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Abstract

In recent years, software development costs have increased, and the debugging
costs, which account for half of software development costs, have also increased
accordingly. Many debugging methods have been proposed to reduce debugging
costs, but debugging methods that cannot predict the required resources in ad-
vance may lead to unexpected increases in debugging costs, which in turn may lead
to higher development costs. Therefore, developers requires cost-effective methods
which can debug the problem under restricted resources. In this dissertation, we
propose debugging methods that improve the current software debugging methods
with respect to resources, enabling debugging with resources that are acceptable
to the developers.

In the first part of this dissertation, we propose Near-Omniscient Debugging
which monitors a Java program’s execution within limited storage space. We
confirm the usefulness of Near-Omniscient Debugging by measuring the data de-
pendencies’ accuracy of the execution traces, the amount of execution traces, and
the percentage of bugs whose bug-related instructions are completely recorded.
Using this debugging method, we have implemented a tool named NOD4J which
annotates the source code with observed values in an HTML format. We show
two examples that our tool can debug defects using incomplete execution traces.

In the second part of this dissertation, we tackle the test case selection problem.
Regression testing is often performed to verify the software compatibility before
and after a change. However, a large number of test cases in regression testing
steps take a lot of time to verify the compatibility and diagnose the failure. To
solve this problem, we have developed a method to select the necessary tests for
behavior verification based on the similarity of runtime information. We have
evaluated the coverage and diversity of execution time of the proposed method.

In the third part of this dissertation, we propose a filtering method for the
result of the similar source code fragments search. When developers search similar
buggy source code fragments by a similar source code fragment search tool, devel-
opers should inspect all source code fragments in search results if they have enough
resources, but development resources are restricted in general. To deal with this
problem, our filtering method groups code fragments by applying clustering to
search results and excludes code fragments with a low probability of correct an-
swers from the output. We have confirmed the usefulness of our filtering method
on a dataset of similar code fragments containing bugs.

Using these proposed debugging methods, developers can reduce debugging
costs and perform debugging tasks with restricted resources.
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Chapter 1

Introduction

1.1 Software Debugging Cost
In recent years, a lot of software has been developed, and the resources required for
software development have become enormous. According to a survey on software
development [1], the global cost of software development is 1.25 trillion dollars, and
according to Evans Data Corporation [2], there are 26.9 million software developers
in the world. A huge amount of resources are required for software development
tasks, but required resources vary greatly depending on the scale of the software
development. Developers usually estimate the cost before software development
and develop the software with restricted human resources and time in general.
In order to develop software under these constraints, cost-effective development
methods are indispensable.

In the software development process, debugging is particularly essential, time-
consuming and expensive. Software development is divided into several processes
by the waterfall model consisting of (1) requirements definition, (2) system and
software design, (3) implementation and unit testing, (4) integration and system
testing, and (5) operation and maintenance [3]. The debugging process happens
after the developer has written the code, and in the example of the waterfall
model described above, it is performed in (3) through (5). If a bug occurs in
a later process, developers have to fix the code and repeat the same process for
verification, so the cost will surge [4]. Therefore, effective debugging is essential
to find and fix the problems quickly.

A recent study showed a cost distribution software developments [1]. This
study revealed that the tasks related to debugging, such as bug fixing and making
code work, account for 50% of the cost, which was the same as the cost related to
product development, such as designing work and writing code. This study also
showed that the total estimated global cost of debugging, including wages and
overheads, was 312 billion dollars per year. As the scale of software has grown in
recent years, the complexity has increased, and finding and fixing bugs has become
difficult [5].

Hardware costs are also enormous in debugging using detailed information.
Long-running systems such as Web services generate huge amounts of logs, which
may consume huge amounts of disk space. For example, Microsoft’s service system
can generate tens of terabytes of logs in a day [6]. Large-scale software systems
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which run on a 24-hour basis also generate 50 GB of logs per hour [7]. In addition,
in recent years, machine learning has become more and more popular, and required
resources such as memory are larger.

Not putting enough resources into debugging due to its high cost will lead to
greater losses in the future. There have been many cases where software bugs
have caused programs to fail to run, resulting in huge losses [8] [9] [10]. National
Institute of Standards and Technology (NIST) reported that the annual impact of
software bugs and errors on the U.S. economy is estimated at 59.5 billion dollars
(about 0.6% of GDP) [11]. For these reasons, there is a need in software develop-
ment for a debugging method that can efficiently fix bugs while reducing the cost
of debugging.

1.2 Debugging Technique
The debugging process is to analyze a program that does not meet the specification
and in some cases to extend it (with debugging statements) to find a new program
that is closer to the original program and meets the specification [12]. In other
words, the purpose of debugging is to find out the problematic code that is causing
the failures and fix them. In general, the debugging process can be decomposed
into seven steps [13]．

1. Track the problem in the database.

2. Reproduce the failure.

3. Automate and simplify the test case.

4. Find possible infection origins.

5. Focus on the most likely origins.

6. Isolate the infection chain.

7. Correct the defect.

Developers have to perform a lot of steps to correct the defect. A huge amount of
manual work in debugging has a significant impact on the increase of debugging
cost. The most costly steps are the identification of defects from Step 4 to Step
6 [13] [14]. Especially for large-scale software, failure analysis becomes more time-
consuming due to the dependencies’ complexity. Many debugging support methods
and tools have been proposed to reduce the cost of manual work. We list up
typical debugging techniques based on the existing survey [15] and describe these
techniques.

Logging
Logging is used to record runtime information such as error messages and ac-
tual values of variables. Existing researches tackled the appropriate logging,
which means where-to-log, what-to-log, and how-to-log [16]. Appropriate
logging enables developers to get the information required to diagnose the
cause of failure.
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Detailed logging incurs system runtime overhead such as CPU consumption
and I/O operations, but without detailed logging, necessary runtime infor-
mation may be missing [17]. To solve this problem, logging libraries such
as Apache Log4j 2 [18] control the number of log messages recorded to disk
by setting the verbosity level for each logging statement according to their
importance.

Assertions
Developers can specify assertions in the program code as conditional state-
ments that terminate execution if they are evaluated as false, thereby auto-
matically detecting software defects at runtime.

Breakpoint Debugging
Developer set breakpoints in the program to stop the program execution
temporarily and check the variable values at that time [19]. Any variable can
be analyzed by using single-step execution or by setting multiple breakpoints.
In order to set breakpoints for analyzing the causes of failures, it is necessary
to understand the behavior of the program such as execution order. Beller et
al. reported that the IDE-provided debugging infrastructure was used about
80% when debugging [20]. This method is often used after understanding
the outline of the program behavior by logging as described above.

Profiling
Profiling is to analyze metrics such as execution speed and memory usage at
runtime. This method is used for debugging such as identifying abnormal
behavior such as memory leaks [21].

Omniscient Debugging
Omniscient Debugging is a technique to record all the runtime events during
program execution [22]. This technique enables developers to inspect the
state of a program at an arbitrary point by simulating step-by-step execution
in both the forward and backward. This method requires a huge amount of
storage costs to record execution traces.

Test Case Prioritization and Selection
Software developers may prioritize and select their test cases to reduce the
cost of regression testing [23]. However, manual test selection may miss bugs
or waste time [24], so it may lead to an increase in software debugging costs.
Previous studies have shown that automated test selection and prioritization
techniques can significantly improve the failure detection rate [25] [26] [27].
If test cases that are likely to cause software failures can be appropriately
prioritized and selected among many test cases, developers can eliminate the
causes of failures in a short time without repeatedly executing similar test
cases.

1.3 Research Overview
Existing debugging methods have successfully reduced debugging costs. However,
since it is difficult to predict how much resources will be required for debugging
tasks, debugging methods that require sufficient resources may not be applicable
for debugging task.
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In this dissertation, we discuss cost-effective debugging methods under re-
stricted resources. We propose some debugging methods to make current software
debugging methods available to those with restricted resources.

The first problem is the hardware costs of the Omniscient Debugging. Omni-
scient Debugging has to record a huge amount of execution traces to reproduce
the execution. For example, one method records about 10MB of execution traces
for each second of a Java program execution [28]. It is difficult for developers to
estimate the size of the execution trace recorded before execution. Infinite loops
during debugging can lead to a lack of disk space, which can cause bugs and
consume more debugging resources.

To record the detailed program behavior within limited storage space con-
straints, we propose Near-Omniscient Debugging, a methodology that records an
execution trace using fixed-size buffers for each observed instruction. We apply
our method to benchmark applications and confirm that our method records val-
ues completely for most instructions while significantly reducing the amount of
execution trace. In addition, our method records the data dependencies with high
accuracy. We have applied the proposed method to actual bug datasets and con-
firmed that it was able to completely record the bug-related instructions in most
of the bugs. We have also implemented the tool for Near-Omniscient Debugging.
Our tool monitors a Java program’s execution within limited storage space con-
straints and annotates the source code with observed values in an HTML format.
Developers can easily investigate the execution and share the report on a web
server. We show two examples that our tool can debug defects using incomplete
execution traces.

The second problem is a test case selection for updating dependencies. In
enterprise software development, user execution logs may be recorded in a re-
runnable form, and these logs may be used for regression testing. Regression
testing is performed to verify the software compatibility before and after a change.
A large number of test cases in regression testing steps take a lot of time to
verify the compatibility and diagnose the failure. Test case selection methods are
proposed to reduce the number of the executed test cases using similarity of the
test results [29] [30]. However, in order to use the historical data of test execution
for selecting test cases, it is necessary to use the information from the repeated
execution of a large number of test cases. Test case selection methods focusing on
a user’s source code change [26] [27] also cannot be applied to update dependencies
because this task does not change the user’s source code. Thus, it is difficult for
existing research to select a small number of test cases from a large number of
ones for updating dependencies.

We have developed a method to select the necessary tests to verify the com-
patibility of dependencies based on the similarity of runtime information. This
method collects the executed instructions and their execution count in each test.
Vectorizing this information and calculating the similarity between these execu-
tions, developers can select test cases with different types and instruction execution
counts. As a result of the evaluation, we confirmed that the test cases selected
by our method achieved higher coverage and more diverse execution times than
baselines. The developers recognized the selected test cases as effective because
they tested a wider range of parameters than their manually selected test cases.
We selected useful tests for compatibility testing with the same number of tests
as before and succeeded in reducing the cost of regression testing.
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The third problem is inspecting whether source code fragments are buggy with
restricted debugging resources. To search similar buggy source code fragments,
a tool named NCDSearch is proposed [31]. This tool misses fewer source code
fragments that include similar bugs compared to existing code search tools, but this
tool also finds many source code fragments that do not include bugs. Developers
should inspect all source code fragments in search results if they have enough
resources, but development resources are restricted in general. This problem is
similar to test case selection and prioritization, where developers need to identify
code that is likely to include bugs in a restricted amount of time and resources.
Therefore, it is necessary to reduce the debugging cost by prioritizing the presented
source code fragments.

Here, we propose a filtering method for the result of the similar source code
fragments search. This method applies clustering to the output results of similar
source code fragment search tools to group code fragments. It excludes code
fragments with a low probability of correct answers from the output. We confirmed
the usefulness of the proposed method on a dataset of similar code fragments
including bugs. This filtering allows developers to focus their debugging efforts
only on the code that is most likely to include bugs, which contributes to reducing
the debugging costs.

1.4 Outline
The rest of the dissertation is structured as follows:

In Chapter 2, we describe the details of Near-Omniscient Debugging method
using a limited size storage. In Chapter 3, we describe a visualization method
for execution traces obtained by the recording method proposed in Chapter 2,
and the implementation of the recording and visualization methods. In Chap-
ter 4, we describe a test selection method that uses runtime information to update
dependencies. In Chapter 5, we describe a filtering method for similar source
code fragment search. Finally, in Chapter 6, we summarize this dissertation and
describe the future work.
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Chapter 2

An Execution Trace
Recording Method Using a
Limited Size Storage for
Java

2.1 Introduction

Debugging is the activity of identifying defects in the source code that cause soft-
ware failures from externally observable symptoms. Observing the execution order
of instructions and variable values is important for effective debugging [32]. In par-
ticular, it is useful to observe the program execution with and without failures and
to investigate the differences in conditional branches and variable values at various
points during the execution [33] [34].

Logging is widely used by developers as a means of observing the execution
of software. This method can output messages that indicate the progress of the
software process and important data outside the program [35]. However, logging
recorded in production may not contain sufficient data for debugging since the data
is specified at development time [36]. It is possible to design logging to record many
variable values in advance, but as the amount of data to be recorded increases,
it is necessary to pay attention to operational aspects such as the management
of storage [37]. To enable efficient debugging, an automatic method capable of
recording a program’s execution in detail is needed.

