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Abstract

Medical and health management has been highly demanded in this ageing society. To respond
to this demand, the medical/healthcare domain makes extensive use of artificial intelligence
(AI) technologies to mitigate the shortage on medical/healthcare human resources. Currently,
most of the medical/healthcare AI technologies use deep learning approaches and one of such
typical technologies is medical image analysis, which is used for the diagnosis of various
diseases.

Besides, image-based gait analysis is an important application direction of medical and
healthcare AI technologies. Since there are diseases that cause gait symptoms, medical
doctors often capture videos of patients‘ gait for analysis and diagnosis, indicating that
these gait videos contain useful information to analyze the patient‘s condition. Furthermore,
as one of the most common motions, many physical conditions are reflected on gait. The
information of medical or health can be obtained by analyzing gait; however, it is difficult to
achieve such analysis with manual visual observation, and therefore requires the use of AI
technology.

Since deep learning is a data-driven approach, its application requires a large amount
of training data. Most of the recent studies on gait analysis using deep learning methods
rely on existing large-scale gait databases, but these databases lack annotations relevant
to the medical/healthcare domain. On the other hand, the datasets in medical/healthcare
domain studies are hardly large enough to perform deep learning methods due to various
limitations. This makes studies in the medical/healthcare domain must endure small datasets,
and therefore it is critical that how to obtain results by analyzing small datasets.

In this paper, the author proposed methods of gait analysis for medical/healthcare appli-
cations under small-scale gait databases which make the most of domain-specific knowledge
related to target tasks. More specifically, the author proposed the following two strategies for
gait analysis through small-scale datasets for different cases of dataset scale and relevance of
domain-specific knowledge to the task. In cases where the dataset scale is too small to support
any machine learning methods, it is necessary to find direct and exhaustive domain-specific
knowledge and manually design analyzable features according to that knowledge. On the
other hand, for cases where the dataset scale is small yet still sufficient for fine-tuning the



deep learning network, the authors select primitive information that is relevant to the task
and that can be extracted from existing large-scale databases as domain-specific knowledge
and utilized it for pre-training primitive networks. The author conducted the following two
studies to demonstrate the effectiveness of these strategies.

First, the author proposed a method to support diagnosing idiopathic normal pressure
hydrocephalus (iNPH) by video-based gait analysis. Gait is an important factor in the
diagnosis of idiopathic normal pressure hydrocephalus. However, except for walking speed
tests, existing diagnosis methods only assess gait qualitatively (i.e., manual observation by
medical doctors). This study proposed a quantitative and multi-faceted method to assess gait
disturbance via video-based analysis. In this study, the dataset containing only 18 patients,
whereas the gait symptoms of iNPH have been described exhaustively in the medical domain.
The author therefore adopted the first strategy, i.e., manually designed gait features that could
be extracted from images according to the description of the symptoms of the disease in
medical domain works and developed a method to judge the cerebrospinal fluid (CSF) tap
test results of iNPH patients using these features.

Second, the author proposed a method of health indicator estimation using video-based
gait analysis. Knowing the health indicators can help with personal health management, and
gait analysis is a more convenient and efficient way to estimate health indicators than existing
methods. Since this task is targeting the general public, the author conducted experiments
for data collection, and obtained gait videos and health indicators from 332 subjects. This
dataset is larger than the dataset of iNPH patients, but still not large enough to train a
deep learning network from scratch. Therefore, the author extracted gait primitives related
to health indicators from an existing large-scale gait database for pre-training, and then
fine-tuned the primitive network into a health indicator estimator using the health indicator
dataset.

Moreover, the author tried to exchange the methods used in the two aforementioned
studies to confirm the suitability of the proposed strategies. As a result, the second strategy
yielded worse performance for the iNPH diagnosis support task than the original first strategy,
while the first strategy yielded worse performance for the health indicator estimation task
than the original second strategy. This indicates the necessity of appropriately switching the
strategies depending on the training dataset size as well as the domain-specific knowledge as
the author proposed.

vi



List of Publications

A. Journal publications

• A Video-Based Gait Disturbance Assessment Tool for Diagnosing Idiopathic Nor-
mal Pressure Hydrocephalus. R. Liao, Y. Makihara, D. Muramatsu, I. Mitsugami,
Y. Yagi, K. Yoshiyama, H. Kazui, M. Takeda. IEEJ Transactions on Electrical
and Electronic Engineering, Vol. 15, No. 3, pp. 433-441, Feb. 2020.

• Health Indicator Estimation by Video-Based Gait Analysis. R. Liao, K. Moriwaki,
Y. Makihara, D. Muramatsu, N. Takemura, and Y. Yagi. IEICE Trans. on
Information and Systems, Vol. E104-D, No. 10, pp. 1678-1690, Oct. 2021.

B. International conference and workshop (with review)

• Real-Time Gait-Based Age Estimation and Gender Classification from a Single
Image. C. Xu, Y. Makihara, R. Liao, H. Niitsuma, X. Li, Y. Yagi, J. Lu. Proc. of
the IEEE Winter Conf. on Applications of Computer Vision 2021 (WACV 2021),
online, pp. 3460-3470, Jan. 2021.

C. International conference and workshop (without review)

• Video-based gait analysis in cerebrospinal fluid tap test for idiopathic normal
pressure hydrocephalus patients. R. Liao, Y. Makihara, D. Muramatsu, I. Mit-
sugami, Y. Yagi, K. Yoshiyama, H. Kazui, M. Takeda. In Proc. of The 10th
International Workshop on Robust Computer Vision (IWRCV 2015), Beijing,
China, Nov. 2015.

D. Domestic conference and workshop (without review)

• Gait Video Analysis for Pre- and Post-CSF Tap Test in Patients with Idiopathic
Normal Pressure Hydrocephalus. R. Liao, Y. Makihara, D. Muramatsu, I. Mitsug-
ami, Y. Yagi, K. Yoshiyama, H. Kazui, M. Takeda. In Proc. of the 15th Japanese
Conf. of Normal Pressure Hydrocephalus, Osaka, Japan, Feb. 2014.
(特発性正常圧水頭症患者に対する髄液排除試験前後の歩行映像解析.



廖若辰，槇原靖，村松大吾，満上育久，八木康史，吉山顕次，數井裕

光，武田雅俊.第15回日本正常圧水頭症学会，平成26年2月)

• A Study on Body Composition Estimation by Gait Video Analysis. R. Liao, K.
Moriwaki, Y. Makihara, D. Muramatsu, N. Takemura, and Y. Yagi. In Proc. of
Workshop on Computer Vision and Image Media (CVIM), Okayama, Japan, Sep.
2019.
(歩行映像解析による体組成推定に関する一検討. 廖若辰，守脇幸佑，
槇原靖，村松大吾，武村紀子，八木康史. 情報処理学会CVIM研究
会，2019年9月)

• Gait Video Analysis for Pre- and Post-CSF Tap Test in Patients with Idiopathic
Normal Pressure Hydrocephalus. R. Liao, Y. Makihara, D. Muramatsu, I. Mit-
sugami, Y. Yagi, K. Yoshiyama, H. Kazui, M. Takeda. In the 29th Symposium
of Osaka Advanced Research Collaboration Forum for Information Science and
Technology (OACIS), Osaka, Japan, Nov. 2015.
(特発性正常圧水頭症患者に対する髄液排除試験前後の歩行映像解
析. 廖若辰，槇原靖，村松大吾，満上育久，八木康史，吉山顕次，數
井裕光，武田雅俊. IT連携フォーラムOACIS第29回シンポジウム，平
成27年11月)

