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NOTE ON ORBIT SPACES

To Professor K. Shoda on his 60-th birthday

By

Masavosar NAGATA

Let V be an affine or projective variety with universal domain K and
let G be an algebraic linear group acting on V as a group of automor-
phisms of V. Let d be the maximum of the dimension of G-orbits on
V and let U be the set of points of V whose G-orbits are of dimension d.

Then one can ask whether or not the set of G-orbits on U forms
naturally an algebraic variety. Though the answer is not affirmative in
general, it is an important question to ask the nature of the set of G-
orbits on U. As one approach to this kind of problem, we observe the
following objects :

Let L be the function field of V (over K) and let L; be the field of
G-invariants in L. For each point P of V, we consider the locality of P,
which we shall denote by the same P, and we consider the ring P/\Lg,
which we shall denote by P;. P is nothing but the ring of G-invariants
in P. Now we can ask the following questions :

QUESTION 1. Is Pg a locality?

QUESTION 2. Does there exist an algebraic variety W such that the
set of localities of points of W coincides with the set {P;|PeU}?

The answers to these questions are not affirmative in general.

The main purpose of the present paper is to give some results con-
cerning the above questions in rather special cases.

In §1, we give some preliminaries. In §2, we give some results in
the case where G is a torus group and V is affine. Though Question 1
is affirmative in this case, Question 2 is not affirmative in the case where
G is the multiplicative group of K. In §3, we show that if V is a
non-singular affine variety and if every rational representation of G is
completely reducible, then Question 1 is affirmative. In §4, we show
that if V is an affine variety whose coordinate ring R is a unique
factorization domain, if invertible elements of R are G-invariants and if
the radical of G is unipotent, then these 2 questions are affirmative,
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provided that the ring R; of G-invariants in R is finitely generated.
Then we give an important example to the theory of orbit spaces and
then we give an application of the result to the case of projective varie-
ties. In §5, we show that Question 1 is not affirmative even if G is
simple, K is of characteristic zero and V is normal.

The notation stated at the beginning is maintained throughout this
paper. When V is an affine variety, R denotes the coordinate ring of
V over K, and R; denotes the ring of G-invariants in R. mp (P€V)
denotes the maximal ideal of P.

1. Preliminaries.

We begin with a remark that Question 1 is not affirmative in general.
A counter example is readily obtained by our counter example to the
14-th problem of Hilbert (see, for instance, [3]) by virtue of Theorem
4.1 below. Note that in that example, V is non-singular (cf. Theorems
3.4 and 5.1).

Consider the case where V is an affine variety. Then G becomes a
group of automorphisms of R such that for each element a of R, the
module >)aefK is a finite K-module.

e

If either G is a torus group (K being arbitrary) or K is of charac-
teristic zero and the radical of G is a torus group, then we know that
every rational representation of G is completely reducible. Therefore
we have the following result, whose proof can be found in our lecture
note [3].

Lemma 1.1. With the assumption made above, and denoting by F(P)
the closure of the G-orbit of P€V, (1) R; is finitely generated over K, (2)
the relation ~, defined by that P~Q if and only if F(P)N\F(Q)==empty,
is an equivalence relation, and (3) (RG)mpﬁRg:QEQP)QG' In particular, (4)

if QeF(P) is such that G-orbit of Q is closed, then Qz=(Rg)
Furthermore, (5) P~@Q if and only if (Rg),, RG:(RG)QO Re*

meNRg *

2. Torus groups.

Theorem 2.1. Assume that V is an affine variety and that G is a
torus group. Then P; is a locality for any Pe V. Let W be a G-admis-
stble (irreducible) subvariety of V which carries P and let P’ be the locality
of P on W. Then the ving Pt of G-imvariants in P’ is the natural
homomor phic image of Pg.

Proof. Let ¢ be the natural homomorphism from P onto FP’.
Assume that ¢(f'/f) is in P¢ (f, f/ €R, f(P)=1=0). Consider the module
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M= f8K. This is generated by G-semi-invariants, say f,, -, /.