Omniscient Debugging[22] is proposed as one of the methods to automati-
cally and comprehensively collect the variable values needed for debugging, which
records the complete memory state in a time series during the program execution.
Using this method, it is possible to reproduce the internal program state at arbi-
trary points in time on a computer and observe the execution order of instructions
and the variable values. However, this approach requires recording about 10MB
of execution traces for every second of Java program execution [28]. It is difficult
for developers to estimate the execution trace size before execution. Therefore,
this implies difficulty in determining what data should be logged to fix bugs in a
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deployed environment [38].
In this chapter, we propose Near-Omniscient Debugging to record an execu-

tion trace within limited storage space constraints. Since a full execution trace
includes many uninteresting method calls such as utility functions [38], we intro-
duce a parameter k that specifies the maximum number of recorded values for
each instruction. This parameter limits the size of an execution trace for repeat-
edly executed instructions while keeping all actual values of variables associated
with instructions that are executed less than k times. In concrete, by preparing a
separate buffer of size k for each instruction, all observed values for instructions
that have been executed less or equal than k times are kept, and for instructions
that have been executed more than k times, only the most recent k times are
kept. By counting up the number of instructions that constitute a program before
execution, it is possible to set the value of k according to the storage area owned
by the developer and to record the execution trace.

We will describe related work in Section 2.2 and the proposed method in Sec-
tion 2.3. We evaluate the ability of the execution trace to record information in
Section 2.4 and also evaluate on effectiveness for debugging actual bugs in Sec-
tion 2.5. We discuss the limitation of Near-Omnsicient Debugging in Section 2.6.
Finally, Section 2.7 summarizes and discusses future work.

2.2 Related Work
2.2.1 Execution Trace Reduction
Repetition of program instructions leads to larger execution traces. To reduce the
size of execution traces, compression and sampling methods have been proposed.

Wang et al. [39] proposed an effective compression method tailored for execu-
tion traces comprising a sequence of memory addresses accessed by a program.
This method employs delta encoding because programs often repeat the same
instructions manipulating consecutive data locations in memory. Although the
compressed trace is applicable to dynamic data-flow analysis, this method is un-
suitable for recording the concrete runtime values of variables. In addition, the
trace’s size is hard to estimate prior to execution.

Cornelissen et al. [38] reported that execution traces excluding unimportant
utility functions retain more information than a trace filtered by a simple sampling
algorithm using the same storage space. The method does not directly reduce the
size of an execution trace because it assumes that a full execution trace is recorded
and filtered for each analysis. Our method reduces the repetition of data during
the recording process.

Hizrel et al. [40] proposed Bursty Tracing, a sampling method that periodically
turns monitoring on and off. This method can record rich information about
program control flow compared with other sampling techniques. However, it is
not designed to collect values of variables. This method also cannot estimate the
size of a trace prior to execution.

2.2.2 Dynamic Analysis with Low Overhead
Another approach to minimizing runtime overhead and storage space is a special-
ized execution trace tailored for a specific purpose. Liu et al. [41] proposed an
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analysis method to collect detailed information about suspicious behavior such as
buffer overflows and memory leaks using lightweight memory access monitoring
techniques. Zhang et al. [42] proposed a method to analyze data dependencies by
converting execution traces to the program slice dynamically, which reduces stor-
age usage drastically. Since those approaches are specialized for their purposes,
they are inapplicable to variable values.

2.3 Proposed Method
We propose Near-Omniscient Debugging which records a partial execution trace
of a program, which contains the latest k times trace at each instruction of Java
bytecode. By keeping the most recent execution, the values of the abnormal be-
havior are likely to be recorded in an abnormal event such as program crashes. On
the other hand, since instructions that are executed only once, such as at the start
of program execution, are not discarded, it is possible to confirm the environment
settings at program execution.

2.3.1 The Model of Execution Trace
The execution trace of Near-Omniscient Debugging is based on the existing trace
recorder for REMViewer [43], an Omniscient Debugging tool. An execution trace
includes (1) method entry and exit events with their arguments, return values,
and exceptions and (2) values read from and written to local variables, fields
and arrays. The recorder component assigns an object ID to distinguish each
object reference. For objects, we store the ID value to distinguish the reference.
For method invocations without arguments or return values, one data is recorded
for each occurrence of the start and end of the invocation. These values may
include redundant information, such as pairs of values written to and read from a
field. However, considering the possibility of simultaneous operations by multiple
threads and the possibility of access from native code or libraries that are outside
the scope of observation, each value is recorded separately.

Our method represents such an execution trace as a series of observed values.
An execution trace is a sequence of events 〈d, t, v〉 where d represents a data element
(e.g., a local variable) used by an instruction, t represents a thread of control that
executed the instruction, and v represents an observed value. An instruction
identifies the Java bytecode instruction that caused the data exchange and the
type of data. For example, if two different values, such as a method argument and
a return value, are observed for a single instruction, they are considered different
instructions.

2.3.2 Recording Method of Execution Trace
Near-Omniscient Debugging records the execution trace so that only the latest
k values are kept when the instructions d are the same. During the program
execution, the method prepares a buffer of length k for each instruction d, and
keeps the observed values and the order of instructions in the entire execution in
the memory. At the end of the program, the accumulated data is saved together
by using the shutdown hook mechanism of the Java Virtual Machine. Compared
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Figure 2.1: An Execution Trace of Near-Omniscient Debugging which Records k
Events for Each Instruction.

to the execution traces of previous studies such as Matsumura et al.’s [43], it is
equivalent to storing all observed values in a time series.

Figure 2.1 illustrates the key idea of Near-Omniscient Debugging. In this
figure, we have a limited storage space that can record up to six steps of program
execution. Suppose an execution comprises nine steps, as indicated by numbers
in yellow boxes. A naive time series logging records the last six steps as indicated
at the bottom of the figure. On the other hand, our method prepares buffers for
each line of code to record the latest step for each line, as shown on the right side
of the figure. This approach discards an execution trace for repeated instructions
in the loop but retains the other information completely. By recording the latest
observed values, abnormal behaviors are likely recorded in case a program crashes.
Since the trace retains the program’s initialization process which is executed only
once, developers also can analyze the configuration parameters of the execution.

Since the number of instructions in the program m can be statically counted
from the Java bytecode of the program, the storage cost required to store the
execution trace N = k × m can be estimated in advance. A technique to generate
bytecode dynamically is used in Java, but it does not occupy a large proportion
of the program in normal use. We consider that it is possible to set the estimated
value of m with a margin.

In this implementation, bytecode instrumentation is performed when the Java
program loads the class, and the instruction for observation is embedded while
assigning the instruction ID to the target program. The implementation uses 4
bytes for storing the instruction ID and thread ID and 8 bytes for storing the value,
thus requiring 16 bytes of storage space for each value. The amount of additional
information, such as program instruction information, depends only on the num-
ber of classes loaded as a program and the number of bytecode instructions. To
preserve the execution order, this method records 8 bytes of indices simultaneously
at runtime, so this method uses 24 bytes of memory for each recorded value and
an array to manage them.

For string data, it is conceivable to store useful information about objects
recorded as observed values by recording a fixed length up to a certain length
and by recording a hash value of the contents. However, we decided that the
appropriate way to store strings was a future issue because of the wide variety
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Table 2.1: Size of Benchmark Programs and Their Execution Trace.

Benchmark #Class #Method #Dataid #Executed
Dataid

#Observed
Values #Data Size

avrora 527 3,456 87,736 38,772 7,880,412,751 117.4 GB
batik 1,122 9,163 218,775 72,630 601,350,099 9.0 GB
fop 1,198 10,401 318,795 127,226 325,806,544 4.9 GB
jython 2,244 23,342 670,054 214,300 5,461,124,807 81.4 GB
luindex 231 2,467 73,094 25,838 1,542,871,620 23.0 GB
lusearch 199 2,140 58,127 16,256 5,503,253,333 82.0 GB

of strings used in the program. In the current implementation, the contents of
strings are stored completely.

2.4 Evaluation on Trace Quality
We evaluate how much information the execution trace recorded by Near-Omniscient
Debugging can store in limited storage size from the following two perspectives.

1. Percentage of instructions where values are completely recorded

2. Percentage of preserved data dependencies

The former is the probability of recording all the data for randomly selected in-
structions. We evaluate our method’s usefulness in situations where the developer
does not know in advance which instructions will be required. In the latter case,
we evaluate whether the order relationship of the data flow is correctly preserved
when the execution trace is considered as a series.

To evaluate the execution traces, we used 6 of the 14 benchmarks from DaCapo
Benchmarks version 9.12-bach [44], which were confirmed to work properly. The
execution traces include the calls to the standard library in the benchmarks but
do not record the operations in the Java standard library. Table 2.1 shows the
program size and the execution trace size for each benchmark. Since local variables
values can be reproduced by computation from data received from outside the
method, operations on local variables other than arguments are not measured in
this evaluation. #Class is the number of classes loaded to run the benchmark,
excluding the Java standard library (identified by package names such as java,
javax, sun, etc.). #Method and #Dataid are the values counted for those classes,
including those corresponding to methods and instructions that were not executed.
#ObservedV alues is the value when the complete execution trace is recorded, and
DataSize is the storage size when the complete execution trace is saved as 16 bytes
per observed value.

We set the parameter k to 16, 32, 64, 128, 256 for Near-Omniscient Debugging.
Figure 2.2 shows the data size recorded by Near-Omniscient Debugging for each
value of k. ALL in the figure is the data size when the complete execution trace is
recorded. Near-Omniscient Debugging retains k values of 16-byte per instructions.
Therefore, when jython is run with k = 256, the maximum number of instructions
670, 054 × 256 × 16 = 2.7 × 109, which means that a maximum of about 2.6 GB
of execution trace is recorded. However, since not all instructions are executed,
the actual value is smaller. The data size recorded by Near-Omniscient Debugging

11



1

10

100

1000

10000

100000

1000000

16 32 64 128 256 ALL

Ex
ec

ut
io

n 
Tr

ac
e 

Si
ze

 (M
B)

Buffer Size k

avrora
batik

fop

jython

luindex

lusearch

Figure 2.2: The Size of Execution Trace Recorded by Near-Omniscient Debugging.

with k = 256 is less than 1.0% on average compared to the case where the complete
execution trace is recorded.

As a baseline for performance in an environment where the available storage
space is limited, we use a time series-based method: a method that stores the latest
N values in the entire execution trace. We refer to Near-Omniscient Debugging as
Near-Omniscient Debugging and the baseline method as Time Series Recording.

2.4.1 Percentage of Instructions where Values are Completely
Recorded

Figure 2.3 shows the difference in the percentage of instructions that can record
values completely (i.e., the number of instruction execution count is less than or
equal to k) out of the executed instructions for each benchmark when the number
of values to be stored for each instruction k is varied.

Near-Omniscient Debugging records complete data for 60% of the instructions
when k = 16, for 74% of the instructions when k = 256, and for the remaining
instructions, it records values for the latest k times. Thus, even for program
executions that would result in huge execution traces with conventional methods,
complete information on many statements can be referenced with a limited amount
of data (less than 1%). In contrast, Time Series Recording records data only for
about 10% of the instructions, and the user cannot refer to the complete values
for most of the instructions.

2.4.2 Data Dependency Accuracy
In order to evaluate whether Near-Omniscient Debugging correctly records the or-
der relation regarding the data flow, we compare the data dependencies calculated
from the execution traces of Near-Omniscient Debugging with those calculated
from the full execution traces.
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Table 2.2: Accuracy of Data Dependencies Obtained by Near-Omniscient Debug-
ging (Sum of All Benchmarks).

Correct Near-Omniscient Debugging
k Dependency Dependency Precision Recall F-measure
16 52,061 42,603 0.914 0.748 0.823
32 52,061 45,115 0.903 0.782 0.838
64 52,061 47,472 0.892 0.813 0.851
128 52,061 49,826 0.881 0.843 0.861
256 52,061 51,941 0.872 0.870 0.871

The data dependency is a pair of assignment and reference instructions that
pass data through heap areas such as fields or arrays. This is because these
instructions cannot be obtained from a simple sequence of method calls or static
analysis of method internals. As for fields, when the assignment instruction d
writes the value v to the field f of the object obj and then the value is read
by the reference instruction u without being overwritten, we consider that the
data dependency from d to u exist. Similarly, for arrays, we extract the data
dependencies that distinguish the individual elements using read/write subscript
instead of the field f . By comparing the written and read values, we can deal
with cases where the execution of an assignment instruction was not recorded or
where the value was rewritten from a code outside the observation range of the
execution.

We take the set of data dependencies obtained from the complete execution
trace as the correct answer set, and calculate precision and recall and F-measure
of the data dependencies obtained from the execution traces of the two methods,
Near-Omniscient Debugging and Time Series Recording. Table 2.2 and Table 2.3
show the accuracy of data dependencies calculated from all benchmarks.

Near-Omniscient Debugging does not record any part of read/write instruc-
tions that are executed repeatedly, which causes false positives and false negatives
of data dependencies. In particular, fields where a certain range of values are as-
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Table 2.3: Accuracy of Data Dependencies Obtained by Time Series Recording
(Sum of All Benchmarks).

