions are shown in columns and selected
emotions are shown in rows. Each value indicates the average recognition rate
[%].

Anger Happiness Sadness Other
Anger 97.0 1.3 0.4 1.3
Happiness 0.4 93.2 0.8 5.5
Sadness 0.0 0.4 96.2 3.4

97.0 % for sadness. On the other hand, in the without vertical oscillation condition (Table
5.3), recognition rates are: 57.6 % for anger, 63.7 % for happiness, and 95.9 % for sadness.
Chi-square tests were performed to check whether participants could distinguish the three
different emotions during their assessment. As a result, both conditions were statistically
significant: χ2(6) = 343.4, p <0.001 in the with vertical oscillation condition and χ2(6) =
314.8, p <0.001 in the without vertical oscillation condition. Mann-Whitney U-tests were
performed to check the difference in recognition rates between with and without vertical os-
cillation for each emotion. To reduce the possibility of false positives due to multiple tests
(for three emotions), we adjusted the significance level from 5.000 % to 1.667 % according
to the Bonferroni adjustment. As a result, there was significant difference for happiness (U
= 1.62 × 105, p <0.001, effect size Cohen’s d = 0.313). There was no significant difference
for anger (U = 1.39 × 105, p = 0.591, d = 0.033) and sadness (U = 1.43 × 105, p = 0.313, d
= 0.062).

Table 5.2
Confusion matrix of recognition rates under the with vertical oscillation condition
in Experiment 1. Expressed emotions are shown in columns and selected emotions
are shown in rows. Each value indicates the average recognition rate [%].

Anger Happiness Sadness Other
Anger 56.0 9.0 18.7 16.3
Happiness 6.9 77.7 4.9 10.5
Sadness 0.7 0.7 97.0 1.5

Figure 5.3 shows the distributions of the confidence level in the with and without condi-
tions (red and blue) and the original human gait (black). The vertical oscillation condition is
indicated by the red color. The averages of participants’ confidence level of assessed emo-
tions are: 3.79 (SD = 0.98) for anger, 4.22 (SD = 0.82) for happiness, and 4.59 (SD = 0.71)
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Table 5.3
Confusion matrix of recognition rates under the without vertical oscillation con-
dition in Experiment 1. Expressed emotions are shown in columns and selected
emotions are shown in rows. Each value indicates the average recognition rate
[%].

Anger Happiness Sadness Other
Anger 57.6 10.0 16.8 15.6
Happiness 4.5 63.7 9.6 22.2
Sadness 0.9 2.8 95.9 0.4

for sadness. Without vertical oscillation condition is indicated by the blue color. The aver-
ages of participants’ confidence level of assessed emotions are: 3.70 (SD = 1.00) for anger,
3.95 (SD = 0.86) for happiness, and 4.58 (SD = 0.67) for sadness. Mann-Whitney U-tests
were performed to check the difference in confidence levels between with and without verti-
cal oscillation for each emotion. As a result, there was a significant difference for happiness
(U = 1.68 × 105, p <0.001, d = 0.329). There was no significant difference for anger (U =
1.49 × 105, p = 0.125, d = 0.096) and sadness (U = 1.44 × 105, p = 0.535, d = 0.012).
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Fig. 5.3

Histograms of confidence level of (A) Anger, (B) Happiness, and (C) Sadness
emotions in Experiment 1. The vertical axis represents the normalized number of
responses and the horizontal axis represents each confidence level. Red, blue, and
black color indicate confidence levels of the with vertical oscillation condition, the
without vertical oscillation condition, and the original human gaits, respectively.

5.3.2 Experiment 2

In Experiment 1, we compared two conditions - the presence or absence of vertical oscil-
lation. The result of happiness emotional expression supported the hypothesis that gait-
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induced upper body motion with vertical oscillation enhances human perception for robot
emotional expressions. In Experiment 2, we investigated whether the congruence of the ver-
tical oscillation enhances the human perception of ibuki’s emotional expressions through the
gait-induced upper body motions. Therefore, an additional group of participants evaluated
the gait-induced upper body motions with exchanged vertical oscillations (incongruent mo-
tions). After this, we analyzed the perception difference between the incongruent motions
(newly obtained with this assessment) and the previous congruent motions (the with vertical
oscillation condition in Experiment 1).

First, we describe how we created an incongruent motion with an exchanged vertical oscil-
lation. We selected similar gait phase pairs from three types of anger and happiness emotions
in Figure 5.1. One pair was Anger 1 and Happiness 1, which motions began at the right leg
pre-swing phase (50 % in a gait cycle) and also ended at the right leg pre-swing phase (50
% in a gait cycle). Thus, the phase transitions of those two vertical oscillation were almost
matched. Another pair was Anger 2 and Happiness 2. Anger 2 began at the right leg pre-
swing phase (50 % in a gait cycle) and also ended at the right leg pre-swing phase (50 % in
a gait cycle). On the other hand, Happiness 2 began at the right leg stance phase (0 % in a
gait cycle) and also ended at the right leg stance phase (10 % in a gait cycle). As mentioned
before, the human CoM oscillates twice on the sagittal plane in one gait cycle, the phase
transitions of those two vertical oscillations were also matched. However, the remaining pair
of Anger 3 and Happiness 3 motions could not be exchanged due to an inconsistency in gait
phases. Anger 3 began at 50 % and ended at 30 % in a gait cycle. In contrast, Happiness 3
began at 10 % and ended at 20 % in a gait cycle. As a result, we created two incongruent
anger motions with happiness vertical oscillations and two incongruent happiness motions
with anger vertical oscillations as shown in Figure 5.4. Also, sadness motions were not ex-
changed as the recognition rate of the robot’s emotional expression of sadness was as high
as that of the rate in the human data - with or without vertical oscillation.

Therefore, we prepared two pairs of incongruent anger and happiness motions with ex-
changed vertical oscillations, one pair of original anger and happiness motions, and three
original sadness motions. Like in Experiment 1, we also prepared nine videos from the front
view as dummy trials. In total, we prepared 18 videos for Experiment 2. Similar to the way
we conducted Experiment 1, at the beginning of each condition, the gait-induced upper body
motion of neutral emotion without vertical oscillation was shown as a reference. After that,
a video was displayed on each page in random order one at a time. Each video was looped
three times. After each viewing, participants were asked to: 1) Assess which emotion was
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Anger with hapiness vertical oscilation

#1

#2

Happiness with anger vertical oscilation

Neck reference
Neck measured

Shoulder reference
Shoulder measured

Elbow reference
Elbow measured

Waist reference
Waist measured

VOM reference
VOM measured

Fig. 5.4
Gait-induced upper body motion under the exchanged vertical oscillation condi-
tion. The graph shows two anger motions with happiness vertical oscillation and
two happiness motions with anger vertical oscillation. The vertical axis represents
joint angles [deg] about two cycle gaits of the neck, right shoulder, right elbow,
waist, and displacement [mm] of vertical oscillation. The horizontal axis repre-
sents time [s]. The dotted lines show the reference joint angles, and the solid lines
show the measured angles. (The fluctuation of the measured sensor value was due
to the electrical noise.)

expressed from four choices: anger, happiness, sadness, and other, 2) Indicate the confidence
level of their choice from a range of totally not confident (1) to highly confident (5).

A total of 151 people (70 females and 81 males, average age = 35.1, SD = 9.27) par-
ticipated in Experiment 2. As in Experiment 1, the significance level was 5.000 % (the
marginally significance level was 10.000 %), the detection power was 90 %, and we con-
ducted the survey with a sample size of 150 participants.

Table 5.4 show the confusion matrices of the recognition rates for the incongruent mo-
tions. Figure 5.5 show the histograms of confidence level of (A) anger motions and (B)
happiness motions. Red and black color indicate confidence levels of congruent and incon-
gruent motions. For the anger gait-induced upper body motion with the happiness vertical
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oscillation, the recognition rate was 48.3 % and the average confidence level was 4.03 (SD
= 0.84). For the happiness gait-induced upper body motion with anger vertical oscillation,
the recognition rate was 58.6 % and the average confidence level was 4.01 (SD = 0.85). On
the other hand, for congruent motions in Experiment 1, the recognition rate and the average
confidence level were 48.3 % and 3.79 for anger, and 58.6 % and 4.22 for happiness.

