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Abstract

This thesis focuses on designing mechanical tools for two-finger parallel grip-

pers and enabling robots to manipulate various parts for assembly tasks. The

manipulation ability of a robot heavily relies on the functions of the equipped

hands. For various task requirements, instead of mounting the bulky and costly

hand changers or general-purpose hands, using different tools held by a gen-

eral gripper is a popular way. To be functional, the tools are always designed

with embedded transmissions and power devices. Thus, the tailed cables for

power supply and control are indispensable. However, the deformable cables

result in a high risk of tangling robots and colliding with environment. The pro-

posed tools in this thesis are entirely mechanical and manumotive, allowing the

general two-finger parallel grippers to use without any peripheral and power

supply. Provided multiple tools with different functions, robots with a simple

gripper can easily adapt to various assembly requirements.

The contributions of this thesis consist of three parts. Firstly, the thesis explains

the mechanism design and the structure optimization of the tools. The tools

manipulated by the gripper can be viewed as a mechanism that transmits the

power of the gripper and converts the gripper motion into different output mo-

tions on the tooltip. Besides, the tool requires to be firmly held in the manipula-

tion process. The mechanisms design especially considers the transmission and
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the grasp constraints. Secondly, the thesis proposes to solve the problems on

the aspect of tool use. On the one hand, it includes the task-oriented planning

for tool poses and the grasp/regrasp planning for pose reorientation. On the

other hand, it employs force-control-based methods to manipulate the tool com-

pliantly against uncertainty, such as inserting tools, exchanging tooltips, and

screwing. Additionally, the thesis focuses on an important challenging topic in

assembly, eliminating the grasp of uncertainty. A peripheral tool, a triangular

corner fixture (TCF), is presented to perform like a regrasp intermedia to reduce

the grasp uncertainty in a sensorless way. The TCF can be used to regrasp the

goal objects and also the proposed mechanical tool, which effectively helps to

achieve precise grasps and increase the success rate of assembly tasks.

The concepts of using mechanical tools, the mechanism designing methods, and

the manipulation strategies proposed in this thesis promote the effective solu-

tions on adaptive robotic grasp and varying assembly manipulations. The au-

thor believes that using mechanical tools to extend the manipulation abilities

of robots is a practical and low-cost approach, and would like to develop more

functional tools for fitting wider application needs.
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Chapter 1

Introduction

1.1 Challenges in Modern Manufacturing

In modern society, the booming development makes the market change rapidly,

which significantly challenges the manufacturing industry [1]. In the 1960s,

the manufacturing industry put the cost on the primary concern to meet the

intensive market competition. With the improvement of living standards, prod-

uct quality gradually dominated. Later, the delivery system becomes a major

factor limiting the further development of the market. Nowadays, for the in-

creasingly diverse market, the manufacturing industry has to be adaptable to

the requirements of the market segment [2]. Modern manufacturing must be

flexible and effective to gear to the customer demands and remain competitive

in a changing market [3] [4]. Under this background, a perspective and effec-

tive technical route, cellular manufacturing [5], was proposed. This approach is

far more efficient than production lines for the demands of small and variable

batches of products. Cell manufacturing requires a single piece to be completed

in a cell and the production equipment and labor to coordinate to balance the

production speed according to the order requirements. In each cell, laborers are

assigned with multiple tasks rather than a single repetitive work. This variation

greatly exploits the characteristics of humans as intelligent beings to transfer

knowledge to complete a series of tasks adaptively and also avoids the fatigue

of laborers repeatedly performing a tedious operation.

Not only the production pattern, the popularization of robots has been also con-

tributing to the development of the manufacturing industry. Human laborers
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expected to get rid of the hard environment, high-intensity work, and arduous

operations [6]. Over the past few decades, the replacement of robots on work-

ers has been a growing trend in manufacturing. Robots are the high-precision,

high-output and high-speed manipulators, which can perform effectively in

hazardous environments without any working time limit. Robot density has

also been an important indicator of a country’s manufacturing development.

For the traditional assembly line operations, industrial robots can be widely de-

ployed as they are just assigned to perform simple and arduous tasks [7]. The

deployment of robots undoubtedly liberated a lot of labors and accelerated the

production process. However, the essential problem of the ineffective produc-

tion of the traditional manufacturing still exists.

Applying robots to assist the cell manufacturing is not an easy work. This

manufacturing pattern requires human labours to handle a variety of work

pieces for high-mix and low volume tasks. However, the current robot systems

cannot work effectively without the precise arrangement and cautious teach-

ing, namely, are are inflexible and fail to match the changeable production de-

mands. Thus, the current robot systems are still incapable to replace the human

labours [8]. The author, in this dissertation, especially focuses on the manip-

ulation challenges in robotic assembly and provides practical solutions for the

robot application in variable conditions.

1.2 Robotic Manipulation and Assembly

Human laborers are hard to be duplicated as their adaptive manipulation ability

in job-shop. Humans have both highly adaptive perception and hands, leading
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to the great working performance in unstructured environments. The lifelong

practice and train also benifit human beings from obtaining the adaptive brain-

eye-band systems. Contrarily, in the field of manipulation, robots cannot even

get trapped by the extremely simple tasks for human works. Robotic manipu-

lation, a challenging topic, has been attracting extensive researches [9] [10]. Ma-

nipulation refers to the activities performed by hands. Pragmatically speaking,

the difficulties in robotic manipulation involve three aspects: sensing, mecha-

nism, and mechanics [11].

Sensing bridges the gap between robots and the real world. An entire manip-

ulation work always relates two kinds of sensors. One plays the role in the

eye of a robot, serving for searching and locating [12] [13]. The other pro-

vides the perception of a robotic hand [14], which includes, but is not limited

to force/torque [15], contact [16], and tactile [17]. Researchers always pursue

robust sensing systems that provide accurate and precise recognition and high-

speed feedback.

Mechanism refers to the design of robotic hands. The ability of manipulation di-

rectly relies on the function of robotic hands [18]. Researchers pursue to design

and organize mechanical components to realize versatile and robust functions

in an elegant way. One main concern is to use fewer actuators and sensors to

obtain multiplier and more adaptive functions. The other technical route aims

to specialize the hand for better and more robust performance in a single task.

Mechanics is about the mathematical and physical principles of manipulation.

manipulation can be modeled as a hybrid task combining both kinematic and

dynamic processes. Back to the origin of manipulation, mechanics contributes

to the analysis of the interaction between an object and manipulators, the sens-
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ing and mechanism design are developed to meet the requirements constrained

by mechanics. To fast compute the constraints for planning, researchers de-

velop many simplified models to transfer the complicated physical mechanics,

they include but are not limited to the estimation of force/form closure and the

soft-finger contact model.

A manipulation task always suffers from the changes of the aforementioned

three aspects [11]. Considering a robotic assembly task, with a known assembly

target, a robot is always required to search and locate the part to be assembled in

the environment, stably grasp it, orient its pose, and apply a skillful interaction

force to complete the assembly. For the complex assemblies with various parts,

how to quickly adapt to different assembly parts is one of the main problem we

need to solve.

1.3 Robotic Hands for Various Tasks

The vast majority of assembly tasks start from a grasping motion. Gripped

firmly, an objected can be manipulated to exert interaction forces with environ-

ment and other parts to complete assembly [19]. So the stable and robust grasp

is the precondition of robotic assembly, except some passive compliance control

based on slip and in-hand manipulation. The hands and robot motions together

decide the overall work performance. The robotic hands are not limited within

only grasping but are also expected to exert force to manipulate objects. There-

fore, the robotic grippers playing various manipulation tasks, can lighten the

burden of the control and planning of the robot body. From the perspective

of the development of robotic hands, we hope to expand their adaptation and
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functionality to facilitate the assembly work. There are conventionally two tech-

nical routes. One is to develop versatile and adaptive grippers, the other one is

to use hand changers to equip different grippers accordingly.

1.3.1 General-Purpose Hands

In this part, we discuss three types of general-purpose grippers. The first one

is adaptive grippers including underactuated grippers, soft grippers, and etc.

They are designed with the active or passive mechanisms to build the stable

contact pairs between their finger pads and goal objects. For instance, Laliberte

et al. [20] developed selfadaptive and reconfigurable robot hand. The underac-

tuated hand has 10 DoFs and two motors. It’s finger can adapt to the shape of

objects during grasping. Hirata et al. [21] proposed a gripper that can cage and

self-align various objects. Liu et al. [22] presented a compliant gripper made by

soft materials to grasp size-varied fragile objects. These grippers can perform

well for a group of workpieces, however they can never be completely uni-

versal. Besides, the adaptive grippers perform effectively for only changeable

grasping tasks, consequently, they are incapable of other manipulation require-

ments.

The second one refers to multi-function grippers. By integrating multiple mech-

anisms and actuators, this kind of gripper enables the robot to handle different

manipulation problems. For instance, Harada et al. [23] developed a novel grip-

per by combing a multifinger mechanism and a granular jamming component,

which can achieve versatile grasping firmly as well as flexibly. Triyonoputro

et al. [24] developed a double jaw hand for grasping and assembly. The in-
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ner and outer grippers can work together to finish a task. The design was in-

spired by a human hand holding and manipulating two objects using one hand

in product assembly. Nie et al. [25] proposed a pair of fingers for arranging

screws. The gripper can pick up and tile a screw to let the screw slide to the

bottom of the finger so as to achieve the picking and alignment. However, the

multi-function grippers always face the trading-off between the functionality

and compact structures. Accumulated functions make the gripper bulky. and

the redundant functions also increase the consumption. Additionally, similar to

the adaptive gripper, the multi-function grippers are also not completely uni-

versal, instead, only applicable for the limited tasks. The multi-function grip-

pers are more like the integrated end-effecters specially customized for a series

of tasks.

Anthropopathic hands are also general-purpose grippers as human hands are

good at performing flexible grasping and dexterous manipulation [26]. It is the

ultimate goal of anthropopathic hands is to completely mimic the motion of

human hands. But, in the field of robotic assembly, the large amount of redun-

dancy makes the motion planning hard. And, there is still huge gap between

the sensing abilities of human and sensors. Thus, the feedback control of the

redundant gripper is still challenging. Additionally, the disadvantages of hu-

man hands, such as low accuracy and weak force output, are inherited by the

anthropopathic hands.
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1.3.2 Hand Changers

Using hand changer is an effective way to extend the functionallity of robots. It

is very intuitive to change the current inapplicable gripper into a feasible one.

As the hand changer allows robots to using different grippers for different tasks,

each gripper can be designed to focus on a single task. Thus, the robots can per-

form stably for every task. Robot hand changers originate from the tool chang-

ers used in Computer Numerical Control (CNC) machines [27] [28] [29], and are

still widely studied [4][5]. The reason is to use robots in industry applications,

engineers have to design various grippers [6] to adapt to different tasks and

objects. Recent development in robot hand changers has two trends. The first

is developing automatic tool changers for mobile manipulators. Some of them

are electro-mechanically actuated, like the one presented in [7]. Some others are

passive, like the one presented in [8]. Which used passive mechanisms actu-

ated by host robots. Other than the changers, some studies design interfaces for

robot end-effectors. An example is the da Vinci Surgical Research Kit [9]. The

idea is to set an adapter between the tool and the original end-effector. A finger-

tip changer [10] shares the similar idea. The aforementioned studies all provide

effective ways to change hands for robots. However, though those systems can

provide reliable and precise fixing as well as connection, the efficiency of the

exchanging process is still a problem. Also, the tools are adapted for specific

end shapes, and the peripheral equipment is indispensable, which restricts the

potential applications.
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1.4 Manipulation Using Tools

Robotists always take inspiration from human behavior. Human beings can

leverage tool to solve different manipulation problems. Human morphology

and brain are flexible and adaptive specifically to improve our performance in-

hand manipulation and fabricating better tools that contribute to daily work.

Humans evolved to use naturally occurring tools and to fabricate better tools,

and then covered with these tools [30] [11]. Not only humans but also primates

and some birds can use tools for foraging [31] [32]. This give us all the more

reason for seeing the significance of tool use for object manipulation.

Human tools mainly include two categories: manumotive tools and powered

tools. [pic]Manumotive tools are powered by human hands, they transit the

motion of hands (squeezing or stretching) into various motion output on the

tooltips. The scissor, tweezer, and plier are representative manumotive tools.

[pic]Powered tools are always equipped with a power supply and driven by a

power-machinery, such as the electrical motor or the pneumatic actuator. They

can be designed with various embedded transmission mechanisms for func-

tional motions. The common powered tools are such as electrical/pneumatic

screwdrivers, vacuums, and magnet grippers.

The tool designing on one hand considers the functionality, while on the other

hand takes the hand morphology and the grasp behavior into account from the

view of ergonomics. [Zoom in of the handles of scissors, driver, e-driver]. It

stands to reason that anthropopathic hands are capable to use all the tools de-

signed for human beings. However, considering the aforementioned problems

of cost and difficulties on planning and control, deliberately employing the an-
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thropopathic hands to use the tools is not an effective method. The optimal

gripper candidate from the viewpoint of economy and stability is the two-finger

parallel grippers. They are also the most widely installed grippers in industrial

automations and robots [33]. A two-finger parallel gripper requires only one

degree of freedom, thus, is compact and cheap. One the other side, it can only

exert a simple parallel gripping motion, leading to limited functions. Therefore,

it will be a promising technology to use tools to extend the functionalities of

two-finger parallel gripper. Manumotive tools are in-hand manipulated while

being held by human hands. The human oriented manumotive tools consider

less about the grasp features of robotic grippers. Thus, they are inapplicable

for two-finger parallel grippers. Powered tools, however, can be easily used by

two-finger parallel grippers. When using them, the gripper can be viewed as a

coupling for reconfiguration. After gripping the tool, namely the robot recon-

figurates it’s end-effector. In the operation, the robot needs only to move the

tool to a goal pose. Thus, the tool use problems are simplified into a pick-move

motion. Of course, the two-finger parallel grippers are still hard to directly use

the powered tools designed for human beings as the design of their comfortable

handles. Two-finger parallel grippers exert a strict parallel constraint on the

grasped objects. The essential condition for holding an object is the existence

of the parallel contact pairs on the object surface. The problem is also empir-

ically solvable by reshaping the tool shell [34]. But, the powered tool always

needs the cables or tubes for power supply and control, which cause unignor-

able problems. These cables are soft and deformable, leading to unpredicted

configurations in the operation process. They may collide with the surrounding

and may also bind robots, and even drag the robots until protective stop in a

worst case. Daniel et al. [35] proposed to use an assistant robot to drag the cable
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to a position without interference corresponding to the planned position of the

objective tool. They further developed to use two dual-arm robots, namely four

arms, to manipulate the tool and cable [36]. The multi-robot cooperation even

enables the tailed tool to be handover. However, assigning four robots to ma-

nipulate a single tool is too costly. The ultimate solution for avoiding the impact

of the tailed cables is to fully remove the cable. Thus, we combine the features

of the manumotive tool with the powered tool to design the tools that can be

powered and controlled by a two-finger parallel gripper while being held by

the gripper.

1.5 Mechanical Tools for Two-Finger Parallel Grippers

The mechanical tools can be viewed as the mechanisms that transmit the grip-

ping force and convert the motion of the grippers. The function of a parallel

gripper thus is not limited by the intrinsic grasping configuration. Simply, the

gripper can use a clamping tool to pick tiny objects that are much smaller than

the original finger pads. The clamping tool transmits the parallel gripping of

the gripper to the parallel gripping on the tooltips. Using a similar mechanism,

we can design the tool with large pads on the tooltips and a wider grasp range.

Therefore, the gripper can also handle large objects whose dimensions exceed

the original grasp range. Instead of grasping, we can also design the tools with

different functions, such as shearing, twisting, and screwing.

The features of the designed tool are: (i) The tool is mechanical and is only

manipulated and actuated by robotic grippers. (ii) The tool can be designed

with various tooltips adapted for different tasks. (iii) The tool can be placed at
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an arbitrary pose in the workspace, and be recognized, grasped, manipulated,

and used by parallel robotic grippers.

In the following part of this section, we will explain the difficulties and chal-

lenges of designing and using mechanical tools for two-finger parallel grippers,

and discuss the contributions of this thesis on this topic.

1.5.1 Mechanism Design and Structure Optimization

It is challenging for a two-finger parallel gripper to hold and control the tool

as the gripper has only one parallel motion degree of freedom and has no spe-

cific jigs on the finger pads. Both the firmly holding and force output rely on the

gripping force. The designed mechanism should allow a deformation that caters

to the parallel gripping motion and also exerts resistance force for holding. Im-

portantly, the mechanism should be capable of transmission from parallel mo-

tion into various motions. This thesis focuses on achieving parallel-to-parallel

transmission and parallel-to-rotation transmission. The mechanism designs are

based on the parallel four-bar link mechanism and the scissor-like mechanism,

respectively. The parallel four-bar link mechanism contributes to the transmis-

sions between the parallel motions. And, the rotating motions can be obtained

by the rotating arms of the scissor-like mechanism while its structure gets ex-

tended or squeezed. To structure the tools, we need to consider the symmetry

of the gripper motion and grasp configuration, the grasp position on the tools,

and the stability of the tools in the operation. We use a pair of symmetrical par-

allel mechanisms to design the tools for parallel-parallel transmission. When

held by the gripper, the tooltips are ganged to the fingerpads, thus, can strictly
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follow the parallel motion. And, we employ the C-SLMs to design the rotating

tool. The design on one hand constrains the tool pads to move parallelly and

symmetrically, while on the other hand constrains the rotation central axis on

a fixed position. For resisting support force, we install torsion springs on the

joints.

1.5.2 Planning and Control for Tool Use

The first problem is grasp planning. In the case of using the tool to grasp an ob-

ject, the object should be firmly clamped by the tool while the tool is stably held

by the gripper. The planner is required to consider the grasp constraints from

the two parts. And, the method of reorienting the tool pose is indispensable as

the initial tool poses may have no direct path to reach the pose for the task ex-

ecution. Additionally, in the process of task operation, the interaction between

the tool and the environment may force the robot to stop or may make the tool

fall. Compliance control is required to offset the unexpected force interaction.

This thesis uses a model-based method to plan grasps. The planning starts from

a known object mesh, samples the parallel contact pairs, and checks the stabil-

ity and collision. The stability estimation is based on GWS method. We use a

graph-based motion planning method to generate the paths to use the tool to

grasp the object. Instead of directly bridging the robot configurations from the

initial grasps to the goal grasps, we add the nodes of grasping the tool. And,

we use the regrasp-graph to plan the regrasp paths to orient the tool, especially,

we add the grasp constraints of the tool-control poses. The problem of interac-

tion force intensively occurs on the screw fastening task using the rotating tool,
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the robot should follow the downwards motion of the screws while avoiding

getting stuck. We use the hybrid force/position control on the robot to make

the gripper can both exert torque on the tool axis and be adaptive in the other

directions to offset the uncertain collision and slide.

1.5.3 Manipulation for Uncertainty Elimination

The tool use extends the manipulation ability, but also introduces much more

grasp uncertainty. Uncertainty is a crucial problem to employ robotic manipu-

lators for assembly tasks. Especially for autonomous manipulators that receive

vision feedback and generate manipulation motion online, uncertainty is chal-

lenging to eliminate – They originate from a series of mutually coupled compo-

nents like vision, control, contacts, etc. Overcoming them and achieving precise

manipulation is tricky. Using the tools to grasp an object, the uncertainty on

grasping the tools are accumulated to the overall uncertainty, leading to lower

success rate.

In this thesis, we presents a tool with a shape of triangular corner fixture, and

proposes an regrasp planning method to eliminate grasp uncertainty by using

the tool as a regrasp intermedia. The tool, a Triangular Corner Fixture (TCF) is

made by three inclined and mutually perpendicular plates. The inclined plates

of the TCF form a gravity bucket that holds a dropped objects in stable states

under gravity. In a real scenario, a robot picks up an object and releases it above

the TCF. The released object will reach a stable state on the TCF. Then, the robot

regrasps and moves the stabilized object to the target pose with reduced uncer-

tainty. The robots can use the tool to eliminate the uncertainty of both the goal

21



objects and the mechanical tools, making the accurate assembly successful.
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Chapter 2

Related Work

This chapter introduces related research that inspire this thesis. Three topics

are summarized: mechanism design, robotic manipulation of tool use, and the

manipulation for uncertainty elimination. In the first part, mechanism design,

we focus on the mechanisms for designing a high-performance end-effector,

especially the designs that contribute to the force transformation and motion

convention. In the part of robotic manipulation of tool use, we review the ex-

plorations of the reasoning and planning on tool use. In the third topic, we

investigate the methods of the sensor-less manipulation and the placement es-

timation for eliminating uncertainty. Additionally, we compare our proposed

method with the previous research and highlight our novelties.

2.1 Mechanism Design

Mechanism designing in robotics is an old problem that has been extensively

studied in industry. The most notable reading materials about are the books

written by Monkman et al. [37] and Wolf et al. [38]. They not only discussed the

mechanisms but also the actuation system. Compared to them, our focus is on

the mechanical design part. We proposed to actuate our tools using the force

exerted by the robotic gripper.
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2.1.1 Parallelogram and Elastic Component

For the clamping tool, our design is based on parallelograms, which is a popular

and widely seen mechanism in robotic gripper design. For example, Hassan et

al. [39] presented a novel gripper for “pick and place” tasks. One of their mul-

tiple fingers was active, and was driven by a motor via a four-bar mechanism.

Kocabas et al. [40] presented a one DOF gripper for power grasping. It consisted

of a spherical symmetrical parallelogram to envelope objects. Triyonoputro et

al. [24] and Nie et al. [25] developed a double jaw hand for grasping and assem-

bly. The inner and outer grippers were made by four parallelograms that could

work together to align and hold multiple objects.

Elastic components are widely used in underactuated hands to make up the in-

sufficiency of actuators. For example, Laliberte et al. [20] and Birglen et al. [41]

used elastic components to switch parallel grippers to a compliant mode and

trigger power grasps. Ma et al. [42] used rubber connections between finger

links as the elastic components to implement adaptive, shape-enveloping un-

deractuated hands. Chen et al. [43] compared the adaptability of different un-

deractuated mechanisms implemented with elastic components.

