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Abstract 

Semantic segmentation plays fundamental rolls in today’s medical 

fields from both clinical and scientific viewpoints. Automating semantic 

segmentation is highly valuable and desired because manually 

performing segmentation is far too cost-ineffective and time-

consuming. The segmentation targets in medical images can be divided 

into the following three categories. 1) Large anatomical structures such 

as abdominal organs, muscle, bones, lung, and brains. 2) Inter and intra 

structures of organs such as blood vessels and bronchi. 3) Pathological 

abnormalities such as tumors, hemorrhage, and aneurysms. The goal of 

this thesis is to address following two problems that found in 2) and 3) 

respectively. The problem found in category 2) is that there are few 

comparative studies of methods while there are numerous studies that 

propose new methods. The problem found in category 3) is that it is 

hard to collect large-scale dataset that is annotated by qualified experts 

because of its higher cost for annotation. 

The first problem was addressed through a study on abdominal artery 

segmentation. Two methods that use convolutional neural network and 

one method that is based on analytical filter were compared through 

the experiments that used 30 cases of contrast enhanced abdominal 

computed tomography images. The experiments showed that the 

newer method (namely UNet) was the best in the training region of 

interests. However, the experiments also showed that the other two 

methods outperformed the newer method in other regions. 
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The second problem was addressed through a study on diffuse lung 

abnormality patterns segmentation. A new method that takes full 

advantage of partially annotated dataset is proposed. The experiments 

that used 372 patients of chest CT images were conducted to evaluate 

the proposed method. The experimental results showed that the 

proposed method improved segmentation accuracy by reducing the 

leakage of the segmentation. Further analysis of the results showed 

that the proposed method effectively utilized unannotated pixels, 

which were mostly comprised of healthy lung pixels, and improved the 

segmentation accuracy between normal lung pixels and other pixels 

with abnormal textures. 
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1 Introduction 

1.1 Background 

Semantic segmentation of medical images is of great importance in 

today’s medical field. Medical images such as computed tomography 

(CT) image and magnetic resonance image (MRI) are scanned as part of 

the clinical routine dozens of times a day in a hospital and enormous 

amount of human resource is spent for processing them. Semantic 

segmentation is an image processing task of segmenting an image into 

semantic clusters, which can be individual organs, muscles, blood 

vessels, and pathological regions based on the context and the goal of 

the medical image. Clinically, semantic segmentation can be used for 

various tasks such as measuring sizes of certain structures to assess its 

functionalities and the visualization based on semantic segmentation is 

essential to grasp shapes and relationships of anatomical structures 

inside the body. Furthermore, semantic segmentation is a fundamental 

step for medical image analysis such as computational anatomy and 

computational physiology. 

Manually performing semantic segmentation is possible but not the 

most reliable and cost-effective option. First, there is inter and intra 

operator variability in the quality and accuracy of manual 

segmentation. Second, labor-intensive nature of manual segmentation 

is problematic especially for medical images because medical images 

such as CT and MRI are three dimensional, which makes it more labor-
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intensive, and outsourcing the task is usually not an option because of 

the patient privacy. Automating semantic segmentation can mitigate 

these problems and therefore highly valuable and desired. 

1.2 Methods and challenges 

One typical classification of the segmentation targets is to divide them 

into following three categories based on their anatomical 

characteristics. 1) Large anatomical structures that compose most of 

the body such as abdominal organs, muscles, bones, lung, and brains. 2) 

Inter and intra structures of organs such as blood vessels and bronchi. 

3) Pathological abnormalities such as tumors, hemorrhage, and 

aneurysms. 

1.2.1 Large anatomical structures 

Large anatomical structures such as abdominal organs, muscles, bones, 

lung, brain and so on compose most of the body. Segmenting these 

regions is often performed as a first step of image processing. Most of 

these regions are immediately recognizable and searching through the 

image is not necessary because they are large and usually in certain 

positions of the body. However, segmenting these regions can be often 

hard because the image contrast is low, or the image is noisy. 

Furthermore, separating neighboring structures in tightly packed 

region such as thigh muscles can also be hard because of unclear 

margins between structures and it requires experiences to manually 

delineate each structure. Another factor that could affect segmentation 
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is deformations and changes in pixel values caused by pathological 

abnormalities. 

Prime example of the segmentation tasks in this category is abdominal 

organ segmentation [1] and has been in one of the main focuses of 

medical image processing community. The segmentation tasks that 

perform subdivision of the organ include muscle [2], [3], lung lobe [4], 

and liver lobe [5], [6] segmentation. This category has been studied 

fairly well and segmenting healthy structure with high accuracy is now 

becoming possible unless there are abnormalities [7]. 

1.2.2 Inter and intra structures of organs 

Inter and intra structures of organs include blood vessels and bronchi. 

Imaging protocols such as contrast enhanced CT help to recognize 

structures in this category but segmentation accuracy in this category 

is often limited by the image resolution because tiny structures such as 

arteries can easily be sub-voxel scales. As they branch away from major 

trunk such as aorta and trachea, their positional and topological 

variation increases. Blood vessels attract the interest of many 

researchers because of its variety and clinical importance. Blood 

vessels are not large in volume compared to the structures in the first 

category because they consist of tubular structures. However, manually 

segmenting them from start to end is painfully time-consuming 

because it requires tracking numerous branches that can span large 

area. 

Blood vessels in different regions have different properties, therefore 

they often require specialized studies. Retinal vessels found in fundus 
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images [8] have crossovers because the images are two dimensional. 

Coronary arteries [9] and cerebral vessels [10] usually have static 

branching and running patterns. Pulmonary vessels tend to be 

straighter than vessels in other regions and are easy to distinguish 

from the surrounding tissues. 

A number of new methods based on deep learning has been proposed 

but not many of them are focusing on comparing different methods. 

There are comparative studies of deep learning based methods on 

retinal vessel segmentation [11]–[14]. On the other hand, although 

there are comparative studies on other vessels [15], [16], they are not 

based on deep learning. Therefore, there is a lack of comparative 

studies on abdominal vessels. 

1.2.3 Pathological abnormalities 

This category includes abnormalities such as tumors, hemorrhage, and 

aneurysms. The variations in shapes and appearances tend to be much 

larger compared to the structures in previous two categories. 

Determining the type and area of the abnormality is hard and there are 

substantial amount of inter-operator variabilities even among qualified 

experts [17], [18]. For small objects such as lung nodules [19]–[21] or 

aneurysms [22], [23], segmentation can be substituted or preceded by 

object detections. 

Primary example in this category is hepatic or renal tumor 

segmentation [24], [25]. One of the challenges in this category is that it 

is hard to collect large-scale dataset that is annotated by qualified 

experts because of its higher cost for annotation. Therefore, in this 
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category, taking full advantage of limited amount of annotated dataset 

is more important. 

1.2.4 Methodological aspects 

Semantic segmentation methods commonly used for medical images 

are listed here. Even though deep learning based methods are the main 

focus of the thesis as well as the current research scene, non-deep 

learning methods commonly used before the prevalence of deep 

learning are also listed here to help understand the characteristics of 

the segmentation tasks. These conventional methods are usually based 

on statistical or analytical priors designed and constructed by the 

researchers and the dataset. 

Graph cut [26], [27] is a semi-automated segmentation method that 

typically works well for well-defined object with homogeneous pixel 

intensity values. Even though this is not a fully automated method, 

interactive update of the segmentation makes this method far more 

convenient than fully manual segmentation. Statistical atlas model [1], 

[28], [29] is a method that statistically models the position, appearance, 

and shape of the objects and is commonly applied to large anatomical 

structures. Multi atlas method is a method based on image registration 

between the atlases and the patient. Individual muscle segmentation 

[2] and parcellation of brain region [30], [31] are primary applications 

of this method and this method works robustly on objects that have no 

clear boundaries. Hessian based filters [32]–[34] are analytical image 

filters that enhances geometric shapes such as tubes and sheets based 

on their local appearances. They work well when their analytical 

models match actual image appearances. 
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Convolutional neural network (CNN) revolutionized semantic 

segmentation and most of newly proposed methods these days are 

based on CNN. While CNN contributed to the improvement of accuracy 

and the unification of the methods, it also created issues that have not 

been addressed well yet. First, despite the increase in the number of 

studies published in the field, studies that are focused on the 

comparison among methods are scarce. Second, although training 

CNNs necessitates a large-scale dataset, large-scale dataset is 

sometimes hard to obtain especially when it is a medical image dataset. 

1.3 Research objectives 

The purpose of this thesis is as follows. 

1. Addressing the lack of comparison study on abdominal blood 

vessel segmentation compared to the abundance of new 

proposals of methods. 

2. Proposing and testing a method that takes full advantage of 

existing dataset even when expert annotations are only partially 

available. 

The first purpose is addressed through a study on abdominal artery 

segmentation in chapter 2. In this study, multiple methods are tested 

on abdominal arteries and their characteristics are compared. The 

second purpose is addressed through a study on diffuse lung 

abnormality patterns segmentation in chapter 3. In this study, it is hard 

to construct a large-scale dataset and new training method is proposed 
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to make effective use of limited amount of expert-annotated training 

dataset. 