Correct Time Series Recording
k Dependency Dependency Precision Recall F-measure
16 52,061 3,010 1.000 0.058 0.109
32 52,061 3,144 1.000 0.060 0.114
64 52,061 3,938 1.000 0.076 0.141
128 52,061 4,043 1.000 0.078 0.144
256 52,061 4,054 1.000 0.078 0.144

Table 2.4: Accuracy of Data Dependencies Obtained by Near-Omniscient Debug-
ging (Each Benchmark, k = 16).

Correct Near-Omniscient Debugging
Benchmark Dependency Dependency Precision Recall F-measure
avrora 4,325 3,269 0.904 0.683 0.778
batik 7,054 6,366 0.951 0.858 0.902
fop 13,906 12,143 0.968 0.845 0.902
jython 20,460 15,342 0.849 0.637 0.728
luindex 4,098 3,699 0.952 0.859 0.903
lusearch 2,218 1,784 0.915 0.736 0.816

signed or referenced in many places, such as global variables that represent state
transitions of objects, are the cause of many false positives and false negatives.
For example, the avrora.arch.legacy.LegacyInterpreter class included in the avrora
benchmark is an interpreter implementation that executes a given program. More
than 100 methods iteratively manipulate the fields related to the program counter
(pc, nextPC) in this benchmark. Due to a large number of executions of each
assignment and reference instruction, Near-Omniscient Debugging did not pre-
serve the execution order of the instructions sufficiently, leading to a large number
of missing data dependencies and incorrectly detecting the execution of different
instructions using the same value as data dependencies. However, these false pos-
itives were limited to a small number of fields, and the overall precision was more
than 0.9, and the recall was around 0.8, which was high even when the recorded
data size was limited to 1% comparing with Omniscient Debugging. On the other
hand, since Time Series Recording retains only the most recent execution trace,
it does not recognize incorrect data dependencies, but it is not suitable for inves-
tigating the entire program since it discards most of the data dependencies.

Table 2.4 and Table 2.5 show the detailed results for each benchmark at k = 16.
The results for other values of k are omitted because the trend for each benchmark
remained the same even when the value of k was changed. From these results, we
can see that the proposed execution trace reduction method shows high values
for all benchmarks, indicating that Near-Omniscient Debugging is a promising
execution trace reduction method. The reason why precision and F-measure of
lusearch are N/A is that the data dependencies on fields and arrays could not be
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Table 2.5: Accuracy of Data Dependencies Obtained by Time Series Recording
(Each Benchmark, k = 16).

Correct Time Series Recording
Benchmark Dependency Dependency Precision Recall F-measure
avrora 4,325 289 1.000 0.067 0.125
batik 7,054 50 1.000 0.007 0.014
fop 13,906 2,149 1.000 0.155 0.268
jython 20,460 137 1.000 0.007 0.013
luindex 4,098 385 1.000 0.094 0.172
lusearch 2,218 0 N/A 0.000 N/A

obtained by the Time Series Recording method.

2.5 Evaluation on Effectiveness for Debugging
In this section, we investigate the usefulness of Near-Omniscient Debugging us-
ing Defects4J, a dataset of actual bugs. We investigate two perspectives in the
following Research Question.

• RQ1. How is the runtime overhead of Near-Omniscient Debugging?

• RQ2. Are the execution traces recorded by Near-Omniscient Debugging
useful for debugging actual bugs?

In the RQ1, we investigate the time and storage cost of applying Near-Omniscient
Debugging to an actual bug dataset. We compare the costs of running the tests
normally, using Near-Omniscient Debugging and conventional Omniscient Debug-
ging.

In the RQ2, we investigate whether the execution traces reduced by Near-
Omniscient Debugging for actual bugs can record the bug-related instructions.
We conducted an analysis on the recording rate of bug-related instructions for
each project and the difference in the recording success rate when the buffer size
of the Near-Omniscient Debugging was changed.

2.5.1 Experimental Settings
We used Defects4J version 2.0.01 on OpenJDK Runtime Environment (build 1.8.0_252-
8u252-b09-1 18.04-b09) for our analysis.

The dataset includes a collection of bug fixes in open source software projects,
containing the source code and unit tests that caused test failure before and after
bug fix. Table 2.6 shows the number of bug fixes we used in this case study, whose
execution trace is recorded successfully.

Our dataset excludes deprecated bugs2 because they are not reproducible due
to behavioral changes introduced under Java 8. Our dataset also excludes three
bug fixes (Lang 43b, Math 13b, and 14b) because their OutOfMemoryError bugs

1https://github.com/rjust/defects4j/, Commit 9349e37
2https://github.com/rjust/defects4j/tree/v2.0.0
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Table 2.6: The Defects4J Dataset Used for Evaluation.

Name #Analyzed Bugs Excluded Bugs(Ids) Deprecated Bugs(Ids)
Chart 26
Cli 39 1 (6)
Closure 174 2 (63,93)
Codec 18
Collections 4 24 (1-24)
Compress 47
Csv 16
Gson 18
JacksonCore 26
JacksonDatabind 112
JacksonXml 6
Jsoup 92 1 (67)
JxPath 22
Lang 63 1 (43) 1 (2)
Math 104 2 (13,14)
Mockito 38
Time 26 1 (21)
Total 831 4 29

cannot be recorded by our trace recorder, and excludes one bug fix (Jsoup 67b)
because the cause of the error is too much execution time, which also cannot be
recorded by our trace recorder.

In the RQ1, we measure the cost of recording execution traces of our Near-
Omniscient Debugging by comparing it with Omniscient Debugging and normal
execution. First, we measure the execution time and storage cost of running one
test that causes the bug for each bug ID in the dataset. We ran the recorder com-
ponent named SELogger in Near-Omniscient Debugging mode and Omniscient
Debugging mode and compared the results with normal execution. We also mea-
sure the overall cost of the test by running all tests for each benchmark project
and identifying the bug ID with the largest number of executed instructions. For
this measurement, we used SELogger’s mode that only measures the number of
executed instructions. We measure the time cost and storage cost of running all
the tests with Near-Omniscient Debugging and Omniscient Debugging for each
bug ID which records the largest number of executed instructions.

In the RQ2, we investigate whether the execution traces reduced by Near-
Omniscient Debugging for actual bugs can record the bug-related instructions. In
debugging process, the important thing is whether the execution trace required
for debugging is recorded completely. Zeller said that the information required
for debugging is the instruction from the location embedded the bug as the de-
fect to the location occurring the bug as the failure [13]. Based on this, we de-
fine Bug-related Instruction. In concrete, we record and compare the De-
fects4J’s buggy execution and fixed execution using Omniscient Debugging, and
define Bug-related Instruction as the instruction containing the values, which
appears only in the buggy execution and does not appear in the fixed execution.

Following this definition, we conduct an analysis of the complete recording rate
of Bug-related Instructions by Near-Omniscient Debugging for each project
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Figure 2.4: Distribution of the Percentage of Execution Trace Size Occupied by
Top N% Instructions for Each Bug ID When Instructions are Sorted in Descending
Order of Execution Counts.

and the difference in the complete recording rate when the buffer size of Near-
Omniscient Debugging is changed. In our experiment, we create the execution
trace of Near-Omniscient Debugging from that of Omniscient Debugging to mini-
mize the impact of differences in each execution.

We also create the execution trace which cannot be recorded by Near-Omniscient
Debugging by excluding the execution trace of Near-Omniscient Debugging from
that of Omniscient Debugging for both the trace of a buggy and fixed execution
trace. For these traces, if the fixed execution trace matches or includes the buggy
execution trace, we can conclude that all Bug-related Instructions are correctly
recorded by Near-Omniscient Debugging.

In this evaluation, we do not exclude the instructions whose value changes with
each execution, such as time information. These instructions should be excluded
from this evaluation, but it is difficult to identify these instructions and the in-
structions on which they depend. Furthermore, since it is difficult to determine
whether the difference in the value in instruction is truly unrelated to the bug, we
consider the complete recording to have failed if there is a change in the values in
instruction.

We investigated the characteristics of the target of this experiment before
conducting the evaluation. In order to discuss how much of the Bug-related
Instruction could be completely recorded, it is necessary to understand the
bias in instruction execution counts in the target bugs. Therefore, in order to
check whether a particular instruction is repeatedly executed, we investigated the
amount of execution traces occupied by a small number of instructions.

Figure 2.4 shows the distribution of the percentage of the size of execution trace
occupied by top N% instructions for each bug ID when instructions are sorted in
descending order of execution count. The figure shows that the instructions in
the top 20% of the instructions accounted for 80% of the size of execution trace
for about half of the bugs. In about three-quarters of the cases, the top 1%
of instructions account for more than 10%, indicating that a small number of
instructions are repeatedly executed in many bugs.
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Figure 2.5: The Distribution of Execution Time for Each Bug ID.

On the other hand, there are bugs in which a small number of instructions do
not account for the majority of instructions, although the percentage is relatively
small. In about a quarter of the cases, even if the top 20% of instructions are
excluded, more than 40% of the execution trace remains.

These results indicate that the majority of the bugs are those with a large bias
in the number of instructions executed instruction, but there are also a certain
number of bugs with a small bias.

2.5.2 RQ1. How is the runtime overhead of Near-Omniscient
Debugging?

In RQ1, we analyze the execution cost of the Near-Omniscient Debugging in terms
of execution time and size of execution trace, comparing normal execution and
Omniscient Debugging.

Figure 2.5 shows the distribution of the execution time for each bug ID. We
found that the execution time of Near-Omniscient Debugging was larger than that
of Omniscient Debugging when the benchmark execution time and recorded size
of execution trace were short. This is because Near-Omniscient Debugging keeps
the collected instructions in memory and outputs them when the execution is
finished, while Omniscient Debugging outputs the instructions immediately after
collection. In other words, when the amount of recorded data is the same, Near-
Omniscient Debugging requires more processing and the execution time becomes
longer. On the other hand, when the size of the execution trace is large, Near-
Omniscient Debugging reduces the output overhead by decreasing the output size
of the execution trace, and the execution time becomes shorter.

Then, we describe the size of the execution trace when executing a test in
which a bug occurs. Figure 2.6 shows the distribution of the size of execution
traces recorded by Near-Omniscient Debugging with buffer sizes varying from 16
to 1024 and Omniscient Debugging. The results show that the Near-Omniscient
Debugging significantly reduces the size of execution trace, especially for cases
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Figure 2.6: The Distribution of the Size of Execution Trace for Each Bug ID at
Each Buffer Size.

with particularly large executions that exceed 1GB by Omniscient Debugging. In
addition, shown in Figure 2.4, in almost half of the bug IDs, 20% of executed
instructions occupy 80% of the size of the execution trace. It means that Near-
Omniscient Debugging can significantly reduce the size of execution trace for ex-
ecutions with many repetitions, such as loop statements that are executed more
than 10 million times, and reduce the size of the execution trace. From this, we
can conclude that the Near-Omniscient Debugging achieves a reduction in the size
of execution trace, especially for those repeatedly executed instructions.

Next, we measure the cost of running all tests in projects. Table 2.7 shows
the information for bug IDs with the largest size of execution trace recorded by
Omniscient Debugging for each project. Note that only the execution of Mockito
in this table uses a different version of SELogger 3, since we found a bug related
to string recording during the experiment. This bug fix does not affect other
executions.

We describe the execution time when all the tests are executed. We can see
that the execution time of near Omniscient Debugging is shorter in all the projects
than that of Omniscient Debugging. This can be attributed to the fact that many
instructions were executed repeatedly, and the overhead of recording the execution
was incurred.

We also describe the size of the execution trace. Note that Math stopped
the execution when it exceeded 10TB. Omniscient Debugging recorded more than
1GB in all but two cases, while Near-Omniscient Debugging recorded less than
1GB in all but three cases. Although the reduction rate varies depending on the
project, we found that there was a significant difference in the number of values
recorded by Omniscient Debugging compared to Near-Omniscient Debugging. If
there is even a single test that contains a large number of iterations, the size
of the execution trace will be so large that it may overflow like Math, making
the application of Omniscient Debugging impractical. On the other hand, Near-
Omniscient Debugging can calculate the upper limit in advance from the number
of instructions, and the actual recorded size of execution trace is smaller than that
of Omniscient Debugging, less than 1GB in most cases, so it is practical enough.

3CommitID: cc8ac211d82674f8ea7fdebab59b7e25a38f01a4
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We can also discuss the estimation of the size of the execution trace. The corre-
lation coefficient between the size of execution trace recorded by Near-Omniscient
Debugging and the number of methods is 0.806, indicating a strong positive corre-
lation. On the other hand, the correlation coefficient between the size of execution
trace recorded by Omniscient Debugging and the number of methods is -0.237,
indicating a weak negative correlation. These results show that the size of execu-
tion trace recorded by Near-Omniscient Debugging method can be estimated in
advance if the number of methods that will be executed in the tests of the target
project is given.

RQ1. Answer� �
In the case of executing failed tests, Near-Omniscient Debugging can greatly
reduce both the size of execution trace and execution time for a few cases
compared with Omniscient Debugging. In the other cases, there was little
difference in the size of execution trace and execution time. In addition,
we confirmed that the size of the execution trace and the execution time
was significantly reduced when all tests were executed. Furthermore, The
size of execution trace recorded by Near-Omniscient Debugging has a strong
positive correlation with the number of methods in the program. It means that
developers can estimate the size of the execution trace before the execution
easily.� �

20



Ta
bl

e
2.