Table 5.4
Confusion matrix of recognition rates for the incongruent motions in Experiment
2. Expressed emotions are shown in columns and selected emotions are shown in
rows. Each value indicates the average recognition rate [%].

Anger Happiness Sadness Other
Anger 48.3 27.5 13.6 10.6
Happiness 6.0 58.6 12.9 22.5
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Fig. 5.5

Histograms of confidence level of (A) anger motions and (B) happiness motions.
Red color indicates confidence levels of congruent motions which were assessed
in the with vertical oscillation condition of Experiment 1 (Red histogram in Fig-
ure 5.3). Black color indicates confidence levels of incongruent motions with
exchanged vertical oscillation which were assessed in Experiment 2. The vertical
axis represents the normalized number of responses and the horizontal axis repre-
sents each confidence level.

Mann-Whitney U-tests were performed to check the difference in recognition rates and
confidence levels between congruent and incongruent motions. To reduce the possibility of
false positives due to multiple tests, we adjusted the significance level from 5.000 % to 2.500
% according to the Bonferroni adjustment. Between the incongruent and congruent motions
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of anger and happiness, there was a marginally significant difference in recognition rates for
anger (U = 7.45 × 104, p = 0.033, d = 0.154) and significant difference for happiness (U
= 6.52 × 104, p <0.001, d = 0.429). There were also significant differences in confidence
levels for both anger (U = 9.10× 104, p = 0.001, d = 0.255) and happiness (U = 6.91× 104,
p <0.001, d = 0.254).

From these results, we concluded that the recognition rates decreased when the vertical
oscillation did not match the emotional human movement. Interestingly, participants’ confi-
dence level in anger with happiness vertical oscillation gait-induced upper body motion was
significantly higher than that of anger gait-induced upper body motion with anger vertical
oscillation in Experiment 1. Thus, the results show that easily recognizable motion patterns
and high confidence motions patterns may not always match - as seen in the higher confi-
dence level of anger with happiness vertical oscillation condition compared to anger with the
original vertical oscillation condition.

5.4 Discussion
We implemented gait-induced upper body motions that express three emotions using the
VOM of the mobile android ibuki. We also confirmed that the recognition rate and confidence
level of the emotional expression of happiness were higher with vertical oscillation. From the
incongruent motion of anger and happiness, we can see that the incongruence of the vertical
oscillations of anger and happiness decreased recognition rates. However, the confidence
level of anger was increased by using happiness vertical oscillation.

For reference, we summarize our results and previous research of emotional expression of
robot walking motion here. Table 5.5 shows the robot height, the survey scale, the number
of question answer options, and recognition rates of emotional expression of robot walking
in previous research: ibuki’20 [120], Wabian-2R [30], CG of Wabian-2R [121], Nao [31],
and CG of human animation [20].

In previous research [120], we investigated ibuki gait-induced upper body motions based
on Destephe’s data [63], adding simple cosine wave VOM movements. Recognition rates at
ibuki’20 in Table 5.5 are under the condition of 0.8x speed and simple cosine wave vertical
oscillation (there were four conditions by combining [0.6x, 0.8x speed] x [with, without ver-
tical oscillation]). Note that, in the previous study, only recognition rates with a confidence
level of more than 2 degrees were counted in the results. Because the gait-induced upper
body motions were consisted of the same joints, it is suggested that vertical oscillation of the
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Table 5.5
Summary of emotional expression recognition by walking motions of robots in
previous researches: this research (Human and ibuki), the previous ibuki’20 study
by [120], Wabian-2R [30]) and the original CG by [121], and Nao by [31] and
the original CG by [20]. Height indicates a robot or a CG avatar height as a
representative size scale. Participants indicate people who participated the survey.
Choices indicate emotion options in the survey. Each value indicates the average
recognition rate [%]. ∗ indicates a value which is not shown the exact value in a
paper. (The author read the value from a graph.)

Height [cm] Participants Choices Anger Happiness Sadness Fear Neutral

Human 170 79 4 97.0 93.2 96.2 N/A N/A
ibuki 120 178 4 56.0 77.7 97.0 N/A N/A
ibuki ’20 120 17 3 43 62 88 N/A N/A
Wabian-2R 148 26 6 N/A 55.8 92.3 N/A 80∗

Nao 57 59 5 51.8 34.7 66.1 15∗ 63.9
CG (Destephe) N/A 16 6 61.9 65.5 76.2 85.7 N/A
CG (Venture) N/A 26 6 90∗ 65∗ 90∗ 90∗ 90∗

human emotional gait, and not a simple cosine wave, enhances the human perception for the
gait-induced upper body motions. In addition, the average confidence level for all emotions
was 3.43 in the previous study. In contrast, in this research, it was 4.07 for the with vertical
oscillation condition. Again, it is considered that the application of the human emotional gait
for the vertical oscillation contributed to the increase in confidence level.

For the perception of anger, the gap in recognition rates between humans and robots is
pronounced. In the case of humans, emotional expression of anger was recognized with the
same accuracy as other emotions. However, in robots they were about 50 %. We consider
that velocity and acceleration of walking motions are important for the correct recognition
of angry emotion. Montepare reported that the anger gait is recognized by a heavy-footed
gait characteristic [23]. In our experiments, as we used time series joint angle data for emo-
tional gait-induced upper body motions, the lack of consideration of velocity and acceleration
might have caused the lack of recognition. We can see this also happening if we review [20]
and [31]. In [20], where she considered joint angles and velocities of human walking while
creating walking animations, the recognition rate of anger was 78 %. Even though [31] used
that as a basis to move their robot, the recognition rate decreased to 51.8 %. Furthermore,
Ikeda and Watanabe reported that humans are better able to perceive anger than happiness
[122]. In the natural world, angry creatures, either animals or humans, are objects of fear,



5.4 Discussion 69

and observers must be sensitive in taking action (e.g. fight or flight). Therefore, it is natural
to have an advantage in perceiving anger. Nevertheless, it is difficult to perceive anger ex-
pressed by robots. To achieve a high level of perception for a robot’s expression of anger, we
must sufficiently reproduce a wider range of components, from the joint movement features
to the appearance humans use to convey their anger. On the other hand, the results show
that confidence level for the anger emotion was not correlated to the original motion. For
that reason, the vertical oscillation of happiness could increase the confidence level of anger
expression in Experiment 2.

For the perception for happiness, our results suggested that vertical oscillation is important
for both recognition and confidence aspects. This is consistent with [22] which identified
faster gait speed and large vertical movement as characteristics of happiness. We calcu-
lated the approximate ratio of vertical movement compared to the heights of humans, ibuki,
ibuki’20, Wabian-2R, and Nao in Table 5.5. The ratio of the original human walking motion
and ibuki were both 0.06. In other words, the 120 cm high ibuki was swinging the upper body
about 7 cm while moving. In the previous research, ibuki’20 ration was about 0.04 (5 cm
vertical movement / 120 cm height). Wabian-2R was about 0.007 (1 cm / 148 cm, referred
from [123]) and Nao was 0 (0 cm / 57 cm, as inferred from [124]). From these results, it
is suggested that there is a positive correlation between the ratio of vertical movement per
height and the recognition rate of happiness.

For the perception of sadness, our results show that the effects of the vertical oscillation
were small for both recognition and confidence. This is consistent with [30] that the lo-
comotor unit are important for the expression of happiness in the walk but does not have
mush influence on the expression of Sadness. As can be seen in the study by [20], sadness
has different gait characteristics compared to anger and happiness, such as the neck and torso
bending forward. As a result, recognition rates for humanoid robots (ibuki, Wabian-2R) were
as high as for human gaits. Since those robots have a human-like appearance, participants
were easily able to perceive sadness with a high level of confidence.