We use two symmetric parallelograms as the transmission mechanism of the

tool and used the soft-finger contact model [44] to analyze the contact forces

and torques between the robotic gripper and the tool as well as between the

tool and the object to be grasped. The tool reopens after being released by taking

advantages of the energy stored in some elastic components (torsion springs).

The tool does not have an active actuation system. It is passively driven by

robotic grippers.
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2.1.2 Scissor-Like Mechanism and Ratchet

To develop the rotating tool that can output continuous rotation following the

continuous close-and-open of a gripper, we use Scissor-Like Elements (SLEs)

and ratchet mechanisms as basic elements, and also use elastic elements to pro-

vide resisting forces for holding the tool and producing torque output when a

gripper releases the tool.

An SLE is a widely seen mechanical unit in scissors and scissor-like tools like

pliers. A basic SLE element has two scissor arms that can freely rotate around

a pivoting point [45]. This basic element has many variations. For example,

Monkman et al. [37] and Khasawneh et al. [46] respectively extended basic SLEs

to a pantograph for transmitting the grasp stroke of grippers. Maden et al. [47]

reviewed Chained SLEs (C-SLE) used in planar or spatial structures. The C-

SLE is a popular mechanism for robotic end-effector design. Yang et al. [48]

presented a 2-DoF planar translational mechanism based on SLE-parallel – a

mechanism consisting of two identical SLE limbs connected at two correspond-

ing nodes by links. Corinaldi et al. [49] proposed a 3-DoF deployable gripper

mechanism using SLEs and Sarrus linkages, which has a spatial structure to

transmit motion symmetrically. Kocabas et al. [40] developed a 1-DoF spherical

gripper mechanism consisting of spiral SLEs and linkages for power grasping

of various shapes. Sanaani et al. [50] and Mehrabi et al. [51] used SLEs to design

microgrippers. Instead of directly using conventional hinges, the authors stud-

ied to approximate their functions using the deformation of materials, making

the design compact applicable to microdevices. Yuan et al. [52] compared SLEs

with other transmission mechanisms like pulley blocks, lead screws and racks,

and designed a cable-driven telescope. Other than robotic end-effector design,
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SLEs are also widely used in the structure of robot bodies [53] [54] [55] [56],

exoskeleton [57], as well as general mechatronic devices to perform tasks like

mobile pavilions, foldable stairs, collapsible doors, etc. [58] [59]. Besides the

mechanism, the dynamic performance of SLEs is also widely studied. For ex-

ample, Sun et al. [60] modeled the dynamics of a spatial deployable structure

made of three SLEs using screw theory. Wang et al. [61] presented a method for

solving the ordinary differential dynamics equations of deployable structures.

Li et al. [62] studied the negative effects of joint clearance on SLE-based deploy-

able structures’ dynamic performance.

A ratchet allows continuous linear or rotary motion in one direction but locks

opposite motion. The feature makes it a widely used transmission mechanism

[63] [64]. In robotics, a ratchet is usually used as a locking device [65]. Li et

al. [66] developed a hopping robot, in which a locked ratchet mechanism is

released to trigger an energy storage mechanism. Geeroms et al. [67] developed

an active knee-ankle prosthesis, in which a ratchet unit is used to lock the weight

acceptance mechanism. As for the end-effector design, Abe et al. [68] designed a

re-configurable end-effector for endoscopic surgery using a bending mechanism

where a ratchet unit is employed to lock and release transmission following the

bending conditions. Gerez et al. [69] and Sabetian et al. [70] focused on the

development of underactuated grippers using ratchets. Besides, an electrostatic

microgripper was presented in [71] by taking advantage of a ratchet’s locking

feature.

We use the above mechanical components to design a tool for parallel grippers.

The actuation force of the tool is transmitted from the grippers. Two modified

C-SLE (mC-SLE) are used to convert the parallel robotic gripping motion into
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oscillating rotation. A double-ratchet mechanism is connected to the two mC-

SLEs to modulate the oscillating rotation into a unidirectional and continuous

one. Like our previous tweezer tool [72], elastic elements are used to provide

resisting force for robotic grasping. They are also used to stretch the tool and

maintain the rotation when a robotic gripper is opened.

2.2 Manipulation of Tool Use

Using tools is an extensively studied robotic manipulation problem. With

known models, developing robotic applications to use tools can be formulated

and solved as an AI reasoning problem [73] [74]. The motion for using a tool can

be planned by combined task and motion planning [75]. The task routine for us-

ing a tool is complicated, which, however, can be resolved into several subprob-

lems [76] [77] like tool selection, tool recognition, constrained grasping and tool

reorientation, etc. [78] [79] [80] [81]. Practical systems can thus be implemented

in a divide-and-conquer way. Learning from demonstrations is also a popular

approach to transfer the routine of using tools to robots. In [82], robots learned

complicated manipulation like using a hammer through simulated demonstra-

tions. In [83], human demonstrations were captured by pose-tracking and were

then employed to learn how to identify and use tools. Raessa et al. [84] proposed

a human demonstration-based method for teaching robots to use tools with spe-

cial consideration of regrasp planning. Additionally, instead of demonstration,

Xie et al. [85] presented the method of using video prediction for reasoning the

potential robotic use of surrounding objects as tools in an improvisational way.

Besides the motions and task routines, many studies also focus on the various
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constraints and force problems. For example, Rachel et al. [86] studied the force

constraints in the tool manipulation tasks. Toussaint et al. [73] studied the phys-

ical interaction between a tool and an object. Especially, the forces in a screw-

fastening process are complicated [87], and improper control policies may lead

to jamming, unqualified fastening torque, or cause damage to the screws and

parts. For these problems, Nicolson et al. [88] discussed the maximum tilt an-

gle of a screw and proposed an accommodation matrix-based control method to

avoid jamming. Tan et al. [89] developed a Series Elastic Actuator (SEA) based

electric actuator to implement hardware impedance in a screw-fastening pro-

cess.

In this work, we study the forces and develop the manipulation policies for a

robot to use the designed mechanical screwing tool to fasten screws. Our nov-

elty is two-fold. First, we carefully study the contacts and forces between a robot

hand and the tool so that the hand can stably hold and use it. Second, we de-

sign manipulation policies and policy-selection algorithms for tool recognition,

adjusting grasping poses, exchanging tooltips, and detecting and completing

screw fastening tasks. Hybrid arm control and gripper squeezing-stretching ac-

tions are combined to achieve both steady screwing and successful detachment

after finishing a fastening task.

2.3 Manipulation for Eliminating Uncertainty

In this thesis, we propose to use the triangular corner fixture as a regrasp inter-

media to eliminate the grasp uncertainty. This research relates to two aspects:

sensorless manipulation and placement estimation.
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2.3.1 Sensorless Manipulation

Like its name, sensorless manipulation means manipulating objects without us-

ing sensors. It relies on the mechanic and geometric constraints of a task to

pose objects, and is simpler and more robust compared to sensor-based ma-

nipulation [90]. Sensorless manipulation is widely seen in automation lines to

eliminate the uncertainty. The exemplary mechanism used for sensorless ma-

nipulation includes chutes, hoppers, bowl feeders and feed tracks, etc [91]. For

robotic applications, Mason initially discussed the basic concept of sensorless

robotic manipulation in [92]. After that, a variety of sensorless robotic manip-

ulation approaches were studied. For example, Brost et al. [93] proposed using

combined pushing and squeezing and flat finger pads to grasp an object with

uncertainty. Nie et a. [94] and Hirata et al. [21] designed special-shape finger

pads to align uncertain objects. Ha et al. [95] developed an automatic designer

that finds finger pad shapes for robustly grasping various objects. Goldberg et

al. [96], and Zhou et al. [97] used a sequence of parallel grasp actions to orient-

ing and positioning uncertain objects to a specific pose. Maeda et al. [98] and

Varkonyi et al. [99] developed caging-based methods to achieve in-hand ma-

nipulation and parts feeding, respectively. Erdmann et al. [100] and Schmidt

et al. [101] used the active actions of palms and boundary walls to manipulate

objects. Berretty et al. [102] and Akella et al. [102] studied the usage of passive

settings like fences. Grossman et al. [103], Erdmann et al. [90], and Mannam et

al. [104] respectively used robotic manipulators to move a tray attached to its

tool center point. As the robotic manipulator moves, an object in the tray will

be slid into a trihedral corner and stopped by the tray’s walls. The final pose

of the object can be determined by carefully planning and controlling the tray’s

tilting motion.
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Similar to the conventional sensorless manipulation systems, our proposed

method uses geometric constraints to hold objects. The objects are supposed

to be dropped by a robotic manipulator onto a TCF and trapped by the tilted

TCF inner surfaces under gravity. We assume that visual recognition is used to

locate an object’s initial pose, and allow recognition and other uncertainty. We

develop algorithms to plan stable placement poses, estimate dropping poses,

and plan grasp/regrasp poses to reduce uncertainty while taking advantage of

the TCF’s geometric constraints. Our process is fully automatic and applies to a

wide variety of objects given their model information.

2.3.2 Placement Estimation

We consider a placement estimation as a two-part process. In the first part, we

find a set of stable placement poses of the part. Then, based on the placement

poses, we infer the dropping or releasing poses. The review of related work in

placement estimation is carried out by inspecting the two parts.

The most fundamental problem of placement estimation is finding a stable

placement on a horizontal plane. In this case, the object’s stability can be de-

termined by checking if its Center of Mass (CoM) projection passes through the

convex supporting polygon [105] [106] [107]. As an extension to the fundamen-

tal problem, Wan et al. studied the placement planning on a tilted plane [108],

a support pin [106], and arbitrary support structures [109]. Harada et al. [110]

developed an algorithm to plan the stable object placement with non-flat con-

tact considering the convexity of the paired contact surfaces. They assumed

that the friction force is large enough to prevent sliding. The placement stabil-
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ity of rigid bodies and assemblies considering frictional contact was discussed

in [111] [112]. Contact Wrench Space (CWS) was widely used for stability esti-

mation. The radius of a maximum inscribed sphere in the contact wrench cone

indicates how much external wrench or inertial wrench a grasp can tolerate. It

can be used to evaluate the grasp qualities and find optimum grasp configu-

rations [113] [114] [115] [116], and can also be used to estimate the stability of

structures [117] [118].

Dynamic dropping simulation is also widely used for placement estimation

[109] [119]. However, to assure the reliability of the simulated results, various

parameters need to be tuned, and repeated examinations must be performed,

which makes the methods less credible and time-consuming. For this reason,

many researchers studied fast alternatives for dynamic simulation. For exam-

ple, Kriegman and David [120] proposed an algorithm that computed a maxi-

mal capture region of the desired stable pose in the configuration space where

the object pose would converge into a desired one. Jorgensen et al. [121] pre-

sented to generate drop regions for stable poses and discussed two methods,

the largest enclosing ellipsoid computation and the kernel density estimation to

determine optimal drop poses from them. Varkony [122] provided a statistics-

based prediction method for estimating the resting poses of the dropped parts.

Fekula et al. [123] used a similar method to perform the estimation, and based

on the reasoned stable poses and the rendered top view images of them, they

further positioned the objects using a vision-based method. Baumgartl et al.

[124] developed a fast placement planner, which is capable of computing a sta-

ble position and orientation for a dropped object in complicated environments.

In addition, learning-based methods also became popular for placement estima-

tion and handling the uncertainties in manipulation processes. Lu et al. [125]
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proposed to train a probabilistic graphical model as a classifier to predict the

appropriate grasp types (power grasp or precision grasp). Li et al. [126] devel-

oped a deep network that uses a single depth point cloud to estimate the pose

of an articulated object. Newbury et al. [127] used two Convolutional Neural

Networks (CNNs) to estimate both the placement rotations and stabilities and

obtain the human-preferred object placements and orientations. CNNs are also

well used to estimate the grasp configurations [128] and predict the grasp qual-

ities [129] as well. Feng et al. [130] used a Support Vector Machine (SVM) and a

Long Short-Term Memory (LSTM) model to analyze the features of tactile sen-

sors to detect slip and unstable grasps.

In our proposed method, a TCF is used to hold the dropped object and constrain

its final configuration. We first find the SPPs on the tray corner considering

the geometric constraints at the contact. Then, we use analytical and learning

methods to obtain the DDPs of the objects that lead to the found SPPs. We

compare the performances of the different estimation methods to understand

the advantages and disadvantages.
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Chapter 3

Clamping Tool

This chapter elaborates the clamping tool in this section. We discuss the details

of the design, including the kinematic structure, the analysis and optimization

of grabbing force and sizes, and the consideration of stable placements, recogni-

tion, pose adjustment, and working poses. We carry out experiments to analyze

the performance of the design, as well as develop a robot system that uses the

tools with different tips to pick up various objects. The experiments and anal-

ysis show that the mechanical tool is a flexible alternative to tool changers and

finger-tip changers. With the help of visual detection and motion planning al-

gorithms, robots are able to automatically recognize and use the tool to perform

a wide range of tasks.

3.1 Design and Optimization

This section presents the details of design and optimization, including the kine-

matic structure, the optimization of forces and sizes, as well as the variation in

tooltips.

3.1.1 Kinematic Structure

The tools designed for human hands usually have a rotational joint, as shown in

Fig.4.1(a). The reason is that the rotational grab formed by the thumb is the main

synergy of human hands [131], as shown in Fig.3.1(a). Likewise, a tool designed
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for parallel robotic grippers (Fig.3.1(b)) is best to have a parallel mechanism to

cater to the parallel motion of the robotic gripper.

Figure 3.1: (a) The main synergy of a human hand. The thumb and the remain-
ing fingers form a rotational grab. The tools designed for human hands thus
usually have a rotational joint. (b) The motion of a parallel robotic gripper. The
tool designed for it is best to have a parallel mechanism.

An intuitive idea to implement parallel motion is to use sliding rails. Linear

springs may be attached to the rails to help return to the initial state after re-

leasing. Fig.3.2(a) illustrates the idea. This idea is easy to understand, but is

difficult to assure stable parallel motion. Fig.3.2(b) shows the free body dia-

gram of the intuitive mechanism. To meet the momentum equilibrium, equation

FAdA − FBdB = 0. That is, dA and dB must equal to each other. To assure a stable

parallel motion, the contact can only be applied at the center of the two springs,

which severely decreases the possible grasp configurations and increases the

difficulty of automatic manipulation planning.

Instead of the simple sliding rails, we design the tool by using two symmetric

parallelograms, as shown in Fig.3.2(c) and Fig.3.2(d). The two parallelograms

allow the force from robotic grippers to be evenly distributed to the joints, and

could therefore better assure stable parallel motion. Both of the two configura-

tions in Fig.3.2(c) and Fig.3.2(d) can provide parallel motion transmission. The

configuration in Fig.3.2(c) is selected since the configuration shown in Fig.3.2(d)

is less stable. The details will be explained in the force analysis subsection.
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Figure 3.2: (a) The motion of an intuitive parallel mechanism made by sliding
rails and linear springs. (b) The free body diagram of the intuitive mechanism.
(c) A parallel mechanism made of two symmetric parallelograms. In this case,
the base frame will move backward while the tool is closed. (d) An inversed
design of (c). In this case, the base frame will move forward while the tool is
closed.

Fig.3.3 shows the design. The jaw is fully opened and closed in Fig.3.3(a) and (b)

respectively. The two parallelograms are symmetric and force the two tooltips to

move in parallel. Four torsion springs are installed at joints P1∼P4. The torsion

springs are concentric with the rotating shafts. The ends of the torsion springs

are fixed to the base frame and the angular links. The torsion springs provide

resistance forces to prevent the tool from sliding out of the robotic gripper. They

also provide forces to reopen the tool as the robotic gripper releases.

The torsion springs are installed with a pre-angle β, which is determined by the

stopper crafted in the base frame. The torque exerted by a spring to an angular

link is:

Tspring = κ(β + ∆θ), (3.1)

where Tspring is the exerted torque. β is the pre-angle. κ is the elastic coeffi-

cient. ∆θ is the rotational angle of the angular link. Choosing a proper β is an

optimization problem. On the one hand, with the same ∆θ, a large β provides

a large resistance force to robot grippers and hence provides larger friction to
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Figure 3.3: The designed mechanical tool. (a) The tool is completely open. (b)
The tool is closed. Torsion springs shown in the circle are installed at joints
P1∼P4.

prevent the tool from sliding out of the robot gripper. It also leads to a shorter

stroke of the robotic gripper to get the same transmitted force. On the other

hand, if β is too large, the robot gripper has to exert a very large force to over-

come the tension of the torsion springs. In the worst case, the tool may not be

closed. The details of the optimization and force analysis will be discussed in

the next subsections.

3.1.2 Force Analysis

In this subsection, we analyze the forces between the tool and a robot gripper

to optimize the design. The subsection comprises two parts. In the first part,

we analyze the condition for a robot gripper to firmly hold the tool as well as

the relationship between robot grasping force and the resistance force from the

torsion springs. In the second part, we analyze the maximum weight of objects
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that can be pick up by the tool.

Holding the tool

We model the contact between the robot gripper and the tool as a soft finger

contact. Following [132] [133], the force and friction exerted by the robot gripper

can be computed by:

f 2
gripper +

T 2
gripper

e2
gripper

⩽ µ2
gripperF

2
gripper, (3.2)

where fgripper is the tangential force at the contact. Tgripper is the torque at the

contact. Fgripper is the gripping force exerted by the robot gripper. egripper is an

eccentricity parameter computed as the ratio between the maximum friction

and the maximum friction torque on the contact surface:

egripper =
max(Tgripper)
max( fgripper)

. (3.3)

The free body diagram when the tool is held by a robot gripper is shown in

Fig.3.4. Here, α is the angle between the tool and the direction of gravity. It is

called the tool angle. dcom is the distance between the grasping point and the

center of mass com of the tool. By using the symbols shown in the figure and

the soft finger contact model, we can get the condition to hold the tool as:

dcom ⩽ egripper

√√
4µ2

gripperF
2
gripper −G2

tool

G2
tool sinα2µ2

gripperF
2
gripper

. (3.4)

When dcom equals 0, there is no torque at the contact. The robot gripper can hold

the tool as long as 2µFgripper ≥ Gtool. When dcom is not 0, the Fgripper needed to hold

the tool is a function of dcom, Gtool, µtool, and α.
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Figure 3.4: The free body diagram when the tool is held by a robot gripper.
Fgripper is the force exerted by the robot gripper.

When the tool is held firmly by the robotic gripper, the relationship between

Fgripper and the torque exerted by the torsional springs Tspring is:

Fgripper =
Gtool cosα tan θ

2
+

2Tspring

rtool cos θ
. (3.5)

The gripping force equals to the resistance force induced by the torsion spring

and the gravity. The equation shows (i) Fgripper ∝ Gtool when α ∈ (−90◦, 90◦), and

(ii) d is irrelevant and the resistance force is the same at any grasping point.

The first point further implies that when α ∈ (−90◦, 90◦), a larger gravity leads

to a larger resistance force and hence a larger contact force (a larger friction) be-

tween the robot gripper and the tool. The implication reveals another advantage

of the configuration in Fig.3.2(c) over the one in Fig.3.2(d). The force relations

of Fig.3.2(d) is

Fgripper = −
Gtool cosα tan θ

2
+

2Tspring

rtool cos θ
, (3.6)

where Fgripper ∝ −Gtoolwhen α ∈ (−90◦, 90◦). In this case, the gravity of the base
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frame reduces the friction and makes the hold less stable. Thus, the configura-

tion in Fig.3.2(c) is preferrable than the one in Fig.3.2(d) when α ∈ (−90◦, 90◦).

Grasping an object using the tool

Next, we analyze the maximum weight of objects that can be pick up by the

tool. The contact between the object and the tool is also modeled using the soft

finger contact.

The force exerted by the tool to the object could be computed as

Ftool = Fgripper −
Gtool cosα tan θ

2
−

2Tspring

rtool cos θ
. (3.7)

Using the soft finger contact model shown in equation (4.1) and (4.2), the friction

coefficient µtool at the contact between the tool and the object must meet

µtool ⩾
Gob j

2Ftool

√
1 +

r2
ob j

e2
tool

(3.8)

to assure the object could be stably clamped by the tool. Here, etool is the eccen-

tricity of the soft contact between the tooltip and the object.

When equation (3.8) is met, the maximum weight of an object that can be pick

up by the tool can be computed as follows. The meanings of the symbols are

noted in Fig.3.5.

When the force and torque are balanced, we get:

2 ftool −Gtool − fob j = 0, (3.9)

Gtooldcom sinα + 2Ttool − fob jdtooltip sinα = 0. (3.10)
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Figure 3.5: The free body diagram when the tool is holding an object. Fgripper is
the force exerted by the robot gripper.

The maximum weight of the object to be held can be computed using equations

(3.9), (3.10), and the boundary condition in equation (4.1) as:

a = 1 +
d2

tooltip sinα2

e2
gripper

, (3.11)

b = Gtool(1 −
dtooltipdcom sinα2

e2
gripper

), (3.12)

c =
G2

tool

4
+

G2
toold

2
com sinα2

4e2
gripper

− µ2
gripperF

2
gripper, (3.13)

Maximum weight =
−b +

√
b2 − 4ac
a

. (3.14)

3.1.3 Size and Material Optimization

In this section, we discuss the optimization of the tool considering geometric

constraints, maximum pickable object weight, and the materials of the tooltips.
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We would like the tool to have a large stroke and compact size, at the same time,

we hope it to be able to clamp a large load.

Geometric constraints

The dimension parameters shown in Fig.3.6 are used for optimization. Equa-

Figure 3.6: The dimensional parameters used for optimization.

tions (3.15) and (3.16) show the relationship among the width of the tool, the

stroke of the tool, and the rotational angles of the angular link.

winit = wbase + 2rtool sin θinit (3.15)

wstroke = 2rtool(sin θinit − sin θend) (3.16)

Given a fixed winit, wstroke is expressed as:

wstroke =
winit − wbase

sin θinit
(sin θinit − sin θend). (3.17)
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Equation (3.17) shows that increasing θinit and decreasing θend and wbasewill en-

large the stroke wstroke. When θinit is 90◦, θend is 0◦, wbase is 0, wbasereaches to its

maximum. However, the relationship between Fgripper and θ shown in (3.5) tells

that an overlarge θinit will significantly increase the requirements on the grasp-

ing force Fgripper and make the tool hard to be compressed. If θinit reaches 90◦, the

tool can never be used. Also, if wbaseis 0, the base will disappear. In this case,

since the links have a width in the real world, wbaseshould meet:

wbase ⩾ daxis + 2redge. (3.18)

For the same reason, θend cannot be 0◦. Its minimum can be calculated consider-

ing the radius of the joints and the width of the links. The red dot lines in Fig.3.6

show the situation when θend reaches its minimum. In this case, the parallel link

touches the base frame. The minimum θend can be computed using Equation

(3.19). p should meet equations (3.20) and (3.21). h should meet equation (3.22).