8cHM

Since f(P)==0, there is at least one f;, say f. such that f£,(P)==0.
fi= i}a,-fgi with ¢; €K and g;€G. Set fi= >)a;f%i. Then we have

&(f'1f)=d(f/f). Thus we may assume that f is G-semi-invariant:
¢ =a(g)f (a(g)€K). Then ¢(a(g)f'—f%)=0. Consider the module
M’ = 3 f*K and its submodule M’/\¢'(0). By the complete reducibility

g6
of rational representations, we see that there is a representative f”/ of

f’ modulo M’\¢~*(0) such that f”#=a(g)f” for any g€G. Thus f”/f
is G-invariant and ¢(f”/f)=¢(fF’/f). Since it is obvious that the homo-
morphic image of a G-invariant by ¢ is a G-invariant, we complete the
proof of the last half. Consider now the closed set F(P) given in
Lemma 1.1. Let @ be a point of F(P) such that G-orbit of  is closed.
Note that Lemma 1.1, (2) implies that F(P) contains only one closed
G-orbit. If Q;==Pg;, then Q;P; by Lemma 1.1, hence there is an
element f’/f in P; which is not in @;. By the proof above, we may
assume that f(P)==0 and that f, f’ are semi-invariants. Then, consider-
ing the affine variety V—(closed set defined by f), we can omit Q. If
this process is repeated, then the dimension of G-orbit of new @ is
greater than that of previous @, by virtue of the uniqueness of closed
orbit in F(P). Therefore, after a finite number of steps, we have the
case where Q;=PFP;. @ is a locality by Lemma 1.1, and therefore Pg
is a locality. Thus we complete the proof of Theorem 2. 1.

With the same V as before, assume now that G is a torus group
of dimension 1, i.e., there is an isomorphism «¢ from G onto the mul-
tiplicative group of K. Then R is generated by G-semi-invariants, say
fis ** s fo. Each f; defines a character «; of G in such a way that
fé=a;(g)f;. These aq; are powers of a.

Theorem 2.2. If all the a; are powers of a with non-negative exponent,
then the set {P;|P € U} is the set of localities of a quasiprojective variety.
Furthermore, for P € U, the correspondence {P¢|g €G}— P; is one to one.

Proof. Let a be the ideal of R generated by all G-semi-invariants
which are not G-invariants. Then every element of R/a is G-invariant.
This shows that if @ is a point of the closed set F defined by a, then
Q is G-invariant. Let %, ---, &, be a basis for a such that z{=a"(g)h;
with positive n;,. Let b be the ideal for the closed set V—U. Then b
is generated by G-semi-invariants. Since FZV—U, we see that ab
defines V—U. Thus there are a finite number of G-semi-invariants
k., -+, k, in R such that (1) k¢=a’i(@)k; for any g€ G with ¢,">0 and (2)
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the ideal >'k;R defines V—U. Then, each k; may be replaced by its
power (of positive exponent) without losing these two properties. There-
fore we may assume that all #; are the same, which we shall denote by £.
Now, if k;(P)==0, then the G-orbit of P is a closed set in the affine
veriety defined by R[k;'], whence P is a ring of quotients of the ring
R; of G-invariants in R[k;'] by Lemma 1.1. Thus the set of P, (Pe U)
is the set of localities of dimension zero which are rings of quotients
of some R;. Let k;; (7=1,--,u;) be elements which generate R; over
K, and we take a natural number v such that k;;=k;;k; € R for all i, j.
We now consider the projective variety W defined by homogeneous co-
ordinates (&%, -+, kY, k11, -+, Ry, k21, ++-, Riu). Then the affine ring of
W —(the closed set defined by k;}=0) is obviously R;. Thus there is an
open subset W’ of W such that {P;|Pe€ U} is the set of localities of
points of W. Now we have only to prove that the correspondence
{P¥|geG} —P; is one to one. Assume that U>Q¢ {P%|geG}. If
F(PYN\F(Q) is empty, then Lemma 1.1 shows that P;==Q;. So we
assume that F(P) N\ F(Q) is not empty. The ideal ip for F(P) is generated
by G-semi-invariants. Then considering air, we see that there are a
finite number of G-semi-invariants m,, -+- , m, such that (1) mé = ati(g)m;
with #; >0 and (2) every point of the closed set defined by > myR is
either a G-invariant point or a point in F(P). Since @ is in U and is
not in F(P), we have m;(Q)==0 for some 7, say 1. Take a linear com-
bination k' of ki so that F/(P), k(Q) are different from zero. Then
f=mi/k is G-invariant, and is regular at P and Q. Furthermore f(P)=0
and f(Q)==0. Therefore P;=Q;. Thus we complete the proof of
Theorem 2. 2.