1.4 Thesis outline 

In chapter 2, details of current landscape of vessel segmentation are 

described and experiments are conducted to study characteristics of 

multiple methods. This chapter is based on my previous publication 

[35] about renal artery segmentation. In chapter 3, difficulties and 

related methods of diffuse lung abnormality patterns segmentation are 

described and new method is proposed to tackle the challenges of this 

segmentation task. This chapter is based on my previous publication 

[36], [37]. Finally, summary of this thesis and future work is discussed 

in the chapter 4. 
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2 Abdominal Vessel Segmentation 

2.1 Overview 

Segmenting blood vessels is an important step in a wide variety of 

tasks in medical image analysis. Patch-based CNNs are often used for 

vascular detection, but the impact of patch size and choice of CNN 

architecture have not been addressed in detail in previous studies. In 

this study, we aim to investigate the impacts of patch size and CNN 

architecture on the accuracy of vascular detection from contract 

enhanced CT. We targeted the renal arteries as the primary focus of 

detection. 

We conducted experiments involving 30 cases of contrast enhanced 

abdominal CT data. For the experiments, arteries in the pre-defined 

regions of interest were manually labeled to build a dataset of input CT 

images and ground truth labels. We repeated the experiments with 

four patch sizes and two patch-based 3D CNN architectures (U-Net like 

and a simple sequential model) to evaluate the differences. Moreover, a 

Hessian-based line enhancing method was included in the evaluation to 

compare the CNNs with a non-deep learning method. 

The experimental results show that patch size has a significant impact 

on detection accuracy. U-Net like model had a peak accuracy at a 

certain patch size unlike the sequential model, which plateaued with 
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large patch sizes. Although both CNNs outperformed Hessian-based 

line enhancement by a large margin, Hessian-based line enhancement 

obtained good recall when enhancing vessel structures not included in 

the CNN training. Our experiments showed that different network 

architectures have different characteristics regarding their response to 

different patch sizes and vessel structures unseen during training. 

2.2 Background 

Blood vessels play a vital role in a wide variety of medical tasks such as 

surgical planning and diagnosis. For example, in organ transplants, a 

patient’s vessel structure is one of the factors that determines the 

operability of the patient. In a partial resection operation (e.g., partial 

hepatectomy and nephrectomy), the optimal resection is designed by 

estimating blood vessel-dominant regions based on the vascular 

structure. 

Understanding vascular structure is a challenging task because the 

structure has an elongated tubular structure with curves and 

branching points. Therefore, assisting humans with vessel recognition 

has been a main topic of the studies in the medical image analysis field. 

Common approaches in these studies are vessel enhancement [32], 

[33] and automated vessel segmentation [38]–[40]. Vessel structures 

are extracted from images in a broad range of image protocols and 

body parts, such as fundus images for diabetic retinopathy, cardiac CT 

for coronary stenosis, and head CT for aneurysms [41]. 
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CNNs have been widely used in semantic segmentation since AlexNet 

[42] won an image classification contest by a large margin and a large 

number of methods and tools have been developed. In medical image 

analysis, researchers have begun to use CNNs for a variety of tasks such 

as classification and detection. A fully convolutional network [43] is 

typically used for segmentation tasks. The semantic segmentation of 

blood vessels is no exception to this trend, and a number of new 

techniques specifically for segmenting tubular structures have been 

proposed [44]–[48]. 

Patch-based networks are commonly used in the semantic 

segmentation of medical images. This is because the target object is 

often localized in a limited region of interest (ROI) and because 3D 

volumetric images are too big to fit in GPU memory, which is commonly 

used in the training of CNNs. Although a CNN is capable of learning its 

weight parameters through training, there are hyper parameters for 

the network that are not optimized by the training process. In patch-

based networks, the patch size is one hyper-parameter that is often 

heuristically determined. Whereas patch-based CNN is often used for 

vascular segmentation, the impacts of patch size have not been 

addressed in detail so far. In many previous studies, a fixed patch size 

was used ([49]–[51] to name a few). Although a couple of papers [52], 

[53] have mentioned patch size in their studies, more detailed study on 

the impacts of patch size is needed to achieve better understanding of 

vascular segmentation using patch-based CNN. 

Oda et al. [52] proposed a method that segments abdominal arteries in 

contrast enhanced CT and reported the segmentation accuracies for 
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different patch sizes. A limitation in their work is that they did not test 

a 3D network. They used 2.5D network that incorporates three planes, 

namely the axial, sagittal, and coronal planes. In their work, the 2.5D 

CNN performed better than a simple 2D CNN. However, the 

development of a 3D CNN that is capable of capturing a 3D structure 

remained unaddressed. 

Yang et al. [53] proposed a method that segments catheters in 3D 

ultrasound images using techniques such as focal loss and dense 

sampling. In their experiments, a 3D U-Net was used, and they reported 

that changing patch size changed the segmentation accuracy. The 

limitation of in their work regarding patch size in the context of 

vascular segmentation is as follows. First, their target is a catheter, 

which has a tubular structure similar to that of blood vessels. However, 

unlike vessels, a catheter does not have branches nor large changes in 

diameter. Second, because they used 3D ultrasound, image 

characteristics such as field of view and background organs are 

different from those in other image modalities such as CT and MR. 

The task of this work is to detect abdominal arteries in contrast 

enhanced 3D CT using patch-based 3D CNN. Our contribution is three-

fold. First, we study the impact of the patch size and network 

architecture in the task of abdominal artery detection in contrast 

enhanced 3D CT through experiments. We determine the best-

performing CNN architecture and its optimal patch size as well as how 

different CNN architectures are affected by patch size. Second, we study 

the CNN’s behavior when detecting categories of vessels that are not 

included in the training data. Third, a typical non-deep learning method, 
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namely the Hessian-based multiscale line enhancement method [32], is 

compared with CNN-based methods. 

2.3 Materials and Methods 

2.3.1 Materials 

In this work, we used 30 cases of contrast enhanced abdominal CT 

scanned at Osaka University Hospital. The average voxel size of the 

images is approximately 0.68 × 0.68 × 0.63 mm3. The ground truth 

data of vessel regions were prepared for three types of ROIs, which 

were defined for each case to observe the differences among methods 

in different regions. The three types of ROIs, as illustrated in Figure 2.1, 

are as follows. 

• Renal ROI (red rectangles in Figure 2.1): A Bounding box that 

circumscribes both a kidney and the arterial tree stemming from 

the aorta. Two (left and right) renal ROIs were defined on each 

patient. The average size of each renal ROI was 142 × 121 × 171 

voxels and the standard deviation was 18.2 × 7.41 × 20.1 voxels. 

• Lung ROI (green rectangles in Figure 2.1): A 32 × 32 × 32 voxels 

cube at the bottom of the right lung. No organs except for lung 

tissues and vessels were in the ROI. 

• Spine ROI (blue rectangles in Figure 2.1): A 32 × 32 × 32 voxels 

cube next to 12th thoracic vertebra with an intercostal artery at 

the center of the ROI. A portion of spinal bone tissue was 

included in the ROI. 
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The main ROI type was renal ROI, which was used for both the training 

of the CNNs and evaluation using cross-validation. The other two types 

of ROIs were used only for the evaluation. There are four contrast 

phases of the CT images (namely non-contrasted, early arterial, late 

arterial, and venous phases) in our contrast enhanced abdominal CT 

scan. The early arterial phase has the best contrast between arteries 

and other non-arterial regions such as veins in the renal ROI. 

Additionally, vessels in lung and spine ROIs are not very sensitive to 

the contrast phase because non-vascular regions in these ROIs are 

primarily air and bone respectively. Therefore, we used early arterial 

phase for all three types of ROIs. All arterial regions in the renal and 

spine ROIs and vessels in the lung ROIs were manually labeled by 

medical image researchers under an experienced radiologist’s 

supervision. 
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Figure 2.1: Placements of the three types of ROIs. Colored 

rectangles indicate ROI placements (Red: Renal ROI. Green: Lung 

ROI. Blue: Spine ROI.) (a) Maximum intensity projection (MIP) in 

the coronal plane. (b), (c), and (d) image slices with renal, lung, 

and spine ROIs respectively. 

2.3.2 Methods 

In this work, the following three methods were evaluated. 

1. A U-Net [54] like (UN): a CNN that uses a U-Net like architecture, 

which is a network architecture commonly used in semantic 

segmentation of medical images. 

2. Sequential network (SN): a CNN that uses a simple sequential 

network without skip connections. 

3. Hessian-based line enhancement method (HM) [32]. 
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The UN architecture used in the experiments is shown in Figure 2.2 (a). 

Our UN architecture is a 3D network using 3D convolution layers and 

3D max pooling layers. The network has two max pooling layers for 

downsampling in the encoding part and two upsampling layers in the 

decoder part. The number of convolutional kernels is doubled at each 

convolutional layer before max pooling to avoid bottlenecks [55]. Batch 

normalization layers (BNs) are inserted between the convolutional 

layers and their activations. 

The SN is a simple network shown in Figure 2.2 (b) that only consists of 

convolutional layers. Unlike UN, there are no skip-connections or 

downsampling/upsampling layers. The SN has the same number of 

convolutional layers as the UN. 
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Figure 2.2: Network architectures used in the experiments. The 

blue boxes represent input, intermediate, and output 3D data with 

the number of channels indicated above. The white boxes 

represent concatenated data. (a) UN. (b) SN. 

