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Abstract

Semantic segmentation plays fundamental rolls in today’s medical
fields from both clinical and scientific viewpoints. Automating semantic
segmentation is highly valuable and desired because manually
performing segmentation is far too cost-ineffective and time-
consuming. The segmentation targets in medical images can be divided
into the following three categories. 1) Large anatomical structures such
as abdominal organs, muscle, bones, lung, and brains. 2) Inter and intra
structures of organs such as blood vessels and bronchi. 3) Pathological
abnormalities such as tumors, hemorrhage, and aneurysms. The goal of
this thesis is to address following two problems that found in 2) and 3)
respectively. The problem found in category 2) is that there are few
comparative studies of methods while there are numerous studies that
propose new methods. The problem found in category 3) is that it is
hard to collect large-scale dataset that is annotated by qualified experts

because of its higher cost for annotation.

The first problem was addressed through a study on abdominal artery
segmentation. Two methods that use convolutional neural network and
one method that is based on analytical filter were compared through
the experiments that used 30 cases of contrast enhanced abdominal
computed tomography images. The experiments showed that the
newer method (namely UNet) was the best in the training region of
interests. However, the experiments also showed that the other two

methods outperformed the newer method in other regions.

v



The second problem was addressed through a study on diffuse lung
abnormality patterns segmentation. A new method that takes full
advantage of partially annotated dataset is proposed. The experiments
that used 372 patients of chest CT images were conducted to evaluate
the proposed method. The experimental results showed that the
proposed method improved segmentation accuracy by reducing the
leakage of the segmentation. Further analysis of the results showed
that the proposed method effectively utilized unannotated pixels,
which were mostly comprised of healthy lung pixels, and improved the
segmentation accuracy between normal lung pixels and other pixels

with abnormal textures.
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Introduction

1 Introduction

1.1 Background

Semantic segmentation of medical images is of great importance in
today’s medical field. Medical images such as computed tomography
(CT) image and magnetic resonance image (MRI) are scanned as part of
the clinical routine dozens of times a day in a hospital and enormous
amount of human resource is spent for processing them. Semantic
segmentation is an image processing task of segmenting an image into
semantic clusters, which can be individual organs, muscles, blood
vessels, and pathological regions based on the context and the goal of
the medical image. Clinically, semantic segmentation can be used for
various tasks such as measuring sizes of certain structures to assess its
functionalities and the visualization based on semantic segmentation is
essential to grasp shapes and relationships of anatomical structures
inside the body. Furthermore, semantic segmentation is a fundamental
step for medical image analysis such as computational anatomy and

computational physiology.

Manually performing semantic segmentation is possible but not the
most reliable and cost-effective option. First, there is inter and intra
operator variability in the quality and accuracy of manual
segmentation. Second, labor-intensive nature of manual segmentation
is problematic especially for medical images because medical images

such as CT and MRI are three dimensional, which makes it more labor-
1



Introduction

intensive, and outsourcing the task is usually not an option because of
the patient privacy. Automating semantic segmentation can mitigate

these problems and therefore highly valuable and desired.

1.2 Methods and challenges

One typical classification of the segmentation targets is to divide them
into following three categories based on their anatomical
characteristics. 1) Large anatomical structures that compose most of
the body such as abdominal organs, muscles, bones, lung, and brains. 2)
Inter and intra structures of organs such as blood vessels and bronchi.
3) Pathological abnormalities such as tumors, hemorrhage, and

aneurysms.
1.2.1 Large anatomical structures

Large anatomical structures such as abdominal organs, muscles, bones,
lung, brain and so on compose most of the body. Segmenting these
regions is often performed as a first step of image processing. Most of
these regions are immediately recognizable and searching through the
image is not necessary because they are large and usually in certain
positions of the body. However, segmenting these regions can be often
hard because the image contrast is low, or the image is noisy.
Furthermore, separating neighboring structures in tightly packed
region such as thigh muscles can also be hard because of unclear
margins between structures and it requires experiences to manually

delineate each structure. Another factor that could affect segmentation
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is deformations and changes in pixel values caused by pathological

abnormalities.

Prime example of the segmentation tasks in this category is abdominal
organ segmentation [1] and has been in one of the main focuses of
medical image processing community. The segmentation tasks that
perform subdivision of the organ include muscle [2], [3], lung lobe [4],
and liver lobe [5], [6] segmentation. This category has been studied
fairly well and segmenting healthy structure with high accuracy is now

becoming possible unless there are abnormalities [7].
1.2.2 Inter and intra structures of organs

Inter and intra structures of organs include blood vessels and bronchi.
Imaging protocols such as contrast enhanced CT help to recognize
structures in this category but segmentation accuracy in this category
is often limited by the image resolution because tiny structures such as
arteries can easily be sub-voxel scales. As they branch away from major
trunk such as aorta and trachea, their positional and topological
variation increases. Blood vessels attract the interest of many
researchers because of its variety and clinical importance. Blood
vessels are not large in volume compared to the structures in the first
category because they consist of tubular structures. However, manually
segmenting them from start to end is painfully time-consuming
because it requires tracking numerous branches that can span large

area.

Blood vessels in different regions have different properties, therefore

they often require specialized studies. Retinal vessels found in fundus

3
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images [8] have crossovers because the images are two dimensional.
Coronary arteries [9] and cerebral vessels [10] usually have static
branching and running patterns. Pulmonary vessels tend to be
straighter than vessels in other regions and are easy to distinguish

from the surrounding tissues.

A number of new methods based on deep learning has been proposed
but not many of them are focusing on comparing different methods.
There are comparative studies of deep learning based methods on
retinal vessel segmentation [11]-[14]. On the other hand, although
there are comparative studies on other vessels [15], [16], they are not
based on deep learning. Therefore, there is a lack of comparative

studies on abdominal vessels.
1.2.3 Pathological abnormalities

This category includes abnormalities such as tumors, hemorrhage, and
aneurysms. The variations in shapes and appearances tend to be much
larger compared to the structures in previous two categories.
Determining the type and area of the abnormality is hard and there are
substantial amount of inter-operator variabilities even among qualified
experts [17], [18]. For small objects such as lung nodules [19]-[21] or
aneurysms [22], [23], segmentation can be substituted or preceded by

object detections.

Primary example in this category is hepatic or renal tumor
segmentation [24], [25]. One of the challenges in this category is that it
is hard to collect large-scale dataset that is annotated by qualified

experts because of its higher cost for annotation. Therefore, in this

4
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category, taking full advantage of limited amount of annotated dataset

is more important.
1.2.4 Methodological aspects

Semantic segmentation methods commonly used for medical images
are listed here. Even though deep learning based methods are the main
focus of the thesis as well as the current research scene, non-deep
learning methods commonly used before the prevalence of deep
learning are also listed here to help understand the characteristics of
the segmentation tasks. These conventional methods are usually based
on statistical or analytical priors designed and constructed by the

researchers and the dataset.

Graph cut [26], [27] is a semi-automated segmentation method that
typically works well for well-defined object with homogeneous pixel
intensity values. Even though this is not a fully automated method,
interactive update of the segmentation makes this method far more
convenient than fully manual segmentation. Statistical atlas model [1],
[28], [29] is a method that statistically models the position, appearance,
and shape of the objects and is commonly applied to large anatomical
structures. Multi atlas method is a method based on image registration
between the atlases and the patient. Individual muscle segmentation
[2] and parcellation of brain region [30], [31] are primary applications
of this method and this method works robustly on objects that have no
clear boundaries. Hessian based filters [32]-[34] are analytical image
filters that enhances geometric shapes such as tubes and sheets based
on their local appearances. They work well when their analytical

models match actual image appearances.
5
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Convolutional neural network (CNN) revolutionized semantic
segmentation and most of newly proposed methods these days are
based on CNN. While CNN contributed to the improvement of accuracy
and the unification of the methodes, it also created issues that have not
been addressed well yet. First, despite the increase in the number of
studies published in the field, studies that are focused on the
comparison among methods are scarce. Second, although training
CNNs necessitates a large-scale dataset, large-scale dataset is

sometimes hard to obtain especially when it is a medical image dataset.

1.3 Research objectives

The purpose of this thesis is as follows.

1. Addressing the lack of comparison study on abdominal blood
vessel segmentation compared to the abundance of new

proposals of methods.

2. Proposing and testing a method that takes full advantage of
existing dataset even when expert annotations are only partially

available.

The first purpose is addressed through a study on abdominal artery
segmentation in chapter 2. In this study, multiple methods are tested
on abdominal arteries and their characteristics are compared. The
second purpose is addressed through a study on diffuse lung
abnormality patterns segmentation in chapter 3. In this study, it is hard

to construct a large-scale dataset and new training method is proposed



Introduction

to make effective use of limited amount of expert-annotated training

dataset.

