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Abstract

Spatiotemporal prediction on climate data aims to predict future spatial data by learning from

prior spatial sequence data. The study investigates the availability of the constructed architecture

of convolutional layers and deconvolutional layers, and applies to convolutional long short-term

memory (ConvLSTM). The ConvLSTM structure is utilized as a multivariate spatiotemporal cli-

mate prediction to predict the upper tropospheric circulations over the Northern Hemisphere, a

geopotential height at 300 hPa (ZH300) variable. In addition, we compare the ConvLSTM with

the baseline methods of convolutional neural network (CNN) and linear regression (LR). The

results showed that the proposed model obtained a root mean square error (RMSE) of 77.36

meters (0.84% compared to the average ZH300 value) in short-term prediction. Meanwhile,

CNN and LR models obtained RMSE of 109.35 (1.19%) and 153.61 (1.67%), respectively. The

ConvLSTM maintains RMSE even in long-term prediction. Furthermore, the prediction fea-

tures’ investigation result showed that temperature at 300 hPa (T300) and prior ZH300 features

are essential for ZH300 prediction. However, the ConvLSTM that considers only short-range

sequential information may not be adequate to deal with periodic patterns such as seasonality.

It is crucial for the climate prediction model to capture periodicity change.

This dissertation adopts a Periodic Convolutional Recurrent Network (Periodic-CRN) model

to employ the periodicity component in the periodic representation dictionary (PRD). However,

Periodic-CRN assumes stationary periodicity as PRD refers to exactly the same index of the

previous cycle, which means "hard" periodicity. This paper focuses on "soft" yearly periodicity,

including nearby months and a multiple-year cycle. It proposes a Soft Periodic-CRN (SP-CRN)

with three proposals of utilizing periodicity components: nearby-time (PRD-1), periodic-depth

(PRD-2), and periodic-depth differencing (PRD-3) representation to improve climate forecast-

ing accuracy. The attention module in the SP-CRN can weigh the importance of periodic repre-

sentations, which help capture the periodic pattern. In order to capture the spatial change over

the periodicity phase, the dynamic spatial weights (DSW) on the attention module are proposed,

which are multiple spatial weights for the attention module output, and switched according to

the prediction month. This study experimented on geopotential height at 300 hPa (ZH300) and

sea surface temperature (SST) datasets of ERA-Interim. The results showed the superiority of

PRD-1 plus or minus one month of a prior cycle to capture the phase shift. In addition, PRD-3

considered that only the depth of one differencing periodic cycle (i.e., the previous year) could

significantly improve the prediction accuracy of ZH300 and SST. The mixed method of PRD-1



and PRD-3 (SP-CRN-1+3) showed a competitive or slight improvement over their base models.

We improve the prediction result drastically by adding the metadata component to indicate the

month with one-hot encoding to SP-CRN-1+3. The results showed that the proposed method

could learn four years of periodicity from the data, which may relate to the El Niño–Southern

Oscillation (ENSO) cycle.
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Chapter 1

Introduction

1.1 Research Motivation

Climate change is one of the most crucial problems on earth, which causes unusual climate

events such as extreme typhoons and global temperatures to rise; therefore, an accurate climate

forecasting model is important. The numerical weather prediction (NWP) model simulates the

physical equations of the atmosphere to generate the forecasts. NWP considers the initial state

of the atmosphere to produce the forecasting; however, all meteorological observations are im-

perfect, causing the errors to grow over time. NWP also needs data assimilation to update the

model state by comparing the model forecast with newly received observation. Meanwhile, in-

creasing climate remote sensing (e.g., weather satellite, AMeDAS), including re-analysis data

that combine numerical simulations with observations, generates a massive amount of data.

Furthermore, it consumes a lot of computational resources to make a forecast by using NWP

models, and requires climatology knowledge to build a model, unlike machine learning (ML).

Currently, many applications are using ML in the climate domain, such as tropical cyclone

forecasting [34, 10], long-term rainfall prediction [13], and more [43, 42, 49].

Time-series forecasting models [28] have emerged to forecast climate variables by learn-

ing from the historical data. Long short-term memory (LSTM) [16] is a kind of recurrent

neural network (RNN) capable of learning long-term dependencies [51, 50]. Recent works in

ML [30, 29, 48] have proven that LSTM is beneficial for solving time-series climate forecasting

problems.

The spatiotemporal forecasting problem in the climate domain given by the spatial and tem-

1



poral data is crucial for predicting the next time frame. The convolutional long short-term

memory network (ConvLSTM) [36] is the first ML method to tackle spatiotemporal climate

forecasting by extending a fully connected LSTM (FC-LSTM) with convolutional structures.

ConvLSTM was tested on precipitation nowcasting (up to 6 hours) in Hongkong from radar

echo dataset.

Meanwhile, the atmospheric variation in the upper troposphere is used for the weather

prediction at the surface because the upper tropospheric circulations can be precursors of the

weather prediction [40]. Moreover, the change of upper troposphere can cause the extreme win-

ter cold spells [38] over northern Europe and the cold air outbreaks in the Northern Hemisphere

[22].

Futhermore, periodic patterns, e.g., seasonality, exist in a global spatiotemporal climate pat-

tern. For example, the positive and negative phases of the North Atlantic Oscillation (NAO)

predominantly appear in boreal winter over the Northern Hemisphere [15]. In the study of

Lanchang-Mekong [27], the sub-region periodicity pattern of temperature and precipitation sig-

nificantly increased. Looking deeper into the periodic patterns, there are two periodic patterns

that are considered in this research; (1) the phase shift, such as the late summer and early au-

tumn [12], and (2) non-stationarity of periodicity [11, 18, 2]. Climate seasonal shifts in terms of

spatial and intensity may not be the same every year [35]. The study of El Niño–Southern Oscil-

lation (ENSO) [18] on South African rainfall showed that the periodic cycle may vary in many

ranges of years. The study of upstream sub-basins of the Yangtze River [2] also shows statis-

tically significant 2- to 4-year periodicities for mean areal precipitation. To tackle the problem

of phase shift and non-stationarity of periodicity patterns, the model should consider the nearby

time (months) and multiple cycles.

Although ConvLSTM and other novel spatiotemporal forecasting methods [44, 45, 7] are

suitable for spatiotemporal forecasting, they do not consider periodicity, which is an essential

component in climate forecasting. Periodic Convolutional Recurrent Network (Periodic-CRN)

[54] has been proposed in a different domain (Taxi transportation) as a spatiotemporal forecast-

ing model that makes use of the data’s periodicity. The idea is to store the CRN component’s

output in the periodic representation dictionary (PRD) for re-use. Representations from the dic-
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tionary were used through an attention mechanism [4] to improve the forecasting accuracy of

the crowd density across two taxi datasets from Beijing and Singapore.

Jan. Feb. … Dec.

past
years

PRD-1

PRD-2&3

…

Mar. Apr. May

Figure 1.1: The conceptual diagram of the proposed PRD in case of monthly representation.
Each cell indicates a saved representation for the future reference. Type PRD-1 refers adjacent
months of the last year, and types PRD-2 and 3 refer the same month of prior consecutive years.

In this dissertation, the studies on ML climate predictions are divided into two aspects. The

first is to investigate a multivariate spatiotemporal climate prediction for the upper tropospheric

circulations over the Northern Hemisphere using ConvLSTM. However, the ConvLSTM that

considers only short-range sequential information may not be adequate to deal with periodic

patterns such as seasonality. Meanwhile, the Periodic-CRN refers to the same index of the

previous cycle, which means "hard" periodicity. Therefore, this study focuses on "soft" yearly

periodicity, including nearby time (month) and multiple-year cycles. That leads to the second

aspect, Soft Periodic-CRN (SP-CRN) is proposed by adapting from Periodic-CRN with three

types of PRD that improve the prediction accuracy by considering soft periodicity: Nearby-Time

(PRD-1), Periodic-Depth (PRD-2), and Periodic-Depth-Differencing (PRD-3) representations,

as shown in Fig. 1.1. In Periodic-CRN, the spatial weight on the attention module was the

only single spatial weight, which is named the static spatial weights (SSW) on attention module

in this study. In order to capture the spatial change over the periodicity phase, dynamic spa-
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tial weights (DSW) on attention module are proposed. The experiments compared the model

performances to predict one-month ahead for ZH300 and sea surface temperature (SST) in an

ERA-Interim dataset.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

(i) Multivariate spatiotemporal climate forecasting

This dissertation proposed the utilization of ConvLSTM as a multivariate features cli-

mate prediction on predicting the upper tropospheric circulations over the Northern Hemi-

sphere prediction. The ConvLSTM was constructed by an architecture of convolutional

layers and deconvolutional layers to predict geopotential height at 300 hPa (ZH300). The

experiments were compared with convolutional neural network (CNN) and linear regres-

sion (LR). The constructed predictive model ConvLSTM outperformed CNN and LR

models in short- and long-term predictions. The result showed that ConvLSTM could

maintain spatial correlation and remember important information through the network.

The spatial error distribution of prediction output also showed that ConvLSTM has much

smaller errors at the paths of subtropical and polar jets. It is conceivable that by con-

sidering the earlier six-months’ datas the input of ConvLSTM and temporal variations in

the ConvLSTM layer can archive the accuracy improvement compared to CNN and LR

models.

(ii) SP-CRN: the spatiotemporal prediction method by utilizing the periodicity compo-

nent

The novel method is proposed by extending Periodic-CRN to capture phase shift and non-

stationarity of periodicity in climate data. The SP-CRN was proposed by introducing the

soft periodicity component, which includes nearby months and a multiple-year cycle for

consideration. The proposed SP-CRN has three types of PRD that improve the prediction

accuracy by considering phase shift and non-stationarity of periodicity. The CRN compo-

nent can be any spatiotemporal predictive model, which in this study, the ConvLSTM and
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convolution gated recurrent unit (ConvGRU) [5] are utilized in the CRN component to be

a comparison method. The experiments were conducted on ZH300 and SST by compar-

ing with CNN, ConvLSTM, ConvGRU, SP-CRN with ConvLSTM and ConvGRU, and

all combinations of PRD. The results showed that the prediction accuracy was drastically

improved by including the periodicity component in their base model. Moreover, the

PRD-3 with the considering change of (periodic) cycles performed the best compared to

PRD-1 and PRD-2. Finally, including the metadata at the end of the model improved

the prediction accuracy from its based model. The periodicity component proposed in

the SP-CRN can better capture the periodicity from climate data and improve prediction

accuracy.

(iii) Dynamic spatial weights on attention module

The SP-CRN was proposed with static spatial weights (SSW) on attention module, which

weight the attention module’s output regardless of the periodicity phase (month). In this

study, dynamic spatial weights (DSW) on attention module was proposed to investigate

and improve the prediction accuracy by assuming that the different spatial weights should

be applied according to the periodicity phase. The experiments on ZH300 and SST com-

pared all combinations of SP-CRN between SSW and DSW. The results showed that the

DSW improved the prediction accuracy when without metadata.