The limitations are mainly that this research used online video surveys with a question-
naire that had a pre-designed response range. Therefore, this method may miss some details,
like participants’ further perceptions when they watched the emotional gait-induced upper
body motions. Further real-time robot evaluation by participants is needed for further un-
derstanding. From the author’s experience, we expect that emotional perception is made
stronger by watching real robot motions. In addition, humans also express gait character-
istics on the roll or yaw axis joints. However, the gait-induced upper body motions in this
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research were limited only to the sagittal plane.
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This chapter shows the synchronization of gait phases between a human and a wheeled hu-
manoid robot. We implemented a periodic upper body motion in a wheeled child-like android
robot, which oscillates its upper body vertically while moving, and measured the gait phase
difference between the robot and a human walking behind the robot. In the experiment,
participants walked in a circle behind the robot in a line, and their gaits were captured by
a camera to obtain the phase difference between the two. For comparison, we conducted
paired walking under four conditions: participants walking with a human, behind the robot
with No-Motion, behind the robot that its Arms-Swinging, behind the robot that its Arms-
Swinging adding Vertical-Oscillation of the upper body. After the experiment, we analyzed
the bias in the phase difference distributions measured at each gait cycle. We then verified
whether the gait phase synchronization occurred under each of the four conditions.

6.1 Background
Although robots designed to be integrated into factories are widely used in an industrial
setting, it has been challenging to place robots in human living environments. This issue has
been actively researched [125, 126]. Previous robotics research has contributed to navigation
methods to predict surrounding people’s trajectories and avoid collisions [2, 3, 5, 127, 128,
129, 130, 131, 132].

These technologies are one-directional solutions from the robot’s perspective on how to
perceive human action and act accordingly. The other direction is how humans recognize
the robot’s actions and intentions accurately. There has been research on methods for
communicating the robot’s movement intentions [14, 64, 65, 66, 133, 134]; however, the
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people around the working robot may disregard them and instead feel that the robot is an
obstacle [135]. Therefore, the effort of people required to recognize the robot’s action and
intention should be minimized, and ideally, the level of effort should be unconscious [136].

It is known that humans walking in large crowds can walk collectively, as they uncon-
sciously synchronize their gait with the surrounding pedestrians [32, 33, 34]. This pedes-
trian synchronization is induced by a various factors such as hand-holding [137], vibrations
transmitted via a bridge [138], and ambient music [139]. Even a small cognitive load, such
as listening to a story when walking, enhances a gait synchronization [140]. Previous stud-
ies on pedestrian gait synchronization have reported that gait phase synchronization is more
likely to occur in high-density groups and that pedestrian synchronization also maximizes
the walking flow efficiency [35, 36]. Additionally, it has been reported that there is a psycho-
logical aspect to synchronized side-by-side walking, as it improves the people’s impression
of each other [141].

If humans can synchronize a gait phase with robots, we can imagine applications with
smooth robot-human mobility in our daily lives. In particular, if both the bipedal robots
and the more common wheeled robots can synchronize gait phases by utilizing upper body
motions, robots can move by taking advantage of the human ability to walk skillfully in the
crowd.

6.2 Methods

6.2.1 Participant

26 participants (Mean age 24.1 ± SD 7.9, 11 females and 15 males) were recruited for the
experiment. All participants gave written informed consent and agreed to publish the data
and images in an online open-access publication. The protocol was approved by the ethics
committee for research involving human subjects at the Graduate School of Engineering
Science, Osaka University (#R1-6).

6.2.2 Motion generation

We extracted characteristic joint amplitudes and frequencies from a human gait to implement
the robot’s gait-induced upper body motion. The author (176 cm) filmed himself walking on
a treadmill at 0.83 m/s (3.0 km/h) treadmill speed for three minutes in 30 frames per second.
At this speed, we confirmed beforehand that the robot was able to stably and safely move
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indoors with a human.
From the recorded video, joint position time series data was obtained by human pose

recognition software MediaPipe [142]. After that, we calculated a time-series joint angle of
the neck, the right shoulder and the right elbow in the pitch axis, the waist in the yaw axis, and
a vertical displacement of the waist’s center position. It is known that human gait motions
can be well described by the sum of sinusoidal functions using fast Fourier transformation
[143]. Therefore, after all the data were filtered with a 3.3 Hz low-pass filter, we used fast
Fourier transformation on these time-series data to acquire Fourier coefficients up the second
terms for the amplitudes and frequencies. As the result, the robot’s joints θ(t) at time t were
controlled by Equation 6.2.1, where α was set as 0 or π depending on the right or left body
and the averages of the original joint angles θ̄ were added.

θ = A cos(2πt f + α) + θ̄ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6.2.1)

Table 6.1 shows the calculated parameters for the gait-induced upper body motion. The
left column shows the body joints which we controlled and each row shows parameters
including amplitudes, frequencies, a phase difference, and a center angle of oscillation. The
rotation directions of the pitch and yaw axes coincide with the rotations around the y and
z-axes as shown in Figure 6.1.

120cm

33cm

x
y

z

Fig. 6.1 The overview of the coordinate system
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For comparison, we conducted paired walking under four conditions in the experiment:
participants walking with a human (“HU condition”), behind the robot with No-Motion (NM
condition”), behind the robot that its Arms-Swinging (“AS condition”), behind the robot that
its Arms-Swinging adding Vertical-Oscillation of the upper body (“AS+VO condition”). For
each condition, we controlled the following joints for the robot motions. At NM condition,
we did not operate any joints. At AS condition, we operated both sides of the shoulders and
elbow joints. At AS+VO condition, we operated the neck, waist, and VOM in addition to
the shoulders and elbows. In all conditions, the wheels were driven at 0.83 m/s by a velocity
control.

θ [unit] A f α θ̄

Neck (pitch) [deg] 0 - - -28.3
Shoulder (right, pitch) [deg] 13.4 0.575 π -14.1
Shoulder (left, pitch) [deg] 13.4 0.575 0 -14.1
Elbow (right, pitch) [deg] 5.47 0.575 π -28.6
Elbow (left, pitch) [deg] 5.47 0.575 0 -28.6
Waist (yaw) [deg] 6.76 0.575 π 0
VOM [mm] 18.7 1.15 π

2 0
Table 6.1

The calculated parameters of each joint θ, the amplitude A, frequency f , phase
difference α, and θ̄ for the gait-induced upper body motion.

6.2.3 Procedure

The experiment consisted of five walking sessions. In order, a participant walked behind
a human (HU condition), participant walked alone (this was not an experimental condition
but for measuring the gait speed when walking freely), walked behind the robot with no
motion (NM condition), walked behind the robot with the arms swinging (AS condition),
walk behind the robot with the Arm-Swing adding Vertical-Oscillation of the upper body
(AS+VO condition).

Each walking session (condition) lasted two minutes. Participants walked into the indoor
experiment room shown in Figure 6.2. There was a fixed base in the experiment room with
a rotatable lightweight beam at the center. The beam ensured that the distance between the
center of rotation and the robot was kept 2.3 m for all conditions. Furthermore, it held the
rotating camera in order to record the human gait. The camera was connected and controlled
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by a single board computer to capture photos of a participant’s gait (480 x 680 pixels, 30 fps)
with time information during the experiment. We also recorded the robot’s joint reference
angles and measured angles on 10 Hz in conditions with the robot.

Camera
Participant

Robot

Fig. 6.2
The overview of the experiment. A participant walked behind the robot with three
types of upper body motion patterns.

In HU condition, the participant walked behind a human (the author), leading and pushing
the beam with the attached camera. In the free-walking session, a participant walked alone
and freely without any constraints, except for the author filming with the camera attached
to the manually controlled beam. In the conditions with the robot, the robot led and the
participants walked behind it. In these sessions, the beam was connected to the robot’s
mobility unit. The order of these three sessions was changed for every participant to ensure
counterbalancing.

The human gait synchronization can be influenced by the surrounding sounds [139, 144].
In order to eliminate the influence of the motor drive noise while the robot was moving, the
participants wore noise-cancelling headphones and listened to white noise while walking. In
addition, a participant’s gait was considered to be symmetrical for the analysis [145].
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6.2.4 Analysis

One cycle of the gait phase (0 to 360 deg) is defined as follows: heel-strike (0 deg) in which
the right heel touches the ground, middle-stance (around 90 deg) in which the right foot
supports the upper body and the left foot swings forward, pre-swing (180 deg) in which the
left heel touches the ground and the right foot leaves the ground, middle-swing (around 270
deg) in which the left foot supports the upper body and the right foot swings forward, and
then back to the first heel-strike (360 deg) where the right heel touches the ground [146].