1.4 Thesis outline

In chapter 2, details of current landscape of vessel segmentation are
described and experiments are conducted to study characteristics of
multiple methods. This chapter is based on my previous publication
[35] about renal artery segmentation. In chapter 3, difficulties and
related methods of diffuse lung abnormality patterns segmentation are
described and new method is proposed to tackle the challenges of this
segmentation task. This chapter is based on my previous publication
[36], [37]. Finally, summary of this thesis and future work is discussed

in the chapter 4.
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2 Abdominal Vessel Segmentation

2.1 Overview

Segmenting blood vessels is an important step in a wide variety of
tasks in medical image analysis. Patch-based CNNs are often used for
vascular detection, but the impact of patch size and choice of CNN
architecture have not been addressed in detail in previous studies. In
this study, we aim to investigate the impacts of patch size and CNN
architecture on the accuracy of vascular detection from contract
enhanced CT. We targeted the renal arteries as the primary focus of

detection.

We conducted experiments involving 30 cases of contrast enhanced
abdominal CT data. For the experiments, arteries in the pre-defined
regions of interest were manually labeled to build a dataset of input CT
images and ground truth labels. We repeated the experiments with
four patch sizes and two patch-based 3D CNN architectures (U-Net like
and a simple sequential model) to evaluate the differences. Moreover, a
Hessian-based line enhancing method was included in the evaluation to

compare the CNNs with a non-deep learning method.

The experimental results show that patch size has a significant impact
on detection accuracy. U-Net like model had a peak accuracy at a

certain patch size unlike the sequential model, which plateaued with
8
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large patch sizes. Although both CNNs outperformed Hessian-based
line enhancement by a large margin, Hessian-based line enhancement
obtained good recall when enhancing vessel structures not included in
the CNN training. Our experiments showed that different network
architectures have different characteristics regarding their response to

different patch sizes and vessel structures unseen during training.

2.2 Background

Blood vessels play a vital role in a wide variety of medical tasks such as
surgical planning and diagnosis. For example, in organ transplants, a
patient’s vessel structure is one of the factors that determines the
operability of the patient. In a partial resection operation (e.g., partial
hepatectomy and nephrectomy), the optimal resection is designed by
estimating blood vessel-dominant regions based on the vascular

structure.

Understanding vascular structure is a challenging task because the
structure has an elongated tubular structure with curves and
branching points. Therefore, assisting humans with vessel recognition
has been a main topic of the studies in the medical image analysis field.
Common approaches in these studies are vessel enhancement [32],
[33] and automated vessel segmentation [38]-[40]. Vessel structures
are extracted from images in a broad range of image protocols and
body parts, such as fundus images for diabetic retinopathy, cardiac CT

for coronary stenosis, and head CT for aneurysms [41].



Abdominal Vessel Segmentation

CNNs have been widely used in semantic segmentation since AlexNet
[42] won an image classification contest by a large margin and a large
number of methods and tools have been developed. In medical image
analysis, researchers have begun to use CNNs for a variety of tasks such
as classification and detection. A fully convolutional network [43] is
typically used for segmentation tasks. The semantic segmentation of
blood vessels is no exception to this trend, and a number of new
techniques specifically for segmenting tubular structures have been

proposed [44]-[48].

Patch-based networks are commonly used in the semantic
segmentation of medical images. This is because the target object is
often localized in a limited region of interest (ROI) and because 3D
volumetric images are too big to fit in GPU memory, which is commonly
used in the training of CNNs. Although a CNN is capable of learning its
weight parameters through training, there are hyper parameters for
the network that are not optimized by the training process. In patch-
based networks, the patch size is one hyper-parameter that is often
heuristically determined. Whereas patch-based CNN is often used for
vascular segmentation, the impacts of patch size have not been
addressed in detail so far. In many previous studies, a fixed patch size
was used ([49]-[51] to name a few). Although a couple of papers [52],
[53] have mentioned patch size in their studies, more detailed study on
the impacts of patch size is needed to achieve better understanding of

vascular segmentation using patch-based CNN.

Oda et al. [52] proposed a method that segments abdominal arteries in

contrast enhanced CT and reported the segmentation accuracies for

10
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different patch sizes. A limitation in their work is that they did not test
a 3D network. They used 2.5D network that incorporates three planes,
namely the axial, sagittal, and coronal planes. In their work, the 2.5D
CNN performed better than a simple 2D CNN. However, the
development of a 3D CNN that is capable of capturing a 3D structure

remained unaddressed.

Yang et al. [53] proposed a method that segments catheters in 3D
ultrasound images using techniques such as focal loss and dense
sampling. In their experiments, a 3D U-Net was used, and they reported
that changing patch size changed the segmentation accuracy. The
limitation of in their work regarding patch size in the context of
vascular segmentation is as follows. First, their target is a catheter,
which has a tubular structure similar to that of blood vessels. However,
unlike vessels, a catheter does not have branches nor large changes in
diameter. Second, because they used 3D ultrasound, image
characteristics such as field of view and background organs are

different from those in other image modalities such as CT and MR.

The task of this work is to detect abdominal arteries in contrast
enhanced 3D CT using patch-based 3D CNN. Our contribution is three-
fold. First, we study the impact of the patch size and network
architecture in the task of abdominal artery detection in contrast
enhanced 3D CT through experiments. We determine the best-
performing CNN architecture and its optimal patch size as well as how
different CNN architectures are affected by patch size. Second, we study
the CNN’s behavior when detecting categories of vessels that are not

included in the training data. Third, a typical non-deep learning method,

11
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namely the Hessian-based multiscale line enhancement method [32], is

compared with CNN-based methods.

2.3 Materials and Methods
2.3.1 Materials

In this work, we used 30 cases of contrast enhanced abdominal CT
scanned at Osaka University Hospital. The average voxel size of the
images is approximately 0.68 X 0.68 x 0.63 mm3>. The ground truth
data of vessel regions were prepared for three types of ROIs, which
were defined for each case to observe the differences among methods
in different regions. The three types of ROIs, as illustrated in Figure 2.1,

are as follows.

e Renal ROI (red rectangles in Figure 2.1): A Bounding box that
circumscribes both a kidney and the arterial tree stemming from
the aorta. Two (left and right) renal ROIs were defined on each
patient. The average size of each renal ROl was 142 X 121 x 171
voxels and the standard deviation was 18.2 X 7.41 X 20.1 voxels.

e Lung ROI (green rectangles in Figure 2.1): A 32 X 32 X 32 voxels
cube at the bottom of the right lung. No organs except for lung
tissues and vessels were in the ROI.

e Spine ROI (blue rectangles in Figure 2.1): A 32 X 32 X 32 voxels
cube next to 12th thoracic vertebra with an intercostal artery at
the center of the ROI. A portion of spinal bone tissue was

included in the ROI.

12
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The main ROI type was renal ROI, which was used for both the training
of the CNNs and evaluation using cross-validation. The other two types
of ROIs were used only for the evaluation. There are four contrast
phases of the CT images (namely non-contrasted, early arterial, late
arterial, and venous phases) in our contrast enhanced abdominal CT
scan. The early arterial phase has the best contrast between arteries
and other non-arterial regions such as veins in the renal ROL
Additionally, vessels in lung and spine ROIs are not very sensitive to
the contrast phase because non-vascular regions in these ROIs are
primarily air and bone respectively. Therefore, we used early arterial
phase for all three types of ROIs. All arterial regions in the renal and
spine ROIs and vessels in the lung ROIs were manually labeled by
medical image researchers under an experienced radiologist’'s

supervision.

13
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Figure 2.1: Placements of the three types of ROIs. Colored
rectangles indicate ROI placements (Red: Renal ROI. Green: Lung
ROI. Blue: Spine ROI.) (a) Maximum intensity projection (MIP) in
the coronal plane. (b), (c), and (d) image slices with renal, lung,
and spine ROIs respectively.

2.3.2 Methods
In this work, the following three methods were evaluated.

1. A U-Net [54] like (UN): a CNN that uses a U-Net like architecture,
which is a network architecture commonly used in semantic

segmentation of medical images.

2. Sequential network (SN): a CNN that uses a simple sequential

network without skip connections.

3. Hessian-based line enhancement method (HM) [32].

14
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The UN architecture used in the experiments is shown in Figure 2.2 (a).
Our UN architecture is a 3D network using 3D convolution layers and
3D max pooling layers. The network has two max pooling layers for
downsampling in the encoding part and two upsampling layers in the
decoder part. The number of convolutional kernels is doubled at each
convolutional layer before max pooling to avoid bottlenecks [55]. Batch
normalization layers (BNs) are inserted between the convolutional

layers and their activations.

The SN is a simple network shown in Figure 2.2 (b) that only consists of
convolutional layers. Unlike UN, there are no skip-connections or
downsampling/upsampling layers. The SN has the same number of

convolutional layers as the UN.