Otherwise, the links will overlap with each other.

θend = arcsin
q

rtool
(3.19)

q = daxis + 2redge (3.20)

p ⩾ lbase sin θend (3.21)

lbase ⩾ rtool cos θend + tan θend(daxis + 2redge) (3.22)
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Maximum pickable object weight

The maximum weight that the tool can pick follows equation (3.11)-(3.14). The

sum of dtooltip and dcom is the parameter we would like to optimize. It linearly

increases with ltool. Meanwhile, dcom must meet equation (3.4) and (3.5) to allow

the tool to be held stably by the gripper, that is, the maximum value of dcom is:

dcom = egripper

√√√√√ 4µ2
gripper(

Gtool cosα tan θ
2 +

2Tspring

rtool cos θ )
2
−G2

tool

G2
tool sinα2µ2

gripper(
Gtool cosα tan θ

2 +
2Tspring

rtool cos θ )
2 . (3.23)

By combining it with equations (3.11)-(3.14) and approximate the sum of dtooltip

and dcom using ltool , we can formulate the maximum weight as a function of

ltool, rtool, α, and some other variables. The complete form of the formulation

is complicated and is not listed in the paper. Interested readers may deduce it

by replacing dcom using ltool in equations (3.11)-(3.14) using equation (3.23) and

ltool-equation (3.23).

To analyze the equation, we assume the following values for the other variables

and focus ltool and α. We set the maximum gripping force of the robotic gripper

to be 80 N, the θ angle when the tool is picked up to be 45◦, the weight of the

tool to be 3 N, and the coefficient of the torsional spring to be 3.5 N ·mm · degree.

Under the assumption, the maximum weight changes with respect to ltool, rtool,

and α follows the 3D plots in Fig.3.7. The surface shows that to bare a large

load, it is advisable to make ltool as short as possible. rtool is not an important

parameter. It can be simply determined considering the geometric constraints.

In practice, ltool is limited by several factors as follows. (i) ltool needs to be larger

than lbase. (ii) There should be some space to install the anti-collision units. (iii)

Some tooltips are thin and longer. Considering these factors, in our implemen-
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Figure 3.7: Left: Changes of maximum object weight with respect to ltool and α.
rtool is fixed to 30 mm. Right: Changes of maximum object weight with respect
to ltool and rtool. α is fixed to 90◦. rtool has little influence on the shape of the 3D
surface.

tation, ltool is chosen to be

lbase + length(anticollision unit) + length( f inger tip) ≈ 2.5lbase. (3.24)

Materials of the tooltips

Equation (3.8) shows the limitation on the friction coefficient of the tooltip. By

replacing the Ftool using equation (3.7). The minimum friction coefficient can be

written as a function of α and several other miscellaneous variables. We assume

the following values for the miscellaneous variables. The maximum gripping

force of the robotic gripper is set to be 80 kg f . The θ angle when the tool is

picked up is set to be 45◦. The weight of the tool is set to be 3 kg f . The coefficient

of the torsional spring is set to be 3.5 N · m · degree. rtool is set to be 30 mm. Then,

the minimum friction coefficient is

µtool ⩾ 0.0075Gob j

√
1 +

r2
ob j

e2
tool

. (3.25)

Under the following conditions: (i) The contact between the fingertip and the

object is a spherecial soft contact with radius 3 mm, (ii) the weight of an object is
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less than 20 N, and (iii) the com of the object is less than 5 mm from the tooltip

center, the minimum friction coefficient must be larger than 0.396.

3.1.4 Variation in Tooltips

In addition to the mechanical design, we can make different tooltips for differ-

ent tasks. A robot may determine which tool to use according to task require-

ments and using task and motion planning technique. This is different from the

commercial grippers which require manually changing fingertips or using tool

changers to replace the whole end-effector. The cost of a single tool is low, and

there could be lots of tools for a robot to choose from. Some examples are shown

in Fig.3.8.

Figure 3.8: Tools with different tooltips. A robot may use planning to choose a
tool following task requirements.

3.2 Using the Tool

When performing specific tasks, the tool is placed in an arbitrary pose in the

workspace. A robot identifies the tool using AR markers and grasps it using
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pre-planned grasp configurations. To use the tool, the robot should be con-

strained to grasp the tool in specific poses (working poses). When the pose of

the tool makes it impossible or difficult to be picked up in a working pose, re-

grasp planning [134] may be employed to adjust the grasp configuration.

3.2.1 Working Poses

There are several pairs of parallel surfaces of the tools that can be stably grasped,

but the tool can be used only when the sides of the parallel links are used as the

contact surfaces. In addition, the tool angle α is expected to be within the range

of −90◦ ∼ 90◦ to assure Fgripper ∝ Gtool. The angle γ, which is defined as the angle

between the hand and the tool (Fig.3.9(b.1)), is also expected to be within the

range of −90◦ ∼ 90◦ to let the tooltip face “forward”.

For the working poses with α ∈ (−90◦, 90◦) and γ ∈ (−90◦, 90◦), we further an-

alyze the most stable one considering the various soft penetration models like

surface, punctual, linear, etc. The details are as follows. The egripper in equa-

tions (4.2) and (3.4) can be further expanded using the Winler elastic foundation

models as:

e =
max(T )
max( f )

=

∫
S

rµKui(r)dS∫
S
µKui(r)dS

. (3.26)

Here, K is the elastic modules of the foundation over the thickness of the soft

finger pad. S is the contact area between the finger pad and the object. ui(r) is

the depth of the soft penetration. r is the distance between a differential contact

point and the center of the contact region.

Kui(r) is determined by the soft penetration of a grasp. We model it using the

7 types shown in Fig.3.9(a.1∼a.7). The upper-right corner of each small image
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Figure 3.9: (a.1-7) The 7 soft penetration models we used to analyze the eccen-
tricity and the most stable grasp. (b.1-2) The eccentricity e corresponding to the
soft penetration models. Each curve in (b.2) shows the changes of e with respect
to different γ shown in (b.1). Different colors indicate different soft penetration
models.

shows the shape of the soft penetration using 3D surfaces. (a.1) is a model where

the soft penetration is small in the middle line and increase as the contact posi-

47



tion departs from the middle line. (a.2) is a model where the soft penetration is

large in the middle and gets small as the contact position gets apart. (a.3) is a

model where the soft penetration along the diagonal line is large and decreases

as the contact position departs from the diagonal line. (a.4) is a Gaussian soft

penetration model where the maximum penetration is in a middle point, and

decreases as the contact position gets apart. (a.5) and (a.6) have maximum pen-

etration at one corner. (a.7) is a uniform model where all soft penetrations on

the contact area are the same. The eccentricity e corresponding to these soft pen-

etration models are shown in Fig.3.9(b.2). Each color corresponds to one of the

models. The changes of the curves show the changes of e at different γ.

These 7 soft penetration models cover various contact types like surface (a.1,

a.5, a.6, a.7), punctual (a.4), and linear (a.2, a.3). The results show that the ec-

centricity reaches its maximum value at around 23◦, with little dependency on

the penetration models. Grasping the tool with a +23◦/-23◦ tilting angle is most

stable and is the best working pose. The reason is probably the contact area

reaches its maximum size around this angle. The size of the contact area is

dominant over the other soft contact parameters.

3.3 Experiments

A dual-arm UR3 robot is used to conduct the experiments. The dual-arm robot

consists of two UR3 robots mounted symmetrically with 45◦ to a body frame.

Two Robotiq F-85 grippers are installed to the two robots as the robotic grippers.

An ELP-USBFHD06H-L36 skewless HD web camera is mounted to one side of

the Robotiq F-85 gripper for visual detection.
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3.3.1 Maximum Weight of an Object

First, we perform experiments to test the maximum weights of an object that can

be picked by the tool. DynPick force sensor (Fig.3.10) is used for measurement.

Figure 3.10: (a) The set up to measure the maximum weights of objects that can
be picked by the tool. The peak force measured by the force sensor before the
tool moves is recorded as the maximum weight of an object that can be picked
by the tool. (b) The maximum weight that the tool can pick at different α.

The sensor is fixed to a table. A string is used to connect the sensor and the

tooltips. The robot gripper holds the tool and drag the string up vertically until

the tool is moved. The peak force measured by the force sensor before the tool

moves is recorded as the maximum weight of an object that can be picked by

the tool. The test is repeated with the tool angle α changing from 0◦ to 75◦. To

simplify the experiment and improve precision, the γ angle is set to 0◦.

The results are shown in (b). The solid curve shows the changes of the maxi-

mum weight with respect to different α. The dash curve is the theoretical values

computed using equation (3.11-3.14). The measured results are nearly the same

as the theoretical analysis. The proposed design could pick up an object of 8 kg

when the angle between the tooltip and the gravity direction is 15◦.
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3.3.2 Using Various Tooltips

Second, to test the performance of the various tooltips, we conducted experi-

ments to pick up small objects like screws and washers, and large objects like

cans and boxes, as well as using a scissor variation to cut a piece of paper. These

objects are difficult to be handled by only the Robotiq F85 gripper.

Fig.3.11 shows the experimental results. In (a), a thin tooltip is used [25] to pinch

or stretch small objects like the screws and washers (diameter of the screw: 2 mm;

diameter of the washer hole: 5.5 mm). In (b), the robot picked up a bolt in a tray

by taking advantages of its thin arms. The tooltip, in this case, is bigger to stably

hold the bolt (diameter of the bolt: 8 mm). In (c), a widely open tooltip is used

to pick up a tissue box whose width is larger than both the maximum stroke

of the robotic gripper and the maximum opening width of the parallelogram.

(width of the box: 90 mm). In(d), a circular tooltip is used to pick a cylindrical

can (diameter of the can: 66 mm). In (e), the tooltip is changed to a pair of knives

to perform cutting tasks.

Figure 3.11: Using different tooltips to pick up various objects. (a) Small objects
like screws and washers. (b) A bolt in a narrow tray. (c, d) Large objects like
boxes and cans. (e) Using a scissor variation to cut a piece of paper.
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3.3.3 Automatic Recognition and Planning

Third, we program the robot to use the tools with different tooltips to perform

various tasks with regrasp planning. The results are shown in Fig.3.12. Regrasp

planning is used to adjust the pose of the tool. The robot can recognize the tool,

plan a regrasp motion to adjust the pose of the tool using placement-based re-

grasp or handover-based regrasp, and plan a motion to use the tool. Together

with the automatic recognition and planning, the tool can be used flexibly with-

out requirements on the power supply, vacuum supply, or delicate mechanism

and control. Readers may refer to the video attachment for more details.

Figure 3.12: A robot using the tools with different tooltips to perform various
tasks with regrasp lanning.

3.4 Summary

This chapter presented the design of a mechanical tool for robots with 2-finger

parallel grippers. The tool can extend the function of the robotic gripper without

additional requirements on tool exchangers or other actuators. It is general,
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dose not require power or air supply, and can be used by any robots with 2-

finger parallel grippers. Experimental results showed that intelligent robots can

use the tool through vision and planning to perform complicated tasks.

Right now, the tool is specially designed for 2-finger parallel grippers. We lim-

ited it to 2 fingers since the two parallel finger pads are the same. It is simpler to

deduce the formulae and analyze the contacts for two same finger pads. Despite

the special design, the tool can be used by multi-finger grippers whose contact

surfaces can move parallelly. However, in these cases, the contacts at the two

parallel sides are different. It is more complicated to analyze the friction forces

and torques. We will study it in our future work.
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Chapter 4

Rotating Tool

In the last chapter, we discuss the clamping tool for a robot hand to pinch vari-

ous sized objects. The tool reinforces a robotic gripper by extending the parallel

motion. Following a similar conception, we in this paper present the rotating

tool which converts the parallel motion of a robotic gripper to a continuous rota-

tion, as shown in Fig.4.1. The tool’s essential structure is based on Scissor-Like

Elements (SLEs) and a double-ratchet mechanism. The SLEs form the main-

frame of the tool. They help to keep a fixed rotation center during transmission.

To make the structure compact, the holding pads are optimized to have a curved

profile to reduce the SLE arms’ length. The double-ratchet unit is installed con-

centrically with the pivoting center of the SLEs. It is made of two ratchets with

reversed locking directions. The two ratchets are fixed to the arms of the front

and back SLEs, respectively. A central shaft connects them. Torsion springs are

installed at the SLE joints to provide enough resistant pressure for both being

held by robotic grippers and stretching the tool.

In the remaining part, we present the tool’s design details, including the re-

lated optimization for dimensions, effective stroke lengths, and contacts and

forces to achieve stable grasping and screwing. Besides the design, we also

present the manipulation policies for using the tool. The policies include vi-

sual recognition, grasping and manipulation, exchanging tooltips, and detect-

ing and completing screwing tasks. The developed tool produces clockwise

rotation at the front end and anti-clockwise rotation at the back end. Various

tooltips can be installed at both ends. With the policies’ help, robots may ex-

change tooltips and switch the functional ends following the needs of specific
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Figure 4.1: The proposed mechanical screwing tool. It employs a Scissor-Like
Element (SLE) mechanism and a double-ratchet mechanism to convert parallel
gripping motion to continuous rotating motion. (a.1,2) The CAD models of the
design. (b.1) A prototype. (b.2,3) The prototype held by a parallel gripper.

fastening or loosening tasks. Robots may also reorient the tool using pick-and-

place and handover, and move it to work poses. During screwing, robots can

determine control policies following our proposed policy-selection algorithm,

and successfully perform screwing, termination, and detaching actions. Exper-

iments and real-world robotic applications are carried out to verify the tool’s

mechanical properties and demonstrate its robustness and usefulness.
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4.1 Mechanical Structure

4.1.1 Scissor-Like Elements (SLEs)

Basic SLE and its problems

Fig.4.2(a, b) show a basic SLE. The rotation of the basic SLE induces the trans-

lational motion of P1P2→P′1P′2 and P3P4→P′3P′4, making the basic SLE a good

candidate mechanism for our tool. The linear motion of segments P1P2 and P3P4

affords the parallel gripping motion.

A shortcoming of the basic SLE is that the length of segment P1P2 (also segment

P3P4) changes during the translation. They turn into longer segments P
′

1P
′

2 and

P
′

3P
′

4, making them not suitable to be held by fingers. Thus, to ensure a stable

hold, some points on the SLE arms must be fixed. Fig.4.2(c) shows an intuitive

solution used in a mini scissor lift. In this case, P2 and P4 are attached to two

pads using rotational joints. P1 and P3 are free ends. As the two pads move

close, P1 and P3 slide up to P
′

1 and P
′

3. The pads move in a stable linear motion

and are meanwhile suitable to be held. However, this intuitive solution does not

meet the requirements of a screwing tool. As the pads close, the pivoting joint

O moves up to O
′

, as shown in Fig.4.2(c). Screwing tooltips cannot be attached

to the moving pivoting point, and further modification is needed.

Chained SLE (C-SLE) and the proposed modification

We propose to use a modified Chained SLE (mC-SLE) to solve the problems

mentioned above. We chain one full and two half basic SLEs up to keep the po-

55



Figure 4.2: (a) A basic Scissor-Like Element (SLE). (b) The length of segments
P1P2 and P3P4 change with rotation. (c) An intuitive solution to implement gras-
pable pads. P2, P4: Rotating joints; P1, P3: Free ends. O, O′: Pivoting joints.

sition of the pivoting joint fixed while the two pads close. Fig.4.3(a, b) illustrate

the idea. In Fig.4.3(a), the blue links form a full basic SLE. The yellow links form

two half basic SLEs. P5 and P6 are the rotational joints connected to the holding

pads. When the mechanism is squeezed, the distance between P5 and P6 will

decrease and the arms of the basic SLE will rotate around the pivoting joint O.

Also, O is the center of segment P5P6, and P5-O-P6 keep co-linear all the time.

The position of O will remain unchanged while a robotic gripper presses P5 and

P6.

A drawback of the design shown in Fig.4.3(a) is that it cannot withstand an

external torque as there are only point constraints at P5 and P6. The design col-

lapses if the pressing forces are not exactly exerted at the points P5 and P6. To

avoid this problem, we extend the arms of the full basic SLE for support. As

shown in Fig.4.3(b), the cross H1H4-H2H3 is the full SLE. The H1-H5-H2 and H3-

H6-H4 on the two sides are the two half SLEs. By extending OH1 to P1, OH2 to P2,

OH3 to P3, and OH4 to P4, and using P1-P4 as the supporting joints, the mecha-

nism can accept pressure at any positions on the two holding pads. The parallel
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Figure 4.3: (a) The structure and motion of a kinematic SLE chain made of one
full SLE (blue) and two half SLEs (yellow). The position of O remains stationary
when being squeezed. (b) The proposed mC-SLE design. The OHi (i = 1, 2, 3, 4)
arms are extended to Pi to resist torques. (c.1,2) A basic ratchet is attached to the
pivoting center and one arm of the mC-SLE.

motion of a robotic gripper can be converted into a rotational motion around

O. P1-H5-P2 and P3-H6-P4 maintain collinearity during the rotation. Note that

all the Pi (i = 1, 2, 3, 4) play the role of a free end. Supporting wheels are there-

fore installed on them to enable the free motion. The arms H1P1, H2P2, H3P3,

H4P4 are called the supporting arms. They are symmetric and have the same

length. The arms OH1, OH2, OH3, OH4 are called the driving arms. They are

also symmetric and have the same length.

This modified C-SLE design is called mC-SLE. We install two mC-SLEs in par-

allel to hold the double-ratchet mechanism and realize continuous rotating mo-

tion. The details are presented in the next subsection after introducing ratchets.
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4.1.2 Ratchet Mechanism

A single ratchet and its problems

The arms of the mC-SLE rotate back and forth with the open and close of the

holding pad. Such motion does not meet the requirements of a screwing tool,

where only a single-direction motion is needed. We use a ratchet to regulate

the back-and-forth rotation into a single-direction one, as shown in Fig.4.3(c). A

ratchet comprises a ratchet gear (or a rack with teeth) and a pawl engaged with

the gear teeth for locking. We can attach the gear and pawl of a ratchet to the

pivoting center and one arm of the mC-SLE, respectively. In a locked condition,

the arm will drive the pawl to push the gear to rotate, as shown by the yellow

arrow in Fig.4.3(c.1). In a released condition, the pawl gets stuck in the gear and

the rotation stops, as shown in Fig.4.3(c.2).

A problem with a single ratchet is that the gear does not necessarily stay sta-

tionary in a released condition. If the friction between the pawl tip and the gear

teeth is larger than the gear’s rotational resistance, the gear may rotate back

together with the pawl, leading to failure in the single-direction regulation. Al-

though a large rotation load may provide enough external torque to overcome

the friction, it is however not reasonable to assume a rotation load to be large.

Also, even if the external torque in the released condition is large, the resulted

motion is an intermittent rotation instead of a continuous one. Thus, we propose

using a double-ratchet mechanism to cancel out the resistance and implement

continuous rotation.
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The proposed double-ratchet mechanism

Fig.4.4(a) shows the double-ratchet mechanism. We attach the pawls of two

ratchets to two inversely rotating SLE arms. When the back ratchet is in a locked

condition, the front ratchet is in a released condition. If the back SLE arm is

pushed, the back gear will be driven by the back pawl to rotate clockwise. The

back gear motion will be transmitted to the front gear by the central connecting

shaft and cause the front gear to rotate clockwise, too. The front pawl will not

block the rotation since it is released. The transmitted driving force overcomes

the friction between the front pawl tip and the gear teeth; When the front ratchet

is in a locked condition, it will be pushed by the front pawl to continue rotating

clockwise. The back ratchet is in a released condition and will rotate accordingly

with the front gear following the connecting shaft. Like the previous case, the

back pawl will not block the rotation since it is released.

Figure 4.4: (a) A double-ratchet mechanism and two hosting SLE arms. (b) The
proposed mechanical screwing tool design.

Fig.4.4(b) illustrates the screwing tool design considering the mC-SLEs and
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double-ratchet mechanism. It comprises two parallel and co-centric mC-SLEs.

On the front mC-SLE, a ratchet is attached to perform clockwise rotation when

the pads are squeezed. On the back mC-SLE, a second ratchet is attached to con-

tinue the rotation when the pads get stretched. The two ratchets are attached

inversely to produce rotations in different directions. They enable the tool to

output a continuous single-direction rotation.

4.2 Analysis and Optimization

In this section, we perform quasi-static analysis to optimize the tool. The goal is

to make it stable and compact.

4.2.1 Grasping the Tool

The condition to stably hold the tool

We formulate the contact between robotic fingers and the holding pads of the

tool as soft finger contacts [113]. The friction and force at the contact meet the

following equation

f 2
fgr +

T 2
fgr

e2 ⩽ µ
2P2

fgr, (4.1)

where Pfgr is the pressure force exerted by the robot finger, Tfgr and ffgr are the

finger’s tangential torque and force, µ is the friction coefficient, and e is an ec-

centricity parameter that can be computed as

e2 =
max T 2

fgr

max f 2
fgr

. (4.2)
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When grasping the tool, robotic fingers may contact the tool holding pad at

an arbitrary position. Fig.4.5(a) shows an example. Here, dcom indicates the

distance between the Center of Mass (com) of the tool and the center of the

contact. The contact forces can be analyzed following two conditions, as shown

in Fig.4.5(b, c). The first condition is when a gripper grasps the tool sufficiently.

In this case, the contact force is a distribution shown in Fig.4.5(b). The contact

position must meet the following equation to make sure the tool can be stably

held

dcom ⩽

√
4µ2P2

fgre
2

Gtool
− e2. (4.3)

Here, Gtool denotes the gravity of the tool, and Pfgr can be computed by

Pfgr =
Tsprg

rdrv cosα
− Fres, (4.4)

where

Tsprg = ξ(γ + α − αinit). (4.5)

The notation Tsprg indicates the torque of torsion springs, rdrv indicates the

length of an mC-SLE’s driving arm, α indicates the angle between an mC-SLE’s

driving arm and the holding pad, Fres indicates the resistance force caused by

the reversing ratchet pawl and various frictions, ξ indicates the elasticity coeffi-

cient of the torsion springs, γ indicates the pre-set rotational deformation of the

torsion springs used in assembling the tool (the springs cannot be fixed without

it), and αinit is the α angle when the tool is initially held by a gripper.

