
Title Efficient Computational Methods for Advanced
Sparse Estimation

Author(s) Chen, Jie

Citation 大阪大学, 2022, 博士論文

Version Type VoR

URL https://doi.org/10.18910/88116

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Efficient Computational Methods for Advanced Sparse

Estimation

Jie Chen

MARCH 2022

Efficient Computational Methods for Advanced Sparse
Estimation

A dissertation submitted to

THE GRADUATE SCHOOL OF ENGINEERING SCIENCE

OSAKA UNIVERSITY

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN SCIENCE

BY

Jie Chen

MARCH 2022

Abstract

It is difficult to infer statistical objects in regression and classification when the number of

samples is small and the number of features is large. Sparse estimation addresses the problem

by regularizing the objective function, plus the constraint multiplied by a constant λ, and

selecting the appropriate features without overfitting. Least absolute shrinkage and selection

operator (Lasso) is a classic sparse estimation; its objective function to be minimized is convex

so that we can find the solution efficiently. This thesis considers convex optimization problems

for sparse estimation, particularly joint graphical Lasso (JGL) and convex biclustering (CB).

To solve JGL, thus far, the alternating direction method of multipliers (ADMM) has been

the main approach. However, converging to obtain a high-accuracy solution for ADMM often

takes time, which is not feasible in large data sets. In the first part (Chapter 3) of this thesis,

we propose proximal gradient algorithms with and without a backtracking option for JGL

and further show the boundedness for the solution of the JGL problem and the iterates in

the algorithms, which guarantee the linear convergence of the proximal gradient method. For

the procedure with backtracking, we reduce the updated iterative steps to subproblems that

can be solved efficiently and accurately by Lasso-type problems. We modified the step-size

selection by extending the strategy in [86] to one without backtracking, which significantly

reduces the computational time needed to evaluate objective functions.

The existing techniques to solve CB were unsatisfactory. The convex biclustering algo-

rithm (COBRA) solves twice the standard convex clustering problem with a nondifferentiable

function optimization. In the second part (Chapter 4) of this thesis, we instead convert the

original optimization problem to a differentiable one. Then, we combine the basic procedures

in the augmented Lagrangian method (ALM) with the accelerated gradient descent method

(Nesterov’s accelerated gradient method), which can attain a O(1/k2) convergence rate. The

conventional algorithms are sensitive to the tuning parameter λ, which is not feasible in some

biclustering applications that are needed to solve a wide range of λ. However, our proposed

method is not greatly influenced by the tuning parameter λ.

The experimental results indicate that the proposed algorithms can achieve high accu-

racy, and their efficiency is competitive with state-of-the-art algorithms, even for large-scale

problems.

i

Contents

Abstract i

1 Introduction 1

1.1 Introduction . 1

1.2 Overview of the thesis . 4

2 Background 6

2.1 Basic definition . 6

2.2 Sparse estimation . 8

2.2.1 Lasso-type models . 8

2.3 Algorithms . 11

2.3.1 Gradient descent method . 11

2.3.2 Nesterov’s accelerated gradient method . 12

2.3.3 Proximal gradient method . 12

2.3.4 Accelerated version of ISTA (FISTA) . 13

2.3.5 ADMM . 14

2.4 Convergence rate . 15

3 Efficient proximal gradient algorithms for joint graphical Lasso 17

3.1 Introduction . 17

3.2 Preliminaries . 19

3.2.1 Graphical Lasso . 19

3.2.2 ISTA for graphical Lasso . 19

3.2.3 Composite self-concordant minimization . 21

3.2.4 Joint graphical Lasso . 22

3.3 Optimization problem and algorithms . 23

3.3.1 ISTA for JGL . 23

3.3.2 Modified ISTA for JGL . 25

3.4 Theoretical analysis . 27

3.5 Simulation . 29

3.5.1 Stopping criteria and model selection . 29

3.5.2 Synthetic data . 30

3.5.3 Time comparison experiments . 30

3.5.4 Algorithm assessment . 31

3.5.5 Convergence rate . 34

3.5.6 Real data . 34

4 Efficient algorithms for convex biclustering 37

4.1 Introduction . 37

4.1.1 Convex clustering . 37

4.1.2 Convex biclustering . 38

4.2 Related work . 39

4.3 Optimization problem and algorithm . 40

4.3.1 The ALM formulation . 41

4.3.2 The proposed method . 42

4.3.3 Lipschitz constant and convergence rate . 44

4.4 Simulation . 45

4.4.1 Artificial data analysis . 45

4.4.2 Comparisons . 46

4.4.3 Real data analysis . 49

5 Proof 53

5.1 Proof of Proposition 1 . 53

5.2 Proof of Proposition 2 . 56

5.3 Proof of Proposition 3 . 58

6 Conclusions 61

6.1 Future work . 62

7 Appendix 63

7.1 Data generation . 63

8 List of publications 64

Acknowledgements 65

References 66

List of Figures

1 An example of convex function . 6

2 An example of the Lasso solution path [76]. Different colors represent the different

features, and the x-axis for the different value of λ. 10

3 Plot of time comparison under different p. Setting λ1 = 0.1, λ2 = 0.05, K = 2 and

N = 200. 30

4 Plot of true positive edges vs. false positive edges selected. Setting p = 50, K = 2. . 32

5 Plot of the mean squared errors vs. total edges selected. Setting p = 50, K = 2. . . 33

6 Plot of log(F (Θt) − F (Θ∗)) vs. the number of iterations with different λ1 values.

Setting p = 200, N = 400, K = 2 and λ2 = 0.05. 34

7 Network figure of the words in president speeches dataset. 35

8 While standard clustering divides either rows or columns, the biclustering divides

the both. 38

9 Execution time for various λ and p with N = 100 and ϵ = 1e−6. 47

10 Execution times for each N with λ = 1, p = 40 and ϵ = 1e−6. 48

11 The heatmap results of proposed method implementation on the presidential speeches

dataset under a wide range of λ. 51

12 Plot of log(F (Uk)− F (U∗)) vs. the elapsed time. 52

13 Plot of log(F (Uk)− F (U∗)) vs. the number of iterations. 52

List of Tables

1 Sparse estimation models . 2

2 Several problems solved by gradient-based methods, where σ denotes the indicator

function. 14

3 Computational time under different settings. 31

4 Time comparison result of two real datasets. 36

5 Assessment result. 50

1 Introduction

1.1 Introduction

We often require the analysis of high-dimensional (the number of features p is much larger than

the sample size n) and large-scale data sets for mining, such as gene regulatory networks, recom-

mendation systems, text mining, and social networks. With the volume and complexity of data

growth, people often tend to be distracted by irrelevant information. Thus, we need to extract use-

ful information representing an accurate model from massive data sets. Specifically, in statistical

learning, estimation leads to solving the following minimization problem,

min
θ

l(θ) (1)

For example, the loss function l(θ) can be the least square in linear regression. However, minimizing

the loss function l(θ) in a naive manner may lead to overfitting, especially in a high-dimensional

setting.

To extract useful information and avoid overfitting from high-dimensional data, variable selec-

tion will be unavoidable [71]. We choose a subset of relevant features from the origin, enhancing

the models’ readability and learning performance and decreasing computational complexity. Reg-

ularization is an essential principle in variable selection by adding a penalty term P (θ) to (1).

While the model (1) is combined with different penalty terms (such as ℓ1 norm and ℓ2 norm), we

can obtain various sparse models for different demands and prevent overfitting. We describe the

minimization problem as follows:

min
θ

l(θ) + λP (θ), (2)

where λ ≥ 0 is the tuning parameter, determining the degree to penalize the model.

Accurate fitting models and efficient computations to solve the models are of great importance

when faced with enormous data sets. The least absolute shrinkage and selection operator (Lasso)

[82] is an attractive regularization model with efficient solvers [82, 5, 85]. Moreover, the properties

with Lasso have recently been well studied in [26, 100, 10, 99, 53, 84]. There are many variants of

Lasso-type models. Table 1 summarizes some sparse estimation methods extended by Lasso. We

will describe them in detail in the following chapters.

1

Table 1: Sparse estimation models

Model Author Optimization problem

Group Lasso Friedman et al. [25] 1
2
||y −

∑G
g=1 Xθg||22 + λ

∑G
g=1 ||θg||1

Fused Lasso Tibshirani et al. [83] 1
2
||y −Xθ||22 + λ

∑
i<j |θi − θj|

Convex Clustering Hocking et al. [39] 1
2
∥X − U∥2F + λ

∑
i<j ωij∥Ui· − Uj·∥2

Sparse Convex Clustering Wang et al. [87] 1
2
∥X − U∥2F + λ1

∑
i<j ωij∥Ui· − Uj·∥2 + λ2

∑
i ||Ui·||1

Graphical Lasso Friedman et al. [23] log detΘ− trace(SΘ)− λ||Θ||1

We often use the notions of the Lasso penalty for sparse purposes. For instance, the graphical

Lasso [53, 52, 23] is a sparse estimation for the Gaussian graphical model, using the Lasso penalty

to promote zero values in the precision matrix (the inverse of the covariance matrix). Wang

et al. [87] proposed sparse convex clustering, which uses the Lasso penalty to detect uninformative

features in convex clustering.

Meanwhile, the increasing models of sparse estimation evolve with the demands of computa-

tional methods. Specifically, in the optimization problem (2), because penalty terms such as ℓ1

and ℓ2 norms are convex. Moreover, if the loss function l(θ) is convex, we can find the solution

efficiently, and the result is often sparse. The convex formulation has substantial advantages in not

only theoretical guarantees but also practical benefits. The most appealing one is that the convex

formulation ensures that the result will reflect globally optimal solutions regardless of the initial-

ization settings [7], leading to affordable conveniences. In addition, we can apply various scalable

and powerful algorithms for convex optimization problems. With the development of convex op-

timization, several researchers reformulate some estimation problems into convex formulations to

utilize the numerous advantages of convexity, such as [11, 39, 15, 79]. Despite these advantages,

the optimization problems of the variants and extensions of the Lasso are more challenging than

Lasso due to the complexity of the penalty and the multiple terms in the models.

To find the solution of the estimators θ, we need to solve the optimization problem (2). It is

sometimes possible to directly obtain closed-form solutions from the problem (2), such as least-

squares regression. However, it is often difficult to obtain closed-form solutions. Hence, we need

iterative algorithms to attain the optimality conditions by letting the gradient or subgradient of

(2) be or tend to be zero [7].

2

The penalty term P (θ) may be difficult to solve in optimization procedures, especially when

nondifferentiable or indecomposable. The alternating direction method of multipliers (ADMM),

which was introduced in [29, 27, 7], is a procedure for solving convex optimization problems

for general purposes. Many studies use ADMM to solve sparse estimation models that contain

nondifferentiable or indecomposable terms; these studies include [17, 13, 91, 92].

However, ADMM takes time before converging to a high-accuracy solution [8]. Hence, it is

challenging for ADMM to solve large-scale problems. In addition, we need to solve the problem

for several λ values and select a single solution by criteria such as AIC, BIC, and cross-validation.

Consequently, we hope to solve each single-value problem in the procedures efficiently. The gradi-

ent descent method is one of the most popular first-order techniques to solve convex optimization

in machine learning and deep learning. In the first-order method, we mean to use the first-order

gradient information, avoiding the calculations of the time-consuming Hessian matrices. Mean-

while, first-order methods can attain moderate accuracy, lending themselves to many applications.

The accelerated gradient descent method, such as Nesterov’s accelerated gradient method [60, 58],

has been proposed and applied to several machine learning problems due to the competitive con-

vergence rate being improved from the original O(1/k) to O(1/k2). Nevertheless, we cannot apply

the standard gradient descent method in some nondifferentiable cases due to the lack of an efficient

way to obtain a gradient.

Some modifications to the gradient descent method can efficiently solve nondifferentiable prob-

lems. The proximal gradient method is an appealing technique for solving nondifferentiable terms

in large-scale problems. We can regard the essential operation in the proximal gradient method

as a convex optimization problem, which can be solved quickly using traditional methods [61].

This approach has recently acquired popularity for solving Lasso-type models. For example, Yuan

et al. [95] proposed using the proximal gradient method to solve the group Lasso problem. Guillot

et al. [31] used the proximal gradient method to solve the graphical Lasso problem. Regarding

improvement, Beck and Teboulle [6] provided the accelerated version of the proximal gradient

method with a O(1/k2) convergence rate by extending Nesterov’s accelerated gradient method.

With the development of sparse estimation, the models have become more complicated in recent

decades, and the related optimization problems have become quite challenging. This thesis aims

to propose efficient computational methods to solve the corresponding optimization problems of

two advanced sparse estimation models.

3

Our two main objective models are joint graphical Lasso (JGL) and convex biclustering (CB),

which have drawn much recent attention and attracted many users. Nevertheless, the existing

algorithms for these models are time-consuming, especially for large data sets, which impedes the

development of the models.

First, we propose two efficient proximal gradient methods for JGL, one with backtracking line

search and another without the backtracking line search option. To obtain the step size in the

algorithm, we need the Lipschitz parameter, but it is difficult to obtain the parameter of the joint

graphical Lasso, which is why the backtracking line search is required. We offered two methods

because the evaluations in the backtracking line search are sometimes expensive. Furthermore,

we provided the boundness of the solution of the joint graphical Lasso and the iterates in our

algorithms, guaranteeing the linear convergence of the proximal gradient method.

Then, we propose an efficient and stable algorithm for convex biclustering. The existing algo-

rithms, such as ADMM and COBRA, are sensitive to the model’s tuning parameter λ. When λ

grows, the computation becomes enormous. Many applications must solve a wide range of λ to

explore the resulting changes in the biclustering solutions, and the conventional methods are not

feasible. Moreover, the ADMM-based algorithms show a lower convergence rate than COBRA. We

combined the basic procedures of the augmented Lagrangian method with the accelerated gradient

descent method, which is not greatly influenced by the parameter λ, and the convergence rate was

competitive with the conventional methods.

1.2 Overview of the thesis

The remainder of this thesis is organized as follows. In Chapter 2, we first briefly introduce

some concepts in convex optimization and sparse estimation. Then, we review several important

algorithms, namely, the gradient descent method, the proximal gradient descent method, their

extensions, and ADMM, which serve as basic knowledge throughout this thesis. In Chapter 3, we

propose two efficient algorithms for joint graphical Lasso with and without backtracking options.

Moreover, we provide the boundness of the solution of the joint graphical Lasso and the iterates in

the proximal gradient algorithm, which can guarantee the linear convergence rate of the algorithm.

In Chapter 4, we introduce clustering, convex clustering, and convex biclustering. We propose an

efficient algorithm for convex biclustering and provide numerical experiments to show its efficiency

and accuracy. In Chapter 5, we present the proof of the propositions of Chapters 3 and 4. In

4

Chapter 6, we draw some conclusions from the main results and point out the further improvement

of the research contents.

Notation: We use ||x||p to denote the ℓp norm of a vector x ∈ Rd, ||x||p := (
∑d

i=1 |xi|p)
1
p for

p ∈ [1,∞), and ||x||∞ := maxi |xi|. For a matrix X ∈ Rp×q, we use ||X||F to denote the Frobenius

norm, ||X||2 to denote the spectral norm, ||X||∞ := maxi,j |xi,j|, and ||X||1 :=
∑p

i=1

∑q
j=1 |xi,j| if

not specified. The inner product is defined by ⟨X,X⟩ := trace(XTX).

5

2 Background

This chapter reviews the basic knowledge for the convex optimization problem and sparse estima-

tion. For the functions f : Rn → R and g : Rp → R, we consider the corresponding optimization

method in the following form:

min
x

F (x) := f(x) + g(Ax) (3)

with variables x ∈ Rn, and matrix A ∈ Rp×n. We are mainly focused on (3) since many problems

or models in machine learning and statistics fields can be reformulated in the form (3). Moreover,

all of the problems we consider in this thesis can be expressed in the form (3).

2.1 Basic definition

This subsection introduces some basic definitions and terms in convex optimization that will be

used in the sequel.

Convex set: We say a set C is convex set, if for any x, y ∈ C, and α ∈ [0, 1], it satisfies

αx+ (1− α)y ∈ C.

Convex function: We say a function f is convex, if domf (the domain of f) is a convex set,

and ∀x, y ∈ domf and 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (4)

The following is a figure that illustrates the convexity (4) of the convex function.

Figure 1: An example of convex function

(x,f(x))

(y,f(y))

We say a function f is proper if it does not attain the value −∞ and there exists x such that

f(x) < ∞, meaning that domf is nonempty. Let f : Rn → R ∪ {+∞} be a closed proper convex

function, which means that its epigraph,

epif = {(x, t) ∈ Rn × R|f(x) ≤ t},

6

is a nonempty closed convex set.