15
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Figure 2.2: Network architectures used in the experiments. The

blue boxes represent input, intermediate, and output 3D data with

the number of channels indicated above. The white boxes

represent concatenated data. (a) UN. (b) SN.
We used a patch-based method for detecting arteries with 3D CNNs, in
which each patch is cubic. This is because the entire 3D volumetric
images are too large to fit in the memory available in a GPU, which is
essential for training of the CNNs. Furthermore, arterial regions and
non-arterial regions are imbalanced in the entire volume and it is
easier to rectify this volumetric imbalance using a patch-based method
by extracting more patches that contain arteries from the training
images than patches that do not contain arteries. With a patch-based

method, an input volume is divided into 3D patches to be fed to the
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network and the output patches are stitched together to reconstruct a

full-sized output volume.

In our experiments, 3D patches were sampled using a sliding window
with no overlap between output patches. Therefore, the step size of the
sliding window is simplys,, where s, is the output patch size. In
addition to the patches sampled by the sliding window, patches that
contain the arterial center line were also sampled to mitigate the
volumetric imbalance. A 3D patch was sampled at every voxel of the
arterial center lines. Only patches sampled from renal ROIs were used

for the training.

To study the impact of patch size, where the patch size denotes the
edge length of each cubic patch, we repeated the experiment using four
different patch sizes with the other parameters fixed. In our
experiments, convolutional layers were applied without padding to
avoid introducing false signals in the perimeter of the input, therefore
convolutional layers reduce the output sizes. The minimum patch size
applicable in the network is determined by the number of
convolutional and pooling layers and it was 48 voxels in our
experiments. The maximum patch size is bound by the amount of GPU
memory and it was 96 voxels in our experimental environment, which
is described later. Therefore, patch sizes used in our experiments
ranged from 48 voxels to 96 voxels with a step size of 16, where the
step size was heuristically determined to be small enough to study the

impact of patch size.

In addition to the UN shown in Figure 2.2, shallower and deeper UNs

were tested to observe the impact of the depth of the network. While
17
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the UN has three levels of resolution, shallower and deeper UNs have
two and four levels of resolution respectively. In other words,
compared to the UN, shallower UN has one less pair of encoder and

decoder and deeper UN has one more pair of encoder and decoder.

Early stopping was used to dynamically determine the number of
training epochs. The validation set was extracted from the training set
to calculate the validation loss. The early stopping algorithm monitored
the validation loss and stopped the training process at the end of epoch
in which the validation loss started to increase. After the early stopping,
the best weight parameters (those that minimized the validation loss),

were used for the evaluation.

The other hyper-parameters used in the experiments are the
optimization method, which was Adam [56] with learning raten =
0.001 (default) and batch size, which was 32. Binary cross entropy,

which is defined as

Hypinary(0, q) = —plogq + (1 — p)log(1 — q), (2.1)

where p is the ground truth label (0 or 1) and q is the prediction, was
used as the loss function. The segmentation accuracies of the CNN
methods were evaluated using experiments with 3-fold cross-
validation. The training dataset was split at patient level so that the
patches of one patient did not become split over different sets. The
training and evaluation were conducted using a workstation with
single NVIDIA TITAN RTX with 24GB of GPU memory. Training one UN

took 461 minutes and training one SN 352 minutes on average.
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In addition to the two CNNs, the HM [32] was also evaluated to
compare the CNNs with a conventional method that does not require
training thus does not require a labeled dataset. The gaussian standard

deviation ¢ was adjusted for thin arteries in the HM to the values o =

1,v2, 2 voxels.

Instead of volumetric evaluation metrics such as the Dice similarity
coefficient [57] or Jaccard index [58], we chose metrics based on the

similarity of the center lines of arteries for the following two reasons.

1. Because blood vessels are small in volume, volumetric similarity
metrics are too sensitive to slight differences in the boundaries
between manual traces and automatically extracted vessel
regions.

2. When understanding vessel structure is the main purpose of
detection, center line-based metrics are more appropriate than

volumetric based metrics.

The output images of the methods were binarized by thresholding and
a binary thinning algorithm [59] was applied to obtain the center lines
of the extracted arteries. Likewise, the ground truth of the vessel center
lines was generated by applying a binary thinning algorithm to the

manually labeled vessels.

The area under the precision-recall curve [60] (AUPRC) was used to
evaluate recall and precision of the results. The precision and recall are

defined as

Precision =TP/(TP + FP)
Recall =TP/(TP + FN),
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where TP, FN and FP are defines as follows,

e The number of true positives (TP) is defined as the number of
extracted center line voxels that are within two voxels of the
center line of the ground truth.

e The number of false negatives (FN) is defined as the number of
ground truth voxels that do not have an extracted centerline
within a two-voxel proximity.

¢ The number of false positives (FP) is defined as the number of
extracted center line voxels that are not within two voxels of the

center line of the ground truth.

Although the arteries in the lung and spine ROIs were not used for the
training, they are treated as true arteries in the evaluation. The

Wilcoxon signed-rank test was used to calculate statistical significance.

Python 3.7 [61] and TensorFlow [62] were used to construct and train
neural networks. Three-dimensional thinning of segmentation results

[63] was implemented using Insight Toolkit [64].

2.4 Results

In this section, the results of the three methods for the three ROIs are
shown. Hereafter, the UN and SN may have their patch size indicated in

parentheses such as SN(64) and UN(80).
2.4.1 Evaluations for the renal ROI

Figure 2.3 shows box-and-whisker plots of the AUPRC comparing
results for different patch sizes. As shown in Figure 2.3 (a), the SN hit a
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plateau at a patch size of 64. There was no statistical significance
among the models with patch sizes of 64, 80, and 96, although larger

patch sizes only slightly increased average accuracy.

In the UNs, the model with a patch size of 80 had the best accuracy with
statistical significance (Figure 2.3 (b)). Unlike the results with the SN,
the model with the largest patch size 96 had significantly worse

accuracy than the model with a smaller patch size of 80.
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Figure 2.3: Box-and-whisker plots of the results for the renal ROI.
The mean and standard deviation of each method is indicated
below the method names. Statistical significances are indicated by
¥ (:p <0.01.) (a) SN results. (b) UN results. In (b), statistical
significance is only shown for a patch size of 80.
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Figure 2.4 compares the results of the three methods. For each of the

CNN methods, the patch size with the best result was chosen for the

comparison. As shown in Figure 2.4 (a), the UN yielded in the best

accuracy of the three methods.

In the precision-recall curve shown in Figure 2.4 (b), the UN obtained

better results for both recall and precision. Although the HM had much

lower precision, the best recall was better than those of the CNN-based

methods.
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Figure 2.4: Comparison of the three methods for the renal ROI. (a)
Box-and-whisker plot comparing the AUPRCs of the CNNs and HM.
The AUPRC values of the representative examples shown in
Figures 2.10 (a), 2.10 (b), 2.10 (c) are plotted as examples 1, 2, and
3. (b) Average Precision-Recall curves of the methods.
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Figure 2.5 shows a qualitative comparison of the methods for the renal
ROI results. The CNNs were able to enhance the arterial regions while
suppressing the non-arterial regions, such as kidneys and veins. No
major difference was observed the results of the between the results of
the UN and SN. However, the UN results tended to have better accuracy
for the thinner arteries as indicated by the red arrows. Some veins
were mistakenly enhanced in the CNN models (cyan arrows). HM
enhanced not only arteries but also veins (cyan arrow) and boundaries
of renal cortex and medulla (green arrow). Note that HM w/o bones
results in Figure 2.5 are shown with bone regions removed just before
the visualization and no bone removal was performed in the
quantitative evaluations. The HM w/o bones results are shown because
the false positive detection of the ridges of the bones hides the vessels

in the results and it is relatively easy to remove bones.

qw’\< J

Grond Truth

Input w/o bones

(a) Example 1.
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Input w/o bones Ground Truth

(b) Example 2.

7

I'JN(BO)[0.88]

Input w/o bones SN(96)[0.84]

(c) Example 3.

Figure 2.5: MIPs of the renal ROI in the coronal plane for the
Example 3 in Figure 2.3 (a). Original input image (Input w/o
bones), ground truth (Truth), and results of the three methods (SN,
UN, and HM w/o bones) are shown. Regarding the original input
and HM result, bone regions were removed just before the MIP
operation for better understanding of the results. Yellow lines
indicate the contour of the kidney. AUPRCs are shown in brackets.

2.4.2 Evaluations for the lung ROI
As shown in Figure 2.6 (a), the HM had the best score in the lung ROI.
As shown in Figure 2.6 (b), HM obtained better results both in recall

and precision. For the lung ROI, UN yielded the worst AUPRC, and its

recall score was much lower than that of other two methods.
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In this evaluation, the lung vessels were defined as targets for detection.
Therefore, detected lung vessels were counted as TP even though lung

vessels are not a renal artery or any of the abdominal arteries.
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Figure 2.6: Quantitative evaluation of lung ROI. (a) Box-and-
whisker plot comparing AUPRC of CNNs and HM. AUPRC values of
representative examples shown in Figures 2.10 (a), 2.10 (b), 2.10
(c) are plotted as examples 1, 2, and 3, and the numbers
correspond to the examples in Figures 2.10 (a), 2.10 (b), 2.10 (c).
(b) Average Precision-Recall curves of the methods.
Figure 2.7 shows the qualitative comparisons for the lung ROI results.
In accordance with the quantitative results, the UN removed most of
the lung vessels whereas the SN retained some of the vessels in the
results. As noted in the quantitative results, if lung vessels were not
targets for detection, the UN would have had the best results because

there was almost nothing to detect in the lung ROIs.
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Figure 2.7: Qualitative illustration of the results in the lung ROI.
Results are shown as slab MIP in the axial plane. Original input
image (Input), ground truth (Truth), and results of the three
methods (SN, UN, and HM) are shown. AUPRCs are shown in

brackets.