7:
T

he
Ex

ec
ut

io
n

C
os

t
of

B
ug

s
w

ith
th

e
La

rg
es

t
Ex

ec
ut

io
n

Tr
ac

e
fo

r
Ea

ch
Pr

oj
ec

t.

T
im

e
(s

ec
.)

Tr
ac

e
Si

ze
(G

B
)

Pr
oj

ec
t

ID
#

C
la

ss
#

M
et

ho
d

N
ea

r-
O

m
ni

sc
ie

nt
(k

=
64

)
O

m
ni

sc
ie

nt
N

ea
r-

O
m

ni
sc

ie
nt

(k
=

64
)

O
m

ni
sc

ie
nt

C
ha

rt
6

88
9

10
,4

54
1,

34
8

2,
28

3
0.

2
35

5.
6

C
lo

su
re

10
7

2,
44

7
29

,8
74

1,
77

4
2,

62
5

4.
6

18
3.

7
C

li
21

12
5

1,
24

5
63

79
0.

02
0.

3
C

od
ec

11
11

5
1,

02
4

1,
87

1
2,

46
0

0.
03

47
1.

0
C

ol
le

ct
io

ns
28

90
8

8,
86

1
48

2
76

7
0.

3
27

.4
C

om
pr

es
s

47
99

0
7,

32
7

2,
45

1
3,

51
5

0.
2

65
6.

0
C

sv
16

62
8

8,
25

8
29

9
44

7
0.

02
74

.5
G

so
n

14
71

3
3,

18
6

12
5

15
7

0.
09

1.
7

Ja
ck

so
nC

or
e

25
25

0
3,

37
6

1,
15

4
1,

89
8

0.
2

27
9.

8
Ja

ck
so

nD
at

ab
in

d
56

3,
43

1
19

87
1

99
8

1,
38

1
1.

4
37

.3
Ja

ck
so

nX
m

l
6

1,
13

9
13

,1
71

21
0

23
6

0.
3

0.
4

Js
ou

p
84

56
5

5,
49

9
12

3
23

3
0.

1
16

.0
Jx

Pa
th

18
51

6
5,

67
7

18
4

52
7

0.
3

15
.4

La
ng

63
33

6
4,

54
8

1,
68

7
3,

61
2

0.
03

74
5.

7
M

at
h

8
1,

74
4

13
,5

14
78

,4
80

N
/A

0.
9

>
10

T
B

M
oc

ki
to
　

2
1,

65
7

38
,7

28
75

3
1,

23
3

2.
0

37
.9

T
im

e
6

51
7

9,
73

1
1,

03
5

1,
36

6
0.

4
21

4.
5

21



Table 2.8: Complete Recording Rate of Bug-Related Instructions at Each
Buffer Size.

Buffer Size Complete Recording Rate
16 38.6%
64 54.9%

256 71.2%
1024 84.2%

Table 2.9: The Number of Bug IDs Recording Bug-Related Instructions Com-
pletely and with Trace Reduction at Each Buffer Size.

Buffer Size 16 64 256 1024

w/o Difference w/o Reduction 156 242 402 528
　　　　　　　　　 w/ Reduction(w/ buggy inst.) 　 165(18) 214(28) 190(26) 172(27)
w/ Difference w/ Reduction 510 375 239 131

2.5.3 RQ2. Are the execution traces recorded by Near-
Omniscient Debugging useful for debugging actual bugs?

In this research question, we describe the complete recording rate of Bug-Related
Instructions by Near-Omniscient Debugging. We measure whether Bug-Related
Instructions are completely recorded for each bug ID and buffer size and calculate
the complete recording rate.

Table 2.8 shows the percentage of bugs whose Bug-Related Instructions
are completely recorded for each buffer size. Moreover, Table 2.9 shows the de-
tailed results based on a complete recording of Bug-Related Instructions and
the execution trace reduction. In half of the bug IDs with a buffer size of 64 and
nearly 90% of the bug IDs with a buffer size of 1024, Near-Omniscient Debugging
can record Bug-Related Instructions completely. Bugs without execution trace
reduction mean that all instructions were executed less than or equal to the buffer
size. It means that the size of the execution trace of these bugs is the same for
both Near-Omniscient Debugging and Omniscient Debugging. The characteristics
of Near-Omniscient Debugging is a complete recording of Bug-Related Instruc-
tions with execution trace reduction. Table 2.9 shows that more than half of the
bugs succeed in a complete recording of Bug-Related Instructions in the case
of execution trace reduction when the buffer size is 1024. The table also shows
the number of bug IDs in which the execution trace of Bug-Related Instruc-
tions is reduced. These numbers don’t account for a large percentage of the total
numbers of bug IDs with a complete recording of Bug-Related Instructions
and execution trace reduction. It means that Near-Omniscient Debugging reduces
the execution trace of bug-unrelated instructions in many cases when complete
recording of Bug-Related Instructions is successful with reduction of the size
of the execution trace. These results indicate that Near-Omniscient Debugging
can record Bug-Related Instructions for most of the bugs if the buffer size is
above a certain level.

Table 2.10 shows the number of bug IDs whose Bug-Related Instructions
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Table 2.10: The Number of Bugs Including Incompletely Recorded Bug-Related
Instructions at Each Buffer Size.

Project #Bug 16 64 256 1024
Chart 26 6 2 0 0
Cli 39 7 4 0 0
Closure 174 164 156 121 74
Codec 18 5 2 1 1
Collections 4 1 0 0 0
Compress 47 21 14 8 2
Csv 16 2 0 0 0
Gson 18 4 1 1 1
JacksonCore 26 8 3 2 1
JacksonDatabind 112 86 51 15 1
JacksonXml 6 2 2 1 0
Jsoup 92 63 41 18 6
JxPath 22 20 10 9 3
Lang 63 14 5 0 0
Math 104 57 42 33 20
Mockito 38 26 24 23 21
Time 26 24 18 7 1
Total 831 510 375 239 131

are incompletely recorded for each buffer size and each project. We can see that
there is a difference in the trend of the rate of completely recorded Bug-Related
Instructions for each project. In particular, when the buffer size is 256, most of
the projects have few bugs with incomplete records, while some benchmarks, such
as Closure and Jsoup, have many incomplete records. This is largely due to the
characteristics of the projects. For example, in the case of Closure, the internal
compilation work is divided into multiple threads, and the execution differs each
time depending on the memory and CPU status. Therefore, most of the cases are
considered to have failed when the buffer size is less than 256.

We perform a detailed analysis of the cases where Near-Omniscient Debugging
failed to complete recording. Figure 2.7 shows the distribution of incomplete
recording rate of Bug-Related Instructions for each bug IDs at each buffer
size. The number of bug IDs that Near-Omniscient Debugging fails complete
recording of Bug-Related Instructions is given as N in the figure.

As the buffer size increases, the number of bug IDs that failed to complete
recording of Bug-Related Instructions decreases, and the incomplete recording
rate of Bug-Related Instructions decreases significantly. In particular, at a
buffer size of 256, the third quartile of the failure rate is quite small, at about 10%,
indicating that even when Near-Omniscient Debugging fails complete recording,
most of Bug-Related Instructions are completely recorded.
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Figure 2.7: The Distribution of the Incomplete Recording Rate of Bug-Related
Instructions for Each bug IDs at Each Buffer Size When Complete Recording
Fails.

RQ2 Answer� �
We found that Near-Omniscient Debugging was able to completely record
Bug-Related Instructions for most of the bugs. In concrete, Near-
Omniscient Debugging succeeds in completely recording Bug-Related In-
structions with 71.2% of the bug IDs when the buffer size is 256. Even in the
case where the complete recording of Bug-Related Instructions failed, the
majority of those were completely recorded. In conclusion, Near-Omniscient
Debugging records Bug-Related Instructions in the majority of bugs suf-
ficiently, so this method is useful for debugging.� �

2.6 Discussion
Near-Omniscient Debugging records the latest k times for each instruction, which
means there will be some missing values. Since old observed values are missing
in many repeated loops, it is not possible to observe whether the process was
carried out as expected in the loop when values assigned outside the loop are
used in the loop. Therefore, this method cannot reproduce a complete execu-
tion, which is a debugging method that is possible when all observed values are
completely recorded, or visualize complete data dependencies, as is possible with
Omniscient Debugging. It is possible to recalculate missing observed values from
the recorded ones, but not all of them can be recalculated. This is a limitation of
Near-Omniscient Debugging, which cannot handle complete execution due to par-
tially missing data. However, the evaluation in this chapter has shown that there
is little missing information when Near-Omniscient Debugging is actually used.
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Therefore, we consider that Near-Omniscient Debugging can be used to support
developers in their debugging work when it is applied to partial execution rather
than the complete execution.

2.7 Conclusion and Future Work
In this chapter, we proposed Near-Omniscient Debugging to monitor detailed soft-
ware execution with reducing storage space consumption. Near-Omniscient De-
bugging takes as input k to specify the number of recorded values for each instruc-
tion. It retains actual values for 60% to 74% of instructions and keeps many of the
data dependencies on fields and arrays using fewer than 1% of the full execution
traces. Near-Omniscient Debugging can also record Bug-Related Instructions
in the majority of bugs.

We would like to investigate effective logging for textual contents such as strings
and exceptions. We also would like to support determining the appropriate buffer
size for Near-Omniscient Debugging because this parameter varies greatly depend-
ing on the usage of the execution trace recorded by this method, the characteristics
of the project, and the size of the storage.
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Chapter 3

NOD4J: Near-Omniscient
Debugging Tool for Java
Using Size-Limited
Execution Trace

3.1 Introduction
Debugging is a methodology used to identify defects in the source code by diag-
nosing its external behavior. For efficient debugging, developers monitor the exe-
cution order of instructions and actual values of variables in the source code [32].
Additionally, developers may compare program behavior at the various points of
execution where a failure does or does not occur [33, 34]. Interactive visualization
tools such as JIVE [45] and break-point debuggers are useful for such analysis;
however, developers struggle to use these tools for systems that run on continuous
integration and web application servers.

Logging is a common practice that is used to record a program execution as a
sequence of messages that report a software’s progress and its important data [35].
However, logs recorded in production may not contain sufficient data for debugging
because the data to be logged is determined at development time [36]. Therefore,
to enable efficient debugging, an automatic method capable of recording a detailed
program’s execution is needed.

Omniscient debugging [22] is a method that can be used to record all the run-
time events during program execution. Although the method enables developers
to inspect the state of a program at an arbitrary point in execution, it results in a
huge execution trace, and in some cases, grows as fast as 10 MB per second [28].
Developers have difficulty estimating the size of an execution trace prior to execu-
tion. Therefore, this implies difficulty in determining what data should be logged
to fix bugs in a deployed environment [38].

In Chapter 2, we proposed Near-Omniscient Debugging for Java using size-
limited execution traces. Since a full execution trace includes many uninteresting
method calls such as utility functions [38], we introduce a parameter k that specifies
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the maximum number of recorded values for each instruction. This parameter
limits the size of an execution trace for repeatedly executed instructions, while
keeping all actual values of the variables associated with instructions that are
executed less than k times.

In this chapter, we present a tool NOD4J (Near-Omniscient Debugger for Java),
which records and visualizes an execution trace within limited storage space con-
straints. The tool records local variables and fields used in a Java program exe-
cution by Near-Omniscient Debugging proposed in Chapter 2 and annotates the
source code with the recorded values. We describe the implementation details and
show two usage examples of debugging actual bugs.

In the remainder of the chapter, Section 3.2 explains the background of the tool
and Section 3.3 describes its implementation. Then, Section 3.4 describes usage
examples and Section 3.5 discusses the limitation of NOD4J. Finally, Section 3.6
concludes the section and describes future work.

3.2 Background

Inspecting the runtime behavior of a program is an important activity for debug-
ging. To achieve this goal, omniscient debugging records all the runtime events
such as memory access inside a program. Similarly, Record-and-Replay meth-
ods [46] [47] [48] record all the interactions between a program and its external
environment. As with omniscient debugging, the approach may result in a huge
execution trace [48].

One of the causes for larger execution traces is the repetition of the program
instructions. To reduce the size of the execution traces, various compression and
sampling methods have been proposed. Wang et al. [39] proposed an effective
compression method tailored for execution traces comprising a sequence of memory
addresses accessed by a program. Cornelissen et al. [38] reported that execution
traces excluding unimportant utility functions retain more information than a trace
filtered by a simple sampling algorithm using the same storage space. Hizrel
et al. [40] proposed Bursty Tracing, a sampling method that periodically turns
monitoring on and off. However, users of those methods cannot estimate the size
of a trace prior to program execution. NOD4J enables users to specify the size of
an execution trace.