We used a patch-based method for detecting arteries with 3D CNNs, in 

which each patch is cubic. This is because the entire 3D volumetric 

images are too large to fit in the memory available in a GPU, which is 

essential for training of the CNNs. Furthermore, arterial regions and 

non-arterial regions are imbalanced in the entire volume and it is 

easier to rectify this volumetric imbalance using a patch-based method 

by extracting more patches that contain arteries from the training 

images than patches that do not contain arteries. With a patch-based 

method, an input volume is divided into 3D patches to be fed to the 
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network and the output patches are stitched together to reconstruct a 

full-sized output volume. 

In our experiments, 3D patches were sampled using a sliding window 

with no overlap between output patches. Therefore, the step size of the 

sliding window is simply 𝑠𝑜 , where 𝑠𝑜 is the output patch size. In 

addition to the patches sampled by the sliding window, patches that 

contain the arterial center line were also sampled to mitigate the 

volumetric imbalance. A 3D patch was sampled at every voxel of the 

arterial center lines. Only patches sampled from renal ROIs were used 

for the training. 

To study the impact of patch size, where the patch size denotes the 

edge length of each cubic patch, we repeated the experiment using four 

different patch sizes with the other parameters fixed. In our 

experiments, convolutional layers were applied without padding to 

avoid introducing false signals in the perimeter of the input, therefore 

convolutional layers reduce the output sizes. The minimum patch size 

applicable in the network is determined by the number of 

convolutional and pooling layers and it was 48 voxels in our 

experiments. The maximum patch size is bound by the amount of GPU 

memory and it was 96 voxels in our experimental environment, which 

is described later. Therefore, patch sizes used in our experiments 

ranged from 48 voxels to 96 voxels with a step size of 16, where the 

step size was heuristically determined to be small enough to study the 

impact of patch size. 

In addition to the UN shown in Figure 2.2, shallower and deeper UNs 

were tested to observe the impact of the depth of the network. While 
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the UN has three levels of resolution, shallower and deeper UNs have 

two and four levels of resolution respectively. In other words, 

compared to the UN, shallower UN has one less pair of encoder and 

decoder and deeper UN has one more pair of encoder and decoder. 

Early stopping was used to dynamically determine the number of 

training epochs. The validation set was extracted from the training set 

to calculate the validation loss. The early stopping algorithm monitored 

the validation loss and stopped the training process at the end of epoch 

in which the validation loss started to increase. After the early stopping, 

the best weight parameters (those that minimized the validation loss), 

were used for the evaluation. 

The other hyper-parameters used in the experiments are the 

optimization method, which was Adam [56] with learning rate 𝜂 =

0.001 (default) and batch size, which was 32. Binary cross entropy, 

which is defined as 

𝐻𝑏𝑖𝑛𝑎𝑟𝑦(𝑝, 𝑞) = −𝑝log𝑞 + (1 − 𝑝)log(1 − 𝑞),  (2.1) 

where 𝑝 is the ground truth label (0 or 1) and 𝑞 is the prediction, was 

used as the loss function. The segmentation accuracies of the CNN 

methods were evaluated using experiments with 3-fold cross-

validation. The training dataset was split at patient level so that the 

patches of one patient did not become split over different sets. The 

training and evaluation were conducted using a workstation with 

single NVIDIA TITAN RTX with 24GB of GPU memory. Training one UN 

took 461 minutes and training one SN 352 minutes on average. 
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In addition to the two CNNs, the HM [32] was also evaluated to 

compare the CNNs with a conventional method that does not require 

training thus does not require a labeled dataset. The gaussian standard 

deviation 𝜎 was adjusted for thin arteries in the HM to the values 𝜎 =

1, √2, 2 voxels. 

Instead of volumetric evaluation metrics such as the Dice similarity 

coefficient [57] or Jaccard index [58], we chose metrics based on the 

similarity of the center lines of arteries for the following two reasons. 

1. Because blood vessels are small in volume, volumetric similarity 

metrics are too sensitive to slight differences in the boundaries 

between manual traces and automatically extracted vessel 

regions. 

2. When understanding vessel structure is the main purpose of 

detection, center line-based metrics are more appropriate than 

volumetric based metrics. 

The output images of the methods were binarized by thresholding and 

a binary thinning algorithm [59] was applied to obtain the center lines 

of the extracted arteries. Likewise, the ground truth of the vessel center 

lines was generated by applying a binary thinning algorithm to the 

manually labeled vessels. 

The area under the precision-recall curve [60] (AUPRC) was used to 

evaluate recall and precision of the results. The precision and recall are 

defined as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁),
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where TP, FN and FP are defines as follows, 

• The number of true positives (TP) is defined as the number of 

extracted center line voxels that are within two voxels of the 

center line of the ground truth. 

• The number of false negatives (FN) is defined as the number of 

ground truth voxels that do not have an extracted centerline 

within a two-voxel proximity. 

• The number of false positives (FP) is defined as the number of 

extracted center line voxels that are not within two voxels of the 

center line of the ground truth. 

Although the arteries in the lung and spine ROIs were not used for the 

training, they are treated as true arteries in the evaluation. The 

Wilcoxon signed-rank test was used to calculate statistical significance. 

Python 3.7 [61] and TensorFlow [62] were used to construct and train 

neural networks. Three-dimensional thinning of segmentation results 

[63] was implemented using Insight Toolkit [64]. 

2.4 Results 

In this section, the results of the three methods for the three ROIs are 

shown. Hereafter, the UN and SN may have their patch size indicated in 

parentheses such as SN(64) and UN(80). 

2.4.1 Evaluations for the renal ROI 

Figure 2.3 shows box-and-whisker plots of the AUPRC comparing 

results for different patch sizes. As shown in Figure 2.3 (a), the SN hit a 
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plateau at a patch size of 64. There was no statistical significance 

among the models with patch sizes of 64, 80, and 96, although larger 

patch sizes only slightly increased average accuracy. 

In the UNs, the model with a patch size of 80 had the best accuracy with 

statistical significance (Figure 2.3 (b)). Unlike the results with the SNs, 

the model with the largest patch size 96 had significantly worse 

accuracy than the model with a smaller patch size of 80. 

Figure 2.3: Box-and-whisker plots of the results for the renal ROI. 

The mean and standard deviation of each method is indicated 

below the method names. Statistical significances are indicated by 

** (: 𝑝 < 0.01.) (a) SN results. (b) UN results. In (b), statistical 

significance is only shown for a patch size of 80. 

 (a) (b)
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Figure 2.4 compares the results of the three methods. For each of the 

CNN methods, the patch size with the best result was chosen for the 

comparison. As shown in Figure 2.4 (a), the UN yielded in the best 

accuracy of the three methods. 

In the precision-recall curve shown in Figure 2.4 (b), the UN obtained 

better results for both recall and precision. Although the HM had much 

lower precision, the best recall was better than those of the CNN-based 

methods. 

Figure 2.4: Comparison of the three methods for the renal ROI. (a) 

Box-and-whisker plot comparing the AUPRCs of the CNNs and HM. 

The AUPRC values of the representative examples shown in 

Figures 2.10 (a), 2.10 (b), 2.10 (c) are plotted as examples 1, 2, and 

3. (b) Average Precision-Recall curves of the methods. 

 (a) (b)



Abdominal Vessel Segmentation 

 

23 

 

 

Figure 2.5 shows a qualitative comparison of the methods for the renal 

ROI results. The CNNs were able to enhance the arterial regions while 

suppressing the non-arterial regions, such as kidneys and veins. No 

major difference was observed the results of the between the results of 

the UN and SN. However, the UN results tended to have better accuracy 

for the thinner arteries as indicated by the red arrows. Some veins 

were mistakenly enhanced in the CNN models (cyan arrows). HM 

enhanced not only arteries but also veins (cyan arrow) and boundaries 

of renal cortex and medulla (green arrow). Note that HM w/o bones 

results in Figure 2.5 are shown with bone regions removed just before 

the visualization and no bone removal was performed in the 

quantitative evaluations. The HM w/o bones results are shown because 

the false positive detection of the ridges of the bones hides the vessels 

in the results and it is relatively easy to remove bones. 

(a) Example 1. 
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(b) Example 2. 

(c) Example 3. 

Figure 2.5: MIPs of the renal ROI in the coronal plane for the 

Example 3 in Figure 2.3 (a). Original input image (Input w/o 

bones), ground truth (Truth), and results of the three methods (SN, 

UN, and HM w/o bones) are shown. Regarding the original input 

and HM result, bone regions were removed just before the MIP 

operation for better understanding of the results. Yellow lines 

indicate the contour of the kidney. AUPRCs are shown in brackets. 

2.4.2 Evaluations for the lung ROI 

As shown in Figure 2.6 (a), the HM had the best score in the lung ROI. 

As shown in Figure 2.6 (b), HM obtained better results both in recall 

and precision. For the lung ROI, UN yielded the worst AUPRC, and its 

recall score was much lower than that of other two methods. 
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In this evaluation, the lung vessels were defined as targets for detection. 

Therefore, detected lung vessels were counted as TP even though lung 

vessels are not a renal artery or any of the abdominal arteries. 

Figure 2.6: Quantitative evaluation of lung ROI. (a) Box-and-

whisker plot comparing AUPRC of CNNs and HM. AUPRC values of 

representative examples shown in Figures 2.10 (a), 2.10 (b), 2.10 

(c) are plotted as examples 1, 2, and 3, and the numbers 

correspond to the examples in Figures 2.10 (a), 2.10 (b), 2.10 (c). 