2.4.3 Evaluations for the spine ROI

As was the case with the evaluations for the lung ROIs, arteries in the
spine ROIls are considered targets for detection. A notable difference
between lung ROIs and spine ROIs is that the arteries (intercostal

arteries) are more similar to renal arteries.
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Figure 2.8 shows the quantitative comparisons for the spine ROI

results. For the spine ROIs, the SN and UN obtained equally good

results (Figure 2.8 (a)). The HM yielded low precision and there were

too many false-positive enhancements.
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Figure 2.8: Quantitative evaluation of the spine ROI results. (a)
Box-and-whisker plot comparing the AUPRC of the CNNs and HM.
The AUPRC values of representative examples shown in
Figures 2.10 (a), 2.10 (b), 2.10 (c) are plotted as examples 1, 2, and
3. (b) Average Precision-Recall curves of the methods.

Figure 2.9 (a) shows a quantitative comparison of the spine ROI results.

In this example, CNNs achieved good accuracy on the intercostal artery

with no false positive enhancement of the spinal bone. The HM had a

strong response at the edge of the spinal bone. This is because cortical
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bones have an intensity distribution similar to the distribution that the

HM is mathematically designed for.
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(a) Example 1.
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(c) Example 3.

Figure 2.9: Qualitative illustration of results for the spine ROI. The
ROIs are shown as slab MIPs in the axial plane. Original input
image (Input), ground truth (Truth), and results of the three
methods (SN, UN, and HM) are shown. AUPRCs are shown in
brackets.
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2.4.4 Overall image evaluations

Figure 2.10 shows a qualitative comparison of the results of the entire
image. The differences between the UN and the SN results are as

follows.

1. Inthelungregion, the SN enhances more vessels than the UN.

2. Thin vessels, such as the intercostal artery, are better enhanced

by the UN.

The HM has the best result for the lung vessels of the three methods,
although many artifacts originating from bones and other non-arterial
organs are included. The same bone removals as Figure 2.5 were
applied to the HM results in Figure 2.10 only for the visualization,
which has no effects on the any quantitative results. As shown in
Figure 2.10, the HM w/o bones results were good when artifacts due to
the bones were removed. However, abdominal arteries were not
selectively enhanced; instead, abdominal veins and lung vessels were

also enhanced.
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Figure 2.10: Qualitative illustration of entire images of Example 1
in Figures 2.4, 2.6, 2.8. Here, 3D volumetric images are reduced to
2D images using MIP in the coronal plane. For better visualization,
MIP image with bones masked out are also shown (Input w/o
bones and HM w/o bones). Note that the bones were only masked
for the visualization; the original images were used as the input for
each method.

2.4.5 U-Net depth

Figure 2.11 shows the results of three UNs (UN (default setting),
shallower UN, and deeper UN) in the renal ROI. Note that we were able
to run deeper UN only with the patch size 96 because deeper UN has
too many convolution and max pooling layers for smaller patch sizes.
As shown in Figure 2.11, the UN (default setting) was better than
shallower and deeper UNs in all patch sizes and both shallower UN and

the UN (default setting) had the peak accuracy with patch size 80.
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Figure 2.11: Average AUPRC of UN variants with different depths

and patch sizes.

2.4.6 Worst cases

Although main goal of this study is to compare various methods, worst
cases for UN(80) are listed in Figure 2.12 to investigate how to improve
the segmentation accuracy in the future In Figure 2.12, the same
visualization methods as Figure 2.5 were applied to the cases. In
addition to the UN(80) results, post-processed images of UN(80)
results are also shown to emphasize the differences between the
ground truth and the results. The |GT - UN| results indicate false
negative arteries missing in the UN(80) results while the |UN -GT|

results indicate false positive arteries.
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UN(80)[0.82]
(c) The third worst case.

Figure 2.12: The worst cases for UN(80). Red arrows indicate
notable false negative arteries.

2.4.7 Best cases
The best cases for UN(80) are shown in Figure 2.13 to visualize the
differences between easy cases and hard cases. Compared to the hard
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cases shown in Figure 2.12, the easy cases shown in Figure 2.13 tend to
have less thin arteries. Although there are some thin arteries, most of

them have relatively simple structure with simple surrounding tissues.

ﬁ |

Input w/o bones Ground Truth

JUN - GT|

(a) The best case.

UN(80)[0.92]

Input w/o bones Ground Truth

(b) The second best case.

Ground Truth UN(80)[0.91]

IGT-UN| JUN-GT|

Input w/o bones

(c) The third best case.

Figure 2.13: The best cases for UN(80). The same visualization
methods as Figure 2.5 were used. Red arrows indicate notable

false negative arteries.
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2.5 Discussion and conclusion
2.5.1 Discussion

In this study, we experimentally investigated the impact of patch size
and network architecture on vessel detection and discrimination
accuracy in 3D CT data. Two patch-based 3D CNNs, that is, a U-Net-like
architecture and a sequential architecture, were investigated. In

addition to the CNNs, a conventional HM was also tested.

The characteristics of the two CNNs and HM are summarized below.
First, the UN had the characteristics of high selectivity when extracting
particular vessels such as abdominal and intercostal arteries, which
have similar features to the renal arteries in the training data.
Therefore, the UN showed the best results on abdominal artery
extraction when trained on renal artery data, and it will be suitable for
the selective extraction of vessels similar to those of the training data.
The patch size was needed to be fine-tuned in UN. Second, the SN had
similar characteristics to that of the UN, but its selectivity to particular
vessels was less strong. The patch size needed to be tuned, but its
impact on accuracy was less sensitive than in the UN. Third, HM
produced many false positives in renal and spine ROIs, but it should be
noted that HM showed the best performance in lung ROI and recall (the
true positive rate) was better than or equivalent to the CNN methods in
all three ROIs in our experiments. The advantages of the HM are that it
does not require training data and it responds to vessels generally
(while producing false positives), therefore it will be still useful as a

general-purpose method when training dataset is not available.
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As shown in Figure 2.3, the patch size had a significant influence on the
detection accuracy of patch-based 3D CNNs. The optimal patch size
depended on the CNN architecture. Therefore, it is necessary to adjust

the patch size to achieve better accuracy in vascular detection.

The UN and SN had different responses to the input patch size. The UN
was sensitive to patch size because it had a peak accuracy at a patch
size of 80 whereas the SN was less sensitive to patch size with a plateau
in accuracy. In previous papers, most studies [49]-[51] used a fixed
patch size in a patch-based CNN, and the impact of patch size has not
been investigated in detail. Among them, some papers [47], [53], [65],
[66] have addressed the impact of patch size. Two of them [65], [66]
showed that large patch sizes always improved accuracy. In these
papers, however, the patch was not 3D, instead patch-based 2D or 2.5D
CNNs were used. Yang et al. [53] addressed a 3D CNN and showed
partly similar results to those of our work. However, the work
addressed catheter detection from 3D ultrasound data. The catheters
had a fixed width, and the impacts of patch size were not analyzed in
detail. In contrast, our study presents detailed experimental results on
the impact of the patch size in 3D, including the different
characteristics of different CNN architectures. Patel et al. [47] reported
that using large patch sizes increased the accuracy of cerebrovascular
segmentation using 3D CNN with a multi-resolution strategy. However,
they were not able to show optimal patch size with a peak or plateau in

accuracy due to the hardware restriction.

As shown in Figure 2.4, network architecture significantly changes the

detection accuracy. Although the UN had the best results for the renal
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ROI, other methods had better or equivalent result in other regions.
Because the SN had a better generalization ability, it can be used when
only limited training data are available but generally applicable vessel
extraction is needed. The HM responds to any vessels, but the

responses largely depend on image contrast.

Although there are numerous new network architectures designed for
semantic segmentation in medical images [67]-[71], in this study, we
focused on two of the most fundamental network architectures. We
believe it is still valuable to test these two architectures because testing
fundamental architectures gives us insights to design or assess new
architectures, which are typically derived from these fundamental
architectures. Future work will include a further comparative study for

these recent architectures.

As shown in Figure 2.11, deeper UN performed significantly worse
compared to other two UNs in our experiments. Before conducting the
experiments, we expected deeper UN performs better because deeper
networks are able to capture larger context, which usually helps to
distinguish objects. One potential explanation why deeper UN failed is
that it is harder to train deeper UN because deeper UN has more layers
and more trainable weight parameters. Another potential reason is that
large context is not always as important as local appearance when it
comes to recognizing arteries, which typically have elongated structure
but are small in diameter. As shown in the result, the depth has more
impact than the patch size in the accuracy. Therefore, in

hyperparameter tuning, we recommend tuning the depth first and then
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tuning other hyper parameters such as patch size for the U-Net like

architectures.