• A Study on Body Composition Estimation by Gait Video Analysis. R. Liao, K.
Moriwaki, Y. Makihara, D. Muramatsu, N. Takemura, and Y. Yagi. In the 75th
Academic Conference of the Institute of Scientific and Industrial Research, Osaka
University, Osaka, Japan, Nov. 2019.
(歩行映像解析による体組成推定に関する一検討. 廖若辰，守脇幸佑，槇
原靖，村松大吾，武村紀子，八木康史. 大阪大学産業科学研究所第75回
学術講演会，2019年11月)

• A Study on Body Composition Estimation by Gait Video Analysis. R. Liao, K.
Moriwaki, Y. Makihara, D. Muramatsu, N. Takemura, and Y. Yagi. In Dynamic
Alliance for Open Innovation Bridging Human, Environment and Materials G3
Subcommittee, Nov. 2019.
(歩行映像解析による体組成推定に関する一検討. 廖若辰，守脇幸佑，槇
原靖，村松大吾，武村紀子，八木康史. ダイナミック・アラアンスG3分
科会，2019年11月)

• A Study on Body Composition Estimation by Gait Video Analysis. R. Liao,
K. Moriwaki, Y. Makihara, D. Muramatsu, N. Takemura, and Y. Yagi. In the
2nd Symposium of Graduate School of Medicine and Institute of Scientific and

viii



Industrial Research, Osaka University, Feb. 2020.
(歩行映像解析による体組成推定に関する一検討. 廖若辰，守脇幸佑，槇
原靖，村松大吾，武村紀子，八木康史. 第2回大阪大学医学系研究科・
産業科学研究所懇話会，2020年2月)

ix





Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor Professor Yasushi
Yagi, who provided me many precious opportunities and invaluable advice during my long
way towards my Ph.D.

A similar gratitude belongs to my secondary supervisor Professor Yasushi Makihara for
his dedicated guidance, continuous support, and patience during my all these years in Yagi
Lab.

Next, I would like to thank Professor Ikuhisa Mitsugami, Daigo Muramatsu and Md.
Atiqur Rahman Ahad for their treasured support and valuable advice in my studies.

I would also like to thank my reviewers, Professor Fumihiko Ino, Hajime Nagahara, and
Katsuro Inoue for their valuable comments that helped me to accomplish this thesis.

Lastly, I would like to thank my dearest family and all my friends and lab mates for their
kind help and support in making my study and life in Japan a great time.





Table of contents

List of figures xv

List of tables xvii

Nomenclature xix

1 Introduction 1

2 Study on diagnosis of iNPH 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Gait feature assessment . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Judgment of the CSF tap test . . . . . . . . . . . . . . . . . . . . . 20

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Feature assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Judgment of the CSF tap test . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Noise tolerance of the judgement . . . . . . . . . . . . . . . . . . 34

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Lateral sway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Wide-base gait and duck-footed walking . . . . . . . . . . . . . . . 36

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Study on health indicator estimation 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Video-based gait analysis . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Fine-tuning in deep learning . . . . . . . . . . . . . . . . . . . . . 42

3.3 Health indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



Table of contents

3.4 Health indicator estimation using gait-primitive networks . . . . . . . . . . 45
3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Gait template image . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 Gait primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.4 Pre-training the gait primitive network . . . . . . . . . . . . . . . . 48
3.4.5 Fine-tuning the gait primitive network for health indicator estimation 54

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.4 Ablation studies on gait primitives . . . . . . . . . . . . . . . . . . 58
3.5.5 Comparison with benchmarks . . . . . . . . . . . . . . . . . . . . 72
3.5.6 Sensitivity analysis of the number of training samples . . . . . . . 74
3.5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Discussion 77
4.1 iNPH diagnosis using deep learning approach . . . . . . . . . . . . . . . . 78
4.2 Health indicator estimation via manually designed feature . . . . . . . . . . 80
4.3 iNPH diagnosis via classical machine learning . . . . . . . . . . . . . . . . 82
4.4 Scope of the two strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Conclusion 85

References 89

xiv



List of figures

1.1 Scale of major gait databases. . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Existing methods and proposed strategies . . . . . . . . . . . . . . . . . . 5

2.1 Typical gait of the iNPH patient . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Assessment of lateral sway . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Detection of stance phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Assessment of wide-base gait . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Assessment of duck-footed walking . . . . . . . . . . . . . . . . . . . . . 18
2.6 Results of gait feature assessment . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Results of time measurements of walking tests . . . . . . . . . . . . . . . . 26
2.8 Comparison of p-values in each feature . . . . . . . . . . . . . . . . . . . 32
2.9 Minimum P-values for each patient . . . . . . . . . . . . . . . . . . . . . . 34
2.10 Noise tolerance of the judgement . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Overview of the proposed method. . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Measurement of forward and backward arm swing . . . . . . . . . . . . . . 47
3.3 Measurement of body width . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Relationship between body width and some health indicators . . . . . . . . 50
3.5 Sample of gait primitive values . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Structure of the gait primitive network . . . . . . . . . . . . . . . . . . . . 53
3.7 Network structure for fine-tuning . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 InBody270 and the measurement. . . . . . . . . . . . . . . . . . . . . . . 57
3.9 Network structure of the auto-encoder . . . . . . . . . . . . . . . . . . . . 58
3.10 Result for using motion/pose characteristics as gait primitives . . . . . . . . 59
3.11 Result for using shape characteristics as gait primitives . . . . . . . . . . . 60
3.12 Estimated values and errors of weight, using motion/pose primitives . . . . 62
3.13 Estimated values and errors of BFM, using motion/pose primitives . . . . . 64
3.14 Estimated values and errors of weight, using shape primitives . . . . . . . . 66

xv



List of figures

3.15 Estimated values and errors of BFM, using shape primitives . . . . . . . . 68
3.16 Comparison of results using motion/pose and shape characteristics . . . . . 71
3.17 Comparison with the benchmarks . . . . . . . . . . . . . . . . . . . . . . 73
3.18 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Example of the differential image . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Judgment of CSF tap test using deep learning classification . . . . . . . . . 80
4.3 Health indicator estimation using manually designed features . . . . . . . . 81
4.4 Judgment of CSF tap test using SVM+LBP . . . . . . . . . . . . . . . . . 82

xvi



List of tables

1.1 Existing major gait databases. . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Patient characteristics and walking test scores. . . . . . . . . . . . . . . . . 12
2.2 The p-values of all features . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Minimum p-value feature for each patient . . . . . . . . . . . . . . . . . . 33

3.1 Health indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Layer configurations for GEINet. . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Results of the proposed method . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Examples of GEI and estimated values . . . . . . . . . . . . . . . . . . . . 70