NOD4J is a tool to visualize the values of variables recorded in program ex-
ecution. Exiting tools, JIVE and Querypoint, provide similar features. JIVE is
an interactive execution environment for Eclipse that visualizes a Java program
execution at runtime [45]. While JIVE adds useful features to Eclipse debugger, it
cannot visualize a program execution outside of the debugger such as continuous
integration. Querypoint is a Firefox plugin, which provides critical information
for debugging JavaScript programs [49]. This tool provides a program location
where a questionable value was assigned. Instead of recording an execution trace,
Querypoint executes the program twice; The first execution observes values and
the second execution identifies the point where a questionable value was assigned.
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Table 3.1: Major Runtime Events Recorded by the Recorder Component.

Event Category Event Name Recorded data
Method Execution Method Entry Receiver object

Method Param Parameter given to the method
Method Normal Exit Returned value from the method
Method Exceptional Exit Exception thrown by the method

Method Call Call Receiver object
Call Param Parameter passed to the callee
Call Return Returned value from the callee

Local Variable Local Load Value read from the variable
Local Store Value written to the variable
Local Increment Value written to the variable

by an increment instruction
Field Access Get Instance Field Object whose field is read

Get Instance Field Result Value read from the field
Put Instance Field Object whose field is written
Put Instance Field Value Value written to the field

Array Access Array Load Accessed array to read
Array Load Index Accessed index to read
Array Load Result Value read from the array
Array Store Accessed array to write
Array Store Index Accessed index to write
Array Store Value Value written to the array
Array Length Array whose length is referred
Array Length Result The length of the array

3.3 NOD4J Overview
NOD4J records a partial execution trace of a Java program and generates an
HTML-based view to interactively explore the recorded trace on a web browser.
The key idea and recording method of our tool are described in Section 2.3.

In this section, we describe the detailed implementation of NOD4J. Our tool
comprises three components: trace recorder, post-processor, and interactive view.
The trace recorder component records an execution trace of a Java program in
storage. The post-processor component links the recorded trace to the source files
of the program. The interactive view shows the source code contents annotated
with trace information. The following subsections explain each component in
detail.

3.3.1 Trace Recorder
Our recorder component named SELogger (Logger for Software Engineering re-
search) is an extension of the existing trace recorder for REMViewer[43], an om-
niscient debugging tool. It is implemented as a Java agent working inside a Java
Virtual Machine. During program execution, the recorder monitors class load-
ing events and injects logging instructions into the loaded classes using ASM, a
Java bytecode manipulation framework.1 The injected logging instructions are
executed as a part of the target program. The standard library classes (e.g., java

1https://asm.ow2.io/
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1: void methodD() {
2: ...
3: // record a Call event of methodE
4: this.methodE();
5: // record a Call Return event of methodE
6: ...
7: }
8:
9: void methodE() {

10: // Record a Method Entry event of methodE
11: try {
12: // Original content of methodE
13: ...
14
15: // Record a Method Exit event of methodE
16: } catch (Throwable e) {
17: // Record a Method Exceptional Exit event of methodE
18: throw e;
19: }
20: }

Figure 3.1: An Example of Logging Code Locations for Recording Method Exe-
cution and Call Events.

and javax packages) are excluded from injection in order to avoid license issues.
Table 3.1 shows a list of major runtime events recorded by the component.

To capture inter-procedural control-flow in program execution, the recorder com-
ponent uses two types of events defined in AspectJ [50]: Method Execution and
Method Call. A Method Execution event is recorded when a method body is
executed (i.e., on a callee side), while a Method Call event is recorded before
a method invocation instruction is executed (i.e., on a caller side). Figure 3.1
shows an example code fragment indicating the locations of logging instructions
for methodE. In the code fragment, a Call event is recorded at line 3, and then
methodE is called at line 4. The Call event is followed by a Method Entry event of
an actually executed method depending on the type of this object; line 10 records
a Method Entry event if the method is selected by dynamic binding. When the
execution of the method is finished, a Method Normal Exit event representing the
location of a return statement is recorded. Finally, a Call Return event is recorded
on the caller side. The sequence of events enables us to trace the actual execution
path determined at runtime. In addition to the control-flow information, their
arguments, return values, and exceptions are also recorded in an execution trace.
It is worth noting that a single instruction may be recorded as multiple runtime
events; for example, a method execution is represented by a Method Entry event
recording a receiver object and a number of Method Param events recording the
parameters.

The recorder component also records three types of memory access: local vari-
ables, fields, and arrays. The Local Load and Local Store events record actual
values read from and written to local variables in a trace. The Local Increment
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event represents a pair of Local Load and Local Store performed by an increment
instruction (e.g. “i++”) that frequently appears in a program. Events in the
Field Access category record object references in addition to values read from and
written to the fields. Similarly, events in the Array Access category record array
references and their accessed indices. Although most memory read events just
record the same values as their preceding memory write events, the tool records
all the Field Access and Array Access events because their values may be updated
by library classes whose behavior is not observed by the tool.

An execution trace is a sequence of events 〈d, t, v〉 where d is a data ID to
identify an event of a particular instruction, t represents the thread that executed
the instruction, and v represents the observed value. A data ID d is assigned by
the recorder component during the bytecode instrumentation. When a method is
called, the recorder component assigns four IDs to represent the following method
execution events.

• A method entry event recording the receiver object (that is, the value of
this).

• An actual parameter event that records the value of the argument passed to
the method.

• A normal exit event. Although the method does not return any value, the
event represents a successful termination of the method.

• An exceptional exit event recording an exception if the method is terminated
by an exception.

The component also assigns data IDs to every instruction in the method.
Our tool records the latest k events for each data ID d. Then, it takes buffer

size k as a parameter, allocates buffers for each data ID, and accumulates the
observed events alongside their sequence numbers (i.e., an increasing number rep-
resenting the order of events). When the program has finished, the tool writes the
accumulated data to storage using a shutdown hook function in the Java virtual
machine. The maximum trace size is k × N where N is the number of data ele-
ments used by instructions in a program. Our tool with k = ∞ is conceptually
equivalent to omniscient debugging.

To enable users to investigate how objects are manipulated, our tool translates
object references into object IDs composed of their class name and a number. For
String and Exception objects, the tool records their textual contents with object
IDs for ease of debugging. Our current implementation simply records the textual
contents as is. For this reason, in case of long strings, the trace size could still be
large. Thus, an effective recording of textual contents will be considered in future
work.

3.3.2 Post Processor
The post-processor component links the source code contents of a program to
data elements in an execution trace of the program produced by the recorder
component. Conceptually, the output of the component is a mapping {l 7→ d},
where l is the location of an identifier in the source code and d is a data element in
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Table 3.2: Events Linked to Identifiers in Source Code.

Event Identifiers in source code
Method Param for a parameter par The formal variable name par in a method declaration,

e.g. “void m(Type par)”
Local Load reading a variable var The variable name var in an expression
Local Store writing to a variable var The variable name var on the left hand side of

an assignment expression, e.g. “var = e” and “var += e”
Local Increment updating a variable var (1) The variable name var on the left hand side of

an assignment expression, e.g. “var = var + constant”
(2) The variable var in a pre-/post-increment expression:
var++, var–, ++var, or –var

Get Field Result reading from a field f The field name f in an expression
Put Filed Value writing a field f The field name f on the left hand side of

an assignment expression, e.g. “f = e” and “x.f = e”

Table 3.3: The Pseudo Variables Representing Invisible Values on Source Code.

Event Name Variable Name
Call Return _ReturnValue
Array Load Result _ArrayLoad
Array Store Value _ArrayStore
Array Length Result _ArrayLength

a trace. Source-to-trace mapping enables an interactive view to show appropriate
data values for each source code location of interest to a user.

Table 3.2 shows the runtime events linked to the source code. The component
produces one-to-one mapping for those events because a single identifier in the
source code corresponds to a method parameter, a local variable, or a field name
recorded as those events. For example, suppose an expression x=y is in a source
file. The assignment x= can either be (1) a Local Store event for a local variable x
or (2) a Put Field Value event for a field x corresponding to the line. If those events
are recorded, the identifier is linked to them. The link enables an interactive view
to show actual values assigned to x. Similarly, the variable y is linked to either
(1) a Local Load event for a local variable y or (2) a Get Field Result event for
a field y. The identifier is linked to those events so that the interactive view can
show actual values read from y. To link the events and identifiers, the component
builds a syntax tree for each source file, extracts identifiers from the tree, and
then identifies their corresponding events in the trace. In the last step, the tool
searches local variable access and field access events using the source file name,
the line number of the expression, and the identifier names such as x and y. The
search depends on the heuristics as shown in Table 3.2 instead of a deeper semantic
analysis of the source code. This is because such a semantic analysis requires the
whole program and libraries to take class inheritance and static import mechanisms
into account.

Some runtime events have no corresponding tokens in the source code. For
example, the return value of a method call may be discarded without an assignment
operator. To visualize such invisible events in a trace, the post-processor translates
them into pseudo variables as shown in Table 3.3. The pseudo variables are also
included in the source-to-trace mapping.
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Figure 3.2: Trace View. Figure 3.3: Trace View with Filtering.

3.3.3 Interactive View
The interactive view component is an HTML-based view that works on a web
browser. Using the source-to-trace mapping produced by the post-processor com-
ponent, each tab displays a source file, whose variables are highlighted. Directly
associating variables with their values and highlighting them allows developers to
debug intuitively. By hovering a mouse cursor on a highlighted variable, the actual
values of the variable recorded in the trace are displayed. For example, Figure 3.2
shows a screenshot of an interactive view displaying the values of var in ascending
order by time.

In general, when analyzing the cause of a failure, instead of inspecting the
entire execution, the analysis focuses only on the interval related to the defect.
To debug in this situation, this interactive view can filter values by specifying a
time interval. For example, in Figure 3.2, a user can click on the arrows shown on
the right side of each value. A click on the left arrow specifies a start point of an
interval, while a click on the right arrow specifies the end point. Figure 3.3 shows
the interactive view displaying observed values after assigning 32 to var at line
15. If no values are recorded for a variable during the specified time interval, the
highlighting for that variable is turned off. In Figure 3.3, the highlighting of var
at line 13 disappeared as a result of filtering. It should be noted that interactive
views share a single filter within multiple tabs. A user can investigate an inter-
procedural data-flow by selecting an arbitrary pair of source code locations in a
program.

The interactive view also provides a textual representation of runtime events
linked to a source file. The following example shows the textual representation
for the example program.

...
ID:16, Line:5, Variable:_ReturnValue, Seqnum:45, Data:8
ID:28, Line:10, Variable:var, Seqnum:8, Data:127
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...

Each line shows five attributes of an event: data ID d (ID), line number (Line),
variable name (Variable), sequence number (Seqnum), and recorded data value
(Data). On the textual representation, we can perform a keyword search on the
recorded values. We can also refer to the invisible values in a table. For example,
we cannot check a returned value from the method call at line 5 because the value
is not assigned to any variable. In the above example, we can check the value
as a pseudo variable _ReturnValue, which means the method returned value on
the line. The interactive view uses a subset of events recorded by the recorder
component. For example, thread ID is available but omitted from the view. This
is because a naive visualization of all the details of runtime events may be too
complicated for users.

3.3.4 Usage
The tool is available on GitHub. The main repository2, named nod4j, includes the
binary files of the tool and the source code of the post-processor and interactive
view components. The following command builds the tool from source code using
Maven. The nod4j.jar file is created in target directory.

git clone https://github.com/k-shimari/nod4j.git
cd nod4j
mvn package

The source code of the recorder component is separated in another repository3

because the recorder may be used for other research. The tool is dependent on
the following tools and libraries. The version numbers show the environment of
the authors on Windows 10.

• Java(TM) SE Runtime Environment (build 1.8.0_241-b07)

• Apache Maven (3.6.3)

• Node.js (v12.16.1 LTS)

• npm (6.14.4)

To explain the usage of our tool, we performed a debugging session of a small
program. This program is included in the sample/demo/for_build directory of
the nod4j repository. The program implements a method to select the maximum
number from the three given numbers as follows:

public class Main {
public static int getMax(int num1, int num2, int num3) {

// return the maximum number of three arguments
}

}

To test the method, the file getMaxTest.java contains the following test cases
that provide parameters 10, 20, and 30 in different orders to the target method.

2https://github.com/k-shimari/nod4j
3https://github.com/takashi-ishio/selogger
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10: @Test
11: public void getMaxTest1() {
12: assertEquals(30, Main.getMax(30, 10, 20));
13: assertEquals(30, Main.getMax(30, 20, 10));
14: assertEquals(30, Main.getMax(20, 10, 30));
15: assertEquals(30, Main.getMax(20, 30, 10));
16: assertEquals(30, Main.getMax(10, 20, 30));
17: assertEquals(30, Main.getMax(10, 30, 20));
18: }

The following command executes the test cases of the sample program.

cd sample/demo/for_build/
mvn test

The command reports a failure as follows:

java.lang.AssertionError: expected:<30> but was:<20>
at testsample.getMaxTest.getMaxTest1(getMaxTest.java:17)

The last test case at line 17 fails and a log message for the test case shows that
the expected return value is 30 but the actual return value is 20.