The second condition is a canonical state where the contact forces concentrate

on one side of the fingers, as shown in Fig.4.5(c). It happens when the tool is

bearing a maximum rotational load. We study it in detail in the following part

to analyze the maximum output torques.
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Figure 4.5: (a) Side view of a robotic gripper grasping the tool. (b) A free body
diagram of the tool when it is held by a robotic gripper. (c) A free body diagram
of the tool when it is bearing a maximum rotational load.

Maximum output torque at the tooltip

We analyze the second condition and study the maximum output torque at

the tooltip by considering squeezing and stretching phases respectively. In the

squeezing phase, the maximum output torque Tsqz can be computed by

Tsqz = (Fgrp −
Tsprg

rdrv cosα
− Fres) · dfgr, (4.6)

where

dfgr = wfgr sin β + lfgr sin β. (4.7)

The meanings of the various notations in equation (4.7) are graphically ex-

plained in Fig.4.5(a), where wfgr and lfgr are the width and length of a finger, and

β is the finger angle. The contact force Fgrp concentrates on Fgrp in the squeez-

ing phase to provide a maximum actuating torque and thus a maximum output

torque at the tooltip.

To have an intuitive view of the relation between Fgrp and Tsqz, we set the pa-

rameters γ, ξ to constants (γ ←0◦, ξ ←6.00×10−3Nm/◦) and examine the changes
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of Tsqz with respect to varying Fgrp, α, β, and rdrv. The results are shown in

Fig.4.6(a). They reveal how the grasping force, jawwidth, and grasping pose in-

fluence the squeezing output. In the figure, α, β and rdrv are decoupled to make

the function map visualizable. Fig.4.6(a.1) shows the relation between (Fgrp, α)

and Tsqz, where β and rdrv are fixed to 59◦ and 20.0mm. Fig.4.6(a.2) shows the

changes of Tsqz with respect to different Fgrp and β, where α and rdrv are fixed

to 45◦ and 20.0mm. The influence of Fgrp and β on Tsqz is shown in Fig.4.6(a.3),

where α and β are fixed to 45◦ and 59◦.

Figure 4.6: (a) Changes of Tsqz with respect to varying Fgrp, α, β, and rdrv. (b)
Changes of Tstr with respect to varying ξ, α, β, and rdrv.

In the stretching phase, Fgrp also concentrates on Fgrp when the output torque

reaches maxima, but the gripper fingers no longer exert active forces on the tool.

The tool’s actuating torque is provided by Tsprg, and Fgrp is a passive force that
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maintains balance at the holding pads. The maximum output torque can be

computed by

Tstr = (
Tsprg

rdrv cosα
− Fres) · dfgr. (4.8)

Fig.4.6(b) shows the changes of Tstr with respect to varying ξ, α, β, and rdrv,

where γ is set to 0◦, and the other parameters are fixed in the same way as

Fig.4.6(a).

Velocities at the tooltip

The rotation of the output end continues across the squeezing and stretching

phases, as shown in Fig.4.7. The black arrow denotes the rotation of the out-

put end. The triangle markers show the historic angle changes. Fig.4.7(a, b) is

the squeezing phase. In this phase, the black arrow points to the yellow trian-

gle initially. As the tool gets squeezed, the output end rotates clockwise to the

blue triangle. The angle between the blue and yellow triangles is the squeezing

phase’s output rotation. It can be formulated as

δsqz(t) = αinit − sin−1
(
sinαinit −

vsqz · t
4rdrv

)
, (4.9)

where δsqz(t), t, and vsqz denote the output angle, a time variable, and the velocity

of the gripper fingers in the squeezing phase. The range of t is [0, tm], where tm

is the end time instant of the squeezing phase.

Fig.4.7(c, d) is the stretching phase that follows (a, b). The black arrow points to

the blue triangle initially (end state of the squeezing). As the tool gets stretched,

the output end continues to rotate clockwise to the green triangle. The angle

between the green and blue triangles is the output rotation of the stretching
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Figure 4.7: (a) Initial angle in a squeezing phase (αinit). (b) Output angle at
the end of a squeezing phase (δsqz(tm)), it is also the initial angle of a following
stretching phase. (c) Output angle at the end of a stretching phase (δstr(te)).

Figure 4.8: δout-t relation curve under
different vsqz and vstr.

phase. It can be formulated as

δstr(t) = −(αinit − δsqz(tm)) + sin−1
(
sin (αinit − δsqz(tm)) +

vstr · t
4rdrv

)
, (4.10)

where δstr(t), t, and vstr indicate the output angle, a time variable, and the velocity

of gripper fingers in the stretching phase. The range of t is (tm, te], where te is the

end time instant of the stretching phase.

In a complete squeezing-stretching cycle, the output rotation continues and

forms a total output angle denoted by the green sector in Fig.4.7(d). It can be
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formulated as a piece-wise function

δout(t) =


δsqz(t) 0 ≤ t ≤ tm,

δstr(t) tm < t ≤ te.

(4.11)

Fig.4.8 shows the curves of the piece-wise function under different vsqz/str val-

ues (vsqz=vstr=10∼110mm/s with 20mm/s intervals). The results imply that an

increased vsqz/str significantly reduces the operation time and hence screwing

costs.

4.2.2 Selecting Proper Torsional Springs

We choose the torsional springs considering the balance of the output torques

in both squeezing and stretching phases. The reversed signs of Tsprg in equa-

tions (4.6) and (4.8) imply a trade-off between Tsqz and Tstr: Tsqz monotonically

increases with Tsprg. Contrarily, Tstr monotonically decreases with Tsprg. The

spring forces are resistant in the squeezing phase but propulsive in the stretch-

ing phase. A larger spring coefficient will lead to a large output torque in the

stretching phase but a weaker one in the squeezing phase.

The relations between Tsqz, Tstr, and Tsprg are visualized in Fig.4.9(a). Here, we

use Tout in the vertical axis to denote either Tsqz or Tstr. The values of α and dfgr

are fixed to 45◦ and 45mm for 2D visualization. The horizontal axis indicates

the coefficient of the torsional springs, ξ. The solid blue curves show the Tsqz-ξ

relation under different Fgrp values. The yellow dashed curve shows the Tstr-

ξ relation (Fgrp is passive in computing the yellow dashed curve). The figure

shows that Tstr increases as the coefficient of the torsional springs increases. At
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the same time, the gripper will need a larger force to produce the same amount

of Tsqz.

Figure 4.9: (a) Blue curves: The Tsqz-ξ relation under different gripper forces.
Yellow dashed curve: The Tsqz-ξ relation when Fgrp is at its minimum. (b) Black
curves: The output torque-angle relation when a theoretically optimal spring
is used (ξ=18.84 × 10−3Nm/◦, Fgrp=125N). Red curves: The output torque-angle
relation when a best commercially available spring is used (ξ=6.00 × 10−3Nm/◦,
Fgrp=125N).

Considering this trade-off, we propose to select a proper ξ by optimizing equa-

tion (4.12)

argmaxξ

∫ αinit

αinit−δsqz(tm)

∣∣∣Tsqz(α, ξ) · Tstr(α, ξ)
∣∣∣ dα. (4.12)

The equation computes the definite integral of |Tsqz(α, ξ) ·Tstr(α, ξ)| under bounds

αinit − δsqz(tm) ∼ αinit. The reason we propose this optimization is that the ξ that

induces the max integral will make Tsqz and Tstr simultaneously large.

The optimal ξ by solving equation (4.12) is 18.84 × 10−3Nm/◦. The black curves

in Fig.4.9(b) show the changes of Tsqz and Tstr under this value with respect to

a varying α. The curves show that when ξ=18.84 × 10−3Nm/◦, Tsqz is close to Tstr

at all α angles and the tool rotates smoothly and steadily in a whole squeezing-

stretching cycle. Unfortunately, commercial torsional springs with the theoret-

ically optimal ξ are too large to fit the size of our tool. Thus, we give up this
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optimal value and choose a spring with ξ = 6.00×10−3Nm/◦ instead. This spring

meets the dimensional requirements. Meanwhile, it has an acceptable ξ value.

The Tsqz-α and Tstr-α relations using the chosen spring are shown by the solid

and dashed red curves in Fig.4.9(b).

Under this spring selection, the designed tool can provide forces to fasten

screws with the sizes shown in the light grey area of Table 4.1. Here, a Robotiq

Hand-E gripper with a maximum 125N gripping force is assumed to squeeze

and stretch the tool. The values in the table are from the Japanese Industrial

Standards for general machinery (JIS B [135] [136]). The tool can output a torque

between 3.85Nm∼4.06Nm in the squeezing phase and between 0.65Nm∼0.78Nm

in the stretching phase. According to the table, it could maximally fasten M5

screws with 4.8 property class.

To further increase the fastening ability, one may use a gearbox to increase the

output torque or screwing speed of the screwing tool. Like the screwing tool,

the gearbox can also be designed as a robot-oriented tool. A robot can grasp it

and attach it to the output end of the screwing tool to increase output torque or

screwing speed. Fig.4.10 shows an example of a gearbox tool. It has two ends.

When end-a is connected to the rotating tool and end-b is connected to a tooltip,

the screwing efficiency will be improved. In contrast, when end-b is connected

to the rotating tool and end-a is connected to a tooltip, the output torque will

be increased. The transmission gear train of this tool is embedded in the black

frame. It is based on a commercial planetary gearbox (Taizhi PLF042-5).

The gearbox tool can be implemented with different gear ratios following task

requirements. The one shown in Fig.4.10 has a 1:5 gear ratio. It may help in-

crease output torque by 5 times while losing 4/5 of output speed. Originally,
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Figure 4.10: A gearbox tool.

the screwing tool can output a torque between 3.85Nm∼4.06Nm in the squeezing

phase and between 0.65Nm∼0.78Nm in the stretching phase. The values cover

the standard bolt torques colored in light grey in Table.4.1. It can maximally fas-

ten M5 screws with a 4.8 property class. With the shown gearbox tool’s help, the

total maximum output torque will be between 19.25Nm∼20.30Nm in the squeez-

ing phase and between 3.25Nm∼3.90Nm in the stretching phase. Thus, the cov-

erable standard bolt torques expand to the deep grey area, and the tool could

maximally fasten M8 screws with a 4.8 property class.

Table 4.1: Standard Bolt Torque Chart

Screw size
Tightening torque (Nm)

Property class
4.8 6.8 8.8 10.9 12.9

M3 0.56 1.10 1.45 2.08 2.43
M3.5 0.89 1.73 2.28 3.27 3.82
M4 1.31 2.57 3.38 4.84 5.66
M5 2.65 5.19 6.80 9.78 11.43
M6 4.50 8.81 11.60 16.60 19.40
M7 7.56 14.78 19.48 27.88 32.58
M8 10.94 21.39 28.20 40.30 47.20

Note that since the stretching force is weak, the tool may not afford enough

torque to fasten bolts in a stretching phase. It may also get stick and slip out

of the robotic gripper. To avoid these problems, we develop policy-selection
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algorithms in Section VI to change the control methods online. A robot will

leverage hybrid control and autonomously switch between the squeezing and

stretching phases considering force feedback to assure stable and firm screwing.

The details and validations will be presented in the related sections.

4.2.3 Optimizing the Geometric Dimensions

Maximum rotational travel

Our geometric optimization’s top goal is to maximize the rotational travel of the

tool’s output end (or equally the rotational travel of an mC-SLE’s driving arm).

We use the notations shown in Fig.4.11 to carry out the analysis, where the no-

tations α+ and α- represent the geometrically maximal and minimal α angle1,

w+tool and w−tool represent the geometrically maximal and minimal tool width, htool

represents the height of the tool, rdrv is the same as equation (4.4), rsup represents

the length of an mC-SLE’s supporting arm, rwhl represents the radius of a sup-

porting wheel, wpad represents the width of a holding pad, and drcht represents

the diameter of a ratchet gear.

The maximum rotation travel is

∆αmax = α
+ − α- = sin−1 w+tool − 2rwhl

4rdrv
− sin−1 w−tool − 2rwhl

4rdrv
. (4.13)

It depends on four parameters: rdrv, w+tool, w−tool, and rwhl. They are subject to the

following constraints.

1These geometric values are different from the initial and final angles in Section IV.A.2 since
a spring angle is needed there for the springs to provide friction forces for grasping. The relation
is α+ > αinit and α- < αinit − δ(tm).
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Figure 4.11: Various parameters used in geometric optimization. (a) An inter-
mediate state. (b) The geometric expanding extreme. (c) The geometric folding
extreme.

rdrv: The value of ∆αmax monotonically increases with 1/rdrv, thus rdrv is pre-

ferred to have a small value. On the other hand, rdrv must meet the requirements

of the maximum output torque, as shown in equations (4.6) and (4.8).

w+tool and w−tool: Their values must meet

wtool = 4rdrv sinα + 2whlr, (4.14)

where whlr is the distance from the outer surface of a holding pad to its hinge

center. The equation shows that wtool monotonically increases with α. In the

expanding extreme shown in Fig.4.11(c), the supporting wheels are halted by

two stoppers and α reaches α+. The width of the tool reaches w+tool. It must be

smaller than the jaw width of a robotic gripper. In the folding extreme shown

in Fig.4.11(b), the holding pads contact the ratchet units and α reaches α-. The

width of the tool reaches w−tool. It must be larger than drcht + 2wpad.

rwhl: This value is preferred to be as small as possible, but it subjects to commer-

cial products’ availability.
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Considering these constraints, we determine the ratchet first. Then, based on

the jaw width of an expected robotic gripper that uses the tool and the diameter

of the ratchet, we decide w+tool and w−tool. Finally, we optimize rdrv following the

selected spring (Section.IV.B) and the required output torque (Section.IV.A.3).

Minimum height

The second goal of our geometric optimization is to reduce the height of the tool.

The tool’s height must be equal to or larger than the holding pads’ length, which

is constrained by the distance between the supporting wheels on two sides. The

distance reaches a minimum at the folding extreme shown in Fig.4.11(c). Thus,

the length of the holding pads and also the tool’s height must be equal to or

larger than this minimum value.

htool ≥ 2(rdrv + rsup) · cosα+. (4.15)

The equation indicates that the minimum htool is essentially affected by three

parameters rdrv, rsup, and α+. Since rdrv and α+ have been determined in the

previous optimization step, we focus on rsup and study how to reduce it.

Curved supporting surface The idea we use to lessen rsup is to introduce a

curved profile to the holding pads’ inner surface. The curved profile converts

the wheel and the holding pad pair into a mechanical cam pair. The blue curve

in Fig.4.12 shows an example. The idea shortens rsup and can thus help reduce

the holding pads’ length.

We mathematically represent the shape of the curved profile using its paramet-

ric form as follows. First, we set up a reference frame at the holder hinge (Phng in
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Figure 4.12: Solid blue: A holding
pad’s curved inner surface. Dashed
blue: A supporting wheel’s central tra-
jectory.

Fig.4.12(a)). The x axis of the frame points to the center of the ratchet. The y axis

aligns with the holding pad. They are illustrated by the red and green arrows

in Fig.4.12(a). Then, by representing the supporting wheel’s center in the frame

as Pwhl=(xwhl, ywhl), we can formulate Pwhl’s trajectory as

α = sin−1 xwhl

rdrv − rsup
, (4.16)

ywhl = (rdrv + rsup) cosα. (4.17)

The blue dashed curve in Fig.4.12(b) illustrates the trajectory. The profile of the

holding pad’s inner surface is essentially the contact point of the support wheel

Psup. It can be obtained by shifting the trajectory of Pwhl with an offset rwhl along
−−−−−−−→
PwhlPsup. Assume θ is the angle between

−−−−−−−→
PwhlPsup and x axes. We can represent

it as a function of α as

θ = tan−1(−
∂ywhl

∂α
)−1. (4.18)
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The profile of the holding pad’s inner surface will then be
xsup = xwhl + rwhl cos θ

ysup = ywhl − rwhl sin θ
. (4.19)

Here, (xsup, ysup) indicates the supporting point under the reference frame, and

xsup ∈ (0, rdrv − rsup). The curved profile represented by this equation can ensure

firm contact between a holding pad’s inner surface and the supporting wheels

across squeezing and stretching phases. Meanwhile, it forces the motion of the

SLE arms to be rotation around the ratchet center.

Structural stability Although a smaller rsup reduces h−tool, we cannot choose it

arbitrarily as a bad rsup makes the structure less stable. Thus, we perform opti-

mization for rsup and formulate the problem of designing the curved supporting

surface as finding the smallest rsup that has satisfying stability.

We evaluate the stability by measuring the wrench cone formed by the Grasp

Wrench Set (GWS) of contact points on the holding pads. To simplify the op-

timization, we assume the motion is 2D, and the contact surfaces are rigid and

smooth. Fig.4.13(a) shows all the contact points on the holding pad. We repre-

sent them using symbols Ci (i = 1 ∼ 6), where C1 and C2 denote the contacts

with gripper fingers. C3 and C4 denote the contacts with the supporting wheel.

The connections at the hinge are represented as two contacts C5 and C6. At each

Ci, we use fi and τi to denote the exerted force and moment. We assume that

there are friction forces at C1 and C2 but C3 ∼ C6 are friction-less, as C3 ∼ C6 are

on the surface of supporting wheels or are hinges. The wrench ω exerted by all
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the contacts thus equals to:

ω =

6∑
i=1

Gi

 fi

τni

 =
6∑

i=1

 I 0[
pi×

]
ni


 fi

τni

 , (4.20)

where Gi is the grasp matrix, pi and ni indicate the contact positions and the

contact normals.

Figure 4.13: (a) We evaluate the structural stability by measuring the wrench
cone formed by forces at contacts C1 ∼ C6. (b) The changes in the structural
stability with respect to varying rsup and α. The curves with different colors are
the results of different rsup values. The whlr and rwhl used to get the results are
set to 6.5mm and 3.0mm, respectively.

Then, we use the Minkovski sum of the wrenches to find the wrench cone

following [113]. The structural stability index (Q) is computed as the mini-

mum distance from the wrench cone boundary to a wrench space’s origin [137].

Fig.4.13(b) shows the results of our computation under varying rsup and α. The

results imply that the structural stability decreases with the increase of both

α and rsup. The decreasing speed significantly accelerates when rsup is shorter

than 10.0mm. Thus, we choose rsup to be 10.0mm and determine the shape of the

curved supporting surface by replacing it into equations (4.16)-(4.19).
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4.3 Prototyping

4.3.1 Mechanical Backlash

First, we study the causes of mechanical backlash, focusing on the ratchet and

curved inner holding pad surfaces.

Ratchet

Following the discussions in Section IV.C, we choose a commercial ratchet with

a small radius2 to reduce the tool’s geometric size. When the squeezing and

stretching phases switch, the relative motion of the ratchet gears and pawls get

reversed. The pawl may start from any position between two nearby teeth. The

offset from the tooth flanks causes backlash. Fig.4.14 shows the details of our

ratchet’s pawl-gear section. The backlash appears if the gear starts to rotate

counter-clockwise from the shown state. We use θbl to represent the backlash

and use θ+bl to represent its maximum value. Then, θ+bl can be computed by [138].

θ+bl =
360

nteeth × (1 +
θb

θf
)
. (4.21)

Here, nteeth denotes the gear’s teeth number. θf and θb respectively denote the

angles on the two sides of a tooth valley. For a ratchet gear, θf is usually larger

than θb. The value of θbl is within range (0, θ+
bl). As nteeth and θb/θf increase, θbl

gets smaller and the ratchet rotation becomes faster and smoother. Thus, choos-

ing a ratchet with more gear teeth and a symmetric tooth profile may effectively

2ANEX, http://www.anextool.co.jp/item/316
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Figure 4.14: Pawl-gear configuration of
the selected ratchet.

reduce backlash. Our selected ratchet has 40 gear teeth. Its θb and θf values are

4.0◦ and 5.0◦ respectively. The backlash is at most 5.0◦ according to equation

(4.14).

Machining errors from curved supporting surfaces

As shown in Fig.4.15, machining errors may result in a tilted holding pad after

exerting a gripping force and lead to backlash. In this part, we study the tilting

and backlash in detail.

To simplify the analysis, we assume rwhl = 0mm (or equally xsup = xwhl and

ysup = ywhl). Under this assumption, we reformulate equations (4.16) and (4.17)

as

f (x) = (rdrv + rsup) cos (sin −1 x
rdrv − rsup

), (4.22)

which is the equation of an ideal curve. The solid blue lines in Fig.4.15 illustrate

this curve. Following the equation, the curve with machining errors can be

represented by

fe(x) = (rdrv + rsup) cos (sin −1 x + σ(x)
rdrv − rsup

) + ψ( f (x)), (4.23)
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Figure 4.15: An example where ma-
chining errors make the curved sur-
face thinner. The solid blue curve
shows the theoretical curved sur-
face. The dashed navy curve shows
a surface with errors. Due to the er-
rors, the dashed navy curve will ro-
tate with an angle ϕe when a grip-
ping force is exerted.

where σ(x) and ψ( f (x)) indicate machining errors along the x and y axes respec-

tively, and σ(·) and ψ(·) are error functions. The dashed navy lines in Fig.4.15

illustrate this curve.

Now we consider a special case where machining errors make the holding pad

thinner, which is exactly the one shown in Fig.4.15 – The dashed navy curve

shrinks along the -x direction (i.e., σ(x)=+0.10mm, ϕ(x)=0mm) from the solid blue

curve. The point Psup on the solid blue curve denotes the contact point between

the support wheel and the ideal curve. Its coordinates are Psup=(xsup, f (xsup)).