For each condition, the gait phase is calculated using the left leg angle from the captured
human gait images. Firstly, two positions of a participant’s left waist and left knee were
estimated by using image pose recognition (Mediapipe) in every frame to obtain the time-
series with the left leg angle against the vertical direction. Next, a 3.3 Hz low-pass filter was
applied to remove high-frequency noise from the time-series data. After that, we obtained a
time tn that took the maximum of the left leg angle of the n-th gait cycle, and set ϕn = 180
deg as the gait phase at this time.

As the robot does not have legs, we obtained the gait phase ϕn = 180 deg as the gait phase
at a time tn of the n-th gait cycle from a maximum of a virtual gate phase increasing over
time, which takes ωlt when 0 < ωlt < 180 deg and 0 when 180 < ωlt < 360 deg for NM
condition and a minimum of the robot’s measured left upper arm angle for both of AS and
AS+VO condition. Setting the robot’s gait cycle which was closest to the n-th gait cycle of
the participant as the n′-th gait cycle, the phase difference ∆ϕ is given by Equation 6.2.2.
We calculated an angular frequency ωn of n-th gait cycle as 360

tn−tn−1
, and the natural angular

frequency ω0 of each participant was the average value of ωn obtained when the person
walked alone.

∆ϕ =


360 tn−tn′

tn′+1−tn′
(tn′ ≥ tn)

360 tn−tn′−1
tn′−tn′−1

(tn′ < tn)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6.2.2)

6.3 Result
Figure 6.3 shows one of the representative participants who spontaneously synchronized
their gait phase with the human / robot under both the HU and AS+VO conditions. The
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horizontal axis shows the measurement time (s), and the vertical axis shows the phase differ-
ence (deg). No synchronization, i.e. constant phase locking, was observed for NM (Figure
6.3, green) and AS (Figure 6.3, blue) conditions. The phase difference decreased mono-
tonically in every gait cycle. Interestingly, for AS+VO (Figure 6.3, red) condition, we can
observe synchronization between the human and the robot, similar to the human control con-
dition (Figure 6.3, yellow). Under HU condition, the gait phase difference was M = 127.6
± SD 16.4 deg (Mean ± Standard Division) during the entire measurement. Under the robot
AS+VO condition, the difference was even kept M = 70.2 ± SD 15.8 deg. As can be seen in
Figure 6.3, when the gait phase synchronization occurs under a certain condition, the distri-
bution of the gait phase difference is biased. In contrast, when the synchronization does not
occur, the gait phase difference is uniformly distributed. Next, we analyzed whether and if
so which under condition the distribution of the gait phase difference is biased.

0 20 40 60 80 100 1200
45
90
135
180
225
270
315
360 deg

sec

HU NM AS AS+VO

Fig. 6.3
One of the representative obtained time-series phase difference graphs under four
condition (Participant 3 in Figure 6.5). The horizontal axis shows the measure-
ment time (s) and the vertical axis shows the phase difference (deg). Yellow: HU,
green: NM, blue: AS, and red: AS+VO condition.

Figure 6.4 shows the gait phase difference distributions of 1960, 1993, 2000, and 1989
gait cycles in total from 26 participants in HU, NM, AS, and AS+VO condition, respectively.
The circle histogram shows the proportions of obtained phase differences at every five deg.
The height in radius direction shows the normalized range of 0 to 12 percent proportionally.
For HU condition (Figure 6.4 (a)), the distribution seems to be biased to the directions of 0
and 180 deg, indicating that the gait phases were synchronized in-phase or anti-phase. In the
same way, in the AS+VO condition, the distribution seems to be biased to the directions of 45
and 225 deg. To test the distributional bias of the phase differences, we performed Rayleigh
test for each condition. We set the p-value to less than 0.05 to be statistical significance and
confirmed that the distributional bias was significant for both HU (p < 0.0001) and AS+VO
(p = 0.0485) conditions. At the same time, there was no significant distribution bias for NM
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(p = 0.9566) and AS (p = 0.0919) conditions.
To determine the degree of synchronization for each participant and condition, we cal-

culated the Phase Locking Index (PLI) [147, 148]. PLI is defined by Equation 6.3.1 using
N phase difference data. The value of PLI falls between 0 and 1, with 0 being completely
unsynchronized and 1 being perfectly synchronized.

PLI =
1
N
|

N∑
i=1

ei∆ϕi | · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6.3.1)

Figure 6.5 shows a heatmap of Phase Locking Index (PLI). The four conditions are in-
dicated in rows from top to bottom, and the participants in columns from left to right (in
order of higher PLI under HU condition). It can be seen that some participants in AS+VO
condition gave a high PLI as well as HU condition. Especially, there were eleven / five par-
ticipants whose PLI was higher than 0.5 in HU / AS+VO condition. Figure 6.6 shows the
distributions of the gait phase differences of those participants, whose PLI was higher than
0.5 under each condition. Note that, in Figure 6.6 (b), the robot gait phase was calculated
based on the VOM displacement, instead of the left upper arm as the way of Figure 6.4 (d).
We calculated a time tn when the VOM displacement took a minimum value as ϕn = 225
deg and we adjusted the gait phase difference by -45 deg. Both distributions have biases to
the directions of 0 and 180 deg, indicating that the gait phases were synchronized in-phase
or anti-phase.

At the end, Figure 6.7 shows the time-series phase difference graphs for all the partici-
pants. In addition, Figure 6.8 shows how participant 1 in Figure 6.5 started to synchronize
the gait at the beginning of AS+VO condition, and Figure 6.9 (a)(b) show the gait which was
not synchronized under condition AS and synchronized under AS+VO condition.

6.4 Discussion
We investigated the synchronization of gait phases between humans and a wheeled humanoid
robot. We implemented a periodic upper body motion in a wheeled child-like android robot
and measured the gait phase difference between the robot and a human walking behind the
robot under four conditions. We then analyzed the bias in the gait phase difference distribu-
tion under each condition by Rayleigh test. As a result, we confirmed a significant distribu-
tional bias under the human condition and the robot condition with vertical-oscillation of the
upper body.
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Fig. 6.4

The circle histograms of four conditions which show the proportion of obtained
phase differences at every five deg. The height in radius direction shows the range
of 0 to 12 percents in the normalized proportion. The distributional bias was
significant for both HU (p < 0.0001) and AS+VO (p = 0.0485) conditions. At the
same time, there was no significant distribution bias for NM (p = 0.9566) and AS
(p = 0.0919) conditions.



80 Chapter 6 Research3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

HU

NM

AS

AS+VO

0.98 0.97 0.96 0.94 0.90 0.89 0.83 0.82 0.76 0.64 0.63 0.39 0.35 0.28 0.24 0.13 0.13 0.12 0.09 0.09 0.06 0.03 0.02 0.02 0.02 0.01

0.17 0.03 0.01 0.03 0.38 0.25 0.04 0.34 0.05 0.01 0.02 0.36 0.12 0.22 0.16 0.05 0.01 0.07 0.08 0.01 0.06 0.02 0.04 0.01 0.01 0.01

0.15 0.03 0.09 0.00 0.10 0.83 0.04 0.03 0.24 0.05 0.04 0.08 0.22 0.17 0.07 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.04 0.06 0.01 0.05

0.80 0.03 0.96 0.00 0.48 0.67 0.45 0.90 0.13 0.06 0.03 0.09 0.08 0.05 0.52 0.02 0.03 0.01 0.05 0.01 0.02 0.01 0.03 0.05 0.01 0.05

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6.5
Heatmap of Phase Locking Index for each participant (row) and condition (col-
umn).
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Fig. 6.6

The circle histograms of the synchronized participant only (PLI > 0.5) in HU and
AS+VO conditions which show the proportion of obtained phase differences at
every five deg. The height in radius direction shows the normalized range of 0 to
16 percents proportionally.