Figure 2.12 shows the worst cases for UN(80) results. As indicated by
the red arrows in Figure 2.12, some thin arteries were missing in
UN(80) results. Although thin arteries are small in volume, missing
them can be critical considering their clinical importance. One obvious
approach to mitigate this problem is to increase the number of cases in
the training dataset. However, this approach is costly because
annotating thin vessels are labor-intensive and time-consuming.
Another possible approach is to use synthetic dataset to pre-train the
models [72]. This approach is much less costly compared to the first
one. Using network architectures specialized for vessel segmentation

[73] also should be considered.

Because of the limited amount of GPU memory available in our
experimental environment, we were not able to conduct experiments
with patch sizes larger than 96 voxels. However, as shown in the
results, we expect larger patch sizes will result in similar or worse
accuracy compared with the accuracies achieved by the best patch

sizes in the experiments.

More recently, new methods using deep learning have been proposed
for vessel segmentation. Contributions of newly proposed methods can
be divided into the following two categories: network architecture and
loss function. The methods proposing new network architectures [47],
[70] and new loss functions [44], [46] both take advantage of the
properties of the vessels. Objective comparison of these new methods

is in the future work.
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2.5.2 Conclusions and future work

The results of this study show that it is necessary to adjust the patch
size to achieve better accuracy in vascular detection in 3D data,
especially when the patch-based 3D UN was used. Although we cannot
determine a conclusive procedure about the hyperparameter tuning,
we recommend tuning the depth of the network first and then tuning
patch size because the depth had larger impact on accuracy and the
depth tuning seems more insensitive to the patch size variation.
Regarding comparison among different methods, UN obtained the best
result in the experiments when the task was to selectively extract
specific vessels whose features were particularly matched to those of
training data. However, the other methods (SN and HM) will be more

suitable when the task is to extract vessels more generally.

In this study, we performed experiments on abdominal arteries. Future
work will include applications to arteries in other domains and veins,
which may have different properties and characteristics such as

thickness and curvature.
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3 Diffuse Lung Abnormality

Patterns Segmentation

3.1 Overview

Computer-aided diagnosis methods that provide semantic
segmentation of texture patterns of diffuse lung diseases (DLDs) on
chest CT are extremely useful for detecting, identifying, and quantifying
lung pathologies. While a fully annotated dataset is desired to build a
semantic segmentation model, building such a dataset for DLDs is
costly due to the requirements of manual segmentation and certified
experts for annotation. Partially supervised learning (PSL) was recently
proposed to take advantage of the partially annotated dataset and
reduce the full annotation burden. Creating a partially annotated
dataset is much inexpensive than creating a fully annotated dataset;
therefore, PSL has great potential to build a semantic segmentation

model that only requires a feasible amount of annotation.

In this study, a loss function that uses both annotated and unannotated
pixels of the partially annotated dataset is proposed as a method of PSL.
The proposed loss function is based on the cross-entropy loss and it
uses unannotated pixels to penalize the leakage of the segmentation. A

parameter that controls the balance between the two types of

40



Diffuse Lung Abnormality Patterns Segmentation

supervision is introduced to the loss function to enable tuning and
studying the proposed PSL. Experiments using chest CT images of 372
patients were used to investigate the effectiveness and characteristics
of PSL for the segmentation of DLDs (consolidation, ground grass

opacity, honeycombing, emphysema, and normal).

The experimental results show that the proposed PSL improved the
mean Dice score from 0.76 to 0.79 and that a higher value of the
balancing parameter increased the precision of the segmentation.
Using the proposed PSL, which takes full advantage of the partially
annotated dataset, we improved the accuracy of DLD segmentation.
Furthermore, the experimental results clarified that the proposed PSL
improved the precision of the models using unannotated pixels. Our
implementation of the proposed PSL is available at

https://github.com/yk-szk/psl-dld.

3.2 Introduction

Diffuse lung abnormality patterns are texture pattern of DLDs seen in
medical images such as chest X-rays and CT. Accurately identifying the
textual patterns of DLDs is a challenging task even for experienced
radiologists [18], [74], and quantifying the volume and distribution of
DLDs in a chest CT image is time-consuming because DLDs typically
spread over a large area and numerous slices in the lung. Therefore,
developing computer-aided diagnosis (CAD) system capable of
promptly and objectively assessing the lung with DLDs is of great value.

CAD tools for DLDs have been developed for many tasks including
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classifying CT slices [75], classifying image patches [76], [77], semantic

segmentation at pixel level [78] and prognostic prediction [79].

While machine learning is required for the development of a CAD
system, it frequently necessitates the use of annotated datasets, which
are not always readily available. Fully convolutional networks[43], [54]
(FCNs) are commonly used for semantic segmentation tasks, and FCN
models are trained using a fully annotated dataset, in which every pixel
of the images in the dataset is annotated. Creating a fully annotated
dataset for semantic segmentation is expensive because manual
segmentation of images is time-consuming. It is more expensive to
create a dataset for DLDs since it requires qualified professionals (e.g.,
radiologists) and it is difficult to distinguish between different DLD
texture patterns with normal and unusual appearances. Therefore,
creating a large-scale fully annotated dataset for DLDs is almost

impossible.

In most cases, there is a trade-off between accuracy and the amount of
annotated dataset used training for machine learning. Unsupervised
learning is on one end of the trade-off because it does not require an
annotated dataset. However, its accuracy is not as good as supervised
methods because no supervision is provided during the training [80].
Fully supervised learning, on the other hand, is on the opposite end of
the trade-off with the best performance of all learning methods.
However, it requires a fully annotated dataset. Therefore, learning
methods with adequate performance and minimum amount of
annotation are sought to build a practical CAD system for DLDs. PSL

[81] has recently been proposed to take advantage of a partially
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annotated dataset. PSL is a promising technique for DLD segmentation
because it only requires partial annotation while supervising effective

training. Therefore, we focus on this learning technique in this study.

Other than PSL, several strategies have been developed to reduce the
need for annotated dataset [82]. Unannotated data approaches like
entropy minimization [83] and consistency training are used in semi-
supervised learning [84]. Weakly supervised learning [85] allows
semantic segmentation to be performed using weak annotation, such as
image-level annotation[86], [87]. Transfer learning, also known as fine-
tuning[89] is a strategy for a pre-training a model with a large-scale
dataset to achieve a well-generalized model even with a limited target
dataset [90], [91] for the application’s domain. PSL and these
approaches are not mutually exclusive and can be used together when

appropriate.

PSL has been effectively used to various applications, including
abdominal organ segmentation [92]-[94] and brain tissue
segmentation[81], [95]-[97]. More recently, PSL begins to be applied to
segmentation of tumors and other disease regions, which are more
complicated than organ regions [98], [99]. However, no application for
DLDs has been reported yet. Applying PSL to DLDs can be more
effective than applying it to regular anatomical structures like organs
and the brain because of the differences in characteristics between
DLDs and regular anatomical structures. First, DLDs can appear
anywhere in the lung, making it harder to split input images into the
regions of interest (ROIs) and apply the specific models to each ROI.

Second, a typical DLDs patient only has a couple of DLDs, unlike organ
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or tissue segmentation tasks, where a patient has a complete set of
organs without missing ones. This makes it harder to construct an
ensemble model composed of partial models using subsets of the
dataset because each model cannot learn DLD classes absent in the

subsets.

Our contribution is two-fold. 1) Proposing a method of PSL that uses
both annotated and unannotated pixels and applying it to DLDs to
show the applicability of PSL. 2) Studying the characteristics of the
proposed method by introducing a parameter that controls the balance
of the supervision. We previously presented early results before [36],
however in this study, we report additional evaluation results using
samples of fully annotated images as well as tests with wider range of

the balancing parameter.

The DLD patterns, including the healthy lung considered in this study,
are consolidation (CON), ground-glass opacity (GGO), honeycombing
(HCM), emphysema (EMP), and normal (NOR). Throughout this study,
each DLD pattern is represented or superposed in the following colors
(CON: cyan, GGO: yellow, HCM: red, EMP: green, NOR: brown.) The
remainder of this study is organized as follows. In the materials and
methods section, partially annotated datasets and PSL are explained.
The results of the experiments involving chest CT images of 372
patients are shown in the results section. The discussion section
discusses the advantages and characteristics of the proposed method

found in the experiments.
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3.3 Materials and Methods
3.3.1 Materials

The dataset used in this study consisted of chest CT images with a
matrix size of 512 x 512 taken in Yamaguchi University Hospital, Japan.
CT images of 372 patients were collected. The pixel size mean and the
standard deviation were 0.684 mm and 0.0517 mm, respectively, and
slice thickness was 1 mm. In the experiments, no pixel size equalization
was performed because the deviation in the pixel sizes was negligibly

small.