The point P
′

sup represents a contact point on the curve with machining errors. Its

coordinates are P
′

sup=(x
′

sup, fe(x
′

sup)). When holding pads are pressed, the point

P
′

sup will be forcibly rotated to join the wheel, as is illustrated in Fig.4.15(b), and

P
′

sup and Psup will be coincident. Thus, the dsup and d
′

sup in Fig.4.15(a) are equal

to each other and the following equation can be obtained.√
f (xsup)2 + x2

sup =

√
fe(x′sup)2 + x′2sup (4.24)

The angle ϕe in the figure indicates the backlash angle caused by machining

78



errors. It can be represented by

ϕe = ϕsup − ϕ
′

sup = tan −1 f (xsup)
xsup

− tan −1
fe(x

′

sup)

x′sup
, (4.25)

To study the changes of ϕe with respect to different α, we formulate equations

(4.25) into a relation between ϕe and α by replacing xsup using sinα·(rdrv−rsup) and

replacing x
′

sup using a parametric form deduced from equations (4.23) and (4.24).

Then, based on the relation, we particularly study the results of some com-

monly seen machining errors (constant translations) – We set σ(x) = +0.1mm;

σ(x) = −0.1mm; ψ( f (x)) = −0.1mm; ψ( f (x)) = +0.1mm, as seen in Fig.4.16(a.1-4),

and observe the resulted ϕe at different α values to have an intuitive view of

how machining errors influence backlash. Fig.4.16(b) shows the results. Here,

the values of rdrv and rdrv are set to 20.0mm and 10.0mm, respectively. By observ-

ing the results, we find that: (1) As α increases, the absolute ϕe gets larger; (2)

The σ(·) function has a larger influence than the ψ(·) function. With the same

constant value, the errors in the x axis lead to a larger ϕe; (3) For a 0.1mm ma-

chining error, the maximum ϕe is ±1.6◦. In industrial manufacturing, machin-

ing errors of curved surfaces (cams) on a single direction are usually less than

0.02mm [139]. Accordingly, the induced backlash is within 0.3◦. It is ignorable in

practice. Machining errors from the curved surfaces are not a significant source

for backlash.

Other machining or assembly errors

To better understand the causes of backlash, we further program a robotic grip-

per to squeeze and stretch the tool with arbitrary start and end positions and ex-

amine the difference from expected output angles. The results of 50 tests show

that the backlash values range from 0.1◦ to 5.4◦. The frequency distribution his-
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Figure 4.16: (a) Constant translation errors in ±x and ±y axes. (a.1) σ(x)=+0.1mm;
(a.2) σ(x)=−0.1mm; (a.3) ψ( f (x))=−0.1mm; (a.4) ψ( f (x))=+0.1mm. (b) ϕe-α relations
under these errors.

togram of the results is shown in Fig.4.17. 90% (45/50) of the backlash values

are smaller than 4.0◦. The largest observed backlash value (5.4◦) slightly exceeds

the theoretical maximum (5.0◦). The data shows that the teeth of the ratchet are

the most important reason for backlash. The excessive 0.4◦ is probably caused

by other machining or assembly errors.

Figure 4.17: Frequency distribution
histogram of the observed backlash in
50 random squeezing and stretching
experiments. The granularity of the
histogram bins is 1.0◦.

4.3.2 Fabrications and Analysis

Following the optimization steps and the discussions on backlash, we fabri-

cated three prototypes using curved inner holding pad surfaces and different

materials. The first prototype is a fabrication of the design with flat holding
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pads, as shown in Fig.4.18(a). The second prototype is a fabrication of the de-

sign with curved inner holding pad surfaces, as shown in Fig.4.18(b). The links

and frames of the two prototypes are made by a 3D printer (ABS materials). We

compare them from the perspectives of dimensions, output torques, and output

angles. The third prototype is an improved fabrication of the second design. It

is made of aluminium materials, has better machining accuracy and mechani-

cal property, and is used in real-world experiments. Note that the pictures in

Fig.4.18 are taken on the same scale. By listing them side-by-side, we can ob-

serve that the curved surface significantly reduces the dimension of the tool

(Fig.4.18(a) vs. Fig.4.18(b)). The widths of the two prototypes are both 83.0mm,

but the holding pad’s height decreases from 80.0mm to 54.0mm, leading to a more

compact design that is easier to grasp and more robust to grasping uncertainty.

Meanwhile, although the dimension is significantly reduced, the second pro-

totype has a similar output performance as the first one, as shown in Fig.4.19.

Figure 4.18: (a, b) Two ABS printed prototypes for the designs with flat and
curved inner surfaces. (c) An aluminium prototype of the design with curved
inner surfaces.

For readers’ convenience, we summarize the various parameters we used for
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Figure 4.19: (a) Comparison of the maximum Tout of the flat and curved proto-
types under a 20N gripping force. The results are the average of 5 repetitions.
(b) Changes of δout under vsqz =38mm/s and vstr =50mm/s.

the first two prototypes in Table.4.2, and summarize the specifications of the

aluminium one in Table.4.3. Note that the tool’s effective stroke is not the max-

imum tool width minus the minimum tool width. A gripper needs to initially

squeeze the tool a bit so as to incur enough pressure and friction to hold it. The

initial squeezing length is set to 10.0mm considering the selected spring3.

Table 4.2: Parameters Used to Prototype the Tool

Parameter Value Definition

w+tool 83.0mm Maximum width of the tool
w−tool 40.0mm Minimum width of the tool
wpad 2.0mm Thickness of the holding pads
rwhl 3.0mm Radius of a supporting wheel
whlr 6.5mm wpad + rwhl+offset
rdrv 20.0mm Length of an mC-SLE’s driving arm
rsup ( f lat) 20.0mm Length of an mC-SLE’s supporting arm
rsup (curved) 10.0mm -
htool ( f lat) 80.0mm Height of the tool
htool (curved) 54.0mm -
drcht 32.0mm Diameter of the ratchet
ξ 6.00 × 10−3Nm/◦ Elastic coefficient of the torsional spring

3Also see the footnote in page 8. The spring angle for friction is 10◦.
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Table 4.3: Specifications of the Aluminium Prototype

Item Value

Size of a bounding box (mm) 83.0×62.0×54.0
Weight (g) 215
Effective stroke of tool (mm) 31.0
δout in one squeezing-stretching circle (◦) ≈ 62

The theoretical time costs for using the tool to fasten a screw can be computed

by multiplying the number of squeezing-stretching cycles per screw and the

time for one cycle as

ttotal = (
360◦

δout
·

lscrew

p · nridge
) · tcycle, (4.26)

where lscrew and p are respectively the thread length and thread pitch of the

screw, nridge is the number of thread ridges per pitch, δout is the output angle of

one squeezing-stretching cycle, (360◦/δout) · (lscrew/(p ·nridge)) is the number of cy-

cles needed to fasten the screw, and tcycle denotes the time cost of one squeezing-

stretching cycle. The value of δout is 62◦ for our aluminium prototype. The value

of tcycle is 5.5s under the maximum gripping speed of Robotiq Hand-E.

The “ST Only” column of Table 4.4 shows the theoretical and real-world effi-

ciency of using the aluminium prototype to fasten screws. Here, we use single-

start screws (nridge=1) with the same thread length (lscrew=8.0mm) but different

thread pitches (M4-0.70mm, M6-1.00mm, M8-1.25mm) for comparison. The re-

sults show that the tool is not an efficient one. It takes around 60s to fasten an

8mm M4 screw. We can use it together with a gearbox tool to improve efficiency.

The results after including the gearbox tool are shown in the “ST+GT” column.
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Table 4.4: Time costs for fastening different screws

ST Only ST+GT

Screw Type M4 M6 M8 M4 M6 M8

Number of theoretical cycles 66.2 46.4 37.2 13.3 9.8 7.5
Number of experimental cycles 63.6 43.2 36.0 13.2 9.0 7.2
Theoretical time (s) 62.7 44.0 35.2 12.5 8.8 7.0
Experimental time (s) 58.9 40.2 33.6 11.8 8.1 6.6

* Meanings of abbreviations: ST - Screwing tool; GT - Gearbox
tool. The real-world costs tend to be cheaper than the theoreti-
cal one. The reason is probably the real thread length becomes
shorter due to loss in manufacturing.

4.4 The Manipulation Policies to Use the Tool

This section develops the manipulation policies for using the designed tool. It

consists of three parts: (1) Recognizing the tool; (2) Planning grasp and ma-

nipulation sequences; (3) Exchanging the tooltips; (4) Detecting and completing

screw fastening tasks.

4.4.1 Recognizing the Tool

We assume a depth sensor to be employed for visual recognition. One may use

a depth sensor to scan the workspace and locate the tool by registering its model

to the collected point cloud. Conventional algorithms like DBSCAN-based seg-

mentation [140], RANSAC-based global search [141], and ICP-based local re-

finement [142] are employed in the registration. Fig.4.20 shows an example of

the collected point cloud and the matched tool pose using the mentioned rough

estimation and local refinement routine.
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Figure 4.20: (a) The tool on a table. (b) White: Background point cloud; Red:
Tool point cloud. (c) The tool pose found by matching the tool’s mesh model to
the red point cloud.

4.4.2 Planning Grasp and Manipulation Sequences

We use the methods presented in [113] [143] to plan grasping poses, and use

the methods presented in [144] [145] [134] [146] to plan placements and regrasp

sequences.

Figure 4.21: (a) Input hand and object models. (b) Planned grasping poses with-
out considering surrounding obstacles. (c) Stable placements of the tool on a
flat surface. (d) A graph for reasoning manipulation sequences.
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Fig.4.21(a, b) exemplify a hand model and some grasp candidates found by a

grasp planner. The planning is automatically performed using the mesh model

of the tool. The red hands in Fig.4.21(b) denote the grasp poses that can use

the tool. These poses are named the tool-control grasp poses. The green hands

denote the grasp poses that can only hold the tool. They are called the tool-

holding grasp poses. Fig.4.21(c) shows the stable placements of the tool on a

table. A tool’s initial pose is a variation of them (the translation and yaw angle

may vary). Fig.4.21(d.1-3) show the collision-free grasp poses for each of the sta-

ble placements. Fig.4.21(d.4) shows grasp poses for dual-arm hand-over. Given

a screwing goal, the collision-free tool-control poses of the tool at the goal can be

planned, as shown in Fig4.21(d.5). To manipulate the tool from an initial pose

to a goal pose, our planner finds the grasp poses (either tool-control or tool-

holding) at the tool’s initial pose and performs geometric reasoning between

them and the grasp poses in (d.1-4) and the tool-control poses in (d.5) to find

the shared ones. The planner will automatically determine single or dual-arm

manipulation sequences considering the shared grasp poses.

4.4.3 Exchanging the Tooltips

The tool has two hex magnetic sockets at its output ends for attaching tooltips. A

group of tooltips with 1/4 inch hex shank ends can be exchanged and attached

to the sockets to meet various task requirements. Attaching the tooltip into

the socket is essentially a peg-in-hole problem, and we use a method similar

to the one developed by Chen et al. [147] to solve it. We assume one robot

arm holds a tooltip while another arm holds a tool. They perform a combined

linear search, spiral search, and rotation search with hybrid control to ensure
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successful insertions.

Linear search

In linear search, the robotic hand holding the tooltip moves along a straight line

to make the tooltip end contact the pre-insertion surface. An example is shown

in Fig.4.22(a). The robot hand in the example moves along an orange direction

vatt to search for the contact between the tooltip end and the socket. The linear

motion stops when equation (4.27) is satisfied.

∣∣∣vatt(Rgrpr · Fgrpr)
∣∣∣ ≥ Fthreshold. (4.27)

Here, Rgrpr is the rotation matrix of the holding hand, F is the observed force

from the F/T sensor mounted at the wrist. Fthreshold is the desired contact thresh-

old.

Figure 4.22: (a) Linear search. The hand holding the tooltip moves linearly along
the orange vector until it hits the connecting surface. (b) Spiral search. The or-
ange spiral curve indicates the generated spiral path. The purple vector shows
the initial spiral direction. (c) Rotation search and impedance control.
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Spiral search

Assume that the tooltip end stops at position Phnd
0 at the end of linear search, as

is shown in Fig.4.22(b), then, based on this position, a spiral curve and spiral

search is planned. The spiral curve is generated according to equation (4.28) in

the Rsocket
x -Rsocket

y plane. Here, Rsocket represents the pose of the socket. The x and

y at the subscript denote the local x and y axes of the rotation matrix.

Phnd
i+1 = rsprl

i+1 · rodrigues(θ
sprl
i+1 , v

att) · vsprl + Phnd
i . (4.28)

Here, vsprl indicates the initial spiral direction (the purple vector in Fig.4.22(b)).

Phnd
i and Phnd

i+1 are the current position and the planned next position, respectively.

rodrigues(θ, v) is the Rodrigues’ rotation formula. θsprl and rsprl
i+1 are computed

as as:

θ
sprl
i+1 = θ

sprl
i + δθsprl, rsprl

i+1 = rsprl
i + δrsprl, (4.29)

where δθsprl and δrsprl are the discretized step rotation and step length of the

spiral curve. Since the end of tooltip are chamfered, when the tooltip end is

aligned to the pre-inserting position as shown in Fig.4.22(c), equation (4.28) will

be violated and the robot will stop the spiral research.

Rotation research and impedance control

After the spiral search, rotation search and impedance control are applied to

complete the insertion. We define the impedance control in the workspace fol-

lowing the conventional impedance control law:

Finsrt + Frsst
i = m · P̈hnd

i + c · Ṗhnd
i + k · (Phnd

i − Phnd
i−1 ) (4.30)

where m, c, and k are inertia of the held object, damping coefficient, and stiffness

respectively. P̈hnd
i , Ṗhnd

i , and Phnd
i are the acceleration, velocity, and displacement
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of the holding hand. Finsrt is the desired insertion force which points to the same

direction as vatt. Frsst
i is the external force of the environment. The generated

hand motion is thus:

Phnd
i+1 =

Finsrt + Frsst
i + m (2Phnd

i −Phnd
i−1 )

dt2 + cPhnd
i−1
dt + kPhnd

i
m

dt2 +
c
dt + k

. (4.31)

Along with the impedance control, the hand holding the tool will rotate around

vatt to perform rotation research. Thus, Frsst
i changes with the environment con-

tact and varies with rotation and insertion. The two robots stop simultaneously

when Finsrt equals to (−Frsst
i )vatt , namely when the tooltip end contacts with the

bottom of the socket and the insertion is successfully conducted.

4.4.4 Complete Screw Fastening Tasks

There are two problems in using the tool. First, although the continuous rota-

tion in a squeeze-stretch cycle significantly improves screwing efficiency, they

add troubles to task termination as the output torque in the stretching phase

is weak and the required fastening torque may not be met if a screwing task

is terminated in the stretching phase. The problem might be solved by real-

time tactile sensing, which is, however, not always available. Second, detaching

the tooltip from a screw head is challenging since it easily gets stick inside the

screw head. To solve these problems, we formulate screwing as a decision prob-

lem and develop the policy-selection algorithm shown in Fig.4.23 for a robot to

perform continuous screwing and complete a screwing task successfully. Here,

(apolicy
grp , apolicy

rbt ) is used to describe the gripper and robot’s action or control policy.

A gripper has three policies – squeezing, stretching, half-stretching. A robot has

two policies – hybrid control and playing a detach primitive. Consequently, the
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superscript “policy” in apolicy
grp is to be replaced by one of {sqz, str, h-str}. The

superscript “policy” in apolicy
rbt is to be replaced by one of {hyb, dtc}. The no-

tation Tscrew is the screw fastening torque. It is computed by transforming the

force and torque measured by a waist F/T sensor to the screw’s twist axis. Tstr

indicates the maximum output torque of a stretching phase. The notation Tgoal

denotes the goal screw fastening torque.

Figure 4.23: Policy-selection algorithm for completing fastening. The light green
boxes in the upper part are shown in detail in the dashed block below.

Particularly, the details of apolicy
grp are as follows. asqz

grp: The gripper closes the fin-

gers to a squeezing extreme (fully closed or the resistant force is larger than the

maximum finger force). The policy is irrelevant to initial finger positions. astr
grp:

The gripper fully opens the fingers. Likewise, the policy is irrelevant to initial

finger positions. ah-str
grp : The gripper opens the fingers until they pass half of the
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tool’s maximum stroke (half open). During screwing, Tscrew may exceed Tstr,

leading the tool to lose balance and slip out of the gripper. The ah-str
grp policy is

designed to avoid the slippage when Tscrew is detected to be larger than Tstr. Its

half stretch width will reduce the tool’s separation from the fingers4 Fig.4.24 vi-

sualizes the gripper policies. When Tscrew<Tstr, the gripper repeats the asqz
grp-astr

grp

cycle shown in Fig.4.24(a). When Tscrew ≥ Tstr, the gripper repeats the asqz
grp-ah-str

grp

cycle shown in Fig.4.24(b).

Figure 4.24: Gripper policies. (a) asqz
grp-astr

grp. (b) asqz
grp-ah-str

grp .

The details of apolicy
rbt are as follows. ahyb

rbt : A screw will twist into a threaded

hole as it is being fastened. Thus, the hand holding the tool must move accord-

ingly to prevent the tooltip from getting separated from the bolt head. Hybrid

control is used to implement the accorded hand movement. For the screwing

axis, force control is performed to maintain a pushing force between the tooltip

and the bolt head. If the contact force reduces, the robot arm will push along

the screwing axis to compensate for the force loss and ensure continuous and

firm contact between the tooltip and the bolt head. For the remaining transla-
4Note that an ideal case is that the opening distance is adjusted automatically following the

value of Tscrew. However, we did not work deep on it since although a dynamically changing
stretching distance assures a safer grasp, they result in shorter squeezing travel and thus lower
screwing efficiency. In practice, half stretching width both helps avoid losing the tool and at the
same time reduces the remaining number of squeezing-stretching cycles.
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tional axes, impedance control is used to provide compliance and correct the

deviations caused by uncertain deformations. For the rotational axes, position

control is used to provide correct squeezing torques. adtc
rbt : The goal of adtc

rbt is to

detach the tooltip from a screw head while avoiding sticking. It is designed as

a two-phase control policy. In the first phase, the robot performs admittance

control to ensure the gripper fingers fully contact the tool holding pads. When

Tscrew exceeds Tgoal, the gripper fingers are not necessarily in firm contact with

the tool. Directly switching to hybrid control and pull the tooltip out may fail

because of the small contact force at the infirm contact and unexpected tool

inclination. Thus we first perform admittance control to move the robot arm

following the force between the gripper fingers and the tool holding pads and

make them fully contact each other. In the second phase, the robot performs

hybrid control to pull the tooltip out of the screw head. This control policy is

developed based on the knowledge that rotating the tool towards the unfasten-

ing direction can reduce the force between the tooltip and the screw head. In

the hybrid control, the robot moves the tool around the unfastening direction.

Meanwhile, it exerts a pulling force along the screwing axis to detach the tool.

For the remaining translational and rotational axes, impedance control is used

to provide compliance and correct the deviations. Note that rotating the tool to-

wards the unfastening direction will not unfasten screws since the ratchet gear

is unlocked along with it. Fig.4.25 visualizes these robot policies.

The policy-selection algorithm shown in Fig.4.23 describes the switches of con-

trol policies for successfully completing screwing tasks. In the beginning of a

loop, the algorithm initializes the “Half stretch” and “End task” flags as “False”.

After that, it starts to perform the (asqz
grp, a

hyb
rbt ) policy, which calls “Check torque”

repeatedly until asqz
grp is done. In “Check torque”, as shown by the dashed block
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Figure 4.25: Robot policies. (a) ahyb
rbt . (b) adtc

rbt .

in the lower part of the figure, the algorithm measures Tscrew and compares it

with Tgoal. If Tscrew ≥ Tgoal, “End task” is set to “True”. Or else, if Tscrew < Tgoal

and “Half stretch” is “False”, Tscrew is further compared with Tstr. If Tscrew ≥ Tstr,

“Half stretch” is set to “True”. For other cases, the block returns directly. Back to

the main program, when “End task” becomes “True” the algorithm will switch

the control policy into (asqz
grp, adtc

rbt ) and finish the task. Or else, the algorithm will

first wait asqz
grp to finish, and then examine “Half stretch”. If “Half stretch” is

“False”, (astr
grp, a

hyb
rbt ) will be performed. Otherwise, (ah-str

grp , a
hyb
rbt ) will be selected.

Like (asqz
grp, a

hyb
rbt ), (astr

grp, a
hyb
rbt ) also calls “Check torque” repeatedly. Note that, when

“Half strtch” is set to “True” in (astr
grp, a

hyb
rbt ), the current action will be stopped im-

mediately and switched to (asqz
grp, a

hyb
rbt ). When Tscrew ≥ Tstr, the stretching phase

cannot provide enough torque to further tighten the screw. Thus, we do not

call “Check torque” in (ah-str
grp , a

hyb
rbt ). The algorithm will switch to (asqz

grp, a
hyb
rbt ) and

perform “Check torque” to determine termination in it after (ah-str
grp , a

hyb
rbt ) is done.
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4.5 Experiments and Analysis

In the experiment section, we examine our design’s performance, the manipu-

lation policies, and demonstrate the tool’s advantages using several real-world

tasks.

4.5.1 Performance of the Design

Torque at the tooltip

This part examines our tool’s real output torque Tout with respect to changing

tool width wtool and holding angle β, respectively. The experimental settings are

shown in Fig.4.26. A DynPick Capacitive 6-axis F/T sensor (200N, WACOH-

TECH Inc.) is used to measure the torque values. One of the robotic grippers

holds the tool. The tooltip is inserted into a slot fixed on the torque sensor. The

robotic gripper can close as well as open its jaw to exert forces on the tool. The

force sensor can thus measure the output torque on-line for both the squeezing

and stretching phases. The stable peak torque measured by the force sensor is

recorded as the maximum torque.

The results are shown in Fig.4.27 where the yellow curves indicate the theoret-

ical values, and the black curves indicate the experimental values. Fig.4.27(a,

b) show the relation between Tout and a changing β in squeezing and stretching

phases respectively. The value of wtool is set to 73mm. Fig.4.27(c, d) show the re-

lation between Tout and a changing wtool in the two phases. The β angle is fixed to

90◦. The theoretical and the experimental results show similarity, but the exper-

imental results are lower than the theoretical ones. The decrease is mainly from
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Figure 4.26: Experimental settings for measuring the real maximum output
torque. A DynPick Capacitive 6-axis F/T sensor (200N, WACOH-TECH Inc.)
is used to measure the output torque. The tool is held by one Robotiq Hand-E
gripper. The tooltip is inserted into a slot fixed on the F/T sensor.

the resistance force Fres, which is ignored in the theoretical computation as it is

hard to model (recall equations (4.6) and (4.8)). According to the experimental

results, the tool can output a torque between 3.64Nm ∼4.18Nm in the squeezing

phase and 0.34Nm ∼0.48Nm in the stretching phase. These values are the refer-

ence for setting our policy-selection algorithms’ parameters (see part B.2 of this

section).