The histogram of the gait phase based on the displacement of VOM in the synchronized
participants (Figure 6.6 (b)) showed two types of gait phase synchronization, 0 deg in-phase
and 180 deg anti-phase, as in humans. Furthermore, there was a phase delay in the synchro-
nization of the walking phase based on the angle of the left shoulder joint compared to Figure
6.4 (d) and Figure 6.6 (b). This might be because the participants were synchronizing their
gaits based more on the VOM than on the arm swing. This is consistent with the previous
research which claimed the importance of the upper body swing at a human interpersonal
coordination [149, 150, 151]. Since we did not control to align the phases of the robot joints
in the experiment, we confirmed the control delay which was about 0.2 seconds in the dis-
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placement of the VOM relative to the left shoulder joint. Considering that we controlled the
robot by the natural angular frequency of 360 x 0.575 = 207 deg/s, there was a gait phase
difference of 225 x 0.2 = 41.4 deg between the shoulder joint and the VOM. This is why the
peak of the distribution shown by the synchronization in Figure 6.4 (d) is tilted to the 45 deg
direction.

We also investigated the factors that caused the difference in the number of participants
who had PLI ¿ 0.5 in the HU and AS+VO conditions. The mean natural angular frequency
of the gait phase when a participant walked alone was M = 261.9 ± SD 35.4 deg/s and the
mean / controlled angular frequency of the gait phase of the human / robot that moved in
front of the participants in the HU and AS+VO conditions were M = 226.2 ± SD 13.3 deg/s
and 207.0 deg/s, respectively. The participants who had a closer natural angular frequency,
which means a smaller detuning [152], with the human or the robot, synchronized their
gait more frequently. Considering that the difference between the angular frequency of the
robot and the participant was 54.9 on average, we believed that the robot’s gait phase was
driven faster by that amount and a higher frequency of synchronization could be observed.
For practical use, we need a method to estimate the natural angular frequency from the gait
phases of people walking around robots, in order to adjust the robot’s gait and to minimize
the error of those two angular frequencies of the gait cycles.

Gait phase synchronization between humans and robots is expected to improve the effi-
ciency of pedestrian flows in settings where both humans and robots are mobile. The mecha-
nism implemented in this research is easy to implement, it only requires oscillating the upper
body of a wheeled robot when moving. The number of people that synchronized their gait
with the robot in the experiment we conducted was limited. However, we expect that the gait
synchronization can spread further even if a robot can synchronize its gait with only a few
people around it as it will be conveyed from human to human. Further research is needed
to investigate how gait synchronization between humans and robots can be improved to a
higher degree and how robot motion can be adjusted based on the inputs from surrounding
human gait phase feedback.
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Fig. 6.7

Time-series phase difference graphs under four condition for all 26 participants.
Graphs are shown in order of higher PLI at HU condition. The participant number
corresponds to the one in Figure 10. The horizontal axis shows the measurement
time (s) and the vertical axis shows the phase difference (deg). Yellow: HU, green:
NM, blue: AS, and red: AS+VO condition.
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Fig. 6.8
A participant’s gait spontaneously synchronizes with the gait phase expressed by
ibuki’s gait-induced upper body motion. Each small picture shows the posture of
Participant 1 taken every ten frames (30 frames per second). Time proceeds from
left to right, and the next picture for the rightmost one corresponds to the leftmost
one in the row below it.
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(a) Condition AS
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(b) Condition AS+VO
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Fig. 6.9
Two types of walking manners captured by a camera in the center of the room. (a)
A participant was walking without synchronized under the AS condition and (b)
The same participant was walking with synchronized under the AS+VO condi-
tion. Each small picture shows the posture of Participant 1 taken every ten frames
(30 frames per second). Time proceeds from left to right, and the next picture for
the rightmost one corresponds to the leftmost one in the row below it.
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Chapter 7

Discussion

This chapter summarizes the importance of body expressions for mobile robots thorough
the three research, discusses new insights from being compared to the previous studies and
limitations of our methodology, and finally shows the future direction of this thesis.

7.1 Summary of research findings
We implemented the gait-induced upper body motion of the wheeled mobile android during
moving and verified the influence of human perception and behavior on the motions, aim-
ing to apply robot’s body expressions during moving to interact with humans. The previous
research achieved emotional expressions in the walking control of a biped robot, and ex-
perimentally validated that viewers could understand the expressed emotions. In addition,
research on mobile robots has been reported on the expression of the intention to give way
by wheeled robots with retreating the body or rotating the torso, and contrary to ask to give
way using the arms touch. However, the influence of gait, which is usually expressed contin-
uously by humans while walking, have not been investigated whether available to wheeled
mobile humanoid robots.

Thanks to the spread of advanced mechanical components such as high-performance mo-
tors and lightweight and high-strength materials, recently humanoid robots have actively
been developed, which aim to safely interact with humans in our society. The android ibuki
was developed based on the body dimensions of a 10-year-old Japanese boy. We adopted
glass fiber reinforced nylon and carbon fiber reinforced plastic to achieve lightweight and
high strength. In addition, the number of parts was reduced by using a 3D printer to print
several parts in one piece, which also helped to reduce the machine size. These designs
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enabled us to use a low power but low noise motor with a plastic gear reducer. Previous ad-
vanced humanoids, Wabian-2R and HRP-4C consisted of mainly metal skeletons for bipedal
walking. This precise metal mechanical structure enables to increase the joint output for
its dynamic motion. However, the metal frame is too heavy and dangerous to be used in
a human living environment where unexpected contacts between humans and robots might
occur. Therefore, in practical use, their motions were often controlled conservatively at low
speed. If without taking into account the constraint of a robot being a real human size, It is
reported that a small size mobile humanoid AlterEgo has both of mobility and expressiveness
in a human living environment [153]. As human-size wheeled humanoid robots, Pepper and
Modle-H are designed with less metal and more plastic materials to operate in human living
environments, but seeing the practical use, they do not have high power motion performance
and high mobility.

Gait-induced upper body motion, which we proposed as a body expression for wheeled
mobile robots during moving, is a walking-like motion that focuses on the characteristics
of the vertical oscillation of the upper body caused by the extension and flexion of the legs
during human walking. Specifically, a mechanism that drives the upper body vertically,
named Vertical Oscillation Mechanism (VOM), is implemented in the mobility unit, and the
upper body is oscillated twice by the VOM while the robot’s wheel rotates for one walking
cycle distance. The proposed VOM is easy to implement and control because its hardware
design requirement is just to install one joint which drive the upper body linearly on the
mobility unit. In particular, the motion was achieved as the following mechanical design of
the VOM in this thesis. A slide screw is rotated by a motor to move the nut up and down,
which is connected to the bottom of the upper body. A timing belt is wound by a pulley
connected to a motor to move the upper link up and down, thus making the upper body of
the android oscillate.

This thesis validated the influence of gait-induced upper body motion from two perspec-
tives: perception and behavior. From the viewpoint of perception, firstly, we dealt with the
perception of emotional expressions, and created an ambiguous facial expression of the an-
droid with a high entropy of valence, as cases where humans cannot perceive from facial
expressions alone. As the result, the highest entropy was found for the Intense emotion with
high intensity, as has been reported in previous human studies. In contrast, the facial valence
tended to be clearly distinguished for expressions with low Intensity. Next, we investigated
whether the facial valence of Intense expression could be clearly distinguished by adding
body postures and movements. The results showed that viewers were able to distinguish the
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facial valence with specific combinations of neck, arm, and vertical motion. It was found that
both body postures and body movements changed the facial valence of the intense emotion
and contributed to the lower entropy in the valence assessments. In other words, postures
and movements can improve the perception of the ambiguous facial expression.

Secondly, we measured three human gait motions (attributed to the emotions anger, hap-
piness, and sadness) and implemented these findings as upper body motions in the mobile
android. These motions under one condition include a vertical oscillation base on the move-
ment of CoM induced when humans walk. The experiment result showed that the emotional
expression of happiness using the VOM was well perceived by viewers (with higher recog-
nition rates and higher confidence levels) and better than that of without vertical oscillation.
In addition, the incongruent (switched vertical oscillations between anger and happiness
emotions) application of anger/happiness vertical oscillation decreased the recognition rate
of happiness/anger emotional expression (significance/marginally significant, respectively).
Furthermore, the emotional expression of happiness using the vertical oscillation for anger
decreased the confidence levels; however, the emotional expression of anger using the verti-
cal oscillation for happiness increased the confidence levels (both were significance).