(iv) Periodicity analysis

In order to understand the periodicity pattern for the SP-CRN, the analysis of attention

weight is crucial. In this study, the periodicity pattern was analyzed using the attention

weight that indicated the periodicity phase and the periodicity cycles. The analysis com-

pared between SSW and DSW of the training dataset. The periodic pattern was similar

for PRD-1 of SSW and DSW, and the one prior periodic cycle for one month ahead was

more important than the other month. It may indicate that the phase shifts of periodicity

have occurred in the range of one month. The PRD-2, which considers only the prior pe-

riodic cycle of ZH300 and SST, showed that the past four years’ cycle of SSW was most

significant, which possibly matches the time-scale variations of ENSO [39]. In contrast,
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the DSW showed no significantly periodic pattern for PRD-2.

1.3 Organization of the Dissertation

In Chapter 2, the related literatures about ML prediction method, introduced ML to climate

prediction which includes time series and spatiotemporal prediction. Moreover, the utilization

of periodicity component in climate prediction model which improve the prediction accuracy.

Chapter 3, introduces the spatiotemporal temporal method called ConvLSTM. This chapter

shows the study of upper tropospheric circulations over the Northern Hemisphere prediction

using multivariate features by using the ConvLSTM.

Chapter 4, the SP-CRN method which includes the new ideas of periodicity and the exten-

sion of attention module. Then the analysis of periodicity component which is important to

interpret the periodic pattern from the climate data.

Chapter 5, the last chapter of the thesis summarizes key findings, draws the conclusions

along with interesting future research directions.
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Chapter 2

Literature Review

2.1 ML Climate Prediction Models

The ML works on spatiotemporal climate forecasting are introduced in this section. Gener-

ally, a CNN is the method used to capture the spatial relationship of spatial input. However,

it cannot by itself capture spatiotemporal relationships because there is no temporal memory

for temporal changed patterns. A ConvLSTM [36] improves an FC-LSTM by capturing both

spatial and temporal patterns, and was applied to precipitation nowcasting (short period, up to

6 hours). Since then, spatiotemporal climate forecasting has widely mentioned ConvLSTM as

a baseline method [44, 45, 7] or adopted in other model architectures [20, 19, 21]. Predictive

RNN (PredRNN) [44] adds extra connections between adjacent time steps in a core stack of

spatiotemporal LSTM (ST-LSTM), which outperforms ConvLSTM in precipitation nowcast-

ing. Memory-in-memory (MIM) networks [45] improve the learning of non-stationarity prop-

erties in spatiotemporal input, such as spatial correlations or temporal dependencies of local

pixel values for low-level non-stationarity, and the accumulation, deformation or dissipation of

radar echoes in precipitation forecasting for high-level non-stationarity. MIM captures those

non-stationarity properties by adding stationary and non-stationary modules separately inside

the ST-LSTM block [44]. Lastly, the most recent work on spatiotemporal climate forecasting is

the spatiotemporal convolutional sequence-to-sequence network (STConvS2S) [7]. STConvS2S

comprises three components, the sets of convolutional layers responsible for different tasks: the

temporal block, which learns the temporal representation of sequential input by two approaches

(temporal casual block [41] and temporal reversed block); spatial block, which extracts the
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spatial features from the temporal block; and temporal generator block, designed to output a se-

quence of arbitrary length. The STConvS2S outperformed or was competitive with ConvLSTM,

PredRNN, MIM models for temperature (CFSR1) and rainfall (CHIRPS2) prediction.

2.2 ML Climate Prediction Models with Periodicity Component

Secondly, the ML works on climate forecasting that utilize the periodicity component to improve

prediction accuracy are introduced in this section. A seasonally integrated autoencoder (SSAE)

[31] is proposed to improve short-term daily precipitation forecasting. SSAE architecture has

two LSTM autoencoders: the short-term autoencoder, which learns the short-term sequential

input (less than seven days), and the seasonal autoencoder which captures the seasonal change

in a long-term sequential input long enough to cover the period of the wet or dry season (60–

120 days). The other way is to introduce the metadata idea to the network. The prediction of

a streamflow in a river [1] improves the prediction results by adding a digit for the month as

one of inputs in the final position of the sequential input of LSTM, Extreme Learning Machines

(ELM), and Random Forest (RF) algorithms. Committee ELM (Comm-ELM) [3] also forecasts

the monthly standardized precipitation index (SPI) by adding a digit for the month to indicate

yearly periodicity at the end of a sequential input to improve the prediction. However, all of

these methods assume stationary periodicity, which means they can not capture the phase shift

or non-stationarity of periodicity patterns.

Meanwhile, in time series analysis, the Autoregressive Integrated Moving Average (ARIMA),

a statistical prediction model, is applied to a non-stationary time series to eliminate the non-

stationary mean function (trend) corresponding to the "integrated" part of the model. ARIMA [25]

is used in near-term regional temperature and precipitation forecasting. Seasonal ARIMA

(SARIMA) [46] is an extension of ARIMA that supports a seasonal component for time se-

ries prediction. It adds difference operators to remove the seasonal component to transform the

non-stationary time series into a stationary one. SARIMA analysis was found are acceptable

for predicting the monthly mean temperature of Nanjing, China [9]. SARIMA was also used

1https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanaly sis-cfsr
2https://chc.ucsb.edu/data/chirps
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in the precipitation and temperature predictions at the Tehri and Uttarkashi stations in the Bha-

girathi river basin in the state of Uttarakhand, India [14]. SARIMA was applied to a coastal

Tuscany watershed to study hydrological cycle changes at the local scales (area) [53]. Further-

more, SARIMA was applied for the spatiotemporal analysis in the Highlands region, Algeria, to

predict the local scale of precipitation [6]. However, SARIMA does not work well on multiple

seasonalities [47], the daily and yearly patterns in the same time series of a climate variable

(e.g., surface temperature). Empirical mode decomposition (EMD) [17] can also modify such a

time series, from high to low frequency, into multi-resolution intrinsic mode functions (IMFs)

while leaving the monotonous time series as the estimated trend time series. Ensemble EMD

(EEMD) [23] is a variant of EMD, and is used to extract the seasonal component from a time

series by selecting the IMFs of the decomposed original time series that corresponds to the

seasonal averaged model.

2.3 Base Methods

2.3.1 Convolutional LSTM

Thirdly, this section introduces Convolutional LSTM (ConvLSTM) [36], one of the most popu-

lar and widely used spatiotemporal climate prediction methods. ConvLSTM has been developed

and extended from fully connected LSTM (FC-LSTM) by making every gate in LSTM memory

cell to be a 3D tensor that can maintain spatial correlation through the network. The advantage

of LSTM structure inside ConvLSTM is an ability to remember important information while

learning from the sequence data. Fig. 2.1 shows the architecture of the ConvLSTM that is used

in Chapter 3.

Unlike recurrent neural network (RNN) that the error term in the backpropagation process of

the long-term recurrent network is multiplied by less than one for many times along the recurrent

network, causing long-term of the error term will not be back-propagated, this problem is called

“vanishing gradient problem.”
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Figure 2.1: ConvLSTM structure on the experiment in Chapter 3

The spatial input data will be fed into ConvLSTM in each time step and can be seen as 3D

tensor, where the first dimension is temporal information, and the last two dimensions are spatial

information. Convolution operator has been used in this network to capture spatial correlation

in every gate of the networks. Eqs. (2.3.1) are those of ConvLSTM, where Wx, Wh and Wc denote

a set of weights (kernels) of current input, hidden state, and cell output, respectively. The 3D

tensors x(t),h(t),c(t), and gates i(t), f (t),o(t) are input, hidden state, cell output, input gate, forget

gate, and output gate, respectively. Moreover, b denotes bias, σ denotes an sigmoid function, ∗

denotes a convolution operator and ◦ denotes a Hadamard product.

i(t) = σ(Wxi ∗ x(t)+Whi ∗h(t−1)+Wci ◦ c(t−1)+bi)

f (t) = σ(Wx f ∗ x(t)+Wh f ∗h(t−1)+Wc f ◦ c(t−1)+b f )

c(t) = f (t) ◦ c(t−1)+ i(t) ◦ tanh(Wxc ∗ x(t)+Whc ∗h(t−1)+bc)

o(t) = σ(Wxo ∗ x(t)+Who ∗h(t−1)+Wco ◦ c(t)+bo)

h(t) = o(t) ◦ tanh(c(t))

(2.3.1)

The zero-padding was applied to remain an output to be the same size as the input after

convolution operation inside the network. All hidden states were initialized as zero to ignore the

state before training.

2.3.2 Convolutional GRU

Then, the Convolutional Gated Recurrent Unit (ConvGRU) [5] is considered as the spatiotempo-

ral prediction model to use on climate data, which is introduced in this section. Gated-Recurrent-

Unit (GRU) networks are a particular type of RNN to overcome the difficulty of RNNs to train
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due to the exploding or vanishing gradient effect. The GRU and LSTM have empirically demon-

strated their ability to model long-term temporal dependency in various tasks such as machine

translation or image/video caption generation. GRU networks allow each recurrent unit to cap-

ture dependencies of different time scales adaptively. Eqs. 2.3.2 are those of GRU, where � is

an element-wise multiplication. zt is an update gate that decides the degree to which the unit

updates its activation, rt is a reset gate, and σ is the sigmoid function. h̃t is a candidate activation

that is computed similarly to that of the traditional recurrent unit in an RNN.

zt = σ(Wzxt +Uzht−1)

rt = σ(Wrxt +Urht−1)

h̃t = tanh(Wxt +U(rt �ht−1))

ht = (1− zt)ht−1 + zt h̃t

(2.3.2)

However, fully-connected GRUs do not take advantage of the underlying structure of con-

volutional maps which are the spatiotemporal input. Convolution operations are added to the

GRU to consider the spatiotemporal input. This structure named GRU-Recurrent Convolution

Network (GRU-CRN) and named it as ConvGRU in this study (well-known name). Eqs. 2.3.3

are those of ConvGRU, where * denotes a convolution operation. Parameters W l , W l
z and W l

r

have a size of k1× k2×Ox×Oh where k1× k2 is the convolutioanl kernel spatial size. The

candidate hidden representation h̃t(i, j), the activation gate zk(i, j) and the reset gate rk(i, j) are

defined based on a local neighborhood of size (k1× k2) at the location (i, j) in both the input

data xt and the previous hidden-state ht−1.

zl
t = σ(W l

z ∗ xl
t +U l

z ∗hl
t−1)

rl
t = σ(W l

r ∗ xl
t +U l

r ∗hl
t−1)

h̃l
t = tanh(W l ∗ xl

t +U ∗ (rl
t �hl

t−1))

hl
t = (1− zl

t)h
l
t −1+ zl

t h̃
l
t

(2.3.3)

The main difference between ConvLSTM and ConvGRU is that the ConvLSTM has three

gates while the ConvGRU has two gates. The ConvGRU uses fewer training parameters and
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therefore uses less memory and executes faster than ConvLSTM, whereas ConvLSTM is more

accurate on a larger dataset. In this study, ConvGRU is used as the comparison method for

spatiotemporal climate prediction model.