Corollary 2.3. Assume that V,,---,V, are affine varieties and assume
that G; are torus groups of dimension 1 acting on V,. If the operation of
G,; on V; satisfies the condition in Theovem 2.2, then, for V=V, x--xV,
and G=G, X -+ X G,, we have the same conclusion as in Theorem 2. 2.

Here we give a remark that the assumption in Theorem 2.2 is
important. Namely, (i) if we do not assume the non-negativity of ex-
ponents of characters, then such a quasi-projective variety (or an abstract
variety) as W’ above may not exist (see Example 2.4 below), and even
if such W’ exists, the correspondence {Pf|g € G} — P; may not be one
to one (see Example 2.5 below) and (ii) if G is a torus group of dimen-
sion greater than 1, then the non-negativity of exponents is not sufficient
(see Examples 2.6 and 2.7 below).

ExampLE 2.4. Consider the affine 3-space defined by R=K[x,, %,, %,].
Let G be the set of matrices
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/'t 0 O
0 ¢t O
0 0 ¢

with € K, t==0. Consider P=(a, b,0) with ¢=0 and @=(0,0,¢) with
c==0. Then P, @ arein U. P is a ring of quotients of the ring R, of
G-invariants in R[x7'] by Lemma 1.1. R, is obviously K[x,x,, x,x,, x,/x,].
Similary, Q¢ is a ring of quotients of K[xx,, x,x,]. Therefore we see
easily that @ is strictly contained in FPg.

ExampLE 2.5. Consider the affine plane V defined by R=K][x, y]

and let G be the set of <6 t0_1> (€K, t==0). Then obviously L;=K(xy).

Each curve xy=a (@€K) is a G-orbit for a=+0. Then curve xy=0
consists of three orbits, which are {(0, b)|6==0}, {(a, 0)|a==0} and {(0, 0)}.
If P is on one of these orbits, then P; dominates K[xy].,,, which is a
valuation ring, hence P;=K[xy].,,-

ExampLe 2.6. Consider the affine 4-space defined by R=K|[x,, x,,
%5, x,] and let G be the set of matrices

t 0 0 0
0 « 0 0}
0 0 tu oJ
0 0 0 #u

with ¢, u €K, tu=F0. V—U is the set of points such that 3 of the
coordinates are zero, hence is defined by >} x;x;R. If x,x; is different

i35
from zero at P, then P; is a ring of quotients of the ring R;; of G-
invariants in R[x7', x7']. But R,=K[xix,/x,, 2,x,/x,], R,=K[x,x,/x,,
x,%,/x3] and we see that the set of all P; (P€ U) is not the set of
localities of points of any abstract variety.

ExampLE 2.7. If we consider the restriction of above G on the three
space V defined by R=K[«x,, x,, x,], then we see easily the set of
P; (PeU) is the set of localities of points of the projéctive variety
defined by (x.x,, x,). But, P=(0,1,1) and @=(1, 0, 1) belongs distinct
orbits of dimension 2 and P;=0.

We give some remarks.

ReMArk 2.8. If G is a torus group, then {P;|P ¢ U} is the set of
localities of points of a finite number of affine varieties of L.
The proof is immediate.
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REMARK 2.9. Let G be again a torus group and let V be an affine
variety. If, for a G-admissible open set U’ contained in U, there are
semi-invariants f,, --+, f,, in R such that (1) characters of G given by f;
are all the same, and (2) the closed set defined by > f;R is V—U’, then
there is an open set W’ of the projective variety defined by the homo-
geneous coordinates (f,, -:*, f,) such that (i) the set of localities of points
of W’ is the set of {P;|P€ U’} and (ii) the correspondence {P?|g € G}—Pg
is one to one (for Pe U"). '

For the proof, that of Theorem 2.2 is adapted easily.

3. Non-singular case.

Lemma 3.1. Let P and Q be points on V which is assumed to be
normal. If PcCQg, then there exists a G-admissible divisorial closed set
W of V which carries Q but not P.

Proof. Let f be an element of P, which is not in @;. Then the
pole of f is the required set.

REMARK 3.2. The converse of Lemma 3.1 is not true in general.
For instance, in Example 2.5 in §2, the line y=0 is G-admissible and
carries @ but does not carry P, though P;=0Q;.

It is known that

Lemma 3.3. If V is a non-singular affine variety and if W is a
divisorial closed set of V, then V—W is an affine variety.