Only one or a subset of the potential classes for an image are annotated
in a partially annotated dataset. Figure 3.1 shows a comparison
between full annotation and partial annotation. Figure 3.1 (a) shows a
fully annotated image, in which every pixel in the lung is labeled with
one of the possible classes L,sitive = {CON,GGO,HCM,EMP, NOR}.
Figure 3.1 (b) and (c) show partial annotation and annotated pixels of
an image, in which just one class (CON) was chosen for the image and
annotated while other regions with other classes (GGO or NOR) were
left unannotated. In Figure 3.1 (b), the delineated region indicates the
CON region, which derived annotated pixels shown in Figure 3.1 (c).
Partial annotation is easier and takes less time than full annotation,
because with partial annotation, annotators can focus only on one label,
and the area required for annotation is much smaller. Figure 3.1 (d)
shows an unannotated region of a partially annotated image. In this
image, regions that are not CON are left unannotated, and therefore

virtually annotated as -CON = {GGO, HCM, EMP, NOR} region. Note that
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the fully annotated image shown in Figure 3.1 (a) is created only for
illustration and a fully annotated image like this is not available for the
training in this study. Although annotation can be a subset of possible

classes, we only annotated one class per image in this study.

(b) Partial annotation

J.

“

p

\

(c) Annotated pixels (d) Unannotated pixels

y

Figure 3.1: Comparison between fully and partially annotated
images. (a) Full annotation with consolidation (CON), ground-glass
opacity (GGO) and normal (NOR) regions are annotated in the lung.
(b) Partial annotation with only the CON region is annotated
(shown in cyan). (c) Annotated pixels (shown in cyan) derived
from (b). (d) Unannotated pixels (shown in magenta), which were
implicitly annotated as ="CON in (b).

Our partially annotated dataset was created in the following steps. First,
up to three slices and representing DLD texture pattern for each slice
were chosen for the annotation for each CT scan by a board-certified
radiologist. Second, three board-certified radiologists performed a
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partial annotation of the chosen DLD for every image. Finally, pixels
annotated by two or more radiologists were designated as annotated
pixels, whereas pixels that were annotated by less than two
radiologists were left as unannotated. Note that three radiologists
performed annotations to avoid creating a biased dataset. In this study,
unannotated pixels are considered annotated as one of the following
labels Lyegqtive = {7CON,=GGO, ~HCM,-EMP,-NOR}. In addition to
the DLD annotation, lung fields were manually segmented under the
supervision of radiologists and training and evaluation were conducted
specifically within the lung fields. Figure 3.2 shows examples of

partially annotated images for each class of DLDs. Table 3.1 shows the

statistics of the partially annotated dataset used in the experiments.

N\

(b) GGO

2 T

(d) EMP (e) NOR

4

Figure 3.2: Typical slices of each diffuse lung disease (DLD) class.
Annotated labels are superposed in transparent colors.
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Table 3.1: Dataset statistics. Note that the total number of cases in
the table is more than the number of cases because multiple slices
with different DLDs were extracted from a patient. The number of
unannotated pixels of each class is the number of pixels of its
corresponding negative labels. For example, the number
unannotated pixels for CON is the number of “CON pixels)

CON GGO HCM EMP NOR Total

Cases 56 112 51 131 55 405
Slices 150 114 129 163 55 611

Annotated (positive)

658 1,676 1,345 4,134 2,552 10,365
pixels (x 103%)
Unannotated (negative)

3,878 2,648 2,405 2,710 117 11,759
pixels (x 103)

3.3.2 Methods

The foundational idea of the proposed PSL is to use unannotated pixels
to supervise the model loosely. For example, in Figure 3.1 (d), the
unannotated region can supervise the model not to output the CON
label for the region. This offers the proposed PSL an advantage over
training methods that only use annotated pixels. Although unannotated
pixels are less informative than annotated pixels, using unannotated
pixels approximately doubles the number of pixels involved in the
training, as shown in Table 3.1. Note that the total number of cases
(405) in Table 3.1 is more than the number of patients (372) because
multiple slices of a patient can be chosen for different types of DLD

annotation. Figure 3.3 shows an overview of the proposed PSL. As
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shown in Figure 3.3, two types of supervision, which use annotated and

unannotated pixels, respectively, are applied to the model.

Training Input Training Output Derived pixels Partially annotated
7. 4 ‘ CON pixels data

vem~ - Y _— 8% o - vem~
e P . . ‘ﬁy o CON pixels e 5 “ CON slice
\ $4 / = ¥ T {a --------------- \ o
\ \
. ~ S . 0] Y
i =i ol el TP i
r@ % — N ﬁ ‘“’ r AR : % GGO slice

o N * = .

) /\ ’ NORplxels )
_— ‘ ‘ .................. |
superv151on 6 @ﬂNOR plxels_ -------- NOR slice
Figure 3.3: Overview of the training process of the proposed

partially supervised learning.

Using unannotated pixels is realized by the loss function defined as

(1 - 2') * H(e(l)' 5\’)' le Lpositive

L) = 1 (3.1)
A ¥ ——— l € Lyeoativ
H(e(D),9) aative

Hp,q) = = ) p (log(a(x)),

where [, §, and H(p, q) denote the ground-truth label, SoftMax output
of the model, and cross-entropy for discrete probability distribution p
and q, respectively. e(l) is one-hot encoding function that works
regularly for [ € Lyositive (€8, €(lcon) =1[1,0,0,0,0]) while for [ €
Lnegative, it works so that unannotated pixels get encoded in the same
way as the corresponding annotated pixels (e.g., e(lcon) = eI con))-

This loss function is based on cross-entropy loss, and works regularly
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for annotated pixels, whereas it penalizes unannotated pixels for
getting predicted as corresponding annotated labels. A is a balancing
parameter which modifies the balance of the supervision used for the
loss of unannotated pixels. The proposed method with the parameter A

= 0 is equivalent of the training method that only uses annotated pixels.

PSL can be used with any segmentation model and is not dependent on
any network architecture. In this study, we used a slab U-Net shown in
Figure 3.4 to take advantage of three-dimensional information of DLDs.
The slab U-Net is a hybrid of 2D and 3D U-Nets[54], [55]. The input of
the network is a 3D slab around an annotated slice with the shape of 6
x 512 x 512 x 1 and the output shape is 1 x 512 x 512 x 5, where
elements represent the sizes along the z, y, x, and channel axis. In this
study, x, y and z axes represent frontal, sagittal and longitudinal axes
respectively. Shallower layers of the network consisted of 3D
operations such as 3D convolution and 3D max pooling with no
padding applied for z-axis, which reduces the data size along z-axis.
Operations were switched to 2D ones after the data size along z-axis

was reduced to one.
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2x2 UpSampling
16x16 =) Concatenation

Figure 3.4: The slab U-Net. The red and blue boxes represent

5

three-dimensional and two-dimensional data respectively. The
number of channels is indicated by the numbers above the boxes
and the parenthesized numbers above red boxes indicate the sizes
along z-axis. The white boxes represent concatenated data. At each
level of the network, image resolution is indicated on the left side.

3.4 Results

For training and evaluation, a five-fold stratified cross-validation was
used. The stratified splitting strategy was adopted to avoid skewed
results due to the dataset’s uneven split and splitting was patient based
to avoid data leakage. Each training subset had a validation subset to
determine the number of epochs using early stopping. As data
augmentation, geometric transformations (random flip around y-axis,
random rotation around z-axis from -15 to 15 degrees, and random
rescaling from 90% to 110%) are applied randomly to the input images
on the fly during the training. These geometric transformations were

applied primarily to increase the variation of body sizes and
51



Diffuse Lung Abnormality Patterns Segmentation

orientations in the training dataset but also to help the network to
learn more robust feature extractors [100]. Model network weights
were optimized using Adam [56] optimizer with default parameters,
and losses were computed using Equation 3.1. Our model was built
with TensorFlow, and the loss function and network implementation
may be seen at https://github.com/yk-szk/psl-dld. As evaluation
metrics, Dice similarity score, precision, and recall are calculated for
each slice. Dice similarity score (or Dice similarity coefficient) given by
_2|XnY]|

X+ Y]

2TP

~2TP+ FP + FN
_ 2Precision = Recall

DSC

(3.2)

"~ Precision + Recall’

where |X| and |Y| are the areas of the region X and Y and TP, FP, and
FN denote the number of true positives, false positives, and false
negatives respectively, is a metric for measuring the amount of
overlaps between two regions and also known as F1 score. The training
and evaluation were performed on an NVIDIA RTX 3090 with 24 GB of

graphics processing unit memory.
3.4.1 Evaluation on partial annotation

Figure 3.5 shows line plots of evaluation metrics (Dice score, precision,
and recall) for the A values ranging from 0 to 1 with step size of 0.1. The
mean Dice score and recall for A = 1 were very low (0.079 and 0.088
respectively) and plot points for these were trimmed off for the better
visualization in Figure 3.5 (b). The segmentation accuracy for A = 1 was

very low because the models were not trained for typical texture
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patterns at all. The distributions of the metrics can be seen in the box-
whisker plots in Figure 3.6, in which, only A = {0, .1, .6, .9} were shown
for concise visualization. The Wilcoxon signed-rank test was used to
test the statistical significances between A = 0 and the other values. As
shown in Figure 3.5, the proposed method with A between 0 and 1
outperformed the results with A = 0. Larger A increases precision while
decreasing recall. This is because larger A penalizes an unannotated
region for being segmented as annotated label. The parameter of A =
0.6 balanced precision and recall well and achieved the best Dice score

in our experiments.