The effective domain of f is defined as follows:

domf = {x ∈ Rn|f(x) < +∞},

which means f takes on finite values for the set.

Proximal operator: Given a function h : Rn → R, denote the proximal operator proxh :

Rn → Rn as follows:

proxh(z) := arg min
θ∈Rn
{1
2
∥z − θ∥22 + h(θ)}. (5)

Note: The proximal operator of function h = λ||θ||1 is the soft-thresholding operator: the

absolute value |θi| being either θi− sgn(θi)λ or zero (if |θi| < λ). We use the following function for

this operator in the following chapters:

[Sλ(θ)]i = sgn(θi)(|θi| − λ)+ (6)

where (x)+ := max(x, 0).

Conjugate function: Define the conjugate of a function f : Rn → R by

f ∗(y) = sup
x∈domf

(yTx− f(x)),

It is known that f ∗ is closed proper convex function and (f ∗)∗ = f when f is closed and convex,

and that Moreau’s decomposition [56] is available: Let f : Rn → R be closed and convex. For any

x ∈ Rn and γ > 0, we have

proxγf (x) + γproxγ−1f∗(γ−1x) = x. (7)

Differentiable: We say a function f is differentiable if ∃ g, such that

limd→0
f(x+ d)− f(x)− ⟨g, d⟩

||d||2
= 0

Lipschitz-continuous: A differentiable function f : Rn → R has Lipschitz-continuous gradi-

ent if ∃ L > 0 (Lipschitz constant), such that

||∇f(x)−∇f(y)||2 ≤ L||x− y||2,∀x, y ∈ Rn. (8)

Firm nonexpansivity [16, Lemma 2.4]: For a proper closed convex function f , ∀x, y ∈

domf , the following inquality holds:

||proxf (x)− proxf (y)|| ≤ ||x− y||.

7

2.2 Sparse estimation

We are interested in the sparse estimation problems, which assume that the estimators/features

are sparse. To be more specific, sparse means that many parameters are zero in the model. A

sparsity model with few features is easier to explain and cheaper to implement. It has attracted

tremendous attention in data mining, statistics, and machine learning areas over the past decades.

One of the most straightforward ways to enforce sparsity is to add the penalty term to the

loss function to promote zeros in the solution. Given a data matrix X ∈ Rn×p, sparse estimation

models can be formulated as the following minimization problem,

β = argmin
β

Loss(X, β) + λP (β). (9)

The first term is the loss function to fit the model to the data, and the second term is the penalty

term that promotes the sparsity of the model. λ ≥ 0 is the regularization parameter, and the value

of λ works as a trade-off between fitness and sparsity in the two terms.

2.2.1 Lasso-type models

Starting from the linear regression setting, given n samples, {(xi, yi)}ni=1, with p−dimensional

feature vector xi = (xi1, . . . , xip)
t and associated response variable yi ∈ R, the least-squares loss

function is formulated as follows:

Loss(X, y, β) := min
β

{
1

2n

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2

}
. (10)

With different types of penalty terms P (β) in (9) to constrain (10), we can achieve the various

sparsity targets. Least absolute shrinkage and selection operator (Lasso) [82] is a very popular

method to select and estimate features simultaneously. It solves the following constrained opti-

mization problem:

min
β

{
1

2n

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2

}

s.t.

p∑
j=1

|βj| ≤ t.

where t ≥ 0 is a given value to constrain the absolute value of the estimator β, and it determines

the value λ in (9). After centering, standardizing (1
n

∑n
i=1 xij = 0, 1

n

∑n
i=1 x

2
ij = 1), and eliminating

8

the intercept β0, we can obtain the following Lasso problem in Lagrangian form:

β̂ = arg min
β∈Rp

{
1

2n
||y −Xβ||22 + λ||β||1

}
. (11)

There are many efficient techniques to solve the above Lasso problem [21, 19, 62, 88, 24]. What

is more, Lasso has a variety of applications such as [12, 9, 93]. Although Lasso is a common way

of getting sparse solutions, it still has some limitations. Lasso cannot process the highly correlated

variables, and it may lead to excessive shrinkage. However, to identify homogeneous subgroups of

variables and select correlated variables, fused Lasso [82] was proposed with pairwise differences of

features in penalty term. The fused Lasso can be expressed as the following optimization problem:

β̂ = arg min
β∈Rp

1

2n
||y −Xβ||22 + λ

∑
i<j

|βi − βj|. (12)

In some cases, such as gene expression analyses, it is preferable to have the features within

the same group reach the same value. The group Lasso [25] was designed for this purpose. The

optimization of group Lasso can be formulated as follows:

β̂ = arg min
β∈Rp

1

2n
||y −

G∑
g=1

Xβg||22 + λ
G∑

g=1

||βg||1, (13)

the above can select the variables β in the same groups g.

Solution path: When λ = 0, there is no penalty constraint, and Lasso becomes the ordinary

least square problem. As the value of λ increases, the term works as penalization. The solution

path means the figure of solution variation under various λ values. Figure 2 exhibits an example

of a Lasso solution path.

9

0 1 2 3 4

-0
.5

0.
0

0.
5

1.
0

1.
5

L1 Norm

C
o
effi

ci
en
t

0 2 5 5 6

X1
X2
X3
X4
X5
X6

1

Figure 2: An example of the Lasso solution path [76]. Different colors represent the different

features, and the x-axis for the different value of λ.

Therefore, efficient algorithms are needed to compute the whole solution path or a sequence

of λ values. There are wide applications of the Lasso penalty ||β||1 and fused Lasso penalty∑
i<j |βi−βj| for the purpose of sparsity and detecting group variables, respectively. The following

are two examples corresponding to the Lasso penalty in graphical Lasso and the fused Lasso penalty

in convex clustering.

Graphical Lasso. Banerjee et al. [2] proposed a way to estimate the inverse covariance matrix

Θ by solving the following optimization problem:

maximize
Θ

{log likelihood− λ||Θ||1} , (14)

Convex clustering [39]. Given a data matrix X ∈ RN×p, non-negative weight ωij ≥ 0 and

λ > 0, the convex clustering calculate a clustering matrix U as follows:

1

2
∥X − U∥2F + λ

∑
i<j

ωij∥Ui· − Uj·∥2, (15)

10

where Xi· and Ui· denote the i-th rows of X and U .

Both formulations are convex and have many advantages in optimization. We will illustrate

the details of the above two models later, which are two main research contents in this thesis.

2.3 Algorithms

The problem (3) can be solved directly if the closed-form expression can be found. However, in

many cases, it is hard to obtain the closed-form solution of the problem (3). Hence, we need to

iterate the update steps in algorithms from an initial value, generate a sequence of iterates and

find a convergent solution. We mainly consider the first-order method in the thesis, which is a

method that contains first-order gradient information. The gradient calculation will not cost much

for large data sets problems. Moreover, the accuracy of the first-order method is enough for most

problems.

2.3.1 Gradient descent method

For problem (3), if the objective function F (x) is convex and differentiable, then one popular

method to solve the optimization problem is the gradient descent method. The main update step

in gradient descent method is xt+1 = xt − ηt∇F (xt), where ηt > 0 is the step size and −∇F (xt) is

the descent direction. The search direction and step size are computed at the new point, and the

process is repeated until convergence. The whole procedure is summarized in Algorithm 1.

Algorithm 1 Gradient Method

Input: initial point x0.

While t < tmax (until convergence) do

1: Choose a stepsize ηt > 0

2: Compute xt+1 = xt − ηt∇F (xt)

3: t← t+ 1

end

Output: x∗.

There are some strategies to choose the step size ηt. For example:

• Armijo rule: ηt satisfies F (xt − ηt∇F (xt)) ≤ F (xt) + cηt∇F (xt), for c ∈ (0, 1).

11

• Constant step size: ηt := η > 0 (specified constant).

• Exact optimal step size: ηt := argminηt F (xt − ηt∇F (xt)).

When computing the step size ηt, we need to trade off between the reduction of the objective

function F and the time of choosing the step size ηt. Some strategies may require the evaluation

condition to select ηt, such as the Armijo rule, which is a procedure that requires evaluating the

objective function many times. Those evaluations may add considerable computational costs.

2.3.2 Nesterov’s accelerated gradient method

The following is an accelerated version of gradient descent method, called Nesterov’s Accelerated

Gradient Method (NAGM) [60]. It has O(1
k2
) convergence rate while the (conventional) gradient

descent method has O(1
k
) [60].

Algorithm 2 NAGM

Input: Lipschitz constant L, initial value x0 = y0, t1 = 1.

While k < kmax (until convergence) do

1: xk+1 = yk − 1
L
∇F (yk)

2: tk+1 = 1+
√

4tk2+1
2

3: yk+1 = xk+1 + tk−1
tk+1 (x

k+1 − xk)

4: k = k + 1

End while

Algorithm 2 replaces the gradient descent yk+1 = yk − 1
L
∇F (yk) by Steps 1 to 3: Step 1

executes the gradient descent to obtain xk+1 from yk, Steps 2 and 3 calculate new yk+1 based on

the previous xk, xk+1, and then return to the gradient descent in Step 1.

2.3.3 Proximal gradient method

The gradient method is not feasible when the function F contains a nondifferentiable term because

we cannot calculate ∇F . The proximal gradient method has proved to be a better choice with

an efficient convergence rate (O(1/k) convergence rate) than the subgradient method (O(1/
√
k)

convergence rate) for the nondifferentiable problem [5]. It has broad applications in handling

problems in various domains such as image and signal processing [6].

12

Here, for illustration, we consider the case when the function g(Ax) is nondifferentiable and the

function f(x) is differentiable. The proximal gradient method is a method that “proximal” means

the proximal operator of the nondifferentiable term g(Ax), and “gradient” means the gradient of

the differentiable term f(x). We describe the detailed procedure as follows: define the quadratic

approximation Qη : Rp × Rp → R w.r.t. f(x) and η > 0 by

Qη(x
′, x) := f(x) + ⟨x′ − x,∇f(x)⟩+ 1

2η
||x′ − x||2F , (16)

then we can describe the proximal gradient procedures by following,

xt+1 = argmin
x
{Qηt(x, xt) + g(x)} (17)

= proxηtg(xt − ηt∇f(xt)), (18)

given initial value x0, where the value of step size ηt > 0 may change at each iteration t = 1, 2, . . . ,

for efficient convergence purpose. The whole procedure is summarized in Algorithm 3.

Algorithm 3 Proximal Gradient Method

Input: initial point x0.

While t < tmax (until convergence) do

1: Choose a stepsize ηt > 0

2: Compute xt+1 = proxηtg(xt − ηt∇f(xt))

3: t← t+ 1

end

Output: x∗.

We summarized some problems and corresponding solvers solved by gradient descent-based

method introduced above in Table 2.

2.3.4 Accelerated version of ISTA (FISTA)

Fast iterative shrinkage-thresholding algorithm (FISTA) is an extension of NAGM to ISTA, pro-

posed by Beck and Teboulle [6], which enhances the convergence rate from O(1/k) to O(1/k2).

Algorithm 4 shows the detailed procedure of FISTA.

13

Table 2: Several problems solved by gradient-based methods, where σ denotes the indicator func-

tion.

Problem Update equation Name of solver

minx f(x) xk+1 = xk − ηk∇f(xk) Gradient descent method

minx∈σ f(x) PC(x) Projection problem

minx {f(x) + λ||x||1} sgn(x)[|x| − λ]+ Proximal gradient method (ISTA) [5]

minx {f(x) + λ||x||2} (1− λ
max{||x||,λ})x Proximal gradient of Euclidean norm

Algorithm 4 FISTA

Input: initial value y1 = x0, h1 = 1.

While t < tmax (until convergence) do

1: Choose a stepsize ηt > 0

2: Compute xt+1 = proxηtg(yt − ηt∇f(yt))

3: ht+1 = 1+
√

4ht2+1

2

4: yt+1 = xt+1 + ht−1
ht+1 (x

t+1 − xt)

5: t← t+ 1

end

Output: optimal solution x∗.

2.3.5 ADMM

This subsection shows a more general algorithm than the gradient method, which does not re-

quire the differentiability of the objective function to solve convex optimization problems, called

alternating direction method of multipliers (ADMM) [7].

Let f : Rn → R and g : Rp → R be convex. We consider the following constrained optimization

problem of (3):

min
x,y

f(x) + g(Ax)

subject to Ax = y,

(19)

with variables x ∈ Rn and y ∈ Rp, and matrix A ∈ Rp×n. Define the augmented Lagrangian

function as the following,

Lν(x, y, u) := f(x) + g(y) + ⟨u,Ax− y⟩+ ν

2
||Ax− y||22 , (20)

14

where ν > 0 is an augmented Lagrangian parameter, and u ∈ Rp is the Lagrangian multipliers.

ADMM is a procedure to find the solution to the problem (19) by iterating

xk+1 := argmin
x

Lν(x, y
k, uk),

yk+1 := argmin
y

Lν(x
k+1, y, uk),

uk+1 := argmin
u

Lν(x
k+1, yk+1, u),

given the initial values y1 and u1.

From the procedure, ADMM split the target composite problem (19), and handle the functions

f and g w.r.t variables x and y separately.

2.4 Convergence rate

This subsection introduces the notion of the convergence rate of the algorithm. If x∗ satisfies

∇F (x∗) = 0, then we say x∗ is an optimal point. The convergence rate provides an upper bound

of the complexity of an algorithm to obtain the optimal solution x∗ or x close to x∗ with some

tolerance ϵ. There are several ways to illustrate the convergence rate of an algorithm, here we

introduce the two most used criteria.

• limk→∞
||xk+1−x∗||

xk−x∗ = C,

• F (xk)− F (x∗) ≤ ϵ,

where k represents the k−th iteration in the algorithm. For the first one: If C = 1, then the

sequence xk is sublinear convergence to x∗; If 0 < C < 1, then the sequence xk is linear convergence

to x∗; If C = 0, then the sequence xk is superlinear convergence to x∗. However, many algorithms

cannot attain the linear convergence rate. Therefore, we use the second criterion for finer expression

to compare the sublinear convergence rate level. For example, if the following inequality holds:

F (xk)− F (x∗) ≤ x0 − x∗

Ck
,

where C is constant, and x0 is an initial value, then we say the rate that F (xk) converges to F (x∗)

is O(1/k), and O(1/k) represents the upper bound of the tolerance F (xk) − F (x∗), when k goes

large, then the tolerance goes small. Both belong to the sublinear convergence rate, while it is

evident that the rate O(1/k2) can be significantly faster than O(1/k).

15

The convergence rate is quite related to the choice of step size in the above algorithms. We

below introduce a lemma, which provides theoretical help for the choice of step size.

Lemma 1. [Descent lemma] Let f be a Lipschitz continuous gradient function, and L is corre-

sponding Lipschitz constant, then ∀x, y ∈ domf , the following inequality holds:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
||x− y||2.

Based on Lemma 1, the following Lemma can be proved for the convergence rate of the proximal

gradient method.

Lemma 2. [5] Let {xk}k≥0 be the sequence generated by Algorithm 3 (proximal gradient descent

algorithm) to solve problem (3) with Lipschitz continuous gradient assumption of f (Lipschitz

constant: L), then

F (xk)− F (x∗) ≤
L||x0 − x∗||2

2k
.

The above lemma exhibits that the k-th iteration can bring us a certain tolerance of F (xk)−

F (x∗) that related to the number of k, i.e. O(1/k) rate of convergence [7, 20, 4].

The following lemma illustrates the convergence rate of the accelerated version of ISTA, which

attains O(1/k2) rate of convergence.

Lemma 3. [5]Let {xk}k≥0 be the sequence generated by Algorithm 4 (FISTA) to solve problem (3)

with Lipschitz continuous gradient assumption of f (Lipschitz constant: L), then

F (xk)− F (x∗) ≤ 2L||x0 − x∗||2

(k + 1)2
.

16

3 Efficient proximal gradient algorithms for joint graphical

Lasso

3.1 Introduction

Graphical models are widely used to describe the relationships among interacting objects [47].

Such models have been extensively used in various domains, such as bioinformatics, text mining,

and social networks.

In this thesis, we only consider learning Gaussian graphical models that are expressed by

undirected graphs. It represents the relationship among continuous variables that follow a joint

Gaussian distribution. In a joint Gaussian distribution with random variables X, Y and Z, we say

X is independent of Y conditioned on Z if P (X, Y |Z) = P (X|Z)P (Y |Z) and denote as X ⊥⊥ Y |Z.

In an undirected graph, G = (V,E), edge set E represents the conditional dependencies among

the variables in vertex set V . Let X1, . . . , Xp (p ≥ 1) be Gaussian variables with covariance matrix

Σ ∈ Rp×p, and Θ := Σ−1 be, if it exists, the precision matrix. We remove the edges so that the

variables Xi, Xj are conditionally independent given the other variables if and only if the (i, j)-th

element θi,j in Θ is 0:

{i, j} ̸∈ E ⇐⇒ θi,j = 0 ⇐⇒ Xi ⊥⊥ Xj|XV \{i,j},

where each edge is expressed as a set of two elements in {1, . . . , p}. In this sense, constructing a

Gaussian graphical model is equivalent to estimating a precision matrix.