4.1 Accuracy for CSF tap test judgement using deep learning method. . . . . . 79
4.2 Accuracy for CSF tap test judgement using SVM+LBP . . . . . . . . . . . 82

xvii





Nomenclature

Acronyms / Abbreviations

AI Artificial Intelligence

BAS Backward Arm Swing

BFM_MA Mean of Arms’ Body Fat Mass

BFM_ML Mean of Legs’ Body Fat Mass

BFM_T Trunk’s Body Fat Mass

BFM Body Fat Mass

BMI Body Mass Index

BS Back Straightness

CNN Convolutional Neural Network

conv Convolutional Layer

CSF Cerebrospinal Fluid

DW Duck-footed Walking

FAS Forward Arm Swing

fc Fully-connected Layer

FFM Fat Free Mass

fps Frame Per Second

GEI Gait Energy Image

xix



Nomenclature

GSSR Gait Status Scale-Revised

IBS InBody Score

iNPH idiopathic Normal Pressure Hydrocephalus

L_LBM Limbs’ Lean Body Mass

LBM_MA Mean of Arms’ Lean Body Mass

LBM_ML Mean of Legs’ Lean Body Mass

LBM_T Trunk’s Lean Body Mass

LBM Lean Body Mass

LS Lateral Sway

MAE Mean Absolute Error

ML Machine Learning

norm Normalization Layer

NPH Normal Pressure Hydrocephalus

OD Obesity Degree

PBF Precent Body Fat

PCA principal component analysis

PG Petit-pas Gait

pool Pooling Layer

SLM Soft Lean Mass

SL Stride Length

SMI Skeletal Muscle Index

SMM Skeletal Muscle Mass

SVR Support Vector Regression

TMW Ten Meter Walking

xx



Nomenclature

TUG Timed Up & Go

VFL Visceral Fat Level

WG Wide-base Gait

WHR Wasit-Hip Ratio

xxi





Chapter 1

Introduction

Human needs are constantly changing with the development of society. In modern society,
with the great material and spiritual abundance, the pursuit of human happiness has gradually
shifted to health, since the only way to enjoy the material and spiritual happiness is to
maintain a healthy body. Especially due to the increase in average life expectancy, many
countries and regions around the world are entering or about to enter an aging society, thus
increasing the social demand for medical care and health management.

To respond to this demand, the healthcare domain has been actively introducing technolo-
gies from other domains for research and development. Among them, artificial intelligence
(AI) technology introduced from the domain of information science and technology plays an
important role. Earlier, almost all computer-aided diagnosis technologies were referred to
as medical AI [1]. In the 1980s, AI approaches to medical imaging referred to technologies
that binarize images and extract features using methods such as Hough transform, and then
use a set of logical rules to deduce the image content based on the presence or absence of
the features [2–6]. Subsequently, statistical models [7–9] and classical machine learning
technologies such as Bayesian networks [10, 11], logistic regression [12–14], principal com-
ponent analysis [15–17], support vector machines [18–20], and decision trees [21–23] have
also been applied.

And now, deep learning, the state-of-the-art AI technology, is also being introduced into
the healthcare domain. Deep learning is a data-driven approach that discovering intricate
structures in high-dimensional data, and has excelled in areas such as image recognition,
speech recognition, and natural language processing. Compared to classical machine learning,
deep learning requires very little engineering by hand while enabling higher performance,
and thus can easily take advantage of increases in the amount of available computation and
data [24, 25].

1



Introduction

One of the most well-known applications of deep learning technology in the healthcare
field would be the pedometer function of smartphones. By analyzing the data measured by
the built-in accelerometer and gyroscope, the smartphone can count the number of steps
taken by the carrier in real time [26]. Furthermore, deep learning methods provide assistance
in drug discovery and development for validation of drug targets and optimization of drug
structure design [27], and are used in genetic analysis to process large and complex genomic
datasets [28].

Deep learning methods are known to excel at image analysis and are therefore often used
in clinical diagnosis to analyze medical images, such as computed tomography, magnetic
resonance imaging, optical coherence tomography and dermoscopy images. These analyses
are used in the diagnosis of various diseases, including cardiovascular disease, retinal
disease, tuberculosis, skin cancer, pneumonia [29–33], etc. As practical applications of these
technologies, there are already commercial companies offering mature medical AI solutions,
such as IBM Watson [34]. In the sudden outbreak of the novel coronavirus 2019, deep
learning-based CT image analysis technologies were used for fast screening and enabled
large-scale deployment [35].

In addition to the specialized medical imaging above, images captured with common
cameras, such as gait images, can also be used in the healthcare-related studies. Since
there are diseases that cause gait symptoms, hospitals often capture videos of patients’ gait
for analysis and diagnosis, indicating that these gait videos contain enough information to
analyze the patient’s condition [36, 37]. Furthermore, as one of the most common motions,
many physical conditions are reflected in gait, such as height, weight, leg length, muscle
mass and body fat mass [38–40, 40, 41]. Therefore, it can be assumed that the gait video
also includes these health-related information. However, it can be seen through daily life
experience that it is very difficult to obtain this information through visual inspection, which
requires a long period of training, and the information obtained can be unreliable. Therefore,
quantitative analysis of gait to obtain more detailed information has become a natural trend.

In order to obtain quantitative data, early gait studies usually required specialized equip-
ment such as force platforms, wearing goniometers and accelerometers for measurement,
and thus the amount of data was very limited. However, with the development of technology
in the domain of computer vision, non-contact measurement approaches using cameras have
significantly reduced the difficulty of collecting data, allowing deep learning methods to
be applied to gait analysis. The latest research can now infer a variety of information from
gait such as identity [42–45], age [46–48], gender [48, 49], emotion [50–52] and aesthetic
attributes [53, 54].

2
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Fig. 1.1 Scale of major gait databases.

Since deep learning requires large amounts of data, those studies of image-based gait
analysis rely on large-scale gait databases. Existing major gait databases are summarized
in Table 1.1 [69, 68]. It can be seen that the earlier gait databases were smaller in scale,
while those released in recent years have become larger (Fig. 1.1). However, these databases
focus on factors such as views, age, clothing, carrying, and walking speed, while lacking
annotation related to the healthcare domain.

On the other hand, the datasets collected by studies in healthcare domain are hardly
sufficient for deep learning. The reason for this is that the annotation of datasets suitable for
healthcare domain studies is more specialized than the general gait analysis. For example, in
the application of disease diagnosis, only diagnoses made by professional physicians can be
taken as the ground truth, and the number of physicians limits the annotation of the dataset.
Moreover, the analysis is required to be performed separately according to different diseases,
and it is difficult to collect a large enough sample due to the limited number of patients with
a specified disease. In some topics targeting general health, the subjects are not restricted
by conditions, but data collection still requires specialized personnel and instruments for
annotation. Therefore, the scale of the dataset for this type of topics, although it can be larger
than the disease diagnosis one’s, is still limited. As discussed above, studies in the healthcare
domain must endure small datasets, and therefore it is critical that how to obtain results by
analyzing small datasets.

The scale of a dataset determines the amount of information it contains. When a dataset
is large enough, deep learning can mine the contained information that is valid for achieving
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scaleVery small Small

Requirement of 
domain-specific knowledge

Directly
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Transfer learning
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None Deep learningClassical ML with
classical handcrafted feature

Medium

Medium

Fine-tuning with
general model

Strategy Ⅰ

Strategy Ⅱ

(c)

(d)

(a)(b)

Fig. 1.2 Existing methods for image analysis and the two proposed strategies. The existing
methods are shown as solid gray ellipses, and the proposed strategies are enclosed in red
ellipses.

a specific task, i.e., domain-specific knowledge, on its own. And when it is undersized, it is
necessary to introduce knowledge manually to compensate for the lack of information.

The author summarized the various methods commonly used in image analysis and
showed their requirements for external domain-specific knowledge and dataset scale in
Fig. 1.2. As shown in the figure, deep learning methods ((a) in the figure) do not need to
be supplemented with any external domain-specific knowledge, but can only be used for
large-scale datasets.

