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Chapter 1

Introduction

Classical computation may be baldly interpreted as the computers embodied in the
Turing/von Neumann paradigm. Nowadays it has been incredibly successful for in-
formation processing. However, the increased demand due to highly complex com-
putational tasks, such as speech recognition or chaotic time series prediction, has
motivated the search for advanced unconventional computation [1].

In the context of nonlinear science, many artificial or natural dynamical systems
driven by external input signals can be regarded as performing real-time computa-
tions of these signals. A high-performance, low-power computing system is our brain,
which outperforms the modern classical computers in tasks of vision, audition, and
pattern recognition even when provided poorly-conditioned inputs. The brain’s com-
putational units are neurons. The collection of these neurons connected to each other
composes a neural network. With regard to the processing and communicating in-
formation, the neural network is plastic. The form of information processing in the
neural network has inspired to design the artificial neural networks that mimic the
brain’s information processing capabilities.

A simple case of the artificial neural network is an adaptive nonlinear information
processing system that combines numerous processing units without internal loops.
It is meaning that the same neuron never propagates the input signal twice. This
structure is referred to as feedforward neural network, which is trained by using the
backpropagation algorithm [2]. If the processing units or neurons are combined by
the recurrent connections, both the current input and output are influenced by the in-
formation from prior inputs. Such type of artificial neural network is called recurrent
neural network. The recurrent neural network is a dynamical system whose states
retain the information of all previous input signals. This design makes the recurrent
neural network good at dealing with sequences from time series data. Speech recog-
nition, image captioning, and time series prediction all require that a model produce
outputs that are sequences. As the number of neurons increases, the potential expres-
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sive power (the ability to approximate functions [3]) of a recurrent neural network
grows exponentially [4]. However, the training procedure of the recurrent neural net-
work has long been considered to be challenging. For example, the problem due to
vanishing/exploding gradients, occur when backpropagating errors across many time
steps [2].

Initially, reservoir computing is introduced as the Echo state network [5] depicted
in Fig.1.1, which is a special type of recurrent neural network that can avoid the
vanishing and exploding gradient problem. At the same time, a bio-inspired view
suggests a computational model of reservoir computing that can process a multi-
modal input in real time [6]. These studies emphasize that the concept of the reservoir
is referred to as a high dimensional dynamical system with a rich space of internal
states. Generally, the reservoir consists of a mass of artificial neurons interconnected
randomly. However, recent studies have revealed alternative implementations of the
reservoirs, such as implementing a single nonlinear physical node with a delay line as
a reservoir [7]–[14], using the cellular automaton as a reservoir [15], [16], exploiting
the dynamics of road traffic as a reservoir [17], and employing a bucket of water as
a reservoir [18], [19]. The term "reservoir" can be interpreted as certain nonlinear
dynamical systems applied to performing computation. Indeed, "reservoirs" can be
found everywhere in nature. For example, calm water with no ripples disturbing the
surface can be seen as a reservoir without external perturbation or input. Information
of input signal may be encoded in a series of drops of water. When the series of drops
drip into the calm water, the information is transmitted and converted to spatial
patterns of water waves. In this case, water undertakes the transformation from the
low-dimensional input space into a high-dimensional feature space of waves in parallel.

In this work, we focus on a new computational methodology, called the time-
delay reservoir (TDR) [7], realizes the reservoir using a single nonlinear physical
node with a delay line, as depicted in Fig.1.2. The delay line is a chain of points
placed equidistantly in time, which are denoted as virtual neurons. In the TDRs,
the virtual neurons play a role as the reservoir layer, i.e., they are an alternative
to the artificial neural network in conventional reservoir computing. The virtual
neurons can exhibit high-dimensional transient responses due to the time delay. A
major advantage of the TDRs is that they can be easily implemented in hardware.
This novel paradigm has attracted several hardware implementations based on analog
electronics [7], electromechanical devices [20] and opto-electronic devices [8], [21].

In the TDRs, their surrounding local environment, thermal noise [22], other noise
related fluctuations [23] and quantization noise [10] have a non-negligible impact on
their performance. It is necessary to reduce both internal and external noise effects
by using noise mitigation techniques. Indeed, the noise susceptibility of the TDRs is
closely related to their robustness and adaptability.

The purpose of this study is to improve the noise robustness of the TDRs. We
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consider a general model of the TDRs based on a nonlinear dynamical system with
time-delayed feedback in the presence of noise (see Chapter 2). Short-term memory
[24] is a significant capacity of such TDRs and is easily impaired by noise. Recently,
a particular method of measuring the memory trace degraded in the presence of noise
has been proposed in the context of the Fisher information [25]. For single node
delay-based reservoir computing, a method to optimize the input mask in a task-
independent manner is developed for improving memory performance in the presence
of state noise (see Chapter 3). We theoretically show that the input mask obtained
as the maximal principal component of the spatial Fisher memory matrix optimizes
the memory performance of such TDRs with small input signal and Gaussian state
noise. The single Mackey-Glass oscillator is used to demonstrate the effectiveness
of the proposed method via benchmark tasks strongly depending on memory (see
Chapter 4). Compared with the existing optimization method, the proposed one is
running-time-efficient and significantly improves memory performance in the presence
of state noise. The memory-nonlinearity trade-off in view of the input masks is
investigated using the chaotic times series prediction tasks. We also show that the
echo state property of such TDRs impaired by state noise can be improved by the
optimized input masks via the consistency parameter. This method for input mask
optimization is extended for the hierarchical deep TDRs coupled unidirectionally (see
Chapter 5). The coupled Ikeda systems are used to illustrate the proposed method.
Analogously to the case of the single Mackey-Glass oscillator, we confirm the efficacy
of the proposed method on the benchmark memory tasks and investigate the memory-
nonlinearity trade-off by using chaotic times series prediction tasks. We also show
that the consistency of each layer can be improved by the optimized input masks.

1.1 Echo state network (ESN)
The Echo State Network [5], [24], [26] is a discrete-time recurrent neural network
composed of a sparse, random collection of analog neurons as illustrated in Figure
1.1. The neurons in the hidden layer communicate via fixed weighted connections.
The model of the neurons applies an activation function (generally a saturation func-
tion) to process the sum of its weighted inputs. The activation state x(n) of these
neurons at time n are referred to as the echo states that hold the "echo" of the input
history [26]. A fading memory [27] (see section 1.4), which is strictly an input/output
property, ensures that the input history can be successfully propagated and held in
the ESN. This property is provided by the intrinsic dynamics of the ESN.

The network dynamics is generally modelled as follows. Assume that the ESN
constructs with K input units, N hidden neurons and L output units. The input
units at time n are u(n) = (u1(n), . . . , uK(n))

⊤ ∈ RK . A N × K weight matrix
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Win ∈ RN×K is applied to the input stream. At every step n, the hidden layer with
an N × N interconnection matrix W ∈ RN×N , generates an internal state x(n) =
(x1(n), . . . , xN(n))

⊤ ∈ RN , which constitutes its current response to preceding inputs
u(t) for t ≤ n. Assembling these components gives the neuron state update equation
at every time step n as

x(n) = (1− α)x(n− 1) + αf(Winu(n) +Wx(n− 1)). (1.1)

Here f = (f1, . . . , fN) are the activation function of the internal neurons.
The above expression defines a reservoir map Φ as

x(n) = Φ(x(n− 1),u(n)), (1.2)

which transform the input signal into a high-dimensional feature space. This is
achieved through a large collection of interconnected neurons. Then the preferred
features can be extracted in a linear combination of internal states to create the
outputs y(n) = (y1(n), . . . , yL(n))

⊤ ∈ RL as

y(n) = fout(Woutx(n)), (1.3)

where fout = (f out
1 , . . . , f out

L ) are the output functions of output units, and Wout ∈
RL×N is the connections to the output units. The readout function should be memo-
ryless map to generate a desired output. It should only access the history information
of input signals through the internal state x.

Figure 1.1: Schematic of echo state networks.
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1.2 Time-delay reservoir (TDR)
Previous research has shown the huge computational processing power in even the
simplest time-delay dynamical system within the context of machine learning, such as
attractor reconstruction [28], speech recognition [20], [21]. In general, the dynamics of
the time-delay system is governed by the solution of a time-delay differential equation
of the form

ẋ(t) = F (x(t), x(t− τ)) (1.4)
with any given nonlinear function F and delay time τ . Because the dynamical variable
x(t) depends on the information of the system during the continuous time interval
[t − τ, t], its phase space is infinite dimensional. This is the key to realizing a high-
dimensional mapping from the input space into a high-dimensional feature space.

Time-delay reservoir [7] is an implementation of reservoir computing with a new
computational methodology that the network is replaced by a single nonlinear dy-
namical node subjected to delayed feedback. The time-delay system is applied to
emulate a large interconnected network by creating virtual neurons within the delay
line using time-multiplexing at the input. The time-continuous input stream u(t)
that is sampled and held for the system delay τ defines a step input function I(t) as

I(t) = u(k) for τk ≤ t < τ(k + 1). (1.5)

In the next step, a matrix M ∈ RN×K (called input mask), which corresponds to the
input-reservoir connections of the ESNs, defines the coupling weights from I(t) to the
virtual neurons as

J(t) = M × I(t). (1.6)
The input mask M is often chosen randomly to break the symmetry between the vir-
tual neurons. To feed the input sequence J(t) into the nonlinear node, the dynamical
variable x(t) based on the interaction of J(t) is modeled as

ẋ(t) = F (x(t), x(t− τ) + γJ(t)), (1.7)

where γ is the input gain.
The number of virtual neurons in the system is defined by N equidistant points

separated in time θ = τ/N along the delay interval τ . Thus, in TDRs, the states
of virtual neurons is always discretized in time. When (n − 1)τ < t ≤ nτ , the ith

component of the virtual neurons x(n) = (x1(n), x2(n), . . . , xN(n))
⊤ ∈ RN is given

by
xi(n) = x(nτ − (N − i)θ) for i = 1, 2, . . . , N. (1.8)

as illustrated in Figure 1.2. Generally, the output function of TDRs is considered to
be an identity function, so that the output is computed according to

y(n) = Woutx(n). (1.9)



1.3. TRAINING RESERVOIRS 6

It should be noted that the output y(n) is also discrete due to the virtual neurons.
Therefore, the speed of information processing depends on the state update given by
the length τ of the delay line.

One attractive feature of TDRs is the simplicity of architecture. They may be
implemented in a wide range of nonlinear system with delayed coupling. Examples
of TDRs so far include analog circuits [7], electromechanical devices [20] and opto-
electronic devices [8], [11], [12], [21].

Figure 1.2: Schematic of time-delay reservoirs.

1.3 Training Reservoirs
It is well-known that although recurrent neural networks are potentially powerful
approximators of dynamics [29], in practice, it is not easy to train properly. The
main reasons are the local optima and vanishing/exploding gradients [2], [30]. In the
training of reservoir computing, only the connections between the reservoir neurons
and the output units are adapted with a simple method such as linear regression so
as to generate desired output [5]. There are many available training methods in this
diverse field. Here we introduce two commonly used methods, namely ridge regression
learning algorithm and Recursive Least Squares algorithm. In the following, the
output function of the output units is always considered to be an identity function,
unless noted otherwise.

1.3.1 Off-line training

Traditionally, the process of training a reservoir system involves providing the ridge
regression learning algorithm with target data ytarget to learn from [31]. Given an es-



1.3. TRAINING RESERVOIRS 7

timate of the desired response y obtained by Eq.1.9, the reservoir system is trained by
minimizing the training error between the desired response ytarget and the estimation
y, which is defined by the difference

e = ytarget − y. (1.10)

Thus the cost function is defined as the root mean square error (RMSE)

Wout = argmin
Wout

E
[
tr(ee⊤)

]
+ λtr(WoutW

⊤
out), (1.11)

where E denotes the expectation operator, and λ is a regularization coefficient. There
are standard well-known ways to solve Eq.1.11 [32]. The solution takes the form

Wout = ytargetx⊤ (
xx⊤ + λI

)−1
, (1.12)

where I is the identity matrix. Setting λ = 0 gives the same method for solving linear
regression.

1.3.2 On-line training

The on-line training method is implemented by the recursive Least Squares (RLS)
algorithm [33]. In contrast to the ordinary method of least squares, the training error
between the desired response ytarget(i) and the estimation y(i) at time n is defined as

ê(i) =ytarget(i)− y(i)

=ytarget(i)−Wout(n)x(i).
(1.13)

Then the cost function is composed of the sum of two components

Wout = argmin
Wout

n∑
i=1

λn−itr
[
ê(i)ê⊤(i)

]
+ δλntr

[
Wout(n)W

⊤
out(n)

]
, (1.14)

where δ is a positive real number called the regularization parameter, and λn−i is
a exponential weighting factor, or forgetting factor. This weighting factor has the
property that 0 < λn−i ≤ 1. If λ = 1, it is the ordinary method of least squares.
The inverse of 1− λ is a measure of the “memory” of the algorithm. The special case
λ = 1 corresponds to the “infinite memory”.

The RLS algorithm is described as follows:
Initialize the algorithm by setting

Wout(0) = 0,

P (0) = δ−1I,
(1.15)
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and
δ =

{
small positive constant for high SNR
large positive constant for low SNR

. (1.16)

For each instant of time, n = 1, 2, . . . , compute

k(n) =
λ−1P (n− 1)x(n)

1 + λ−1x(n)⊤P (n− 1)x(n)
,

ê(n) = ytarget(n)−Wout(n− 1)x(n),

Wout(n) = Wout(n− 1) + k(n)ê(n)

(1.17)

and
P (n) = λ−1P (n− 1)− λ−1k(n)x⊤(n)P (n− 1). (1.18)

Here P (n) is referred to as the inverse correlation matrix, which can be viewed as
the covariance matrix of the RLS estimate Wout. For more information on the RLS
algorithm see [34].

1.4 Desirable property

1.4.1 Echo state property

In the context of neuroscience, a crucial aspect of the nervous system is generally char-
acterized as the relationship between external stimuli and the corresponding response
of a network of excitable elements. In reservoir computing, the recurrent topology
creates memory by retaining the previous response of reservoir neurons. The present
response of reservoir neurons can be characterized as an "echo" of the recent past
input, but the influence of the remote past input gradually fades out. In other words,
the reservoir system requires the echo state property (ESP) [5], [24], [35], [36].