2.3.3 Periodic Convolutional Recurrent Network

Lastly, this study considered adopting spatiotemporal prediction model with periodicity com-

ponent from other domain to perform on climate domain. This section introduces Periodic

Convolutional Recurrent Network (Periodic-CRN) [54] which is the spatiotemporal prediction

method for crowd density prediction in spatiotemporal domain. Specifically, the model predicts

the next state of a geo-spatial space, given a sequence of previous states. The key idea is using

periodic representations of previously observed recurring patterns with tensors, rather than us-

ing raw input data from those periods in the learning process. The periodic representations is

used to indicate the periodicity of the data which can improve the prediction accuracy in taxi

transportation dataset.

The Periodic-CRN consists of three components: (1) Convolutional recurrent network, (2)

Periodic representation, (3) Fusion process. The entire architecture has shown in Fig. 2.2.
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Figure 2.2: The Periodic-CRN architecture

Convolutional Recurrent Network

To capture spatial and temporal correlations is crucial for building accurate spatiotemporal pre-

diction models. As in many geo-spatial problems such as crowd density or traffic congestion

prediction, the state of traffic is one region in evitably influences nearby regions. The Periodic-

CRN considered using Convolutional GRU [5], and adopt a pyramidal structure [8] for the

multi-layer Convolutional GRUs. This modification reduces the sequence length of the upper

layer by a factor of 2, which results in significant speedup without negatively affecting perfor-

mance.
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Periodic Representation

Periodic representation (P) is a hidden state from CRN component. To build a model that has an

ability to consider a periodic pattern, Periodic-CRN stores the current periodic representation

(h(t+1)
c ) to periodic representation dictionary (D). The length of dictionary (lD) is a cycle of

periodicity (e.g., a yearly periodic pattern has 12 bins of months). The periodic representation

will be loaded and saved to D where the dictionary index is matched in Eq. (2.3.4). t denotes

time index, NP denotes index of periodicity cycle, and h(t+1)
P is a loaded periodic representation

from D. ⇐ and⇒ denote the direction of representation that load and save to D respectively.

h(t+1)
P ⇐ D[| t− (lD ∗ (NP−1)) |]

h(t+1)
c ⇒ D[| t− (lD ∗ (NP−1)) |]

(2.3.4)

The nearby time index representation that loaded from D may improve accuracy result in-

stead of using only a single periodic time index representation.

Fusion Process

This process is to merge periodic representation with the output from the CRN component, then

merge with the temporal metadata.

Weighting Based Function: In this method, h(t+1)
c and h(t+1)

Pj
are merged, where j denotes

nearby time representation. The attention mechanism is used to weight multiple hPj . The scalar

weight an is learned from the network indicating importance of each representation hPj , where

an ∈ [0,1] and ∑n an = 1 according to the softmax operation. The h(t+1)
all denotes periodic rep-

resentation output after attention mechanism process. Weight We is convolutional kernel size of

1×1×2 that reduces the representation channels to one, and Wf size is equal to the size of flatten

operation output.

Then periodic representation hall and representation output h(t+1)
c are combined in Eq. (2.3.8).
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e(t+1)
j =Wf . f latten(We ∗ [h(t+1)

c ,h(t+1)
Pj

])+b f (2.3.5)

a(t+1)
j =

exp(e(t+1)
j )

∑ j′ exp(e(t+1)
j )

(2.3.6)

h(t+1)
all = ∑

j
a(t+1)

j h(t+1)
Pj

(2.3.7)

h(t+1)
f = relu(Wc ◦h(t+1)

c +WP ◦h(t+1)
all ) (2.3.8)

After the fusion process of attention mechanism, the convolution layer is used to transform

the representation h(t+1)
f to be the same size as an input. In Eq. (2.3.9), the size of Wf and h(t+1)

f

are the same size as the input.

h(t+1)
f = relu(h(t+1)

f ∗Wf ) (2.3.9)

Metadata Fusion: In this method, timestamp of records are used to indicate which periodic

representation is currently used. One-hot encoded (X (t+1)
meta ) is defined as temporal metadata

indicates month of the year, the size of X (t+1)
meta is 12×1 (for yearly periodic pattern). Then X (t+1)

meta

is passed to two fully connected layers as shown in Eq. (2.3.10). After reshaping h(t+1)
meta from

1-D to 2-D to be the same size as the input, h(t+1)
meta with h(t+1)

f are merged to get the prediction

output (X̂ (t+1)).

h(t+1)
meta = relu(relu(X (t+1)

meta .Wf c1 +b f c1).Wf c2 +b f c2) (2.3.10)

X̂ (t+1) = relu(h(t+1)
f +h(t+1)

meta ) (2.3.11)

2.4 Summary

In summary, ConvLSTM and spatiotemporal climate forecasting models [44, 45, 7] consider

only sequential input, which is the short sequence that does not cover the periodicity patterns.

SSAE [31] focuses on the long sequence that covers the entire season, but the model does not

regard changes in multiple periodic cycles. SARIMA [46], EMD [17], and EEMD [23] do not
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address the spatial dependencies, and the decomposed time series by EMD and EEMD may not

refer to the seasonality of the observations.

Meanwhile, Periodic-CRN [54] has been proposed as a spatiotemporal forecasting model in

a taxi transportation domain, where it will use daily and weekly periodicity components along

with the load and save mechanism in the PRD. Although Periodic-CRN improves prediction

accuracy by using periodicity, it assumes stationary periodicity as PRD refers to exactly the

same index of the previous cycle, which means "hard" periodicity. This dissertation proposed

SP-CRN by adapting the PRD to be a decent mechanism in the non-stationary climate domain.

The PRD approaches are novel ideas that consider phase shift and the non-stationarity of period-

icity. This dissertation focuses on "soft" yearly periodicity, which includes nearby months and

a multiple-year cycle, and use of three proposals from the PRD, satisfies climate data behavior.
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Chapter 3

Climate Prediction using Multivariate
Features by ConvLSTM

3.1 Research Propose

This chapter studies the prediction of upper tropospheric circulations over the Northern Hemi-

sphere by predicting ZH300, which relates to the polar jet stream affecting the strength and the

path of mid-latitude cyclones.

This chapter studies the availability of utilizing the deep learning methods for spatiotempo-

ral climate prediction. The study includes the prediction of upper tropospheric circulations over

the Northern Hemisphere by predicting ZH300, which relates to the polar jet stream affecting

the strength and the path of mid-latitude cyclones. The study also investigates the availability

of ConvLSTM in maintaining the spatiotemporal correlation through the network on short- and

long-term prediction of ZH300. Furthermore, the sequential input on ConvLSTM may help

the model capture the change of the season by investigating the projection of prediction output.

Also, the advantage of sequential input on ConvLSTM in performing the long-term prediction

over the model does not consider the sequential input. Moreover, the study also investigates the

importance of prediction features to predict ZH300 using multivariate features for the ConvL-

STM.
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3.2 Experiment Settings

3.2.1 Dataset

This study uses ERA-Interim1 dataset from the European Centre for Medium-Range Weather

Forecasts (ECMWF) which is a global atmospheric reanalysis from 1979 as the main dataset.

This dataset contains a monthly average of climate variables in spatial grid data. The study also

use NINO 3 SST Index which is anomaly area-averaged sea surface temperature (SST) from

5◦S-5◦N and 150◦-90◦W, that indicates El Niño event. The four relevant features are selected

for ZH300 prediction: temperature at 300 hPa (T300), T850, ZH300, and NINO 3 index. All

features are extracted to 360×90 image resolution, and 480 months started from 1979 until

2018.

ZH300 is the geopotential height of pressure level 300 hPa, which is in different places have

a different height of ZH300. ZH300 on the Northern Hemisphere can indicate the jet stream

wind around the height of 9-12 km, which is essential to be an indicator of global seasonality

and other events of climate such as cold air outbreaks in the Northern Hemisphere [22]. To

make a prediction of ZH300, four relevant prediction features have been considered. T300 is the

temperature at the same level of ZH300, the change of ZH300 is relative to the change of ZH300

because the jest stream wind is separate high (low temperature) and low (high temperature)

pressure. T850 is the temperature at around the ground level, it also affect the change of jet

stream wind. NINO 3 is the sea surface temperature index at the pacific ocean which is the most

common used indices to define El Niño and La Niña. Lastly, the prior ZH300 that indicates the

prediction variable itself (ZH300).

3.2.2 Comparison Methods

The experiments are conducted to study the prediction availabilities of ZH300 on the Northern

Hemisphere, which has a spatial correlation for an entire area. It will be difficult for a model

that is not able to capture spatial correlation to turn out the accurate pattern on prediction output.

Three models were experimented as follows:

1. Linear regression model (LR): This model is the most straightforward linear prediction
1https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=pl/
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algorithm that works well on linear relationship data. The model was considered as a

baseline method for linear prediction algorithm. In this study, LR models were trained

separated 360×90 so that the model could not capture the spatial correlation of the input

data. The model was trained by learning from 300 months prior to predict the next month.

In conclusion, this model used 4 features of 300 months, i.e., 1,200 prediction features.

2. Convolutional neural networks (CNN) [24]: This study constructed four convolutional

layers to encode four channels of input data and decoded with four deconvolutional layers

to obtain one output channel. 3×3 kernel size was applied to this model. The entire

structure is shown in Fig. 2.1 but without ConvLSTM structure.

3. ConvLSTM: The same structure as CNN was used, but in the middle between convolu-

tional and deconvolutional layers was ConvLSTM structure as shown in Fig. 2.1.

The input data was fed into both CNN and ConvLSTM were a spatial grid data. NINO

3 index was a scalar variable in each month, in order to apply the NINO 3 index to be the

spatial grid data, the NINO 3 variable was applied as the same value for all grid points. In

this experiment setting, CNN learned one-month data to predict next month, but ConvLSTM

learned six-months to predict next month. The six-months input has been considered because it

is a long period enough to the change of seasons. The models were trained with 462 months as

a training set and 18 months as a test set aiming to predict 12 months in 2018. Then the models

were trained until converged or reached the limit of 200,000 steps. Dropout was applied to the

models to reduce overfitting and used adaptive moment estimation optimizer (Adam optimizer)

as an optimizer.