From the viewpoint of behavior, we confirmed that the gait phase of a person walking be-
hind the android performing the gait-induced upper body motion is spontaneously synchro-
nized with the gait phase expressed by the gait-induced upper body motion. In the experi-
ment, we compared the gait phase synchronization between humans and the android, which
moved its upper body in three distinct types of motion patterns: (1) no-motion, (2) arm-
swinging (as is common for typical mobile humanoids), and (3) arms-swinging in addition
to periodic vertical-oscillation similar to the human upper body movement while walking.
We found that a significant distributional bias due to the phase locking by the gait synchro-
nization was confirmed when participants were walking only with the robot controlled in the
third motion pattern.

According to our experiment result, the phenomena that have been reported in human be-
havior studies were experimentally confirmed in wheeled androids. Research 1 confirmed
that ambiguous facial expressions can be clearly distinguished by adding the body. Research
2 confirmed that emotions can be perceived from motions during moving. Research 3 con-
firmed that the gait phase spontaneously synchronizes with that of others. These findings
have all been actively studied in human behavior study, but there are not much more exam-
ples of research showing the applications to robotics due to such as the difficulty in handling
mobile humanoids as aforementioned. There are two factors why this thesis was able to



96 Chapter 7 Discussion

reproduce the same phenomenon in the robot. The first factor is the robot’s expressiveness.
The android robot for this thesis has a human appearance, although its lower body mecha-
nism is different from that of a human, participants seemed to naturally regard the android
as if it is a human due to its upper body appearance. In fact, in Research 1, participants
who saw the android postures and movements evaluated the human-likeness with high val-
ues. In addition to the appearance, the gait-induced upper body motion also contributed to
help recognizing of the android as like a human. We believe that the bi-directional pursuit of
human-like appearance and behavior has led to the reproduction of phenomena known from
the human behavior study. The second factor is the high level of human recognition capa-
bility. Humans can communicate with other species using the body by nature. Furthermore,
it is known that humans do not need as much information to recognize human motions. In
the research of biological motion, it has been shown that in periodic body motions such as
walking, humans are capable of estimating the gender, age, and mood of a walker by simply
observing the movement of markers where major joint positions [143]. This is why that the
human communication capability worked for not an animal but a humanoid robot which even
if participants encountered for the first time.

7.2 Research limitations
The ratio of humans influenced by the gait-induced upper body motion is not 100 % for both
perception and behavior, and it is not guaranteed this method works absolutely. Therefore, it
is necessary to consider the failure recovery for the practical use when humans do not behave
as intended by a robot. In the case of emotional expressions during moving (Research 2),
anger had the lowest recognition rate of 56.0 %. In the synchronization of gait phase, the
percentage of participants who synchronized with the robot’s gait phase was 19.2 %. There-
fore, not only improving the expressiveness of the robot, but we also need to design the next
action which the robot should take when a human fails to recognize the robot intention. For
emotional expressions during moving, the robot can additionally use a facial expression and
robot-specific expressions (LED and utterance) in a situation where humans are approaching
closer to the robot. We showed only around ten seconds of video in the experiment, but
in reality, humans and robots interact continuously, so it would be better if the robot could
express a single target emotion by giving various cues step by step. As for the gait synchro-
nization, even if the robot can only synchronize with few numbers of humans around the
robot (19.2 % in the experiment), we expect that the synchronization will spread to others
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from those who successfully synchronized with the robot.
The appearance of the robot is also essential for effective body expressions. Since the

android ibuki had the human-like head, arms, and hands, viewers could easily recognize
what the android’s motion was expressing as like a human does, even though the lower
body of the android was completely different from what a human has. To develop a robot
with simple and cost-effective, it is necessary to verify the minimum factors of the robot’s
appearance which enable humans to recognize the robot’s motion as the same way with
that of a human. For example, a wheeled mobile robot with only anthropomorphic arms
and no head might be one kind of practical designs for performing tasks in a human living
environment, however it is not clear whether humans can recognize their gait-induced upper
body motions during moving as the same way with our result. It would also be interesting to
investigate an influence of adding a human-like upper body exterior and a VOM to actuate the
upper body for a simple wheeled mobile robot originally without an upper body in original.

Although the sound was not the focus of this thesis, it is necessary to propose motors,
gear reducers, and joint structures which cause less noise in order to interact with humans
in a safe manner. Motor noise caused by dynamic motions might enforce discomfort and
fear to the humans around. For example, one solution would be to actively adopt low noise
mechanical elements (e.g. plastic material), however we have to pay an attention that this
would result in lower output at the same time.

Although a robot’s body expressions are expected to regulate unexpected human actions
toward a robot and consequently reduce the burden of robot’s perception and behavior, dy-
namic movements for body expressions consume a greater amount of energy. Therefore, the
energy consumption devoted to whether the physical body expression as like this thesis and
the perception and behavior of the robot self as like traditional robotics must be carefully
designed, considering who can efficiently solve the problem by a human side or the robot
own. Of course, one solution to this trade-off is to improve the efficiency of the robot’s
motor output.

For reference, here we compare the energy expenditure for the mobility between the an-
droid and human in Research 3. We found that participants walking behind ibuki synchro-
nized the gait phase with that of expressing gait-induced upper body motion in AS+VO
condition. When the gait phase synchronization occurred, the human gait cycle and angular
frequency were locked to a constant value. On the other hand, participants did not synchro-
nize their gait phase against ibuki without the gait-induced upper body motion in NM con-
dition. This was because the participants adjusted the acceleration and deceleration of their
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gaits to maintain the safe distance from the slowly moving ibuki in front. We consider that
the human side consumes energy with this gait adjustment instead of ibuki. For a clear com-
parison, we estimate the energy consumption for the five participants who well-synchronized
with ibuki in higher PLI than 0.5 from all the 26 participants of Research 3.

The ratio of the walking energy in condition NM with respect to condition AS+VO can
be estimated as Equation 7.2.1. We put ωNM, i as the angular frequency of the i-th measured
gait in condition NM and I as the representative inertia of the body joints, the kinetic energy
which the walking person had was 1

2 I ωNM, i
2. Here we assume all the body joints move

at this same angular velocity and neglect the difference of the translational kinetic energy
between two conditions. What we are interested in now is the kinetic energy consumption
for every gait cycle. When we assume that the participants consumed energy in the same
way both when they increase or decrease the walking speed, the energy consumption from
i−1-th gait cycle to i-th one was calculated as 1

2 I |ωNM, i
2−ωNM, i−1

2|. The sum of the energy
consumption obtained during the 120-second measurement in the experiment was taken as∑

i. The same is true for AS+VO condition.
As a result of the calculation, the average η for the five participants was 1.51 (For the

remaining 21 participants, the average η was 1.17.). We can say that a participant changed
1.51 times for the joint’s kinetic energy when following the android under the NM condition
than that of the AS+VO condition.

η =

∑
i

1
2

I |ωNM, i
2 − ωNM, i−1

2|

∑
i

1
2

I |ωAS+VO, i
2 − ωAS+VO, i−1

2|
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (7.2.1)

According to Zarrugh’s report [154], the energy consumption E ( cal
min kg ) of walking at

velocity v ( m
min ) can be estimated by Equation 7.2.2. The participant walked at the same

speed as ibuki, 0.83 m/s, and the total energy consumption by a person weighing 60 kg in
two-minute experiment was about 11000 J. On the other hand, the total amount of energy
consumed by ibuki’s gait-induced upper body motion for two minutes was measured about
14000 J.

E = 32 + 0.0050v2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(7.2.2)

It was found that the energy expenditure was the same order, which required by a human
following ibuki whose upper body does not move during moving, and which required by
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ibuki performing the proposed gait-induced upper body motion. If there are a lot of humans
walking behind a robot and they are expected to synchronize the robot’s gait phase, the
gait-induced upper body motion is beneficial because it requires less energy expenditure for
humans. However, in order to successfully induce synchronization, the robot will need to
expend additional energy on sensing, such as estimating a human gait by image recognition.
On the other hand, if the number of humans is less than that of robots, robots do not need
to move the body in the viewpoint of the energy consumption of the entire system, and have
the human side pay that burden. Of course, it must cause an unavoidable safety risk when
we force humans to do so.