For the analysis of small-scale datasets, one approach is to extract classical manual image
features such as local binary pattern and histogram of oriented gradients, and use classical
machine learning (ML) methods such as support vector machines and nearest neighbor
algorithm for analysis ((b) in Fig. 1.2) [70, 71]. It is considered that classical ML methods
are more suitable for analyzing small-scale datasets than deep learning methods. However,
since these methods do not utilize any domain-specific knowledge, these methods, despite
being much smaller than deep learning methods, still require datasets of a certain scale.
Moreover, such methods have inferior performance compared to deep learning methods with
sufficiently scaled datasets, and thus are difficult to achieve complex tasks.
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In addition, good performance can also be obtained with small datasets using transfer
learning methods ((c) in Fig. 1.2), when the target is the same or similar to the task of
an existing trained deep neural network model [72–75]. In this case, models with good
performance which trained with large-scale databases (Referred to as the general pre-trained
model), e.g., ResNet [76] and VGG [77] models pre-trained with ImageNet [78], are usually
used. These general pre-trained models are trained from large-scale databases, and thus it can
be considered that the weights of their layers preserve the domain-specific knowledge of their
tasks. Those topics that are suitable for the transfer learning approach require approximately
the same domain-specific knowledge because their tasks are very similar to those of the
pre-trained models. For such topics, only the final output layer of the pre-trained model
needs to be retrained, and thus small-scale databases are sufficient.

However, such studies that are fully aligned with the task targets of general pre-trained
models are, after all, in the minority, and more studies are on topics that are only weakly
related to the task targets of existing trained networks. In such cases, it is still possible to
use those general trained models mentioned before. However, since the domain-specific
knowledge contained in the general pre-trained model is far removed from those required for
the topic, more layers need to be retrained than for transfer learning [79–81]. Such approach
is known as fine-tuning ((d) in Fig. 1.2). In order to retrain more layers, more information is
needed from the dataset. Therefore, the fine-tuning approach still requires a certain level of
dataset scale to obtain adequate accuracy, and are not suitable for healthcare domain studies
where only small datasets are available.

As can be seen from the above examples, the need for domain-specific knowledge is in a
trade-off with the scale of the topic’s dataset, while studies in healthcare domain often have
detailed domain-specific knowledge despite the small scale of their datasets. Therefore, the
author believes that the dependence on the scale of datasets can be reduced by enhancing the
utilization of domain-specific knowledge.

For example, in studies on the diagnosis of specific diseases, the datasets are often
extremely small because of the limited number of patients, and are difficult for public
sharing due to protection of individual privacy. Such small datasets are not even amenable
to analysis using classical ML methods. However, since these diseases have been well
studied in the medical domain, their domain-specific knowledge is often very exhaustive.
For such cases, the knowledge can then be used to define handcrafted image features to
replace classical, general features, e.g., designing extraction methods for features by tracing
physicians’ approaches to determining symptoms. Also, instead of ML, analysis methods
that are specific to the topic and these features may yield better results.
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On the other hand, for studies where domain-specific knowledge is less directly related
to the topic while the scale of dataset is not adequate to fine-tune a general pre-trained model,
it is better to utilize the available domain-specific knowledge to pre-train a basal network for
the fine-tuning. In this paper, the author refers to such domain-specific knowledge related to
the topic as primitives, and refers to networks pre-trained with the primitives as primitive
networks. The fine-tuning of such primitive networks will give better results than using those
general pre-trained models, which are trained with larger datasets, yet the domain-specific
knowledge contained is unrelated to the topic.

The author has studied topics with different scales of datasets and domain-specific
knowledge with a view to proving the idea. The contributions of this work are summarized
as follows.

1. Strategy for gait analysis through small-scale datasets
In research in the domain of gait analysis, leveraging known domain-specific knowledge

is an effective solution when the scale of the dataset is not sufficient to directly use deep
learning methods. In this work, two strategies are proposed to cope with the problem of
undersized datasets as follows.

I. In cases where the dataset scale is too small to support any ML methods, it is neces-
sary to find direct and exhaustive domain-specific knowledge and manually design
analyzable features according to that knowledge.

II. For cases where the dataset scale is small yet still sufficient for fine-tuning the deep
learning network, information that is as relevant to the topic as possible while being
extractable from existing large-scale databases can be selected as domain-specific
knowledge and utilized by pre-training primitive networks.

The author conducted following two studies to demonstrate the effectiveness of these
strategies.

2. Judgement of cerebrospinal fluid (CSF) tap test for idiopathic Normal Pressure
Hydrocephalus (iNPH) patients from walking test video.

iNPH is a disease that predisposes people of advanced age and can lead to dementia, gait
disturbances and other symptoms. The CSF tap test is used to determine whether a patient
can be cured by a specific surgery, and the results are judged primarily by improvements in
gait symptoms, which are therefore well-described in the medical domain. However, due to
the aforementioned difficulties, the scale of its dataset is very small (less than 20 subjects).
The author therefore adopted strategy I, i.e., manually designed gait features that could be
extracted from images according to the description of the symptoms of the disease in medical
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domain works, and developed a method to judge the CSF tap test results of iNPH patients
using these features.

3. Estimation of health indicators related to body composition from a walking video.
Knowing health indicators can help with personal health management, and gait analysis is

a more convenient and efficient way to estimate health indicators than existing methods. Since
this topic is targeting the general public, the subject is not as restricted as the previous study.
However, the scale of the dataset is still limited (300+ subjects) because the measurement
of health indicators requires special instruments and has to organize specialized activities
to collect data. In addition, there is no existing literature that directly describes how the
health indicators affect gait as in the previous study. The author therefore adopted strategy II,
i.e., chose some gait characteristics that could be extracted on a large-scale database as the
sub-optimal of the domain-specific knowledge, and use them to pre-train the deep learning
networks.
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Chapter 2

A Video-Based Gait Disturbance
Assessment Tool for Diagnosing
Idiopathic Normal Pressure
Hydrocephalus

2.1 Introduction

Normal pressure hydrocephalus (NPH) is a syndrome first described by Hakim and Adams
[82] that is characterized by the classic clinical trial of gait disturbance, cognitive dysfunction,
and urinary symptoms. NPH is further classified into secondary and idiopathic NPH (iNPH).
iNPH develops without an identifiable cause, and occurs in approximately 1% of older
adults [83, 84].

According to the Japanese guidelines for the management of iNPH [85], iNPH is classified
into three diagnostic levels: preoperatively “possible”, “probable”, and postoperatively
“definite”. The diagnostic flow is provided as follows:

Step 1: Patients with at least one of the symptoms of dementia, gait disturbance, and
urinary incontinence (known as the clinical triad) [86, 87], and who meet other criteria, are
diagnosed as possible iNPH.

Step 2: The possible iNPH patients who meet the criteria of a cerebrospinal fluid (CSF)
examination, and who have one of the investigational features obtained by morphologic brain
imaging [88, 89] or a CSF tap test [90, 91], are diagnosed as probable iNPH. The CSF tap test
is judged by the improvement of the clinical triad, particularly the gait disturbance [92, 93].
More specifically, a patient undergoes fixed-distance walking tests such as the Timed Up &
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Go (TUG) test [94, 13] before and after the lumbar puncture of the CSF tap test. Thereafter,
the patient is labeled as tap-positive if they gain >10% improvement in walking time as
an objective (quantitative) criterion, or improvement in gait disturbances through visual
inspection by a physician as subjective (qualitative) criterion, otherwise, the patient is labeled
as tap-negative. The tap-positive patients are then diagnosed as probable iNPH.

Step 3: A surgical procedure (i.e., a shunt surgery) is indicated for the probable iNPH
patients, and the patients with improved postoperative symptoms are diagnosed as definite
iNPH.