3.3 Results

3.3.1 Short-term prediction

Fig. 3.1a shows the output result of April 2018, which is the best month of ConvLSTM method.

LR does not capture ZH300 pattern properly, while CNN and ConvLSTM perform better in

capturing the spatial pattern.
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(a) Ground truth and prediction result

(b) Error distribution

Figure 3.1: The Northern Hemisphere ZH300 on prediction and error distribution on April, 2018
(the best month of ConvLSTM)

The spatial error distribution of CNN (Fig. 3.1b) clearly indicates that the error distribution

of CNN is large at the paths of the subtropical and polar jets where the meridional ZH300

gradient is large, and the variability of ZH300 is also large. The large variability of ZH300 is

coherent with the strong activity of extratropical cyclones there.

Thus, the CNN prediction with the one-month earlier data can not predict the variability

of the subtropical and polar jet streams correctly, which is critical for climate prediction. The

spatial error distribution of ConvLSTM, on the other hand, shows much smaller errors even on

the paths of the subtropical and polar jets. It is conceivable that this improvement was achieved

by considering the earlier six-months’ data and these temporal variations in the ConvLSTM

layer.

The experiments tested on six-months input to CNN, which was equivalent to ConvLSTM

input. The four features of six-months spatial data are arranged as the sequential input of CNN.

The result was worse than learning with one-month in short- and long-term prediction. This

might because of the 24-channels of input data is too much for the network, and the network
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can not capture a transition of the same feature in different month input.

The spatial error distribution of LR seems to be like the distribution of white noise in mid-

and high-latitudes, and does not show a systematic distribution pattern. This distribution is

probably because the LR prediction of this study did not include the spatial correlation.

(a) Ground truth and prediction result

(b) Error distribution

Figure 3.2: The Northern Hemisphere ZH300 on prediction and error distribution on February,
2018 (the worst month of ConvLSTM)
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Table 3.1: RMSE (meters) of 12 months in 2018.

Month LR CNN ConvLSTM

1 156.40 57.11 78.73

2 164.15 112.60 117.36

3 143.30 113.76 98.60

4 145.93 117.70 58.12

5 155.28 142.50 86.86

6 143.54 127.54 61.41

7 153.44 130.47 76.97

8 140.94 68.35 59.97

9 162.33 97.65 84.04

10 148.86 111.71 51.53

11 158.88 120.64 76.12

12 170.32 112.13 78.60

Average 153.61 109.35 77.36

Fig. 3.2 shows the result of February 2018, which is the worst month of ConvLSTM. The

error distribution on Fig. 3.2b shows that high error of CNN and ConvLSTM are in the same

area. It might because of a sudden stratospheric sarming that occurred on February, 2018 [32]

that exceed the limit of CNN and ConvLSTM model to capture such kind of change.

Table 3.1 is RMSE of 12 months (compare to the ground truth) in 2018. The result shows

that ConvLSTM outperforms with RMSE of 77.36 meters (0.84% comparing to average ZH300

value of 9,225.19 meters) over CNN and LR that have RMSE of 109.35 (1.19%) and 153.61

(1.67%) meters, respectively. LSTM network inside ConvLSTM helps the networks remember

important information for a long period of time. However, the RMSE in each month of CNN

and ConvLSTM do not indicate high accuracy on certain months.

The predicted value minus the ground truth for all months in 2018 were plotted to inves-

tigate over and underestimation of CNN and ConvLSTM models, as shown in Fig. 3.3. The

overestimated months mostly appear in winter and underestimated months appear in summer

for CNN. On the other hand, the ConvLSTM showed the over and underestimated at about the

same amount in each month (the amount of red and blue area are similar for every month).

Simple CNN would not even have an ability to predict the regular (or climatological) seasonal

change in ZH300 which increases to summer and decreases to winter over the Northern Hemi-
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Figure 3.3: The predicted value minus ground truth in every month of 2018 (blue color is over-
estimated and red color is underestimated). In every month, left figure is CNN and right figure
is ConvLSTM.
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sphere polar region.

3.3.2 Long-term prediction

Next, models were applied to predict the next 1-5 months. The result is shown in Fig. 3.4,

RMSE of ConvLSTM is only slightly increased, showing the robustness over the long-term

prediction. The RMSE of ConvLSTM is less than 1% to average ZH300 value even for long-

term prediction (the next 5 months prediction has RMSE of 1.02%, only). CNN has a better

performance than LR in short-term prediction but getting worse in the long-term, this might

because of the number of features for LR is 1,200 features (300 months prior × 4 features),

while CNN uses only one month of 4 features. Although the LR maintains the RMSE well in

long-term prediction, the output result shows poorly capturing ZH300 pattern. The experiment

also tested on 6 months input to CNN, which was equivalent to ConvLSTM input, but the result

was worse than learning with 1 month in short- and long-term prediction.

1 2 3 4 5
0

50

100

150

200

Next n month prediction

A
ve

ra
ge

R
M

SE
(m

et
er

s)

LR
CNN
ConvLSTM

Figure 3.4: RMSE of long-term prediction

3.3.3 Prediction features’ investigation

This study also investigated the importance of features to predict ZH300. The experiment tested

with ConvLSTM on 4 datasets; each of them excluded 1 feature. If the excluded feature was

important to ZH300 prediction, the RMSE result should be worse (RMSE higher than using 4

features).

Table 3.2 shows the result of excluding 1 feature out of 4 features. The standard deviation
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(SD) shows the dispersion to the average RMSE value. By excluding T300 or ZH300, which

are temperature at the same hight as ZH300 and prior ZH300, have higher RMSE of 79.42 and

81.30 meters than that of using all the 4 features, respectively. Therefore, these 2 features are

relevant to ZH300 prediction. On the other hand, excluding T850 shows the lower RMSE of

74.59 meters, which means that T850 interferes with ZH300 prediction and should be excluded

from the dataset.

Table 3.2: Excluded features result of average RMSE of 12 months in 2018.

Dataset (Exclude) Avg. RMSE (m) SD of RMSE (m)

ZH300 81.30 17.21

T850 74.59 15.11

T300 79.42 17.32

NINO 3 77.08 18.13

Includes all 4 features 77.36 18.55

Moreover, SD of excluding T850 is lowest that shows the error in every month is close to the

average RMSE, which is good for prediction (low RMSE and low SD). The result of excluding

NINO 3 has about the same RMSE of 77.08 comparing to included 4 features, which seems less

relevance to ZH300 prediction. However, it might be the cause of how the scalar value of NINO

3 was implemented to be a spatial grid data that is the same value on every data point; different

implementation of NINO 3 index may affect to the result.

Lastly, the experiment was conducted using ConvLSTM to predict ZH300 in short- and

long-term prediction (next 1-5 months prediction) by using the most 2 relevant prediction fea-

tures (T300 and ZH300). The result shows that using 2 relevant prediction features obtained the

lower average RMSE of 82.92 (0.9%) comparing to average RMSE of 85.194 (0.92%) using 4

features.

3.4 Discussion

The results show that the deep learning methods were able to perform the spatiotemporal cli-

mate prediction. Especially, ConvLSTM obtained the best prediction accuracy compare to CNN
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Figure 3.5: The comparison of ZH300 observed data in January from 2011 to 2018.

and LR. ConvLSTM also shows the performance of maintaining the spatiotemporal collation

through the network on short- and long-term prediction. The results of investigation the impor-

tance of prediction features to predict ZH300 show that the prior ZH300 was the most important

over T300, NINO 3, and T850, respectively.

Although ConvLSTM obtained a better prediction than CNN and LR, the model cannot

capture the periodic patterns by learning from the sequential spatial input. Fig. 3.5 shows the

comparison of ZH300 observed data in January from 2011 to 2018. The same month has sim-

ilar spatial patterns, which indicate the periodic patterns across years. Also, Fig. 3.6 shows

that the spatial patterns of every month in the same year are different. By learning the consec-

utive sequential input, the model can not learn the periodic patterns hidden in the sequential

input. Despite extending the sequential input to cover the length of periodicity may not be help-

ful. To capture the periodicity patterns, the model needs some specific components to operate.

Therefore, the following section introduces the spatiotemporal climate prediction model, which

utilizes the periodicity component.
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Figure 3.6: The comparison of ZH300 observed data in every month of 2018.
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Chapter 4

Soft Periodic Convolutional Recurrent
Network

4.1 Overview

In this research, the original Periodic-CRN was modified as two components: (1) CRN and (2)

periodic representation. The entire architecture is shown in Fig. 4.1. The process of this method

begins with learning the sequential input in the CRN component (Fig. 4.1(a)). Then, the hidden

state output from the CRN component is saved as a periodic representation (Fig. 4.1(b)), and it

is loaded according to the proposal described in Section 4.4.2. Next, to estimate the relevance of

each periodic representation to the hidden state output, the representations are weighted by the

attention module (section 4.4.5) as the representation output from the periodic representation

component. Finally, the hidden state output of the two components is combined (fusion module

in Fig. 4.1(f)), then reshaped with convolution operation as described in Section 4.4.6 to obtain

the prediction.
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Figure 4.1: The SP-CRN (LSTM) architecture. (a) the CRN component, (b) the PRD, (c) update
mechanism, (d) load mechanism, (e) the attention module, (f) fusion module, and (g) metadata
component.

4.2 Problem Statement

Regarding climate prediction task as similar to a next video frame prediction [52], where input is

a sequence of spatial 2-dimensional data, and the output is spatial data of the next timestep. Cli-

mate data for a geo-spatio-temporal domain is aggregated into multichannels of a 2-dimensional

data X̂ (t) ∈ RM∗W∗H , where M, W , H are the number of channels, width (longitude), and height

(latitude), respectively, and t is a data time index.

Eq. (4.2.1) is a problem statement, where X̂ (t+N) is a spatial climate variable at time t +N,

where N is a natural number. θ is model parameters of the function F ; τ is a natural number of

a pre-defined sequence length (τ = 1,2,3, ...), and X (t), ...,X (t−τ+1) are spatial sequence input

data.

X̂ (t+N) = F(X (t), ...,X (t−τ+1);θ) (4.2.1)
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4.3 Soft Periodicity

This section introduces soft periodicity, including the definition, example on a sine wave, and

autocorrelation on real climate data.

Definition 1 (Soft Periodicity). A function f is said to be soft periodic if, for some nonzero

constant period P and for some continuous function that changes according to k value ∆(k), it

is the case that f (k+P+∆(k)) = f (k) for all values of k in the domain. Here, ∆(k) is assumed

to be much less than P (∆(k)� P). Also, the average of ∆(k) for all values of k is zero.

This section demonstrates and describes the soft periodicity based on a sine wave. In Eqs.