To debug the problem using our tool, the pom.xml file for the program specifies
the following argument for a Java VM executing the test case.

-javaagent:"../../../selogger-\0.2.3.jar=output=../selogger,size=64,
e=junit/framework/,e=org/junit/,e=org/apache/maven,e=org/hamcrest"

The -javaagent option points to the recorder component called selogger-0.2.3.jar
located in the top directory of the main repository. The remaining text is the pa-
rameters for recording. The output=../selogger parameter specifies an output
directory. The size=64 parameters specify the buffer size k = 64. The “e=...”
parameters specify package names to be excluded from the execution trace. In
this configuration, the recorder component excludes the Maven and JUnit classes.
The execution trace is stored in the sample/demo/selogger directory.

To use the interactive view, we need to link the source code to the execution
trace.

java -jar nod4j.jar sample/demo/for_build sample/demo/selogger
src/main/frontend/src/assets/project/demo

The three arguments specify a source code directory, an execution trace directory,
and an output directory, respectively.

The command produces two json files, fileinfo.json and varinfo.json,
in the specified output directory. We put the json files in src/main/frontend
/src/assets/project/demo so that the interactive view can read the json files.
Then, we can build HTML contents from the json files and start a server for the
contents. To build HTML contents, we execute the following commands in the
src/main/frontend directory.

npm install
npm run build
npm run server
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Figure 3.4: The Welcome Page of NOD4J. Figure 3.5: The Browser
Page of NOD4J.

The npm install command is for installing dependencies, so this command needs
to be run only once. The npm run build command executes the post-processor
component. The npm run server command starts a web server for the interactive
view. A web browser can access the view through a local address localhost:8070.

Figure 3.4 shows the welcome page of the interactive view. NOD4J checks
subdirectories in src/main/frontend/src/assets/project/demo and automati-
cally shows the names in the project list. Then, by clicking the project name and
traversing the directory shown in Figure 3.5, we can access the file we want to see
the execution.

To analyze the failure of the example program, open the file src/sample/
Main.java. Figure 3.6 shows the view of the target method in the file. All test
cases return a value on the variable max at line 26. Then, we can confirm that
the sixth return value, 20, caused the test failure. To visualize the computation
for this invalid return value, we filter the execution with a time interval from the
initialization of num1 at line 8 by clicking on the left arrow of the sixth value of
num1 at line 8.

Figure 3.7 shows the filtering result. The highlighted variables show that the
max was incorrectly assigned at line 12. We can fix this bug by changing the
variable num1 to num2 at line 11.

In this example, the target method includes a loop at lines 23–25 that is irrel-
evant to the test cases. Although the loop results in a large number of steps in a
full execution trace, our tool excludes those steps from the trace.

3.4 Usage Examples
We illustrate two actual debugging sessions using the tool. We use bugs in the
Defects4J benchmark version 1.5.04 executed on Java(TM) SE Runtime Environ-
ment (build 1.7.0_80-b15). We chose Lang 2b and Math 59b as examples, because

4https://github.com/rjust/defects4j/, Commit bd32d9642e12
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Figure 3.6: The Interactive View for the
Current Scenario.

Figure 3.7: The Result of the Filter-
ing.

the former resulted in a relatively smaller execution trace among the bugs and the
latter resulted in a larger execution trace. We recorded the execution trace of a
failed test method for each bug. When more than one test method failed, we ran
only the top one shown in the result of the detects4j info command. The traces
record only the behavior of the source code of the project. In other words, the
recorded traces include method calls to libraries (e.g., Assertion class in JUnit)
in the target unit tests but do not include the internal behavior of the libraries.

3.4.1 Use Case 1: Lang 2b
The first example is Lang 2b, a bug of the LocaleUtils.toLocale() method.
The method takes a String object representing a locale name and returns a
Locale object corresponding to the name if the name is in the correct format.
The method is tested using a method named testParse AllLocales() in the file
src/test/java/org/apache/commons/lang3/LocaleUtilsTest.java. The test
method fails and provides the following log messages to the standard output:

Should not have parsed: ja_JP_JP_#u-ca-japanese
Should not have parsed: th_TH_TH_#u-nu-thai

To debug this problem, we obtained an execution trace of the failed test method
using our trace recorder with k = 64. The resulting execution trace completely
recorded the behavior of 262 out of 418 instructions (62.7%). The other instruc-
tions were executed more than 64 times. The size of the trace is 167 KB, which is
52.2% of its full execution trace (348 KB).

Figure 3.8 shows the test method testParseAllLocales() in the interactive
view. The test method obtains all available locales and passes their names to
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output java.lang.AssertionError

if string of locale
contains character “#” 

target locales in this test

Figure 3.8: A Test Method for LocaleUtils.toLocale Method in Lang 2b.

the method under test. If the locale name has a suffix (“#”), the method under
test should throw an exception. Otherwise, the method should return a Locale
object corresponding to the locale name. The test method counts the number of
occurrences of incorrect behavior using a variable failures. The test method
failed because the failures was greater than zero.

The interactive view provides the actual values of the str variable as shown in
Figure 3.9. From this information, we can confirm that this test failed because the
method under test did not throw IllegalArgumentException for locale names
including “#”. Figure 3.8 also shows that lines 572 through 573 were not executed
because the variables on the lines are not highlighted.

Then, we open the file that includes the target method toLocale() to analyze
the failure in detail. The first half of the method is shown in Figure 3.10, the

Figure 3.9: Actual Parameter Values that Induced a Failure in Lang 2b.
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Figure 3.10: A Filtering Result of the toLocale Method in Lang 2b (The First
Half of the Method).
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Figure 3.11: A Filtering Result of the toLocale Method in Lang 2b (The Second
Half of the Method).
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second half is in Figure 3.11, respectively. While the method is executed several
times, we are interested in only a failed execution whose argument includes “#”.
Hence, we filter the interesting behavior by clicking on a down arrow on the right
side of a string value “th_TH_TH_#u-nu-thai” shown in Figure 3.10. This view
shows a partial trace recorded after the value was observed at the beginning of
the method. The highlighted variables show the execution flow at that time. In
Figure 3.10, there is no highlighted variable in the if statement’s body from line
98 to 115. However, there are many highlighted variables from line 117 to 147
in Figure3.11. Then, we can see that this method call executes else statement’s
body and returns on line 147. At line 147, we can find that the method passed
a result of a method call “str.substring(6)” to a constructor of Locale class.
The if statements do not check “#” at all in the method. This is the cause of the
bug. In the fixed version of the program, the following if block is inserted into
the method at line 92.

if (str.contains("#")) {
throw new IllegalArgumentException("Invalid locale format: " + str);

}

In this debugging session, the actual values of variables recorded in the trace are
effective in investigating the behavior of the failed test. While the trace does not
record the complete execution, the trace still maintains variable values observed
for the corner case.

3.4.2 Use Case 2: Math 59b
The second example is Math 59b. The method FastMath.max() compares two
float values and returns a greater one. The method is tested by the test method
testMinMaxFloat() in the source file src/test/java/org/ apache/commons/
math/util/FastMathTest.java. This test method calls the FastMath.max()
method with various parameters and compares the results with Math.max() as
follows.

78: public void testMinMaxFloat(){
79: float[][] pairs = {
80: { -50.0f, 50.0f },

...
89: };
90: for(float[] pair : pairs){

...
99: Assert.assertEquals("max(" + pair[0] + "," + pair[1] + ")",

100: Math.max(pair[0],pair[1]),
101: FastMath.max(pair[0],pair[1]),
102: Math.Utils.EPSILON);
103: Assert.assertEquals("max(" + pair[1] + "," + pair[0] + ")",
104: Math.max(pair[1],pair[0]),
105: FastMath.max(pair[1],pair[0]),
106: Math.Utils.EPSILON);
107: }
108: }

The test method fails and produces the following message.
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Figure 3.12: Failure Induced Method at Math 59b.

java.lang.AssertionError: max(50.0, -50.0) expected:<50.0>
but was:<-50.0> at org.apache.commons.math.util.FastMathTest
.testMinMaxFloat (FastMathTest.java:103)

The method under test returned an incorrect value -50.0 for the first value (-50.0f,
50.0f), written in line 80.

We recorded an execution trace of the test method with k = 64. It resulted
in 4.0 MB. 3,841 out of 7,356 instructions (47.8%) were executed more than 64
times; the full execution trace of the test method resulted in 12.4 GB. Our tool
recorded only 0.03% of runtime events. The cause of the significant reduction is
the setting up of the method defined as follows.

@Before
public void setUp() {

field = new DfpField(40);
generator = new MersenneTwister(6176597458463500194l);

}

Before the unit test is executed, the setup method is executed. The method is
short but executes a large number of methods; all the runtime events excluded
from our trace belong to the method. The recorded trace includes the complete
execution of the test method.

The test targets are FastMath.min() and FastMath.max(), which return the
minimum and maximum values of the two values in the file src/main/java/org/
apache/commons/math/util/FastMath.java. From the error message, we have
to check the execution trace of FastMath.max(). Figure 3.12 shows a view of the
method. We can easily see the actual values used in the two method calls. Then,
we can easily find that we should fix the value of the last variable b to a at line
3,482. This case also shows that a complete execution trace is not always needed
for debugging.

3.5 Discussion
There are several cases where this visualization tool may not be able to debug.
This tool only collects IDs for objects, so it is not possible to check the specific
values recorded in objects. In addition, since this method cannot collect values
in external libraries, it is not possible to check and visualize the specific values of
variables in external libraries.

We have evaluated this visualization tool only from the perspective of whether
the values required for debugging are visualized or not. Since we have not con-
firmed whether this tool is actually helpful for developers, it is necessary to conduct
a qualitative evaluation by developers.
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3.6 Conclusion
NOD4J monitors and visualizes detailed software behavior with reducing storage
space consumption. The tool is suitable for monitoring remote program execution,
such as testing on continuous integration servers, and visualizing the behavior of
test failures on a web browser. As illustrated in the usage examples, our tool
can debug defects using incomplete execution traces, while it can record complete
execution traces for many bugs.

In future work, we would like to investigate effective logging for textual content
such as strings and exceptions. Another future research direction is the develop-
ment of automated debugging methods utilizing near-omniscient execution traces.
We also would like to improve the interactive view page so that it can provide
an understandable view for large values of k by visualizing the sequence of the
values of variables. Finally, as part of our future work, we will ensure that NOD4J
responds dynamically to added/removed execution traces.
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Chapter 4

Effective Test Case Selection
Based on Similarity of
Runtime Information for
Dependency Update

4.1 Introduction

Regression testing is performed to check the changes in behavior before and after
a software change. The cost of regression testing is a significant problem in large-
scale software because developers have to repeatedly perform regression testing
even when the software is not directly changed. For example, regression testing is
necessary for compatibility verification when developers update dependencies used
by the software. Chen et al. [51] reported various incompatibilities of JDK and
Java libraries detected by test cases in OSS projects.

In this chapter, we report our regression testing activity for updating the de-
pendencies of an enterprise thermodynamic and fluid mechanic simulator. The
users of this simulator are engineers of the company who design new products.
The simulator accepts various parameters specifying a structure of an electrome-
chanical product and simulates the physical behavior; the users can estimate the
efficiency of the structure without constructing an actual prototype. This simu-
lator received more than tens of millions of simulation requests from users in the
past five years. The simulator is now recognized as one of the most important
simulators for their product development.

The software developers in the company periodically update the simulator and
its dependencies and then perform regression testing. For effective regression test-
ing, the simulator automatically records all the users’ requests and the simulation
results in the storage. When the developers update the simulator, they execute
some simulations again and compare the new results with the recorded results. In-
stead of all the recorded requests, the software developers selected a small subset
of test cases that cover available simulation components because it is impractical
to execute all test cases due to a limited time and budget.
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Although the software developers believed their strategy was sufficient, they
failed to detect an incompatibility between JDK versions. They updated the JDK
version from Oracle JDK 8 to AdoptOpenJDK 11 and performed regression testing
as usual. However, a simulator failure occurred a few months after the regression
testing. The cause was a change in the behavior of the Java standard library,
which prevented several simulations from running properly. Even though the test
cases have been selected to cover simulation components, they did not cover a
corner case in a wide variety of behavior of the simulation components. Although
test case selection is a popular topic in the software testing community, we could
not identify a suitable method to select a small number of effective test cases (at
most 100 that could be executed within a day) from a large number of test cases.

To perform effective regression testing for updating dependencies of the simula-
tor, we develop a method to select test cases that result in similar executions using
the runtime information of test cases. The method records a lightweight execution
trace for each test case. We execute a clustering algorithm to identify similar ex-
ecution traces and select representative test cases from each of the clusters. The
contributions of this chapter are as follows.

• We have developed a method for identifying similar executions of test cases
for dependency updates.

• We showed that the clustering method based on runtime information of test
cases could be used to select test cases that improve coverage.

• The software developers recognized the selected test cases as effective because
they tested a wider range of parameters than their manually selected test
cases that have been used for the simulator.