As the present response of reservoir neurons is independent of the initial condi-
tions, the ESP guarantees that real-time computing is possible. The original definition
of the ESP is as follows [5], [24].

Definition 1 (Echo state property) Assume that the reservoir network has no output
feedback connections. The symbol u∞ = (. . . ,u(n − 2),u(n − 1),u(n), . . . ), u(n) ∈
RK , n ∈ Z, denotes a infinite input sequence. With any input sequence u∞ driving
the reservoir network, any two reservoir state sequences x∞ = (. . . ,x(n − 2),x(n −
1),x(n), . . . ),x(n) ∈ RN , n ∈ Z and x̂∞ = (. . . , x̂(n−2), x̂(n−1), x̂(n), . . . ), x̂(n) ∈
RN , n ∈ Z are derived from a reservoir map Φ as

x(n) = Φ (x(n− 1),u(n)) ,

x̂(n) = Φ (x̂(n− 1),u(n)) .
(1.19)
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It must hold that x(n) = x̂(n).

If the reservoir system satisfies the ESP for any input sequence u∞, there exits an
input echo function ε so that the current reservoir state is

x(n) = ε(. . . ,u(n− 2),u(n− 1),u(n)). (1.20)

Eq.1.20 implies that the reservoir state only depends on the input sequence.
The input echo function ε has a desirable continuity property, called "fading mem-

ory" [27].

Definition 2 (Fading memory) A input echo function ε has fading memory if there
is a decreasing function w : Z+ → (0, 1], limn→∞w(n) = 0, such that for any left
infinite input sequence u−∞ = (. . . ,u(−2),u(−1),u(0)), u(n) ∈ RK , n ∈ Z− and
ϵ > 0, there is a δ > 0 such that for all û−∞ which satisfies

sup
n≤0

∥u(n)− û(n)∥2w(−n) < δ, (1.21)

then
∥ε(u−∞)− ε(û−∞)∥2 < ϵ. (1.22)

This continuity property had been proofed for the reservoir computing satisfying the
ESP [5].

1.4.2 Consistency as a way of characterizing the ESP

In practice, the conditions of Def.1 are hard to check when the reservoir system is
subjected to state noise. Recent studies have revealed that the consistency test of the
system response to a complex drive signal can be applied to measure the level of the
ESP for the reservoir system [37], [38].

Consistency is essential for information transmission in dynamical systems. It is
based on the replica test, which measures the reproducibility of the response signals
in a nonlinear dynamical system driven by a repeated signal, starting from differ-
ent initial conditions. Some phenomena corresponding to the consistency have been
studied, such as generalized synchronization in chaotic systems [39]–[41].

In order to investigate the characteristics of consistency, the consistency pa-
rameter C is defined as the cross correlation of two temporal response signals x and
y normalized by the product of their standard deviations as

C =
E[(x− µx)(y − µy)]

σxσy

. (1.23)
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Here µx and µy are the mean values of two response signals; σx and σy are the standard
deviations of the two response signals. The value of the consistency parameter C is
lying in the range [−1, 1], which C = 1 is indicating perfect correlation, C = 0 is
indicating no correlation, and C = −1 is indicating perfect anti-correlation.

In this study, we use the consistency parameter to measure the level of the ESP
for the reservoir system in the presence of state noise. Considering consistency in the
terminology of reservoir computing, the complete consistency C = 1 is equivalent to
the ESP, and C ≤ 0 is the lack of the ESP [37].

1.4.3 Optimal reservoir working regime

To design an optimal reservoir one should find a well-working regime such that it can
produce sufficiently complex signals, and have the ESP to ensure reproducibility and
reliability of response signal with the driving system.

The motion of the dynamical system in the phase space is described as trajectories.
Under certain conditions, a trajectory can converge towards a steady state called
attractor, such as fixed point, and chaotic [42]. Both theoretical and empirical studies
suggest that if the reservoir working regime is around a stable fixed point, then for
inputs small enough the reservoir system will satisfy the ESP [5], [7], [38]. The
asymptotic stability of the fixed point implies that the transient state of the dynamical
system is independent of the initial condition, and in [27] it has been demonstrated
that there is a connection between the fading memory and unique steady state (global
stability). Recent studies have shown that the consistency of chaotic systems is
dependent on the amplitude of the drive signal, such as generalized synchronization
in chaotic systems [39]–[41]. However, it is easy to make the reservoir system operate
well in a chaotic regime. In this case, the reservoir system is highly sensitive to initial
conditions and noise. Namely, the fading memory is no longer available. Legenstein
and Maass [43] have shown that the ability of some reservoir networks to achieve
the desired computational outcome is maximized at a critical point near the edge of
chaos. It should be noted that the edge of chaos as an optimal working regime for a
reservoir system is not, in general, true, and a counterexample has been introduced
[44].

1.5 Applications
Reservoir systems are generally very suited for highly complex computational tasks.
In most cases, very good performance can be attained without having to care too
much about specifically setting any of the reservoir parameters. Some successful
applications of ESNs have been reported in literature. In robotics, ESNs have been
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used to perform event detection [45], [46] and several application in the Robocup
competitions [47], [48]. In the field of digital signal processing, it also has been
applied in speech recognition [49] and noise modeling [26]. The use of ESNs for
chaotic attractor reconstruction and short-term prediction has been reported in [24],
[28], [50], [51]. On the other hand, TDRs have also successfully attracted a wide
range of real world engineering applications. The spoken digit recognition task have
been implemented on various TDRs based on different types of hardware, such as
analog electronics [7], [10], electromechanical devices [20], optoelectronic devices [8],
[11], [12], [21]. In [10], a TDR with an analog electronic circuit has been used in a
classification problem and a chaotic time-series prediction task. Novel applications of
deep TDRs in cyber-security and wireless communication also have been introduced
[52].

1.6 Overview of this thesis
The main goal of this thesis is to improve the noise robustness of the TDRs. we
develop a method to optimize reservoir performance of the TDRs subjected to state
noise with respect to input masks in the context of Fisher information.

• In Chapter 2, the general model of TDRs subjected to state noise is intro-
duced. We elaborate on the architecture of TDRs and show the noise-induced
performance degradation by way of the consistency parameter.

• In Chapter 3, we develop a method to optimize reservoir performance of the
TDRs subjected to state noise with respect to input masks in the context of
Fisher information. We theoretically show that the input mask obtained as the
maximal principal component of the spatial Fisher memory matrix optimizes
the memory performance of such TDRs with Gaussian state noise.

• In Chapter 4, for single node delay-based reservoir computing, a method to op-
timize the input mask in a task-independent manner is developed for improving
memory performance in the presence of state noise. The single Mackey-Glass
oscillator is used to demonstrate the availability of the proposed method.

• In Chapter 5, for the hierarchical deep TDRs coupled unidirectionally, a method
for input mask optimization is developed for the entire reservoir space. The
coupled Ikeda systems are used to illustrate the proposed method.

• Chapter 6 is conclusions.



Chapter 2

TDRs subjected to state noise

The physical implementation of TDRs has attracted considerable attention in the
context of machine learning lately. It reveals the huge information processing power of
delayed dynamical systems. In practice, the impacts of noise propagation in recurrent
reservoir layers cannot be ignored. We consider some randomness in TDRs such that
we can obtain a more realistic mathematical model Eq.2.1 of the situation, as follows:

ẋ(t) = −x(t) + f(x(t− τ), J(t), z(t)), (2.1)

where x(t) ∈ R is a dynamical variable, f is a smooth nonlinear function with a delay
feedback term x(t− τ), J(t) is time-multiplexed input signal over the delay period τ ,
and z(t) ∈ R is state noise.

2.1 State noise
We start by considering the source and the impact of noise upon the time-delay node.
Assume that without external injected information J(t) = 0, the dynamical variable
x is perturbed by the state noise,

ẋ(t) = −x(t) + f(x(t− τ) + γJ(t) + z(t))

= −x(t) + f(x(t− τ) + z(t))
(2.2)

where γ is the input gain.
In general, the state noise is according to three arguments. First, it accounts

for the loss of information in the input preprocessing stage, such as input referred
noise, or in the process of extracting virtual neurons, such as the quantization noise
that results from the analog-digital conversion [10]. Second, the time-delay system
constructing TDRs can exhibit complex dynamical behaviors, such as chaos, meaning

12
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that the response trajectory of the time-delay system to the drive signals is unstable.
In the case of multistability, the response trajectory near a stable equilibrium can
be driven closer to another stable equilibrium when the level of input signals is too
high or uncommonly large. These complex dynamical behaviors can amplify different
initial conditions and small noise, resulting in different responses despite receiving the
same drive. Third, the intrinsic noise originating from hardware components, such
as thermal noise in electronic circuits [10] or spontaneous emission in semiconductor
lasers [23], contributes to z(t).

In this work, the state noise z(t) is defined as the total noise which is contributed
by a large number of noise sources from different physical components and the sur-
rounding local environment [9], [10], [22], [23]. Assume that z(t) is additive and
uncorrelated. Then the state noise z(t) can be approximated by a Gaussian distri-
bution. We consider that z(t) refers to a white Gaussian noise process with mean
µ(z(t)) = 0 and covariance ⟨z(t1)z(t2)⟩ = ϵδt1,t2 (δ is the Dirac delta function).

2.2 Time-discretized model
By discretizing consecutive delay intervals such that

x(n) = (x1(n), x2(n), . . . , xN(n))
⊤, xi(n) = x(nτ − (N − i)θ),

J(n) = (J1(n), J2(n), . . . , JN(n))
⊤, Ji(n) = J(nτ − (N − i)θ),

(2.3)

are parameterized by a discrete time n ∈ Z and a sampling length θ related to the
number of virtual neurons N by θ = τ/N . Then the TDR construction can be
visualized as a neural network approach. xi(n) denotes the ith virtual neuron state
at the nth time step.

To consider a discrete version [53] of Eq.2.1:

xi(n)− xi−1(n) = −xi(n) + f(xi(n− 1) + γJi(n) + ∆zi(n)) (2.4)

where the increment ∆zi(n) = z(nτ − (N − i)θ) − z(nτ − (N − i + 1)θ) follows the
normal distribution with zero mean and covariance ⟨∆zi(k)∆zj(l)⟩ = ϵθδk,lδi,j. Note
that, ∆zi(n) in Eq.2.4 can include some noise sources which do not appear as white in
Eq.2.1 by redefining its strength ϵθ. For example, quantization noise, which crucially
affects TDR’s performance [10], can be considered as the discrete-time white Gaussian
noise under some conditions [54].

The solutions of Eq.2.4 are described by the following recursive relation: xi (n) = e−ξxi−1 (n) +
(
1− e−ξ

)
f (xi (n− 1) + γJi (n) + ∆zi (n))

x0 (n) = xN (n− 1)
ξ = log (1 + θ)

. (2.5)
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The Eq.2.5 shows that the neuron state is updated by a linear combination of the
previous neuron state in the same layer and a nonlinear function parameterized by
the neuron state in the same location of the previous layer, the input, and the noise
increment. The weight e−ξ is determined by the separation length θ between virtual
neurons. If the distance θ is too small, the adjacent virtual neurons are too close to
be independent. And in the other hand, a suitable small θ can increase the effective
degrees of freedom of the virtual neurons. The recursions Eq.2.5 uniquely determine
a smooth map F : RN × RN × RN → RN in which the states of the virtual neurons
are updated recursively:

x(n) = F (x(n− 1),J(n),∆z(n)). (2.6)

F is referred to as the reservoir map.

2.3 Noise-induced performance degradation
Being an inevitable consequence of hardware implementation of TDRs, noise can
propagate along the reservoir network and potentially accumulate. Consequently, an
important concern is that such TDRs might ultimately succumb to the detrimental
impact of noise. A recent report has shown that the output of feed-forward neural
networks (FNNs), as well as recurrent neural networks (RNNs) in analog hardware,
is susceptible to noisy neurons considering a variety of network topologies and pa-
rameters [22].

A fundamental question is that whether the reservoir systems subjected to state
noise have the ESP. It should be noted that Lymburn et al. have shown that the
consistency can be used to measure the level of the ESP for the reservoir system in
the presence of state noise [37]. This method gives us an alternative way to check the
effect of state noise on the given reservoir systems. In this study, we focus on two
types of implementations of TDRs, which are the TDRs based on a Mackey–Glass
type nonlinear node and the deep TDRs based on coupled Ikeda-type nonlinear nodes.
In Figure 2.1 we plot how the consistency evolves for the two types of TDRs as a
function of signal to noise ratio (SNR) and the input masks. The black dashed lines
denote the consistency parameter of noise-free reservoirs with random input masks.
As the values of these consistency parameter equal one, a well-defined reservoir (such
as the working regime is around a stable fixed point) without the impact of noise
always have the ESP. The case of the noisy TDRs based on the Mackey-Glass system
is described by the black solid lines in Figure 2.1a. Unsurprisingly the consistency is
sensitive to the negative effects of noise. Next, the impact of noise on the consistency
is considered for a three-layer deep TDR based on coupled Ikeda delay systems. This
is illustrated in Figure 2.1b. In this case, we calculate the consistency parameter for
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each layer respectively. We find that The final layer is most susceptible to noise. The
reason is that the noise originating from the first layer and the second layer potentially
accumulates in the final layer.

In Figure 2.1, the input mask related to the pre-processing of the input signal
(time-multiplexing) is the other chosen parameter. Generally, a random mask is
mostly applied to the input signal in order to generate complex transient responses.
Through the simulation results in Figure 2.1, we find that the input mask has a
significant impact on the ESP of the noisy reservoir systems in the context of the
consistency. Studies on the design of the input mask have been reported, such as a
binary mask that maximizes the diversity of the reservoir states for a small set of the
virtual neurons [55] and a chaotic mask that improves the performance of an optical
TDR for a time-series prediction task [11]. Recent studies have investigated the
short-term memory capacity of the echo state network in the context of consistency.
It has been shown that an increase in consistency improves the short-term memory
performance which may be degraded by state noise [37]. In this thesis, we optimize
the input mask for the TDRs with a white Gaussian state noise in a computational
time efficient manner within the context of the Fisher memory.
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(a)

(b)

Figure 2.1: Consistency parameter as a function of signal to noise ratio (SNR)
and input masks. (a) A TDR based on the Mackey-Glass system (see Chapter 4), for
τ = 40, η = 0.7, γ = 0.1 and p = 1, is used to calculate consistency parameter for 10
different input masks. (b) A three-layer deep TDR based on coupled Ikeda delay systems (see
Chapter 5), with parameter setting as Table 5.1, is used to calculate consistency parameter
for 10 different input masks. The black dashed lines and the black solid lines denote the
consistency parameter of noise free reservoir systems with random input masks and noisy
reservoir systems with random input masks.