Velocities at the tooltip

This part examines the velocities of the tooltip. Particularly, we compared four

cases. They are (1) the rotation in the squeezing phase, (2) the rotation in the

stretching phase, (3) the rotation in a whole squeezing-stretching cycle, and (4)

the rotation during a continuous rotation. An AR marker is used to assist in

tracking the rotation. It is attached to plates installed at the tool’s output ends, as

shown in Fig.4.28(a). Fig.4.28(b) illustrates the front end. Fig.4.28(c) illustrates

the back end. Note that since the two ends rotate identically except for their

95



Figure 4.27: Changes of maximum output torque Tout with respect to different
tool width wtool and holding angle β. Yellow curves indicate the theoretical val-
ues. Black curves indicate the experimental values. (a, b) The relation between
Tout and a changing β. The value of wtool is set to 73mm. (c, d) The relation be-
tween Tout and a changing wtool. The β angle is selected to be a fixed value 90◦.
The theoretical curves are computed using ξ=6.00×10−3Nm/◦ and Fgrp=125N.

directions, we only show the front end’s measured results below.

Fig.4.29 shows the results. Like Fig.4.27, the yellow curves indicate the theo-

retical values, and the black curves indicate the measured values. Fig.4.29(a)

and (b) are respectively the velocities in the squeezing phase and the stretching

phase. For these single-direction actions, the measured values and the theoreti-

cal values match well. Fig.4.29(c) is the velocity in a whole squeezing-stretching

cycle. The measured values start to deviate from the theoretical values when the

tooltip switches its rotation direction – the rotation angle keeps constant from
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Figure 4.28: An AR marker is used to detect the rotating velocity. (a) The setting
for tracking the rotation. (b) The clockwise rotation at the front end. (c) The
counter-clockwise rotation at the back end. Note: CW and CCW are counted
locally.

3.0s to 3.1s, drops from 3.1s to 3.3s, and resumes to increase after 3.3s. The rea-

son for the constant rotation is that there is a short switching delay between the

two phases. The reason for the drop is backlash. Note that the finger speeds in

the first three subfigures are 20mm/s for squeezing and 30mm/s for stretching.

The slow finger speeds were selected because we would like to have a detailed

and clear view of the changes.

Fig4.29(d) further shows the results where a robotic gripper squeezes and

stretches the tool continuously. The curve is made of a sequence of smaller

patterns where each of them is like the one shown in Fig.4.29(c). In this case, the

hand speed used to measure the real angle is selected to 150mm/s. The tool can

output a 360◦ rotation in 5.5s under the speed.
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Figure 4.29: Velocities at the tooltip. Yellow curves are theoretical values.
Black curves are measured values. (a) Changes of rotation angle concerning
time in a squeezing phase. (b) Changes of rotation angle concerning time in a
stretching phase. (c) Changes of rotation angle concerning time in a complete
squeezing-stretching cycle. (d) The changes of the rotation angle during contin-
uous squeezing and stretching. Note that the results are from the front end. The
back ends rotate reversely.

Fatigue life

In this part, we carry out simulations to study the tool’s fatigue life. We assume

that the gripping force on the tool’s holding pads is uniformly distributed and

the tool is folded to α = 60◦. We ignore the ratchet gears, bearings, and springs to

simplify the model. The materials of all parts are set to Aluminum alloy (6061).

The tool’s output end is set to be a fixed rigid body. Based on these assumptions

and configurations, we perform static analysis by considering a single load case
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and a zero-load base type cyclic stress on the tool’s holding pads. The maximum

number of tolerable squeezing-stretching cycles is counted as the available tool

life.

Figure 4.30: Fatigue analysis. (a.1) Load: 300N. (a.2) Load: 600N. (b) Changes
of available life under different gripping forces.

Fig.4.30 shows the results. In Fig.4.30(a.1), the exerted gripping force is 300N,

and the available tool life is 8.877 × 104 cycles. Fig.4.30(a.2) shows another case

when the exerted gripping force is increased to 600N. The available tool life is

reduced to 3.528 × 103 cycles. From the results, we find that the weakest parts

of the tool are the shafts – fabricating them using durable materials will help in-

crease the available life. Fig.4.30(b) shows the available life curve as the exerted

gripping force changes from 30N to 600N. The gripper used in our experiments

(Hand-E, Robotiq Inc.) exerts a maximally 125N gripping force on the tool. Un-

der this force, the available life is over 1 × 106 cycles, indicating that the tool is

very durable when used by the gripper.

Comparison with other tools

This part compares our tool’s efficacy with several other similar ones like manu-

motive human tools, powered human tools, and powered robot tools quantita-

tively. We categorize the similar tools into three categories: (1) Manumotive

tools designed for humans; (2) Powered tools designed for humans; (3) Pow-
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ered tools designed for robots. Table 4.5 shows a summary of our tool’s pros

and cons compared to them. The manumotive tools are designed for humans

and are difficult to be grasped by robots. Like the manumotive tools, powered

tools designed for humans are also difficult to be grasped by a robot. How-

ever, they do not require a robot to perform complicated motions. A robot only

needs to pick up a tool and move it to a goal position. Embedded motors real-

ize the tool’s rotation function. It is more efficient than the rotation performed

by multiple robot joints. Powered tools designed for robots especially consider

the structure of a robot hand for achieving force-closure grasps. Robotic end-

effectors can firmly hold them. The drawback is that cables like tubes, power

supply lines, and other signal wires are indispensable to power on and con-

trol the tools. The cables may lead to unexpected collisions or wind around the

robot. Compared to these tools, our screwing tool has advantages like stable

robotic grasping, small grasping limitations, no cable problems, and low price.

Meanwhile, it has a clear disadvantage – low efficiency. To understand the ex-

act efficiency difference, we further compare the detailed screwing time costs

in Table 4.6. The proposed tool takes 33.6s to fasten an M8 bolt. It is around

1/4-1/5 of a human operating an Allen wrench. To improve the efficiency, a

dual-arm robot may use the gearbox tool presented in Section IV.B for collabo-

rative screwing. After including the gearbox tool, the proposed tool’s efficiency

becomes competitive to humans (the last row of Table 4.6).

4.5.2 Performance of the Manipulation Policies

For examining the performance of the manipulation policies, we focus on ex-

changing tooltips and completing screwing tasks. Note that since visual recog-
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Table 4.5: The comparison of different tools

Tool Types Robotic Constraints Cables Efficiency PriceGrasping for Grasping

Manumotive Difficult Low No Low Low
Powered (Human) Difficult High Needed High High
Powered (Robots) Possible High Needed High High
Proposed Convenient High No Low Low

Table 4.6: Time costs of fastening an M8×8 screw

Tool Names Time Costs (s)

BOSCH IXO3 2.7
BOSCH GO 3 601 JH2 020 1.8
BOSCH PDR 18LI 0.4
Takagi Earthman ATL-150A 0.3
Allen wrench 7.1
Proposed tool 33.6
Proposed tool with a gearbox tool (1:5) 6.6

The results are based on the average values of 10 trials
for each tool. The portable electric tools, BOSCH IXO3,
BOSCH 3 601 JH2 020, and BOSCH PDR 18LI, and also
the manumotive tool (Allen wrench), are operated by
human hands. Takagi Earthman ATL-150A is a pneu-
matic screwdriver and is operated by a robot.

nition and sequence planning are reusing previously published methods, we do

not repeatedly examine them. Only a short discussion about our system recog-

nition precision is included for interested readers. The experiments are per-

formed using two UR3 e-series robot arms, with a Robotiq Hand-E two-finger

parallel gripper mounted at each arm’s end flange.
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Exchanging tooltips

First, we examine the policies for exchanging tooltips. Five tooltips are used in

total. They are named to #3 hex screwdriver bit, #6 hex screwdriver bit, #5 short

hex screwdriver bit, hex socket extension connector, and cross screwdriver bit.

All these tooltips have a 1/4 inch hex shank at the connecting end. The func-

tional ends of the #3 and #6 hex screwdriver bits are used to fasten M4 and M8

inner hex screws, respectively. The functional end of #5 short hex screwdriver

bit is used for fastening M6 inner hex screws in a narrow space. The hex socket

extension connector is an adapter for other 1/4 inch hex bits. The cross screw-

driver bit is used for fastening cross-head screws.

Fig.4.31(a) shows an example where a robot arm removes a #3 hex screwdriver

tooltip and replaces it with a #6 one. Some snapshots showing the execution re-

sults are shown in Fig.4.31(a). With the tool held by the left hand, the right hand

unplugs the #3 hex screwdriver tooltip and inserts a #6 one into the tool’s out-

put socket. The linear search, spiral search, and rotation search and impedance

control mentioned in Section IV.C are used to ensure a successful insertion. The

process is shown in detail in Fig.4.31(a.5-10). Note that removing a tooltip is

simply a kinematic motion planning problem along the rotating axis. The con-

necting hex shanks of the tooltips are chambered to avoid sticking. Thus, there

is no need for complicated control. Inside the tool’s output end socket, a mag-

net chip is attached to help stabilize an inserted tooltip. The magnet force is

ignorable compared to robotic forces.

Fig.4.31(b-d) show the results for the other tooltips. In the experiments, we as-

sume that the tooltip holders’ positions are known, and the screwing tool is held

in the robot hand with a known pose. The above tooltips can be inserted and
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Figure 4.31: (a.1-3) Unplug a #3 hex screwdriver bit and return it to a tooltip
stand. (a.4) Pick up a #6 hex screwdriver bit. (a.5-10) Inserting the #6 hex screw-
driver bit into the output socket. (a.5,6) Linear search. (a.6,7) Spiral search.
(a.8,9) Rotation search and impedance control. (a.10) Final state. (b-d) Some
other examples: (b) Exchanging to a hex socket extension connector. (c) Ex-
changing to a #5 short hex screwdriver bit. (d) Exchanging to a cross screw-
driver bit.
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exchanged successfully without failure. The proposed manipulation policies for

exchanging tooltips are robust to the uncertainty from grasping, modeling, and

the tool’s hex connecting end’s unknown angle.

Completing screwing tasks

We performed several experiments to examine the proposed policy-selection al-

gorithm. The tooltips we used are recessed ballpoint bits (VESSEL No.SS16BP).

The value of Tstr is set as 0.30Nm following Fig.4.29. The value of Tscrew is com-

puted based on the measurements from the UR3e robot’s embedded F/T sensor

(Resolution: 0.02Nm; Accuracy: 0.10Nm). The value of Tgoal is set to different

values to examine the performance changes.

Fig.4.32 shows three results of fastening a single-start M8 screw, where Tgoal is

set to 2.00Nm. The black curves are the changes of Tscrew during screwing. The

colored sections denote the selected policies. The blue, yellow, brown, and red

colors respectively indicate (asqz
grp, ahyb

rbt ), (astr
grp, ahyb

rbt ), (ah-str
grp , ahyb

rbt ), (asqz
grp, adtc

rbt ). Par-

ticularly, Fig.4.32(a) shows a simple case where Tscrew begins to increase at 4.9s

and exceeds Tgoal at 5.8s. After that, the control policy is switched to (astr
grp, a

dtc
rbt )

to finish fastening. Fig.4.32(b) is a bit more complicated. The value of Tscrew

starts to increase at 5.1s. At 5.7s, Tscrew reaches Tstr, and the control policy is

immediately switched to (asqz
grp, ahyb

rbt ). At 6.0s, Tscrew exceeds Tgoal, and the con-

trol policy is switched to (astr
grp, a

dtc
rbt ) to finish fastening. Fig.4.32(c) shows a very

complicated case where multiple ah-str
grp are performed. At 2.9s, Tscrew exceeds Tstr

but does not reach Tgoal. Thus, (astr
grp, a

hyb
rbt ) is switched (ah-str

grp , a
hyb
rbt ). After that the

(ah-str
grp , a

hyb
rbt ) policy is performed twice between 2.9s∼3.9s and between 5.3s∼5.7s.

At 5.9s, Tscrew exceeds Tgoal and the control policy is switched to (astr
grp, a

dtc
rbt ) to
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Figure 4.32: Changes of control policies and Tscrew during fastening a single-start
M8 screw. (a), (b), (c) are three different cases. The key time instants and their
correspondent gripper states are marked using circle numbers. Especially, 5⃝
denotes the changes from admittance control to hybrid control in adtc

rbt .
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finish fastening.

Besides the shown results, we performed multiple examinations using single-

start M8, M6, and M4 screws with different Tgoal (Tscrew remains unchanged).

We set Tgoal to range from 0.60Nm to 3.60Nm with 0.50Nm intervals. At each Tgoal

value, we perform 10 times of fastening tests. Success is judged when the given

Tgoal is reached and a tooltip is completely detached from a screw head. Under

the mentioned settings, all our tests succeeded. The most negative result we

observed is that the compliant motion made the tool inclined, but the inclination

did not lead to failure. We conclude that the proposed policy-section algorithm

is robust to single-start screws.

Recognition Precision

The tool accuracy of visual recognition is influenced by three factors5: (1) The

precision of the sensor’s point cloud; (2) The precision of model registration

algorithms; (3) The absolute precision of the robot. The depth sensor we used

in our experiments is a Photoneo PhoXi 3D Scanner M. Its calibration accuracy

is less than 0.5mm. The method of model registration has less than 0.5mm errors.

The UR3e robot’s absolute precision is around 0.1mm. Considering all the error

factors, the total tool pose accuracy is around 1.0mm.

5Here we assume the difference between a real object and its 3D CAD model is ignorable.
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4.5.3 Real-World Tasks

We use several real-world tasks to demonstrate the advantages of the tool. The

video clips of our dual-UR3e robot performing these tasks are available in the

supplementary.

Flexibility in planning

First, we program the robot to conduct fastening tasks using the tool. We com-

pare the proposed mechanical screwing tool’s flexibility with a conventional

pneumatic screwdriver widely used in the manufacturing industry. In the case

that the robot uses the pneumatic screwdriver, as shown in Fig.4.33, the robot

has difficulty in dealing with the vacuum tube. The vacuum tube may knock

down the spray bottle placed in the workspace during the manipulation, as

shown in Fig.4.33(a.1). Also, the robot may get entangled with the vacuum tube

during manipulation, as shown in Fig.4.33(a.2). Ingenious modeling algorithms

and motion planners must be developed to avoid these problems.

Contrarily, since our tool is mechanical, it does not have any “tails” like electric

cables, signal wires, or vacuum tubes. There is thus no need to consider their in-

fluences. Fig.4.33(b) exemplifies a fastening task using the proposed tool. When

the robot cannot directly move the tool to the goal for screwing, a handover

between the two grippers is used to reorient the tool to the expected pose.

We also compare the ability of the tool to fasten a screw in a narrow space.

Fig.4.34 shows the scenario. The robot cannot use commercial tools to work in

the narrow space shown in the scene. It is even not convenient for humans to

use a commercial hex wrench, as shown in Fig.4.34(a). In contrast, the proposed
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Figure 4.33: (a.1,2) Examples of the problematic cables. (b.1,2) The tool is cable-
less. Manipulation planning with it is easier.

tool is compact and has many tool-control grasp poses, and it can work in the

narrow space to fasten the screw, as shown in Fig.4.34(b).

Figure 4.34: (a.1-3) Working in a narrow space is difficult. (a.4) It is even incon-
venient for humans. (b) A robot can perform the task by properly grasping the
proposed tool.
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Multi-tool collaboration

Second, we demonstrate two robot arms can use multiple tools together to con-

duct tasks that cannot be done using a single special-purpose end-effector. The

tasks include: (1) Using a tweezer tool [72] [148] to pick up a screw and using

the screwing tool to fasten it; (2) Using a gearbox tool to accelerate screwing

speed or increase maximum output torque.

Collaborative bolt picking and screwing For this task, one arm of the robot

uses a tweezer tool to pick up and align screws, and the other arm uses the

screwing tool to fasten the aligned screws. The tooltip of the tweezer tool is

carefully designed for picking and alignment [148]. A robot arm may tilt the

tool to slide a picked screw to a corner of the tooltip, and thus precisely align

the screw and a threaded hole, as shown in Fig.4.35(a.1,2). To move the tools

to pick-up and screwing poses, we follow Section VI.B to build two reasoning

graphs and plan the grasp and manipulation motion sequences by searching

them. Using the planned sequences, the two robot arms can manipulate the

two tools and reorient them to their goal poses. After that, the arm manipulat-

ing the tweezer tool picks up a screw and aligns it to a screw hole. The arm

manipulating the screwing tool inserts the screwing tooltip to the aligned screw

head for fastening. Fig.4.35(a.3) shows a picture of the collaborative screwing

process.

Assisting gearbox tool In the second task, we use a gearbox tool to increase

or decrease the screwing tool’s output. In the beginning, the screw is loose

and the gearbox tool is used as a speed increaser to rotate it quickly. When the
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Figure 4.35: (a.1,2) Using the tweezer tool to pick a small screw. (a.3) Collabora-
tive alignment and screwing. (b) Using a gearbox tool to accelerate the rotating
speed or increase the maximum output torque of the screwing tool.

screw gets tight, the robot reverses the gearbox tool to reduce rotating speed

and increase the output torque. The high output torque will firmly fasten the

screw. Fig.4.35(b) shows a picture of the collaboration.

4.6 Summary

This chapter presented the optimal design and manipulation policies of a me-

chanical screwing tool for 2-finger parallel grippers. The tool can convert linear

motion into rotational motion and thus can be used by robots with parallel grip-

pers to fasten screws. Two mC-SLEs and a double-ratchet mechanism are em-

ployed in the design. Force analysis and geometric constraints are considered to

make the tool have effective transmission capabilities and a compact structure.

Manipulation and control policies are developed to exchange the tooltips, plan

grasping and manipulation sequences, and detect and complete fastening tasks.

Experiments showed a prototype of the designed tool has a good expected per-
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formance. Robots can use the tool and also several other tools together to con-

duct screw fastening tasks. The design is compact, cordless, and flexible. The

developed manipulation policies are robust and effective.

In the future, alike tools are expected to replace the current special-purpose end-

effectors or tool changers and be provided to general robot arms for complicated

manipulation tasks.
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Chapter 5

Manipulation for Uncertainty Elimination

Uncertainty is a crucial problem to employ robotic manipulators for assembly

tasks. Especially for autonomous manipulators that receive vision feedback

and generate manipulation motion online, uncertainty is challenging to elimi-

nate – They originate from a series of mutually coupled components like vision,

control, contacts, etc. Overcoming them and achieving precise manipulation is

tricky.

Contemporary literature tends to solve the uncertainty problem using multi-

modal sensing and improved sensing algorithms. Related articles reported

significant improvements in robotic perception [149]. However, despite the

achievements, the improvements in sensing technology still fail to provide suffi-

cient qualifications for autonomous manipulators, as sensing is not the only rea-

son for uncertainty. On the other hand, researchers in the robotic planning and

control community developed sophisticated integral motion planning and con-

trol policies to enable robots to correct object poses during manipulation. The

policies include but are not limit to scanning search, spiral research, impedance

control, hybrid force/position control, etc. [150] [148] [151], which need force

sensors [152], tactile sensors [153] [154], or current sensors for feedback. Com-

pliant mechanisms are hardware alternatives of the policies [155] [156]. They are

effective and less expensive counterparts of the sensor-based implementation.

The policy-based methods or the compliant mechanisms have advantages in

regulated scenarios but tend to be influenced by environmental changes. Users

need to adjust various parameters or key hardware components like springs

for different applications. Unlike methods that improve robotic perception
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and control or develop new compliant mechanisms, eliminating uncertainty

through manipulation while considering geometric and physical constraints is

more straightforward, robust, and cost-effective. The fundamental idea is de-

ploying a fixture in the robot workspace. The pose of a workpiece can be pre-

cisely aligned and determined by taking advantage of the geometric constraints

induced by contacting the fixture and the physical constraints induced by grav-

ity. The idea is not new. It is widely seen in factory automation for aligning

randomly placed workpieces [91] [157], and has been practiced since the begin-

ning of robotics. This paper reinspects the idea of employing a fixture to reduce

uncertainty. Different from the conventional design and mechanical analysis,

our focus is on the planning aspect. We develop algorithms to compute an ob-

ject’s stable poses on a fixture and employ these poses as intermediate states to

build manipulation graphs and plan robotic manipulation sequences. With the

help of the stable intermediate poses on the fixture, the uncertainty in planned

manipulation sequences can be reduced. A workpiece is manipulated precisely,

and the manipulation results can be directly used to conduct difficult tasks like

insertion. In detail, the fixture used in our study is a triangular corner fixture,

which is comprised of three mutually orthogonal planes, as shown in Fig. 4.1.

Driven by gravity, a workpiece dropped from above the tilted corner fixture

may firstly contact the inner surfaces and then slide to the bottom under grav-

ity and the guides of the mutually orthogonal planes. The workpiece will rest at

a particular pose at the bottom of a gravitational bucket formed by the fixture.

Previously, dropping a workpiece onto a tilted corner for regrasp and reduc-

ing pose uncertainty was widely used in the automation industry. For practical

purposes, the robot motion for a successful dropping was manually specified.

Their stability relied on a system integration engineer’s subjective adjustments

113



and examination. The method developed in this work automatically finds the

Stable Placement Poses (SPPs) of an object on a Triangular Corner Fixture (TCF)

and consequently enables auto-planned precise robotic regrasp and manipula-

tion. The method first computes the SPPs considering geometric contact con-

straints, physical feasibility, and static stability. Then, it elevates the object from

its SPPs to dropping poses and finds the Deterministic Dropping Poses (DDPs)

from them. When the object is released from the DPPs, it will rest at expected

SPPs. Finally, the method computes the gripper configurations for grasping and

regrasping the object considering the TCF, SPPs, and DDPs. The method will

output a pick-and-place sequence that manipulates the object with the help of

the TCF by high precision. In the experiments, we study the performance of dif-

ferent methods for estimating the DDPs of different objects and quantitatively

examine the proposed method’s ability to eliminating uncertainty by inserting

a peg into holes with different clearance. We also examined the method’s prac-

tical performance using real-world assembly tasks like peg-in-hole insertion,

sheathing tubes, aligning holes, and mounting housings, etc. The results verify

that the method enables a robot to finish assembly tasks without using sensors,

compliant control, or complicated mechanism, making the robot system more

robust and flexible.