Suppose that we estimate the undirected graph from data consisting of n samples of p variables

and that dimension p is much higher than sample size n. However, it is almost impossible to

estimate the locations of the nonzero elements in Θ by obtaining the inverse of sample covariance

matrix S ∈ Rp×p, which is the estimator of Σ. In fact, if p > n, then no inverse S−1 exists because

the rank of S ∈ Rp×p is, at most, n.

In order to address this situation, two directions are suggested:

1. Sequentially find the variables on which each variable depends via regression so that the

quasi-likelihood is maximized [54].

2. Find the locations inΘ, the values of which are zeros, so that the ℓ1 regularized log-likelihood

is maximized [97, 23, 2, 70].

17

We follow the second approach because we assume Gaussian variables, also known as graphical

Lasso (GL). The ℓ1 regularized log-likelihood is defined by

maximize
Θ

{log detΘ− trace(SΘ)− λ||Θ||1} , (21)

where tuning parameter λ controls the amount of sparsity, and ||Θ||1 denotes the sum of the

absolute value of the off-diagonal elements in Θ. Several optimization techniques [1, 52, 31, 18,

23, 42] have been studied for the optimization problem of (21).

In particular, we consider a generalized version of the abovementioned GL. For example, sup-

pose that the gene regulatory networks of thirty case and seventy control patients are different.

One might construct a gene regulatory network separately for each of the two categories. However,

estimating each on its own does not provide an advantage if a common structure is shared. Instead,

we use one hundred samples to construct two networks simultaneously. Intuitively speaking, using

both types of data improves the reliability of the estimation by increasing the sample size for the

genes that show similar values between case and control patients, while using only one type of

data leads to a more accurate estimate for genes that show significantly different values.

Danaher et al. [17] proposed a joint graphical Lasso (JGL) model by including an additional

convex penalty (fused or group Lasso penalty) to the graphical Lasso objective function for K

classes. For example, K is equal to two for the case/control patients in the example. JGL includes

fused graphical Lasso with fused Lasso penalty and group graphical Lasso with group Lasso penalty.

Although there are several approaches to handle the multiple graphical models, such as those of

[41], [32], [98], and [35], the JGL is considered the most promising.

Our main goal is to improve efficiency in terms of solving the JGL problem. For the GL,

relatively efficient solving procedures exist. If we differentiate the ℓ1 regularized log-likelihood (21)

byΘ, then we have an equation to solve [23]. Moreover, several improvements have been considered

for the GL, such as proximal Newton [42] and proximal gradient [31] procedures. However, for the

JGL, even if we derive such an equation, we have no efficient way to handle it.

Instead, the alternating direction method of multipliers (ADMM) [29], which is a procedure

for solving convex optimization problems for general purposes, has been the main approach taken

[17, 81, 33, 28]. However, ADMM does not scale well concerning feature dimension p and number

of classes K. It usually takes time to converge to a high-accuracy solution [8].

18

3.2 Preliminaries

3.2.1 Graphical Lasso

Let x1, . . . ,xn ∈ Rp be n ≥ 1 observations of dimension p ≥ 1 that follow the Gaussian distribution

with mean µ ∈ Rp and covariance matrix Σ ∈ Rp×p, where without loss of generality, we assume

µ = 0. Let Θ := Σ−1, and the empirical covariance matrix S := 1
n

∑n
i=1 xix

T
i . Given penalty

parameter λ > 0, the graphical Lasso (GL) is the procedure to find the positive definite Θ ∈ Rp×p

such that:

minimize
Θ

{− log detΘ+ trace(SΘ) + λ∥Θ∥1 } , (22)

where ||Θ||1 =
∑

j ̸=k |θj,k|. If we regard V := {1, . . . , p} as a vertex set, then we can construct an

undirected graph with edge set {{j, k}|θj,k ̸= 0}, where set {j, k} denotes an undirected edge that

connects the nodes j, k ∈ V .

If we take the subgradient of (22), then we find that the optimal solution Θ∗ satisfies the

condition:

−Θ−1
∗ + S + λΦ ∋ 0, (23)

where Φ = (Φj,k) is

Φj,k =

1, θ∗j,k > 0

[−1, 1], θ∗j,k = 0

−1, θ∗j,k < 0

.

3.2.2 ISTA for graphical Lasso

Then, we introduce the method for solving the GL problem (22) by the iterative shrinkage-

thresholding algorithm (ISTA) proposed by Guillot et al. [31], which is a proximal gradient method

usually employed in dealing with nondifferentiable composite optimization problems.

Specifically, the general ISTA solves the following composite optimization problem:

minimize
x

F (x) := f(x) + g(x), (24)

where f and g are convex, with f differentiable and g possibly being nondifferentiable.

For the GL problem (22), we denote f, g : Rp×p → R as

19

f(Θ) := − log detΘ+ trace(SΘ),

and

g(Θ) := λ∥Θ∥1.

If we define the quadratic approximation Qη : Rp×p × Rp×p → R w.r.t. f(Θ) and η > 0 by

Qη(Θ
′,Θ) := f(Θ) + ⟨Θ′ −Θ,∇f(Θ)⟩+ 1

2η
||Θ′ −Θ||2F , (25)

then we can describe the ISTA as a procedure that iterates

Θt+1 = argmin
Θ
{Qηt(Θ,Θt) + g(Θ)} (26)

= proxηtg(Θt − ηt∇f(Θt)), (27)

given initial value Θ0, where the value of step size ηt > 0 may change at each iteration t = 1, 2, . . . ,

for efficient convergence purpose.

It is known that if we choose ηt =
1
L
(L is Lipschitz constant) for each step in the ISTA that

minimizes F (·) , then the convergence rate is, at most, as follows by Lemma 2:

F (Θt)− F (Θ∗) = O(
1

t
). (28)

However, for the GL problem (22), we know neither the exact value of the Lipschitz constant

L nor any nontrivial upper bound. Guillot et al. [31] implement a backtracking line search option

in Step 1 of Algorithm 5 below to handle this issue.

The backtracking line search enables us to compute the ηt value for each time t = 1, 2, . . . by

repeatedly multiplying ηt by a constant c ∈ (0, 1) until Θt+1 ≻ 0 (Θ is positive definite) and

f(Θt+1) ≤ Qηt(Θt+1,Θt), (29)

for the Θt+1 in (27). Additionally, (29) is a sufficient condition for (28), which was derived in [5]

(see the relationship between Lemma 2.3 and Theorem 3.1 in [5]).

The whole procedure is given in Algorithm 5.

20

Algorithm 5 G-ISTA for problem (22)

Input: S, tolerance ϵ > 0, backtracking constant 0 < c < 1, initial value η0, Θ0, t = 0.

While t < tmax (until convergence) do

1: Backtracking line search: Continue to multiply ηt by c until

Θt+1 ≻ 0 and f(Θt+1) ≤ Qηt(Θt+1,Θt)

for Θt+1 := proxηtg(Θt − ηt∇f(Θt)).

2: Update iterate: Θt+1 ← proxηtg(Θt − ηt∇f(Θt)).

3: Set next initial step size ηt+1 by the Barzilai—Borwein method.

4: t← t+ 1

end

Output: ϵ-optimal solution to problem (22), Θ∗ = Θt+1.

3.2.3 Composite self-concordant minimization

The notion of the self-concordant function was proposed in [59, 67, 58]. In the following, we say a

convex function f is self-concordant with parameter M ≥ 0 if

|f ′′′(x)| ≤Mf ′′(x)3/2, for all x ∈ dom f.

where dom f is the domain of f .

Tran-Dinh et al. [86] considered a composite version of self-concordant function minimization

and provided a way to efficiently calculate the step size for the proximal gradient method for the

GL problem without relying on the Lipschitz gradient assumption in (8). They proved that

f(Θ) := − log detΘ+ trace(SΘ)

in (22) is self-concordant and considers the following minimization:

F ∗ := minimize
x

{F (x) := f(x) + g(x)},

where f is convex, differentiable, and self-concordant, and g is convex and possibly nondifferen-

tiable. As for Algorithm 5, without using the backtracking line search, we can compute direction

dt with initial step size ηt as follows:

dt := proxηtg(Θt − ηt∇f(Θt))−Θt, (30)

21

where the operator prox is defined by (5). Then, we use the modified step size αt to update

Θt+1 := Θt + αtdt, which can be determined by the direction dt. After defining two parameters

related to the direction: βt := η−1
t ||dt||2F and λt := (⟨∇2f(Θt)dt,dt⟩)1/2, the modified step size can

be obtained by

αt :=
βt

λt(λt + βt)
. (31)

By Lemma 12 in [86], if the modified step size αt ∈ (0, 1], then it can ensure a decrease in

the objective function and guarantee convergence in the proximal gradient scheme. From (31),

if λt ≥ 1, then the condition αt ∈ (0, 1] is satisfied. Therefore, we only need to check the case

when λt < 1. If the condition αt ∈ (0, 1] does not hold, we can change the value of the initial ηt

(such as the bisection method) to influence the value of dt in (30) until the condition is satisfied.

3.2.4 Joint graphical Lasso

Let N ≥ 1, p ≥ 1, K ≥ 2, and (x1, y1), . . . , (xN , yN) ∈ Rp × {1, . . . , K}, where each xi is a row

vector. Let nk be the number of occurrences in y1, . . . , yN such that yi = k, so that
∑K

k=1 nk = N .

For each k = 1, . . . , K, we define the empirical covariance matrix S(k) ∈ Rp×p of the data xi as

follows:

S(k) :=
1

nk

∑
i:yi=k

xT
i xi.

Given the penalty parameters λ1 > 0 and λ2 > 0, the joint graphical Lasso (JGL) is the

procedure to find the positive definite matrix Θ(k) ∈ Rp×p for k = 1, . . . , K, such that

minimize
Θ

{
−

K∑
k=1

nk{log detΘ(k) − trace(S(k)Θ(k))}+ λ1

K∑
k=1

∑
i ̸=j

|θk,i,j|+ P (Θ)

}
, (32)

where P (Θ) penalizes Θ := [Θ(1), . . . ,Θ(K)]T . For example, Danaher et al. [17] suggested the

following fused and group Lasso penalties:

PF (Θ) := λ2

∑
k<l

∑
i,j

|θk,i,j − θl,i,j|

and

PG(Θ) := λ2

∑
i ̸=j

{
K∑
k=1

θ2k,i,j

}1/2

,

22

where θk,i,j is the (i, j)-th element of Θ(k) ∈ Rp×p for k = 1, . . . , K.

3.3 Optimization problem and algorithms

We propose two efficient algorithms to solve the JGL problem. One is an extended ISTA based on

the G-ISTA, and the other utilized the self-concordant properties.

3.3.1 ISTA for JGL

To describe the JGL problem, we define f, g : RK×p×p → R by

f(Θ) := −
K∑
k=1

nk

{
log detΘ(k) − trace(S(k)Θ(k))

}
, (33)

g(Θ) := λ1

K∑
k=1

∑
i ̸=j

|θk,i,j|+ P (Θ). (34)

Then, the optimization problem (32) reduces to:

minimize
Θ

F (Θ) := f(Θ) + g(Θ) ,

where the function f is convex and differentiable, and g is convex and nondifferentiable. Therefore,

ISTA is available for solving the JGL problem (32).

If we define the quadratic approximation Qηt : RK×p×p → R of f(Θt) by

Qηt(Θ,Θt) := f(Θt) +
K∑
k=1

〈
Θ(k) −Θ

(k)
t ,∇f(Θ(k)

t)
〉
+

1

2ηt

K∑
k=1

||Θ(k) −Θ
(k)
t ||2F ,

then the update iteration is simplified as:

Θt+1 = argmin
Θ

{Qηt(Θ,Θt) + g(Θ)}

= proxηtg(Θt − ηt∇f(Θt)).

Nevertheless, the Lipschitz gradient constant of f(Θ) is unknown over the whole domain in

the JGL problem. Therefore, our approach needs a backtracking line search to calculate step size

ηt. We show the details in Algorithm 6.

23

Algorithm 6 ISTA for problem (32)

Input: S, tolerance ϵ > 0, backtracking constant 0 < c < 1, initial step size η0, initial iterate Θ0.

For t = 0, 1, · · · , (until convergence) do

1: Backtracking line search: Continue to multiply ηt by c until

f(Θt+1) ≤ Qηt(Θt+1,Θt) and Θ
(k)
t+1 ≻ 0 for k = 1, · · · , K. (35)

for Θt+1 := proxηtg(Θt − ηt∇f(Θt)).

2: Update iterate: Θt+1 ← proxηtg(Θt − ηt∇f(Θt)).

3: Set next initial step size ηt+1. See details in Section 3.4.

end

Output: optimal solution to problem (32), Θ∗ = Θt+1.

In the update of Θt+1, we need to compute the proximal operators for fused and group Lasso

penalties. In the following, for each of them, the problem can be divided into the fused Lasso

problems [83] and group Lasso problems [74, 25] for θi,j ∈ RK , i, j = 1, . . . , p. We apply the

solutions given by (38) and (39) below.

A. Fused Lasso penalty PF

By the definition of the proximal operator in the update step, we have

Θt+1 = argmin
Θ

{
1

2

K∑
k=1

||Θ(k) −Θ
(k)
t + ηt∇f(Θ(k)

t)||2F + ηtλ1

K∑
k=1

∑
i ̸=j

|θk,i,j|

+ηtλ2

∑
k<l

∑
i,j

|θk,i,j − θl,i,j|

}
.

(36)

Problem (36) is separable with respect to the elements θk,i,j in Θ(k) ∈ Rp×p; hence, the proximal

operator can be computed in componentwise manner: Let A = Θt − ηt∇f(Θt); then, problem

(36) reduces to the following for i = 1, · · · , p, j = 1, · · · , p :

argmin
θ1,i,j ,··· ,θK,i,j

{
1

2

K∑
k=1

(θk,i,j − ak,i,j)
2 + ηtλ11i ̸=j

K∑
k=1

|θk,i,j|+ ηtλ2

∑
k<l

|θk,i,j − θl,i,j|}

}
, (37)

where 1i ̸=j is an indicator function, the value of which is 1 only when i ̸= j.

The problem (37) is known as the fused Lasso problem [83, 40] given ak,i,j for k = 1, . . . , K. In

particular, let α := ηtλ11i ̸=j and β := ηtλ2. When i ̸= j, α ̸= 0 and β > 0, the solution to (37) can

24

be obtained through soft thresholding operator based on the solution when α = 0 by the following

lemma.

Lemma 4. ([22]) Denote the solution to parameters α and β as θi(α, β), then the solution θi(α, β)

of the fused Lasso problem

1

2

n∑
i=1

(yi − θi)
2 + α

n∑
i=1

|θi|+ β

n−1∑
i=1

|θi − θi+1| (38)

is given by [Sα(θ(0, β))]i when y1, · · · , yn ∈ R are given for n ≥ 1.

Additionally, rather efficient algorithms are available for solving the fused Lasso problem (38)

when α = 0 (i.e., θ(0, β)) such as [40, 85, 43].

B. Group Lasso penalty PG

By definition, the update of Θt+1 for the group Lasso penalty PG(Θ) is as follows:

Θt+1 = argmin
Θ

{
1

2

K∑
k=1

||Θ(k) −Θ
(k)
t + ηt∇f(Θ(k)

t)||2F + ηtλ1

K∑
k=1

∑
i ̸=j

|θk,i,j|+ ηtλ2

∑
i ̸=j

(
K∑
k=1

θ2k,i,j)
1/2

}

Similarly, let A = Θt − ηt∇f(Θt); then, the problem becomes the following for i = 1, · · · , p,

j = 1, · · · , p:

argmin
θ1,i,j ,··· ,θK,i,j

{
1

2

K∑
k=1

(θk,i,j − ak,i,j)
2 + ηtλ11i ̸=j

K∑
k=1

|θk,i,j|+ ηtλ21i ̸=j(
K∑
k=1

θ2k,i,j)
1/2

}
.

We have θk,i,j = ak,i,j for i = j. And for i ̸= j, the solution [96, 25, 76] is given by

θk,i,j = Sηtλ1(ak,i,j)

1− ηtλ2√∑K
k=1 Sηtλ1(ak,i,j)

2

+

. (39)

3.3.2 Modified ISTA for JGL

Thus far, we have seen that f(Θ) in the JGL problem (32) is not globally Lipschitz gradient

continuous. The ISTA may not be efficient enough for the JGL case because it includes the

backtracking line search procedure for this case, which needs to evaluate the objective function

and the positive definiteness of Θt+1 in (35) and is inefficient when the evaluation is expensive.