In the present study, we focused on the CSF tap test (Step 2). Since it is difficult to
correctly judge all patients using a single objective criterion (i.e., the walking time), additional
criteria are required. The criteria associated with qualitative gait disturbance assessment
through visual inspection by a physician are useful, however, they are strongly dependent on
the subjectivity and degree of proficiency of the individual physicians. Indeed, the physician
requires considerable experience to make a correct judgment through visual inspection. Thus,
it is necessary to develop a quantitative method to assess gait disturbances from multiple
aspects to improve the accuracy of diagnosis.

Other studies assessing gait disturbance to diagnose iNPH have also used qualitative visual
inspection-based methods including the dynamic gait index [95], the Tinetti performance-
oriented mobility assessment [96], or a customized criterion [97, 98]. Although there are
several studies that discuss the quantitative assessment of gait disturbances in iNPH, the
techniques require special equipment such as accelerometers [99], footswitches [100, 101],
knee goniometers [100], and motion capture systems [101], which are unlikely to be available
for routine clinical use.

By contrast, video-based gait disturbance assessment is promising for routine clinical use
as patients do not need to wear accelerometers or goniometers, and setup of a commercially
available digital video camera is easier than that for aligned footswitches. Indeed, the efficacy
of video-based gait analysis is well established in the fields of computer vision, pattern
recognition, and biometrics. In particular, holistic silhouette-based gait representation [102,
103] is widely used in video-based gait analysis, with numerous applications including
human identification, forensics, gait personality measurement, gender classification, and age
estimation [104–109].

The above-mentioned holistic silhouette-based gait representations are, however, not
necessarily effective for medical/health applications and hence we often require more directly
interpretable gait features (e.g., stride [110], sudden motion variation [111], etc.) in the
medical/health applications. The existing methods in medical/health field [112, 111, 110]
usually extract the directly interpretable gait features from a side-view image or multi-view
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images including side-view images. Since it requires a relatively large space to capture a
walking image sequence from the side-view, application scenes are limited for the methods,
which require the side-view images. Considering that walking tests are often conducted at
narrow corridors in the hospital in clinical practice, it is desirable to extract the gait features
from frontal view to save space.

The aim of the present study is to quantitatively assess the gait disturbance of iNPH
patients using video-based gait analysis (without the requirement for any special equipment),
and to validate its efficacy for judgment of the CSF tap test. More specifically, we select
four gait features from the gait status scale-revised (GSSR), which is used in subjective
assessment by physicians, and develop a method to quantitatively assess the four gait features
to judge the CSF tap test more accurately compared with that using a single quantitative
criterion (i.e., the walking time).

2.2 Method

2.2.1 Patients

We recruited eighteen patients (twelve women and six men) who were previously diagnosed
with possible iNPH at Osaka University Hospital (Table 2.1). CSF tap tests were performed
on the patients, and a set of walking tests were performed twice daily over at least five days
just before and after the tap tests. Patients judged as tap-positive in the tap test were indicated
for shunt surgery, and another set of walking tests was performed after the surgery to verify
the tap test results. Two tests were included in each set of walking tests: the 3 m TUG,
and the 10 meter walking test (TMW). The tests are both round-trip walks, where the TUG
starts from sitting on a chair, and contains the actions for standing and sitting, whereas the
TMW does not. The best time scores for each of the two walking tests were taken from each
set performed before and after the CSF tap test. If either or both of the best time scores of
the TUG and the TMW for a patient improved by >10% after the tap test, the patient was
judged as tap-positive, and vice versa. Nine patients were judged to be tap-positive in the
preoperative walking tests, while the others were tap-negative. Of the tap-positive patients,
two had no improvement in their walking time (defined here as speed-negative patients) in
both the TUG and the TMW, and were diagnosed with tap-positive by gait improvement
assessed through visual inspection by physicians. However, the results of the postoperative
walking tests proved that all nine patients had definite iNPH, indicating that the tap-positive
assessment of the speed-negative patients was correct.
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Table 2.1 Patient characteristics and walking test scores.

Patient Gender Age (yr.) Result of tap test
>10% improvement

TUG TMW

P1 F 71 Positive Yes No
P2 F 82 Positive Yes Yes
P3 M 75 Positive Yes No
P4 F 67 Positive No Yes
P5 F 80 Positive Yes No
P6 F 76 Positive Yes No
P7 F 68 Positive Yes No
P8 F 78 Positive No No
P9 M 75 Positive No No
N1 F 72 Negative No No
N2 M 78 Negative No No
N3 F 82 Negative No No
N4 M 69 Negative No No
N5 F 81 Negative No No
N6 M 75 Negative No No
N7 F 87 Negative No No
N8 M 72 Negative No No
N9 F 83 Negative No No

For gait disturbance analysis, we captured walking videos of the patients from the frontal
view using a consumer digital video camera (Sony Corporation, Tokyo, Japan), with a
resolution of 1920× 1080 pixels and a framerate of 30 frames per second. The videos
included multiple trials of TUG and TMW, which were performed before and after the
lumbar puncture.

2.2.2 Gait feature assessment

Gait features

An example of a typical gait of a patient with iNPH is shown in Fig. 2.1. To select the gait
features to be assessed, we referred to an existing scale of gait disturbances of iNPH, termed
the GSSR [113]. GSSR is a qualitative scale that relies on visual inspection by a physician.
The 10 factors of gait disturbance that the GSSR focuses on and their scoring criteria are
defined as follows.
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Fig. 2.1 Image sequence of the typical gait of an iNPH patient, with a frame rate of 6 frame
per second.
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1. Postural stability: Response to sudden, strong posterior displacement produced by a
pull on the shoulders.

0: Stop by oneself with <2 steps

1: Stop by oneself with 3–5 steps

2: rush >6 steps but can stop by oneself

3: gradually rush and cannot stop by oneself

4: just fall down without a foot appearing backward

2. Wide-base gait

0: None

1: Present

3. Petit-pas gait

0: None

1: Present and steps with the distance between two feet >1x foot length

2: The distance between two feet <1x foot length

4. Freezing of gait

0: None

1: The first steps slower or smaller than the subsequent ones

2: A walk stops on the way

5. Shuffling gait

0: None

1: Present

6. Independence of walking

0: Normal

1: Necessity of monitoring

2: Necessity of assistance

7. Lateral sway
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0: None

1: Lateral sway of the trunk without any foot corrections

2: Lateral foot corrections during walking are present

8. Festinating gait

0: None

1: Accelerate but can stop by oneself

2: Accelerate and cannot stop by oneself

9. Disturbed tandem walking: >2 foot corrections in 8 steps of open-eye tandem walking

0: None

1: Present

10. Duck-footed Walking

0: None

1: Present

The scale requires that each item of the GSSR is rated with a discrete value (e.g., 0
and 1 for wide-base gait), and the total score is then used to judge if the patient has a gait
disturbance caused by iNPH. In the present study, we focused on four items (lateral sway,
petit-pas gait, wide-base gait, and duck-footed walking) because the features associated with
these items can be observed from frontal gait image sequences (i.e., videos) of the patient,
which can be captured relatively easily during walking tests.

Assessment method

The proposed assessment methods of the four items are described below.