• We showed that the test cases selected by our method could be used to
update the dependency in an enterprise simulator.

In the remainder of the chapter, Section 4.2 describes the background of the
chapter, and Section 4.3 describes our test selection method. Then, Section 4.4
describes the case study, and Section 4.5 applies our method to an enterprise
simulator. Finally, Section 4.6 concludes the chapter and describes future work.

4.2 Background
4.2.1 Dependency Compatibility
In modern software development, dependencies are indispensable and developers
should update their dependencies as soon as possible. For example, if there is a
critical vulnerability, such as the recent one that allows a remote third party to
execute arbitrary code in log4j1, developers need to update the dependency quickly.
However, developers have to deal with the compatibility issue of dependencies.
Mostafa et al. [52] reported that backward compatibility of Java software libraries
was not maintained in 76.5% of the new versions of libraries. Gyori et al. [53]
conducted a study on client-library breakages. This study showed that when
updating libraries, 15.0% of compile failures and 11.2% of test failures occur for

1https://logging.apache.org/log4j/2.x/security.html
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a given library version. This study also showed examples of semantic versioning
not working, indicating the need for regression testing. These studies show the
importance of regression testing for compatibility.

The incompatibility problems also exist in Java standard libraries. According
to Oracle, there are a number of incompatibilities in JDK 11 release2. Developers
should perform regression tests when updating their JDK version to ensure that
the system behavior is the same before and after the update. For example, Java’s
split method has undergone the following specification changes with Java version
updates3.

Listing 4.1: A backward incompatibility between Java 7 and Java 8.

1 "helloworld".split("")
2 (OpenJDK 7)：[, h, e, l, l, o, w, o, r, l, d]
3 (OpenJDK 8 and 11)：[h, e, l, l, o, w, o, r, l, d]

In this example, there is a concern that the number of elements in the array will
change when JDK is updated, resulting in unexpected behavior such as ArrayIn-
dexOutOfBoundsException. It is difficult to identify all such incompatible
changes in the release notes when updating the dependency version. Therefore, it
is necessary to check whether the dependencies used in the software work properly
through regression testing.

4.2.2 Test Case Selection
Regression testing is crucial to ensure that the behavior of the software is the
same before and after a software change. Since regression testing is performed
repeatedly, it is important to select appropriate test cases to reduce the cost.

Gligoric et al. [24] reported the study of manual test selection in practice and
a comparison of manual and automated test selection. The results showed that
manual test selection chose more tests than automated selection 73% of the time
and chose fewer tests 27% of the time. This means that manual test selection may
miss bugs or waste time. In our case, the software developers indeed missed a test
case as described in Section 4.1. We need an automated test selection method for
regression testing.

Many existing test case selection methods using runtime information have been
proposed. Rothermel et al. [26] proposed a method for test case selection using
runtime information, which focuses on a source code change. They create control
flow graphs of the source code before and after a change and find the modified
nodes from the two graphs using a depth-first search. This method considers test
cases that pass through these nodes as high risk and selects these test cases. Zhang
et al. [27] extended this test selection method. They made vectors of each method
call instruction at test executions and calculated the distance between them for
clustering. Then, this method executes representative test cases for each cluster
on the updated source code and decides whether or not to execute the tests in the
cluster by looking at the test results. These methods use runtime information for
test case selection, but they also use source code change information for test case
selection. However, since the software itself does not change when the dependencies

2https://docs.oracle.com/en/java/javase/11/migrate/index.html
3https://bugs.openjdk.java.net/browse/JDK-8043324
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are updated, we cannot simply apply these existing methods for test case selection
of updating dependencies.

Adithya et al. [30] proposed a system that performs data-driven test minimiza-
tion. This system predicts the test outcomes based on the commit information
and the correlation with previous test outcomes to save the test execution time.
This technique can reduce the test time by about a factor of five while maintaining
99.99% accuracy of test results for a large-scale service. Machalica et al. [29] pro-
posed a new predictive test selection strategy. This method uses machine learning
techniques to learn historical test outcomes. This method can capture more than
95% of individual test failures and more than 99.9% of faulty code, reducing the
total infrastructure cost of testing code changes by a factor of two. While these
methods are useful, they cannot be applied to our simulator due to their large
amount of costs since they require keeping a history of tests and their results, and
they require running large test cases for a number of commits.

Gligoric et al. [54] proposed a test case selection technique that can integrate
well with testing frameworks. This technique tracks dynamic dependencies of tests
on files. When developers modify test files, this technique detects the affected
tests from the dependencies and selects these test cases. It reduces the end-to-end
testing time by 32% on average compared to executing all tests. The effectiveness
is based on the assumption that a small fraction of files is modified at each revision.
As a dependency update may change many files at the same time, we could not
employ the technique.

4.3 Our Test Selection Method
Our method selects a small number of test cases using runtime information. The
objective of this method is to select test cases for updating dependencies in the
enterprise thermodynamics and fluid mechanics simulator. The simulator auto-
matically records all the users’ requests and the simulation results in the storage
for regression testing. The software developers can use these test scripts, but it
costs a lot of resources to execute all test cases. The simulator developer would
like to select test cases with a coverage close to that of running all the tests, and
then select test cases with different execution characteristics, such as a different
number of loops with the same coverage. Then, our method selects the combi-
nation of test cases that achieves high coverage and diverse execution times from
these test scripts, which can cover a wide range of parameters.

Our method consists of two steps. Figure 4.1 shows our method overview.
In STEP Ⅰ, we collect runtime information by executing test scripts with an
execution trace recorder. In STEPⅡ, we classify test cases based on the similarity
of their runtime information and select their representative test cases.

4.3.1 STEP I: Collect Runtime Information
At first, we collect runtime information for each test case. To collect the runtime
information, we use SELogger version 0.2.3, which is a recorder component of
NOD4J described in Chapter 3. SELogger is a Java agent working inside Java
Virtual Machine. It records Java bytecode instructions such as method execution
and variable access. Detailed implementation is described in Chapter 3.3. By
collecting runtime information in the unit of instructions, the detailed behavior of
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STEPI: Collect Runtime Information

Simulator with 
SELogger

Test Scripts

1: void methodA (int var) {
2:    if (var > 0) { 
3:      while (var > 0) 
4:        var = methodB(var);
5:    } else { 
6:      var = 0; 
7:    }
8:    System.out.println(var); 
9:  }

Event Name Location
Execution

Count

Method Entry Line 1 1

Method Param Line 1 1

Local Variable Load Line 2 1

Local Variable Load Line 3 4

Local Variable Load Line 4 3

Method Call Line 4 3

Local Variable Store Line 4 3

Local Variable Store Line 6 0

Local Variable Load Line 8 1

Method Normal Exit Line 9 1

Simulator Code 

Execution Trace
Test ID Vector (w/ count)

1 [1,1,1,4,3,3,3,0,1,1]

… …

Test ID Vector (w/o count)

1 [1,1,1,1,1,1,1,0,1,1]

… …

Selected ID

1

2

3

Clustering without instruction execution count

Selected ID

1

2

4

Select IDs

Select IDs

Clustering with instruction execution count

STEPII: Classify Similar Execution

Test ID Vector (w/o count)

1 [1,1,1,1,1,1,1,0,1,1]

3 [1,1,1,1,1,1,1,0,1,1]

… …

Test ID Vector (w/o count)

2 [1,1,1,0,0,0,0,1,1,1]

… …

Test ID Vector (w/ count)

1 [1,1,1,4,3,3,3,0,1,1]

… …

Test ID Vector (w/ count)

3 [1,1,1,10,9,9,9,0,1,1]

… …

Test ID Vector (w/ count)

2 [1,1,1,0,0,0,0,1,1,1]

… …

Test ID Vector (w/o count)

… …

Vectorize

Convert to boolean

Figure 4.1: An Overview of Our Method.

each test case can be recorded. We use SELogger freq mode, which assigns IDs
to each of the instructions and records their execution counts. This mode is a
lightweight analysis that does not record details of events such as variable values
at runtime.

To extract only relevant runtime events to the simulator, we introduced a
filtering feature into SELogger. This is because the target simulator is a web
application running on Tomcat. While the original version of SELogger records all
runtime events including the behavior of Tomcat, our version separately collects
only runtime events of the simulator. For each test case, an execution trace is
separately collected.

Figure 4.1 shows an example of collecting runtime information. The executed
instructions, consisting of runtime events and their location, and their execution
counts are recorded as an execution trace for each test script. In this example, the
loop from line 3 to line 4 is executed three times, so some events are repeatedly
executed, such as Local Variable Load event, which means the value is read from
the variable, at line 4. From execution traces, We create two types of vectors for
comparison: one vectorizes the instruction execution count as is, and the other
vectorizes the instruction execution count as a binary value of 0 or 1. In clustering
without instruction execution count, clustering is performed based on only cov-
erage. In clustering with instruction execution count, the executed count is used
in addition to the coverage so that the execution characteristics such as execution
time can be reflected in the vector.

4.3.2 STEP II: Classify Similar Execution
We classify similar executions and select the representative test cases. In both
methods described in STEP Ⅰ, we classify similar vectors using the K-means
clustering method, respectively. Since a large number of test cases are recorded in
the simulator, scalability is required. Therefore, we adopted the K-means method,
which is less computational complexity than hierarchical clustering. This method
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Table 4.1: Subsystem of the Target Simulator Under Test.

Metric Count
#Class 61
#Methods 509
#Lines 21,527

enables fast clustering of large vector data. In the implementation, we use eu-
clidean distance when measuring between vectors. Finally, we select the oldest
test case from each cluster as the representative test cases because they are the
first test cases that had triggered new behaviors of the simulator.

4.4 Case Study
We conduct a case study to verify the usefulness of our method for updating de-
pendencies. The simulator developer would like to select test cases with a coverage
close to that of running all the tests, and then select test cases with different exe-
cution characteristics, such as a different number of loops with the same coverage.
To evaluate the usefulness of our method in these aspects, this case study compares
our method with a method currently used in companies and a random selection
method. The research questions of this study are shown below.

• RQ1: Does our test selection method provide better coverage than the ex-
isting method?

• RQ2: How diverse is the execution time?

• RQ3: Can our method classify an existing bug-related test case?

Since this simulator has tens of millions of test cases, we should run all the
test cases and apply our method. However, it is difficult to execute them in a
short period of time due to resource constraints. Instead, we collect ten days of
test cases for the case study, with a maximum of one thousand test cases per day,
and then select representative test cases from the collected cases. The number of
collected test cases is 9,612. We selected 100 test cases that could be executed
within a day from the set using the developed method in order to answer the
research questions. Table 4.1 shows the detail of the target simulator under test.

In this case study, we use two configurations of our method. Our method
described in Section 4.3 uses a vector of instruction execution counts. Another
version uses a 0-1 vector ignoring the number of instruction execution counts.
We also use two baselines: Random selection and Component-based selection. In
Random selection, we arranged the test cases in order when they were executed,
and selected to become chronologically random. Component-based selection is the
method used by software developers. We selected test cases so that each simulation
component’s number of test cases was as equal as possible. In this case study, we
select 7 or 8 test cases for each of fourteen simulation components, 100 in total.
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Table 4.2: Result of the Coverage.

Test Case Selection Method Relative Instruction Coverage
based on All Test Cases

Clustering-based selection (w/ count) 99.76%
Clustering-based selection (w/o count) 99.88%
Random selection (Baseline1) 65.72%
Component-based selection (Baseline2) 97.73%
All Test Cases Coverage 100.00%

4.4.1 RQ1: Does our test selection method provide better
coverage than the existing method?

Table 4.2 shows the relative coverage of each method. In this research question,
we define relative coverage of a selection method as the percentage of the instruc-
tions executed by 100 test cases selected by the method divided by the instruc-
tions executed by all 9,612 test cases. First, we can see that the accuracy of the
Component-based method is much higher than the method based on the execu-
tion time for the baseline. This result indicates that the simulation component
is highly related to the coverage. Both versions of our Clustering-based method
outperform the baselines. In other words, we can select test cases with higher
coverage than the Component-based method used in the company. The execu-
tion path differs depending on the parameters, even if the simulation component
is the same. We can select test cases that cover different execution paths using
the runtime information. In addition, the results without the runtime information
were slightly better than those with the runtime information. This result may be
because test cases with different instruction execution counts and similar coverage
were classified into different clusters. This has increased the number of clusters
showing the same coverage, making it difficult to select the test case that increases
the coverage.

4.4.2 RQ2: How diverse is the execution time?
Figure 4.2 shows the distributions of the execution time excluding outliers for each
method. Our method with execution count and the Random selection resulted in
similar distributions to the distribution of all test cases. On the other hand, our
method without considering execution count and the Component-based method
resulted in significantly different distributions from all test cases. By using the
information of instruction execution count, we distinguished complex executions
that take a long time from those that do not and thus achieved a diverse distribu-
tion of execution times.