We modify Algorithm 6 to Algorithm 7 based on the step-size selection strategy, which takes

advantage of the properties of the self-concordant function. The self-concordant function does not

25

Algorithm 7 Modified ISTA (M-ISTA)

Input: S, tolerance ϵ > 0, initial step size η0, initial iterate Θ0.

For t = 0, 1, · · · , (until convergence) do

1: Initialize ηt.

2: Compute

dt := proxηtg(Θt − ηt∇f(Θt))−Θt. (40)

3: Compute

βt := η−1
t ||dt||2F

and

λt :=
K∑
k=1

√
nk||(Θ(k)

t)−1d
(k)
t ||F .

4: Determine the step size αt :=
βt

λt(λt+βt)
.

5: If αt > 1, then set ηt := ηt/2 and go back to Step 2.

6: Update Θt+1 := Θt + αtdt.

end

Output: optimal solution to problem (32), Θ∗ = Θt+1.

rely on the Lipschitz gradient assumption on the function f(Θ) [86], and we can eliminate the

need for the backtracking line search.

Lemma 5. ([7]) Self-concordance is preserved by scaling and addition: if f is a self-concordant

function and a constant a ≤ 1, then af is self-concordant. If f1, f2 are self-concordant, then f1+f2

is self-concordant.

The function f(Θ) is self-concordant by Lemma 5. In Algorithm 7, for the initial step size of

ηt in each iteration, we use the Barzilai-Borwein method [3]. And we apply the self-concordant

step size mechanism, which is employed in Steps 3-5 of Algorithm 7.

There is no backtracking procedure in this algorithm that guarantees the positive definiteness

of Θt+1, as in (35) of Algorithm 6. We next show how to ensure the positive definiteness of Θt+1

26

in the iterations of Algorithm 7.

Lemma 6. ([57], Theorem 2.1.1) Let f be a self-concordant function, and let x ∈ dom f . Addi-

tionally, if

W (x) = {y|
(
⟨∇2f(x)(y − x),y − x⟩

)1/2 ≤ 1},

then W (x) ⊂ domf .

In Algorithm 7, because we know αt :=
βt

λt(λt+βt)
< 1 with βt > 0 and λt > 0 by Steps 3-5.

Thus, we have αtλt < 1:

αtλt := αt

(
⟨∇2f(Θt)dt,dt⟩

)1/2
< 1,

which implies,

(
⟨∇2f(Θt)(Θt+1 −Θt),Θt+1 −Θt⟩

)1/2
< 1.

Hence, from Lemma 6, we see that Θt+1 stays in the domain and maintains positive definiteness.

3.4 Theoretical analysis

For multiple Gaussian graphical models, Honorio and Samaras [41] and Hara and Washio [35]

provided lower and upper bounds for the optimal solutionΘ∗. However, the models they considered

are different from the JGL. To the best of our knowledge, no related research has provided the

bounds of the optimal solution Θ∗ for the JGL problem (32).

In the following, we show the bounds of the optimal solutionΘ∗ for the JGL and the iteratesΘt

generated by Algorithms 6 and 7, which are applied to both fused and group Lasso-type penalties.

Proposition 1. The optimal solution Θ∗ of the problem (32) satisfies

max
1≤k≤K

nk

pλc + nk||S(k)||2
≤ ||Θ(k)

∗ ||2 ≤
Np

λ1

+
K∑
k=1

p∑
i=1

(sk,i,i)
−1,

where λc :=
√
Kλ2

1 + 2Kλ1λ2 + λ2
2, and sk,i,i is the i-th diagonal element of S(k).

For the proof, see Section 5.1. Note that the objective function value F (Θ) is always decreasing

with the increase of iteration in both algorithms due to [5, Remark 3.1] and Lemma 12 in [86].

27

Therefore, the following inequality holds for Algorithm 6 and Algorithm 7:

F (Θt+1) ≤ F (Θt) for t = 0, 1, (41)

Then, based on the condition (41), we provide the explicit bounds of iterates {Θt}t=0,1... in

Algorithms 6 and 7 for the JGL problem (32).

Proposition 2. Sequence {Θt}t=0,1,··· , generated by Algorithms 6 and 7 can be bounded:

m ≤ ||Θt||2 ≤M,

where M := ||Θ0||F + 2Np
λ1

+ 2
K∑
k=1

p∑
i=1

sk,i,i
−1, m := e−

C1
nmM (1−Kp), nm = max

k
nk, and constant

C1 := F (Θ0).

For the proof, see Section 5.2.

With the help of Proposition 1, Proposition 2, and the following lemma, we can obtain the

range of the step size that ensures the linear convergence rate of Algorithm 6.

Lemma 7. Let Θt be t-th iterate in Algorithm 6. And denote λmin and λmax as the minimum and

maximum eigenvalues of the corresponding matrix, respectively. Define

ak := min{λmin(Θ
(k)
t), λmin(Θ

(k)
∗)}, bk := max{λmax(Θ

(k)
t), λmax(Θ

(k)
∗)}

and nl = mink=1...,K nk, nm = maxk=1...,K nk, al = mink=1...,K a(k) and bm = maxk=1...,K b(k). The

sequence {Θt}t=0,1,··· generated by Algorithm 6 satisfy

||Θt+1 −Θ∗||F ≤ γt||Θt −Θ∗||F

with the convergence rate γt := max{ηtnm

a2l
− 1, 1− ηtnl

b2m
}.

Proof. It can be easily extended by Lemma 3 in [31].

Lemma 7 implies that to obtain the convergence rate γt < 1, we require

0 < ηt <
2a2l
nm

. (42)

After using Proposition 1 and Proposition 2, we can obtain the bounds of al. Further, we

can obtain the step size ηt that satisfies (42) and guarantee the linear convergence rate (γt < 1).

However, the step size is quite conservative in practice. Hence, we consider the Barzilai-Borwein

method for implementation and regard the step size ηt that satisfies (42) as a safe choice. When the

number of backtracking iterations in Step 1 of Algorithm 6 exceeds the given maximum number to

fulfill the back tracking condition, we can use the safe step size ηt for the subsequent calculations.

In Section 3.5.5, we confirm the linear convergence rate of the proposed ISTA by experiment.

28

3.5 Simulation

In this section, we evaluate the performance of the proposed methods on both synthetic and real

datasets, and we compare the following algorithms:

• ADMM: the general ADMM method proposed by Danaher et al. [17].

• FMGL: the proximal Newton-type method proposed by Yang et al. [94].

• ISTA: the proposed method in Algorithm 6.

• M-ISTA: the proposed method in Algorithm 7.

We perform all the tests in R Studio on a Macbook Air with 1.6 GHz Intel Core i5 and 8 GB

memory. The wall times are recorded as the run times for the four algorithms.

3.5.1 Stopping criteria and model selection

In the experiments, we consider two stopping criteria for the algorithms.

1. Relative error stopping criterion:∑K
k=1 ||Θ

(k)
t+1 −Θ

(k)
t ||F

max{
∑K

k=1 ||Θ
(k)
t ||F , 1}

≤ ϵ.

2. Objective error stopping criterion:

F (Θt)− F (Θ∗) ≤ ϵ.

ϵ is a given accuracy tolerance; we terminate the algorithm if the above error is smaller than ϵ or

the maximum number of iterations exceeds 1, 000. We use the objective error for convergence rate

analysis and the relative error for the time comparison.

The JGL model is affected by regularized parameters λ1 and λ2. For selecting the parameters,

we use the D-fold cross-validation method. First, the dataset is randomly split into D segments

of equal size, a single subset (test data), estimated by the other D − 1 subsets (training data), is

evaluated, and the subset is changed for the test to repeat D times so that each subset is used.

Let S
(k)
d be the sample covariance matrix of the d-th (d = 1, . . . , D) segment for class k =

1, . . . , K. We estimate the inverse covariance matrix by the remaining D − 1 subsets Θ̂
(k)
λ,−d and

choose λ1 and λ2, which minimize the average predictive negative log-likelihood as follows:

CV (λ1, λ2) =
D∑

d=1

K∑
k=1

{
nktrace(S

(k)
d Θ̂

(k)
λ,−d)− logdetΘ̂

(k)
λ,−d

}
29

3.5.2 Synthetic data

The performance of the proposed methods was assessed on synthetic data in terms of the number of

iterations, the execution time, the squared error, and the receiver operating characteristic (ROC)

curve. We follow the data generation mechanism described in [49] with some modifications for the

JGL model. We put the details in Appendix.

3.5.3 Time comparison experiments

We vary p,N,K and λ1 to compare the execution time of our proposed methods with that of

the existing methods. We consider only the fused penalty in our proposed method for a fair

comparison in the experiments because the FMGL algorithm applies only to the fused penalty.

First, we compare the performance among different algorithms under various dimensions p, which

are shown in Figure 3.

0

250

500

750

100 200 300 400
p

tim
e(

se
co

nd
s)

Algorithms
ADMM

ISTA

M−ISTA

FMGL

Figure 3: Plot of time comparison under different p. Setting λ1 = 0.1, λ2 = 0.05, K = 2 and

N = 200.

Figure 3 shows that the execution time of the FMGL and ADMM increases rapidly as p

increases. In particular, we observe that the M-ISTA significantly outperforms when p exceeds

200. The ISTA shows better performance than the three methods when p is less than 200, but it

requires more time as p grows, compared to the M-ISTA. It is reasonable to consider that evaluating

30

the objective function in the backtracking line search at every iteration increases the computational

burden, especially when p increases, which means that the M-ISTA is a good choice for these cases.

Furthermore, the ISTA can be a good candidate when the evaluation is inexpensive.

Table 3: Computational time under different settings.

Parameters setting Computational time

p K N λ1 λ2 precision ϵ ADMM FMGL ISTA M-ISTA

20

2

60
0.1 0.05

0.00001

10.506 secs 1.158 secs 2.174 secs 1.742 secs

3 1.879 mins 4.267 secs 3.357 secs 3.668 secs

5 1 0.5 1.123mins 10.556 secs 4.216 secs 2.874 secs

30

2

120
0.1 0.05

0.0001

10.095 secs 5.259 secs 2.690 secs 4.857 secs

3 2.014 mins 38.562 secs 14.722 secs 31.870 secs

5 1 0.5 2.447 mins 15.819 secs 22.431 secs 12.113 secs

50 2 600

0.02

0.005 0.0001

6.427 secs 10.228 secs 7.213 secs 4.625 secs

0.03 6.240 secs 8.925 secs 6.645 secs 4.023 secs

0.04 7.025 secs 9.381 secs 6.144 secs 3.993 secs

200 2 400

0.09

0.05 0.0001

4.050 mins 1.874 mins 2.289 mins 35.038 secs

0.1 4.569 mins 1.137 mins 1.340 mins 24.852 secs

0.12 3.848 mins 1.881 mins 1.443 mins 18.367 secs

Table 3 summarizes the performance of the four algorithms under different parameter settings

to achieve a given precision, ϵ, of the relative error. The results presented in Table 3 reveal

that when we increase the number of classes K, all the algorithms require more time than usual.

Moreover, the execution time of ADMM becomes huge among them. When we vary λ1, the

algorithms become more efficient as the value increases. For most instances, the M-ISTA and

ISTA outperform the existing methods, such as ADMM and FMGL. For the exceptional cases

(p = 20, k = 2, N = 60, λ1 = 0.1 and λ2 = 0.05), the M-ISTA and ISTA are still comparable with

the FMGL and faster than ADMM.

3.5.4 Algorithm assessment

We generate the simulation data as described in Appendix and regard the synthetic inverse covari-

ance matrices Θ(k) as the true values for our assessment experiments.

31

First, we assessed our proposed method by drawing a ROC curve, which displays the number

of true positive edges (i.e., TP edges) selected compared to the number of false positive edges (i.e.,

FP edges) selected. We say that an edge, (i, j), in the k-th class is selected in estimate Θ̂(k) if

element θ̂k,i,j ̸= 0 and the edges are true positive edges selected if the precision matrix element

θk,i,j ̸= 0 and false positive edges selected if the precision matrix element θk,i,j = 0, where the two

quantities are defined by

TP =
K∑
k=1

∑
i,j

1(θk,i,j ̸= 0) · 1(θ̂k,i,j ̸= 0)

and

FP =
K∑
k=1

∑
i,j

1(θk,i,j = 0) · 1(θ̂k,i,j ̸= 0) ,

where 1(·) is the indicator function.

To confirm the validity of the proposed methods, we compare the ROC figures of the fused

penalty and group penalty. We fix the parameters λ2 for each curve and change the λ1 value to

obtain various numbers of selected edges because the sparsity penalty parameter λ1 can control

the number of selected total edges.

1000

2000

3000

4000

0 250 500 750
FP edges

T
P

 e
dg

es λ2

0.0166

0.05

(a) The fused penalty.

0

1000

2000

3000

4000

0 250 500 750
FP edges

T
P

 e
dg

es λ2

0.0966

0.09

(b) The group penalty.

Figure 4: Plot of true positive edges vs. false positive edges selected. Setting p = 50, K = 2.

We show the ROC curves for fused and group Lasso penalties in Figures 4a and 4b, respectively.

32

From the figures, we observe that both penalties show highly accurate predictions for the edge

selections. The result of λ2 = 0.0166 in the fused penalty case is better than that in λ2 = 0.05.

Additionally, the result of λ2 = 0.0966 in the group penalty case is better than that in λ2 = 0.09,

which means that if we select the tuning parameters properly, then we can obtain precise results

while simultaneously meeting our different model demands.

Then, Figures 5a and 5b display the mean squared error (MSE) between the estimated values

and true values.

MSE =
2

Kp(p− 1)

K∑
k=1

∑
i<j

(θ̂k,i,j − θk,i,j)
2,

where θ̂k,i,j is the value estimated by the proposed method, and θk,i,j is the true precision matrix

value we used in the data generation.

0.0005

0.0010

0.0015

0.0020

0 1000 2000 3000 4000
Total Edges Selected

S
um

 o
f S

qu
ar

ed
 E

rr
or

s

 λ2

0.0166

0.05

(a) The fused penalty.

0.0005

0.0010

0.0015

0.0020

0 1000 2000 3000 4000
Total Edges Selected

S
um

 o
f S

qu
ar

ed
 E

rr
or

s

 λ2

0.0966

0.09

(b) The group penalty.

Figure 5: Plot of the mean squared errors vs. total edges selected. Setting p = 50, K = 2.

The figures illustrate that when the total number of edges selected increases, the errors decrease

and finally achieve relatively low values.

Overall, the proposed method shows competitive efficiency not only in computational time but

also in accuracy.

33

3.5.5 Convergence rate

This section shows the convergence rate of the ISTA for solving the JGL problem (32) in practice,

with λ1 = 0.1, 0.09 and 0.08. We recorded the number of iterations to achieve the different

tolerance of F (Θt)−F (Θ∗) and ran it on a synthetic dataset, with p = 200, K = 2, λ2 = 0.05 and

N = 400. The figure reveals that as λ1 decreases, more iterations are needed to converge to the

specified tolerance. Moreover, the figure shows the linear convergence rate of the proposed ISTA

method, which corroborate the theoretical analysis in Section 3.4.

0.0001

 0.01

 1

0 50 100
Iteration

 λ1

0.1

0.09

0.08

F
(Θ

t)
−
F
(Θ

∗)

Figure 6: Plot of log(F (Θt)−F (Θ∗)) vs. the number of iterations with different λ1 values. Setting

p = 200, N = 400, K = 2 and λ2 = 0.05.

3.5.6 Real data

In this section, we use two different real datasets to demonstrate the performance of our proposed

method and visualize the result.

Firstly, we use the presidential speeches dataset in [92] for the experiment to jointly estimate

common links across graphs and show the common structure. The dataset contains 75 most used

words (features) from several big speeches of the 44 US presidents (samples). And we use the

34

appropri

treati

expenditur

amount

soviet

inflat

technology basic

percent

area

challeng

weapon

unemploy

income

need

worker

today

nuclear

spend

educ

program

achieve

level

cut

job

america

goal

develop budget

subject

problem

vessel

bil l ion

indian

get

consider

treasuri

womenhelp

econom

shall

feder

provis

Figure 7: Network figure of the words in president speeches dataset.

clustering result in [92], where the authors split the 44 samples into two groups with similar

features, then we obtain two classes of samples (K = 2).

We use Cytoscape [72] to visualize the results when λ1 = 1.9, λ2 = 0.16. We choose these

relatively large tuning parameters for better interpretation of the network figure. Figure 7 shows

the relationship network graph of the high-frequency words identified by the JGL model with the

proposed method. As shown in the figure, each node represents a word, and the edges demonstrate

the relationships between words. We use different colors to show various structures. The black

edges are a common structure between the two classes, the red edges are the specific structures

for the first class (k = 1), and the green edges are for the second class (k = 2). Figure 7 shows a

sub-network on the top with red edges, meaning there are relationships among those words, and

the connections only exist in the first group.