4.3.1, y(t) is a value at time t, where sin(t) denotes a sine function which represent a constant

value of the waveform, ∆(t) denotes a continuous function that change according to time, and

α is a constant value. The periodicity is hard if the ∆(t) is constant, while the periodicity is soft

if the ∆(t) is not constant. Fig. 4.2 shows the soft periodicity of Eqs. 4.3.1 in which the phase

of periodicity is shifted over time.

y(t) = sin(t +∆(t))

∆(t) = α sin(t)
(4.3.1)

Figure 4.2: Soft periodicity

Furthermore, the autocorrelation function (ACF) is a visual way to show the serial correla-

tion of the time series. ACF can be utilized to determine whether the climate data has a soft
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periodicity or not. It can indicate the correlation over the seasonality lag by plotting the ACF

plot. Figs. 4.3 and 4.4 show the ACF plot of geopotential height at 300 hPa (ZH300) and

sea surface temperature (SST) which are the monthly data on 108 lags. The ZH300 and SST

were calculated by averaging in spatial domain to transform the spatiotemporal data to time se-

ries data. The figures clearly show a high correlation of 12 lags (months) of yearly periodicity,

which ZH300 shows stronger periodicity than SST. However, ZH300 peaks are not always every

12 lags; sometimes, the peak is at the 6th lags of a cycle, which may indicate the soft periodicity.

Figure 4.3: ACF plot of ZH300

Figure 4.4: ACF plot of SST
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4.4 Soft Periodic Recurrent Neural Network

4.4.1 CRN Component

To capture spatiotemporal patterns of an input sequence, spatial dependencies are needed to

considered in the network. The convolution operator inside CRN is responsible for extracting

spatial latent features from a low to high level. ConvLSTM is selected as a CRN component for

this research, and named it SP-CRN (LSTM). The CRN component is shown in Fig. 4.1(a), and

the detail of ConvLSTM is described in Section 2.3.1.

4.4.2 Periodic Representation

The purpose of this component is to consider a periodic pattern of the input sequence. A hidden

state output from the CRN component (h(t+N)
crn ) is stored as a periodic representation (P), where

crn refers to the CRN component. The periodic representation process of the load and update

mechanisms is shown in Fig. 4.1(c) and (d).

P is an m× d matrix, where m is time index (month) of one periodic cycle; d is the depth

of periodicity, and pi, j or P[i][ j] refers to a stored representation from the CRN component.

The periodic representation is loaded and updated to P where the dictionary index (starting from

1) is matched with the indexing function, described in Sections 4.4.3 and 4.4.4. The expression

h(t+N)
Pj

represents loaded periodic representations from P, where j represents each of the loaded

representation indices. IP is a calculated time index of the cycle used in the load and update

mechanism, where IP = t− (m×
⌊ t

m

⌋
).

4.4.3 Update Mechanism

The output representation from the CRN component is stored as a periodic representation to

the PRD and re-used in the next periodic cycle depending on the load mechanism explained

in Section 4.4.4. In Periodic-CRN, the representation was saved to PRD as appending at the

end of PRD. However, it is difficult for load mechanism of soft periodicity (Section 4.4.4) that

is proposed in this study. Therefore, the new update mechanism is developed to update the

representation to the PRD (2D matrix). The update mechanism is the depth-wise queue (First-

In–First-Out), where it is repeated every time step (month by month). The process has two steps:
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the first, shift representation, prepares the available space in P for the new representation, which

is shifted from the bottom (the latest) to the top (the earliest) of P as shown in Eq. (4.4.1); the

second, save new representation, is the new representation (h(t+N)
crn ) saved to the bottom of P as

shown in Eq. (4.4.2); z refers to the depth of the matrix according to the indexing function.

P[IP][z]⇒ P[IP][z−1] (for z = 2, ...,d) (4.4.1)

h(t+N)
crn ⇒ P[IP][d] (4.4.2)

4.4.4 Load Mechanism

To use periodicity in the model, the representations from the PRD are loaded with three different

proposals. Note that the load mechanism proceeds before the update mechanism. The repre-

sentation at the bottom of P (where z = d) is the representation of the previous periodic cycle

when the time index is IP. Thus, pi,z (where i < Ip) are the representations of a current cy-

cle. In contrast, pi,z (where i ≥ Ip) are the representations of the previous cycle as shown in

Fig. 4.5(a).

July 1998
July 1997
July 1996
July 1995
July 1994

July 1998 - July 1997
July 1997 - July 1996
July 1996 - July 1995
July 1995 - July 1994Sep 1998

Aug 1998

Jul
y 1

998

Jun
 1998

May 
1998

(a) (b) (c)

Figure 4.5: Examples of the three proposals for the load mechanism to predict the climate
variable of July 1999 (index 1 starts from the top left of P). (a) Nearby-Time representation
with the nearby representation of 2, (b) Periodic-Depth representation with a depth of 5, and (c)
Periodic-Depth-Differencing representation with a depth of 5.

1. Nearby-Time Representation: In this work, to capture a phase shift that may change every

year, the periodic attention mechanism component idea was extended from the original Periodic-

CRN to include nearby (months) representations for the previous year as shown in Eq. (4.4.3).

In this proposal, d is 2, and z ∈ {1,2} indicate which depth of P will be used for a load

mechanism. Since the update mechanism is proceeded at every time step, representations in

the same depth (z) may not be in the same periodic cycle. IPn is the nearby time index; n is
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the incremental number indicating nearby time index representation; and npre is the pre-defined

length. The example of the nearby-time representation proposal is shown in Fig. 4.5(a). To find

a yearly periodic representation of July 1999, m was defined as 12 (yearly), t was 247 (when the

time index started from January 1979); and
⌊ t

m

⌋
was calculated as 20 (years); and IP is 7 (July).

If npre is defined as 2, then the representations of p1,5, p1,6, p2,7, p2,8, and p2,9 which are May,

June, July, August and September 1998 are loaded.

h(t+N)
Pn

⇐ P[IPn][z] (for n =−npre, ...,0, ...,npre) (4.4.3)

where

IPn =


(IP +n)−m, if IP +n > m

m− (IP +n), else if IP +n≤ 0

IP +n, otherwise

z =

2, if n≥ 0

1, otherwise

2. Periodic-Depth Representation: The periodic representation in the first proposal, the nearby

time representation, considers only one year’s prior representation. The representation was ex-

tended to be more than one period prior, and use only the same time index (phase) as shown in

Eq. (4.4.4) where d is the depth of P representing the number of consecutive periodic cycles.

The load mechanism loads all the representations that are in the same phase of the previous cy-

cles.

An example of periodic-depth representation proposal is shown in Fig. 4.5(b). To find a

periodic representation of July 1999, d is 5, t is 247, m is 12,
⌊ t

m

⌋
is 20, then IP is 7 (July).

The representation of July 1998, 1997, 1996, 1995, and 1994 are loaded according to d = 5.

h(t+N)
Pz

⇐ P[IP][z] (for z = 1, ...,d) (4.4.4)

3. Periodic-Depth-Differencing Representation: Similar to the second proposal, the change

over cycles were considered by taking the difference between the month of two adjacent years

as shown in Eq. (4.4.5), in which a differencing of two years was used. The load mechanism
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loaded the differencing of representation pi, j.

The example of periodic-depth-differencing representation proposal is shown in Fig. 4.5(c).

According to the parameters set in the second proposal, to find the periodic representation of

July 1999, the representation of July 1998 minus 1997, 1997 minus 1996, 1996 minus 1995,

and 1995 minus 1994 were loaded.

h(t+N)
Pz

⇐ P[IP][z]−P[IP][z−1] (for z = 2, ...,d) (4.4.5)

4.4.5 Attention Module

In this method as shown in Fig. 4.1(e), the periodic representations from load mechanism (Sec-

tion 4.4.4) are weighted with the attention mechanism as described in Eqs. (2.3.5–2.3.7) and

Section 2.3.3. In this study, the different from Periodic-CRN is that the SP-CRN consider the

single resolution of periodicity.

4.4.6 Fusion Module

In this method as shown in Fig. 4.1(f), the output from attention module and CRN component

are combined as described in Eq. 2.3.8 and Section 2.3.3.

In Periodic-CRN, the spatial weight on the attention module was the only single (static)

spatial weight (WP in Eq. 2.3.8). In this study, we propose the dynamic spatial weight (DSW) by

replacing SSW in Eq. 2.3.8. In Eq. 4.4.6, the DSW is the WPk with the size of dynamic weight

is the number of time index in a periodicity cycle where k indicates the month of the year of the

prediction.

h(t+1)
f = relu(Wc ◦h(t+1)

c +WPk ◦h(t+1)
all ) (4.4.6)

After the fusion module, the convolution layer was used to transform the output X̂ (t+N) to

the same size as an input. In Eq. (4.4.7), the size of Wf and X̂ (t+N) are the same size as the input,

and the prediction of the model is X̂ (t+N). This study can obtain the prediction output without

the metadata component (Section 4.4.7) to make a model focused on the periodicity component.

Also, the ReLU function is unnecessary for this study because the prediction output can be
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minus.

X̂ (t+N) = h(t+N)
f ∗Wf (4.4.7)

4.4.7 Metadata Component

The idea of a metadata component is to indicate the month of the year (single resolution of

periodicity) of the prediction output with one-hot encoding support. The metadata component

was added at the end of the fusion module in Fig. 4.1(f), and Section 4.4.6. The metadata

component is the same as Periodic-CRN, which is described in Eq. 2.3.11 by removing the

ReLu function.

4.5 Experiment Settings

4.5.1 ERA-Interim Dataset

The description of ERA-Interim is described in Section 3.2.1. This study validates the proposed

method performance by choosing two climate variables from ERA-Interim: geopotential at 300

hPa (Z300) and sea surface temperature (SST). In addition, the two datasets used the same

periods of training, validation, and test set (1979–2015, 2016, and 2017–2018, respectively).

Fig. 4.6 shows the sample of datasets.

(a) ZH300 (b) SST

Figure 4.6: A sample of the monthly spatial plot of January 2018. (a) The Northern Hemisphere
of ZH300 data, where deep blue represents the lower value of ZH300. (b) The entire globe in
the spatial grid of SST data, where deep red represents high temperature, and the terrain area
(white) is ignored. Note that these projections are just for visualization.
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Z300 is at the same height as the jet stream, a strong upper tropospheric wind axis 9–12 km

above sea level. The jet stream wind separates the high and low pressure systems representing

hot and cold weather, respectively. Atmospheric variation in the upper troposphere is used for

weather prediction at the surface because the air circulation can be a precursor to weather pre-

diction [40]. Moreover, an upper troposphere change can cause extreme winter cold [38] over

northern Europe and cold air outflows in the Northern Hemisphere [22]. In this dissertation,

Z300 is converted to a geopotential height at pressure level 300 hPa (ZH300) divided by gravi-

tational acceleration (9.8 m/s2). The data was extracted to a 90 (latitude) × 360 (longitude) grid

size that covered the Northern Hemisphere.