4.4.3 RQ3: Can our method classify an existing bug-related
test case?

Based on the results of RQ1 and RQ2, we adapt our method to identify the test
case that causes failures as described in Section 4.1. Although the 9,612 test cases
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Figure 4.2: The Distribution of the Execution Time without Outlier.

we executed this case study did not contain any failures, we added one test case
that caused a failure and selected one hundred test cases using our method. We
adopt the method that considers the number of executions that can select test
cases with high coverage and more diverse execution times that show promising
results in RQ1 and RQ2.

As a result, the clustering algorithm produced a cluster including the test
case that caused the failure. Consequently, the test case is successfully selected for
regression testing. One of the reasons for the success of our method is that only one
test case passes through the method call that causes the failure. Since our method
clustering is based on the executed instructions, if an instruction is executed only
in a particular test case, the test case tends to create an independent cluster.
In addition, the simulation component of the test case that causes the failure is
different from the other test cases, so the execution path tends to be different from
the others.

4.5 Field Experiment
Based on the case study results, the software developers recognized that our
method could be applied to update their dependency. They updated their JDK
from AdoptOpenJDK 11 to Eclipse Temurin 17 and tested their simulator using
the test cases selected by our method. We received a comment from the software
developers after the update as follows:

The test execution was finished in half a day. This execution time was short
enough that it did not affect the execution of the simulator. The test cases did
not find any incompatibilities. The simulator has been working without failure
for two weeks until now. We considered that these selected test cases contained
various execution times and coverage, which are better than test cases selected by
our previous Component-based method.
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From this comment, we conclude that our test selection method is effective for
selecting the representative test cases from a large number of test cases.

In this experiment, our method did not detect any defects. However, this does
not mean that failures will not occur in the future. The most challenging part
of this research is that no one can ensure that selected test cases are sufficient
for regression testing. Although we evaluated our method using a known library
incompatibility, the same incompatibility issue does not occur again. High code
coverage also does not imply a high coverage of library usage scenarios imple-
mented in the system. We need an advanced method to evaluate the effectiveness
of test cases in the context of dependency updates.

4.6 Conclusion
We developed a test case selection method for updating the dependencies of an
enterprise simulator. Our method executed test cases to create vectors based
on the instructions executed in each test case and classified similar vectors. We
confirmed that the test cases selected by our method achieved higher coverage and
more diverse execution times than baselines. The software developers recognized
the selected test cases as effective because they tested a wider range of parameters
than their manually selected test cases that have been used for the simulator. The
software developers also applied our method to the case of updating the JDK of
the simulator and confirmed that the selected test cases sufficiently verified the
compatibility.

In future work, we would like to define metrics for the diversity of execution
paths and compare our method with a method that maximizes coverage, which is
an extension of the conventional regression test case selection method. In addition,
we would like to extend our method to automatically update test cases using
new test cases added by users. We also would like to combine our method with
the Component-based selection so that we can efficiently select test cases having
various execution paths from tens of millions of test cases in a practical time.
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Chapter 5

A Clustering-based Filtering
Method for Similar Source
Code Fragment Search

5.1 Introduction
In software development, developers reuse source code within a project to imple-
ment several similar functions. However, if the reused source code includes a bug,
the same may occur in multiple places in the source code [55]. Therefore, when a
bug is found in software, it is important to search for and fix source code fragments
that are similar to the source code fragment including the bug [56].

As one of the tools to search for similar source code fragments, our research
group has developed NCDSearch1. This tool compares source code fragments
given as a query with the source code fragments cut out from the source code to
be searched, and finds all the positions (file names and line numbers) of similar
source code fragments. This tool searches source code fragments by giving the
query in the units of line, and the shorter the number of lines given, the higher the
recall. Compared to existing code clone detection tools such as CCFinderX [57],
this tool misses fewer source code fragments that include similar bugs. However,
this tool also finds many source code fragments that do not include bugs [31].
Ideally, the bug fix would be complete if all the detected results were examined.
In actual development, it is necessary to narrow down the search results to only
those code fragments that should be investigated as a priority.

In this chapter, we aim to filter the output results of NCDSearch to remove
similar source code fragments that do not include bugs from the search results. We
apply a code fragment clustering method proposed by Yamaguchi for filtering [58].
This method is based on the idea that when investigating a software vulnerability,
a unique code fragment that is not similar to other code fragments is selected as
a candidate to be investigated. Based on this idea, we extract from the search
results only source code fragments that are similar to those that are likely to
include similar bugs, but not similar to those that are unlikely to include similar
bugs.

1https://github.com/takashi-ishio/NCDSearch
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5.2 Proposed Method
The proposed method filters the set F of similar source code fragments detected
by NCDSearch for query q. NCDSearch uses the normalized distance [59] for the
search. The tool detects code fragments from the target source code such that the
distance between each code fragment f ∈ F and the query satisfies d(q, f) ≤ th
for a distance threshold th.

The proposed method achieves the filtering by using neighborhood search. In
concrete, we classify the source code fragments obtained from the search results
into two groups: those that are strongly similar to the query and those that are
not according to the threshold d1(d1 < th), and consider that the latter group
is likely not to include any bugs. We define this set of code fragments as F ′ as
follows.

F ′ = {f ′ ∈ F | d(q, f) > d1} (5.1)

We consider code fragments within distance d2 from any of the code fragments in
F ′ to be non-unique even if they are similar to the query, and exclude them from
the search result R as follows (set d2 < d1 so that codes that match the query
exactly are not excluded from R).

R = {f ∈ F\F ′ | ∀f ′ ∈ F ′. d(f, f ′) > d2} (5.2)

In this way, R includes only code fragments that are similar to the code fragment
of the search query and different from the code fragment that is unlikely to include
a bug. The final output of the proposed method is the code fragments included in
R, which are output in the order of the distance d(q, f) to the query.

5.3 Evaluation
We evaluate the degree of improvement in NCDSearch search results using the
dataset of bug fixing cases in OSS [60]. The size of the dataset and the number of
bugs are shown in Table 5.1. This dataset is a collection of cases where a single
fix was made to multiple similar source codes in PostgreSQL, Git, and Linux. We
perform a search on the code fragments given as a query and evaluate how many
code fragments can be detected that should be modified at the same time.

The proposed method has two parameters, d1 and d2. We use the settings
(th = 0.50) used in the experiment in the existing research [31], and increase d1 and
d2 by 0.05 from 0.05 to 0.45, respectively, within the range that satisfies the relation
d2 < d1 < th described in the proposed method, and obtain the filtering result R.
For the baseline of evaluation, we use the result R′ = {f ∈ F | d(q, f) ≤ d1}, which
is the result of filtering the NCDSearch results using only the distance threshold
d1. This setting corresponds to the case where the threshold th of NCDSearch is
varied. The baseline results are obtained by varying d1 from 0.01 to 0.50 in steps
of 0.01. Assuming that the tool user checks all the execution results of all the
queries, we regard the union of R obtained for each query as the filtering result of
the proposed method, and the union of R′ obtained for each query as the filtering
result of the baseline. We use the NCDSearch version v0.3.52in our evaluation.

The following indices are used for evaluation.
2commitID:5b76c37193741edfd41fbd7b865d04194cb3ddfa
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Table 5.1: Dataset for Similar Source Code Fragments.

Project #Query #Bug Median #File Median #Lines
PostgreSQL 14 39 1,058 277,959
Git 5 8 261 67,028
Linux 34 41 22,181 6,931,715
Total 53 88 792,432 241,074,652

Table 5.2: Filtering Accuracy of the Proposed Method and Baseline.

Precision Recall Reduction Harmonic mean
Proposed Method

(d1=0.35, d2=0.25) 0.083 0.886 0.806 0.844

Baseline (d1 = 0.30) 0.081 0.773 0.827 0.799
Baseline (d1 = 0.31) 0.082 0.830 0.816 0.823
Baseline (d1 = 0.32) 0.077 0.841 0.802 0.821
Baseline (d1 = 0.35) 0.067 0.898 0.758 0.822
Baseline (d1 = 0.50) 0.018 1.000 0.000 0.000

Precision
The percentage of code fragments including bugs in the result set of the
output code fragments.

Recall
The percentage of code fragments including bugs that are included in the
result set.

Reduction r
The reduction ratio of source code fragments to the search result at th = 0.50
(r = 1 − |R|

|F | or 1 − |R′|
|F | ). The higher this index is, the fewer code fragments

the user has to check.

Harmonic mean of recall and reduction h
There is a trade-off between the recall and the reduction, since the more the
number of output results is reduced, the higher the chance of missing a result.
This harmonic mean is used to evaluate the method that significantly reduces
the number of reported code fragments while maintaining a high recall.

Table 5.2 shows the best and baseline results of the proposed method based on
the harmonic mean h. The total number of output code fragments for the baseline
(d1 = 0.50) is 4,866, in which all 88 bugs are detected (recall 1.000). In the best
case, the proposed method reduces the output result by 80.6%, while 88.6% of the
bugs are included in the output result. The proposed method shows a higher recall
compared to the baseline (d1 = 0.32) with a similar reduction rate. Compared with
the baseline (d1 = 0.35), which has a close value in recall, the proposed method
reduces the number of output code fragments from 1,176 to 942 by about 20%.
Therefore, the proposed method is more efficient than simply varying the distance
threshold d1 in the baseline method.
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Figure 5.1: Harmonic Mean of the Proposed Method and Baseline.

The effect of parameters on the proposed method is shown in Figure 5.1. The
X-coordinate of each point is d1 for the proposed method and the baseline, and
the Y-coordinate is the harmonic mean h at that time. Since several values of d2
are used for the proposed method, all the results are plotted. From this figure, we
can see that the harmonic mean h is stably the same or better than the baseline,
and the proposed method is effective in improving the source code search results.

The filtering by the proposed method took less than one second per query
on average. The average execution time of NCDSearch is 8.5 minutes per query,
which means that the proposed method improves the output results at a low cost
compared to NCDSearch.

5.4 Conclusion
In this chapter, we applied the method of vulnerability research proposed by Ya-
maguchi, which focused on a unique code, to a similar source code search. We
defined a filtering method that extracts only the source code fragments that are
different from the source code fragments that are relatively far from the query. As
a result, we showed that it is possible to reduce the number of search results while
maintaining a higher recall than simple filtering.

Since the dataset used in the experiment was limited to the case studies of three
C projects, future work includes investigating the effects of new OSS modification

58



cases and the software enterprise environment [31] that uses NCDSearch.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Studies

This dissertation described studies on cost-effective debugging methods under re-
stricted resources.

First, we have proposed Near-Omniscient Debugging which records execution
traces with limited storage cost of Omniscient Debugging and visualizes recorded
execution traces. We have conducted the quantitative evaluation of the execution
trace based on the dependencies and the amount of recording and confirmed that
our method requires fewer than 1% of the complete execution traces to visualize
all runtime values used by 60 to 74% of instructions. We have also evaluated the
completeness of recording the bug-related instruction and confirmed that Near-
Omniscient Debugging could completely record the bug-related instruction for
about 80 percent of bugs with a buffer size of 1024. Moreover, we applied the vi-
sualization method to actual bugs to verify its usefulness for debugging. We have
shown two examples our tool can debug defects using incomplete execution traces.
We have concluded that Near-Omniscient Debugging can perform Omniscient De-
bugging, which enables detailed dynamic analysis, using limited storage spaces. In
addition, our visualization tool can be used for actual bug-fixing tasks, indicating
the first step toward the practical application of Near-Omniscient Debugging.

Second, we have proposed a test selection method that uses runtime informa-
tion to update the dependency. We have shown the usefulness of our test selection
method in terms of higher coverage and more diverse execution times than baseline
methods. We have also conducted a field experiment by applying the method to
actual failure and confirmed that the selected tests sufficiently verified the com-
patibility. In terms of efficient identification of the cause of the failure and efficient
reproduction of the failure, the proposed method can be used effectively.

Finally, we have proposed a filtering method for similar source code fragment
search, which focuses on unique code. We have shown that it is possible to reduce
the number of search results while maintaining a higher recall rate than simple
filtering. By reducing the number of search results that the developer has to
inspect, the proposed method contributes significantly to reducing the debugging
effort.
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6.2 Future Work
We have confirmed that Near-Omniscient Debugging can completely record bug-
related instructions for the most bugs. We should specify the appropriate buffer
size depending on the domain and software characteristics for practical usage of
the execution trace, so we would like to consider the method to determine the pa-
rameter to support it. As a method of using the recorded traces, we have tackled
with debugging support through visualization in this work. In the future work, as
with Omniscient Debugging, we will consider applying Near-Omniscient Debug-
ging to more detailed analysis, such as visualizing dependencies and reproducing
partial executions.

We have proposed a test selection method that uses runtime information to
update the dependency. When test cases are added or software is updated, the
selected test cases needs to be updated. It is required to realize an automatic test
case update method that supports various execution for future work. It is also a
future work to determine the appropriate number of test cases, taking into account
the execution time of each test case.

We have proposed a filtering method for similar source code fragments. The
proposed method is applied to a limited number of languages and similarity indices.
Therefore, it is necessary to consider a similarity index suitable for each language
and an appropriate parameter determination method according to the reduction
rate allowed by the developers.
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