We compare the time cost among four algorithms and show the results in Table 4. We used the

cross-validation method (D = 6) described in Section 3.5.1 to select the optimal tuning parameters

(λ1 = 0.1, λ2 = 0.05). And we manually chosen the other two pairs of parameters for more

35

comparisons.

Table 4: Time comparison result of two real datasets.

Dataset
Parameters setting Computational time

λ1 λ2 precision ϵ ADMM FMGL ISTA M-ISTA

Speeches

0.1 0.05

0.0001

19.969 secs 4.977 mins 11.829 secs 12.867 secs

0.2 0.1 4.661 mins 3.209 mins 11.560 secs 12.682 secs

0.5 0.25 5.669 mins 1.490 mins 11.043 secs 12.788 secs

Breast cancer

0.1 0.0166

0.0001

3.809 mins 7.937 mins 1.305 mins 1.158 mins

0.2 0.02 6.031 mins 5.198 mins 1.503 mins 1.230 mins

0.3 0.03 5.499 mins 2.265 mins 1.188 mins 1.061 mins

The table 4 shows that ISTA outperforms the other three algorithms, and our proposed methods

offer stable performance when varying the parameters, while ADMM is the slowest in most cases.

Secondly, the other one is the breast cancer dataset [55] for the time comparison. There are 250

samples and 1,000 genes in the dataset, with 192 control samples and 58 case samples (K = 2).

Furthermore, we extract 200 genes with the highest variances among the original genes. The

tuning parameter pair (λ1 = 0.01, λ2 = 0.0166) was chosen by the cross-validation method. Table

4 exhibits that our proposed methods (ISTA and M-ISTA) outperform ADMM and FMGL, and

M-ISTA shows the best performance in the breast cancer dataset.

36

4 Efficient algorithms for convex biclustering

4.1 Introduction

Clustering is a popular unsupervised learning method with applications in a wide variety of fields

such as statistics, computer science, and machine learning. By clustering, we usually mean dividing

N samples, each consisting of p covariate values, into several categories (called clusters), where

N, p ≥ 1.

The traditional clustering likes hierarchical clustering [44, 38] and k-means clustering [37] may

suffer from poor performance due to the non-convexity of the models, which causes difficulty to

find the global optimal solutions. To handle this issue, convex clustering was proposed.

4.1.1 Convex clustering

The convex clustering [39, 50, 63, 15] was originally developed as a convex relaxation of the

hierarchal clustering [39]. Denote the N data observations by x1, · · · , xN in a data matrix X ∈

RN×p, where each row denotes a data point, and p is the number of covariates. The convex

clustering optimization problem is formulated through clustering the rows as follows. Given a

data matrix X ∈ RN×p and λ > 0, we compute a matrix U of the same size as X.

1

2
∥X − U∥2F + λ

∑
i<j

ωij∥Ui· − Uj·∥q (43)

where Xi· and Ui· denote the the i-th rows of X and U , and q can be 1, 2 or ∞.

When λ = 0, each point belongs to one cluster. As the value of λ increases, the cluster begin

to fuse, and we assign Xi and Xj to be in the same cluster if Ui = Uj. When λ is extremely large,

every point belongs to one cluster.

The formulation guarantees global optimal solution regardless of initial initializations because

of convexity. There are many researches regarding the computational and statistical properties

of the convex clustering. Mainly, from the theoretical perspective, Zhu et al. [101] provided the

recovery guarantees for the convex clustering model, and Tan and Witten [77] studied several

statistical properties of convex clustering. Radchenko and Mukherjee [65] studied the sample

behavior of convex clustering with theoretical support. Chi and Steinerberger [14] provided the

conditions such that the solution path of convex clustering can recover a tree.

37

From the computational perspective, Chi and Lange [13] proposed ADMM and AMA to solve

the convex clustering problem. Weylandt et al. [92] proposed a fast way to approximate the

dendrogram of convex clustering. Sun et al. [75] used an efficient semi-smooth Newton-based aug-

mented Lagrangian method to solve the convex clustering problem. Han and Zhang [34] proposed

screening rules for convex clustering in preprocessing to reduce the dimension of problem.

Furthermore, some variants of convex clustering are proposed. Wang et al. [87] proposed sparse

convex clustering, which can perform clustering and feature selection simultaneously. The robust

convex clustering [90] was proposed to detect the uninformative features. Chi et al. [15] proposed

convex biclustering as a biclustering technique with convex formulation.

4.1.2 Convex biclustering

In recent years, biclustering [36] has become a ubiquitous data mining technique with varied

applications, such as text mining, recommendation system, and bioinformatics. It is an extended

notion of clustering, where divide both {1, . . . , N} and {1, . . . , p} based on the data simultaneously.

If we are given a data matrix in RN×p, then the rows and columns within the shared group exhibit

similar characteristics. Figure 8 illustrates an intuitive difference between standard clustering and

biclustering. A comprehensive survey of biclustering has been given by [80, 64, 51].

However, as noted in [80], biclustering is an NP-hard problem. To avoid the same non-convexity

problems in traditional clustering, Chi et al. [15] extended convex clustering to convex bi-clustering.

(a) Row clustering (b) Column clustering (c) Biclustering

Figure 8: While standard clustering divides either rows or columns, the biclustering divides the

both.

Given a data matrix X = (xij) consisting of N observations, i = 1, . . . , N , w.r.t. p features

j = 1, . . . , p. Our task is to assign each observation to one of the non-overlapped row clusters

C1, · · · , CR ⊆ {1, . . . , N} and assign each feature to one of the non-overlapped column clusters

38

D1, · · · , DK ⊆ {1, . . . , p}. We assume that the clusters C1, · · · , CR and D1, · · · , DK and the values

of R and K are not known a priori.

More precisely, the convex biclustering in this paper is formulated as follows:

min
U∈RN×p

1

2
||X − U ||2F + λ

 N∑
i,j=1
i<j

ωij||Ui· − Uj·||2 +
p∑

m,n=1
m<n

ω̃mn||U·m − U·n||2

 , (44)

where Ui· and U·j are the i-th row and j-th column of U ∈ RN×p. Chi et al. [15] suggested a

requirement on the weights selection:

ωij := 1ki,j exp
(
−ϕ∥xi· − xj·∥22

)
and

ω̃mn := 1km,n exp
(
−ϕ̃∥x·m − x·b∥22

)
,

where 1ki,j is 1 if j belongs to the i’s k-nearest-neighbors and 0 otherwise and 1km,n is defined

similarly (the parameter k should be specified beforehand), and xi· and x·j are the i-th row and

j-th column of the matrix X. They suggested that the constants ϕ and ϕ̃ are determined so that

the sums
∑

i<j ωij and
∑

m<n ω̃mn are N−1/2 and p−1/2, respectively.

The convex biclustering achieves checker-board-like biclusters by penalizing both the rows and

columns of U . When λ (the tuning parameter for {∥Ui· − Uj·∥}i ̸=j and {∥U·m − U·n∥}m ̸=n) is zero,

each (i, j) occupies a unique bicluster {(i, j)} and xij = uij for i = 1, . . . , N and j = 1, . . . , p

when X = (xij) and U = (uij). As λ increases, the bicluster begins to fuse. For sufficiently

large λ, all (i, j) merge into one single bicluster {(i, j)|i = 1, . . . , N, j = 1, . . . , p}. The convex

formulation guarantees a globally optimal solution and demonstrates superior performance to

competing approaches. Chi et al. [15] claims that the convex biclustering performs better than the

dynamic tree-cutting algorithm [46] and sparse biclustering algorithm [78] in their experiments.

4.2 Related work

Chi et al. [15] proposed Convex Bi-ClusteRing Algorithm (COBRA) using a Dykstra-like proximal

algorithm to solve the convex biclustering problem. However, it yields subproblems, including the

convex clustering problem, which requires expensive computations for large-scale problems due to

the high per iteration cost [39, 13]. Essentially, COBRA is a splitting method that separately solves

a composite optimization problem containing three terms. Additionally, it is sensitive to tuning

39

parameter λ. Therefore, getting the solutions under a wide range of parameters λ takes time, which

is not feasible for broad applications and different demands for users. Weylandt [91] proposed using

ADMM and its variant, Generalized ADMM, to solve the problem. ADMM generally solves the

problem by breaking it into smaller pieces and updating the variables alternately. Still, at the

same time, it also introduces several subproblems which may cost much time. To be more specific,

the ADMM requires solving the Sylvester equation in the step of updating the variable U . Hence,

the Schur decomposition requires solving the Sylvester equation based on the numerical method,

which is complicated and time-consuming. Additionally, it is known that ADMM exhibits O(1/k),

where k is the number of iterations, convergence in general [30]. It often takes time to achieve

relatively high precision [7], which is not feasible in some highly accurate applications.

4.3 Optimization problem and algorithm

We propose NAGM to solve the optimization problem of convex biclustering after converting to

differentiable terms. At first, we show that the whole terms in the augmented Lagrangian function

of (44) can be differentiable w.r.t. U after introducing two dual variables. Therefore, we use NAGM

rather than FISTA in [73], where assumes the objective function contains a nondifferentiable term.

In order to make the notation clear, we formulate the problem (44) in another way. Let ϵ1 and

ϵ2 be the sets {(i, j)|ωij > 0, i < j} and {(m,n)|ω̃mn > 0,m < n}, respectively, and denote the

cardinality of a set S by |S|. We define the matrices C ∈ R|ϵ1|×n and D ∈ Rp×|ϵ2| by

Cl,i = 1, Cl,j = −1, Cl,k = 0, k ̸= i, j ⇐⇒ l = (i, j) ∈ ϵ1,

and

Dm,l = 1, Dn,l = −1, Dk,l = 0, k ̸= m,n⇐⇒ l = (m,n) ∈ ϵ2 ,

respectively.

Then, the optimization problem (44) can be reformulated as follows,

min
U∈RN×p

1

2
||X − U ||2F + λ

(∑
l∈ϵ1

ωl||Cl,·U ||2 +
∑
l∈ϵ2

ω̃l||UD·,l||2

)
. (45)

40

4.3.1 The ALM formulation

To implement ALM, we further construct the problem (45) into the following constrained opti-

mization problem by introducing the dual variables V ∈ R|ϵ1|×p and Z ∈ RN×|ϵ2|,

min
U,V,Z

1

2
||X − U ||2F + λ

(∑
l∈ϵ1

ωl||Vl||2 +
∑
l∈ϵ2

ω̃l||Zl||2

)

subject to Cl,·U − Vl = 0, ∀l ∈ ϵ1,

UD·,l − Zl = 0, ∀l ∈ ϵ2 ,

(46)

where Vl and Zl are the l-th row and l-th column of V and Z, respectively. If we introduce the

following functions,

f(U) : =
1

2
||X − U ||2F

h(V) : = λ
∑
l∈ϵ1

ωl||Vl||2

g(Z) : = λ
∑
l∈ϵ2

ω̃l||Zl||2 ,

then the problem in (46) becomes

min
U,V,Z

{f(U) + h(V) + g(Z)} . (47)

The augmented Lagrangian function of the problem (46) is given by

Lν(U, V, Z,Λ1,Λ2) :=f(U) + h(V) +
∑
l∈ϵ1

⟨Λ1l, Cl,·U − Vl⟩+
ν

2

∑
l∈ϵ1

||Cl,·U − Vl||22

+ g(Z) +
∑
l∈ϵ2

⟨Λ2l, UD·,l − Zl⟩+
ν

2

∑
l∈ϵ2

||UD·,l − Zl||22,
(48)

where ν > 0 is an augmented Lagrangian penalty, Λ1 ∈ R|ϵ1|×p and Λ2 ∈ RN×|ϵ2| are Lagrangian

multipliers, and Λ1l and Λ2l are the l-th row and l-th column of Λ1 and Λ2, respectively.

Hence, the ALM procedure of the problem (46) consists of the following three steps:

(Uk, V k, Zk) = arg min
U,V,Z

Lν(U, V, Z,Λ
k−1
1 ,Λk−1

2), (49)

Λk
1l = Λk−1

1l + ν(Cl,·U
k − V k

l), ∀l ∈ ϵ1, (50)

Λk
2l = Λk−1

2l + ν(Cl,·U
k − V k

l), ∀l ∈ ϵ2. (51)

41

4.3.2 The proposed method

We construct our proposed method: repeatedly minimizing the augmented Lagrangian function

in Equation (49) w.r.t U, Vl, Zl and updating the Lagrange multipliers in Equations (50) and (51).

The whole procedure is summarized in Algorithm 8.

Step 1: update U . In the U -update, if we define the following function in Equation (48),

F (U) : = f(U) + min
V,Z
{Lν(U, V, Z,Λ1,Λ2)}

= f(U) + min
V,Z

{
h(V) +

∑
l∈ϵ1

⟨Λ1l, Cl,·U − Vl⟩+
ν

2

∑
l∈ϵ1

||Cl,·U − Vl||22

+g(Z) +
∑
l∈ϵ2

⟨Λ2l, UD·,l − Zl⟩+
ν

2

∑
l∈ϵ2

||UD·,l − Zl||22

}
,

(52)

then the update of U in (49) can be written as

Uk+1 := argmin
U

F (Uk). (53)

We find that (52) is differentiable, and obtain the following proposition.

Proposition 3. The function F (U) is differentiable with respect to U , and

∇UF (U) = −X + U + CT (proxνh∗(νCU + Λ1)) +
(
proxνg∗(νUD + Λ2)

)
DT . (54)

For the proof, please see Section 5.3.

With Proposition 3, we can use NAGM to update U by solving the differentiable optimization

problem (53).

Step 2: update Vl and Λ1. By step (49) in the ALM procedure, we must minimize the

functions in Equation (52) corresponding to the vector Vl by updating the following,

V k
l = argmin

Vl

{
λωl||Vl||2 +

ν

2
||Vl||22 −

∑
l∈ϵ1

⟨Λk−1
1l + νCl,·U

k, Vl⟩

}

= argmin
Vl

{ν
2
||Vl − (Cl,·U

k + ν−1Λk
1l)||22 + hl(Vl)

}
= proxhl/ν

(Cl,·U
k + ν−1Λk−1

1l) ,

where hl(Vl) := λωl||Vl||2 denotes the l-th term in h(V).

We substitute the optimal V k
l in the k-th iteration into step (50)

Λk
1l ← Λk−1

1l + ν(Cl,·U
k − V k

l), ∀l ∈ ϵ1,

42

to obtain

Λk
1l ← Λk−1

1l + νCl,·U
k − νproxhl/ν

(Cl,·U
k + ν−1Λk−1

1l). (55)

By Moreau’s decomposition (7), we further simplify the update (55) as follows,

Λk
1l ← proxνh∗

l
(Λk−1

1l + νCl,·U
k), (56)

which means the updates of Vl and Λ1l become one update (56). Hence, there is no longer a need

to store and compute the variable Vl in the ALM updates which reduces computational costs.

In the update (56), the conjugate function h∗
l (y) of the ℓ2 norm is an indicator function [7,

Example 3.26]:

h∗
l (y) =

 0, if ||y||2 ≤ λωl,

∞, otherwise.
(57)

Moreover, the proximal operator of the indicator function (56) is the projection problem [4, The-

orem 6.24]:

proxνh∗
l
(νCl,·U

k + Λk−1
1l) = PBl

(νCl,·U
k + Λk−1

1l) , (58)

where Bl := {y : ||y||2 ≤ λωl}, and the operator PBl
denotes the projection onto the ball Bl. It

solves the problem PBl
(x) := argminu∈Bl

||u− x||22, i.e.,

PBl
(x) =

 x, if ||x||2 ≤ λωl,

λωl, otherwise.
(59)

This projection problem completes in O(p) operations for a p-dimensional vector x ∈ Rp.

Step 3: update Z and Λ2. Similarly, we can derive the following equations:

Zk+1
l = argmin

Zl

{
λω̃l||Zl||2 +

ν

2
||Zl||22 −

∑
l∈ϵ2

⟨Λk−1
2l + νUkD·,l, Zl⟩

}

= argmin
Zl

{ν
2
||Zl − (UkD·,l + ν−1Λk−1

2l)||22 + gl(Zl)
}

= proxgl/ν(U
kD·,l + ν−1Λk−1

2l)

where gl(Zl) := λω̃l||Zl||2. Then, the dual variable Λ2 update becomes

Λk
2l ← proxνg∗l (Λ

k−1
2l + νUkD·,l), for l ∈ ϵ2.

If we write in projection operator, then it becomes:

43

Λk
2l ← PB̃l

(Λk−1
2l + νUkD·,l) (60)

where B̃l := {ỹ : ||ỹ||2 ≤ λω̃l}.