Sea surface temperature (SST) plays an important role in the interaction between the earth’s

surface and atmosphere. It is an important parameter in energy balancing at the earth’s surface

and is also a critical indicator of the heat of sea water. A global SST was chose with a 1 degree

grid resolution, which is the spatial size of 180 (latitude) × 360 (longitude).

4.5.2 Evaluation Metric

As the area around the North and South Pole is less than the equator area, a latitude-weighted

root mean square error (RMSE) was employed as an evaluation metric. A latitude-weighted

RMSE was also the evaluation metric in WeatherBench [33], the first benchmark for data-driven,

medium-range climate prediction.

RMSE =
1

Nforecasts

Nforecasts

∑
i

√√√√ 1
NlatNlon

Nlat

∑
j

Nlon

∑
k

L( j)( fi, j,k− ti, j,k)2, (4.5.1)

where f is the model forecast, and t is the ground truth of the data. Nforecasts, Nlat, and Nlon are

the numbers for forecasting, latitude, and longitude, respectively. L( j) is the latitude weighting

factor by the latitude (degree) at the jth latitude index lat( j):

L( j) =
cos(lat( j))

1
Nlat

∑
Nlat
j cos(lat( j))

(4.5.2)
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4.5.3 Comparison Methods

Convolutional neural networks (CNN) [24]: A CNN is a standard deep-learning method for

next video frame prediction. It is also widely used and applied as a model for climate prediction.

In this experiment used five convolutional layers, the last being the output layer with an output

channel of one.

Convolution gated recurrent unit (ConvGRU) [5]: A ConvGRU was applied as a baseline

method by replacing the first two layers with ConvGRU from the CNN baseline model; that is,

two layers of ConvGRU and three layers of CNN. A prior consecutive spatial input was applied

to the model.

ConvLSTM: To determine the benefit of using an LSTM structure that captures change over

time, a ConvLSTM was adopted as a baseline method. The first two layers of the CNN were

replaced by ConvLSTM layers, the same way as the ConvGRU comparison method.

SP-CRN (GRU) and SP-CRN (LSTM): As described in Chapter 4, the ConvGRU and the

ConvLSTM were applied as the CRN component for the SP-CRN model. The SP-CRN (LSTM)

will undergo further experimentation for the periodicity proposals .

4.5.4 Settings

The experiments were conducted to test the hyperparameters on CNN and ConvLSTM to find

suitable ones for the experiments. The hyperparameters tested compared the kernel size of 3× 3,

5 × 5, and 7 × 7, and the number of filters of 16, 32, and 64. Though the RMSEs on validation

data were slightly different, the 3 × 3 kernel size and 16 filters were selected for the time of the

computational resources. Then the CNN layer was replaced with a ConvLSTM layer. The same

hyperparameters were used for all the methods because the baseline algorithms and the proposed

method used the similar CNN base network. A dropout rate of 0.5, and ELU activation functions

were applied to every layer except the output layer, which used the identity function.

The experiments performed all the models using an Adam optimizer with a learning rate

of 10−4, using mean square error (MSE) as a loss function. Shuffled training data was used to

train CNN, ConvLSTM, and ConvGRU to be more generalized; on the other hand, SP-CRN

did not use shuffled training data because the PRD component considers the order of training
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data. The models adopted early stopping with 100 epoch patience on validation loss. The the

models were trained and evaluated each model five times and computed the average RMSE from

each model prediction result. The dataset was scaled using standardized (Z-score normalization)

by calculating the mean and standard deviation (SD) from the whole of space and time in the

training dataset. The Z-score normalization makes the learning a stable convergence and leads

a better result.

All the experiments of SST were the same as for ZH300. The only difference was the size

of the spatial data: 90 × 360 (ZH300) and 180 × 360 (SST). The spatial data of SST contained

masking, which ignored all the terrain area (the white space in Fig. 4.6(b)). The terrain area was

replaced with 0 and ignored it when using the standardize method in the training dataset, and

MSE in the loss function. The same hyperparameters as ZH300 were used: a 3 × 3 kernal and

16 filters. The same set of comparison methods were used in SST experiments.

4.6 Results on ZH300

4.6.1 Input Sequence Length

The input sequence length affects the model’s performance, and each climate variable may need

a different length of the input. This experiment indicates the proper input sequence for each

model to perform one step ahead prediction on ZH300. Fig. 4.7 shows the average RMSE

prediction results comparing the models with the input sequence length of one to six months.

The SP-CRN in this experiment is utilizing the PRD proposal of nearby-time representation,

where npre = 0 (zero nearby-time representation). The results show that when increasing the

length of sequential input, the RMSE of all models is significantly decreasing. Furthermore,

the RMSE results tend to be converged after the sequence length of five or six months, indicating

that the five to six months prior knowledge of ZH300 is essential for one step ahead of ZH300

prediction, which is consistent with the SST memory is about six months [26]. The SST is

used to indicate ENSO, which impacts the prediction of weather and climate. The results also

present superiority of the models consider periodicity component, which has the lower RMSE

from their base model. The SP-CRN (GRU) and the SP-CRN (LSTM) have the competitive

RMSE in every length of sequential input.
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Figure 4.7: The average RMSE of the comparison methods in different length of sequential
input for ZH300 prediction. The error bar indicates the SD of the RMSE.

4.6.2 PRD Types

The SP-CRN (LSTM) was used as the model with periodicity component to perform the PRD

proposals. Note that SP-CRN refers to SP-CRN (LSTM) from now on. An input sequence

length of five months was selected as the baseline setting because it was the best for the SP-

CRN model in the previous experiment (Fig. 4.7). Table 4.1 shows the comparison of SP-CRN

for the three proposals in different settings. The SD shows the dispersion to the average RMSE

value. The SP-CRN-1 (1,1,0) with an RMSE of 74.22 m is slightly better than the SP-CRN-1

(0,1,0) baseline result (RMSE of 76.89 m). The result of SP-CRN-1 (1,1,0) indicated that only

the nearby-time representation of plus and minus one month in one prior periodic cycle was

more important than the more than two months (npre > 1) for ZH300 prediction. All settings for

the SP-CRN-2 proposal results showed a worse prediction accuracy compared to the baseline

except SP-CRN-2 (0,4,0) with an RMSE of 70.58 m, indicating the importance of the informa-

tion of the previous four periodic cycles for ZH300 prediction and possibly for the four-year

oscillation of ENSO [37]. All settings of SP-CRN-3 outperfored the baseline result, of which

SP-CRN-3 (0,0,2) had the best with an RMSE of 67.97 m. The results clearly showed that

the change over cycles significantly improved ZH300 prediction accuracy. In summary, using

SP-CRN for periodicity in ZH300 prediction was most effective for periodic-depth differenc-

ing representation (PRD-3) followed by periodic-depth representation (PRD-2) and nearby-time

representation (PRD-1).
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Table 4.1: Evaluation of different settings on the ZH300 prediction for SP-CRN with three
proposals. The settings ((x, y, z) are the numbers of the nearby-time of PRD-1, periodic-depth of
PRD-2, and periodic-depth of PRD-3, respectively. The SP-CRN-1, SP-CRN-2, and SP-CRN-
3 indicate each proposal in SP-CRN which was a nearby-time representation, periodic-depth
representation, and periodic-depth differencing representation, respectively. The highlighted
result in blue is the best prediction accuracy for each proposal, while the gray highlight in the
SP-CRN baseline result.

Method Avg. RMSE (m) SD of RMSE (m)
SP-CRN-1 (0,1,0) 76.89 13.43

SP-CRN-1 (1,1,0) 74.22 15.44

SP-CRN-1 (2,1,0) 81.64 13.89

SP-CRN-1 (3,1,0) 84.42 17.67

SP-CRN-2 (0,2,0) 79.69 13.96

SP-CRN-2 (0,3,0) 94.85 14.05

SP-CRN-2 (0,4,0) 70.58 12.43

SP-CRN-2 (0,5,0) 103.93 12.62

SP-CRN-2 (0,6,0) 100.76 16.23

SP-CRN-3 (0,0,2) 67.97 11.95

SP-CRN-3 (0,0,3) 70.05 12.23

SP-CRN-3 (0,0,4) 69.53 12.16

SP-CRN-3 (0,0,5) 68.12 12.13

SP-CRN-3 (0,0,6) 68.26 12.47

4.6.3 Combination of PRD Types and Metadata

To indicate the performance of the periodicity component on both nearby-time and periodic-

depth representation, the proposals of SP-CRN-1 (1,1,0), SP-CRN-2 (0,4,0), and SP-CRN-3

(0,0,2) because they performed the best in their settings from the previous experiment (Table

4.1). The mixed proposals were combined with all the combinations that were SP-CRN-1+2

(1,4,0), SP-CRN-1+3 (1,0,2), SP-CRN-2+3 (0,4,2), and SP-CRN-1+2+3 (1,4,2). The exper-

iment also tested the idea of a metadata component by selecting SP-CRN-1+3 (1,0,2) as the

mixed proposal to be added to the metadata component (SP-CRN-1+3-Meta (1,0,2)). Note that

the results explained in this section were based on SSW, and did not include the metadata. The

DSW explanation was explained in Section 4.6.5.

Table 4.2 shows the experimental results of each model setting that had the best prediction

accuracy. All the proposals on SP-CRN had better prediction accuracy than SP-CRN (LSTM)
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baseline, indicating that the periodicity utilization proposals helped improve prediction accu-

racy. The mixed proposal of SP-CRN-1+3 (1,0,2) was the best compared with the other mixed

proposals, which improved SP-CRN-1 (1,1,0) and SP-CRN-3 (0,0,2) accuracy with an RMSE of

66.39 by considering the periodicity in both directions (nearby-time and periodic-depth). In con-

trast, the other mixed proposals with PRD-2 were worse than their baseline models. The meta-

data component in SP-CRN-1+3-Meta (1,0,2) was superior at indicating the phase of periodicity

and had the lowest RMSE comparing to SP-CRN-1+3 (1,0,2) (base model).

Table 4.2: Evaluation of different settings on the ZH300 prediction for SP-CRN and compari-
son methods.