For the proof, we refer to [1] and [2].

Now we have

Theorem 3.4. If V is a non-singular affine variety and if every
rational rvepresentation of G is completely reducible, then P; is a locality
for any PeV.

Proof. Let @ be a point of the closed set F(P) (defined in Lemma
1.1) such that its G-orbit is closed. Then Q,<P,. If Q;= P, then
there is a G-admissible divisorial closed set W of V which carries @ but
not P by Lemma 3.1. V—W is affine by Lemma 3.3, whence we may
omit such @ by the same reason as we gave in the proof of Theorem 2.1.
Thus we have the case P,=Q.;, which is a locality by Lemma 1. 1.

4. Semi-simple groups.
Let V be an affine variety as before.

Theorem 4.1. If R is a unique factorization domain such that every
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invertible element is G-invariant and if the radical of G is unipotent, then
(1) Lg is the field of quotients of R;, (2) PG:(RG)(umRg) and (3) if
Jurthermore G is connected then R; is a unique factorization domain.

Proof. The general case follows easily from the case where G is
connected. Therefore we assume that G is connected. Then we see that

(*) every rational representation of G into the multiplicative group
of a field containing K is trivial.

Let f’/f be an element of L., where f, ' are elements of R which
have no common factor. Siance (f'/f)¥é=f"/f=f"%/f% (g€G) and since
the number of prime factors of f is equal to that of f*, we see that
fé=a,f with a,€R;. Therefore (*) above shows that f is invariant®.
Thus f, f/ are in R;, and L is the field of quotients of R;. If f'/fe P,
then f'/f=W/k with k(P)==0 (k, W €R). Since f’'/f is the reduced
expression of #'/h, we have f(P)==0, whence f’/f¢€ (RG)(umRg). Thus
(RG)(mPﬁ RG>:PG. If f€ R;, then each prime factor of fin R is invariant
because G is connected (and by virtue of (*) above), whence R; is a
unique factorization domain.

Corollary 4.2. If furthermorve R, is finitely generated, hence in
particular if G is semi-simple and K is of characteristic zero, then the set
of P (PeV) is the set of localities of the affine variety defined by Rg.

One important remark to be added here is that:

Consider the case where G is semi-simple and K is characteristic
zero. Then each P, corresponds to the equivalence class of P given by
Lemma 1.1, hence it happens sometimes that infinitely many G-orbits
in U corresponds to one P;. Namely, there are many examples of an
affine variety ¥V which carries a closed subset F of U such that (1) F is
the union of infinitely many G-orbits and (2) if a rational function
f on V is G-invariant and if f is regular at one point of F, then F
is regular at every point of F and the value of f on F is constant all
over F.

Existence of such an example is easily seen. But we shall give
such an example under more restriction, namely, we shall construct an
example as follows :

1) Since we are using elements of L. in this representation of G, we have to show that
this representation can be extended to a rational representation of an algebraic group over the
algebraic closure L; of Lg containing G. This can be shown as follows :

G acts on R=LsX14Ls[R] as a subgroup of GL(n, L) with a suitable #, hence the closure
G of G in GL(n, Lg) acts on R (cf. [3]). H={g|f*Le=fLs} is a closed subgroup of G (cf.
|3]). Since H contains G, we see that H= G. Thus fLs is a representation module of G.
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The simple group G=SL(3, K) is acting of an affine space V, and
V contains G-admissible non-empty open subset U’ of U which satisfies
the following two conditions. (1) If P is a generic point of U’ and if
@ is a point of U’, then {P?|g€G} is uniquely specialized in U to
{Q%|geG} over the specialization P—Q, namely the set of (Q, Q%)
QeU, gei) is closed in Ux U’. (2) U’ contains a closed set F which
is the union of infinitely many (mutually distinct) G-orbits such that if
arational function f on Vis G-invariant and is regular at one point of
F, then f is regular at every point of F and the value of f on F is
constant.

ExampLE 4.3. Consider the space V of homogeneous forms of degree
5 in three variables x, y, 2. Then V .is an affine space of dimension 21.
An element of G=GL(3, K) gives a linear transformation of the variables
x, 9, 2, and therefore it gives a linear transformation of the space V.