5.1 Preliminaries and Method Overview

This section explains the background knowledge of a TCF, and presents the out-

line of the proposed method.
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5.1.1 Background knowledge of a TCF

A Triangular Corner Fixture (TCF) is made of three inclined plates intersecting

at one bottom point, as shown in Fig. 5.1(a). The three inclined flat plates form

a gravitational basket [158] that holds a dropped object at a stable pose. Com-

pared with a flat surface, the plates of a TCF can always pull a dropped object

into configurations with minimal potential energy in the gravitational field.

Figure 5.1: Structure of a Triangular Corner Fixture (TCF).

Especially, the plates of the TCF used in this paper are mutually perpendicular.

The reason we study this special case is that our goal is to assemble mechan-

ical workpieces precisely. Although these workpieces have different shapes,

they comprise geometric primitives like a cylinder, cuboid, ball, wedge, etc.,

and have three mutually perpendicular surfaces. We thus propose using a TCF

made of three mutually perpendicular plates as an intermediary fixture to hold

them. Fig. 5.1(a) shows the structure of the mentioned TCF. Its three plates are

fabricated as three congruent isosceles right triangles. The angles between the

triangular plates and a horizontal plane are the same (54.74◦). Figs. 5.1(b) shows

a real-world fabrication. The three triangular plates are made of acrylic boards
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and are detachable from the base. The isosceles length le of the triangular plates

are equal. Since they are detachable, the le can be changed, and the TCF dimen-

sions can be adapted for parts of different scales. The TCF base is mounted on

a 3-axes rotational platform for fine-adjustment. The platform bottom has an

adapter plate for connecting with other fixtures.

5.1.2 Method Overview

We develop a planner that estimates the robust dropping poses and stable place-

ments of an object in the mentioned TCF and hence finds the regrasp motion that

leads to precise assembly. Fig. 5.2 shows the workflow of our proposed plan-

ner. It receives the meshed models of the target object, the robotic gripper, and

the TCF as the input. Three sub-modules will use the input: the Stable Place-

ment Pose (SPP) planning sub-module, the Deterministic Dropping Pose (DDP)

estimation sub-module, and the grasp configuration planning sub-module, re-

spectively, to find stable placement poses, estimate robust dropping poses, and

plan gripper configurations. Specifically, the SPP sub-module computes a set

of stable placement candidates of a given object that satisfies geometry con-

straints and is statically stable in the TCF. The DDP estimation sub-module uses

a classifier to predict if an object dropped from an elevation position can be

aligned to the expected SPP and finds a set of SPP-DDP pairs. The grasp config-

uration planning sub-module computes the gripper configurations for releasing

an object at the DDPs and regrasping the object at the SPPs in the found SPP-

DDP pairs. These computed releasing and regrasping gripper configurations

are used to build a regrasp graph to reason a robot motion sequence. The de-

tails of the three sub-modules will be explained in Sections V-VII.
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Figure 5.2: Workflow of the proposed planner.

5.2 Plan Stable Placement Poses

We define an SPP as follows: An object is at an SPP when it stays in the triangu-

lar corner fixture in a balanced static condition. We use the algorithm shown in

Fig. 5.3 to plan the SPPs. The algorithm receives an object and a TCF model as

input and returns all satisfying SPPs as output. It comprises three steps which

are highlighted using diamonds and blocks of different colors in Fig. 5.3. The

first step includes the blue diamonds and blocks. In this step, the algorithm

clusters the faces of the object’s mesh model into facets and computes their

triple combinations. The triplets of facets are the candidate contact faces with

the inner surface of the TCF. The second step includes the yellow diamonds and

blocks. In this step, the algorithm uses the triplets of facets to compute the object

poses in the TCF. The triplets of facets must be in contact with the TCF’s inner
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Figure 5.3: Plan the SPPs. The digram is a close-up view of the “Plan SPP” sub-
module in Fig. 5.2.

surface during the computation. Meanwhile, the object models are required to

be not penetrating the TCF and the surrounding environments. The third step

includes the pink diamonds and blocks. The algorithm in this step examines

the static stability of the object poses computed in the second step and discards

the unstable ones. The details of these three steps are presented below. We only

consider face-to-face contact between the object and the TCF as effective contact

candidates in the algorithm. Although a point-to-face or line-to-face contact can

also stabilize an object, they are less reliable and ignored to simplify the plan-

ning algorithm.

5.2.1 Step 1: Facets and Their Triplet Combinations

In this step, the algorithm clusters triangle faces of an object’s mesh modelMo

into facets and then uses the facets to find mutually perpendicular triplet com-

binations.
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Using conventional segmentation methods to cluster facets may lead to uneven

area [159]. Instead of the conventional methods, we use superimposed segmen-

tation [160] to generate uniform facets. The method especially has better perfor-

mance when handling curved surfaces. Take the T-shape pipe junction object

shown in Fig. 5.4 for example. The mesh model of the junction is shown in Fig.

5.4(a). The segmented superimposed facets are shown in Fig. 5.4(b). For a mesh

model Mo, we denote its superimposed facet set using So = {si} (i = 1, 2, ...m),

where each si indicates a facet.

After getting the facets, we find the mutually perpendicular triplet facet com-

binations. Here, we assume to only consider the face-to-face contacts between

an object and the TCF, and thus ignore the edge and vertex contact. The de-

tails of our workflow is as follows. With all segmented facets, we combine

every three surfaces into a triplet and get a collection of triplets Sg = {Sg( j) =

{sa, sb, sc|sa, sb, sc ∈ So}, j = 1, 2, ...C3
m}. Then, we examine the orthogonality

of each triplet’s facet normal. The one that has three mutual orthogonal nor-

mal is considered as a feasible candidate, as illustrated in Fig. 5.4(c). We use

S
′

g = {S
′

g(i) = {sa, sb, sc|(sa ⊥ sb, sa ⊥ sc, sb ⊥ sc)}, S′g(i) ∈ Sg} to denote the feasible

candidate collection. The workflow can be accelerated using linear program-

ming to avoid repeatedly examining the impossible combinations.

5.2.2 Step 2: Computing Transformations

In the second step, the algorithm computes the transformation that fits the

triplet facets onto the inner surfaces of the TCF. We use {Co} and {C f } to respec-

tively represent the object frame and the TCF frame, and use {C′

o} to denote the

119



Figure 5.4: (a) A raw meshed model. (b) Segmented surfaces. (c) A candidate
triplet of facets. It has three mutual orthogonal surfaces. (d) The object’s frame
({Co}) and the object-to-TCF transformation coordinate described in it ({C′o}).
(e) The TCF’s frame ({C f }) and the object-to-TCF transformation coordinate de-
scribed in it ({C′f }). (f) A placement pose of the object on the TCF. (g) The first
failure case: Penetration. (h) The second failure case: Phantom contact. (i) All
planned LFPs.
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local frame of S′g(i). The intersection point of S′g(i)’s three orthogonal facets are

selected as {C′

o}’s origin. Its coordinate axes are determined considering the in-

verted normal directions of the facets (The exact x, y, and z choices are free,

as long as they meet the right-hand rule). Fig. 5.4(d) illustrates a {C′

o} defined

considering the S′g(i) shown in Fig. 5.4(c).

Next, we compute the placement pose of an object by transforming its {C′

o} onto

TCF. We define two coordinate systems for the TCF. One is {C f }. Its origin is

at the bottom point of the TCF, and its orientation is the same as the world

coordinate system. The other one is {C′

f }, which has the same origin as {C f }

but the x, y, z axes are along the intersection edges of the TCF’s perpendicular

surfaces. The placement poses of the object can be computed by superposing

{C
′

o} to {C′

f }, which means if we use a transformation matrix C f

Co
Ti to denote the

placement pose, it can be computed as C f

Co
Ti=

C f

Co
Ti

Co

C′o
Ti=

C f

C′f
Ti

Co

C′o
Ti. An object may

have many S′g(i) and thus many C f

Co
Ti. We name C f

Co
Tis the Potential Placement

Poses (PPPs). Fig. 5.4(f) illustrates one PPP of the T-juction object.

Note that the potential C f

Co
Ti may not be logically feasible since we did not check

interference and contact. The object may penetrate the TCF, as shown in Fig.

5.4(g). It may also be floating in the air as the size of the TCF is limited and the

contact is phantom (Fig. 5.4(h)). Thus, at the end of the second step, we screen

the PPPs by detecting collisions and the existence of contact and removing the

logically infeasible ones. We get a set of Logically Feasible Poses (LFPs) after the

screening, as illustrated by Fig. 5.4(i).
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5.2.3 Step 3: Examining the Static Stability

In the third step, we further use Contact Wrench Space (CWS) analysis to exam-

ine the static stability of the LFPs and obtain the SPPs. For a clear illustration,

we use an L-shape object instead of the T-junction to exemplify this step. The

workflow is as follows.

First, we extract the contact polygons between the object and the TCF’s inner

surfaces. Each of the three TCF inner surfaces has a contact polygon set, which

may have a single or multiple elements. We compute the convex hull of the

contact polygons in each set to get three support polygons for the three in-

ner surfaces. The SP1-3 in Fig. 5.5(a) illustrate the three support polygons of

the L-shape object. Second, we consider the vertices of the three support poly-

gons as the effective contact points that provide supporting forces for the object,

compute a wrench cone formed by the wrenches exerted on them and the ob-

ject’s gravity, and judge the stability of the object using the relation between the

wrench cone and the origin of the wrench space. The yellow spheres in Fig.

5.5(a) illustrate the effective contact points. Assume there are in total k effective

contact points pi = [xi, yi, zi], (i = 1, 2..., k). We build a local frame at each of the

pis to describe the contact force. The x and y axes of the local frame compose a

tangent plane on the contact point, and the z axis aligns with the normal of the

TCF’s inner surfaces, as shown in Fig. 5.5(d). The contact force at pi can be rep-

resented by the components along the three axes as fi = [ fxi, fyi, fzi]T . The effect

wrench exerted on pi can be computed using wi =

 I 0[
pi×

]
I


fi

τi

, where τi in-

dicates the exerted torque. Considering the frictional constraints at the contact

point, fi must be in a friction cone and fxi, fyi, and fzi must meet
√

f 2
xi + f 2

zi ≤ µ fzi,
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where µ is the friction coefficient. Since fi is inside a cone and is not determin-

istic, directly using the equation to compute wrench cone is difficult. To over-

come the difficulty, we approximate the friction cone with a pyramid [161], as

shown in Fig. 5.5(b.2-3). The lateral edges of the pyramid represent the extreme

fi choices. They are named as f j
i , where the granularity of the approximation

determines j. A linear combination of the f j
i could approximate a freely chosen

fi in the friction cone. With this consideration, we represent wi using multiple

values wi = {w
j
i } and use all w j

i to compute the wrench cone. Each w j
i will be the

wrench from one f j
i . Considering all of them for wrench cones is the same as

considering linear combination of the f j
i . The wrench set W born by the object

comprises the {w j
i } at every pi and the object’s center of mass. It can be expressed

as W = {w j
1} ∪ ... ∪ {w

j
k} ∪ {wg}, where wg denotes the gravitational wrench. The

wrench coneWs spanned by the wrench is essentially a convex hull of the ele-

ments in W [114]. The stability of LFPs is judged by examining the relationship

between the origin of the wrench space andWs
1. If the origin is inside theWs

of an LFP, the LFP is considered to be stable and will be counted as an SPP. The

planner will look over all LFPs and find a set of SPPs.

5.3 Estimate Deterministic Dropping Poses

If an object released from a pose on top of the TCF has a deterministic and ex-

pectable SPP when it gets stabilized inside the TCF, we call the releasing pose a

Deterministic Dropping Pose (DDP). This section presents methods to estimate

if the SPPs obtained in the last section have correspondent DDPs. The methods

1The magnitude of all elements in W is set equally as 1 when computing the Ws since we
assume unknown masses.
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Figure 5.5: (a) Support polygons and contact points formed by the contact be-
tween the object and the TCF. (b) Friction cones and gravity exerted on the ob-
ject. The friction cone is simplified as a hexagonal pyramid. (c) Wrench cone
Ws in the wrench space.

are based on the assumption that a candidate DDP is a pose linearly elevated

from an SPP. The elevation height he ranges from h− to h+, as shown in Fig. 5.6.

We elevate an SPP to a random height in [h−, h+] to get candidate releasing pose

and use the methods presented in the following subsections to estimate if the

object deterministically stabilizes at the SPP after being dropped from the re-

leasing pose. If the algorithms suggest a positive predicted result, we save the

SPP and the releasing pose as an SPP-DDP pair. All saved SPP-DDP pairs will

be used for reasoning and planning the regrasp sequences to improve grasping

precision.

Specifically, we propose two methods for the estimation. The first is an analyt-

ical method based on CWS, and the second is a learning-based method. Their

details are as follows.

124



Figure 5.6: Visualization of the eleva-
tion height he and its effective range
[h−, h+]. The d f is the depth of the
TCF. It is not mentioned in the main
text. We choose h− to be a bit lower
than d f and choose h+ to be outside
d f to take into account various possi-
bilities.

5.3.1 Analytical Method

In the first method, we predict the SPP by considering a static stability criterion,

which screens an SPP considering its capability of resisting external disturbance

wrenches. The method is based on an intuition that an SPP with larger stability

is more likely to have a DDP than a less stable one.

Similar to the third step of planning SPPs, the analytical method uses CWS to

evaluate static stability. However, instead of directly generating convex hull of

contact wrenches to span the wrench space, the method constructs the wrench

cone by computing the convex hull of W’s Minkowski sum. We use the no-

tationWmkv to differ the wrench cone in this section from theWs used before.

Compared toWs,Wmkv can quantify the resistible external wrench, thus make it

easier to decide an evaluation criteria [114]. In particular, the method computes

the shortest distance from the origin of the wrench space to the hyperplanes that

constituteWmkv and uses the shortest distance as the stability quality. Then, the

method finds the SPPs that have enough stability quality from the obtained SPP

set and elevate them to get DDPs.

The static stability criteria-based analysis may find the DDPs with large deter-
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minism from the SPPs of an object. However, the stability quality of different

objects cannot be measured on a unified scale, making it difficult to set a unique

threshold for a general estimation. Also, the criterion is based on intuition and

is not fundamentally true. The DDPs may have uncertainty (positional and rota-

tional noises, and also bouncing) in the real world, which are not considered by

the method and may invalidate the intuition. For these reasons, more advanced

methods need to be explored.

5.3.2 Learning-Based Method

In the second method, we use machine learning to predict DDPs. We use a sim-

to-real method [162] to obtain the training data and train different classifiers to

judge if an SPP has a correspondent DDP.

Training data

The training data comprises a data section and a label section. The data part

comprises the contact polygons, the position of the object’s CoM, and the sup-

port surfaces of the TCF. They are projected onto a horizontal plane and for-

mulated as a 2D grayscale image shown in Fig. 5.7 to simplify numerical com-

putation. In detail, we assume a grayscale image with 224 × 224 pixels. The

background of the image is white (grayscale value: 255). The regions of the

projected support polygons and the contact polygons are set to 220 (support

surfaces) and 0 (contact polygons). The projected CoM is formulated as a circu-

lar patch. Its color is computed using vgrey = ϕ ·hcom, where ϕ is the ratio between

a real-world distance and the numbers of image pixels used to represent it, hcom

126



Figure 5.7: An SPP shown in (a) is converted into a grayscale image in (c) by
using the top view shown in (b).

indicates the vertical distance from the CoM to the bottom point of a TCF. The

vgrey essentially normalizes hcom considering the dimensions of the TCF and the

image.

The label section is collected by physical simulation. We place a work table and

a TCF in simulation and generate the candidate releasing poses by randomly el-

evating an object from their SPPs, dropping the object from the candidate poses,

and examining the finally stabilized poses. Unlike the analytical method, we

add noises to the releasing poses to take into account uncertainty. The object

falls from the releasing poses with random noises, and we compare the object’s

stabilizing CoM with the CoM of the expected SPP when it gets stabilized. If

the two CoMs coincide, a successful trial is recorded. Otherwise, a failure is

recorded. Here we use the CoM as the reference to avoid misjudging symmetric

objects with small support surfaces (e.g., balls and cylinders). The configura-

tions of these symmetric objects are considered to be identical when moving

around the symmetry center. By comparing the CoMs instead of the configura-

tions, we may avoid misjudging the identical configurations. We run 100 trials

for each releasing pose and compute a success rate. If the success rate is more
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significant than a given threshold, the releasing pose will be labeled as a positive

sample.

Classifiers

Using the training data collected in the last section, we train classifiers to predict

if the object dropped from a releasing pose can rest at an expected SPP. The

classification is a simple binary one since there are only two labels. Various

methods like Support Vector Machine (SVM), Fully Connected Network (FCN),

and Convolutional Neural Network (CNN) can be used to model the classifier.

Specifically, we implement and compare a linear SVM, a four-layer FCN, and an

Alexnet-CNN. The detailed results and discussions about the implementation

and comparison will be presented in Section.VIII-B.

5.4 Plan Grasp Configurations and Regrasp Sequences

This section presents detailed releasing and regrasp planning algorithms for ad-

justing grasping precision. The algorithms are partially based on our previous

work published in [160] and [163]. First, we plan grasps configurations for an

object without considering any obstacles using the methods presented in [160].

Then, based on the planned grasp configurations, we generate two sets of grasp

configurations for the SPP and DDP in each SPP-DDP pair while considering

different levels of collisions. Finally, we build a regrasp graph [163] by reason-

ing and connecting the grasp sets associated with all SPP-DDP pairs, and search

the graph to obtain regrasp sequences.
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Fig. 5.8 and 5.9 exemplify the above workflow using the L-shape object.

Fig.5.8(a) shows the planned grasp configurations when there are no surround-

ing obstacles, and the object pose is aligned with the global frame. Fig. 5.8(b-c)

show an SPP and its associated grasp configuration set. These grasps in the set

are transformed from (a) along with the object pose. The grasp configurations

that collide with the TCF after the transformation are removed. Fig. 5.8(d-j)

show the DDP paired with the SPP and the procedure for generating its asso-

ciated grasp configuration set. Fig. 5.8(d) is the DDP. Fig. 5.8(e) is the grasps

transformed from (a), with the ones in collision with the TCF removed. Fig.

5.8(f) shows the swept volume of the released object. The grasps in (e) are fur-

ther examined considering the swept volume. If an opening hand collides with

the swept volume, the released object will collide with the hand when it falls

onto the TCF, leading to an unexpected resting pose. Thus, we further examine

the collision between the grasp configurations in (e) and the swept volume, and

remove the collided ones. Fig. 5.8(g.1-2) and 5.8(h.1-2) show a collision-free and

a collided examples respectively. The grasp configuration in Fig. 5.8(g.1) does

not collide with the swept volume after releasing in Fig. 5.8(g.2). Contrarily, the

grasp configuration in Fig. 5.8(h.1) get collided in Fig. 5.8(h.2). Fig. 5.8(i) high-

lights all collided grasp configurations in (e) with red color. Fig. 5.8(j) shows the

remaining collision-free grasps.

Fig. 5.9 shows the regrasp graph built using the two grasp configuration sets

in Fig. 5.8(c) and (j). The black maximally connected graphs in Fig. 5.9(a) and

(d) show the transit relations among the grasp configurations associated with

the initial and goal object poses. The black maximally connected graphs in Fig.

5.9(b) and (c) show the transit relations among the grasp configurations associ-

ated with the DDPs and their pairing SPPs. The blue edges among the maxi-
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Figure 5.8: (a) Grasp configurations planned without considering any surround-
ing obstacles or pose changes. (b) An SPP. (c) The grasp configuration set asso-
ciated with the SPP in (b). (d) A DDP. (e) Transformed collision-free grasps from
(a), with the ones in collision with the TCF removed. (f) Swept volume of the
dropped object. (g-h) Releasing hands may collided with the swept volume. (i)
Grasp configurations that collide with the swept volume are highlighted in red
and will be removed. (j) Grasp configurations associated with the DDP.

mally connected graphs show the transfer relations among the grasp configura-

tions associated with different object states. The yellow edges represent strong

connections between the black maximally connected graphs in Fig. 5.9(b) and

(c). They indicate that a grasp configuration associated with a DDP can transit
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to another grasp configuration associated with its pairing SPP. To precisely re-

grasp the L-shape object, our planner will search a path on the graph by starting

from one node in (a) (the initial grasp) and ending at another node in (b) (the

final grasp). The path essentially maps to a sequence where the object will be

grasped from the initial pose (a node in (a)), moved to a DDP (a node in (b)),

dropped down onto the TCF and regrasped (a node in (c)), and finally moved

to the goal (a node in (d)).

5.5 Experiments and Analysis

This section includes three parts. First, we compare the methods for estimating

the DDP-SPP pairs. Second, we use the most satisfying method to perform re-

grasp and examine the regrasp precision. Third, we validate the benefits of the

proposed method using real-world assembly tasks.

5.5.1 Comparison of the DDP Estimation Methods

We proposed one analytical method and three learning-based methods in Sec-

tion V-B-2) for estimating the DDPs. In this subsection, we compare their per-

formance using physical simulation. Especially for the learning-based methods,

we use the 14 primitives shown in Fig. 5.10(a) to obtain the training data. The

primitives are scaled from 50% to 150% with 10% granularity, as shown in Fig.

5.10(b), to obtain 154 objects. Using these objects, we get 4464 SPPs. We collect

training data using these SPPs in a PyBullet-based physical simulator. Accord-

ing to the real-world model, the friction coefficient and the bounce rate between
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the object and the TCF in the simulator are set to 0.3 and 0.2. The inner edge

length of the TCF is set to 50.0 mm. Its d f is set to 28.0 mm. We collect the

training data by repeatedly elevating the objects from the SPPs to random start

positions between h− = 0.8d f and h+ = 1.5d f with maximally 3.0 mm positional

and 3.0◦ rotational noises, and dropping them from the start position. When the

objects get stabilized, we compare their CoMs with that of the source SPPs and

label the results. Through the physical simulation, we collected 1770 positive

samples and 2674 negative samples. 80% of the data is used to train the estima-

tors with cross-validation used to verify the results. The remaining 20% is used

for the test.