Method RMSE SD
SSW | DSW SSW | DSW

CNN 141.79 16.54

ConvGRU 125.80 8.19

ConvLSTM 126.75 9.70

SP-CRN (GRU) 73.47 11.37

SP-CRN (LSTM) 76.89 13.43

SP-CRN-1 (1,1,0) 74.22 | 68.26 15.44 | 11.73

SP-CRN-2 (0,4,0) 70.58 | 59.91 12.43 | 10.82

SP-CRN-3 (0,0,2) 67.97 | 66.60 11.95 | 12.52

SP-CRN-1+2 (1,4,0) 82.89 | 56.91 13.85 | 11.25

SP-CRN-1+3 (1,0,2) 66.39 | 63.07 12.21 | 9.81

SP-CRN-2+3 (0,4,2) 88.44 | 57.47 10.56 | 11.13

SP-CRN-1+2+3 (1,4,2) 80.59 | 54.72 11.65 | 10.84

SP-CRN-1+3-Meta (1,0,2) 50.27 | 64.02 12.77 | 10.13

4.6.4 Spatial Distribution Analysis

Figure 4.8 shows the output result and error distribution of February 2017, in which the aver-

age RMSE of the month reflected the results of the PRD proposals in Table 4.2. Figure 4.8a

shows the prediction output, in which all of the methods captured the global pattern compared

to the ground truth. However, the low ZH300 value around the North Pole was only captured by

the SP-CRN (LSTM) methods that considered the periodic-depth representation. The predic-

tion results indicated that the periodicity component helped the models capture a wider range

of ZH300 values. Moreover, the periodic-depth representation was more important than the
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nearby-time representation for capturing the lowest peak value.
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Ground Truth CNN ConvGRU

SP-CRN-1 (1,1,0)

ConvLSTM

SP-CRN (GRU) SP-CRN (LSTM) SP-CRN-2 (0,4,0)

SP-CRN-3 (0,0,2) SP-CRN-1+3 (1,0,2) SP-CRN-1+3-Meta (1,0,2)

(a) Ground truth and prediction results.

CNN ConvGRU ConvLSTM

SP-CRN-2 (0,4,0)

SP-CRN (GRU)

SP-CRN (LSTM) SP-CRN-3 (0,0,2)

SP-CRN-1+3 (1,0,2) SP-CRN-1+3-Meta (1,0,2)

SP-CRN-1 (1,1,0)

(b) Error distribution (absolute error).

Figure 4.8: The prediction and error distribution of ZH300 on February 2017.
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Figure 4.8b shows the spatial error distribution using the absolute error between ground

truth and prediction results. The CNN, ConvGRU, and ConvLSTM results showed a large area

of high error (100–150 m) around the tropical area. However, there was only a small error on the

subtropical area of the CNN, ConvGRU, and ConvLSTM. Thus, the yearly change of this area

was not much, which did not show a huge advantage for the model considering the periodicity

components. The models that considered periodicity components, on the other hand, showed

a much smaller error in the tropical area. The SP-CRN (GRU), SP-CRN (LSTM), and SP-

CRN-1 could not capture the peak of low values in Figure 4.8a, in which they represented the

high error distribution around the North Pole in Figure 4.8b. The SP-CRN-2 and SP-CRN-

3, which considered only periodic-depth representation, showed some small area of high error

distribution even when comparing SP-CRN-1+3 and SP-CRN-1+3-Meta with lower RMSE.

4.6.5 Static Spatial Weights vs Dynamic Spatial Weights

The experiments tested on all SP-CRN settings with DSW to check the availability of dynamic

spatial weights for attention module output. The results in Table 4.2 clearly shows that DSW

drastically improved for the SP-CRN results except for SP-CRN-1+3-M. SP-CRN-3 and SP-

CRN-1+3 results of DSW were slightly better than the SSW results. The PRD-3 of DSW results

may indicate that the change over cycle in each month was not much different, so the DSW did

not affect the prediction accuracy. The DSW behavior was metadata-like which may confuse

the network because the DSW of SP-CRN-1+3-M already included the metadata component.

The error distribution (Fig. 4.9) was plotted comparing the SSW and DSW for SP-CRN-1

and SP-CRN-2, and selected a month that the prediction accuracy was similar to the Table 4.2.

The figures show that the high error areas of DSW were removed from the prediction results,

especially the SP-CRN-2 that the lower errors were also removed in low latitude areas.

4.6.6 Periodicity Analysis

The weights in the attention module (Section 4.4.5) were analyzed to indicate the importance of

the periodic representation collected in the PRD. The attention weights were from the trained

model with 37 years (1979–2015) of the training set, then averaged each of the same months.
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SP-CRN-2 (0,4,0) SSW SP-CRN-2 (0,4,0) DSW

SP-CRN-1 (1,1,0) SSW SP-CRN-1 (1,1,0) DSW

Figure 4.9: The ZH300 error distribution of SP-CRN-1 (1,1,0) SSW, SP-CRN-1 (1,1,0) DSW,
SP-CRN-2 (0,4,0) SSW, and SP-CRN-2 (0,4,0) DSW in January 2018, with RMSE of 72.51 m,
63.16 m, 63.03 m, and 55.94, respectively.
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Figure 4.10: The average attention weight of training data on SP-CRN-1 (1,1,0) for ZH300
prediction from the average of five runs.

Fig. 4.10 shows the attention weight of the SP-CRN-1 (1,1,0) model, which was the best setting

in SP-CRN-1 SSW of the ZH300 prediction. The phase of periodicity for one prior periodic

cycle for one month ahead (plus-1) was more important than the same (self) or previous month

(minus-1) of SSW and DSW, respectively. The attention weight of SSW plus-1 was high in

May and October but low in February, while the attention weight for self was the opposite.

Meanwhile, the DSW plus-1 was similar, but the height from May to December differed from

SSW plus-1 from June to September. The minus-1 was smooth for all phases, indicating the

same importance for every month of the ZH300 prediction.

Fig. 4.11 shows the attention weight for the ZH300 prediction with the SP-CRN-2 model.

The periodic cycle of prior 1–4 years were considered together with the attention module.

The overall weights were almost equal among the different depths between the weight of 0.1

to 0.4 excepts SSW depth-4, which indicated the importance of the fourth prior year over the

other years in SSW. The single spatial weight of SSW, the depth-4 was significant. While the

dynamic spatial weights of DSW, all the depths were not significantly different.

4.7 Results on SST
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Figure 4.11: The average attention weight of training data on SP-CRN-2 (0,4,0) for ZH300
prediction from the average of five runs. The attention weight of depth-1 to depth-4 was the
value of the prediction month for one to four prior periodic cycles.

4.7.1 Input Sequence Length

This experiment indicated the performance of comparison methods by considering the length of

the sequential input. Fig. 4.12 shows the average RMSE from a sequence length of one to six.

The ConvGRU and the ConvLSTM showed the competitive results as did the SP-CRN (GRU)

and SP-CRN (LSTM), which used the zero nearby-time representation as the periodicity com-

ponent, which can improve prediction accuracy of base models by the SST value of around two

K. The increasing input sequence length slightly decreased the RMSE of the SP-CRN (GRU)

and the SP-CRN (LSTM) for SST prediction. Except for the length of one compared to two,

the RMSE dropped significantly. The results demonstrated the superiority of the periodicity

component over the base models. However, the length of the sequential input improved the

prediction accuracy slightly.
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Figure 4.12: The average RMSE of comparison methods of different lengths of sequential input
for SST prediction. The error bar indicates the SD of the SST.

4.7.2 PRD Types

The input sequence length of five was selected for this experiment as the SP-CRN had the lowest

RMSE of 0.86 K in the previous experiment (Fig. 4.12). Table 4.3 shows the results of the three

proposals compared with different settings for SP-CRN. The results for SP-CRN-1 were slightly

better than for SP-CRN-1 (0,1,0) (baseline). The best result was for SP-CRN-1 (1,1,0) with an

RMSE of 0.79 K. The SP-CRN-2 results indicated that the importance of a prior periodic cycle

of more than four years was almost identical for an SST prediction. All the settings of SP-CRN-

3 outperformed the baseline result, for which SP-CRN-3 (0,0,2) had the best RMSE of 0.55

K, and the change over cycles played an important role. The results showed that SP-CRN-2

with more than four years and SP-CRN-3 with the depth of two drastically improved prediction

accuracy. In summary, the order of the effectiveness of SP-CRN in periodicity utilization for an

SST prediction was PRD-3 over PRD-2 and PRD-1.
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Table 4.3: Evaluation of different settings on SST predictions for SP-CRN with three proposals.
The highlighted result in blue shows the best prediction accuracy for each proposal, while the
highlight in gray is the SP-CRN baseline result.

Method Avg. RMSE (K) SD of RMSE (K)
SP-CRN-1 (0,1,0) 0.88 0.09

SP-CRN-1 (1,1,0) 0.79 0.10

SP-CRN-1 (2,1,0) 0.82 0.08

SP-CRN-1 (3,1,0) 0.84 0.12

SP-CRN-2 (0,2,0) 1.29 0.11

SP-CRN-2 (0,3,0) 0.96 0.05

SP-CRN-2 (0,4,0) 0.63 0.06

SP-CRN-2 (0,5,0) 0.63 0.05

SP-CRN-2 (0,6,0) 0.61 0.05

SP-CRN-3 (0,0,2) 0.55 0.04

SP-CRN-3 (0,0,3) 0.56 0.06

SP-CRN-3 (0,0,4) 0.57 0.05

SP-CRN-3 (0,0,5) 0.57 0.05

SP-CRN-3 (0,0,6) 0.56 0.05

4.7.3 Combination of PRD Types and Metadata

This section explained the results based on SSW. The DSW based results were explained in

Section 4.7.5. The best setting of each proposal were mixed with a previous experiment (Table

4.3). These are SP-CRN-1 (1,1,0), SP-CRN-2 (0,6,0), and SP-CRN-3 (0,0,2). All the combina-

tions of mixed proposal are SP-CRN-1+2 (1,6,0), SP-CRN-1+3 (1,0,2), SP-CRN-2+3 (0,6,2),

and SP-CRN-1+2+3 (1,6,2). Table 4.4 shows the results of all the methods along with their

best settings. SP-CRN-1+3 (1,0,2) was the best of all mixed proposals with an RMSE of 0.56

K, which was no statistical difference to SP-CRN-3 (0,0,2) (baseline). Mixing the proposals

produced no accuracy improvement from baseline. Meanwhile, the metadata component was

added to SP-CRN-1+3 (1,0,2) to indicate its performance for an SST prediction of the best

mixed proposal. The metadata component of SP-CRN-1+3-Meta (1,0,2), on the other hand,

demonstrated its superiority by improving prediction accuracy with an RMSE of 0.43 K and a

small SD compared to SP-CRN-1+3 (1,0,2) (baseline).
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Table 4.4: Evaluation of different settings on the SST prediction for SP-CRN and compari-
son methods.