Let F, be the smallest G-admissible set in V containing all of the
forms of the type fi(x,y)+z2f(x, y)+az’x’. Here, f,(x,y) denotes an
arbitrary homogeneous form of degree » in x and y. Let F, be the
smallest G-admissible set in V containing all of.the forms of the type
fo(x, ¥)+z2xfy(x, ¥) +2°x%f(x, ¥). Let F, be the set of all forms which have
linear factors. Then:

The complement U of F,\JF, is the required example, with F=F NU.

Let P be a generic point of V and let @ be a point of U. Let g
be a generic point of G=SL(3, K). Assume that (P, P%)—(Q, Q) is a
specialization. Then the specialization is obtained as the specialization
given by a zero-dimensional valuation » of the function field K (P, g).
From now on for a while, we mean specialization only the one given
by ». Assume that g, g,€SL(3, K(g)) are specialized to non-singular
matrices g¥, g¥, then P#:, P4 are specialized to Q%% and Q*! respectively.
There are such g,, g, with additional condition that gi'gg, is a diagonal
matrix. Therefore, considering P#:, Q*! instead of P, Q, we assume that
t, 00
g is a diagonal matrix: g:(g 62 O). Since geSL(3, K(g)), we have
t
ttt,=1. We set u;=v(t;), whence u31+u2+u3=0. If all the w; are zero,
then g is specialized to a non-singular matrix, and therefore @’ is in
the orbit of @. We consider the other case. We may assume that
w,>u,>u,. Let P= > a;x%°2% and Q= > b;;x'y’z*. Then P¢=

i+jTE=5 i+iT k=5
SV a; it pxy 2% with ¢, =titit; hence v(¢;;,) =wui+u,j+uk. Therefore that
P# has a finite specialization implies that if b;;,=1-0, then v(¢;;,) >0. Set
Q' =2 c;px'y'2*. Then we see furthermore (i) if o(f;;,) >0 or if both
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b;;r and v(¢t,;,) are zero, then c;;,=0 and (ii) if o(¢;;,)<70 (hence b,;,=0),
then by choice of the manner of approaching zero of a;;., ¢;;r can be
arbitrarily given. Now we observe the situation in more detail.

1) If u,=0, then u,= —u,, hence we see immediately that both &
and @’ must be in F,. (2) Assume now that #, >0. Then:

(i) If k=0, then »(¢;;,)~>0. (i) If i>1, k=1, then o(¢;;,) >0. (iii)
For i=0, j=4, k=1, the value v(¢;;,) is non-negative if and only if 3u, >u,.
(iv) For i=3, j=0, k=2, the value v(¢;;) is non-negative if and only if
u,>2u,. (v) For the other (i, j, k), the value u(¢;;) is negative. There-
fore @ must be in F, and @ must be in F,. (3) the case #,< 0 is the
same as above (2) with opposite sign, and we see that @ must be in F,
and @’ must be in F,.

Thus we have proved that if @, @ are in U’, (P, P%)— (Q, @) being
a specialization, then @ must be in the orbit of Q. :

Assume now that Q= f,(x, y)+2zf.(x, ¥)+az’x*. Then by the same
specialization as above in the case where u, >u, >0">u, and 3u, >u, >2u,,
we see that (@, Q%) — (@, 0) is a specialization. Thus, if @ is in F,, then
the closure of the orbit of & contains the origin, hence in particular,
if @, and @, are in F,, then the closures of orbits of @, and @, meet.
Therefore, if f is a G-invariant rational function on V which is regular
at one point of F,, then f is regular at all points of F, and the value
of f on F, is constant.

We shall show that F=F,N\U =F,—(F,N\(F,\JF,) carries infinitely
many orbits. For each element of V, there corresponds uniquely a plane
curve of degree 5. If @ is in either F, or F,, then the curve defined
by @ has a triple point, hence it has no more triple point unless it has
a line as a component, i.e., Q € F,. Therefore we see that Q=f.(x, y)
+2z2f,(x, y)+az’x® (€F,) is not in F,\JF, unless it satisfies one of the
following three conditions: (a) a=0, (b) f,(x, ») is divisible by x, (c) @
has a linear factor. Thus we see that F contains a non-empty open
subset of F,. The dimension of the set of forms of type f,(x, »)+zf,(%, y)
+az’x® is 12, hence dim F,>>13. Since dim G=8, each orbit in U has
dimension 8, whence there are infinitely many orbits in F. This com-
pletes the proof of our example.