1.0
0.8 ° —o——0 ° ° ° [ ® ] ‘
0.6
0.4

—e— Dice
0.2 precision

-m recall
0.0

0.0 0.2 0.4 0.6 0.8 1.0

A

(a) Line plots.
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(b) Line plots focusing on A = {0, 0.1, ..., 0.9}.
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Figure 3.5: Line plots of Dice score, precision and recall

54



Diffuse Lung Abnormality Patterns Segmentation

1.0

0.8

0.6

0.4

0.2

0.0

** **

+
S
¢

Dice Precision

**

A
B 00
s 0.1
B 0.6
Bl 0.9
i
+
¢ ¢ $
T
N ¢
¢
Recall

Figure 3.6: Box-whisker plots for parameter comparison.
Statistical significances are indicated by ** (:p < 0.01).

The results of each DLD are shown in Figure 3.7 and Table 3.2,

comparing the proposed method with A = 0 and A = 0.6. As shown in

Figure 3.7, statistically significant improvement was observed with

CON, GGO, HCM, and EMP. There was a statistically significant decrease

in the Dice score with NOR, but the difference is smaller compared to

other improvements, as shown in Table 3.2. The Dice score with NOR

was reduced as not much room was left to improve the precision with

NOR in the first place, while other DLDs improved their precision.
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Figure 3.7: Comparison between A = 0 and A = 0.6 for each DLD.

Statistical significances are indicated by * (:p < 0.05) and ** (:p <

0.01).

Table 3.2: Dice scores for each class.

CON
mean
(std)
0.82
A=0
(0.09)
0.82
A=0.6
(0.09)
median
A=0 0.83
A=0.6 0.83

EMP

0.74
(0.19)

0.81
(0.14)

0.82
0.85

GGO

0.64
(0.19)

0.67
(0.17)

0.64

0.67

56

HCM

0.73
(0.16)

0.75
(0.15)

0.76

0.79

NOR

0.97
(0.02)

0.95
(0.06)

0.98

0.97

All

0.76
(0.18)

0.79
(0.15)

0.80

0.83
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Figure 3.8 shows confusion matrices of the results. Note that these
confusion matrices were constructed using only annotated pixels
because exact classes for unannotated pixels were unknown. Rows of
the matrices were normalized; thus, diagonal elements of the matrix
represent recall. Figure 3.8 (a) and (b) show similar patterns of
misclassification. As diagonal elements of Figure 3.8 (a) and (b) show,
the recall of the results with A = 0.6 was lower than that of the results
with A = 0, which is also shown in Figure 3.7 and Table 3.2. Therefore,

more analysis was conducted as follows.
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Predicted label Predicted label
(@)L=0 (b)r= 0.6

Figure 3.8: Confusion matrix constructed using only annotated

pixels. Row-wise normalizations are applied.
Figure 3.9 shows the typical segmentation results of each DLD. The
differences in the Dice scores between the results of A = 0 and A = 0.6
were used to choose the typical slices. The slice with the median
difference in Dice score was chosen as a typical slice for each DLD. As
shown in Figure 3.9, the area of representative DLDs (especially GGO
and EMP) was smaller in A = 0.6 than A = 0 and fewer pixels of
representative DLDs were leaked over the non-representative DLD

region, which was reflected as improvements in precision.
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Input Ground truth
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0.65, 0.48, 0.99 0.65, 0.49, 1.0 0.67,0.51, 0.99

(a) Consolidation (CON).

Input Ground truth

(2K 2)

0.78, 0.64, 1.0 0.81, 0.68, 1.0 0.83,0.73,0.95

(b) Ground glass opacity (GGO).
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Ground truth

0.89,0.8, 1.0 0.91,0.84, 1.0 0.91, 0.86, 0.97
(c) Honeycombing (HCM).

Input Ground truth

V

"V

0.68, 0.52, 0.98 0.72,0.57,0.96 0.77,0.64, 0.97

(d) Emphysema (EMP).
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0.98, 0.96, 1.0 0.97,0.96, 0.97 0.94,0.96, 0.93

(e) Normal (NOR).

Figure 3.9: Examples of average segmentation results. The
numbers below images indicate Dice score, precision, and recall
respectively.
Figure 3.10 shows the best segmentation results of each DLD with A =
0.6. Segmentation results with A = 0 and A = 0.9 are shown for
references. In these best results, representative DLD patterns covered
most of the lung fields. Results with A = 0.9 tends to have small islands

of non-representative DLDs.
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Input Ground truth

KK K

0.97,0.95,0.98 0.97,0.96, 0.98 0.97, 0.96, 0.97

(a) Consolidation (CON).

Input Ground truth

(2)(#)

0.93,0.88, 1.0 0.94,0.91, 0.97 0.93,0.93,0.93

(b) Ground glass opacity (GGO).
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Input Ground truth

A=0 A=.6 A=9

0.97,0.94,1.0 0.97,0.94,1.0 0.94,0.94,0.95

(c) Honeycombing (HCM).

Input Ground truth
‘. "
A=0 A=.6 =9

~ N N ~

0.97,0.95, 1.0 0.98,0.95,1.0 0.98,0.97,0.99

(d) Emphysema (EMP).
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Input Ground truth
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A d

0.99,0.97,1.0 0.98,0.97,1.0 0.99, 0.98, 0.99

(e) Normal (NOR).

Figure 3.10: Examples of best segmentation results with A = 0.6.

The numbers below images indicate Dice score, precision, and

recall respectively.
Figure 3.11 shows the worst segmentation results of each DLD with A =
0.6. Segmentation results with A = 0 and A = 0.9 are shown for
references. In these worst results, representative DLD patterns did not
occupy big space in the lung fields. In Figure 3.11 (b), most of the GGO
pixels were falsely segmented as HCM. Results with A = 0.9 tends to
have less false NOR pixels.
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S

0.58,0.41, 0.97 0.66,0.5,0.96
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0.65, 0.48, 0.99

(a) Consolidation (CON).

Ground truth

0.19, 0.22,0.17 0.22,0.24,0.2 0.35,0.36,0.33

(b) Ground glass opacity (GGO).

64



Diffuse Lung Abnormality Patterns Segmentation

Input Ground truth

0.27,0.16, 1.0 0.32,0.19,1.0 0.42,0.27,0.98

(c) Honeycombing (HCM).
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(d) Emphysema (EMP).

65



Diffuse Lung Abnormality Patterns Segmentation

Input Ground truth

16)

4

0.84,0.93,0.76 0.61,0.9,0.46 0.68,0.9,0.55

(e) Normal (NOR).

Figure 3.11: Examples of worst segmentation results with A = 0.6.

The numbers below images indicate Dice score, precision, and

recall respectively.
Figure 3.12 shows the differences per slice in Dice score between the
results with A = 0 and other parameters. As shown in Figure 3.12, for
GGO, HCM, and EMP, the proposed method with A = .6 improved the
segmentation accuracy for the most cases while for CON and NOR, the
proposed method with A = .6 worsen the accuracy for the most cases.
Overall accuracy was improved because the differences of CON and

NOR in the plots were smaller than those of GGO, HCM, and EMP.
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Figure 3.12: Box-and-whisker plots of the differences per slice in
Dice score between the results with A = 0 and other parameters.

3.4.2 Evaluation on samples of full annotation

In addition to the evaluation only using annotated pixels, we conducted
additional evaluation using fully annotated images. For this evaluation,
five slices were randomly chosen from each DLD and all pixels in the
lung fields in the chosen slices were manually annotated. Figure 3.13
shows the confusion matrices for the segmentation results with A = 0
and A = 0.6. Unlike confusion matrices shown in Figure 3.8, these
matrices were constructed using all pixels in the lung fields. As shown
in the bottom row of Figure 3.13 (a), a significant number of =“NOR
pixels were falsely labeled as NOR with A = 0, whereas in Figure 3.13
(b), there were much less false NOR pixels with A = 0.6. As can be seen
in the unannotated regions in Figures 3.2 and 3.9, most of the
unannotated pixels consisted of NOR pixels, therefore, models trained
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True label

with A = 0.6 was able to reduce the number of false NOR pixels.