Chapter 3

Optimized input mask for TDRs
subjected to state noise

In this section, we develop a method to optimize the reservoir performance of the
TDRs subjected to state noise with respect to input masks in the context of Fisher
information.

3.1 Short-term memory capacity
In [24] Jaeger introduced the measurement of the short-term memory capacity of a
reservoir. It quantifies the capacity that how many delayed versions of the input
u(n − k) can be reproduced by the reservoir. The variance of the delayed input
signal can be reproduced is measured by correlating the delayed input signal with the
trained output signal, summed over all delays. In terms of the squared correlation
coefficient between the desired output u(n−k) and the observed network output y(n),
the short-term memory capacity can be expressed as

MC =
∞∑
k=1

MCk

=
∞∑
k=1

cov2(u(n− k), y(n))

σ2(u(n))σ2(y(n))
,

(3.1)

where cov denotes the covariance operator, σ2(u(n)) and σ2(y(n)) is the variance of
u(n) and y(n) respectively. Jaeger showed theoretically that the short-term memory
capacity MC cannot exceed N for any recurrent neural network with i.i.d. input signal,
where N is the number of neurons [24].

17
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3.2 Fisher information as a measure of short-term
memory

A different quantification of short-term memory for linear reservoirs subjected to a
white Gaussian noise has been proposed in the context of Fisher information [25]. Re-
calling that the discrete noise increment ∆z(n) is derived from a memoryless process
of a white Gaussian noise z(t), with mean µ = 0 and covariance ⟨∆zi(k)∆zj(l)⟩ =
ϵθδk,lδi,j. Then a given input sequence u := (. . . , u((n− 2)τ), u((n− 1)τ), u(nτ), . . . )
is considered as the parameter on which the probability of x depends. This means
that the conditional distribution p(x(n)|u) varies with the input sequence u. The
average rate of change of the log-likelihood function log(p(x(n)|u)) with respect to
small perturbation in the input history is measured by the Fisher information matrix
whose elements are defined as

Il,k(u) = −Ep(x(n)|u)

[
∂2

∂u((n− l)τ)∂u((n− k)τ)
log(p(x(n)|u))

]
. (3.2)

This matrix captures the changes of the conditional distribution p(x(n)|u) with the
signal history u changing.

In [56] Jeffreys introduced the Kullback–Leibler divergence as a measure of the dif-
ference between two probability distributions, and found the relationship with Fisher
information. Assume that a slight perturbed input signal u + δu is derived from
the input signal u in the presence of noise. Then the Kullback–Leibler divergence
between the two induced distributions p(x(n)|u) and p(x(n)|u + δu) can generally
be approximated by the Fisher information matrix Eq.3.2 as

DKL(p(x(n)|u ∥ p(x(n)|u+ δu)) =
1

2
δu⊤I(u)δu+ o(||δu||2). (3.3)

Moreover, for the special case of the Gaussian family distributions p(x(n)|u) with
the same dimension, the Kullback–Leibler divergence between the distributions is as
follows [57]:

DKL(p(x(n)|u ∥ p(x(n)|u′)) =
1

2
(µ− µ′)⊤C−1(µ− µ′) (3.4)

where µ is the mean of p(x(n)|u), µ′ is the mean of p(x(n)|u′), and C is the covariance
matrices of p(x(n)|u).

Through Eq.3.3 and Eq.3.4, we can obtain an alternative expression [25] of the
Fisher information matrix Eq.3.2 as

Il,k(u) =
∂µ(u)⊤

∂u((n− l)τ)
C−1 ∂µ(u)

∂u((n− k)τ)
. (3.5)
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The matrix Il,k(u) is generally called as the Fisher memory matrix [25], which
measures short-term memory through the capacity of the past signal to perturb the
present state of the reservoir neurons.

3.3 Fisher memory curve in TDRs
In this study, we are interested in the diagonal elements of the Fisher memory matrix
Ik = Ik,k, which quantify how much information about an input signal entering the
network k time steps ago can be held by the reservoir neurons x(n). The collection
of {Ik}∞k=0 is referred to as the Fisher memory curve.

In section 2.2, we show that for a general TDR with state noise, such as Eq.2.1,
the state of reservoir neurons is updated according to the reservoir map as Eq.2.6.
Consider the general case when the TDRs operate in the neighborhood of an asymp-
totically stable fixed point, we can approximate it by the Jacobian linearization at
that point. This approximation allows us to visualize the TDR as a general neu-
ral network with N nodes. Then we can measure the short-term memory capacity
through the use of the Fisher information.

Assume that x̄ ∈ R is a stable equilibrium of the continuous time model according
to Eq.2.1 with u(t) = 0 and z(t) = 0. It is equivalent to a stable fixed point of the
reservoir map Eq.2.6 of the form x̄ := (x̄, x̄, . . . , x̄)⊤ ∈ RN . If we initialize the TDR
at the stable fixed point and apply J(n) = 0, ∆z(n) = 0, its reservoir states will
remain fixed at x(n) = x̄ for all n. We consider the Jacobian linearization of the
reservoir map Eq.2.6 about the equilibrium point (x̄,0,0). By performing the Taylor
expansion of the right hand side and neglecting all higher (higher than the 1st) order
terms, we obtain an expression of the form:

x(n) =F (x̄,0,0) +
∂F

∂x

∣∣∣∣
(x,J ,∆z)=(x̄,0,0)

(x(n− 1)− x̄) +
∂F

∂J

∣∣∣∣
(x,J ,∆z)=(x̄,0,0)

J(n)

+
∂F

∂∆z

∣∣∣∣
(x,J ,∆z)=(x̄,0,0)

∆z(n).

(3.6)

For convenience, we define these three N ×N Jacobian matrices as

A :=
∂F

∂x

∣∣∣∣
(x,J ,∆z)=(x̄,0,0)

, B :=
∂F

∂J

∣∣∣∣
(x,J ,∆z)=(x̄,0,0)

, C :=
∂F

∂∆z

∣∣∣∣
(x,J ,∆z)=(x̄,0,0)

.

Recalling that the time-multiplexed signal J(n) is linearly dependent on the sampled
input signal u(nτ) with the mask vector M . Then the reservoir state update equation
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can be expressed as follows

x(n) = x̄+ A(x(n− 1)− x̄) +BMu(nτ) + C∆z(n). (3.7)

Here A is an N×N constant matrix that is referred to as the connectivity matrix. The
feedforward connections from the input signal into the reservoir layer are represented
as the product of the matrix B and the mask M . The asymptotic stability of this
fixed point requires that the spectral radius ρ(A) is smaller than the one. But it is
impossible to calculate the spectral radius ρ(A) for any number of reservoir neurons.
In [58] Grigoryeva et al. showed theoretically that for an arbitrary number of virtual
neurons N , ρ(A) ≤ ∥A∥∞ < 1 if and only if |∂f

∂x
(x̄, 0, 0)| < 1. This result relates the

stability conditions for the discrete time system with the stability conditions for the
continuous time system.

The linearized system Eq.4.6 allow us to measure the short-term memory capacity
by using the Fisher information. Suppose that the initial condition of the reservoir
map is prepared at sufficiently far past. Then its effect disappears and using Eq.4.6
the state of the virtual neurons at time n can be expressed as follows

x(n) = x̄+
∞∑
k=0

[AkBMu((n− k)τ) + AkC∆z(n− k)]. (3.8)

Recalling that the increment ∆z(t) follows the Gaussian distribution, the conditional
distribution p(x(n)|u) is also Gaussian with mean µ = x̄+

∑∞
k=0A

kBMu((n− k)τ)
and covariance matrix Cn = ϵθ

∑∞
k=0A

kCC⊤Ak⊤. The mean is only dependent on
the input signal history linearly, and the covariance matrix is independent of the
input signal. By substituting x̄+

∑∞
k=0A

kBMu((n− k)τ) for µ in Eq.3.5, the Fisher
memory matrix of the TDR at the equilibrium (x̄,0,0) takes the form

Il,k = M⊤B⊤Al⊤C−1
n AkBM (3.9)

and is independent of the input signal. The Fisher memory curve {Ik}∞k=0 in TDRs
can be characterized as the collection of the diagonal elements of Eq.3.9.

3.4 Optimized input mask for noisy TDRs
In this section, we optimize the Fisher-information based short-term memory capacity
in terms of the input mask. The total memory capacity of a TDR is defined as

Itot =
∞∑
k=0

Ik. (3.10)
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By substituting Eq.3.9 for Ik in Eq.3.10

Itot =
∞∑
k=0

Ik = M⊤IsM, (3.11)

where

Is =
∞∑
k=0

B⊤Ak⊤C−1
n AkB (3.12)

is called the spatial Fisher memory matrix. Since Is is a real symmetric matrix,
its eigenvalues are real and eigenvectors associated with the different eigenvalues are
orthogonal. Assume that λmax ≥ λ2 ≥ . . . ≥ λN are the eigenvalues of Is, and
vmax, v2, . . . , vN are the corresponding eigenvectors. The maximized total memory
Itot can be characterized by the largest eigenvalue λmax of Is, when the associated
eigenvector is chosen to be the input mask as M = vmax. The optimized input mask
implies the preferred direction in the reservoir state space corresponding to the large
principal component of Is. In this case, the reservoir neurons can retain the most
information of the past input signal.

In Figure 3.1, for two types of TDRs, we plot the consistency parameter of the
optimized input masks compared to the case of random input masks, which has been
illustrated in Figure 2.1. The red solid lines denote the consistency parameter of the
input masks optimized by using the proposed method.

Figure 3.1a is according to the TDR based on the Mackey-Glass system. When
5 ≤ SNR ≤ 50, the consistency parameter obtained by the optimized input mask is
much larger than by other random masks. This means that the ESP of the TDR is
improved by the optimized input mask. Similar results are obtained for the three-layer
deep TDR based on the coupled Ikeda delay systems, which are illustrated in Figure
3.1b. In this case, the consistency parameter of each layer is calculated respectively by
using the optimized input mask. All of these results demonstrate that the input mask
optimized by the proposed method significantly outperforms other random masks.
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(a)

(b)

Figure 3.1: Consistency parameter as a function of signal to noise ratio (SNR)
and input masks. (a) A TDR based on the Mackey-Glass system (see Chapter 4), for
τ = 40, η = 0.7, γ = 0.1 and p = 1, is used to calculate consistency parameter for 10
different input masks. (b) A three-layer deep TDR based on coupled Ikeda delay systems (see
Chapter 5), with parameter setting as Table 5.1, is used to calculate consistency parameter
for 10 different input masks. The black dashed lines and the black solid lines denote the
consistency parameter of noise free reservoir systems with random input masks and noisy
reservoir systems with random input masks. The red solid lines denote the consistency
parameter of noisy reservoir systems with the optimized input masks.
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3.5 Discussion
The main contribution of this work introduces how to measure the short-term memory
capacity of the TDRs with Gaussian state noise via the Fisher memory curve. The
form of the Fisher memory matrix for such TDRs is shown in Eq.3.9. This result can
be used to optimize the input mask for improving the short-term memory performance
in the presence of state noise. By defining the total memory as shown in Eq.3.11,
the input mask obtained as the maximal principal component of the spatial Fisher
memory matrix Is maximizes the total memory of the TDRs. Indeed, the discussion
in this chapter develops a method to optimize the input mask in a task-independent
manner for improving the short-term memory performance in the presence of state
noise.

In the following, the total memory always refers to the largest eigenvalue of Is.
The above description does not mean that the short-term memory capacity is changed
by the input mask. Actually, the short-term memory capacity is immutable when
the reservoir layer of TDRs is designed. What input masks affect is the short-term
memory performance of the TDRs.



Chapter 4

Improving noise robustness of TDRs
based on a Mackey-Glass oscillator

In this chapter, We apply the proposed method to the TDRs implemented by a single
Mackey-Glass nonlinear oscillator [59].

4.1 Mackey-Glass oscillator
We consider a particular oscillator, introduced by Mackey and Glass [59] as a model
of blood production. It is

ẋ(t) = −x(t) +
ηx(t− τ)

1 + x(t− τ)p
. (4.1)

Here τ is the time delay, η > 0 is referred to as the feedback gain, and p > 0 controls
the ‘strength’ of the nonlinearity.

The Eq.4.1 displays a wide variety of dynamical behavior including equilibrium,
limit cycle, and chaos. It has been studied in great detail in [60]. In order to ensure
reproducibility and reliability of the response signal, the used Mackey-Glass oscil-
lator must operate in a certain regime such that the TDR has the ESP. Previous
studies have shown that the optimal working regime of the TDRs is around a stable
equilibrium for inputs small enough [7], [27], [58].

How the number of equilibria of Eq.4.1 depends on the parameters is summarized
as follows [61]. In the case of p = 1, Eq.4.1 has two equilibria, which are x̄ = 0
and x̄ = η − 1. When η ∈ (0, 1), the equilibrium x̄ = 0 is stable and the other
x̄ = η − 1 is unstable. The transcritical bifurcation occurs if η crosses 1. In the
case of p ≥ 2, Eq.4.1 has more than two equilibria. Recalling that the TDR well
for a broad class of input only if Eq.4.1 operates in the dynamical regime around a

24
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unique stable equilibrium. When the number of the stable equilibria exceeds one,
the transient response of the TDR near a stable equilibrium can be driven closer
to the other due to strong input or loud noise. Thus the multistability makes the
TDR’s output depend not only on input history but on its initial condition, that is,
it violates the ESP [5], which is commonly assumed in order to guarantee a TDR
well-functioning.