(b) Average Precision-Recall curves of the methods. 

Figure 2.7 shows the qualitative comparisons for the lung ROI results. 

In accordance with the quantitative results, the UN removed most of 

the lung vessels whereas the SN retained some of the vessels in the 

results. As noted in the quantitative results, if lung vessels were not 

targets for detection, the UN would have had the best results because 

there was almost nothing to detect in the lung ROIs. 
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(a) Example 1. 

(b) Example 2. 

(c) Example 3. 

Figure 2.7: Qualitative illustration of the results in the lung ROI. 

Results are shown as slab MIP in the axial plane. Original input 

image (Input), ground truth (Truth), and results of the three 

methods (SN, UN, and HM) are shown. AUPRCs are shown in 

brackets. 

2.4.3 Evaluations for the spine ROI 

As was the case with the evaluations for the lung ROIs, arteries in the 

spine ROIs are considered targets for detection. A notable difference 

between lung ROIs and spine ROIs is that the arteries (intercostal 

arteries) are more similar to renal arteries. 

 

 

 



Abdominal Vessel Segmentation 

 

27 

 

 

Figure 2.8 shows the quantitative comparisons for the spine ROI 

results. For the spine ROIs, the SN and UN obtained equally good 

results (Figure 2.8 (a)). The HM yielded low precision and there were 

too many false-positive enhancements. 

Figure 2.8: Quantitative evaluation of the spine ROI results. (a) 

Box-and-whisker plot comparing the AUPRC of the CNNs and HM. 

The AUPRC values of representative examples shown in 

Figures 2.10 (a), 2.10 (b), 2.10 (c) are plotted as examples 1, 2, and 

3. (b) Average Precision-Recall curves of the methods. 

Figure 2.9 (a) shows a quantitative comparison of the spine ROI results. 

In this example, CNNs achieved good accuracy on the intercostal artery 

with no false positive enhancement of the spinal bone. The HM had a 

strong response at the edge of the spinal bone. This is because cortical 
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bones have an intensity distribution similar to the distribution that the 

HM is mathematically designed for. 

(a) Example 1. 

(b) Example 2. 

(c) Example 3. 

Figure 2.9: Qualitative illustration of results for the spine ROI. The 

ROIs are shown as slab MIPs in the axial plane. Original input 

image (Input), ground truth (Truth), and results of the three 

methods (SN, UN, and HM) are shown. AUPRCs are shown in 

brackets. 
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2.4.4 Overall image evaluations 

Figure 2.10 shows a qualitative comparison of the results of the entire 

image. The differences between the UN and the SN results are as 

follows. 

1. In the lung region, the SN enhances more vessels than the UN. 

2. Thin vessels, such as the intercostal artery, are better enhanced 

by the UN. 

The HM has the best result for the lung vessels of the three methods, 

although many artifacts originating from bones and other non-arterial 

organs are included. The same bone removals as Figure 2.5 were 

applied to the HM results in Figure 2.10 only for the visualization, 

which has no effects on the any quantitative results. As shown in 

Figure 2.10, the HM w/o bones results were good when artifacts due to 

the bones were removed. However, abdominal arteries were not 

selectively enhanced; instead, abdominal veins and lung vessels were 

also enhanced. 
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(a) Example 1 

(b) Example 2. 

 

 

Input Input w/o bones SN(96)

HM HM w/o bones UN(80)

Input Input w/o bones SN(96)

HM HM w/o bones UN(80)
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(c) Example 3. 

Figure 2.10: Qualitative illustration of entire images of Example 1 

in Figures 2.4, 2.6, 2.8. Here, 3D volumetric images are reduced to 

2D images using MIP in the coronal plane. For better visualization, 

MIP image with bones masked out are also shown (Input w/o 

bones and HM w/o bones). Note that the bones were only masked 

for the visualization; the original images were used as the input for 

each method. 

2.4.5 U-Net depth 

Figure 2.11 shows the results of three UNs (UN (default setting), 

shallower UN, and deeper UN) in the renal ROI. Note that we were able 

to run deeper UN only with the patch size 96 because deeper UN has 

too many convolution and max pooling layers for smaller patch sizes. 

As shown in Figure 2.11, the UN (default setting) was better than 

shallower and deeper UNs in all patch sizes and both shallower UN and 

the UN (default setting) had the peak accuracy with patch size 80. 

 

Input Input w/o bones SN(96)

HM HM w/o bones UN(80)
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Figure 2.11: Average AUPRC of UN variants with different depths 

and patch sizes. 

2.4.6 Worst cases 

Although main goal of this study is to compare various methods, worst 

cases for UN(80) are listed in Figure 2.12 to investigate how to improve 

the segmentation accuracy in the future In Figure 2.12, the same 

visualization methods as Figure 2.5 were applied to the cases. In 

addition to the UN(80) results, post-processed images of UN(80) 

results are also shown to emphasize the differences between the 

ground truth and the results. The |GT - UN| results indicate false 

negative arteries missing in the UN(80) results while the |UN -GT| 

results indicate false positive arteries. 
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(a) The worst case. 

(b) The second worst case. 

(c) The third worst case. 

Figure 2.12: The worst cases for UN(80). Red arrows indicate 

notable false negative arteries. 

2.4.7 Best cases 

The best cases for UN(80) are shown in Figure 2.13 to visualize the 

differences between easy cases and hard cases. Compared to the hard 

 

 

 

Input w/o bones Ground Truth UN(80)[0.78] |GT - UN| |UN - GT|

Input w/o bones Ground Truth UN(80)[0.82] |GT - UN| |UN - GT|

Input w/o bones Ground Truth UN(80)[0.82] |GT - UN| |UN - GT|



Abdominal Vessel Segmentation 

 

34 

 

 

cases shown in Figure 2.12, the easy cases shown in Figure 2.13 tend to 

have less thin arteries. Although there are some thin arteries, most of 

them have relatively simple structure with simple surrounding tissues. 

(a) The best case. 

(b) The second best case. 

(c) The third best case. 

Figure 2.13: The best cases for UN(80). The same visualization 

methods as Figure 2.5 were used. Red arrows indicate notable 

false negative arteries. 

 

 

 

Input w/o bones Ground Truth UN(80)[0.92] |GT - UN| |UN - GT|

Input w/o bones Ground Truth UN(80)[0.92] |GT - UN| |UN - GT|

Input w/o bones Ground Truth UN(80)[0.91] |GT - UN| |UN - GT|
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2.5 Discussion and conclusion 

2.5.1 Discussion 

In this study, we experimentally investigated the impact of patch size 

and network architecture on vessel detection and discrimination 

accuracy in 3D CT data. Two patch-based 3D CNNs, that is, a U-Net-like 

architecture and a sequential architecture, were investigated. In 

addition to the CNNs, a conventional HM was also tested. 

The characteristics of the two CNNs and HM are summarized below. 

First, the UN had the characteristics of high selectivity when extracting 

particular vessels such as abdominal and intercostal arteries, which 

have similar features to the renal arteries in the training data. 

Therefore, the UN showed the best results on abdominal artery 

extraction when trained on renal artery data, and it will be suitable for 

the selective extraction of vessels similar to those of the training data. 

The patch size was needed to be fine-tuned in UN. Second, the SN had 

similar characteristics to that of the UN, but its selectivity to particular 

vessels was less strong. The patch size needed to be tuned, but its 

impact on accuracy was less sensitive than in the UN. Third, HM 

produced many false positives in renal and spine ROIs, but it should be 

noted that HM showed the best performance in lung ROI and recall (the 

true positive rate) was better than or equivalent to the CNN methods in 

all three ROIs in our experiments. The advantages of the HM are that it 

does not require training data and it responds to vessels generally 

(while producing false positives), therefore it will be still useful as a 

general-purpose method when training dataset is not available. 
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As shown in Figure 2.3, the patch size had a significant influence on the 

detection accuracy of patch-based 3D CNNs. The optimal patch size 

depended on the CNN architecture. Therefore, it is necessary to adjust 

the patch size to achieve better accuracy in vascular detection. 

The UN and SN had different responses to the input patch size. The UN 

was sensitive to patch size because it had a peak accuracy at a patch 

size of 80 whereas the SN was less sensitive to patch size with a plateau 

in accuracy. In previous papers, most studies [49]–[51] used a fixed 

patch size in a patch-based CNN, and the impact of patch size has not 

been investigated in detail. Among them, some papers [47], [53], [65], 

[66] have addressed the impact of patch size. Two of them [65], [66] 

showed that large patch sizes always improved accuracy. In these 

papers, however, the patch was not 3D, instead patch-based 2D or 2.5D 

CNNs were used. Yang et al. [53] addressed a 3D CNN and showed 

partly similar results to those of our work. However, the work 

addressed catheter detection from 3D ultrasound data. The catheters 

had a fixed width, and the impacts of patch size were not analyzed in 

detail. In contrast, our study presents detailed experimental results on 

the impact of the patch size in 3D, including the different 

characteristics of different CNN architectures. Patel et al. [47] reported 

that using large patch sizes increased the accuracy of cerebrovascular 

segmentation using 3D CNN with a multi-resolution strategy. However, 

they were not able to show optimal patch size with a peak or plateau in 

accuracy due to the hardware restriction. 

As shown in Figure 2.4, network architecture significantly changes the 

detection accuracy. Although the UN had the best results for the renal 



Abdominal Vessel Segmentation 

 

37 

 

 

ROI, other methods had better or equivalent result in other regions. 