Pre-processing: We manually selected the stable-walking sequences for assessment from
the video, beginning from the frame in which the patient moved his/her foot to take the first
step, until the frame in which he/she takes a step to change direction before the turn-back
point. Because the walking distance was only 3 m in TUGs, the patients’ stable-walking
sections were too short for assessment. Thus, we selected all image sequences from the
TMWs. To prepare for the following assessment, we first detected the patients’ faces with a
commercial off-the-shelf face detector (OKAO Vision; OMRON Corporation, Kyoto, Japan),
and blurred their faces for privacy protection. We then estimated the camera orientation
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based on the parallel lines of a corridor in the hospital, and corrected the image rotation/tilt
using the camera orientation so that the image plane is perpendicular to both the ground and
the wall surface. It allows us to obtain the horizontal or vertical distance of the two points by
measuring the coordinates. For the silhouette-based gait analysis, we extracted the whole-
body silhouette of a patient. Because gait is periodic, we selected a subsequence composed
of two stable gait periods with sufficient image resolution of the patient from the entire
image sequence to reduce the time required for silhouette extraction. We normally chose the
last two gait periods before turning around that had no step fluctuation. We extracted the
silhouette using the grab-cut algorithm [114] for semi-automatic segmentation, and added
manual interventions to create a higher-quality silhouette. We also manually set the bounding
boxes for the patients’ regions throughout the whole sequence.
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Fig. 2.2 Assessment of lateral sway (LS). The X-axis position of the patient’s head is recorded
as a trajectory as shown in the red curve on the right, and the moving average of this trajectory
is calculated using the gait period as the period (blue curve).

Lateral sway: Lateral sway assesses the trunk’s sway during walking. As defined by the
GSSR, patients with trunk sway are given a score of 1, and patients with fluctuations in their
heel strike positions are given a score of 2. In the present study, we only used the score of
1 to assess trunk sway. As shown in Fig. 2.2, we computed the trajectory of each patient’s
head position along a horizontal axis provided by face tracking, and subtracted the moving
average of the trajectory to calculate the deviation of the head from the midline of the body.
We then normalized the deviation by the patient’s height (i.e., the height of the bounding
box to the patient) because the amount of lateral sway is scaled by the patient’s height, and
computed the mean of the normalized deviation as the lateral sway score

qLS =
1
hi

1
n−2⌊p/2⌋

n−⌊p/2⌋

∑
i=⌊p/2⌋

(ci − c̄i),
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where hi [pixel] is the height of bounding boxes (i.e., the height of a patient) at the i-th frame,
n [frame] is the number of frames in an image sequence, p [frame] is the gait period of
patient, ⌊·⌋ is a floor function, ci is the horizontal position of the center of patient’s head at
the i-th frame, and c̄i is a moving average of ci with a period of p, which can be computed as,

c̄i =
1
p

i−⌊p/2⌋+p−1

∑
k=i−⌊p/2⌋

ck.

Petit-pas gait: Petit-pas gait literally means “gait with a very small stride”. We counted the
number of steps during the walking test and calculated the stride. Because the stride is scaled
by the patient’s height, we normalized the stride by the height of the bounding boxes, and
then defined the normalized value as the petit-pas gait score

qPG =
1

hmax

L
nst

,

where hmax is the maximum height of bounding boxes when patient reach the turn-back point,
L is the length of the walking course, and nst is the number of steps.

Silhouette Silhouette of lower body

Lowermost
point

Foot region

Fig. 2.3 Detection of stance phase for the assessment wide-base gait and duck-footed walking.
Since both symptoms are assessed when the foot is in stance phase, we detected both feet in
each frame of the gait video and labeled them separately whether it was in stance phase or
not.

Wide-base gait and duck-footed walking: A wide-base gait means that the lateral interval
between the feet of the patient while the walking is wide. Duck-footed walking means that
the patient’s large toe is oriented outwardly during the stance phase. Because both features
are observable during the stance phase, we try extracting the stance phases from a silhouette
sequence. As shown in Fig. 2.3, we first locate feet search window whose bottom, left, and
right coincide with the bottom, the left, and the right of the bounding box, respectively,
and whose height is set in proportion to the height of the bounding box. We then divide
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𝑖𝑚𝑠

Stance phase 
𝑠

Stance phase 
𝑠 + 1

𝑖𝑚𝑠+1

𝑦

𝑥

Fig. 2.4 Assessment of wide-base gait. The innermost foreground pixel within the foot region
which is in stance phase is recorded as the innermost point of the foot.

Region of the foot

Duck-footed
Τ𝑟1 𝑟2 > 1

1

No duck-footed
Τ𝑟1 𝑟2 ≈ 1

𝑟1 𝑟2

1st principal axis2nd principal  axis

Fig. 2.5 Assessment of duck-footed walking. The area inside the green dashed circles was
used for PCA calculations. The two figures below are typical examples of foot silhouettes
with and without duck-footed walking, respectively.
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the window by its horizontal middle point into left/right foot search sub-windows, and a
silhouette region inside the left/right foot search sub-window is regarded as left/right foot
region. We then extract the bottom of the left/right foot region as the foot bottom points.
Finally, we can estimate a phase φi (stance phase or non-stance phase) at the i-th frame by
analyzing the vertical movement of the foot bottom points based on the assumption that the
vertical movement should be small at the stance phase as

φi =

{
Stance phase, ∆yb

i ≤ α

Non-stance phase, otherwise
,

∆yb
i = yb

i+1 − yb
i ,

where yb
i is the vertical position of the foot bottom points, and α is a threshold to judge the

phase. The threshold is automatically determined by Otsu’s discriminant analysis criterion
on a histogram obtained by a set of the vertical movements {∆yb

i } for each patient.
We analyzed the silhouettes of the stance phases for evidence of a wide-base gait or

duck-footed walking.
In the assessment of wide-base gait (Fig. 2.4), we calculated the horizontal distance

between the innermost points of the foot silhouettes during adjacent stance phases, and
normalized them by the height of bounding boxes. The mean of these normalized values was
defined as the wide-base gait score

qWG =
1

nsp

nsp−1

∑
s=1

distance(xs,xs+1),

distance(xs,xs+1)

=

{
xs − xs+1, Stance phase s is left foot
xs+1 − xs, Stance phase s+1 is left foot,

where nsp is the total number of stance phase of both feet, and xs is the horizontal position of
the innermost point of the landing foot’s silhouette in the stance phase s.

In the assessment of duck-footed walking (Fig. 2.5), we first extracted the foot silhouette’s
region by setting bounding boxes for the left/right foot that were proportional to the full-body
bounding box. The proportion was pre-defined experimentally so that the bounding boxes can
contain the left/right foot. We then computed the principal axes of the foot silhouette’s region
by principal component analysis (PCA) during the stance phase, and assessed the length of
first and second principal axes. The ratio of the length of the first and second principal axes
is close to 1 when the toe is straight forward, and is larger as the toe is oriented outwardly.
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We therefore defined the sum of the ratios of the two feet as the score of duck-footed walking.
The score is defined by

qDW = ∑
f∈{left,right}

1

n f
sp

n f
sp

∑
s=1

r f ,1
s

r f ,2
s

,

where r f ,k
s is the length of the k-th principal component of the foot f ’s region in stance phase

s, and n f
SP is the number of stance phases of the foot f .

Unlike the first two features, wide-base gait and duck-footed walking are assessed from
only two walking cycles where the silhouettes are extracted.