The model of the TDR based on a single Mackey-Glass oscillator is

ẋ(t) = −x(t) +
η[x(t− τ) + γJ(t) + z(t)]

1 + [x(t− τ) + γJ(t) + z(t)]p
. (4.2)

Here
J(t) = M × I(t), I(t) = u(k) for τk ≤ t < τ(k + 1) (4.3)

is time-multiplexed input signal by the input mask M over the delay period τ , z(t) ∈ R
is a white Gaussian state noise, and γ > 0 is the input gain. The randomness in the
state noise of Eq.4.2 is involved in a stochastic TDR. In this case, the ESP affected by
noise can be measured by the consistency parameter, which is introduced in section
1.4. In Figure 4.1, we plot how the consistency parameter evolves for the TDRs based
on Maceky-Glass oscillator with random input masks as a function of the feedback
gain η and the SNR level. This figure illustrates how the ESP is degraded by the
state noise.

Figure 4.1: A heat map of the consistency parameter for the Mackey-Glass
oscillator by TDRs with various feedback gains (vertical axis) and SNR levels
(horizontal axis). The parameters are summarized as τ = 40, p = 1, and θ = 0.2, and a
random input mask is used.
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In this study we set p = 1, η ∈ (0, 1). Moreover, even when the TDR in its
autonomous form (u(t) = z(t) = 0) is monostable, the large input gain can break the
ESP. Hence we set the input gain low enough to guarantee the ESP. In this numerical
simulation, we set γ = 0.1.

4.2 Jacobian linearization and the connectivity ma-
trix

The reservoir map F : RN × RN × RN → RN

x(n) = F (x(n− 1),J(n),∆z(n)). (4.4)

introduced in section 2.2 can be derived from the recursions Eq.2.5 as follows
xi(n) = e−ξxi−1(n) + (1− e−ξ) η[xi(n−1)+γJi(n)+∆zi(n)]

1+[xi(n−1)+γJi(n)+∆zi(n)]p

x0 (n) = xN (n− 1)
ξ = log (1 + θ)

. (4.5)

Let x̄ := (x̄, x̄, . . . , x̄)⊤ ∈ RN be the stable fixed point around which F works. Then
by performing the Taylor expansion of the right hand side and neglecting all higher
(higher than the 1st) order terms, we obtain an expression of the Jacobian lineariza-
tion:

x(n) = x̄+ A(x̄)(x(n− 1)− x̄) +B(x̄)J(n) + C(x̄)∆z(n). (4.6)

The connectivity matrix A(x̄) of the reservoir map at the fixed point x̄ has the
following form

A(x̄) =DxF (x̄,0,0)

=


Φx 0 · · · 0 e−ξ

e−ξΦx Φx · · · 0 e−2ξ

e−2ξΦx e−ξΦx · · · 0 e−3ξ

...
... . . . ...

...
e−(N−1)ξΦx e−(N−2)ξΦx · · · e−ξΦx Φx + e−Nξ

 ,
(4.7)

where Φx = (1− e−ξ)∂xf(x̄, 0, 0) = η(1− e−ξ)1+(1−p)x̄p

(1+x̄p)2
. The matrix B(x̄) is given by



4.3. FISHER MEMORY CURVE AT THE EQUILIBRIUM 27

B(x̄) =DJF (x̄,0,0)

=


ΦJ 0 · · · 0 0

e−ξΦJ ΦJ · · · 0 0
e−2ξΦJ e−ξΦJ · · · 0 0

...
... . . . ...

...
e−(N−1)ξΦJ e−(N−2)ξΦJ · · · e−ξΦJ ΦJ

 ,
(4.8)

where ΦJ = (1 − e−ξ)∂Jf(x̄, 0, 0) = ηγ(1 − e−ξ)1+(1−p)x̄p

(1+x̄p)2
. And the matrix C(x̄) has

the form as

C(x̄) =D∆zF (x̄,0,0)

=


Φ∆z 0 · · · 0 0

e−ξΦ∆z Φ∆z · · · 0 0
e−2ξΦ∆z e−ξΦ∆z · · · 0 0

...
... . . . ...

...
e−(N−1)ξΦ∆z e−(N−2)ξΦ∆z · · · e−ξΦ∆z Φ∆z


(4.9)

where Φ∆z = (1− e−ξ)∂∆zf(x0, 0, 0) = η(1− e−ξ)1+(1−p)x̄p

(1+x̄p)2
.

4.3 Fisher memory curve at the equilibrium
Because the long-term behavior near a sable equilibrium does not depend significantly
on the initial conditions, by using Eq.3.8, the reservoir state at time n is

x(n) = x̄+
∞∑
k=0

[A(x̄)kB(x̄)Mu((n− k)τ) + A(x̄)kC(x̄)∆z(n− k)]. (4.10)

Recalling that the increment ∆z(n) follows the Gaussian distribution, the conditional
distribution p(x(n)|u) is also Gaussian with mean µ = x̄+

∑∞
k=0A(x̄)

kB(x̄)Mu((n−
k)τ) and covariance matrix Cn = ϵθ

∑∞
k=0A(x̄)

kC(x̄)C(x̄)⊤A(x̄)k⊤. By using Eq.3.5,
the Fisher memory curve {Ik}∞k=0 at the equilibrium (x̄,0,0) can be described as

Ik = M⊤B(x̄)⊤A(x̄)k⊤C−1
n A(x̄)kB(x̄)M. (4.11)

Under the condition of p = 1, η ∈ (0, 1), the TDR operates in the dynamical
regime around the equilibrium x̄ = 0. In Figure 3.9, we plot the Fisher memory
curve for the TDR as a function of the chosen feedback gains η. The input mask
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is always taken as the eigenvector corresponding to the largest eigenvalue of Is such
that the short-term memory capacity is maximized in the presence of state noise. The
figure shows that the process of memory decay or forgetting in the presence of state
noise becomes slow when the feedback gain is close to one. The results in Figure 3.9
support the notion that the short-term memory capacity of a reservoir system can
be maximized at the edge of chaos [43], [62]. But if the feedback gain crosses one,
the equilibrium x̄ = 0 is unstable. In this case, the TDR can not guarantee the ESP
in the working regime around the unstable equilibrium x̄ = 0. In conclusion, while
high-level feedback is available for improving the strength of the memory trace in the
presence of state noise, it can break the ESP under specific scenarios.

Figure 4.2: Fisher memory curve exhibited by the TDRs based on the Mackey-
Glass system with parameter settings: τ = 80, γ = 0.1 and p = 1, for different
values of the feedback gain η.

4.4 Optimized Input mask in TDRs with state noise
As discussed in section 3.4, the total capacity of the short-term memory is measured
by summing the Fisher memory curve over all delay as

Itot =
∞∑
k=0

Ik = M⊤IsM, (4.12)

where

Is =
∞∑
k=0

B(x̄)⊤A(x̄)k⊤C−1
n A(x̄)kB(x̄). (4.13)
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(a)

(b)

Figure 4.3: Short-term memory capacity exhibited by the TDRs based on the
Mackey-Glass system with parameter settings: τ = 80, η = 0.9, γ = 0.1, and p = 1.
(a) The input masks are corresponding to the eigenvectors associated with the eigenvalues
of Is. (b) The total memory for the TDRs based on the Mackey-Glass System as a function
of the number of neurons, with the sampling length θ ∈ [0.02, 1].

We define the eigenvalues of Is as λmax ≥ λ2 ≥ . . . ≥ λN , which are arranged in
descending order, and the corresponding eigenvectors as vmax, v2, . . . , vN . Itot can be
maximized by the largest eigenvalue λmax of Is, when the associated eigenvector is
chosen to be the input mask as M = vmax.

In Figure 4.3a, we plot the Fisher memory curves obtained by using the chosen
eigenvectors as the input masks. The blue solid line represents the case of optimized
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input mask M = vmax. The results in Figure 4.3a imply that the Fisher memory curve
can be seen as a quantitative measurement to observe the ESP (fading memory).

In Figure 4.3b, we plot how the total memory Itot evolves for the TDR as a
function of the number of reservoir neurons. The figure illustrates that increasing the
number of reservoir neurons can prevent the memory from decaying in the presence
of state noise. But there is a limit to the total memory. Because in TDRs the virtual
neurons are corresponding to the points on the delay line placed equidistantly. As the
number of the virtual neurons increases, the adjacent virtual neurons are too close to
be independent; namely, the increase in the effective degrees of freedom is limited.

4.5 Comparison with the conventional method

Table 4.1: CPU-time performance of the Grigoryeva et al.’s method and the proposed
method.

Number of virtual neurons 10 15 20 25 30 35 40
Grigoryeva et al.’s method 11.75 29.58 47.66 82.30 117.16 233.16 823.55
Proposed method 0.22 0.25 0.31 0.48 0.64 4.41 5.23

In [58], the input mask for the memory tasks is determined by solving structured
optimization problems, which have been successfully used in linear and quadratic
memory tasks. In these tasks, a linear or quadratic function is used to generate a one-
dimensional target signal from the time-lagged input signal. However, the reservoir
performance can be degraded by state noise originating from analog components of
the reservoir layer [9], [10], [23]. In the input layer, time-multiplexing is used to
inject the input signal into temporally separated virtual neurons, then the dimension
of the input mask is determined by the size of the reservoir layer. For a large set of the
virtual neurons used to improve the reservoir performance, Grigoryeva et al.’s method
gives rise to a high-dimensional nonlinear optimization problem of high computational
cost. On the other hand, our method only involves a linear problem, i.e., finding the
maximal principal component of the spatial Fisher memory matrix.

Considering the 5-lag linear memory task, we compare the time performance of
Grigoryeva et al.’s method with the proposed method in Table 4.1. Here, we solve the
optimization problem obtained from Grigoryeva et al.’s method by using the particle
swarm optimization (PSO) algorithm [63]. The computational time is measured so
that the performance of the two methods is aligned. That is, the PSO algorithm is
stopped when the resulting mask provides the same performance as that of ours. The
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CPU times are measured in seconds on an Intel Core i7, 3.40 GHz PC (8 GB RAM).
The results in Table 4.1 show that the proposed method is time efficient.

(a)

(b)

Figure 4.4: Reservoir performance for the 5-lag linear memory task with pa-
rameter settings: p = 1, η = 0.5, γ = 0.1, θ = 0.2 and SNR = 40. (a) NRMSEs for the
5-lag linear memory task without state noise as a function of the number of virtual neurons.
(b) NRMSEs for the 5-lag linear memory task with state noise as a function of the number
of virtual neurons. The cyan points indicate the NRMSEs obtained from the 1000 different
randomly picked masks. The blue lines link the points that indicate the NRMSEs simulated
by using the input mask optimized by [58]. The red lines link the points that indicate the
NRMSEs simulated by using the input mask optimized by the proposed method.
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In Figure 4.4, the reservoir performances optimized by using the Grigoryeva et
al.’s method and the proposed method are compared in the 5-lag linear memory task.
The reservoir performance is expressed by the normalized root mean square error
(NRMSE) (see Appendix A). In this comparison, the termination condition for the
PSO algorithm is set as if the relative change of the objective function over the last
20 iterations is less than 10−6. The simulation results of the TDR in the absence
of state noise are shown in Figure 4.4a. In this case, Grigoryeva et al.’s method
outperforms the proposed method, as in the partial enlarged view of Figure 4.4a. This
is somewhat natural since Grigoryeva et al.’s method is a task-specific optimization
while our approach is task-independent. Figure 4.4b illustrates the impact of the state
noise on the memory tasks. In these simulation experiments, the signal-to-noise ratio
of SNR = 40 is obtained using the given state noise strength ϵ. These results imply
that the proposed method is helpful for improving the noise robustness of TDRs.

4.6 Simulation experiments
In this section, the proposed method is validated by solving two types of benchmark
tasks. Each type of benchmark task requires different crucial properties to make a
good approximation of the target function. Some tasks require the short-term memory
capacity for good performance, and others are strongly dependent on the nonlinear
transformation. Previous studies have shown that these two properties are often in
conflict with each other [64], [65]. It is called memory-nonlinearity trade-off. As a
by-product of our proposed method, input masks of various memory capacity, which
is quantitatively characterized by eigenvalues of the spatial Fisher memory matrix,
are obtained. Using these masks, the memory-nonlinearity trade-off of the TDRs in
terms of the masks can be studied in detail.

In the following, we use the eigenvectors vmax, v2, . . . , vN of the spatial Fisher mem-
ory matrix Is as the input masks in the simulation experiments. These eigenvectors
are arranged in descending order according to the eigenvalues of Is as λmax ≥ λ2 ≥
. . . ≥ λN . The short-term memory capacity can be maximized in the presence of
state noise, when the input mask M = vmax.

4.6.1 Weakly nonlinear function approximation task

We use the eigenvectors of Is as the input mask and compare their test errors for a
memory task. We consider an i.i.d. random signal u(t) from a uniform distribution
over [−1, 1]. The TDRs are trained to produce an output w(u) = sin(u(t − τ ′))
driven by the input signal of τ ′ step before as closely as possible. For the task of
sin(u(t − τ ′)), the memory performance is necessary but little performance of the
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nonlinear transformation is required. It allows us to focus on the studying of the
short-term memory capacity with the case of the different input masks. The task
parameter τ ′ controls the requirement of memory. In our experiments, the TDRs are
implemented by the Mackey-Glass node with the parameter setting: τ = 80. The
separation distance of the virtual neurons is set at θ = 0.2 that offers a suitable
short-term memory capacity as in Figure 4.3b. Then the number of virtual neurons
is N = 400. The chosen state noise strength ϵ results in a signal-to-noise ratio of
SNR = 40. The readout weights were trained by an online algorithm (see section
1.3.2 above).

Concretely, we let each TDR run for 5000 steps, starting from a random initial
state, and discard the initial 100 steps during which the effect of the initial state dies
out.

In Figure 4.5 and Figure 4.6, we show the reservoir performance according to the
normalized root mean square error (NRMSE) for the memory task sin(u(t− τ ′)). In
these simulation experiments, the best performance according to the minimal NRMSE
is always obtained by using the input mask M = vmax. In Figure 4.5a and Figure
4.6a, we plot the test error surface in the memory task sin(u(t − τ ′)), as a function
of the feedback gain and the input mask. Unsurprisingly a decrease in the NRMSE
corresponds to an increase in the feedback gain η for every input mask. These results
support the notion that the high-level feedback can enhance the strength of memory
trace in the presence of state noise.