The results using different methods (including the analytical one) are shown in

Fig. 5.11. The learning methods have better performance, of which the AlexNet

shows the highest success rate (90.1%). The analytical method has poor perfor-

mance because “finding the SPPs with enough stability quality” needs a thresh-

old. For practical purposes, we only used the most stable configuration, which

easily leads to ignored DDPs. Meanwhile, even if one configuration has the

most stable stability, there is no guarantee that its elevated counterpart is a DDP.

The DDPs found by the method may thus be unconvincing.

Besides the simulated data, we also validate the various methods using four

real objects shown in Fig. 5.13. They include: (a) an L-shape object; (b) a T-

junction; (c) a bracket; (d) a bearing housing. According to the object’s size, we

chose a 50.0 mm-TCF for the L-shape object and bearing housing, and a 70.7

mm-TCF for the bracket and the T-junction. For the learning-based method, we

used the classifiers trained above to judge DDP-SPP pairs. For the analytical

method, we use the most stable configuration. The results are shown in Table.
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5.12. The table’s ground truth values (Denominators of the “Unpaired” and

“DDP-SPP” columns) are obtained by repeated physical simulation. There are

54 SPPs for the L-shape object. 6 of them have DDP-SPP pairs, as shown by

the denominators of the L-shape object’s “DDP-SPP” column. The remaining

48 does not have counterpart DDPs, as shown by the denominators of the L-

shape object’s “Unpaired” column. The numerators of the “Unpaired” column

show the actual number of SPPs that do not have a DDP. The numerators of the

“DDP-SPP” column show the actual number of SPPs that have a DDP. The T-

junction has 72 SPPs, where 24 of them have DDP-SPP pairs, and the remaining

48 do not have DDP counterparts. The bracket has 12 DDP-SPP pairs and 42

unpaired SSPs. The bearing housing has 72 DDP-SPP pairs and 72 unpaired

ones. The results show that the analytical method works effectively for the L-

shape object and the bracket, but performs poorly for the T-junction object and

the bearing housing. The learning-based methods are better on average but may

have shortages for specific objects (i.e. the bracket). The AlexNet method is the

best of all learning-based methods, which is consistent with the results shown

in Fig. 5.11.

We further performed real-world dropping tests using the four objects. The pro-

cess is as follows. First, we place the object with a selected SPP on the TCF. Then,

the robot will grasp the object, elevate it to a DDP with random offset noises,

and open the gripper to release the object. Finally, we observe the dropping

process, check if the object gets stabilized at the selected SPP, and record the re-

sults. The process is repeated 30 times for each SPP to get a statistical view. Fig.

5.14 shows results. Due to page limits, it is impossible to show all SPPs and we

only present some representative DDP-SPP cases for readers’ convenience. The

results indicate that the estimation mostly accords with the real-world results.
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Since the analytical method had an extremely bad performance on the T-

junction object and the bearing housing, we further analyzed the detailed con-

tact between these objects and the TCF surfaces to understand the reason. We

found the DDP-SPP pair that has the best SPP stability is like Fig. 5.11(b.3) and

(d.2). These SPPs have high static stability qualities, but their contact areas are

distributed around the objects’ CoMs (as shown by the 2D grayscale images of

the figure). A large section of an object is not in contact with the inner surface of

the TCF. The object will have a low chance to stably “stand” on the distributed

contact when being dropped. It may get stuck by the edges of the TCF.

5.5.2 Performance on Eliminating Uncertainty

In the experiments of this subsection, we use robotic peg-in-hole insertion tasks

to evaluate the performance of the proposed method on eliminating uncertainty

and compare it with the conventional method that does not use TCF regrasp.

Fig.5.15 shows the difference of the methods used for comparison. The first

method is the conventional one which directly plans to move the picked object

to the goal pose, as shown in Fig.5.15(a). The method is abbreviated as DPM in

the following context. The second method is our proposed method, in which

we build and search a regrasp graph to find a regrasp sequence. Especially, we

propose two implementations of the method: Regrasp with All Grasps (RAG)

and Regrasp with a Prescribed Grasp (RPG). In the RAG implementation, all

the grasp configurations for the goal pose and SPP are considered to build the

regrasp graph, as shown in Fig.5.15(b). The implementation exactly follows the

graph shown in Fig. 5.9. In the RPG implementation, a goal SPP and a goal
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grasp configuration are prescribed manually, as shown in Fig.5.15(c). The mo-

tion between the prescribed goal SPP and the prescribed goal pose using the

prescribed grasp configuration is taught instead of planned. From the view-

point of Fig. 5.9, the connections in Fig. 5.9(c) and Fig. 5.9(d) are replaced with

a given path. The regrasp sequence planner plans to (c) and uses the given path

to reach (d). Both the RAG and RPG methods can take advantages of the TCF

fixture to reduce the uncertainty of the yellow object poses. However, the RAG

implementation’s performance relies a lot on a robot’s absolute precision. The

robot action is online generated until the last step. In contrast, the RPG method

leverages taught motion to move the object from the TCF to the final goal. Its

performance is dominated by a robot’s repeatability precision. We compare all

the DPM, RAG, and RPG methods (or implementations) in the experiments.

The holes of the insertion tasks in the experiments have different clearance, as

shown in Fig. 5.16(a). The diameters of the holes range from 10.1 mm to 18.0

mm. The length and diameter of the peg are 75.0 mm and 10.0 mm, respec-

tively. The clearance thus ranges from 0.1 mm to 8.0 mm. We run the insertion

for each hole using one of the methods repeatedly by 15 times to obtain an aver-

age success rate, and get the methods’ performance on eliminating uncertainty

by considering the smallest clearance with 100% success rate.2 In each repeti-

tion, we place the object in a random initial position on a table. A robot will

detect it using a PhotoneoPhoXi 3D Scanner M depth sensor and move it to a

pre-given goal pose with or without regrasp at the TCF. At the goal pose, the

robot will insert the peg by moving a straight line with position control.

The results are shown in Fig. 5.16 as a bar chart, where the horizontal axis is

the different hole diameters, and the vertical axis is the average success rate.

2A 100% average success rate means the method can always suppress the peg’s uncertainty
within a range indicated by the clearance value.
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The results tell that the smallest clearance of the DPM, RAG, and RPG methods

are 7.0 mm, 1.0 mm, and 0.1 mm, respectively. The methods share the same

uncertainty origins, including visual recognition, fabrication, robotic control,

etc., but they eliminate the uncertainty to different ranges. The RAG clearance

is larger than RPG, which confirms that the robot has low absolute precision

compared to repeatability precision.

5.5.3 Performance in Practical Real-World Tasks

Finally, we test the proposed method using four practical real-world assembly

tasks: (1) Inserting the L-shape object into a rectangular groove; (2) Sheathing

the T-junction with a tube; (3) Aligning the holes of the bracket and a base plate;

(4) Mounting the bearing housing on a bracket. These tasks are frequently seen

at industrial manufacturing sites.

Inserting the L-shape object

In this task, we fix an acrylic board with a rectangular groove on a table, and ask

the robot to insert the L-shape object into the rectangular groove. Fig. 5.17(a.1)

shows the sizes of the object and the groove. The clearance between them is 2.0

mm.

Sheathing the T-junction

The goal of this task is to sheathe a tube into the T-junction. The tube is vertically

fixed on the table, and the robot is asked to manipulate the T-junction to perform
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Table 5.1: Results of various methods in the practical tasks.

Clearance DPM RAG RPG

Insert L-shape 2.0 mm 2/10 10/10 10/10
Sheath T-junction 0.3 mm 0/10 0/10 10/10
Align holes 1.7 mm 0/10 10/10 10/10
Mount bearing housing <0.1 mm 0/10 0/10 10/10

the sheathing action. Fig. 5.17(b.1) shows the sizes of the T-junction and tube.

The maximum clearance between the inner circle of the T-junction and the outer

circle of the tube is 0.3 mm.

Aligning the holes

In this task, a base plate with thread holes is fixed on a table. The two through-

holes on the short side of the bracket are required to be aligned with the thread

holes on the base plate. If a screw bolt can be fastened in the thread holes across

the through-holes, we judge the alignment to be successful. Fig. 5.17(c.1) shows

the sizes of the bracket and the thread holes. The difference between the in-

ner thread-hole diameter and through-hole diameter is the task’s clearance. Its

value is 1.7 mm.

Mounting the bearing housing

This task requires the robot to mount the bearing housing on a fixed bracket.

The sizes of the bearing housing and mounting hole are shown in Fig. 5.17(d.1).

The clearance between them is less than 0.1 mm.

Like the previous experiments, the environment model, object models, and the
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configuration of the TCF are pre-given and pre-calibrated. Also, the goal poses

of them in the assembly tasks are known. The initial poses of the objects are

random. The conventional method (DPM) and the two implementations of our

method (RAG and RPG) are tested. For each of the above tasks, we run ten

times of experiments using different methods. Table 5.1 shows the experiment

results. Using the DPM method, only two successful attempts were observed

in inserting the L-shape object. All other tasks failed. Using the RAG method,

all attempts to insert the L-shape object and align the holes succeeded, but no

success was observed in the tasks of sheathing a T-junction and mounting a

bearing housing. All tasks were successfully performed when the RPG method

was used. The results show that the proposed method can provide reliable and

robust performance for these tasks, especially when the RPG method is used.

Fig.5.17(a.2-d.2) shows execution pictures of some successful results in Table 5.1.

Readers may also refer to the video supplementary attached to this manuscript

to observe the detailed robotic actions.

5.6 Summary

This chapter presented a regrasp planning method to eliminate grasp uncer-

tainty. The proposed method first computes all SPPs on a TCF, then estimates

the DDP to find all DDP-SPP pairs, and finally generates the grasp configura-

tions for releasing and regrasping the object. In particular, an analytical and a

learning-based method are proposed for the DDP estimation. Experimental re-

sults verified that the learning-based method is more reliable than the analytical

one. The regrasp sequence planned by the proposed method is demonstrated to
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reduce uncertainty to less than 0.1 mm using an RPG implementation, which is

way more robust than a conventional regrasp sequence that does not take into

account a TCF. Several real-world applications are also presented to show the

proposed method’s promising usage in assembly tasks.

Note that we ignored the influence of different materials in our work, and we

assumed uniform density, fixed friction coefficient (0.3), and bounce rate (0.2).

We also ignored the rotation around an object’s symmetric axis (i.e., rotation

of the bearing housing). It is thus impossible to stabilize this axis using the

assumed TCF. In the future, we are interested in building a large deep neural

network that generalizes to many common materials and developing flexible

features and planners to consider more complicated object shapes.
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Figure 5.9: A regrasp graph. (a) Initial pose and its subgraph. (b) DDP and
its subgraph. (c) SPP and its subgraph. (d) Goal pose and its subgraph. Each
black node in the graph indicates one grasp pose. Each circle indicates an object
pose. The nodes inside the circle are the grasp configurations associated with
the corresponding pose. First, the nodes in (a), (b), (c), and (d) are connected
separately to represent transit relations. Second, the shared grasp configura-
tions between (a) and (b), and between (c) and (d) are connected for transfer
relations. Third, the nodes in (b) and (c) are connected to represent transit rela-
tions between DDPs and SPPs.

140



Figure 5.10: Objects used for obtaining the training data. By scaling the 14 prim-
itive objects in (a) using the rules shown in (b) (resize the object from 50% to
150% at every 10%), in total 154 objects are prepared.

Figure 5.11: Comparison of the dif-
ferent estimation methods. The
learning-based methods have higher
estimation success rate. Especially,
the AlexNet method is the most effec-
tive one.

Figure 5.12: The Unpaired and DDP-SPP columns are presented in a fraction
style. The denominator values indicate the ground truth obtained using re-
peated physical simulation. The numerator values indicate the estimated re-
sults.
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Figure 5.13: The objects used for testing the planner. (a) L-shape object. (b) T-
junction. (c) Bracket. (d) Bearing housing.

Figure 5.14: The results of testing the estimator using different objects. (a) L-
shape object. (b) T-junction. (c) bracket. (d) bearing housing. The SPPs of each
object are selectively shown. The left column shows the real-world photos, the
middle column shows the placements in the simulator, and the right column
illustrates the projected images.
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Figure 5.15: Illustrations of the task process using different methods. The ini-
tial pose, the intermediate DDP, and their associated grasps are illustrated in a
yellow color. The intermediate SPP, the goal pose, and their associated grasp
poses are illustrated in a cyan color. (a) DPM: Directly plan to move the object
to the goal pose. (b) RAG: An implementation of the proposed method that
plans regrasp using all grasp configurations for the goal pose and the regrasp.
(c) RPG: Another implementation that plans regrasp using a prescribed grasp
configuration for the goal pose and the regrasp. The cyan object poses and grasp
configurations (a single one for each object pose) indicate the prescribed items.

Figure 5.16: The success rates (%) of inserting a peg into holes with different
diameters using different methods.
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Figure 5.17: (a) Inserting the L-shape object. (b) Sheathing the T-junction. (c)
Aligning the holes. (d) Mounting the bearing housing. The left column shows
the main boundary dimensions of the components and also points the assembly
direction. The right column shows the demonstration of the successful task.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions of the Contents

This thesis proposes the methods of designing mechanical tools for the robots

with two-finger parallel grippers. Three tools are presented, respectively. They

are the clamping tool, the rotating tools, and a peripheral tool, TCF. The clamp-

ing tool converts the parallel motion of the gripper into the parallel motion on

the tooltips. By using different tools with different tooltips, the general parallel

grasp can also adapt to various objects. The Rotating tools converts the paral-

lel motion of the gripper into the continuous rotating motion on the tooltip for

screwing tasks. Additionally, the TCF can be used as a regrasp intermedia to

eliminate the grasp uncertainty as well as orient the object. It’s not only used

for the manipulation of objects, but also can be used to orient the proposed me-

chanical tools, and reduce the errors on tool use.

This thesis consists of six chapters. Besides of the sixth chapter, the conclusions

of the other five chapters are as following.

Chapter one is the introduction. We investigate the current challenges in mod-

ern manufacturing, and especially discuss the difficulties in the robotic assem-

bly and robotic manipulation. We therefore focus on an urgent problem in in-

dustry, adaptive assembly tasks using robots. This chapter also introduces the

conventional methods for extending the functions of robots by the develop-

ments on robotic hands and hand changers, and the concept of manipulation

using tools. On the basis of this background, we present the core proposal of
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this thesis, designing mechanical tools to extend the functions of general grip-

pers to promote the flexible robotic assembly work.

Three topics are analyzed in this chapter: mechanism design, robot operation

with tools, and uncertainty removal operation. The part about mechanism de-

sign focuses on the design of end-effector with high-performance, especially

those that facilitate force transformation and motion convention. By review-

ing the robotic operation of the tool usage, we summarize how to plan the use

of tools with better reasoning. After that, we study sensor-less manipulation

and placement estimation methods that can eliminate uncertainty. Finally, by

comparing our method with previous studies, we stress on the novelties of the

former and thus prove the significance of this method.

Chapter three elaborates the design of clamping tools. We presents the fun-

damental kinematic structure of the mechanical tool, which use two symmetric

parallelograms to transmit the motion of the robotic gripper to the tooltips. Four

torsion springs are attached to the four inner joints of the two parallelograms to

reopen the tool as the robotic gripper releases. The forces and transmission are

analyzed in detail to make sure the tool reacts well with respect to the grip-

ping forces and the spring stiffness. Based on the kinematic structure, various

tooltips were designed for the mechanical tool to perform different tasks. The

designed tool could be treated as a normal object and be picked up and used

by automatically planned grasps. A robot may locate the tool through the AR

markers attached to the tool body, grasp the tool by selecting an automatically

planned grasp, and move the tool from any arbitrary pose to a specific pose to

perform various tasks. The robot may also determine the optimal grasps and

usage according to the requirements of given tasks.
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Chapter four details the design, optimization, and manipulation policies of the

rotating tools. This mechanical design is based on a combined Scissor-Like El-

ement (SLE) and double-ratchet mechanism that converts the gripping motion

of 2-finger parallel grippers into a continuous rotation to realize tasks like fas-

tening screws. This chapters presents the tool design, optimizes the tool’s di-

mensions and effective stroke lengths, and studies the contacts and forces to

achieve stable grasping and screwing. It also shows the related manipulation

and control policies, including recognizing the tool, changing tool poses, and

completing screw fastening tasks. The designed tool, together with the related

manipulation and control policies, are analyzed and verified in several real-

world applications. Robots with parallel grippers can robustly and flexibly use

the tool to fasten screws. The tool can also be used collaboratively with other

tools to finish difficult tasks.

Chapter five presents the method of eliminating uncertainty based on the re-

grasp using the TCF as an intermedia. We develop the algorithms that plan

releasing and regrasp sequences using a triangular corner fixture, and thus re-

duces the grasp uncertainty. With the help of the algorithms and the fixture, a

robot can perform online pick-up and at the same time conduct precise assem-

bly. There is no need for complicated vision recognition or force control. The

proposed method can improve grasp precision and also reduce the grasp errors

on manipulation the proposed mechanical tools.
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6.2 Discussion

6.2.1 Advantages

Fast integration

Traditional robot integration relies heavily on the setup of peripheral devices.

Arranging and positioning the devices to need the effort of experienced engi-

neers. They determine types of robotic hands, types of tool changers, and other

associated devices like compressors, miscellaneous connectors, and cables. Be-

sides, they also perform teaching and programming tasks to make the industry

robots move while carefully considering collisions with the surrounding envi-

ronment and other parts of the robots. The cost of system integration is not

cheap. In comparison, the designed tool is closely connected to intelligence. It

is inherently designed for autonomous tasks and motion planning. The pro-

posed tool can be placed in an arbitrary position, and the robot recognizes the

tool and plans to use it. Therefore, these tools help to fast integrate the robot

system.

The tools are purely mechanical, the cost is extremely low compared with the

functional robot hands and hand changers with control modules and power

systems. For various tasks, preparing suitable tools for the robots is easier and

cheaper than configuring multiple tools and hand changers.
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Collision-free motion planning

Robots may also use electric tools or pneumatic tools for the same goals as our

tools. But to power and control the powered tools, the tailed cables or tubes are

non-negligible. These cables are deformable with varying elasticity, so it’s hard

to plan the collision-free motion trajectories. The cables may tangle robots or

environmental objects, and even drag robots until protective stop. The proposed

tools are powered and controlled by grippers. No external power supply and

control signal. Thus, using the tools is planning of moving rigid bodies.

Torque control

The robots are usually equipped with F/T sensors on their wrists. The sensors

can be used to monitor the torque output of the rotating tool. The electric tools

with cables are feasible to communicate with the robot system to accurately

control the output. But the disadvantage of motion planning is a fatal defect.

Cordless tools help to get rid of the impact from cables. But robots are hard to

control the switch of tools as smoothly as a human. Using wireless control is a

possible way to control cordless tools. However, cordless electric tools are rarely

equipped with torque sensors that can accurately control the output torque, and

real-time communication for controlling the output torque is also difficult.

Extra degree of freedom for flexible motion

Robots can plan different grasp poses to use the tool. The tool provides extra

degrees of freedom for manipulation. Thus, the reachable range of robots is
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extended with the tools. This feature solves the problem that no IK solution for

task requirements.

6.2.2 Limitation

The tools extend the flexibility, meanwhile, the stability and accuracy are de-

creased. The tool is fixed by gripping, which is less stable and accurate than

the connection of the hand changer. Besides, the tool is hard to be calibrated

if the fabrication accuracy is not satisfying. Instead of accurate calibration, we

proposed to use compliant control to offset, and use the adaptive tooltips to

tolerate the uncertainty.

The efficiency of the tool is a weakness, especially the screwing speed of the

rotating tool. We proposed to use the assistant gearbox tool to accelerate the

rotation, but it costs too much to involve another gripper, and the flexibility also

decreases, which deviates from our original intention. It’s potential to add the

miniaturized gear hat on the ratchets to accelerate, and also reduce the speed to

obtain high output torque

We would like to further the application of the proposed tools. Currently, the

tools are only practical for the assembly work in laboratory scenes. As indus-

trial robots and devices have strict standards, our prototypes are far away from

these. But our tools provide the possible solutions for solving the urgent prob-

lems in fast integration, collision-free motion planning, output torque control,

and increasing flexibility.

The object alignment, in our method, is based on the physical constraints be-
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tween the outer profile of the object and the TCF, but the inner features of the

object make no sense to the analysis except the position of CoM. If the final task

only concerns the features of the outer profile of the object, our method can pro-

vide reliable results. However, if the final task focuses on the fits of the inner

features of the objects, our method fails to provide feasible results. Take the task

of mounting a bearing housing, as an example, the robot can insert the cylinder

part into the hole on the bracket, but the four small holes on the flange have no

way to be aligned. Thus, the manipulation methods using visual feedback are

needed to adjust the rotation to align them.

6.3 Future work

In the long-term vision, we propose to promote the standardization of robots. In

the future, robots are expected to be hired like human workers, instead of just

being integrated into factory automation systems like machines. Nowadays,

to fast meet the short-term profit, many customized robots and grippers were

proposed. They only work well in the limited range, and the nonstandard sys-

tems make the system integration very complicated. With the standardization

of robots, we can fast integrate the system and reuse the general knowledge and

skills.

Along with the proposed concept, we would like to design more tools to further

expand the tool lineup for standard robots. Not only limited by the clamping

motion and rotation, but it’s also possible to use tools to transmit the simple

gripper motion into more skillful motions. Additionally, the tool is specially de-

signed for 2-finger parallel grippers in their current state. This limits the appli-
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cation. We start by designing for 2 fingers as it is simpler to deduce the formulae

and analyze the contacts for two same finger pads. We would like to consider

the tool use method for other grippers

For the short-term targets, we should increase the stability of holding the tool,

and increase the efficiency of output. This part relies on a novel mechanism

design. Besides, to make it more practical, increasing the accuracy of fabrication

and assembly is in urgent need. For aligning the object, we would like to extend

this idea for the objects with various shapes instead of the ones with triplets of

orthogonal contact surfaces.
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[122] Péter L Várkonyi. Estimating part pose statistics with application to in-
dustrial parts feeding and shape design: New metrics, algorithms, simu-

166



lation experiments and datasets. IEEE Transactions on Automation Science
and Engineering, 11(3):658–667, 2014.
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