REMARK 4.4. In the above V, if we take a G-admissible open subset
U” of U such that U’N\F, is not empty, then the set of (@, Q%) (Q € U",
g €G) is not closed in U’ x U”, as is easily seen.

We now want to apply 4.2 to the case of projective variety.

Theorem 4.5. Assume that V is a projective variety such that its
homogeneous coordinate ving R is a unique factorization domain. If G is
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a semi-simple group acting on V such that whose operation can be lifted
to the operation on the representative cone V of V (not necessarily uniquely)
and if K is of characteristic zero, then the set of Pg is the set of localities
of points of a quasi-projective variety.

Proof. The operation of G on V induces, by our assumption, an
operation of a group G on V so that G contains the multiplicative group
G, of K in its center such that @ €G, transforms points (a,, -+ ,a,) of V
to (aa,, -+ ,aa,) and G/G, is isomorphic to G. Then G contains a semi-
simple group G, such that G,G,=G. The structure shows that L is the
field of G-invariants in the function field L of V. Let L* be the field
of G-invariants in L. Then the set of P;,=P/\L* (P€V) is the set
of localities of points of the affine variety defined by the ring Rg; of
G-invariants in R. The operation of G, on Ecl satisfies the condition
in Theorem 2.2, and we complete the proof.

REMARK 4.6. Theorem 4.1 shows that under the assumption there,
the set of points @ of V which have the same . contains generically
only one orbit of maximal dimension. But this does not imply that
orbits are generically closed as is easily seen by some examples.

5. Normal varieties.
The purpose of this section is to prove the following

Theorem 5.1. Even if G is a simple group, K is of characteristic
zero and V is normal, then ving P; (P€ V) is not necessarily a Noetherian
ring.

In order to prove this, we use the following two lemmas, whose
proofs are found in our lecture note [3].

Lemma 5.2. Let W be a subvariety of an affine variety V and let H
be a subgroup of G. Assume that G is connected, H operates on W and
that each H-orbit on W is the intersection of a G-orbit on V with W.
Then the ring R’ of H-invariant rvegular rational functions on W is the
homomorphic image of a rving R¢ consisting of G-invariant rational func-
tions on the closure W of the union W€ of G-orbits of points of W such
that they have no pole at any point of W€, (LEMMA OF SESHADRI).

Lemma 5.3. Assume that K is of characteristic zero. If a representa-
tion p of the additive group G, of K in GL(n, K) is given, then there is
a representation @ 2) of SL(2, K) such that (i) u(g)=g for any g € SL(2, K)

and (ii) x((l) ’i) —p(t).
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Now we shall prove Theorem 5.1, by showing an example. By
virtue of our counter example to the 14-th problem of Hilbert (see [3])
and also by Theorem 4.1, we see that there is an affine ring R, over K
which is a unique factorization domain whose invertible elements are only
elements of K, G, operates on R, and the ring R, of G,-invariants in
R, has a maximal ideal m’ such that (R,), is not Noetherian. Let p
be a representation of G, in GL(n, K) with give the operation of G,

on R, (cf. [3]). Now consider the group G:{<7u(()g) /1'? g)) }gESL(Z, K)}

given by Lemma 5. 3. Let a’ be the ideal such that R,=K[x,, -, %,]/a
and let W be the subvariety of the affine (n+2)-space V defined by
a=aR+(%,+,—1)R+x,.,R (R=K[x,, -, *X,+,]). Then R, can be identi-
fied with R/a. Since x,,,=1 and x,,,=0 on W, (i) W is G, admissible
and (ii) no element of G outside of G, transforms any point of W to
any point of W. Therefore the condition in Lemma 5.2 is satisfied by
our case with H=G,. The same can be applied to the derived normal
variety W* of W”, because W is a normal variety and a generic point
of W” is a generic transform of a generic point of W. So, we may assume
that W” is normal. Thus R, is the homomorphic image of the ring

¢ of rational functions on W” which are regular on W¢. Consider
now the maximal ideal m’ of R, and let P’ be a point of W such that
mp' [\R,c,=m’. Let P be the point P’ as a point on W”. By our choice
of R, (Rg¢,)w is the set of G,-invariant rational functions on W which
are regular at P’ by virtue of Theorem 4.1. Therefore the homomorphic
image of P; in the function field of W is contained in (R, ). The
converse inclusion follows immediately from the above consequence of
Lemma 5.2. Thus P; has a homomorphic image which is not Noetherian,
hence P itself is not Noetherian.
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