Specially, we plot how the NRMSEs evolve for η = 0.1, 0.5, 0.9 as a function of
the chosen input masks in Figure 4.5b and Figure 4.6b from top to bottom. We
also confirmed that similar results are obtained by employing other tasks, such as
f(u) = u(t − τ ′) or f(u) = u2(t − τ ′). We note that the masks with indices not less
than 27 seem not approximate eigenvectors of the exact spatial Fisher memory matrix
but numerical artifacts (see Appendix B). Thus the “local minima" of the NRMSEs
around the 200th indices for η = 0.9 seen in Figure 4.5b and Figure 4.6b might be
numerical phenomena which have no relevance to the dynamical properties of the
TDR.

These results confirm that the input mask in direction of the maximal principal
component of the spatial Fisher memory matrix optimizes the short-term memory
capacity in the presence of the white Gaussian state noise (see section 3.4 above).
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(a)

(b)

Figure 4.5: Simulation results for the learning task of sin(u(t−2)). (a) Error surface
for sin(u(t − 2)), as a function of the input mask and the feedback gain. (b) The NRMSE
versus the input masks for sin(u(t − 2)) with parameter setting: η = 0.1, 0.5, 0.9 from top
to bottom. The indices of the input masks are arranged in descending order according to
the eigenvalues of Is.
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(a)

(b)

Figure 4.6: Simulation results for the learning task of sin(u(t−3)). (a) Error surface
for sin(u(t− 3)), as a function of the input masks and the feedback gain. (b) The NRMSE
versus the input masks for sin(u(t − 3)) with parameter setting: η = 0.1, 0.5, 0.9 from top
to bottom. The indices of the input masks are arranged in descending order according to
the eigenvalues of Is.
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4.6.2 Chaotic attractor learning task

The chaotic attractor learning task is one of the most widely used benchmarks in
reservoir computing. It is often used to verify the performance of nonlinear trans-
formation, which is also an essential property for the TDRs. The input signal is
transformed in various nonlinear ways via the high-dimensional nonlinear dynamics
of the reservoirs. Here we test the TDRs on the chaotic attractor learning tasks of
two dynamical systems: the Hénon map and the logistic map. For these learning
tasks, the performance of high-level nonlinear transformation is necessary.

Hénon map

The training data set of the Hénon map is generated by

x(t+ 1) = 1− ax(t)2 + by(t),

y(t+ 1) = x(t− 1),
(4.14)

with parameter setting: a = 1.4 and b = 0.3. For this parameter value the Hénon
map is chaotic.

Logistic map

The logistic map is described by the equation

x(t+ 1) = rx(t)(1− x(t)). (4.15)

The time series x(t) is chaotic with parameter setting: r = 4.
We choose x(t) as the input signal, and the TDRs are trained to produce an

output of x(t + 1). The TDRs are trained from a run of 5000 steps and the first
100 steps were discarded. In these simulation experiments, the signal-to-noise ratio
of SNR = 70 is obtained using the given state noise strength ϵ.

In Figure 4.7a and Figure 4.8a, we plot the test error surface in the learning tasks
of the Hénon map and the logistic map, respectively, as a function of the feedback
gain and the input mask. These figures show that a broad range of the input mask
can provide a good performance of the nonlinear transformation. It is interesting to
note that the performance is degraded when the input mask takes the eigenvector
corresponding to the largest eigenvalue of Is.

Specially, we compare the test errors for the tasks of the Hénon map and the
logistic map with the test errors for the tasks w(u) = sin(u(t− τ ′)) in different cases
of η = 0.1, 0.5, 0.9, as in Figure 4.7b and Figure 4.8b. The test errors show opposite
trends with respect to the input mask. This phenomenon can be interpreted as the
memory-nonlinearity trade-off [64], [65] in the TDRs.
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(a)

(b)

Figure 4.7: Simulation results for Hénon map. (a) Error surface for Hénon map, as
a function of the input masks and the feedback gain. (b) The NRMSE versus the input
masks with parameter setting: η = 0.1, 0.5, 0.9 from top to bottom. The blue lines denote
the NRMSE for the learning task of Hénon map. The red lines denote the NRMSE for the
learning task of sin(u(t − 2)). The indices of the input masks are arranged in descending
order according to the eigenvalues of Is.
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(a)

(b)

Figure 4.8: Simulation results for logistic map. (a) Error surface for logistic map,
as a function of the input masks and the feedback gain. (b) The NRMSE versus the input
masks with parameter setting: η = 0.1, 0.5, 0.9 from top to bottom. The blue lines denote
the NRMSE for the learning task of logistic map. The red lines denote the NRMSE for the
learning task of sin(u(t − 2)). The indices of the input masks are arranged in descending
order according to the eigenvalues of Is.
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4.7 Discussion
Recalling that the consistency parameter is a practical tool for characterizing the
ESP of the stochastic TDRs (see section 1.4 above). At the end of this chapter,
the consistency parameter obtained by the input masks optimized by the proposed
method is compared to the consistency parameter obtained by random input masks.
(The corresponding heat map of the consistency parameter has been plotted in Figure
4.1) when scanning the feedback gain η and SNR level. These results are illustrated
in Figure 4.9. The black dashed lines denote the consistency parameter obtained by
random input masks. The black solid lines denote the consistency parameter obtained
by optimized input masks. These results show that our proposed method improves
the echo state property in the presence of state noise while also facilitating the design
of the input masks for the TDRs based on a single Mackey-Glass oscillator with
desired computational properties.

In conclusion, we applied the proposed method (see chapter 3 above) to the TDRs
based on a single Mackey-Glass oscillator in the presence of a white Gaussian state
noise. In particular, the availability of the Fisher memory curve of Eq.4.11 is helpful
to understand how an input signal propagates and fades in the Mackey-Glass oscilla-
tor. More importantly, it provides a task-independent and computationally-efficient
method to optimize the input mask such that the memory performance of the TDRs
impaired by state noise can be improved. In comparison with the existing optimiza-
tion method, the proposed one is running-time-efficient since it only involves a linear
problem in the optimization procedure and improves memory performance in a great
extent in the presence of state noise. Through numerical experiments, we confirmed
that the input mask in direction of the maximal principal component of the spatial
Fisher memory matrix certainly provides the best performance on benchmark memory
tasks requiring only weak nonlinear transformation capacity. Also, we illustrated a
memory-nonlinearity trade-off in terms of the input masks, whose associated memory
performance can be quantitatively characterized in detail through spectral properties
of the spatial Fisher memory matrix, using chaotic attractor learning tasks. In the
next chapter, we focus on another type of TDRs based on coupled Ikeda time-delay
systems. The proposed method is applied to improve the noise robustness of such
TDRs.
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Figure 4.9: Consistency parameter for the Mackey-Glass oscillator by TDRs
with various feedback gains η and SNR levels. The black dashed lines denote the
consistency parameter obtained by random input masks. The black solid lines denote the
consistency parameter obtained by optimized input masks.



Chapter 5

Improving noise robustness of deep
TDRs based on coupled Ikeda delay
systems

In this chapter, we focus on the recently introduced opto-electronic reservoir based
on coupled Ikeda time-delay systems [12]–[14]. The proposed method is applied to
optimize the performance of the deep TDRs, and validated by carrying out some
simulation experiments.

5.1 Coupled Ikeda delay systems
We focus our attention towards the simple and well characterized Ikeda time-delay
system, which is first inroduced by Kensuke Ikeda as a model of a passive optical
resonator system. L Ikeda time-delay systems are coupled unidirectionally as follows{

ẋl(t) = −xl(t)− δlyl(t) + βl sin
2[xl(t− τl) + κlxl−1(t) + bl]

ẏl(t) = xl(t)
, l = 1, 2, . . . , L (5.1)

where τl is the time delay, δl is the damping constant satisfying δl ≤ δl+1, βl is the
feedback gain, and bl is a scalar phase shift of the nonlinearity. The time evolution of
the dynamical variable vl = (xl, yl)

⊤ is characterized as the nonlinear feedback sin2

which concludes the past state, which leads to the occurrence of time delay, and the
dynamical state of the previous layer with a scalar phase shift. Then κ1 = 0; and
when l ≥ 2, κl is the coupling strength between the layer l − 1 and l.

The complex dynamics in Eq.5.1 depend upon the feedback gain βl. It has been
expounded in great detail in [13], [14], [66], [67]. As is well known, as the feedback

41
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gain βl increases the stationary solution of Eq.5.1 becomes unstable and occurs pe-
riod doubling bifurcation. When βl ≫ 1, the trajectory vl shows chaotic behavior.
Recalling that for TDRs based on a single nonlinear node with delayed feedback, both
theoretical and empirical studies have been shown that its ESP can be guaranteed by
the asymptotic stability of the equilibrium where the TDRs operates. In this chapter,
we focus on the deep TDRs comprising a hierarchy of multiple reservoir layers with
delayed feedback. The fundamental conditions for the ESP of such systems have been
established in [36]. It shows that the asymptotic stability of Eq.5.1 is relevant to the
ESP.

Considering L coupled Ikeda time-delay systems with parameter setting: if l = 1,
β1 ∈ (0, 1], δ1 = 0 and κ1 = 0; if l ≥ 2, βl ∈ (0, 1], δl > 0 and κl > 0. Then the
equilibrium of each layer of Eq.5.1 is given as the solution of the following equations:
if l = 1,

x̄1 = β1 sin
2(x̄1 + b1); (5.2)

and if l ≥ 2,

x̄l =0,

ȳl =
βl

δl
sin2(κlx̄l−1 + bl).

(5.3)

The stability of the equilibrium vl = (x̄l, ȳl)
⊤ can be studied using the characteristic

equation derived from the linear approximation at this point. This equilibrium is
asymptotically stable under the condition that the real part of every solution of the
characteristic equation is negative [14].

5.2 Model of deep TDRs with state noise
By applying the TDR scheme to coupled Ikeda time-delay systems, we establish the
model of deep time-delay reservoir (Deep TDR) computer as illustrated in Figure 5.1.
The time evolution of dynamical variable of the layer l is given by{

ẋl(t) = −xl(t)− δlyl(t) + βl sin
2[xl(t− τl) + κlJl(t) + zl(t) + bl]

ẏl(t) = xl(t)
(5.4)

where
Jl(t) =

{
M × I(t) for l = 1,
xl−1(t) for l ≥ 2.

(5.5)

is the input signal for each layer. Only the first layer is fed by the task-specific input
sequence I(t), which is obtained by the sample and hold operation mixed with an
additional input mask as Eq.1.5. In this case, κ1 denotes the input gain. When l ≥ 2,
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each consecutive layer receives only the first component xl−1(t) of the dynamical state
vl−1(t) of the previous layer with coupling strength κl. zl(t) is a white Gaussian state
noise.

Figure 5.1: Schematic of deep time-delay reservoirs.

Generally, these coupled nonlinear oscillators communicate with each other under
instantaneous interaction, namely, without time delay [13]. In the case of different
time delay in each layer, a clock cycle T given by the input speed is applied to each
layer such that inter-layer coupling is instantaneous; see more details in [14], [68]. It
is a generalization of the frequently used TDRs in contrast to the case of T = τ . In
this chapter, we consider that the time delay τl in each layer has the same length as
τl = τ, l = 1, 2, . . . , L, and the clock cycle T is set to τ . In such case, each layer has
the same number of virtual neurons Nl = N, l = 1, 2, . . . , L which is parameterized
by a sampling length θ by N = τ/θ. As the interconnection between these coupled
layer is realized via the first component xl(t) of the dynamical state vl(t), the virtual
neurons

xl(n) = (x1
l (n), x

2
l (n), . . . , x

Nl
l (n))⊤ ∈ RNl (5.6)

in layer l is defined as

xi
l(n) =xl(nT − (Nl − i)θ)

=xl(nτ − (N − i)θ) for i = 1, 2, . . . , N.
(5.7)

Here N is the number of virtual neurons in layer l, and θ is subjected to the time-
multiplexing method in Eq.1.5.

In the output layer of the deep TDR, all virtual nodes xl(nτ − (N − i)θ) of each
layer l = 1, 2, . . . , L are readout by combining a trained output matrix Wout linearly.
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Assuming that the collection of the virtual neurons is given by

x(n) =


x1

x2
...

xNtot

 =


x1(nτ)

x1(nτ + θ)
...

xL(nτ − (N − 2)θ)
xL(nτ − (N − 1)θ)

 (5.8)

where Ntot = LN is the total reservoir size. Then the output is computed according
to

y(n) = Woutx(n). (5.9)

In Figure 5.2, we show how the consistency parameter of the two-layer deep TDRs
is impaired by noise. In Figure 5.2a, the feedback gain β1 of the 1st layer is chosen as
the dependent variable belongs on the vertical axis and β2 = 0.9 is fixed. The opposite
situation that the feedback gain β2 of the 2nd layer is chosen as the dependent variable
belongs on the vertical axis and β1 = 0.6 is illustrated in Figure 5.2b. These figures
illustrate how the ESP of the deep TDR is degraded by noise. We note that for
each parameter combination the normalized random input masks are used in these
simulation experiments. For the simulation results of the consistency parameter for
different values of the coupling strength κl, we refer to Appendix C.

5.3 Reservoir map of deep TDRs
In order to study the memory trace in the multi-layered reservoir network, we consider
the collection of the dynamical state (xl, yl)

⊤ as a total system, and these infinite time
series obtained by Eq.5.4 for layer l are split into the delay interval τ . We define

x(n) = (x1
1(n), x

2
1(n), . . . , x

i
l(n), . . . , x

N−1
L (n), xN

L (n))
⊤,

y(n) = (y11(n), y
2
1(n), . . . , y

i
l(n), . . . , y

N−1
L (n), yNL (n))⊤,

(5.10)

with n ∈ Z. Here the ith virtual neuron state of the lth layer at the nth time step
is denoted as xi

l(n) = xl(nτ − (N − i)θ), and the corresponding dynamical state is
yil(n) = yl(nτ − (N − i)θ). With the discrete time index n, the set of segments can be
understood as the representation of the deep TDR. Considering the Euler–Maruyama
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(a)

(b)

Figure 5.2: Consistency parameter for random input masks, as a function of
the feedback gain βl (vertical axis) and SNR level (horizontal axis). (a) β2 = 0.9.
(b) β1 = 0.6. The type of two-layer deep TDRs based on coupled Ikeda delay system is
considered with parameter setting: τ1 = τ2 = 20, δ1 = 0, δ2 = 0.01, κ1 = 0.4, κ2 = 1, b1 =
b2 = 0.2 and θ = 0.2.