Because the SN had a better generalization ability, it can be used when 

only limited training data are available but generally applicable vessel 

extraction is needed. The HM responds to any vessels, but the 

responses largely depend on image contrast. 

Although there are numerous new network architectures designed for 

semantic segmentation in medical images [67]–[71], in this study, we 

focused on two of the most fundamental network architectures. We 

believe it is still valuable to test these two architectures because testing 

fundamental architectures gives us insights to design or assess new 

architectures, which are typically derived from these fundamental 

architectures. Future work will include a further comparative study for 

these recent architectures. 

As shown in Figure 2.11, deeper UN performed significantly worse 

compared to other two UNs in our experiments. Before conducting the 

experiments, we expected deeper UN performs better because deeper 

networks are able to capture larger context, which usually helps to 

distinguish objects. One potential explanation why deeper UN failed is 

that it is harder to train deeper UN because deeper UN has more layers 

and more trainable weight parameters. Another potential reason is that 

large context is not always as important as local appearance when it 

comes to recognizing arteries, which typically have elongated structure 

but are small in diameter. As shown in the result, the depth has more 

impact than the patch size in the accuracy. Therefore, in 

hyperparameter tuning, we recommend tuning the depth first and then 
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tuning other hyper parameters such as patch size for the U-Net like 

architectures. 

Figure 2.12 shows the worst cases for UN(80) results. As indicated by 

the red arrows in Figure 2.12, some thin arteries were missing in 

UN(80) results. Although thin arteries are small in volume, missing 

them can be critical considering their clinical importance. One obvious 

approach to mitigate this problem is to increase the number of cases in 

the training dataset. However, this approach is costly because 

annotating thin vessels are labor-intensive and time-consuming. 

Another possible approach is to use synthetic dataset to pre-train the 

models [72]. This approach is much less costly compared to the first 

one. Using network architectures specialized for vessel segmentation 

[73] also should be considered. 

Because of the limited amount of GPU memory available in our 

experimental environment, we were not able to conduct experiments 

with patch sizes larger than 96 voxels. However, as shown in the 

results, we expect larger patch sizes will result in similar or worse 

accuracy compared with the accuracies achieved by the best patch 

sizes in the experiments. 

More recently, new methods using deep learning have been proposed 

for vessel segmentation. Contributions of newly proposed methods can 

be divided into the following two categories: network architecture and 

loss function. The methods proposing new network architectures [47], 

[70] and new loss functions [44], [46] both take advantage of the 

properties of the vessels. Objective comparison of these new methods 

is in the future work. 
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2.5.2 Conclusions and future work 

The results of this study show that it is necessary to adjust the patch 

size to achieve better accuracy in vascular detection in 3D data, 

especially when the patch-based 3D UN was used. Although we cannot 

determine a conclusive procedure about the hyperparameter tuning, 

we recommend tuning the depth of the network first and then tuning 

patch size because the depth had larger impact on accuracy and the 

depth tuning seems more insensitive to the patch size variation. 

Regarding comparison among different methods, UN obtained the best 

result in the experiments when the task was to selectively extract 

specific vessels whose features were particularly matched to those of 

training data. However, the other methods (SN and HM) will be more 

suitable when the task is to extract vessels more generally. 

In this study, we performed experiments on abdominal arteries. Future 

work will include applications to arteries in other domains and veins, 

which may have different properties and characteristics such as 

thickness and curvature. 
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3 Diffuse Lung Abnormality 

Patterns Segmentation 

3.1 Overview 

Computer-aided diagnosis methods that provide semantic 

segmentation of texture patterns of diffuse lung diseases (DLDs) on 

chest CT are extremely useful for detecting, identifying, and quantifying 

lung pathologies. While a fully annotated dataset is desired to build a 

semantic segmentation model, building such a dataset for DLDs is 

costly due to the requirements of manual segmentation and certified 

experts for annotation. Partially supervised learning (PSL) was recently 

proposed to take advantage of the partially annotated dataset and 

reduce the full annotation burden. Creating a partially annotated 

dataset is much inexpensive than creating a fully annotated dataset; 

therefore, PSL has great potential to build a semantic segmentation 

model that only requires a feasible amount of annotation. 

In this study, a loss function that uses both annotated and unannotated 

pixels of the partially annotated dataset is proposed as a method of PSL. 

The proposed loss function is based on the cross-entropy loss and it 

uses unannotated pixels to penalize the leakage of the segmentation. A 

parameter that controls the balance between the two types of 
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supervision is introduced to the loss function to enable tuning and 

studying the proposed PSL. Experiments using chest CT images of 372 

patients were used to investigate the effectiveness and characteristics 

of PSL for the segmentation of DLDs (consolidation, ground grass 

opacity, honeycombing, emphysema, and normal). 

The experimental results show that the proposed PSL improved the 

mean Dice score from 0.76 to 0.79 and that a higher value of the 

balancing parameter increased the precision of the segmentation. 

Using the proposed PSL, which takes full advantage of the partially 

annotated dataset, we improved the accuracy of DLD segmentation. 

Furthermore, the experimental results clarified that the proposed PSL 

improved the precision of the models using unannotated pixels. Our 

implementation of the proposed PSL is available at 

https://github.com/yk-szk/psl-dld. 

3.2 Introduction 

Diffuse lung abnormality patterns are texture pattern of DLDs seen in 

medical images such as chest X-rays and CT. Accurately identifying the 

textual patterns of DLDs is a challenging task even for experienced 

radiologists [18], [74], and quantifying the volume and distribution of 

DLDs in a chest CT image is time-consuming because DLDs typically 

spread over a large area and numerous slices in the lung. Therefore, 

developing computer-aided diagnosis (CAD) system capable of 

promptly and objectively assessing the lung with DLDs is of great value. 

CAD tools for DLDs have been developed for many tasks including 
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classifying CT slices [75], classifying image patches [76], [77], semantic 

segmentation at pixel level [78] and prognostic prediction [79]. 

While machine learning is required for the development of a CAD 

system, it frequently necessitates the use of annotated datasets, which 

are not always readily available. Fully convolutional networks[43], [54] 

(FCNs) are commonly used for semantic segmentation tasks, and FCN 

models are trained using a fully annotated dataset, in which every pixel 

of the images in the dataset is annotated. Creating a fully annotated 

dataset for semantic segmentation is expensive because manual 

segmentation of images is time-consuming. It is more expensive to 

create a dataset for DLDs since it requires qualified professionals (e.g., 

radiologists) and it is difficult to distinguish between different DLD 

texture patterns with normal and unusual appearances. Therefore, 

creating a large-scale fully annotated dataset for DLDs is almost 

impossible. 

In most cases, there is a trade-off between accuracy and the amount of 

annotated dataset used training for machine learning. Unsupervised 

learning is on one end of the trade-off because it does not require an 

annotated dataset. However, its accuracy is not as good as supervised 

methods because no supervision is provided during the training [80]. 

Fully supervised learning, on the other hand, is on the opposite end of 

the trade-off with the best performance of all learning methods. 

However, it requires a fully annotated dataset. Therefore, learning 

methods with adequate performance and minimum amount of 

annotation are sought to build a practical CAD system for DLDs. PSL 

[81] has recently been proposed to take advantage of a partially 
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annotated dataset. PSL is a promising technique for DLD segmentation 

because it only requires partial annotation while supervising effective 

training. Therefore, we focus on this learning technique in this study. 

Other than PSL, several strategies have been developed to reduce the 

need for annotated dataset [82]. Unannotated data approaches like 

entropy minimization [83] and consistency training are used in semi-

supervised learning [84]. Weakly supervised learning [85] allows 

semantic segmentation to be performed using weak annotation, such as 

image-level annotation[86], [87]. Transfer learning, also known as fine-

tuning[89] is a strategy for a pre-training a model with a large-scale 

dataset to achieve a well-generalized model even with a limited target 

dataset [90], [91] for the application’s domain. PSL and these 

approaches are not mutually exclusive and can be used together when 

appropriate. 

PSL has been effectively used to various applications, including 

abdominal organ segmentation [92]–[94] and brain tissue 

segmentation[81], [95]–[97]. More recently, PSL begins to be applied to 

segmentation of tumors and other disease regions, which are more 

complicated than organ regions [98], [99]. However, no application for 

DLDs has been reported yet. Applying PSL to DLDs can be more 

effective than applying it to regular anatomical structures like organs 

and the brain because of the differences in characteristics between 

DLDs and regular anatomical structures. First, DLDs can appear 

anywhere in the lung, making it harder to split input images into the 

regions of interest (ROIs) and apply the specific models to each ROI. 

Second, a typical DLDs patient only has a couple of DLDs, unlike organ 
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or tissue segmentation tasks, where a patient has a complete set of 

organs without missing ones. This makes it harder to construct an 

ensemble model composed of partial models using subsets of the 

dataset because each model cannot learn DLD classes absent in the 

subsets. 

Our contribution is two-fold. 1) Proposing a method of PSL that uses 

both annotated and unannotated pixels and applying it to DLDs to 

show the applicability of PSL. 2) Studying the characteristics of the 

proposed method by introducing a parameter that controls the balance 

of the supervision. We previously presented early results before [36], 

however in this study, we report additional evaluation results using 

samples of fully annotated images as well as tests with wider range of 

the balancing parameter. 