Algorithm 8 Proposed method for convex biclustering.

Input: Data X, matrices C and D, Lipschitz constant L calculated by (61), penalties λ and ν,

initial value Λ0
1,Λ

0
2, Y

1, t1 = 1.

While k < kmax (until convergence) do

1: Calculate the gradient ∇F (Y k) .

2: Update iterate: Uk ← Y k − 1
L
∇F (Y k).

3: Update iterate: Λk
1l ← PBl

(Λk−1
1l + νCl,·U

k), for l ∈ ϵ1, where Bl := {y : ||y||2 ≤ λωl}.

4: Update iterate: Λk
2l ← PB̃l

(Λk−1
2l + νUkD·,l), for l ∈ ϵ2, where B̃l := {ỹ : ||ỹ||2 ≤ λω̃l}.

5: tk+1 = 1+
√

1+4tk2

2

6: Y k+1 = Uk + tk−1
tk+1 (U

k − Uk−1)

7: k = k + 1

Output: optimal solution to problem (44), U∗ = Uk.

Our proposed method only uses first-order information. Furthermore, we just need to calculate

the gradient of the function F and proximal operators in each iteration, where the proximal

operators are easy to obtain by solving the projection problem.

4.3.3 Lipschitz constant and convergence rate

By deriving the Lipschitz constant L of ∇UF (U) as in the following proposition, we can obtain

the step size in Algorithm 8 for efficient descent.

Proposition 4. The Lipschitz constant of ∇UF (U) is upperbounded by

1 + νλmax(C
TC) + νλmax(D

TD) , (61)

where λmax denotes the maximum eigenvalue of the corresponding matrix.

44

Proof. By definition in (8) and Proposition 3, we derive the Lipschitz constant as follows,

||∇UF (U1)−∇UF (U2)||2 = ||U1 − U2 + CTproxνh∗(νCU1 + Λ1)− CTproxνh∗(νCU2 + Λ1)

+
(
proxνg∗(νU1D + Λ2)

)
DT −

(
proxνg∗(νU2D + Λ2)

)
DT ||2

≤ ||U1 − U2||2 + ||CTproxνh∗(νCU1 + Λ1)− CTproxνh∗(νCU2 + Λ1)||2

+ ||
(
proxνg∗(νU1D + Λ2)

)
DT −

(
proxνg∗(νU2D + Λ2)

)
DT ||2.

By the definition of matrix 2-norm and the nonexpansiveness of the proximal operators [16, Lemma

2.4], we obtain

||∇UF (U1)−∇UF (U2)||2 ≤ ||U1 − U2||2 +
√

λmax(CTC)||νCU1 − νCU2||2

+ ||νU1D − νU2D||2
√

λmax(DTD)

≤ ||U1 − U2||2 + νλmax(C
TC)||U1 − U2||2 + νλmax(D

TD)||U1 − U2||2

≤
(
1 + νλmax(C

TC) + νλmax(D
TD)

)
||U1 − U2||2

4.4 Simulation

This subsection shows the performances of the proposed approach for estimating and assessing

the biclusters by conducting experiments on both synthetic and real datasets. We executed the

following algorithms in the experiments:

• COBRA: Dykstra-like proximal algorithm proposed by Chi et al. [15].

• ADMM: the ADMM proposed by Weylandt [91].

• G-ADMM (Generalized ADMM): the modified ADMM presented by Weylandt [91].

• Proposed method: the proposed algorithm showed in Algorithm 8.

They were all implemented by Rcpp on a Macbook Air with 1.6 GHz Intel Core i5 and 8 GB

memory. We recorded the wall times for the four algorithms.

4.4.1 Artificial data analysis

We evaluate the performance of the proposed methods on synthetic data in terms of the number

of iterations, the execution time, and the clustering quality.

45

We generate the artificial data X ∈ RN×p with a checkerboard bicluster structure similar to

the way in [15]. We simulate Xij ∼ N(µrc, σ
2) (i.i.d.) as follows, where the indices r and c range

in clusters {1, · · · , R} and {1, · · · , C}, respectively, which means that the number of biclusters is

M := R × C. We assign each xij randomly belongs to one of those M biclusters. The mean µrc

is chosen uniformly from an equally spaced sequence {−10,−9, · · · , 9, 10}, and the σ is chosen as

1.5 and 3.0 for different noise levels.

In our experiments, we consider the following stopping criteria for the four algorithms.

1. Relative error:
||Uk+1 − Uk||F
max{||Uk||F , 1}

≤ ϵ.

2. Objective function error:

||F (Uk)− F (U∗)||F ≤ ϵ.

ϵ is a given accuracy tolerance, we terminate the algorithm if the above error is smaller than

ϵ or the maximum number of iterations exceeds 10,000. We use the relative error for the time

comparisons and quality assessment and the objective function error for convergence rate analysis.

4.4.2 Comparisons

We changed the sizes of N, p of the data matrix X and the tuning parameter λ to test the

performance of four algorithms and compared the performance among the algorithms. At first, we

compare the execution time with different λ, ranging from 1 to 2, 000, and setting R = 4, C = 4,

σ = 1.5. We obtained the results as in Figure 9a.

From Figure 9a, we observe that the execution time of the COBRA and G-ADMM increases

rapidly as λ varies. The execution time of COBRA is the largest when λ > 1400. Therefore, it will

take a long time for COBRA to visualize the whole fusion process, particularly the single bicluster

case. Our proposed method significantly outperforms the other three algorithms and offers high

stability in a wide range of λ. Due to its low computational time, our proposed method will be a

preferable choice to visualize the biclusters for various λ values when applying biclustering.

Next, we compare the execution time with different p (from 1 to 200). Here, we fix the number

of column clusters and row clusters (C = R = 4). Figure 3 shows that the execution time of

the algorithms increases as p grows. The proposed shows better performance than the other

46

10

20

30

40

0 500 1000 1500 2000
λ

Ti
m

e
(s

)

(a) Different λ, with p = 40.

0

100

200

300

400

50 100 150
p

Ti
m

e
(s

) Algorithm
COBRA

ADMM

G−ADMM

proposed

(b) Different p, with λ = 1.

Figure 9: Execution time for various λ and p with N = 100 and ϵ = 1e−6.

three. In particular, the ADMM and G-ADMM are suffered from the feature dimension p and the

computations grow dramatically.

Then, we varied the sample size N from 100 to 1, 000 and fixed the size of the feature p = 40,

with λ = 1, R = 4, C = 4, σ = 1.5. Figure 10 shows the execution times of the three algorithms

(COBRA, G-ADMM, and Proposed) for each N .

47

0

20

40

60

250 500 750 1000
N

Ti
m

e
(s

)

Algorithm
COBRA

G−ADMM

proposed

Figure 10: Execution times for each N with λ = 1, p = 40 and ϵ = 1e−6.

The curves reveal that when the larger the sample size N , the more time the algorithms require.

Moreover, the ADMM takes more than 500 seconds when N > 500 and takes around 1, 800 seconds

when N = 1, 000, which are much larger than the other three algorithms. Thus, we removed the

result of ADMM from the figure. However, our proposed method only takes around 10 seconds

even when N = 1, 000, which is six times smaller than G-ADMM.

We evaluate the performance of the proposed methods on synthetic data in terms of the number

of iterations, the execution time, and the clustering quality.

We generate the artificial data X ∈ RN×p with a checkerboard bicluster structure similar to

the way in [15]. We simulate Xij ∼ N(µrc, σ
2) (i.i.d.) as follows, where the indices r and c range

in clusters {1, · · · , R} and {1, · · · , C}, respectively, which means that the number of biclusters is

M := R × C. We assign each xij randomly belongs to one of those M biclusters. The mean µrc

is chosen uniformly from an equally spaced sequence {−10,−9, · · · , 9, 10}, and the σ is chosen as

1.5 and 3.0 for different noise levels.

We evaluate the clustering quality by a widely used criterion called Rand Index (RI) [66]. The

value of RI ranges from 0 to 1, a higher value shows better performance, and 1 indicates the perfect

quality of the clustering. Note that we can obtain the true bicluster labels in the data generation

procedure. We generate the matrix data with N = 100 and p = 100, and set two noise levels, low

(σ = 1.5) and high (σ = 3.0). We compare the clustering quality of our proposed method with

48

ADMM, G-ADMM, and COBRA under different settings. Setting 1: R = 2, C = 4, σ = 1.5;

Setting 2: R = 4, C = 4, σ = 1.5; Setting 3: R = 4, C = 8, σ = 1.5; Setting 4: R = 2, C = 4,

σ = 3; Setting 5: R = 4, C = 4, σ = 3; Setting 6: R = 4, C = 8, σ = 3.

Table 5 presents the result of the experiment. As the tuning parameter λ increases, the biclus-

ters tend to fuse and reduce noise interference in the raw data. While in some cases, for extremely

high λ like 10,000, the biclusters may be over-smoothed, and the value of the Rand Index decreased.

For example, in the first case (Setting 1: the number of biclusters is 2× 4 and σ = 1.5). The Rand

Index in COBRA, ADMM, and our proposed method shows similar value in most cases because

all the algorithms solve the same model. However, the G-ADMM exhibits the worst performance

due to its slow convergence rate, and it cannot converge well when the tuning parameter λ is large

(λ = 5, 000 and λ = 10, 000). Overall, from the results in Table 5, our proposed method shows

high accuracy and stability from low to high noise.

4.4.3 Real data analysis

In this section, we use three different real datasets to demonstrate the performance of our proposed

method.

Firstly, we use the presidential speeches dataset preprocessed by Weylandt et al. [92] that

contains 75 high-frequency words taken from the significant speeches of the 44 US presidents around

the year 2018. We show the heatmaps in Figure 11 under a wide range of tuning parameters λ to

exhibit the fusion process of biclusters. We set the tolerance ϵ to be 1e−6, and use the relative error

stopping criterion as described in Section 4.1. The columns represent the different presidents, and

the rows represent the different words. When λ = 0, the heatmap is disordered, and there are no

distinct subgroups. While we increase the λ, the biclusters begin to merge. We can further find

out the common vocabulary used in some groups of the prime minister’s speeches. Moreover, as

shown in Figure 11f, the heatmap clearly shows four biclusters with two subgroups of presidents

and two subgroups of words when λ = 30, 000. It clusters the subgroups of presidents by different

concerns of words in different periods. The result is the same as in Weylandt et al. [92], where the

two subgroups of presidents represent two historical periods (modern and pre-modern presidents).

49

Table 5: Assessment result.

Setting Algorithm
Rand Index

λ = 100 λ = 1, 000 λ = 5, 000 λ = 10, 000

Setting 1

COBRA 0.874 0.875 0.999 0.931

ADMM 0.872 0.875 0.999 0.931

G-ADMM 0.874 0.875 0.874 0.872

Proposed 0.875 0.875 0.999 0.931

Setting 2

COBRA 0.928 0.932 0.994 0.999

ADMM 0.928 0.935 0.994 0.999

G-ADMM 0.928 0.934 0.981 0.936

Proposed 0.928 0.934 0.994 0.999

Setting 3

COBRA 0.959 0.962 0.962 0.999

ADMM 0.961 0.962 0.962 0.998

G-ADMM 0.959 0.962 0.967 0.967

Proposed 0.961 0.962 0.962 0.999

Setting 4

COBRA 0.870 0.870 0.870 0.935

ADMM 0.870 0.868 0.871 0.933

G-ADMM 0.870 0.870 0.871 0.871

Proposed 0.870 0.870 0.871 0.935

Setting 5

COBRA 0.934 0.934 0.934 0.964

ADMM 0.934 0.932 0.934 0.964

G-ADMM 0.934 0.934 0.932 0.932

Proposed 0.934 0.934 0.934 0.964

Setting 6

COBRA 0.960 0.960 0.962 0.962

ADMM 0.961 0.962 0.962 0.962

G-ADMM 0.960 0.962 0.962 0.960

Proposed 0.961 0.962 0.962 0.962

50

(a) λ = 0 (b) λ = 1, 500 (c) λ = 2, 000

(d) λ = 5, 000 (e) λ = 15, 000 (f) λ = 30, 000

Figure 11: The heatmap results of proposed method implementation on the presidential speeches

dataset under a wide range of λ.

Secondly, we compare the computational time of four algorithms for two actual datasets. One is

The Cancer Genome Atlas (TCGA) dataset [45], which contains 438 breast cancer patients (sam-

ples) and 353 genes (features), and the other one is the diffuse large-B-cell lymphoma (DLBCL)

dataset [69] with 3,795 genes and 58 patient samples. In DLBCL, there are 32 samples from cured

patients and 26 samples from sick individuals among the 58 samples. Furthermore, we extract 500

genes with the highest variances among the original genes.

Figures 12a and 12b depict the outcomes of the elapsed time comparison. From the curves, we

observe that our proposed approach surpasses the other three methods. In contrast, ADMM shows

the worst performance in the DLBCL dataset, and the case of tolerance ϵ < 10−3 requirement in

the TCGA dataset.

Lastly, we compare the number of iterations to achieve the specified tolerance of F (Uk)−F (U∗)

and run it on the TCGA and DLBCL datasets. Figure 13a and Figure 13b reveal that the COBRA

51

1e−05

1e−01

1e+03

1e+07

0 100 200 300
Time (s)

F(
U

K)
 -

F(
U

*)

(a) TCGA

1e−04

1e+00

1e+04

1e+08

0 100 200 300
Time (s)

F(
U

K)
 -

F(
U

*)

Algorithm

COBRA

ADMM

GADMM

Proposed

(b) DLBCL

Figure 12: Plot of log(F (Uk)− F (U∗)) vs. the elapsed time.

algorithm has the fastest convergence rate, whereas the Generalized ADMM is the slowest to

converge. Our proposed method shows competitive performance in the convergence rate.

1e−05

1e−01

1e+03

1e+07

0 100 200 300
Iteration

F(
U

K)
 -

F(
U

*)

Algorithm

COBRA

ADMM

GADMM

Proposed

(a) TCGA

1e−04

1e+00

1e+04

1e+08

0 100 200 300
Iteration

F(
U

K)
 -

F(
U

*)

Algorithm

COBRA

ADMM

GADMM

Proposed

(b) DLBCL

Figure 13: Plot of log(F (Uk)− F (U∗)) vs. the number of iterations.

Overall, from the above experiment results of the artificial and real datasets, our proposed

method has superior computational performance with high accuracy.

52

5 Proof

This section provides the proof of Proposition 1, Proposition 2 , and Proposition 3.

5.1 Proof of Proposition 1

We first introduce the Lagrange dual problem of (32). By introducing the auxiliary variables

Z = {Z(1), . . . ,Z(K)}, we can rewrite the problem as follows:

min
Θ

f(Θ) + g(Θ)

subject to Z = Θ

Then, the Lagrange function of the above is given by:

L(Θ,Z,Λ) = f(Θ) + g(Z) +
K∑
k=1

⟨Λ(k),Θ(k) −Z(k)⟩,

where Λ = {Λ(1), . . . ,Λ(K)},Λ(k) ∈ Rp×p are dual variables. To get the dual problem, we minimize

the primal variables as follows:

min
Λ,Z

L(Θ,Z,Λ) = min
Θ
{f(Θ) +

K∑
k=1

⟨Λ(k),Θ(k)⟩} −max
Z
{−g(Z)−

K∑
k=1

⟨Λ(k),−Z(k)⟩}

= min
Θ
{f(Θ) +

K∑
k=1

⟨Λ(k),Θ(k)⟩} − g∗(Λ)

= min
Θ

{
K∑
k=1

⟨Λ(k) + nkS
(k),Θ(k)⟩ −

K∑
k=1

nklogdetΘ
(k)

}
− g∗(Λ).

Taking derivative of the function:

L1 :=
K∑
k=1

⟨Λ(k) + nkS
(k),Θ(k)⟩ −

K∑
k=1

nklogdetΘ
(k),

∇Θ(k)L1 = 0,

we get

nkS
(k) +Λ(k) = nk(Θ

(k))−1 (62)

for k = 1, · · · , K. Then the dual problem becomes:

min
Θ,Z

L(Θ,Z,Λ) =
K∑
k=1

nkp+
K∑
k=1

nklogdet(S
(k) +

1

nk

Λ(k))− g∗(Λ).

53

Hence, we can get the duality gap as follows:

f(Θ) + g(Z)−
K∑
k=1

nkp−
K∑
k=1

nk{logdetΘ(k)}+ g∗(Λ)

=
K∑
k=1

nktrace(S
(k)Θ(k)) + g(Z)−

K∑
k=1

nkp+ g∗(Λ),

when the gap value is 0, the optimal solution is found. Because the conjugate function g∗(Λ) is

the indicator function, is hence value 0 for the optimal solution.