5.4. JACOBIAN LINEARIZATION AND THE CONNECTIVITY MATRIX 46

time-discretization with integration step θ, Eq.5.10 has the specific form as follows

xi
l(n) =

1
1+θ+δlθ2

xi−1
l (n)− δlθ

1+θ+δlθ2
yi−1
l (n)

+ βlθ
1+θ+δlθ2

f(xi
l(n− 1), J i

l (n),∆zil (n)),

yil(n) =
θ

1+θ+δlθ2
xi−1
l (n) + 1+θ

1+θ+δlθ2
yi−1
l (n)

+ βlθ
2

1+θ+δlθ2
f(xi

l(n− 1), J i
l (n),∆zil (n)),

x0
l (n) = xN

l (n− 1),

y0l (n) = yNl (n− 1),

(5.11)

where f(xi
l(n− 1), J i

l (n),∆zil (n)) = sin2(xi
l(n− 1)+κlJ

i
l (n)+ bl +∆zil (n)). The layer

dependent input is given by

J i
l (n) =

{
J1(nτ − (N − i)θ) for l = 1,
xi
l−1(n) for l ≥ 2.

(5.12)

And the increment ∆zil (n) = zl(nτ − (N − i)θ) − zl(nτ − (N − i + 1)θ) follows
the normal distribution with zero mean and covariance ⟨∆zil (k)∆zjl (l)⟩ = ϵθδk,lδi,j.
Recalling that only the first reservoir layer receives the external input signal which is
denoted as J1(n).

The recursions Eq.5.11 determine the mapping of one τ -segment to the next, which
has an expression of the form{

x(n) = F (x(n− 1),y(n− 1),Jin(n),∆z(n))
y(n) = G(x(n− 1),y(n− 1),Jin(n),∆z(n))

, (5.13)

where F = (F 1
1 , F

2
1 , . . . , F

i
l , . . . , F

N−1
L , FN

L ) and G = (G1
1, G

2
1, . . . , G

i
l, . . . , G

N−1
L , GN

L )
are constructed out of the nonlinear map F i

l and Gi
l that depend on the ith dynamical

states (xi
l, y

i
l) of the lth layer and the external input signal with state noise; Jin(n) =

J1(n) is the external input signal, which is only received by the first reservoir layer.
Indeed, we are interested in the transient response of the total reservoir system to the
external input signal at a given time as illustrated in Eq.5.13.

5.4 Jacobian linearization and the connectivity ma-
trix

The evolution of dynamical states (x(n),y(n)) of τ -segments has been introduced in
Eq.5.13. Consider the stable equilibrium (x̄l, ȳl) of the autonomous system Eq.5.4 for
layer l or, equivalently, the stable fixed point of Eq.5.11 of the form {(xi

l, y
i
l) |xi

l =
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x̄l, y
i
l = ȳl, i = 1, 2, . . . , N} with Jin = 0, ∆z = 0 in each layer l. Then the total

system Eq.5.13 has the stable fixed point of the form

{(x̄, ȳ) | x̄ = (x̄1, x̄1, . . . , x̄l, . . . , x̄L), ȳ = (ȳ1, ȳ1, . . . , ȳl, . . . , ȳL), l = 1, 2, . . . , L}

To approximate Eq.5.13 by its Jacobian linearization at (x̄, ȳ,0,0), we obtain an
expression of the form:

x(n) = x̄+ AF (x(n− 1)− x̄l) +BF (y(n− 1)− ȳ) + CFJin(n)

+DF∆z(n)

y(n) = ȳ + AG(x(n− 1)− x̄) +BG(y(n− 1)− ȳ) + CGJin(n)

+DG∆z(n)

, (5.14)

where

AF = DxF (x̄, ȳ,0,0), BF = DyF (x̄, ȳ,0,0),

CF = DJin
F (x̄, ȳ,0,0), DF = D∆zF (x̄, ȳ,0,0),

AG = DxG(x̄, ȳ,0,0), BG = DyG(x̄, ȳ,0,0),

CG = DJin
G(x̄, ȳ,0,0), DG = D∆zG(x̄, ȳ,0,0),

are the corresponding Jacobian matrices. For the detail of the calculation process
for these Jacobian matrices, we refer to Appendix D. The matrix AF ∈ RNtot×Ntot is
referred to as the connectivity matrix. The feedforward connections from the external
input signal Jin into the reservoir layer are represented as the product of the matrix
CF ∈ RNtot×N and the input mask M .

Using Eq.5.14, the states of the collection of the virtual neurons at time n has the
solution

x(n) = x̄+QF (n)(x(0)− x̄) + PF (n)(y(0)− ȳ)

+
∑∞

k=0WF (k)Jin(n− k) +
∑∞

k=0HF (k)∆z(n− k)

y(n) = x̄+QG(n)(x(0)− x̄) + PG(n)(y(0)− ȳ)

+
∑∞

k=0WG(k)Jin(n− k) +
∑∞

k=0HG(k)∆z(n− k)

. (5.15)
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Here the coefficient matrices can be calculated recursively as follows

QF (n) =AFQF (n− 1) +BFQG(n− 1),

PF (n) =AFPF (n− 1) +BFPG(n− 1),

WF (n) =AFWF (n− 1) +BFWG(n− 1),

HF (n) =AFHF (n− 1) +BFHG(n− 1),

QG(n) =AGQF (n− 1) +BGQG(n− 1),

PG(n) =AGPF (n− 1) +BGPG(n− 1),

WG(n) =AGWF (n− 1) +BGWG(n− 1),

HG(n) =AGHF (n− 1) +BGHG(n− 1).

Note that the time-multiplexed signal Jin(n) is linearly dependent on the sampled
input signal u(nτ) with the mask vector M . Because the long-term behavior near a
sable equilibrium does not depend significantly on the initial conditions, Eq.5.15 can
be expressed as follows{

x(n) = x̄+
∑∞

k=0WF (k)Mu((n− k)τ) +
∑∞

k=0 HF (k)∆z(n− k)

y(n) = x̄+
∑∞

k=0WG(k)Mu((n− k)τ) +
∑∞

k=0HG(k)∆z(n− k)
. (5.16)

5.5 Fisher memory curve at the equilibrium
In this section, we measure the ability of the deep TDR to hold information in short-
term memory. Recalling that the states of virtual neurons is derived from the first
component xl of the dynamical state vl in each layer l. Then the fisher information is
applied on x(n) at time n. Assuming that the increment ∆z(n) follows the Gaussian
distribution with zero mean and covariance ⟨∆zil (k)∆zjl (l)⟩ = ϵθδk,lδi,j. This implies
that the conditional distribution p(x(n)|u) is also Gaussian with mean

µ = x̄+
∞∑
k=0

WF (k)Mu((n− k)τ), (5.17)

and covariance matrix

Cn = ϵθ
∞∑
k=0

HF (k)HF (k)
⊤. (5.18)

By using Eq.3.5, the Fisher memory curve {Ik}∞k=0 at the equilibrium (x̄, ȳ,0,0) can
be described as

Ik = M⊤W⊤
F (k)C−1

n WF (k)M. (5.19)
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We must note that for deep TDRs the Fisher memory curve measures the information
of the past input signal held by the all reservoir layers.

Under the condition of βl ∈ (0, 1], l = 1, 2, . . . , L, the deep TDRs based on couple
Ikeda systems operate in the dynamical regime around the fixed point (x̄, ȳ,0,0). In
Figure 5.3, we plot the Fisher memory curves for the two-layer deep TDRs. The input
masks are always taken as the eigenvector corresponding to the largest eigenvalue
of Is such that the short-term memory capacity is optimized. These figures show
how the memory trace fades away with the time step k in the presence of state
noise. Firstly, we choose the input gain κ1 as the dependent variable belongs on the
vertical axis, and the coupling strength κ2 between the layers 1 and 2 is fixed at
0.9, as illustrated in the left panel of Figure 5.3a. These results show that there is
no significant relationship between the input gain κ1 and the Fisher memory curve.
In the right panel of Figure 5.3a, the Fisher memory curve for different levels of
coupling strength κ2 with κ1 = 0.5 is presented. The coupling strength κ2 and the
Fisher memory curve have no significant relationship, according to these findings.
The relationship between the feedback gain βl and the fisher memory curve is then
discussed. The left panel of Figure 5.3b shows that the high-level feedback gain is
helpful for improving the short-term memory in the presence of state noise. We
confirmed that similar results in the left panel of Figure 5.2a. In the right panel of
Figure 5.3b, we plot the Fisher memory curve for various feedback gain β2 of the 2nd
layer with β1 = 0.6. These results indicate that there is no significant relationship
between the input gain β2 and the Fisher memory curve. This is obvious that in our
model the architecture of the deep TDRs is the unidirectional coupling between the
recurrent layers, such as feed-forward connections. The interaction between the two
layers, in other words, is one-way. The feedback gain β1 has an effect not only on the
first layer but also on the second layer. The feedback increase effect of β2 cannot be
used on the first layer.
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(a)

(b)

Figure 5.3: Fisher memory curve exhibited by the deep TDRs based on two
coupled Ikeda delay systems. (a) In the left panel, β2 = 0.9 is fixed; in the right panel,
β1 = 0.6 is fixed. (b) In the left panel, β2 = 0.9 is fixed; in the right panel, β1 = 0.6 is fixed.
We used the same parameters setting: τ1 = τ2 = 20, δ1 = 0, δ2 = 0.01, b1 = b2 = 0.2 and
θ = 0.2.
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5.6 Optimized Input mask in deep TDRs with state
noise

Table 5.1: Parameters of the three-layer deep TDR used for the calculation of
the Fisher memory curve in Figure 5.4 and for the simulation experiments in
section 5.7.

Delay τ Damping δ Phase b feedback β coupling κ
1st layer 20 0 0.2 0.68 0.4
2nd layer 20 0.01 0.2 0.8 1
3rd layer 20 0.01 0.2 0.97 1

The total memory is

Itot =
∞∑
k=0

Ik = M⊤IsM, (5.20)

where

Is =
∞∑
k=0

W⊤
F (k)C−1

n WF (k). (5.21)

We define the eigenvalues of Is as λmax ≥ λ2 ≥ . . . ≥ λN , which are arranged
in descending order, and the corresponding eigenvectors as vmax, v2, . . . , vN . Itot can
be maximized by the largest eigenvalue λmax of Is, when the associated eigenvector
is chosen to be the input mask as M = vmax. The heatmap used for visualizing the
eigenvectors of Is is shown in Appendix E.

The Fisher memory curves generated by employing the chosen eigenvectors as
input masks are presented in Figure 5.4. The optimal input mask M = vmax is
represented by the blue solid line. The used parameters are given in Table 5.1.

We show how the total memory Itot evolves for the TDR as a function of the
number of reservoir neurons in Figure 5.4b. The figure illustrates that increasing the
number of reservoir neurons can prevent the memory from decaying in the presence
of state noise.
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(a)

(b)

Figure 5.4: Short-term memory capacity for three coupled Ikeda delay systems
with the chosen input masks. The used parameters are given in Table 5.1.

5.7 Simulation experiments
A variety of benchmark tasks are available to provide information on the processing
power of the deep TDRs. Each of these tasks has different essential properties to
accurately estimate the target function. In this section, we provide the simulation
experiments of three types of learning tasks: h-lag memory tasks, weakly nonlinear
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function approximation task and chaotic attractor learning task.

5.7.1 h-lag memory task

We compare the optimized input mask with two hundred random input masks for
different noise levels. The elements of these input masks are drawn from a uniform
distribution in the interval (−1, 1). In order to avoid changing the strength of the
input signal, these random input masks are normalized.

h-lag linear memory task

The ability to reconstruct the past input signal from the current reservoir state is the
focus of the linear memory tasks. In the context of reservoir computing, it has been
utilized in many other publications, such as in [14], [58]. The linear memory tasks
are associated with the linear function Fh : Rh+1 → R. Let the independent variable
uh(t) = (u(t), u(t− 1), . . . , u(t− h))⊤ and the linear operator Lh ∈ Rh+1, then

Fh(uh(t)) = L⊤
huh(t). (5.22)

h-lag quadratic memory task

The nonlinear memory capacity is introduced in [64] as a generalization of the linear
memory capacity. It can be investigated by the quadratic task memory task, which
links to a quadratic function Hh : Rh+1 → R. The form of Hh is given by

Hh(uh(t)) = u⊤
h (t)Qhuh(t)

=
h+1∑
i=1

h+1∑
j=1

Qiju(t− i+ 1)u(t− j + 1),
(5.23)

where Qh ∈ R(h+1)×(h+1) is a real symmetric matrix such that Qij = Qji for i ∈ Z+

and j ∈ Z+.
In our experiments, the input signal u(t) consists of scalar random numbers drawn

from a normal distribution with mean zero and standard deviation one. The param-
eter setting of the deep TDRs is given in Table 5.1. The separation distance of the
virtual neurons is set at θ = 0.2 that offers a suitable short-term memory capacity as
in Fig.5.4b.
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(a)

(b)

Figure 5.5: Reservoir performance for the 5-lag linear memory task and the 3-lag
quadratic memory task. (a) NRMSEs for the 5-lag linear memory task as a function of
the input mask and SNR. (b) NRMSEs for the 3-lag quadratic memory task as a function
of the input mask and SNR. The blue points indicate the NRMSEs obtained from the 200
different randomly picked masks. The red asterisk points indicate the NRMSEs simulated
by using the input mask optimized by the proposed method. The used parameters are given
in Table 5.1.