7.3 Future directions
As the end of this thesis, we describe the future direction of this thesis. In navigation research
on robotics so far, only a robot has controllability in an environment, and we tried to model
the working environment as well as possible for higher observability. By improving the
expressiveness of the robot’s body during moving, it is possible to implicitly control not
only the robot own but also the humans around. This viewpoint proposes a new control
strategy which regards the entire environment surrounding the robot as a system having weak
controllability. In order to successfully move not only the robot but also the surrounding
humans, it is important to increase the controlability of human side. For this, the robot must
convey the intention to humans as much as possible through the emotional empathy, gait
synchronization, and so on.

We expect that humans and robots can adjust their distance from each other by expressing
and perceiving the emotions for each other. In this way, a pedestrian flow can be formed
even though biped humans and various kinds of wheeled robots are crowded in the same
place. Furthermore, by synchronizing their gait phases, the pedestrian flow can be improved
smoother and faster.

Lastly, We did not consider the cultural difference on the human perception and behav-
ior since that was not the focus of this thesis. We consider that every cultural area has a
difference transportation system and humans also perceive, behave, and formulate a pedes-
trian flow depended on their systems. It would be important to take cultural differences into
account when implementing mobile robots into their societies.





101

Chapter 8

Conclusion

Chapter 1 introduced the overview of this thesis. It is still a big challenge to achieve robots
moving freely in a human living environment. The existence of humans makes harder robots
to move around. The key points were those:

• Robot navigation strategies in human living environment are mainly categorized into
two approaches. One is related to path planning and self-localization necessary for a
robot to move to its destination. The other one is regarding as a collision avoidance.
This strategy is not directly related to the main robot goal of moving to the destination,
however it is necessary for achieving safe mobility in our society.
• Considering practical usage, those approaches described above which the robots pre-

cisely perceive human behaviors and behave appropriately is just one direction of
the solutions for the robot navigation at a human living environment. As the other
direction, it is important that human sides recognize the robot’s behavior and move
cooperatively without getting in the way of the robot.
• Gait is a main factor to enable the pedestrian collaborative mobility in a society. Hu-

mans convey various information to the surrounding others from the body posture and
movements while walking, and observers can perceive and understand meanings from
their gait.

Therefore, it is worthwhile to study if wheeled robots, which are more common than legged
robots, can express the upper body motion induced by the legged gait, and the application of
the gait-like motion for mobile robots. This thesis aimed to propose that a wheeled android
expresses an upper body motion induced by human gait during movement and to validate
whether humans who see the body expressions can perceive the meanings or change their
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behavior.
Chapter 2 traced the development of mobile robots and humanoids which operate in hu-

man living environments. Those robots are expected to become alternatives of humans,
which is still the ultimate goal since the term of robot was first used. The body expressions
of robots have been widely investigated at the field of HRI, and one of the significant exam-
ples was the emotional gait by the bipedal humanoid. However, there was no research that
implemented the human gait-induced body motion to the wheeled humanoid robot upper
body motion during moving and validated its influence on human perception and behavior.

Chapter 3 describes the development of the wheeled child android ibuki. ibuki is 120
cm tall and is comprised of two parts, a mobility unit and the upper body, which is de-
signed based on a Japanese boy. The face and hands are covered with silicone skin to have
a human-like appearance. An electric motor drives each joint, and mobile batteries are used
as the power supply. Next, we explained the gait-induced upper body motion, which we
proposed as a body expression for wheeled mobile robots during moving, is a walking-like
motion that focuses on the characteristics of the vertical oscillation of the upper body caused
by the extension and flexion of the legs during human walking. Specifically, a mechanism
that drives the upper body vertically, named Vertical Oscillation Mechanism (VOM), is im-
plemented in the mobility unit, and the upper body is oscillated twice by the VOM while the
robot’s wheel rotates for one walking cycle distance.

Chapter 4 validated that an ambiguous facial expression of an android can be perceived
more clearly with adding body postures and movements. The main contributions are follow-
ing:

• We found that the facial valence distribution of the Intense emotion had the highest
entropy with high intensity, as has been reported in previous human studies.
• We found that the facial valence of Intense could be clearly distinguished by adding

body postures and movements. Viewers were able to distinguish the ambiguous facial
valence with specific combinations of neck, arm, and vertical motion.

Chapter 5 showed that the implementation three types of emotional gait-induced upper
body motions and investigated whether viewers could perceive the original emotion with
high confidence. The main contributions are following:

• We measured three human gait motions (anger, happiness, and sadness) and imple-
mented these findings as upper body motions in ibuki.
• The emotional expression of happiness using the VOM was better perceived by view-
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ers (with higher recognition rates and higher confidence levels) than that of without
vertical oscillation.
• The incongruent application of anger/happiness vertical oscillation decreased the

recognition rate of happiness/anger emotional expression. Furthermore, the emo-
tional expression of happiness using the vertical oscillation for anger decreased the
confidence levels; however, the emotional expression of anger using the vertical
oscillation for happiness increased the confidence levels.

Chapter 6 verified whether the gait phases of humans who follow the android which per-
formed the periodic upper body motions while moving can be synchronized for that of the
android. In the experiment, we compared the gait phase synchronization between humans
and the android, which moved its upper body in three distinct types of motion patterns: (1)
no-motion, (2) arm-swinging (as is common for typical mobile humanoids), and (3) arms-
swinging in addition to periodic vertical-oscillation similar to the human upper body move-
ment while walking. We found that a significant distributional bias due to the phase locking
by the gait synchronization was confirmed when participants were walking only with the
robot controlled in the third motion pattern.

Chapter 7 summarized the contributions of this thesis and the importance of body expres-
sions for mobile robots. Research limitations were also described as below:

• The ratio of humans influenced by the gait-induced upper body motion is not 100 %
for both perception and behavior, and it is not guaranteed this method works abso-
lutely. Therefore, it is necessary to consider the failure recovery for the practical use
when humans do not behave as intended by the robot.
• Dynamic movements of human-like body expressions consume a greater amount of

energy. Therefore, the energy consumption devoted to whether the physical body ex-
pression or the robot perception and behavior must be carefully designed, considering
who can efficiently solve the problem by a human side or the robot own.

We also compared the energy expenditure for the mobility between the android and human
for reference. In the end, we described about the implicitly control for both of robots and
humans. This new control strategy which regards the entire environment surrounding the
robot as a system having weak controllability. In order to successfully move not only the
robot but also the surrounding humans, it is important to increase the controlability of human
side. For this, the robot must enable to convey the intention to humans through such as the
emotional empathy and gait synchronization which we investigated in this thesis.
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88) J. Kedzierski, R. Muszyński, C. Zoll, A. Oleksy, and M. Frontkiewicz, “Emys―
emotive head of a social robot,” International Journal of Social Robotics, vol. 5, no. 2,
pp. 237–249, 2013.



BIBLIOGRAPHY 115

89) C. Tsiourti, A. Weiss, K. Wac, and M. Vincze, “Multimodal integration of emotional
signals from voice, body, and context: effects of (in) congruence on emotion recogni-
tion and attitudes towards robots,” International Journal of Social Robotics, vol. 11,
no. 4, pp. 555–573, 2019.

90) C. Darwin and P. Prodger, The expression of the emotions in man and animals. Oxford
University Press, USA, 1998.

91) P. Ekman, W. V. Friesen, M. O’sullivan, A. Chan, I. Diacoyanni-Tarlatzis, K. Hei-
der, R. Krause, W. A. LeCompte, T. Pitcairn, P. E. Ricci-Bitti, et al., “Universals and
cultural differences in the judgments of facial expressions of emotion.,” Journal of per-
sonality and social psychology, vol. 53, no. 4, p. 712, 1987.

92) J. A. Russell, “A circumplex model of affect.,” Journal of personality and social psy-
chology, vol. 39, no. 6, p. 1161, 1980.