2.2.3 Judgment of the CSF tap test

We used the four gait features (i.e., lateral sway, petit-pas gait, wide-base gait, and duck-
footed walking) extracted from a gait image sequence and the walking time to improve
the judgment for the CSF tap test. Because it was previously reported that the speed of
turning around is important for the CSF tap tests [115, 116], we also used the time for turning
around at the halfway point of the TUG and the TMW, in addition to the total walking time.
Specifically, we manually set the frame where the patient moved his/her foot to take the first
step as the start time, and set the frame where the patient crossed the finish line as the end
time, to assess the total time spending for walking. Similarly, we assessed the turning time
by selecting the frame where the patient changed direction to turn as the start time, and set
the frame where the patient completed the turn and took the first step to walk straight as the
end time.

We used a statistical method to calculate a score for the judgment. We employed a t-test
for each feature, and calculated the p-values of each assessment before and after the tap test.
We then selected the minimum p-value of all the features as the judgment scores (i.e., we
selected the feature with the best improvement).

2.3 Results

2.3.1 Feature assessment

Assessment of the four features (i.e., lateral sway, petit-pas gait, wide-base gait, and duck-
footed walking) is shown in Fig. 2.6. Since there are no other studies that have quantitatively
measured these gait features by video analysis, we compared the assessed values of the
proposed method with the GSSR scores determined by the physicians. We grouped patients
by the GSSR scores and sorted them by the assessed values within each group. The assessed
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Fig. 2.6 The mean (± standard deviation for sample mean) of the assessed values compared
with GSSR scores that are labeled by the treatment physician. For lateral sway, wide-base
gait, and duck-footed walking, patients with the symptoms should have a higher value than
those without symptoms, while for petit-pas gait the symptomatic patients should have a
lower value.
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Fig. 2.7 Time measurements, as shown by the average ± standard deviation for the sample
mean. The improvement in the total walking time is slightly different from that in Table 2.2,
e.g., P1, P3, P8, and P9. This is because the physician uses the best score to judge improve-
ment, while we use the mean and standard deviation for the sample mean.
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values of the time measurements are also shown in Fig. 2.7, which are used to help judging
the results of the tap-test in current clinical practice.

As shown in Fig. 2.7, there was a significant improvement in the walking time of some
tap-positive patients (e.g., patients P2, P3, and P6), while the walking time is a quantitative
feature used in current clinical practice. The tap-positive patients did not always exhibit
significant time improvements (e.g., patient P1), implying that the walking time alone is
insufficient for accurate judgment of the tap-test. However, we noticed that patient P1 had a
significant improvement in lateral sway (p<0.01), while the speed-negative patients P8 and
P9 had a significant improvement in lateral sway and petit-pas gait.

We also compared the assessed values obtained by our quantitative assessment method
with the GSSR scores determined by the subjective physician assessments. As shown in
Fig. 2.6, the assessed values and the GSSR scores showed a similar trend for petit-pas gait,
wide-base gait, and duck-footed walking, except for a few cases. However, there were no
differences in the assessed values of lateral sway between the patients with a score of 0 and
those with a score of 1 or 2.

2.3.2 Judgment of the CSF tap test

For each patient, we calculated the p-values before and after the tap-test for each gait feature
and for walking time. The results are shown in Table 2.2, and the p-value was compared
among all patients for each feature in Fig. 2.8 The selected minimum p-value for each patient
is shown in Fig. 2.9, which is used to judge the results of the tap test. The assessed values
of the corresponding features before and after the CSF tap test are listed in Table 2.3. The
minimum p-values for the two speed-negative patients (i.e., P8 and P9) were <0.005, which
supports the requirement for multi-faceted assessments to improve clinical judgment by the
physician.

We also found that the minimum p-values of all tap-positive patients were always less
than those of all tap-negative patients. Thus, we can successfully confirm tap-positive and tap-
negative patients based on the minimum p-value derived from the assessed gait disturbance
features with an appropriate threshold (e.g., p=0.01).
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Table 2.2 The p-values of all gait features and walking time measurements. The minimum
p-value of each patient is marked in bold. LS: Lateral Sway, PG: Petit-pas Gait, WG: Wide-
base Gait, DW: Duck-footed Walking, TMW/TUG total: Total time for TMW/TUG test,
TMW/TUG turn: Turning time in TMW/TUG test.

Patient LS PG WG DW TMW total TWM turn TUG total TUG turn

P1 0.006 0.059 0.824 0.990 0.144 0.412 0.496 0.649
P2 0.244 0.032 0.044 0.038 0.006 0.034 0.004 0.020
P3 0.061 0.001 0.999 0.825 7.E-06 0.002 0.060 0.040
P4 0.485 0.021 0.809 0.519 2.E-05 0.101 0.013 4.E-04
P5 0.105 0.198 0.988 0.003 0.213 0.190 0.016 0.054
P6 0.036 0.174 0.381 0.912 0.016 0.004 0.017 0.034
P7 0.105 0.006 0.120 0.052 0.009 0.137 0.002 0.054
P8 0.576 0.005 0.158 0.184 0.003 0.102 0.251 0.562
P9 3.E-05 0.010 0.362 0.407 0.043 0.072 0.008 0.021
N1 0.697 0.278 0.426 0.657 0.078 0.100 0.053 0.194
N2 0.090 0.724 0.414 0.513 0.451 0.564 0.274 0.388
N3 0.283 0.957 0.122 0.768 0.420 0.731 0.241 0.308
N4 0.145 0.291 0.872 0.153 0.429 0.116 0.956 0.114
N5 0.059 0.503 0.158 0.730 0.610 0.874 0.076 0.968
N6 0.951 0.865 0.455 0.304 0.088 0.691 0.462 0.536
N7 0.230 0.389 0.402 0.130 0.018 0.195 0.131 0.500
N8 0.185 0.020 0.408 0.827 0.075 0.139 0.704 0.666
N9 0.109 0.555 0.848 0.427 0.467 0.062 0.211 0.072
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Fig. 2.8 Comparison of p-values in each feature. Histograms for p-values above 0.5 are
truncated and labeled with their exact values.
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Fig. 2.9 The minimum p-values calculated for each patient. Although the minimum p-value
for two tap-negative patients were <0.05, the minimum p-value for tap-positive patients were
generally smaller than for tap-negative patients.

2.3.3 Noise tolerance of the judgement

To prove the reliability of the above judgment method, we add noise to the measured feature
values and try to use them to judge the results of CSF tap test.

First, we calculated the mean of all measured values v̄ft in all the 8 features (including
gait features and timing features) , and randomly generated a Gaussian noise with µ = 0,
σ = α v̄ft where α ∈ (0,0.3], added it to the measured values. Subsequently, we calculated
the p-values of these noise-added measured values according to the proposed method. We
then judged tap-positive and tap-negative labels by taking the median of the minimum p-value
of all patients as the threshold, which makes the false-negative and false-positive rates equal.

The accuracy of the judgment is shown in Fig. 2.10. When the standard deviation of the
added noise is within 10% of the v̄ft, the proposed method throws can obtain a high accuracy.
However, as the noise gradually increases, the accuracy decreases.
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Fig. 2.10 Noise tolerance of the judgement. The x-axis is the value of α , i.e., the coefficient
of the mean of feature values used as standard deviation of the noise.

2.4 Discussion

We assessed the four gait disturbance features of iNPH quantitatively, and confirmed that
most of the assessed values of petit-pas gait, wide-base gait, and duck-footed walking were
consistent with the physicians’ judgment, while the assessment of lateral sway has some
discrepancies. We also used the assessed value to improve the judgment for the CSF tap test,
and concluded that judgment using silhouette-based gait assessment is more effective than
existing quantitative judgment methods, which only use the recorded walking time.