In practice, we let the deep TDRs run for 7000 steps, starting from random initial
states. We use the first 5000 steps for training, but discard the first 100 steps,
during which the initial state’s effect fades away. The last 2000 steps are used for
determining the test errors. In Figure 5.5a, we plot the simulation results for the 5-lag
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linear memory task with different noise levels. The blue points indicate the NRMSEs
obtained from the 200 different randomly picked masks. The red asterisk points
indicate the NRMSEs simulated by using the input mask optimized by the proposed
method. The lowest value is NRMSE = 0.0482 obtained by the optimized input mask
for SNR = 50. Even for a high noise level, such as SNR = 10, the optimized input
masks outperform the 200 normalized random input masks. On the other hand, as
the noise level increases, the performance of the deep TDRs is significantly degraded.
These results are consistent with the previous simulation results of the consistency
parameter illustrated in Figure 5.2. Analogously to the 3-lag linear memory task case,
we plot the simulation results for the 3-lag quadratic memory task with different noise
levels in Figure 5.5b. We confirmed that similar results are obtained.

5.7.2 Weakly nonlinear function approximation task

The description of the weakly nonlinear function approximation task has been in-
troduced in section 4.6.1 above. The input signal u(t) is drawn from a uniform
distribution in the interval (−0.1, 0.1). In a similar way to the case of the h-lag mem-
ory task, the deep TDRs are trained from a run of 5000 steps, of which the first 100
steps are discarded. The trained deep TDRs are tested by 2000 steps.

We compare the input mask optimized by the proposed method with 200 random
input masks at the first step in Figure 5.6. When scanning the reservoir performance
against the SNR, we obtain the simulation results of the learning task of sin(u(t−2))
in Figure 5.6a. The used parameters are kept constant in Table 5.1. It is obvious
that the higher SNR is, the greater the performance gap caused by different input
masks is. The best performance can be found for the SNR = 50 with optimized input
mask, where the minimum reached NRMSE is 0.0828. We show the simulation results
for the learning task of sin(u(t − 3)) with different noise levels in Figure 5.6b. For
SNR = 50, we experimentally obtain the lowest test error with NRMSE = 0.1902
using the optimized input mask.

Next, we use the eigenvectors of Is as the input mask and compare their test errors
when scanning the feedback gain β1 of the 1st layer. Assuming that the eigenvectors of
the spatial Fisher memory matrix Is is denoted by vmax, v2, . . . , vN , which are arranged
in descending order according to the eigenvalues of Is as λmax ≥ λ2 ≥ . . . ≥ λN .
Figure 5.7a depicts the test error of the task sin(u(t−2)) as a function of the feedback
gain β1 and the input mask. A narrow blue region with NRMSE < 0.15 has been
obtained by the optimized input mask. The minimum is NRMSE = 0.0782 when
β1 = 0.95. For the optimized input masks, a decrease in the NRMSE corresponds
to an increase in the feedback gain β1. The green region with 0.15 < NRMSE < 0.2
implies the region where performance is reasonable. The red region denotes the point
at which the reconstruction of the target signal fails altogether. A similar result is
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obtained by employing the task of sin(u(t − 3)) illustrated in Figure 5.8. In this
task, the proposed method is failed for the feedback gain at low level β1 ≤ 0.2. The
minimum is NRMSE = 0.1706 when β1 = 0.95.

(a)

(b)

Figure 5.6: Reservoir performance for the learning task of sin(u(t − τ ′)). (a)
NRMSEs for the task of sin(u(t−2)) as a function of the input mask and SNR. (b) NRMSEs
for the task of sin(u(t − 3)) as a function of the input mask and SNR. The blue points
indicate the NRMSEs obtained from the 200 different randomly picked masks. The red
asterisk points indicate the NRMSEs simulated by using the input mask optimized by the
proposed method. The used parameters are given in Table 5.1.
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(a)

(b)

Figure 5.7: Reservoir performance for the learning task of sin(u(t− τ ′)). (a) Error
surface for sin(u(t − 2)), as a function of the input mask and the feedback gain β1 of the
1st layer. (b) The NRMSE versus the input masks for sin(u(t− 2)) with parameter setting:
β1 = 0.1, 0.5, 1.0 from top to bottom. The used parameters are given in Table 5.1.
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(a)

(b)

Figure 5.8: Reservoir performance for the learning task of sin(u(t− τ ′)). (a) Error
surface for sin(u(t − 3)), as a function of the input mask and the feedback gain β1 of the
1st layer. (b) The NRMSE versus the input masks for sin(u(t− 3)) with parameter setting:
β1 = 0.1, 0.5, 1.0 from top to bottom. The used parameters are given in Table 5.1.
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5.7.3 Chaotic attractor learning task

Here, we show numerical results for the chaotic attractor learning task, which has
been introduced in section 4.6.2. In these simulation experiments, the signal-to-noise
ratio of SNR = 60 for the Hénon map and SNR = 70 for the logistic map is obtained
using the given state noise strength ϵ. When scanning the feedback gain β1 of the
first layer, we use the eigenvectors of Is as the input mask and compare their test
errors.

(a)

(b)

Figure 5.9: Simulation results for the learning tasks: Hénon map and logistic
map. (a) Error surface for Hénon map, as a function of the input masks and the feedback
gain β1 of the 1st layer. (b) Error surface for logistic map, as a function of the input masks
and the feedback gain β1 of the 1st layer. The used parameters are given in Table 5.1 except
for κ1 = 1.
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Concretely, the TDRs are trained from a run of 5000 steps and the first 100
steps were discarded. In Figure 5.9a, the NRMSE values are shown in color coding,
while scanning the feedback gain of the first layer β1 and the eigenvector vi. This
figure shows that the region of good performance is for high values of β1 and the
performance gap between the used input masks is not significant. On the other hand,
the simulation results for the logistic map are shown in Figure 5.9b. In this case, a
large region of good performance with NRMSE < 0.15 is obtained when β1 ∈ [0.1, 0.7].

5.8 Discussion
Here, we show the consistency parameter obtained by the random input mask and
the input masks optimized by the proposed method which is introduced in Chapter
3. In Figure 5.10, the values of the consistency parameter are depicted by shades of
mono-color, while scanning the feedback gain of the first layer β1 and SNR. In the
plot of Figure 5.10a, the simulation results of the random input masks are shown.
As a contrast, the simulation results of the optimized input masks are illustrated in
Figure 5.10b. Specifically, we compare the simulation results for random input masks
and optimized input masks in different cases of β1 = 0.1, 0.3, 0.5, 0.7, 1 in Figure
5.11. This figure shows that the proposed method significantly improves the echo
state property in the presence of state noise.

We have successfully applied the proposed method to the deep TDRs based on
coupled Ikeda time-delay systems in the presence of noise. The formula of Eq. 5.19
for the Fisher memory curve can be used to estimate the memory trace in such deep
TDRs. The deep TDR has a number of parameters that can be adjusted, such as the
feedback strength βl, the input gain/coupling strength κl. Due to the unidirectional
coupling of the Ikeda time-delay systems, the feedback strength βl and the input
gain/coupling strength κl of layer l have a great influence on the next layer l + 1,
but not vice versa. By using the maximal principal component of the spatial Fisher
memory matrix as the input mask, we succeed in improving the noise robustness
of such deep TDRs. It is confirmed by implementing the deep TDRs on several
benchmark tasks with random input masks and the optimized input masks. We
found that the optimized input mask outperforms the random mask in both the h-lag
memory task and the weakly nonlinear function approximation task. However, the
proposed method is no longer effective for the chaotic attractor learning task which is
strongly dependent on the nonlinear transformation capacity for good performance.
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(a)

(b)

Figure 5.10: Consistency parameter for random input masks (upper) and opti-
mized input masks (lower), as a function of the feedback gain of the first layer β1
(vertical axis) and SNR level (horizontal axis). (a) Normalized random input masks.
(b) Input masks optimized by the proposed method. The used parameters are given in Table
5.1.
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Figure 5.11: Consistency parameter for random input masks and optimized
input masks with parameter setting: β1 = 0.1, 0.3, 0.5, 0.7, 1 from top to bottom.
The black dashed lines denote the consistency parameter obtained by random input masks.
The black solid lines denote the consistency parameter obtained by optimized input masks.
The used parameters are given in Table 5.1.



Chapter 6

Conclusions

Reservoir computing is a brain-inspired machine-learning framework that has been
successfully used in information processing, such as attractor reconstruction or speech
recognition. The basic structure of reservoir computing is composed of an input layer,
a reservoir layer, and an output layer. The input layer connects the real-world signal
to the reservoir layer via fixed weighted connections. Besides the artificial neural
network, the reservoir layer can be consist of a variety of nonlinear dynamical systems
with a rich space of internal states. We focus on the type of reservoir layer that is
realized by using a single nonlinear physical node with a delay line. Such reservoirs
are susceptible to both internal and external noise. In Figure 2.1, we show that how
the echo state property of the TDRs is impaired by the state noise via the consistency
parameter.

We have developed an optimization method for improving the noise robustness of
the TDRs in the context of Fisher information. Firstly, instead of the conventional
approach of measuring the short-term memory, we extend the Fisher memory frame-
work to the TDRs in the presence of state noise. This measurement is only acceptable
when the working regime of the TDRs remains close to a stable equilibrium. In such
a case, the Fisher memory curve can be applied to the linear approximation of the
TDRs at the stable equilibrium, and assess the capacity that how much information
about the past input signal the current reservoir states can hold. The total mem-
ory capacity is indicated by the sum of the Fisher memory curve overall delay. It
shows that the maximal total memory capacity can be characterized by the largest
eigenvalue of the spatial Fisher memory matrix when the associated eigenvector is
chosen to be the input mask. Such input mask implies the preferred direction in the
reservoir state space corresponding to the large principal component of the spatial
Fisher memory matrix. The short-term memory capacity is closely linked to the echo
state property. To propagate and hold the input history, the TDRs requires the echo
state property (or the corresponding reservoir map has a fading memory). In Figure
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3.1, we plot how the consistency parameter evolves for two types of the TDRs as
a function of the optimized input masks. Compared with the random input masks
illustrated in Figure 2.1, the optimized input masks significantly improve the noise
robustness of the TDRs.

Concretely, we applied the proposed method to two types of TDRs subjected to
state noise. The first TDR is implemented by a single Mackey-Glass nonlinear os-
cillator. By using the consistency parameter, the echo state property of such TDRs
with random input masks is illustrated in Figure 4.1. We optimized the input masks
by using the proposed method and compared its performance with the existing opti-
mization method for the h-lag memory task. We showed that the proposed method
is running-time-efficient since it only involves a linear problem in the optimization
procedure and improves memory performance in a great extent in the presence of
state noise. Then several benchmark tasks were used to quantify the performance.
For the function approximation task of f(u(t)) = sin(u(t − 2)), the minimal nor-
malized root mean square error obtained by the optimized input mask is as low as
NRMSE = 0.0216. And for another task of f(u(t)) = sin(u(t − 3)), the minimal
NRMSE obtained by the optimized input mask equals 0.0953. For the chaotic attrac-
tor learning tasks, which require a strong nonlinear transformation, the optimized
input masks were no longer providing good performance, such as NRMSE = 0.1240
in the case of the Hénon map and NRMSE = 0.1681 in the case of the logistic map. It
is interpreted as the memory-nonlinearity trade-off. In Figure 4.9, we compared the
consistency parameter obtained by the optimized input masks with the one obtained
by the random input masks when scanning the feedback gain.

The second case is the deep TDRs based on coupled Ikeda delay systems. Anal-
ogously to the case of the Mackey-Glass oscillator, we tested the reservoir perfor-
mance for three benchmark tasks. Numerically, for the 5-lag linear memory task the
minimum NRMSE = 0.0482 obtained by the optimized input mask was found, and
for the 3-lag quadratic memory task the minimum NRMSE = 0.0403 obtained by
the optimized input mask was found. In the tasks of f(u(t)) = sin(u(t − 2)) and
f(u(t)) = sin(u(t − 3)), we compared the optimized input mask with 200 random
input masks. Both the minimum NRMSE = 0.0828 for f(u(t)) = sin(u(t − 2)) and
the minimum NRMSE = 0.1902 for f(u(t)) = sin(u(t − 3)) were obtained by the
optimized input mask at SNR = 50. We also tested the reservoir performance on
these tasks by using the principal components of the spatial Fisher memory matrix
as the input masks. The minimum NRMSE = 0.0782 for f(u(t)) = sin(u(t− 2)) and
NRMSE = 0.1706 for f(u(t)) = sin(u(t − 3)) were obtained by using the maximal
principal component of the spatial Fisher memory matrix as the input mask. How-
ever, the proposed method is no longer effective for the chaotic attractor learning
task which is strongly dependent on the nonlinear transformation capacity for good
performance. In Figure 5.10 and Figure 5.11, we showed the values of consistency
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parameter for the random input masks and optimized input masks.
In conclusion, the method we have proposed could optimize the memory per-

formance of the TDRs subjected to state noise with respect to input masks in a
task-independent and computationally-efficient manner. By using the consistency
parameter, we showed that the proposed method improves the echo state property of
TDRs to a great extent in the presence of state noise. The proposed method facili-
tates the design of the input masks for improving the noise robustness of TDRs on
memory tasks.



Appendices

A. Normalized root mean squared error
The normalized root mean squared error (NRMSE) is used to assess performance on
a specific task.

NRMSE =

√√√√ 1

n

n∑
i=1

∥ y(i)− ytarget(i) ∥
var(y(i))

,

where n is the length of testing steps, y(i) is the output of the trained reservoir
system at time step i, and ytarget(i) is the corresponding desired output. Furthermore,
var(y(i)) is the variance of the observation output, and ∥ ∥ is the Euclidean norm.

B. Eigenvectors of the spatial Fisher memory matrix
in TDRs
In Figure 6.1, the heatmap is used to visualize the eigenvectors of the spatial Fisher
memory matrix Is. The eigenvectors of indices ranging from 27th to 399th seem
spurious. The reason is that the eigenvalues with indices of 27th or more are located
extremely close to unity.
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Figure 6.1: Heatmap of the eigenvectors of Is with parameter setting: γ = 0.1,
p = 1, η = 0.9, τ = 80 and θ = 0.2. The color of each pixel is determined by the absolute
value of components of the input mask. The indices of the input masks are arranged in
descending order according to the eigenvalues of Is.
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C. Coupling strength in deep TDRs with state noise

(a)

(b)

Figure 6.2: Consistency parameter for random input masks (upper) and opti-
mized input masks (lower), as a function of the coupling strength κl (vertical
axis) and SNR level (horizontal axis). (a) Normalized random input masks. (b) Opti-
mized input masks using the proposed method. The type of two-layer deep TDRs based on
coupled Ikeda delay system is considered with parameter setting: τ1 = τ2 = 20, δ1 = 0, δ2 =
0.01, β1 = 0.68, β2 = 0.8, b1 = b2 = 0.2 and θ = 0.2.