93) C. Breazeal, “Emotion and sociable humanoid robots,” International journal of human-
computer studies, vol. 59, no. 1-2, pp. 119–155, 2003.

94) I. Lütkebohle, F. Hegel, S. Schulz, M. Hackel, B. Wrede, S. Wachsmuth, and
G. Sagerer, “The bielefeld anthropomorphic robot head“flobi”,” in 2010 IEEE Inter-
national Conference on Robotics and Automation, pp. 3384–3391, IEEE, 2010.

95) D. Bazo, R. Vaidyanathan, A. Lentz, and C. Melhuish, “Design and testing of a hybrid
expressive face for a humanoid robot,” in 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 5317–5322, IEEE, 2010.

96) N. Churamani, F. Cruz, S. Griffiths, and P. Barros, “icub: learning emotion expressions
using human reward,” arXiv preprint arXiv:2003.13483, 2020.

97) H. Ishiguro, “Android science,” in Robotics Research, pp. 118–127, Springer, 2007.
98) C. Becker-Asano and H. Ishiguro, “Evaluating facial displays of emotion for the an-

droid robot geminoid f,” in 2011 IEEE workshop on affective computational intelli-
gence (WACI), pp. 1–8, IEEE, 2011.

99) H. K. Meeren, C. C. van Heijnsbergen, and B. de Gelder, “Rapid perceptual integra-
tion of facial expression and emotional body language,” Proceedings of the National
Academy of Sciences, vol. 102, no. 45, pp. 16518–16523, 2005.

100) J. Van den Stock, R. Righart, and B. De Gelder, “Body expressions influence recogni-
tion of emotions in the face and voice.,” Emotion, vol. 7, no. 3, p. 487, 2007.

101) Z. Witkower and J. L. Tracy, “Bodily communication of emotion: evidence for extrafa-
cial behavioral expressions and available coding systems,” Emotion Review, vol. 11,
no. 2, pp. 184–193, 2019.



116 BIBLIOGRAPHY

102) M. De Meijer, “The contribution of general features of body movement to the attribu-
tion of emotions,” Journal of Nonverbal behavior, vol. 13, no. 4, pp. 247–268, 1989.

103) M. M. Gross, E. A. Crane, and B. L. Fredrickson, “Methodology for assessing bodily
expression of emotion,” Journal of Nonverbal Behavior, vol. 34, no. 4, pp. 223–248,
2010.

104) A. Mignault and A. Chaudhuri, “The many faces of a neutral face: Head tilt and per-
ception of dominance and emotion,” Journal of nonverbal behavior, vol. 27, no. 2,
pp. 111–132, 2003.

105) T. Shafir, R. P. Tsachor, and K. B. Welch, “Emotion regulation through movement:
unique sets of movement characteristics are associated with and enhance basic emo-
tions,” Frontiers in psychology, vol. 6, p. 2030, 2016.

106) A. P. Saygin, T. Chaminade, H. Ishiguro, J. Driver, and C. Frith, “The thing that should
not be: predictive coding and the uncanny valley in perceiving human and humanoid
robot actions,” Social cognitive and affective neuroscience, vol. 7, no. 4, pp. 413–422,
2012.

107) D. Glowinski, N. Dael, A. Camurri, G. Volpe, M. Mortillaro, and K. Scherer, “To-
ward a minimal representation of affective gestures,” IEEE Transactions on Affective
Computing, vol. 2, no. 2, pp. 106–118, 2011.

108) J. S. Winston, B. A. Strange, J. O’Doherty, and R. J. Dolan, “Automatic and intentional
brain responses during evaluation of trustworthiness of faces,” Nature neuroscience,
vol. 5, no. 3, pp. 277–283, 2002.

109) S. Hamann, “Cognitive and neural mechanisms of emotional memory,” Trends in cog-
nitive sciences, vol. 5, no. 9, pp. 394–400, 2001.

110) S. Droit-Volet and W. H. Meck, “How emotions colour our perception of time,” Trends
in cognitive sciences, vol. 11, no. 12, pp. 504–513, 2007.

111) M. Tielman, M. Neerincx, J. Meyer, and R. Looije, “Adaptive emotional expression in
robot-child interaction,” in 2014 9th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pp. 407–414, IEEE, 2014.

112) O. Houstis and S. Kiliaridis, “Gender and age differences in facial expressions,” The
European Journal of Orthodontics, vol. 31, no. 5, pp. 459–466, 2009.

113) R. E. Jack, O. G. Garrod, H. Yu, R. Caldara, and P. G. Schyns, “Facial expressions
of emotion are not culturally universal,” Proceedings of the National Academy of Sci-
ences, vol. 109, no. 19, pp. 7241–7244, 2012.

114) A. A. Sokolov, P. Zeidman, M. Erb, F. E. Pollick, A. J. Fallgatter, P. Ryvlin, K. J. Fris-



BIBLIOGRAPHY 117

ton, and M. A. Pavlova, “Brain circuits signaling the absence of emotion in body lan-
guage,” Proceedings of the National Academy of Sciences, vol. 117, no. 34, pp. 20868–
20873, 2020.

115) M. Karg, A. Samadani, R. Gorbet, K. Kühnlenz, J. Hoey, and D. Kulić, “Body move-
ments for affective expression: A survey of automatic recognition and generation,”
IEEE Transactions on Affective Computing, vol. 4, pp. 341–359, Nov. 2013.

116) M. Karg, K. Kuhnlenz, and M. Buss, “Recognition of affect based on gait patterns,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40,
pp. 1050–1061, Aug. 2010.

117) A. Parmiggiani, L. Fiorio, A. Scalzo, A. V. Sureshbabu, M. Randazzo, M. Maggiali,
U. Pattacini, H. Lehmann, V. Tikhanoff, D. Domenichelli, A. Cardellino, P. Congiu,
A. Pagnin, R. Cingolani, L. Natale, and G. Metta, “The design and validation of the r1
personal humanoid,” in Proceedings of the 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), (Vancouver, BC, Canada), pp. 674–680,
IEEE, Sept. 2017.

118) T. Nakata, T. Sato, T. Mori, and H. Mizoguchi, “Expression of emotion and inten-
tion by robot body movement,” in Proceedings of the 5th international conference on
autonomous systems, pp. 352–359, IOS Press, June 1998.

119) Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh, “Openpose: Real-
time multi-person 2d pose estimation using part affinity fields,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2019.

120) S. Yagi, N. Ise, S. Yu, Y. Nakata, Y. Nakamura, and H. Ishiguro, “Perception of emo-
tional gait-like motion of mobile humanoid robot using vertical oscillation,” HRI ’20,
(New York, NY, USA), p. 529–531, Association for Computing Machinery, 2020.

121) M. Destephe, A. Henning, M. Zecca, K. Hashimoto, and A. Takanishi, “Perception of
emotion and emotional intensity in humanoid robots gait,” in 2013 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pp. 1276–1281, IEEE, 2013.

122) H. Ikeda and K. Watanabe, “Anger and happiness are linked differently to the explicit
detection of biological motion,” Perception, vol. 38, pp. 1002 – 1011, 2009.

123) T. Otani, A. Iizuka, D. Takamoto, H. Motohashi, T. Kishi, P. Kryczka, N. Endo, L. Ja-
mone, K. Hashimoto, T. Takashima, et al., “New shank mechanism for humanoid robot
mimicking human-like walking in horizontal and frontal plane,” in 2013 IEEE Inter-
national Conference on Robotics and Automation, pp. 667–672, IEEE, 2013.

124) S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and J.-P. Laumond,



118 BIBLIOGRAPHY

“Dynamic walking and whole-body motion planning for humanoid robots: an inte-
grated approach,” The International Journal of Robotics Research, vol. 32, no. 9-10,
pp. 1089–1103, 2013.

125) A. Pandey, S. Pandey, and D. Parhi, “Mobile robot navigation and obstacle avoidance
techniques: A review,” Int Rob Auto J, vol. 2, no. 3, p. 00022, 2017.

126) S. G. Tzafestas, “Mobile robot control and navigation: A global overview,” Journal of
Intelligent & Robotic Systems, vol. 91, no. 1, pp. 35–58, 2018.
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