Firstly, for the group penalty PG(Θ), the duality gap is

K∑
k=1

[nktrace(S
(k)Θ(k)

∗)− nkp] + λ1

K∑
k=1

∑
i ̸=j

|θ∗k,i,j|+ λ2

∑
i ̸=j

√√√√ K∑
k=1

θ∗k,i,j
2 = 0. (63)

From the equation (63), we get

λ1||Θ∗||1 = −
K∑
k=1

nktrace(S
(k)Θ(k)

∗)− λ2

∑
i ̸=j

√√√√ K∑
k=1

θ∗k,i,j
2 +

K∑
k=1

nkp+
K∑
k=1

p∑
i=1

λ1|θ∗k,i,i|

≤
K∑
k=1

nkp+
K∑
k=1

p∑
i=1

λ1|θ∗k,i,i|.

From the eqution (62), we have

θk,i,i
∗ = diag

(
S(k) +

1

nk

Λ(k)
∗

)−1

,

and dual variable Λ∗
k,i,i > 0, for k = 1, . . . , K. Hence,

||Θ∗||1 ≤
1

λ1

K∑
k=1

nkp+
K∑
k=1

p∑
i=1

diag

(
S(k) +

1

nk

Λ(k)
∗

)−1

≤ 1

λ1

K∑
k=1

nkp+
K∑
k=1

p∑
i=1

diag
(
S(k)

)−1
.

By ||Θ∗||2 ≤ ||Θ∗||F ≤ ||Θ∗||1, we get the upper bound:

||Θ∗||2 ≤ ||Θ∗||F ≤
1

λ1

K∑
k=1

nkp+
K∑
k=1

p∑
i=1

sk,i,i
−1. (64)

The proof is similar for the fused penalty PF (Θ), so we omit here. Next, we continue to prove the

lower bound of Θ∗.

Firstly, for the group penalty PG(Θ). Let E(k) be non-negative p×p matrix satisfying −Ek,i,j ≤

θk,i,j ≤ Ek,i,j. Introducing the Lagrange multipliers Γ(k) and Γ
(k)
0 for k = 1, . . . , K. This procedure

is similar to the way in [35].

54

Then, the new Lagrange problem becomes,

max
Θ,E

min
Γ,Γ0

f(Θ)−
K∑
k=1

∑
i ̸=j

λ1Ek,i,j − λ2

∑
i ̸=j

√√√√ K∑
k=1

E2
k,i,j

−
K∑
k=1

tr(Γ(k)Θ(k))− tr(abs(Γ(k))E(k))− tr(Γ
(k)
0 E(k))

}
,

Taking derivative w.r.t Θ(k), Ek,i,j, we get following equations:

nkΘ
(k)−1 − nkS

(k) − Γ(k) = 0, (65)

−λ1 − λ2
Ek,i,j√
K∑
k=1

E2
k,i,j

+ |Γk,i,j|+ Γ
(k)
0 = 0, for i ̸= j, (66)

|Γk,i,j|+ Γ
(k)
0 = 0, for i = j. (67)

When i ̸= j, from equation (66),

|Γk,i,j| ≤ λ1 + λ2
Ek,i,j√
K∑
k=1

E2
k,i,j

|Γk,i,j|2 ≤

λ1 + λ2
Ek,i,j√
K∑
k=1

E2
k,i,j

2

= λ2
1 + 2λ1λ2

Ek,i,j√
K∑
k=1

E2
k,i,j

+ λ2
2

E2
k,i,j

K∑
k=1

E2
k,i,j

≤ λ2
1 + 2λ1λ2 + λ2

2

E2
k,i,j

K∑
k=1

E2
k,i,j

.

Taking summation of each k,

K∑
k=1

|Γk,i,j|2 ≤ Kλ2
1 + 2Kλ1λ2 + λ2

2.

Then, √√√√ K∑
k=1

|Γk,i,j|2 ≤
√

Kλ2
1 + 2Kλ1λ2 + λ2

2.

55

From the equation (65),

|| 1
nk

Γ(k) + S(k)||2 ≤
1

nk

||Γ(k)||2 + ||S(k)||2

≤ p

nk

max
i,j
|Γk,i,j|+ ||S(k)||2

≤ p

nk

max
k

max
i,j
|Γk,i,j|+ ||S(k)||2

≤ p(
√
Kλ2

1 + 2Kλ1λ2 + λ2
2)

nk

+ ||S(k)||2.

The last equation holds because

max
k

max
i,j
|Γk,i,j| ≤

√√√√ K∑
k=1

|Γk,i,j|2.

We only consider the case when i ̸= j for maxi,j|Γ(k)
ij |, because from equation (66) and (67), we

know |Γ(k)
ij | > |Γ

(k)
ii |. Overall, the lower bound is

nk

p
√

Kλ2
1 + 2Kλ1λ2 + λ2

2 + nk||S(k)||2
.

The lower bound of fused penalty can be derived in similar way.

5.2 Proof of Proposition 2

By equation (41) and convexity of F (Θ), it is easy to get

||Θt −Θ∗||F ≤ ||Θ0 −Θ∗||F .

Since || · ||2 ≤ || · ||F , then

||Θt||2 − ||Θ∗||2 ≤ ||Θt −Θ∗||2

≤ ||Θt −Θ∗||F

≤ ||Θ0 −Θ∗||F .

Hence,

||Θt||2 ≤ ||Θ0 −Θ∗||F + ||Θ∗||2

≤ ||Θ0||F + 2||Θ∗||F .

Then, by the equation (64), we can complete the proof of the upper bound.

56

In order to prove the lower bound, denote

a
(k)
t = λmin(Θ

(k)
t)

(at)l = min
k=1,··· ,K

a
(k)
t .

By the definition of the matrix norm,

||Θ(k)
t ||2 ≥ a

(k)
t ≥ (at)l.

Denote the upper bound of ||Θt||2 as M , and that of ||Θt||2 as M (k), for k = 1, . . . , K. By

definition of tensor norm, we have M ≥ ||Θt||2 ≥ ||Θ(k)
t ||2 ≥ (at)l.

Let constant C1 := f(Θ0) + g(Θ0). By equation (41),

C1 ≥ f(Θt) + g(Θt).

Note that S ⪰ 0,Θt ≻ 0 implies tr(SΘt) ≥ 0 and because g(Θt) ≥ 0

C1 ≥ −
K∑
k=1

nklogdetΘ
(k)
t

= −
K∑
k=1

nklog(Π
p
i=1λi).

Let the eigenvalues of Θ
(k)
t as λ1 ≤ λ2 ≤ · · · ≤ λp. Then a

(k)
t = λ1 ≤ λp ≤M (k), hence,

Πp
i=1(λi) = a

(k)
t · λ2 · · · ·λp ≤ a

(k)
t ·M (k)(p−1)

.

Then,
K∑
k=1

nklog(Π
p
i=1λi) ≤

K∑
k=1

nk

[
loga

(k)
t + (p− 1)logM (k)

]
.

Let the coefficient nk of the term which contains (at)l in −
∑K

k=1 nkloga
(k)
t as nx, then

K∑
k=1

nkloga
(k)
t = nxlog(at)l +

∑
k ̸=x

nkloga
(k)
t .

Because

M (k) ≤M,

denote nm = max
i=1··· ,K

nk then,

K∑
k=1

nkloga
(k)
t ≤ nmlog(at)l + nm(K − 1)logM.

57

Hence,

C1 ≥ −
K∑
k=1

nklog(Π
p
i=1(λi))

≥ −
K∑
k=1

nk

[
loga

(k)
t + (p− 1)logM (k)

]
≥ −nmlog(at)l − nm(K − 1)logM

−Knm(p− 1)logM.

Then, we can get

log(at)l ≥ −K(p− 1)logM − (K − 1)logM − C1

nm

(at)l ≥ e(1−Kp)logM− C1
nm .

Hence, the lower bound is proved:

||Θt||2 ≥ ||Θ(k)
t ||2 ≥ (at)l ≥ e−

C1
nmM (1−Kp).

5.3 Proof of Proposition 3

First, we define the following two functions,

r1(V) := h(V) +
ν

2
||V ||2F ,

and

r2(Z) := g(Z) +
ν

2
||Z||2F .

58

By the definition of F (U) in (52),

F (U) : = f(U) + min
V,Z
{L(U, V, Z,Λ1,Λ2)}

= f(U) + min
V,Z

{
h(V) + g(Z) +

∑
l

⟨Λ1l, Cl,·U − Vl⟩+
ν

2

∑
l

||Cl,·U − Vl||22

+
∑
l

⟨Λ2l, UD·,l − Zl⟩+
ν

2

∑
l

||UD·,l − Zl||22

}

= f(U) + min
V

{
h(V) +

ν

2
||V ||2F −

∑
l

⟨Λ1l + νCl,·U, Vl⟩

}
+

ν

2
||CU ||2F +

∑
l

⟨Λ1l, Cl,·U⟩

+min
Z

{
g(Z) +

ν

2
||Z||2F −

∑
l

⟨Λ2l + νUD·,l, Zl⟩

}
+

ν

2
||UD||2F +

∑
l

⟨Λ2l, UD·,l⟩

= −max
V

{
⟨νCU + Λ1, V ⟩ − h(V)− ν

2
||V ||2F

}
+ f(U) +

ν

2
||CU ||2F +

∑
l

⟨Λ1l, Cl,·U⟩

−max
Z

{
⟨νUD + Λ2, Z⟩ − g(Z)− ν

2
||Z||2F

}
+

ν

2
||UD||2F +

∑
l

⟨Λ2l, UD·,l⟩

= f(U)− r∗1(νCU + Λ1)− r∗2(νUD + Λ2) +
ν

2
||CU ||2F + ⟨Λ1, CU⟩

+
ν

2
||UD||2F + ⟨Λ2, UD⟩.

By Theorem 26.3 in [68], if the function r : Rp → R is closed and strongly convex, then we have

the differentiable conjugate function r∗(v), and

∇r∗(v) = argmax
u∈Rp
{⟨u, v⟩ − r(u)}.

Hence, we can derive the following equations,

∇r∗1(v) = argmax
u

{
⟨u, v⟩ − h(u)− ν

2
||u||2F

}
= argmax

u

{
−1

2
||u||2F +

1

ν
⟨u, v⟩ − 1

ν
h(u)

}
= argmin

u

{
1

2
||u− v

ν
||2F +

1

ν
h(u)

}
= proxh/ν(

v

ν
),

Then, we obtain

∇r∗1(νCU + Λ1) = νCT

(
proxh/ν(CU +

Λ1

ν
)

)
and, similarly,

∇r∗2(νUD + Λ2) = ν

(
proxg/ν(UD +

Λ2

ν
)

)
DT .

59

Next, take the derivative of F (U) w.r.t U ,

∇UF (U) = ∇f(U)−∇r∗1(νCU + Λ1)−∇r∗2(νUD + Λ2)

+ νCTCU + νUDDT + CTΛ1 + Λ2D
T

= ∇f(U)− νCT
(
proxh/ν(CU + ν−1Λ1)

)
− ν

(
proxg/ν(UD +

Λ2

ν
)

)
DT

+ νCTCU + CTΛ1 + νUDDT + Λ2D
T

= ∇f(U) + CT (proxνh∗(νCU + Λ1)) +
(
proxνg∗(νUD + Λ2)

)
DT

, and we get the last equation by Moreau’s decomposition.

60

6 Conclusions

Sparse estimation is often used in data science and machine learning problems. To find the solution

of the optimization problem, penalty terms such as the ℓ1 and ℓ2 norms must be handled. They

may not be either differentiable or decomposable. Moreover, to select the appropriate λ in the

penalty terms, we need to evaluate the performances of several λ values and choose the optimum

value.

This thesis has proposed efficient computational methods to solve the optimization problems

in sparse estimation (joint graphical Lasso and convex biclustering). For the joint graphical Lasso,

we propose proximal gradient methods with and without backtracking options. The method with

backtracking (Algorithm 6) does not require extra variables. However, the ADMM needs to man-

ually tune the Lagrangian penalty parameters [17] and handle dual variables. Moreover, we re-

duce the updated iterative step to subproblems that can be solved efficiently and accurately by

Lasso-type problems. Then, we modified Algorithm 6 to one without backtracking (Algorithm

7), extending the strategy in [86] that did not rely on the Lipschitz assumption. This strategy

does not require a backtracking line search, significantly reducing the computation needed when

evaluating the expensive objective functions. From the theoretical perspective, we reach the linear

convergence rate for the proximal gradient method, deriving the lower and upper bounds of the

solution to the JGL problem and the iterates in the algorithms.

For convex biclustering, the penalty terms of the objective function are nondifferentiable and

indecomposable. We transferred the objective function to the differentiable function and solve it

by accelerated gradient descent method with the augmented Lagrangian method. We found that

it outperformed the conventional algorithms, such as COBRA and ADMM-based procedures, in

terms of efficiency. Our proposed method is more efficient than COBRA because the latter should

solve two optimization problems containing nondifferentiable fused terms in each cycle. Moreover,

the proposed method performed better than the ADMM-based procedures because ADMM spends

more time computing the inverse matrix. Nevertheless, the proposed method uses the NAGM to

update the variable U , which calculates only the function’s gradient and does not contain the

matrix inversion. Moreover, our proposed method is stable while varying the tuning parameters λ,

which is convenient for identifying the appropriate λ and visualizing the variation of the biclustering

solutions under a wide range of λ.

61

We demonstrate the proposed methods by numerical experiments on simulated and real datasets

to illustrate their high accuracy. Their efficiency is competitive with state-of-the-art algorithms.

6.1 Future work

For further computational improvements of solving JGL, the most expensive step in the proposed

algorithms is to calculate the inversion of matrices required by the gradient of f(Θ) in JGL.

Both algorithms have a complexity of O(Kp3) per iteration. We can solve the matrix inversion

problem with more efficient techniques and lower complexity. In addition, we can also use the

faster computation procedure in [17] to decompose the optimization problem for the proposed

methods and regard it as preprocessing.

For solving CB, we can use ADMM as a warm start strategy to select an initial value for our

proposed method. Moreover, it would be meaningful to derive the range of tuning parameters

λ that yield the nontrivial solutions of convex biclustering with more than one bicluster. The

fusion process of the heatmap results in Figure 11 induces such an inference. Furthermore, we

can extend the proposed method to solve other clustering problems, such as sparse singular value

decomposition [48] and integrative generalized convex clustering models [89].

62

7 Appendix

7.1 Data generation

In experiments, nk i.i.d samples are generated from a normal distribution N{0, (Θ̂(k))−1}, and Θ(k)

is the k-th class’s precision matrix. Specifically, we generate p points randomly on a unit space and

calculate their pairwise distances. Then, we find the m-nearest neighbors point using this distance.

We connect any two points that are m-nearest neighbors of each other. The integer m determines

for the degree of sparsity of the data, and m values vary from 4 to 9 in our experiments.

Moreover, the heterogeneity are added to the common structure by building extra individual

connections: we randomly choose a pair of symmetric zero elements, θk,i,j = θk,j,i = 0, and

substitute them with a value produced from the [−1,−0, 5] ∪ [0.5, 1] interval uniformly. This

operation is performed M/2 times, and M is the number of off-diagonal nonzero elements in Θ(k).

63

8 List of publications

Refereed papers

• Chen, J.; Suzuki, J. An Efficient Algorithm for Convex Biclustering. Mathematics 2021, 9,

3021. https://doi.org/10.3390/math9233021

• Chen, J.; Shimmura, R.; Suzuki, J. Efficient Proximal Gradient Algorithms for Joint Graph-

ical Lasso. Entropy 2021, 23, 1623. https://doi.org/10.3390/e23121623

Unrefereed papers

• Zhang, B.; Chen, J.; Terada, Y. Dynamic Visualization for L1 Fusion Convex Clustering in

Near-Linear Time. Uncertainty in Artificial Intelligence (UAI), 2021.

64

Acknowledgements

First, I would like to express my deepest gratitude to my advisor Prof. Joe Suzuki for his

outstanding support and patient mentorship throughout the entire year of my Ph.D. study. He

offers me the freedom to explore my research interests and gives me helpful advice when I encounter

problems. Numerous conversations with him have inspired me to conduct this research, and he is

a role model in this pursuit. I am deeply thankful for his patience and encouragement.

Additionally, I would like to thank the thesis committee members, Yutaka Kano, Masayuki

Uchida, and Shuichi Kawano, and Associate Professor Fuyuhiko Tanaka in our laboratory, for

their insightful questions and constructive comments on my research content. I would like to

thank them for the time they spent reading and attending the presentations.

In addition, I would like to thank my coauthors Yoshikazu Terada, Bingyuan Zhang, and

Ryosuke Shimmura when I published journal and conference papers. They helped me with the

research projects and provided many suggestions via discussion.