The DLD patterns, including the healthy lung considered in this study, 

are consolidation (CON), ground-glass opacity (GGO), honeycombing 

(HCM), emphysema (EMP), and normal (NOR). Throughout this study, 

each DLD pattern is represented or superposed in the following colors 

(CON: cyan, GGO: yellow, HCM: red, EMP: green, NOR: brown.) The 

remainder of this study is organized as follows. In the materials and 

methods section, partially annotated datasets and PSL are explained. 

The results of the experiments involving chest CT images of 372 

patients are shown in the results section. The discussion section 

discusses the advantages and characteristics of the proposed method 

found in the experiments. 



Diffuse Lung Abnormality Patterns Segmentation 

 

45 

 

 

3.3 Materials and Methods 

3.3.1 Materials 

The dataset used in this study consisted of chest CT images with a 

matrix size of 512 × 512 taken in Yamaguchi University Hospital, Japan. 

CT images of 372 patients were collected. The pixel size mean and the 

standard deviation were 0.684 mm and 0.0517 mm, respectively, and 

slice thickness was 1 mm. In the experiments, no pixel size equalization 

was performed because the deviation in the pixel sizes was negligibly 

small. 

Only one or a subset of the potential classes for an image are annotated 

in a partially annotated dataset. Figure 3.1 shows a comparison 

between full annotation and partial annotation. Figure 3.1 (a) shows a 

fully annotated image, in which every pixel in the lung is labeled with 

one of the possible classes 𝐿𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = {𝐶𝑂𝑁, 𝐺𝐺𝑂,𝐻𝐶𝑀, 𝐸𝑀𝑃,𝑁𝑂𝑅}. 

Figure 3.1 (b) and (c) show partial annotation and annotated pixels of 

an image, in which just one class (CON) was chosen for the image and 

annotated while other regions with other classes (GGO or NOR) were 

left unannotated. In Figure 3.1 (b), the delineated region indicates the 

CON region, which derived annotated pixels shown in Figure 3.1 (c). 

Partial annotation is easier and takes less time than full annotation, 

because with partial annotation, annotators can focus only on one label, 

and the area required for annotation is much smaller. Figure 3.1 (d) 

shows an unannotated region of a partially annotated image. In this 

image, regions that are not CON are left unannotated, and therefore 

virtually annotated as ¬CON = {GGO, HCM, EMP, NOR} region. Note that 
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the fully annotated image shown in Figure 3.1 (a) is created only for 

illustration and a fully annotated image like this is not available for the 

training in this study. Although annotation can be a subset of possible 

classes, we only annotated one class per image in this study. 

Figure 3.1: Comparison between fully and partially annotated 

images. (a) Full annotation with consolidation (CON), ground-glass 

opacity (GGO) and normal (NOR) regions are annotated in the lung. 

(b) Partial annotation with only the CON region is annotated 

(shown in cyan). (c) Annotated pixels (shown in cyan) derived 

from (b). (d) Unannotated pixels (shown in magenta), which were 

implicitly annotated as ¬CON in (b). 

Our partially annotated dataset was created in the following steps. First, 

up to three slices and representing DLD texture pattern for each slice 

were chosen for the annotation for each CT scan by a board-certified 

radiologist. Second, three board-certified radiologists performed a 

 

(a) Full annotation (b) Partial annotation

(c) Annotated pixels (d) Unannotated pixels



Diffuse Lung Abnormality Patterns Segmentation 

 

47 

 

 

partial annotation of the chosen DLD for every image. Finally, pixels 

annotated by two or more radiologists were designated as annotated 

pixels, whereas pixels that were annotated by less than two 

radiologists were left as unannotated. Note that three radiologists 

performed annotations to avoid creating a biased dataset. In this study, 

unannotated pixels are considered annotated as one of the following 

labels 𝐿𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = {¬𝐶𝑂𝑁,¬𝐺𝐺𝑂,¬𝐻𝐶𝑀,¬𝐸𝑀𝑃,¬𝑁𝑂𝑅}. In addition to 

the DLD annotation, lung fields were manually segmented under the 

supervision of radiologists and training and evaluation were conducted 

specifically within the lung fields. Figure 3.2 shows examples of 

partially annotated images for each class of DLDs. Table 3.1 shows the 

statistics of the partially annotated dataset used in the experiments. 

Figure 3.2: Typical slices of each diffuse lung disease (DLD) class. 

Annotated labels are superposed in transparent colors. 

  

 

(a) CON (b) GGO (c) HCM

(d) EMP (e) NOR
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Table 3.1: Dataset statistics. Note that the total number of cases in 

the table is more than the number of cases because multiple slices 

with different DLDs were extracted from a patient. The number of 

unannotated pixels of each class is the number of pixels of its 

corresponding negative labels. For example, the number 

unannotated pixels for CON is the number of ¬CON pixels) 

 CON GGO HCM EMP NOR Total 

Cases 56 112 51 131 55 405 

Slices 150 114 129 163 55 611 

Annotated (positive) 

pixels (× 103) 
658 1,676 1,345 4,134 2,552 10,365 

Unannotated (negative) 

pixels (× 103) 
3,878 2,648 2,405 2,710 117 11,759 

3.3.2 Methods 

The foundational idea of the proposed PSL is to use unannotated pixels 

to supervise the model loosely. For example, in Figure 3.1 (d), the 

unannotated region can supervise the model not to output the CON 

label for the region. This offers the proposed PSL an advantage over 

training methods that only use annotated pixels. Although unannotated 

pixels are less informative than annotated pixels, using unannotated 

pixels approximately doubles the number of pixels involved in the 

training, as shown in Table 3.1. Note that the total number of cases 

(405) in Table 3.1 is more than the number of patients (372) because 

multiple slices of a patient can be chosen for different types of DLD 

annotation. Figure 3.3 shows an overview of the proposed PSL. As 
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shown in Figure 3.3, two types of supervision, which use annotated and 

unannotated pixels, respectively, are applied to the model. 

Figure 3.3: Overview of the training process of the proposed 

partially supervised learning. 

Using unannotated pixels is realized by the loss function defined as 

ℒ(𝑙, �̂�) = {

(1 − 𝜆) ∗ 𝐻(𝑒(𝑙), �̂�), 𝑙 ∈ 𝐿positive

𝜆 ∗
1

𝐻(𝑒(𝑙), �̂�)
, 𝑙 ∈ 𝐿negative

  (3.1) 

𝐻(𝑝, 𝑞) = −∑𝑝

𝑥

(𝑥)log(𝑞(𝑥)), 

where 𝑙, �̂�, and 𝐻(𝑝, 𝑞) denote the ground-truth label, SoftMax output 

of the model, and cross-entropy for discrete probability distribution 𝑝 

and 𝑞 , respectively. 𝑒(𝑙)  is one-hot encoding function that works 

regularly for 𝑙 ∈ 𝐿𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  (e.g., 𝑒(𝑙𝐶𝑂𝑁) = [1,0,0,0,0] ) while for 𝑙 ∈

𝐿𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 , it works so that unannotated pixels get encoded in the same 

way as the corresponding annotated pixels (e.g., 𝑒(𝑙𝐶𝑂𝑁) = 𝑒(𝑙¬𝐶𝑂𝑁)). 

This loss function is based on cross-entropy loss, and works regularly 
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for annotated pixels, whereas it penalizes unannotated pixels for 

getting predicted as corresponding annotated labels. 𝜆 is a balancing 

parameter which modifies the balance of the supervision used for the 

loss of unannotated pixels. The proposed method with the parameter λ 

= 0 is equivalent of the training method that only uses annotated pixels. 

PSL can be used with any segmentation model and is not dependent on 

any network architecture. In this study, we used a slab U-Net shown in 

Figure 3.4 to take advantage of three-dimensional information of DLDs. 

The slab U-Net is a hybrid of 2D and 3D U-Nets[54], [55]. The input of 

the network is a 3D slab around an annotated slice with the shape of 6 

× 512 × 512 × 1 and the output shape is 1 × 512 × 512 × 5, where 

elements represent the sizes along the 𝑧, 𝑦, 𝑥, and channel axis. In this 

study, 𝑥, 𝑦 and 𝑧 axes represent frontal, sagittal and longitudinal axes 

respectively. Shallower layers of the network consisted of 3D 

operations such as 3D convolution and 3D max pooling with no 

padding applied for z-axis, which reduces the data size along z-axis. 

Operations were switched to 2D ones after the data size along z-axis 

was reduced to one. 
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Figure 3.4: The slab U-Net. The red and blue boxes represent 

three-dimensional and two-dimensional data respectively. The 

number of channels is indicated by the numbers above the boxes 

and the parenthesized numbers above red boxes indicate the sizes 

along z-axis. The white boxes represent concatenated data. At each 

level of the network, image resolution is indicated on the left side. 