Method RMSE SD
SSW | DSW SSW | DSW

CNN 3.32 0.05

ConvGRU 3.03 0.06

ConvLSTM 3.02 0.06

SP-CRN (GRU) 0.77 0.13

SP-CRN (LSTM) 0.88 0.09

SP-CRN-1 (1,1,0) 0.79 | 0.56 0.10 | 0.04

SP-CRN-2 (0,6,0) 0.61 | 0.49 0.05 | 0.04

SP-CRN-3 (0,0,2) 0.55 | 0.56 0.04 | 0.05

SP-CRN-1+2 (1,6,0) 0.74 | 0.47 0.08 | 0.03

SP-CRN-1+3 (1,0,2) 0.56 | 0.59 0.05 | 0.04

SP-CRN-2+3 (0,6,2) 0.65 | 0.47 0.05 | 0.03

SP-CRN-1+2+3 (1,6,2) 0.61 | 0.48 0.05 | 0.04

SP-CRN-1+3-Meta (1,0,2) 0.43 | 0.46 0.03 | 0.03

4.7.4 Spatial Distribution Analysis

Figure 4.13 shows the output result and error distribution of January 2018 that reflects the order

of the SP-CRN results in Table 4.4. Figure 4.13a shows the prediction output in which the

methods that use periodicity components can capture changes in high and low temperature.

Compared to the CNN, the ConvGRU, and ConvLSTM raely captured the Pacific Ocean’s high

temperature. Only the smooth change pattern was presented in the prediction output.
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ConvLSTM SP-CRN (GRU) SP-CRN (LSTM)

SP-CRN-1 (1,1,0) SP-CRN-2 (0,6,0) SP-CRN-3 (0,0,2)

SP-CRN-1+3 (1,0,2) SP-CRN-1+3+Meta (1,0,2)

(a) Ground truth and prediction results.

CNN ConvGRU ConvLSTM

SP-CRN (GRU) SP-CRN (LSTM) SP-CRN-1 (1,1,0)

SP-CRN-2 (0,6,0) SP-CRN-3 (0,0,2) SP-CRN-1+3 (1,0,2)

SP-CRN-1+3-Meta (1,0,2)

(b) Error distribution (absolute error).

Figure 4.13: The prediction and error distribution of SST on January 2018.
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SP-CRN-6 (0,6,0) SSW SP-CRN-2 (0,6,0) DSW

SP-CRN-1 (1,1,0) SSW SP-CRN-1 (1,1,0) DSW

Figure 4.14: The SST error distribution of SP-CRN-1 (1,1,0) SSW, SP-CRN-1 (1,1,0) DSW,
SP-CRN-2 (0,6,0) SSW, and SP-CRN-2 (0,6,0) DSW (RMSE of 0.60 K) in January 2018 with
RMSE of 0.75 K, 0.60 K, 0.65 K, and 0.54 K, respectively.

Figure 4.13b shows the error distribution of comparison methods. The CNN, ConvGRU,

and ConvLSTM showed that the extremely high temperature (Pacific Ocean) and low temper-

ature (North and South Pole) have high error distribution, but for the model, considering the

periodicity, it was not much different. SP-CRN (LSTM) showed a higher error distribution in

more areas than the SP-CRN (GRU) and SP-CRN variant methods.

4.7.5 Static Spatial Weights vs Dynamic Spatial Weights

The results of DSW (Table 4.4) were similar to the ZH300 results which there was an accuracy

improvement for almost the SP-CRN settings. Also, the PRD-3 of DSW in SST did not improve

the accuracy in SP-CRN-3 and SP-CRN-1+3. However, including PRD-2 along with PRD-3 of

DSW in SP-CRN-1+2+3 helped improve prediction accuracy. The DSW of SP-CRN-1+3-M

showed worse prediction accuracy compared to SSW, which is the same trend as ZH300 result.

Fig. 4.14 show the error distribution of SP-CRN-1 and SP-CRN-2. The error distribution of

DSW obviously showed lower error especially in the subtropical area.
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Figure 4.15: The average attention weight of training data on SP-CRN-1 (1,1,0) for SST predic-
tion from the average of five runs.

4.7.6 Periodicity Analysis

Fig. 4.15 shows the attention weight of SP-CRN-1 (1,1,0) which was the best result in the SP-

CRN-1 settings. The periodic pattern of SSW plus-1 was similar to DSW plus-1 (Fig. 4.10)

in terms of one decrease in the early year and then two peaks. The plus-1 and minus-1 had

occasional importance according to some months, while the attention weight of self was smooth

every month. The difference in the attention weight pattern of plus-1 and drastically different

RMSE between SSW and DSW, especially in June to August, indicated that each periodicity

phase needs a specific periodicity pattern.

Fig. 4.16 shows the attention weight of SP-CRN-2 which showed the importance of periodic-

depth from one to six years of a periodic cycle. The overall weights were about 0.1–0.2 for all

months, which was about the average of six weights—0.167, except the late year of SSW depth-

5 and DSW depth-1, which seems to have a periodic cycle.

4.8 Discussion and Limitation of the Proposed Method

First, a clear outcome of this study is that SP-CRN-1 (1,1,0) prediction results of ZH300 and

SST are the best among the PRD-1. Considering only nearby one month of PRD-1 can indicate

that the phase shifts of periodicity have occurred in the range of one month. During a season
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Figure 4.16: The average attention weight of training data on SP-CRN-2 (0,6,0) for SST predic-
tion from the average of five runs.

(a term of three months), climate variables may have a similar changing tendency. In addi-

tion, for ZH300 (Fig. 4.10), plus-1 and self show obvious opposite relationship, while for SST

(Fig. 4.15), plus-1 and minus-1 indicate opposite relationship, which may reflect the time-scale

of persistence of each change. Second, the SP-CRN-2 (0,4,0), which considers the prior pe-

riodic cycle of four years, turns out the best prediction accuracy in PRD-2 of ZH300, and the

drastic accuracy improvement when considering for more than four years of SST. Quasi-biennial

and ENSO time-scale variations [39] are a possible cause of the four year periodic cycle that is

occurred in SP-CRN-2 results.

Meanwhile, the proposed SP-CRN model has some limitations to consider. First, depending

on the property of climate variable, the best combination of PRD type and its parameter is

needed to be investigated. Second, this study considers the monthly data as the time resolution

and the spatial input size of the Northern Hemisphere and the entire globe for the global scale

forecasting. The higher time resolution causes the larger size in PRD (e.g., array size of 365

for daily data), and consumes the computational and memory resources. Third, extending the

SP-CRN to multi-scale periodicity is possible as the original Periodic-CRN does (i.e., daily

and weekly). However, multi-scale such as daily and yearly periodicity causes huge PRD as

well. Therefore, some embedding on PRD to low dimensions is needed. Lastly, SP-CRN was
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designed to work on the data with a periodic pattern. Therefore, other data with periodic patterns

should be beneficial which need further investigation.

Furthermore, the proposed method of DSW can improve the prediction accuracy on ZH300

and SST when without metadata. The results of SSW with metadata were better than the DSW

without metadata, which means the metadata with SSW is enough to obtain the best prediction

result.

57





Chapter 5

Conclusion and Future Work

5.1 Summary

In this dissertation, the study of spatiotemporal climate prediction model, spatial and error dis-

tribution, and periodicity analysis have been made. The study experimented on ZH300 and SST,

which are the important climate variables that can indicate global climate change.

Firstly, this study introduced the prediction of upper tropospheric circulations over the

Northern Hemisphere by predicting ZH300 with multivariate features, which relates to the polar

jet stream affecting the strength and the path of mid-latitude cyclones. The constructed predic-

tive model ConvLSTM outperforms CNN and LR models in short- and long-term predictions.

This result shows that ConvLSTM can maintain spatial correlation and remember important in-

formation through the network. Furthermore, the spatial error distribution of prediction output

shows that ConvLSTM has much smaller errors at the paths of subtropical and polar jets. It is

conceivable that considering the earlier six-months’ data as the input of ConvLSTM and tempo-

ral variations in the ConvLSTM layer can improve accuracy compared to CNN and LR models.

Then, the study investigated the importance of features to predict ZH300. The result shows that

T300 and self prior of ZH300 are important features. Moreover, using only the important fea-

tures can increase accuracy, which achieved less than 1% RMSE against ZH300 original value

even for short- and long-term prediction.

Secondly, the Periodic-CRN model is adopted to use the periodicity component for climate

forecasting, and proposed a Soft Periodic-CRN (SP-CRN) with three types of periodic represen-

tation dictionaries (PRD)—nearby-time (PRD-1), periodic-depth (PRD-2), and periodic-depth
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differencing (PRD-3) representation—to overcome the phase shift and non-stationarity of peri-

odic patterns. The experiments were conducted to perform periodicity on ZH300 and SST of

the ERA-Interim dataset. The results showed the superiority of periodicity on SP-CRN (GRU)

and SP-CRN (LSTM) over their base models (ConvGRU and ConvLSTM) in every length of

sequential input. Furthermore, the PRD proposals showed that the effectiveness of SP-CRN

in PRD-3 over PRD-2 and PRD-1, respectively, for ZH300 and SST predictions. Considering

only the periodic-depth of two in PRD-3, drastically improved prediction accuracy. Moreover,

the mixed proposal of SP-CRN-1+3 (1,0,2) slightly improved ZH300 prediction accuracy from

their base models. The results of ZH300 and SST also showed that prediction accuracy improved

when the PRD-2 considered the prior periodic cycle of four years. This may have indicated that

the PRD-2 proposal could capture the four-year periodic cycle of ENSO. Lastly, in the attention

weight analysis, the importance of one-month ahead of one prior periodic cycle had the most

impact on the prediction.

5.2 Future Research Directions

The findings of this research may lead to future work in using periodicity in a spatiotemporal

climate forecasting model. The study showed that including metadata on SSW in SP-CRN

obtained the best prediction results, while the DSW drastically improved the accuracy compared

to SSW when without metadata. However, the metadata together with DSW could not obtain

the accuracy improvement. The metadata component with DSW (metadata-like) may conflict

with each other in switching the periodicity phase. It would be interesting to conduct studies

on combining DSW and metadata components to enhance the proposed method’s performance.

The idea would be to remove the metadata component and add convolutional layers after the

DSW process before the fusion module would give more space to learn for metadata-like of

DSW.

Another aspect is that the periodicity analysis on DSW. The DSW helped to capture the

change of spatial weight, which is different from SSW that focuses on the attention weights

inside the attention module. As the periodicity analysis on DSW in Sections 4.6.6 and 4.7.6,

the rapid changed of attention weight in consecutive months were reduced. Meaning that there
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would be drastic changes in spatial weights that needed further analysis.

Lastly, the proposed SP-CRN can be applied to multiple resolutions of periodicity as the

original Periodic-CRN. It would lead to the utilization of the proposed method on climate data

that has the multiple resolutions of periodicity. In general, climate data has multiple periodicity

which is daily and yearly according to the earth rotation and revolution. However, the urban

areas in which human activities mainly occurred on the ground level caused more periodicity

resolutions (e.g., daily, weekly and monthly) for some climate data (e.g., the temperature at

ground level). The SP-CRN with the multiple resolutions of periodicity component may help in

capturing such kind of data.
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