D. The connectivity matrix of deep TDRs
The evolution of τ -segments x(n) and y(n) is governed by{

x(n) = F (x(n− 1),y(n− 1),Jin(n),∆z(n))
y(n) = G(x(n− 1),y(n− 1),Jin(n),∆z(n))

,
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which has been introduced in Eq.5.11. Consider the stable equilibrium (x̄l, ȳl) of the
autonomous system Eq.5.4 for layer l or, equivalently, the stable fixed point of Eq.5.11
of the form {(xi

l, y
i
l) |xi

l = x̄l, y
i
l = ȳl, i = 1, 2, . . . , N} with Jin = 0, ∆z = 0 in each

layer l. Then the total system Eq.5.13 has the stable fixed point of the form

{(x̄, ȳ) | x̄ = (x̄1, x̄1, . . . , x̄l, . . . , x̄L), ȳ = (ȳ1, ȳ1, . . . , ȳl, . . . , ȳL), l = 1, 2, . . . , L}
To approximate Eq.5.13 by its Jacobian linearization at (x̄, ȳ,0,0), we obtain an
expression of the form:

x(n) = x̄+ AF (x(n− 1)− x̄l) +BF (y(n− 1)− ȳ) + CFJin(n)

+DF∆z(n)

y(n) = ȳ + AG(x(n− 1)− x̄) +BG(y(n− 1)− ȳ) + CGJin(n)

+DG∆z(n)

. (6.1)

The expression of AF

The Jacobian matrix AF ∈ RNtot×Ntot , Ntot = LN , is given by

AF = DxF (x̄, ȳ,0,0).

Its element at the intersection of row i× l and column j× k is obtained by ∂F i
l

∂xj
k

. This
value is calculated as follows:
If l = k,

∂F 1
l

∂xj
k

=


βlθ

1+θ+δlθ2
sin(2(x̄l + bl)), for i = j = 1

0, for i = 1, j < N
1

1+θ+δlθ2
, for i = 1, j = N

∂F i
l

∂xj
k

=



1
1+θ+δlθ2

∂F i−1
l

∂xj
l

− δlθ
1+θ+δlθ2

∂Gi−1
l

∂xj
l

, for 1 < j < i < N

βlθ
1+θ+δlθ2

sin(2(x̄l + bl)), for 1 < i = j < N

0, (1 < i < j < N)

1
1+θ+δlθ2

∂F i−1
l

∂xN
l

− δlθ
1+θ+δlθ2

∂Gi−1
l

∂xN
l
, for 1 < i < N, j = N

∂FN
l

∂xj
k

=


1

1+θ+δlθ2
∂FN−1

l

∂xj
l

− δlθ
1+θ+δlθ2

∂GN−1
l

∂xj
l

, for i = N, 1 ≤ j < N

1
1+θ+δlθ2

∂FN−1
l

∂xN
l

− δlθ
1+θ+δlθ2

∂GN−1
l

∂xN
l

+ βlθ
1+θ+δlθ2

sin(2(x̄l + bl)), for i = j = N

If l ̸= k,

∂F i
l

∂xj
k

=

 βlθ
1+θ+δlθ2

κl sin(2(x̄l + bl))
∂F i

l−1

∂xj
k

, for l > k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

0, for l < k, 1 ≤ i ≤ N, 1 ≤ j ≤ N



70

The expression of BF

The Jacobian matrix BF ∈ RNtot×Ntot is given by

BF = DyF (x̄, ȳ,0,0)).

Its the (i× l, j×k)-th element is obtained by ∂F i
l

∂yjk
. This value is calculated as follows:

If l = k,
∂F 1

l

∂yjk
=

{
0, for i = 1, j < N

− δlθ
1+θ+δlθ2

, for i = 1, j = N

∂F i
l

∂yjk
=

{
0, for 1 < i ≤ N, j < N

1
1+θ+δlθ2

∂F i−1
l

∂yNk
− δlθ

1+θ+δlθ2
∂Gi−1

l

∂yNk
, for 1 < i ≤ N, j = N

If l ̸= k,

∂F i
l

∂yjk
=

 βlθ
1+θ+δlθ2

κl sin(2(x̄l + bl))
∂F i

l−1

∂yjk
, for l > k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

0, for l < k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

The expression of CF

The Jacobian matrix CF ∈ RNtot×N is given by

CF = DJin
F (x̄, ȳ,0,0)).

Its the (i× l, j)-th element is obtained by ∂F i
l

∂Jj
in

. This value is calculated as follows:
If l = 1,

∂F 1
l

∂J j
in

=

{
βlθ

1+θ+δlθ2
κlsin(2(x̄l + bl)), for i = j = 1

0, for i = 1, 1 < j ≤ N

∂F i
l

∂J j
in

=


1

1+θ+δlθ2
∂F i−1

l

∂Jj
in

− δlθ
1+θ+δlθ2

∂Gi−1
l

∂Jj
in

, for 1 ≤ j < i < N

βlθ
1+θ+δlθ2

κl sin(2(x̄l + bl)), for 1 < i = j < N

0, for 1 < i < j ≤ N

∂FN
l

∂J j
in

=

 1
1+θ+δlθ2

∂FN−1
l

∂Jj
in

− δlθ
1+θ+δlθ2

∂GN−1
l

∂Jj
in

, for i = N, 1 ≤ j < N

βlθ
1+θ+δlθ2

κl sin(2(x̄l + bl)), for i = j = N

If l > 1,

∂F i
l

∂J j
in

=
{

βlθ
1+θ+δlθ2

κl sin(2(x̄l + bl))
∂F i

l−1

∂Jj
in

, for 1 ≤ i ≤ N, 1 ≤ j ≤ N
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The expression of DF

The Jacobian matrix DF ∈ RNtot×Ntot is given by

DF = D∆zF (x̄, ȳ,0,0).

Its the (i× l, j×k)-th element is obtained by ∂F i
l

∂∆zjk
. This value is calculated as follows:

If l = k,
∂F 1

l

∂∆zjk
=

{
βlθ

1+θ+δlθ2
sin(2(x̄l + bl)), for i = j = 1

0, for i = 1, 1 < j ≤ N

∂F i
l

∂∆zjk
=


1

1+θ+δlθ2
∂F i−1

l

∂∆zjk
− δlθ

1+θ+δlθ2
∂Gi−1

l

∂∆zjk
, for 1 ≤ j < i < N

βlθ
1+θ+δlθ2

sin(2(x̄l + bl)), for 1 < i = j < N

0, for 1 < i < j ≤ N

∂FN
l

∂∆zjk
=

 1
1+θ+δlθ2

∂FN−1
l

∂∆zjk
− δlθ

1+θ+δlθ2
∂GN−1

l

∂∆zjk
, for i = N, 1 ≤ j < N

βlθ
1+θ+δlθ2

sin(2(x̄l + bl)), for i = j = N

If l ̸= k,

∂F i
l

∂∆zjk
=

 βlθ
1+θ+δlθ2

κl sin(2(x̄l + bl))
∂F i

l−1

∂∆zjk
, for l > k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

0, for l < k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

The expression of AG

The Jacobian matrix AG ∈ RNtot×Ntot is given by

AG = DxG(x̄, ȳ,0,0).

Its the (i× l, j×k)-th element is obtained by ∂Gi
l

∂xj
k

. This value is calculated as follows:
If l = k,

∂G1
l

∂xj
k

=


βlθ

2

1+θ+δlθ2
sin(2(x̄l + bl)), for i = j = 1

0, for i = 1, j < N
θ

1+θ+δlθ2
, for i = 1, j = N

∂Gi
l

∂xj
k

=



θ
1+θ+δlθ2

∂F i−1
l

∂xj
k

+ 1+θ
1+θ+δlθ2

∂Gi−1
l

∂xj
k

, for 1 < j < i < N

βlθ
2

1+θ+δlθ2
sin(2(x̄l + bl))), for 1 < i = j < N

0, (1 < i < j < N)

θ
1+θ+δlθ2

∂F i−1
l

∂xN
k

+ 1+θ
1+θ+δlθ2

∂Gi−1
l

∂xN
k
, for 1 < i < N, j = N
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∂GN
l

∂xj
k

=


θ

1+θ+δlθ2
∂FN−1

l

∂xj
k

+ 1+θ
1+θ+δlθ2

∂GN−1
l

∂xj
k

, for i = N, 1 ≤ j < N

θ
1+θ+δlθ2

∂FN−1
l

∂xN
k

+ 1+θ
1+θ+δlθ2

∂GN−1
l

∂xN
k

+ βlθ
2

1+θ+δlθ2
sin(2(x̄l + bl)), for i = j = N

If l ̸= k,

∂Gi
l

∂xj
k

=

 βlθ
2

1+θ+δlθ2
κl sin(2(x̄l + bl))

∂F i
l−1

∂xj
k

, for l > k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

0, for l < k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

The expression of BG

The Jacobian matrix BG ∈ RNtot×Ntot is given by

BG = DyG(x̄, ȳ,0,0).

Its the (i× l, j×k)-th element is obtained by ∂Gi
l

∂yjk
. This value is calculated as follows:

If l = k,
∂G1

l

∂yjk
=

{
0, for i = 1, 1 ≤ j < N

1+θ
1+θ+δlθ2

, for i = 1, j = N

∂Gi
l

∂yjk
=

{
0, for 1 < i ≤ N, 1 ≤ j < N

θ
1+θ+δlθ2

∂F i−1
l

∂yNk
+ 1+θ

1+θ+δlθ2
∂Gi−1

l

∂yNk
, for 1 < i ≤ N, j = N

If l ̸= k,

∂Gi
l

∂yjk
=

{
βlθ

2

1+θ+δlθ2
κl sin(2(x̄l + bl))

∂F i
l−1

∂yjk
, for l > k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

0, for l < k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

The expression of CG

The Jacobian matrix CG ∈ RNtot×N is given by

CG = DJin
G(x̄, ȳ,0,0).

Its the (i× l, j)-th element is obtained by ∂Gi
l

∂Jj
in

. This value is calculated as follows:
If l = 1,

∂G1
l

∂J j
in

=

{
βlθ

2

1+θ+δlθ2
κl sin(2(x̄l + bl)), for i = j = 1

0, for i = 1, 1 < j ≤ N
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∂Gi
l

∂J j
in

=


θ

1+θ+δlθ2
∂F i−1

l

∂Jj
in

+ 1+θ
1+θ+δlθ2

∂Gi−1
l

∂Jj
in

, for 1 ≤ j < i < N

βlθ
2

1+θ+δlθ2
κl sin(2(x̄l + bl)), for 1 < i = j < N

0, for 1 < i < j ≤ N

∂GN
l

∂J j
in

=


θ

1+θ+δlθ2
∂FN−1

l

∂Jj
in

+ 1+θ
1+θ+δlθ2

∂GN−1
l

∂Jj
in

, for i = N, 1 ≤ j < N

βlθ
2

1+θ+δlθ2
κl sin(2(x̄l + bl)), for i = j = N

If l > 1,

∂Gi
l

∂J j
in

=
{

βlθ
2

1+θ+δlθ2
κl sin(2(x̄l + bl))

∂F i
l−1

∂Jj
in

, for 1 ≤ i ≤ N, 1 ≤ j ≤ N

The expression of DG

The Jacobian matrix DF ∈ RNtot×Ntot is given by

DG = D∆zG(x̄, ȳ,0,0).

Its the (i× l, j×k)-th element is obtained by ∂Gi
l

∂∆zjk
. This value is calculated as follows:

If l = k,
∂G1

l

∂∆zjk
=

{
βlθ

2

1+θ+δlθ2
sin(2(x̄l + bl)), for i = j = 1

0, for i = 1, 1 < j ≤ N

∂Gi
l

∂∆zjk
=


θ

1+θ+δlθ2
∂F i−1

l

∂∆zjk
+ 1+θ

1+θ+δlθ2
∂Gi−1

l

∂∆zjk
, for 1 ≤ j < i < N

βlθ
2

1+θ+δlθ2
sin(2(x̄l + bl)), for 1 < i = j < N

0, for 1 < i < j ≤ N

∂GN
l

∂∆zjk
=


θ

1+θ+δlθ2
∂FN−1

l

∂∆zjk
+ 1+θ

1+θ+δlθ2
∂GN−1

l

∂∆zjk
, for i = N, 1 ≤ j < N

βlθ
2

1+θ+δlθ2
sin(2(x̄l + bl)), for i = j = N

If l ̸= k,

∂Gi
l

∂∆zjk
=

 βlθ
2

1+θ+δlθ2
κl sin(2(x̄l + bl))

∂F i
l−1

∂∆zjk
, for l > k, 1 ≤ i ≤ N, 1 ≤ j ≤ N

0, for l < k, 1 ≤ i ≤ N, 1 ≤ j ≤ N
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Figure 6.3: Comparison of the Jacobian linearization and Eq.5.4 computed by
using Runge-Kutta method. In this case, we set J(t) = 0, z(t) = 0. The trajectory
of a one-layer deep TDR based on coupled Ikeda delay system is govern by Eq.5.4 with
parameter setting: τ = 40, δ = 0.01, β = 0.68, κ = 1 and b = 0.2.

In Figure 6.3, we plot the simulation results of the Jacobian linearization and
Eq.5.4 computed by using Runge-Kutta method. The figure show that both the
linear approximation and the actual simulation result overlap almost exactly near
a stable equilibrium. It illustrates how the Jacobian linearization could be used to
approximate Eq.5.4 near a stable equilibrium and can describe its behavior quite
accurately.
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E. Eigenvectors of the spatial Fisher memory matrix
in deep TDRs

Figure 6.4: Heatmap of the eigenvectors of Is of the deep TDR. The color of each
pixel is determined by the absolute value of components of the input mask. The indices of
the input masks are arranged in descending order according to the eigenvalues of Is. The
used parameters are given in Table 5.1.
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