3.4 Results 

For training and evaluation, a five-fold stratified cross-validation was 

used. The stratified splitting strategy was adopted to avoid skewed 

results due to the dataset’s uneven split and splitting was patient based 

to avoid data leakage. Each training subset had a validation subset to 

determine the number of epochs using early stopping. As data 

augmentation, geometric transformations (random flip around y-axis, 

random rotation around z-axis from -15 to 15 degrees, and random 

rescaling from 90% to 110%) are applied randomly to the input images 

on the fly during the training. These geometric transformations were 

applied primarily to increase the variation of body sizes and 
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orientations in the training dataset but also to help the network to 

learn more robust feature extractors [100]. Model network weights 

were optimized using Adam [56] optimizer with default parameters, 

and losses were computed using Equation 3.1. Our model was built 

with TensorFlow, and the loss function and network implementation 

may be seen at https://github.com/yk-szk/psl-dld. As evaluation 

metrics, Dice similarity score, precision, and recall are calculated for 

each slice. Dice similarity score (or Dice similarity coefficient) given by 

𝐷𝑆𝐶 =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|

=
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

=
2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
,

  (3.2) 

where |𝑋| and |𝑌| are the areas of the region X and Y and TP, FP, and 

FN denote the number of true positives, false positives, and false 

negatives respectively, is a metric for measuring the amount of 

overlaps between two regions and also known as F1 score. The training 

and evaluation were performed on an NVIDIA RTX 3090 with 24 GB of 

graphics processing unit memory. 

3.4.1 Evaluation on partial annotation 

Figure 3.5 shows line plots of evaluation metrics (Dice score, precision, 

and recall) for the λ values ranging from 0 to 1 with step size of 0.1. The 

mean Dice score and recall for λ = 1 were very low (0.079 and 0.088 

respectively) and plot points for these were trimmed off for the better 

visualization in Figure 3.5 (b). The segmentation accuracy for λ = 1 was 

very low because the models were not trained for typical texture 
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patterns at all. The distributions of the metrics can be seen in the box-

whisker plots in Figure 3.6, in which, only λ = {0, .1, .6, .9} were shown 

for concise visualization. The Wilcoxon signed-rank test was used to 

test the statistical significances between λ = 0 and the other values. As 

shown in Figure 3.5, the proposed method with λ between 0 and 1 

outperformed the results with λ = 0. Larger λ increases precision while 

decreasing recall. This is because larger λ penalizes an unannotated 

region for being segmented as annotated label. The parameter of λ = 

0.6 balanced precision and recall well and achieved the best Dice score 

in our experiments. 

(a) Line plots. 
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(b) Line plots focusing on λ = {0, 0.1, …, 0.9}. 

Figure 3.5: Line plots of Dice score, precision and recall 
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Figure 3.6: Box-whisker plots for parameter comparison. 

Statistical significances are indicated by ** (:𝑝 < 0.01). 

The results of each DLD are shown in Figure 3.7 and Table 3.2, 

comparing the proposed method with λ = 0 and λ = 0.6. As shown in 

Figure 3.7, statistically significant improvement was observed with 

CON, GGO, HCM, and EMP. There was a statistically significant decrease 

in the Dice score with NOR, but the difference is smaller compared to 

other improvements, as shown in Table 3.2. The Dice score with NOR 

was reduced as not much room was left to improve the precision with 

NOR in the first place, while other DLDs improved their precision. 
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Figure 3.7: Comparison between λ = 0 and λ = 0.6 for each DLD. 

Statistical significances are indicated by * (:𝑝 < 0.05) and ** (:𝑝 <

0.01). 

Table 3.2: Dice scores for each class. 

 CON EMP GGO HCM NOR All 

mean 

(std) 
      

λ = 0 
0.82 

(0.09) 

0.74 

(0.19) 

0.64 

(0.19) 

0.73 

(0.16) 

0.97 

(0.02) 

0.76 

(0.18) 

λ = 0.6 
0.82 

(0.09) 

0.81 

(0.14) 

0.67 

(0.17) 

0.75 

(0.15) 

0.95 

(0.06) 

0.79 

(0.15) 

median       

λ = 0 0.83 0.82 0.64 0.76 0.98 0.80 

λ = 0.6 0.83 0.85 0.67 0.79 0.97 0.83 
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Figure 3.8 shows confusion matrices of the results. Note that these 

confusion matrices were constructed using only annotated pixels 

because exact classes for unannotated pixels were unknown. Rows of 

the matrices were normalized; thus, diagonal elements of the matrix 

represent recall. Figure 3.8 (a) and (b) show similar patterns of 

misclassification. As diagonal elements of Figure 3.8 (a) and (b) show, 

the recall of the results with λ = 0.6 was lower than that of the results 

with λ = 0, which is also shown in Figure 3.7 and Table 3.2. Therefore, 

more analysis was conducted as follows. 

Figure 3.8: Confusion matrix constructed using only annotated 

pixels. Row-wise normalizations are applied. 

Figure 3.9 shows the typical segmentation results of each DLD. The 

differences in the Dice scores between the results of λ = 0 and λ = 0.6 

were used to choose the typical slices. The slice with the median 

difference in Dice score was chosen as a typical slice for each DLD. As 

shown in Figure 3.9, the area of representative DLDs (especially GGO 

and EMP) was smaller in λ = 0.6 than λ = 0 and fewer pixels of 

representative DLDs were leaked over the non-representative DLD 

region, which was reflected as improvements in precision. 
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(a) Consolidation (CON). 

(b) Ground glass opacity (GGO). 
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(c) Honeycombing (HCM). 

(d) Emphysema (EMP). 
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(e) Normal (NOR). 

Figure 3.9: Examples of average segmentation results. The 

numbers below images indicate Dice score, precision, and recall 

respectively. 

Figure 3.10 shows the best segmentation results of each DLD with λ = 

0.6. Segmentation results with λ = 0 and λ = 0.9 are shown for 

references. In these best results, representative DLD patterns covered 

most of the lung fields. Results with λ = 0.9 tends to have small islands 

of non-representative DLDs. 
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(a) Consolidation (CON). 

(b) Ground glass opacity (GGO). 
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(c) Honeycombing (HCM). 

(d) Emphysema (EMP). 
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(e) Normal (NOR). 

Figure 3.10: Examples of best segmentation results with λ = 0.6. 

The numbers below images indicate Dice score, precision, and 

recall respectively. 

Figure 3.11 shows the worst segmentation results of each DLD with λ = 

0.6. Segmentation results with λ = 0 and λ = 0.9 are shown for 

references. In these worst results, representative DLD patterns did not 

occupy big space in the lung fields. In Figure 3.11 (b), most of the GGO 

pixels were falsely segmented as HCM. Results with λ = 0.9 tends to 

have less false NOR pixels. 
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(a) Consolidation (CON). 

(b) Ground glass opacity (GGO). 
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(c) Honeycombing (HCM). 

(d) Emphysema (EMP). 
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(e) Normal (NOR). 

Figure 3.11: Examples of worst segmentation results with λ = 0.6. 

The numbers below images indicate Dice score, precision, and 

recall respectively. 

Figure 3.12 shows the differences per slice in Dice score between the 

results with λ = 0 and other parameters. As shown in Figure 3.12, for 

GGO, HCM, and EMP, the proposed method with λ = .6 improved the 

segmentation accuracy for the most cases while for CON and NOR, the 

proposed method with λ = .6 worsen the accuracy for the most cases. 

Overall accuracy was improved because the differences of CON and 

NOR in the plots were smaller than those of GGO, HCM, and EMP. 
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Figure 3.12: Box-and-whisker plots of the differences per slice in 

Dice score between the results with λ = 0 and other parameters. 

3.4.2 Evaluation on samples of full annotation 

In addition to the evaluation only using annotated pixels, we conducted 

additional evaluation using fully annotated images. For this evaluation, 

five slices were randomly chosen from each DLD and all pixels in the 

lung fields in the chosen slices were manually annotated. Figure 3.13 

shows the confusion matrices for the segmentation results with λ = 0 

and λ = 0.6. Unlike confusion matrices shown in Figure 3.8, these 

matrices were constructed using all pixels in the lung fields. As shown 

in the bottom row of Figure 3.13 (a), a significant number of ¬NOR 

pixels were falsely labeled as NOR with λ = 0, whereas in Figure 3.13 

(b), there were much less false NOR pixels with λ = 0.6. As can be seen 

in the unannotated regions in Figures 3.2 and 3.9, most of the 

unannotated pixels consisted of NOR pixels, therefore, models trained 
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with λ = 0.6 was able to reduce the number of false NOR pixels. 

Table 3.3 shows the mean Dice scores. As shown in the table, λ = 0.6 

was also optimal in this evaluation. Figure 3.14 shows line plots of 

evaluation metrics (Dice score, precision, and recall). The curves in 

Figure 3.14 are similar to the curves for the evaluation with partial 

annotation in Figure 3.5 with some fluctuation caused by the small 

number of samples (five per DLD) of fully annotated images. 

Figure 3.13: Confusion matrices calculated using fully annotated 

images. Note that matrices are normalized so that the sum of the 

elements in a matrix become 100. 

Table 3.3: Mean Dice scores on fully annotated images. 

λ Dice precision recall 

0 0.726 0.868 0.691 

0.1 0.801 0.879 0.779 

0.2 0.791 0.879 0.768 

0.3 0.819 0.886 0.8 
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3.168 0.113 0.016 0.007 0.022

0.407 6.818 1.328 0.212 0.085

0.121 0.054 3.303 0.000 0.004

0.000 0.000 0.012 8.309 0.010

0.178 7.958 2.522 17.836 47.516

CON GGO HCM EMP NOR

Predicted label
(b) λ = .6

C
O

N
G

G
O

H
C

M
E

M
P

N
O

R

3.165 0.111 0.015 0.004 0.036

0.502 6.461 1.355 0.155 0.378

0.052 0.060 3.333 0.002 0.009

0.000 0.011 0.079 7.974 0.276

0.355 5.892 2.346 7.808 59.621
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0.4 0.813 0.877 0.793 

0.5 0.813 0.878 0.793 

0.6 0.823 0.881 0.804 

0.7 0.816 0.877 0.796 

0.8 0.801 0.876 0.778 

0.9 0.816 0.869 0.796 

1 0.004 0.002 0.009 

(a) Line plots. 
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(b) Line plots focusing on λ = {0, 0.1, …, 0.9}. 