Last, I would like to thank my family for their unconditional love throughout all stages in my

education. Without their unconditional support, I would never have gotten this far.

65

References

[1] Onureena Banerjee, Laurent El Ghaoui, Alexandre d’Aspremont, and Georges Natsoulis.

Convex optimization techniques for fitting sparse gaussian graphical models. In Proceedings

of the 23rd international conference on Machine learning, pages 89–96, 2006.

[2] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection

through sparse maximum likelihood estimation for multivariate gaussian or binary data.

The Journal of Machine Learning Research, 9:485–516, 2008.

[3] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA

journal of numerical analysis, 8(1):141–148, 1988.

[4] Amir Beck. First-order methods in optimization. SIAM, 2017.

[5] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[6] Amir Beck and Marc Teboulle. Fast gradient-based algorithms for constrained total variation

image denoising and deblurring problems. IEEE transactions on image processing, 18(11):

2419–2434, 2009.

[7] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[8] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical learning

via the alternating direction method of multipliers. Now Publishers Inc, 2011.

[9] Alfred M Bruckstein, David L Donoho, and Michael Elad. From sparse solutions of systems

of equations to sparse modeling of signals and images. SIAM review, 51(1):34–81, 2009.

[10] Florentina Bunea, Alexandre Tsybakov, and Marten Wegkamp. Sparsity oracle inequalities

for the lasso. Electronic journal of statistics, 1:169–194, 2007.

[11] Jianhui Chen, Lei Tang, Jun Liu, and Jieping Ye. A convex formulation for learning shared

structures from multiple tasks. In Proceedings of the 26th Annual International Conference

on Machine Learning, pages 137–144, 2009.

66

[12] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by

basis pursuit. SIAM review, 43(1):129–159, 2001.

[13] Eric C Chi and Kenneth Lange. Splitting methods for convex clustering. Journal of Com-

putational and Graphical Statistics, 24(4):994–1013, 2015.

[14] Eric C Chi and Stefan Steinerberger. Recovering trees with convex clustering. SIAM Journal

on Mathematics of Data Science, 1(3):383–407, 2019.

[15] Eric C Chi, Genevera I Allen, and Richard G Baraniuk. Convex biclustering. Biometrics,

73(1):10–19, 2017.

[16] Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward

splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[17] Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso for inverse

covariance estimation across multiple classes. Journal of the Royal Statistical Society. Series

B, Statistical methodology, 76(2):373, 2014.

[18] Alexandre d’Aspremont, Onureena Banerjee, and Laurent El Ghaoui. First-order methods

for sparse covariance selection. SIAM Journal on Matrix Analysis and Applications, 30(1):

56–66, 2008.

[19] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint. Communications on Pure and Applied

Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11):

1413–1457, 2004.

[20] Wei Deng and Wotao Yin. On the global and linear convergence of the generalized alternating

direction method of multipliers. Journal of Scientific Computing, 66(3):889–916, 2016.

[21] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.

The Annals of statistics, 32(2):407–499, 2004.

[22] Jerome Friedman, Trevor Hastie, Holger Höfling, Robert Tibshirani, et al. Pathwise coordi-

nate optimization. Annals of applied statistics, 1(2):302–332, 2007.

67

[23] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-

tion with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[24] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized

linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

[25] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A note on the group lasso and a

sparse group lasso. arXiv preprint arXiv:1001.0736, 2010.

[26] Wenjiang Fu and Keith Knight. Asymptotics for lasso-type estimators. The Annals of

statistics, 28(5):1356–1378, 2000.

[27] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear varia-

tional problems via finite element approximation. Computers & mathematics with applica-

tions, 2(1):17–40, 1976.

[28] Alexander J Gibberd and James DB Nelson. Regularized estimation of piecewise constant

gaussian graphical models: The group-fused graphical lasso. Journal of Computational and

Graphical Statistics, 26(3):623–634, 2017.

[29] Roland Glowinski and Americo Marroco. Sur l’approximation, par éléments finis d’ordre un,

et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires.

ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et

Analyse Numérique, 9(R2):41–76, 1975.

[30] Tom Goldstein, Brendan O’Donoghue, Simon Setzer, and Richard Baraniuk. Fast alternating

direction optimization methods. SIAM Journal on Imaging Sciences, 7(3):1588–1623, 2014.

[31] Dominique Guillot, Bala Rajaratnam, Benjamin T Rolfs, Arian Maleki, and Ian Wong.

Iterative thresholding algorithm for sparse inverse covariance estimation. arXiv preprint

arXiv:1211.2532, 2012.

[32] Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu. Joint estimation of multiple

graphical models. Biometrika, 98(1):1–15, 2011.

[33] David Hallac, Youngsuk Park, Stephen Boyd, and Jure Leskovec. Network inference via

the time-varying graphical lasso. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 205–213, 2017.

68

[34] Lei Han and Yu Zhang. Reduction techniques for graph-based convex clustering. In Thirtieth

AAAI Conference on Artificial Intelligence, 2016.

[35] Satoshi Hara and Takashi Washio. Learning a common substructure of multiple graphical

gaussian models. Neural Networks, 38:23–38, 2013.

[36] John A Hartigan. Direct clustering of a data matrix. Journal of the american statistical

association, 67(337):123–129, 1972.

[37] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm.

Journal of the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

[38] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:

Data mining, inference, and prediction. springer open, 2017.

[39] Toby Dylan Hocking, Armand Joulin, Francis Bach, and Jean-Philippe Vert. Clusterpath

an algorithm for clustering using convex fusion penalties. In 28th international conference

on machine learning, page 1, 2011.

[40] Holger Hoefling. A path algorithm for the fused lasso signal approximator. Journal of

Computational and Graphical Statistics, 19(4):984–1006, 2010.

[41] Jean Honorio and Dimitris Samaras. Multi-task learning of gaussian graphical models. In

ICML, 2010.

[42] Cho-Jui Hsieh, Mátyás A Sustik, Inderjit S Dhillon, and Pradeep Ravikumar. Quic:

quadratic approximation for sparse inverse covariance estimation. J. Mach. Learn. Res.,

15(1):2911–2947, 2014.

[43] Nicholas A Johnson. A dynamic programming algorithm for the fused lasso and l 0-

segmentation. Journal of Computational and Graphical Statistics, 22(2):246–260, 2013.

[44] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

[45] DCFR Koboldt, Robert Fulton, Michael McLellan, Heather Schmidt, Joelle Kalicki-Veizer,

Joshua McMichael, Lucinda Fulton, David Dooling, Li Ding, Elaine Mardis, et al. Compre-

hensive molecular portraits of human breast tumours. Nature, 490(7418):61–70, 2012.

69

[46] Peter Langfelder and Steve Horvath. Wgcna: an r package for weighted correlation network

analysis. BMC bioinformatics, 9(1):1–13, 2008.

[47] Steffen L Lauritzen. Graphical models, volume 17. Clarendon Press, 1996.

[48] Mihee Lee, Haipeng Shen, Jianhua Z Huang, and JS Marron. Biclustering via sparse singular

value decomposition. Biometrics, 66(4):1087–1095, 2010.

[49] Hongzhe Li and Jiang Gui. Gradient directed regularization for sparse gaussian concentration

graphs, with applications to inference of genetic networks. Biostatistics, 7(2):302–317, 2006.

[50] Fredrik Lindsten, Henrik Ohlsson, and Lennart Ljung. Clustering using sum-of-norms regu-

larization: With application to particle filter output computation. In 2011 IEEE Statistical

Signal Processing Workshop (SSP), pages 201–204. IEEE, 2011.

[51] Sara C Madeira and Arlindo L Oliveira. Biclustering algorithms for biological data analysis:

a survey. IEEE/ACM transactions on computational biology and bioinformatics, 1(1):24–45,

2004.

[52] Rahul Mazumder and Trevor Hastie. The graphical lasso: New insights and alternatives.

Electronic journal of statistics, 6:2125, 2012.

[53] Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations for high-

dimensional data. The annals of statistics, 37(1):246–270, 2009.

[54] Nicolai Meinshausen, Peter Bühlmann, et al. High-dimensional graphs and variable selection

with the lasso. Annals of statistics, 34(3):1436–1462, 2006.

[55] Lance D Miller, Johanna Smeds, Joshy George, Vinsensius B Vega, Liza Vergara, Alexander

Ploner, Yudi Pawitan, Per Hall, Sigrid Klaar, Edison T Liu, et al. An expression signature

for p53 status in human breast cancer predicts mutation status, transcriptional effects, and

patient survival. Proceedings of the National Academy of Sciences, 102(38):13550–13555,

2005.

[56] Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société

mathématique de France, 93:273–299, 1965.

70

[57] Arkadi Nemirovski. Interior point polynomial time methods in convex programming. Lecture

notes, 42(16):3215–3224, 2004.

[58] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.

Springer Science & Business Media, 2003.

[59] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex

programming. SIAM, 1994.

[60] Yurii E Nesterov. A method for solving the convex programming problem with convergence

rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[61] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimiza-

tion, 1(3):127–239, 2014.

[62] Mee Young Park and Trevor Hastie. L1-regularization path algorithm for generalized linear

models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):

659–677, 2007.

[63] Kristiaan Pelckmans, Joseph De Brabanter, Johan AK Suykens, and B De Moor. Convex

clustering shrinkage. In PASCAL Workshop on Statistics and Optimization of Clustering

Workshop, 2005.

[64] Amela Prelić, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann, Wilhelm

Gruissem, Lars Hennig, Lothar Thiele, and Eckart Zitzler. A systematic comparison and

evaluation of biclustering methods for gene expression data. Bioinformatics, 22(9):1122–

1129, 2006.

[65] Peter Radchenko and Gourab Mukherjee. Convex clustering via l1 fusion penalization. Jour-

nal of the Royal Statistical Society: Series B (Statistical Methodology), 79(5):1527–1546,

2017.

[66] William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the

American Statistical association, 66(336):846–850, 1971.

[67] James Renegar. A mathematical view of interior-point methods in convex optimization.

SIAM, 2001.

71

[68] R Tyrell Rockafellar. The multiplier method of hestenes and powell applied to convex pro-

gramming. Journal of Optimization Theory and applications, 12(6):555–562, 1973.

[69] Andreas Rosenwald, George Wright, Wing C Chan, Joseph M Connors, Elias Campo,

Richard I Fisher, Randy D Gascoyne, H Konrad Muller-Hermelink, Erlend B Smeland,

Jena M Giltnane, et al. The use of molecular profiling to predict survival after chemother-

apy for diffuse large-b-cell lymphoma. New England Journal of Medicine, 346(25):1937–1947,

2002.

[70] Adam J Rothman, Peter J Bickel, Elizaveta Levina, Ji Zhu, et al. Sparse permutation

invariant covariance estimation. Electronic Journal of Statistics, 2:494–515, 2008.

[71] Gideon Schwarz. Estimating the dimension of a model. The annals of statistics, pages

461–464, 1978.

[72] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel

Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks. Genome research, 13(11):

2498–2504, 2003.

[73] Ryosuke Shimmura and Joe Suzuki. Converting admm to a proximal gradient for convex

optimization problems. arXiv preprint arXiv:2104.10911, 2021.

[74] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group lasso.

Journal of computational and graphical statistics, 22(2):231–245, 2013.

[75] Defeng Sun, Kim-Chuan Toh, and Yancheng Yuan. Convex clustering: Model, theoretical

guarantee and efficient algorithm. J. Mach. Learn. Res., 22:9–1, 2021.

[76] Joe Suzuki. Sparse Estimation with Math and R: 100 Exercises for Building Logic. Springer

Nature, 2021.

[77] Kean Ming Tan and Daniela Witten. Statistical properties of convex clustering. Electronic

journal of statistics, 9(2):2324, 2015.

[78] Kean Ming Tan and Daniela M Witten. Sparse biclustering of transposable data. Journal

of Computational and Graphical Statistics, 23(4):985–1008, 2014.

72

[79] Kean Ming Tan, Zhaoran Wang, Tong Zhang, Han Liu, and R Dennis Cook. A convex

formulation for high-dimensional sparse sliced inverse regression. Biometrika, 105(4):769–

782, 2018.

[80] Amos Tanay, Roded Sharan, and Ron Shamir. Discovering statistically significant biclusters

in gene expression data. Bioinformatics, 18(suppl 1):S136–S144, 2002.

[81] Qingming Tang, Chao Yang, Jian Peng, and Jinbo Xu. Exact hybrid covariance thresholding

for joint graphical lasso. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 593–607. Springer, 2015.

[82] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[83] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Spar-

sity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 67(1):91–108, 2005.

[84] Ryan J Tibshirani. The lasso problem and uniqueness. Electronic Journal of statistics, 7:

1456–1490, 2013.

[85] Ryan J Tibshirani and Jonathan Taylor. The solution path of the generalized lasso. The

annals of statistics, 39(3):1335–1371, 2011.

[86] Quoc Tran-Dinh, Anastasios Kyrillidis, and Volkan Cevher. Composite self-concordant min-

imization. J. Mach. Learn. Res., 16(1):371–416, 2015.

[87] Binhuan Wang, Yilong Zhang, Will Wei Sun, and Yixin Fang. Sparse convex clustering.

Journal of Computational and Graphical Statistics, 27(2):393–403, 2018.

[88] Jie Wang, Peter Wonka, and Jieping Ye. Lasso screening rules via dual polytope projection.

J. Mach. Learn. Res., 16(1):1063–1101, 2015.

[89] Minjie Wang and Genevera I Allen. Integrative generalized convex clustering optimization

and feature selection for mixed multi-view data. Journal of Machine Learning Research, 22:

1–73, 2021.

73

[90] Qi Wang, Pinghua Gong, Shiyu Chang, Thomas S Huang, and Jiayu Zhou. Robust convex

clustering analysis. In 2016 IEEE 16th International Conference on Data Mining (ICDM),

pages 1263–1268. IEEE, 2016.

[91] Michael Weylandt. Splitting methods for convex bi-clustering and co-clustering. In 2019

IEEE Data Science Workshop (DSW), pages 237–242. IEEE, 2019.

[92] Michael Weylandt, John Nagorski, and Genevera I Allen. Dynamic visualization and fast

computation for convex clustering via algorithmic regularization. Journal of Computational

and Graphical Statistics, 29(1):87–96, 2020.

[93] John Wright, Yi Ma, Julien Mairal, Guillermo Sapiro, Thomas S Huang, and Shuicheng Yan.

Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE,

98(6):1031–1044, 2010.

[94] Sen Yang, Zhaosong Lu, Xiaotong Shen, Peter Wonka, and Jieping Ye. Fused multiple

graphical lasso. SIAM Journal on Optimization, 25(2):916–943, 2015.

[95] Lei Yuan, Jun Liu, and Jieping Ye. Efficient methods for overlapping group lasso. Advances

in neural information processing systems, 24:352–360, 2011.

[96] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,

2006.

[97] Ming Yuan and Yi Lin. Model selection and estimation in the gaussian graphical model.

Biometrika, 94(1):19–35, 2007.

[98] Bai Zhang and Yue Wang. Learning structural changes of gaussian graphical models in

controlled experiments. arXiv preprint arXiv:1203.3532, 2012.

[99] Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in high-

dimensional linear regression. The Annals of Statistics, 36(4):1567–1594, 2008.

[100] Peng Zhao and Bin Yu. On model selection consistency of lasso. The Journal of Machine

Learning Research, 7:2541–2563, 2006.

74

[101] Changbo Zhu, Huan Xu, Chenlei Leng, and Shuicheng Yan. Convex optimization procedure

for clustering: Theoretical revisit. Advances in Neural Information Processing Systems, 27:

1619–1627, 2014.

75

	Abstract
	Introduction
	Introduction
	Overview of the thesis

	Background
	Basic definition
	Sparse estimation
	Lasso-type models

	Algorithms
	Gradient descent method
	Nesterov's accelerated gradient method
	Proximal gradient method
	Accelerated version of ISTA (FISTA)
	ADMM

	Convergence rate

	Efficient proximal gradient algorithms for joint graphical Lasso
	Introduction
	Preliminaries
	Graphical Lasso
	ISTA for graphical Lasso
	Composite self-concordant minimization
	Joint graphical Lasso

	Optimization problem and algorithms
	ISTA for JGL
	Modified ISTA for JGL

	Theoretical analysis
	Simulation
	Stopping criteria and model selection
	Synthetic data
	Time comparison experiments
	Algorithm assessment
	Convergence rate
	Real data

	Efficient algorithms for convex biclustering
	Introduction
	Convex clustering
	Convex biclustering

	Related work
	Optimization problem and algorithm
	The ALM formulation
	The proposed method
	Lipschitz constant and convergence rate

	Simulation
	Artificial data analysis
	Comparisons
	Real data analysis

	Proof
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Conclusions
	Future work

	Appendix
	Data generation

	List of publications
	Acknowledgements
	References