Table 3.3 shows the mean Dice scores. As shown in the table, A = 0.6

was also optimal in this evaluation. Figure 3.14 shows line plots of

evaluation metrics (Dice score, precision, and recall). The curves in

Figure 3.14 are similar to the curves for the evaluation with partial

annotation in Figure 3.5 with some fluctuation caused by the small

number of samples (five per DLD) of fully annotated images.
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Figure 3.13: Confusion matrices calculated using fully annotated

images. Note that matrices are normalized so that the sum of the

elements in a matrix become 100.

Table 3.3: Mean Dice scores on fully annotated images.

A Dice precision recall

0 0.726
0.1 0.801
0.2 0.791
0.3 0.819

0.868
0.879
0.879
0.886
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(b) Line plots focusing on A = {0, 0.1, ..., 0.9}.

Figure 3.14: Line plots of Dice score, precision and recall
calculated using fully annotated images.

3.5 Discussion

We developed a PSL approach and tested it on a partially annotated
DLD dataset. The proposed method improved mean Dice score from
0.76 to 0.79 and from 0.73 to 0.82 in the evaluation using partially
annotated dataset and fully annotated dataset respectively. These
improvements were thanks to the improvements in precision as seen
in Figure 3.5 and achieved with no extra cost for annotation. This
means that training semantic segmentation models using the proposed
method can improve accuracy over the training methods that only used
annotated pixels. Because PSL only requires partial annotation, it is
easier to use active learning technique [101] to construct or update

dataset. Low precision shown in Figures 3.6 and 3.9 was likely due to
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the lack of full annotation available in the training dataset and needs to

be addressed in the future work.

We used partially annotated dataset in which only one class was
annotated for an image in this study. This setting was chosen to test the
proposed method in the hardest configuration. Moreover, it is common
for publicly available datasets to have only one-class annotation and
this study’s dataset is similar to a dataset that is created by combining
such datasets. However, if the goal is to develop a multi-class
segmentation model, preparing dataset with at least a couple of fully

annotated images is more reasonable for achieving high accuracy.

We conducted experiments with various values of balancing parameter
A. As shown in Figure 3.5, the supervision using unannotated pixels
helps models to improve its precision. More specifically, the proposed
method with optimal parameter significantly reduced the number of
falsely labeled NOR pixels as shown in Figure 3.13. This was because
most of the unannotated (negative) pixels were actually NOR pixels and
training using these unannotated pixels helped the model to
distinguish NOR and non-NOR pixels. In our experiment, A = 0.6 was
optimal regarding the Dice score but the parameter can be tuned based
on the preference between precision and recall. To our best knowledge,
while introduction of the balancing parameter to PSL was firstly
introduced by our study [36], Shi et al. [98] also performed similar
study that changed the balance of two terms in their loss function for
multi-organ segmentation. In their experimental results, they had
similar curve to ours with peak accuracy at the optimal parameter of

0.67, which was similar to our optimal parameter (A = 0.6).
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In our experiments, the parameter value A = 1 did not work at all with
almost zero Dice score. This is because of the property of our partially
annotated dataset. Because annotations were performed for
representative (or dominant) DLDs, DLD texture patterns with typical
texture patterns and appearances were annotated. With A = 1,
annotated pixels, which have typical texture, were not used at all for
the training, therefore models were not able to learn typical texture of

DLDs and failed to segment most of the typical DLDs.

As shown in Figure 3.12, the proposed method worsened the
segmentation accuracies for some cases. This is likely because of
annotation errors in the dataset. Even though the annotation was
performed carefully with multiple annotators, the annotation was still
imperfect and the dataset contains some negative pixels that were
actually positive pixels (i.e. some pixels of representative DLD were
erroneously left unannotated). Two possible reasons below could
explain why some cases had worse results with the proposed method.
1) Results were not accurately evaluated because of the erroneous
evaluation dataset. 2) Using erroneous negative pixels for the training
provides erroneous supervision to the models. Testing the second
hypothesis is in the future work and it can be tested by artificially

introducing errors in the annotation of the training dataset.

There are other possible approaches to realize multiclass segmentation
using a partially annotated dataset. One approach is an ensemble
model that combines multiple binary or subset classifier models using
subsets of the dataset for the training of each sub-model. This approach,

however, is expected to have less generalization ability than the
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proposed PSL. Another possible approach is multi-task learning [102]
that uses subsets of the dataset as different tasks and trains one model
with multiple output layers. Comparing our method with other possible

approaches [81], [82] is included in our future work.

We used the reciprocal of cross-entropy for the training using negative
pixels. Figure 3.15 (a) shows the regular binary cross entropy (BCE)
loss for positive pixels (y=1) and Figure 3.15 (b) shows the reciprocal
of the binary cross entropy loss, which was applied for the negative
pixels. As shown in Figure 3.15 (a), BCE smoothly decreases as the
output () gets close to one while there is rapid increase in BCE~! near
¥ = 1in Figure 3.15 (b). This asymmetry in the two types of loss can
make it harder to balance these two types of loss. More symmetric
losses such as label-set loss proposed in [81] can be used. Testing other

possible losses such as label-set [81] is included in the future work.
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Figure 3.15: Plots of losses. (a) Binary cross entropy (BCE) loss for

positive pixels (y = 1). (b) The reciprocal of binary cross entropy

loss for negative pixels.
One of the similar approaches that utilize unannotated pixels is semi-
supervised learning [103]. In semi-supervised learning, unannotated
pixels are typically used for entropy minimization [83] or consistency
training. The biggest difference between the proposed method and
semi-supervised learning is that the proposed method utilizes
unannotated pixels for negative training. Therefore, the proposed
method is likely to outperform semi-supervised learning methods.
However, combining partially supervised learning with semi-
supervised techniques such as entropy minimization is possible and

can improve the segmentation accuracy.

As shown in Figures 3.10 and 3.11, best results tend to have small DLD

regions and worst results tend to have large DLD regions. Precision for
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the worst results were low because of false NOR segmentation. As
shown in Figure 3.13, GGO and EMP especially tend to have false NOR
pixels. Therefore, NOR pixels that are similar to GGO and EMP need to
be added to the dataset in the future. Using weak annotations such as
scribble [99] can be useful to save annotation costs in combination

with partial annotations and PSL.

Comparing levels of annotation is included in the future work. One-
class per image annotation, which was used in this study, provides the
least supervision with the lowest cost. On the other hand, all-class
annotation, which annotate all pixels in the lung fields, provides the
most supervision with the highest cost. Comparing above two and
different levels of annotations between the two under fixed amount of
cost (e.g. the time or budget for the annotation process) is needed to
figure out the optimal level of annotation that maximizes segmentation

accuracy under the limited amount of cost for the annotation.

Because one representative DLD pattern was chosen by a radiologist
for each slice, our partially annotated dataset contains potential biases.
First, representative patterns can be classified as wrong classes
because they were chosen by only one radiologist. Second, there are
more typical textures in the dataset than atypical textures of the classes
because representative patterns were chosen. These need to be

addressed in the future work to obtain less biased results.

One of the limitations of this study is that because the evaluation
metrics were calculated mostly in annotated regions, the effects of the
proposed PSL in unannotated regions were not fully studied other than

the precision shown in Figure 3.7 and the evaluation only using a
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fraction of the dataset shown in Figure 3.13 and Table 3.3. The lung
tissue research consortium (LTRC) dataset [104] can be used for a
more detailed study because the LTRC dataset provides fully annotated
data.

A potential future direction is to combine PSL with other techniques
such as transfer learning [90] to achieve even better accuracy. Another
possibility is to combine other datasets in a similar domain such as
interstitial lung diseases from the University Hospital of Geneva [105]
and the LTRC dataset [104], to test the possibility of improving

accuracy using a combination of similar but slightly different datasets.
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4 Conclusion

4.1 Summary

This thesis served following two purposes.

1. Addressing the lack of comparison study on abdominal blood
vessel segmentation compared to the abundance of new

proposals of methods.

2. Proposing and testing a method that takes full advantage of

exiting dataset.

Chapter 2 addressed the first purpose through the experiments using
multiple methods of vessel segmentation. The experimental results
showed that characteristics of the methods differed depending on the
region. UN was the best method for the training ROI, whereas SN
resulted better in non-training ROI such as lung ROIL. HN generally was
outperformed by the CNN methods but outperformed them in the lung

ROI, where surrounding tissues are easily distinguishable from vessels.

In chapter 3, new method was proposed that addressed the second
purpose. Although the proposed method did not improve the
segmentation accuracy by a large margin, the proposed method can be
useful considering that the improvement was achieved without

additional cost for annotating new data. The experimental results
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showed that the proposed method improved the precision of the

segmentation.

4.2 Future work

As shown in the experimental results in chapter 2, segmentation errors
were caused by thin vessels, therefore, investing in the improvement
on thin vessels can be the next logical step. Training a CNN specialized
to thin vessels can be an approach to improve the performance on thin

vessels.

As shown in the results in chapter 3, the segmentation accuracy on
some DLDs were still relatively low despite the improvement achieved
by the proposed method. Possible future direction for this is to
incorporate semi-supervised or unsupervised learning to utilize

training dataset even further.
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