Figure 3.14: Line plots of Dice score, precision and recall 

calculated using fully annotated images. 

3.5 Discussion 

We developed a PSL approach and tested it on a partially annotated 

DLD dataset. The proposed method improved mean Dice score from 

0.76 to 0.79 and from 0.73 to 0.82 in the evaluation using partially 

annotated dataset and fully annotated dataset respectively. These 

improvements were thanks to the improvements in precision as seen 

in Figure 3.5 and achieved with no extra cost for annotation. This 

means that training semantic segmentation models using the proposed 

method can improve accuracy over the training methods that only used 

annotated pixels. Because PSL only requires partial annotation, it is 

easier to use active learning technique [101] to construct or update 

dataset. Low precision shown in Figures 3.6 and 3.9 was likely due to 
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the lack of full annotation available in the training dataset and needs to 

be addressed in the future work. 

We used partially annotated dataset in which only one class was 

annotated for an image in this study. This setting was chosen to test the 

proposed method in the hardest configuration. Moreover, it is common 

for publicly available datasets to have only one-class annotation and 

this study’s dataset is similar to a dataset that is created by combining 

such datasets. However, if the goal is to develop a multi-class 

segmentation model, preparing dataset with at least a couple of fully 

annotated images is more reasonable for achieving high accuracy. 

We conducted experiments with various values of balancing parameter 

λ. As shown in Figure 3.5, the supervision using unannotated pixels 

helps models to improve its precision. More specifically, the proposed 

method with optimal parameter significantly reduced the number of 

falsely labeled NOR pixels as shown in Figure 3.13. This was because 

most of the unannotated (negative) pixels were actually NOR pixels and 

training using these unannotated pixels helped the model to 

distinguish NOR and non-NOR pixels. In our experiment, λ = 0.6 was 

optimal regarding the Dice score but the parameter can be tuned based 

on the preference between precision and recall. To our best knowledge, 

while introduction of the balancing parameter to PSL was firstly 

introduced by our study [36], Shi et al. [98] also performed similar 

study that changed the balance of two terms in their loss function for 

multi-organ segmentation. In their experimental results, they had 

similar curve to ours with peak accuracy at the optimal parameter of 

0.67, which was similar to our optimal parameter (λ = 0.6). 
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In our experiments, the parameter value λ = 1 did not work at all with 

almost zero Dice score. This is because of the property of our partially 

annotated dataset. Because annotations were performed for 

representative (or dominant) DLDs, DLD texture patterns with typical 

texture patterns and appearances were annotated. With λ = 1, 

annotated pixels, which have typical texture, were not used at all for 

the training, therefore models were not able to learn typical texture of 

DLDs and failed to segment most of the typical DLDs. 

As shown in Figure 3.12, the proposed method worsened the 

segmentation accuracies for some cases. This is likely because of 

annotation errors in the dataset. Even though the annotation was 

performed carefully with multiple annotators, the annotation was still 

imperfect and the dataset contains some negative pixels that were 

actually positive pixels (i.e. some pixels of representative DLD were 

erroneously left unannotated). Two possible reasons below could 

explain why some cases had worse results with the proposed method. 

1) Results were not accurately evaluated because of the erroneous 

evaluation dataset. 2) Using erroneous negative pixels for the training 

provides erroneous supervision to the models. Testing the second 

hypothesis is in the future work and it can be tested by artificially 

introducing errors in the annotation of the training dataset. 

There are other possible approaches to realize multiclass segmentation 

using a partially annotated dataset. One approach is an ensemble 

model that combines multiple binary or subset classifier models using 

subsets of the dataset for the training of each sub-model. This approach, 

however, is expected to have less generalization ability than the 
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proposed PSL. Another possible approach is multi-task learning [102] 

that uses subsets of the dataset as different tasks and trains one model 

with multiple output layers. Comparing our method with other possible 

approaches [81], [82] is included in our future work. 

We used the reciprocal of cross-entropy for the training using negative 

pixels. Figure 3.15 (a) shows the regular binary cross entropy (BCE) 

loss for positive pixels (y=1) and Figure 3.15 (b) shows the reciprocal 

of the binary cross entropy loss, which was applied for the negative 

pixels. As shown in Figure 3.15 (a), BCE smoothly decreases as the 

output (�̂�) gets close to one while there is rapid increase in 𝐵𝐶𝐸−1 near 

�̂� = 1 in Figure 3.15 (b). This asymmetry in the two types of loss can 

make it harder to balance these two types of loss. More symmetric 

losses such as label-set loss proposed in [81] can be used. Testing other 

possible losses such as label-set [81] is included in the future work. 
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Figure 3.15: Plots of losses. (a) Binary cross entropy (BCE) loss for 

positive pixels (y = 1). (b) The reciprocal of binary cross entropy 

loss for negative pixels. 

One of the similar approaches that utilize unannotated pixels is semi-

supervised learning [103]. In semi-supervised learning, unannotated 

pixels are typically used for entropy minimization [83] or consistency 

training. The biggest difference between the proposed method and 

semi-supervised learning is that the proposed method utilizes 

unannotated pixels for negative training. Therefore, the proposed 

method is likely to outperform semi-supervised learning methods. 

However, combining partially supervised learning with semi-

supervised techniques such as entropy minimization is possible and 

can improve the segmentation accuracy. 

As shown in Figures 3.10 and 3.11, best results tend to have small DLD 

regions and worst results tend to have large DLD regions. Precision for 
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the worst results were low because of false NOR segmentation. As 

shown in Figure 3.13, GGO and EMP especially tend to have false NOR 

pixels. Therefore, NOR pixels that are similar to GGO and EMP need to 

be added to the dataset in the future. Using weak annotations such as 

scribble [99] can be useful to save annotation costs in combination 

with partial annotations and PSL. 

Comparing levels of annotation is included in the future work. One-

class per image annotation, which was used in this study, provides the 

least supervision with the lowest cost. On the other hand, all-class 

annotation, which annotate all pixels in the lung fields, provides the 

most supervision with the highest cost. Comparing above two and 

different levels of annotations between the two under fixed amount of 

cost (e.g. the time or budget for the annotation process) is needed to 

figure out the optimal level of annotation that maximizes segmentation 

accuracy under the limited amount of cost for the annotation. 

Because one representative DLD pattern was chosen by a radiologist 

for each slice, our partially annotated dataset contains potential biases. 

First, representative patterns can be classified as wrong classes 

because they were chosen by only one radiologist. Second, there are 

more typical textures in the dataset than atypical textures of the classes 

because representative patterns were chosen. These need to be 

addressed in the future work to obtain less biased results. 

One of the limitations of this study is that because the evaluation 

metrics were calculated mostly in annotated regions, the effects of the 

proposed PSL in unannotated regions were not fully studied other than 

the precision shown in Figure 3.7 and the evaluation only using a 
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fraction of the dataset shown in Figure 3.13 and Table 3.3. The lung 

tissue research consortium (LTRC) dataset [104] can be used for a 

more detailed study because the LTRC dataset provides fully annotated 

data. 

A potential future direction is to combine PSL with other techniques 

such as transfer learning [90] to achieve even better accuracy. Another 

possibility is to combine other datasets in a similar domain such as 

interstitial lung diseases from the University Hospital of Geneva [105] 

and the LTRC dataset [104], to test the possibility of improving 

accuracy using a combination of similar but slightly different datasets. 
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4 Conclusion 

4.1 Summary 

This thesis served following two purposes. 

1. Addressing the lack of comparison study on abdominal blood 

vessel segmentation compared to the abundance of new 

proposals of methods. 

2. Proposing and testing a method that takes full advantage of 

exiting dataset. 

Chapter 2 addressed the first purpose through the experiments using 

multiple methods of vessel segmentation. The experimental results 

showed that characteristics of the methods differed depending on the 

region. UN was the best method for the training ROI, whereas SN 

resulted better in non-training ROI such as lung ROI. HN generally was 

outperformed by the CNN methods but outperformed them in the lung 

ROI, where surrounding tissues are easily distinguishable from vessels. 

In chapter 3, new method was proposed that addressed the second 

purpose. Although the proposed method did not improve the 

segmentation accuracy by a large margin, the proposed method can be 

useful considering that the improvement was achieved without 

additional cost for annotating new data. The experimental results 
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showed that the proposed method improved the precision of the 

segmentation. 

4.2 Future work 

As shown in the experimental results in chapter 2, segmentation errors 

were caused by thin vessels, therefore, investing in the improvement 

on thin vessels can be the next logical step. Training a CNN specialized 

to thin vessels can be an approach to improve the performance on thin 

vessels. 

As shown in the results in chapter 3, the segmentation accuracy on 

some DLDs were still relatively low despite the improvement achieved 

by the proposed method. Possible future direction for this is to 

incorporate semi-supervised or unsupervised learning to utilize 

training dataset even further. 
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