Next, we will further discuss the challenges encountered in the development of our
methodology, including some inconsistencies in lateral sway, and compare our method to
that used by the physicians.

2.4.1 Lateral sway

According to the definition of lateral sway in the GSSR, a score of 2 indicates a fluctuation in
the patient’s heel strike position, a score of 1 indicates trunk sway, and a score of 0 indicates
no sway or heel strike abnormality. Because our proposed method assesses trunk sway, it
was expected to appropriately reflect the 0 and 1 scores. However, during our interviews
with the physicians, the physicians stated that they assigned a score of 1 to patients who
exhibited a trunk sway or those with a small degree of heel strike fluctuation, while they only
assigned a score of 2 when frequent fluctuations in heel strike position were observed. Thus,
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we asked the physicians to re-assess lateral sway using the strict definition of GSSR, which
provided more consistency in the assessed values between our video-based analysis and the
physicians’ judgment. This is because physicians often associated lateral sway with a sense
of balance during walking, and therefore, associated the frequency of fluctuations in heel
strike with lateral sway scores. Thus, we suggest that the inconsistency of findings using our
method compared with physicians’ judgment is derived, at least in part, from differences in
understanding of the definitions.

The ambiguity of the subjective judgment also influences the judgment of the physicians.
From the interviews, we found that physicians often assign a better lateral sway score to
patients exhibiting a lateral sway than that derived from iNPH. For example, physicians
assigned a score of 0 to a patient walking fast during the test despite the presence of lateral
sway because typical iNPH patients walk slowly. A lateral sway derived from fast walking
was considered unimportant when rating the lateral sway for iNPH. Another patient was
assigned a score of 0 despite the presence of a body sway because she had no petit-pas
gait, wide-base gait, duck-footed walking, or other typical features of iNPH gait disturbance.
Thus, the physicians felt that the sway was from another cause. As such, the judgment of the
physicians often deviated from the definition of lateral sway.

2.4.2 Wide-base gait and duck-footed walking

As previously described, we assessed the wide-base gait and duck-footed walking features
of all patients using a selected subsequence of two gait cycles in which the patients walked
stably. We asked the physicians to review the selected gait segment, and they confirmed
that the assigned values for these sequences were reasonable. Thus, we concluded that the
proposed silhouette analysis-based method for wide-base gait and duck-footed walking was
appropriate.

However, physicians assessed the entire gait sequence, which includes the stable gait
sequence as well as the unstable gait sequence that often occurs when the patient turns or
begins to walk. As such, our proposed method may miss gait disturbances if they are observed
outside of our selected sequence. The assessed values of several patients with walking labels
that were inconsistent with physician observations may relate to this subsequence selection
problem. In future studies, we will extend our analysis to the entire gait sequence.
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2.5 Conclusion

We propose a video-based method to improve gait disturbance assessment for iNPH. The
proposed method can assess gait features independently of a physician’s experience, and we
validated that the method using the assessed value is more accurate than current qualitative
methods for judging the CSF tap test. We assessed lateral sway, petit-pas gait, wide-base
gait, and duck-footed walking, as well as the walking times, of the tests using gait silhouette
analysis. We confirmed the effectiveness of our proposed method with experiments on CSF
tap test judgment with nine tap-positive and nine tap-negative patients.

Some of the assessed values, however, remained partially inconsistent with the GSSR
scores assigned by the physicians. One reason for this failure is that the proposed gait feature
extraction and assessment method is different from the physicians’ own customized criteria
for GSSR. Future studies are required to improve our proposed method by considering
the frequency of fluctuations in each patient’s heel strike position and the multi-factorial
dependency of the GSSR.

Another potential issue for clinical application of our method is that the manual work
(e.g., silhouette modification, bounding box assigning, and step counting) is time consuming.
To improve this, we are currently examining automatic extraction of the silhouette using
a deep learning-based method (e.g., the RefineNet [117]). In future studies, we will also
capture kinematic information of patients using depth sensors for more intuitive and accurate
assessment of the features.
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Chapter 3

Health indicator estimation by
video-based gait analysis

3.1 Introduction

Body composition refers to the proportions of major components of the human body such as
water, fat, and muscle. Common health indicators such as muscle mass and basal metabolic
rate can be calculated from the body composition information. It is also known that the body
composition changes and muscle mass decreases with aging [119]. The body composition
information is therefore used for health management including prevention and mitigation of
lifestyle-related diseases and for management of physical training [120–123].

Most existing commercially available body composition meters employ bioelectrical
impedance [124, 125]. These methods involve sending a weak alternating current from the
subject’s hands and feet into the body, and analyzing the impedance to measure the body
composition and estimate related health indicators. Although these methods can accurately
measure the indicators, it requires relatively time-consuming steps: removing socks, cleaning
hands and feet, and standing on the body composition meter, which may take several minutes
in total. Furthermore, the same machine cannot measure multiple people simultaneously.

Because body composition is closely related to human motor function [126–128] as well
as body shape [129–132], there is a possibility that we can estimate body composition and
the related health indicators by analyzing the human motor function and body shape, which
could be observed from gait videos. We therefore raise a research question on the possibility
of health indicator estimation from gait videos as an alternative for the body composition

This dissertation is based on “Health Indicator Estimation by Video-Based Gait Analysis.” [118], by the
same author, which appeared in the IEICE TRANSACTIONS on Information and Systems, Copyright(C)2021
IEICE.
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meter. One of the most promising approaches is visually observing the subject walking,
i.e., assessing the gait. A gait video contains information pertaining to the subject’s motor
function and body shape. Thus, may be possible to estimate the health indicators using
video-based gait analysis techniques. Moreover, because gait is the most fundamental mode
of locomotion, we have more opportunities to observe it than other actions (e.g., jumping or
doing bending exercises).

Video-based gait analysis is the subject of a large body of literature, including but
not limited to gait-based estimation of gender, age, and health status [108, 133, 47, 134,
135]. Generally, the related techniques require just one gait period of a gait video (i.e.,
approximately one second) for analysis, thus suggesting that the health indicators can also be
obtained much faster than with body composition meters.

The above-mentioned studies on video-based gait analysis typically employ machine
learning techniques (e.g., classifiers for gender classification, regression techniques for age
estimation) and the amount of training data is crucial to the success of these algorithms (e.g.,
pairs consisting of the gait video and ground-truth age label for age estimation), in particular,
in this deep learning era.

It is, however, relatively difficult to collect a sufficiently large amount of training data,
particularly if medical data is required. For example, studying the relationship between
gait and a certain disease requires establishing collaboration with a hospital and obtaining
informed consent from patients. Furthermore, it requires the effort of collecting gait videos
of the patients and asking a medical professional to annotate ground-truth labels for each gait
video. Moreover, the number of instances related to a specific disease is considerably limited
compared to healthy subject data. As a result, the researcher must work with small-scale
data, and hence tend to rely on handcrafted gait features and classical machine learning or
even rule-based methods [136, 137, 134, 138]. This is in contrast to general computer vision
tasks, such as object recognition and human pose estimation, which rely on deep learning
frameworks [139, 140] with the help of publicly available and well-organized large-scale
databases [141, 78].

Some large-scale publicly available databases exist for video-based gait analysis [69,
142, 68] containing over 10,000 subjects. Although these databases are not aimed at
medical/healthcare-oriented applications, but at individual recognition [43, 143, 144]. We
may be able to use their data to pre-train a backbone network for video-based gait analysis,
and subsequently fine-tune the network for our task, i.e., health indicator estimation with a
limited training data. This is a similar approach to computer vision research that fine-tunes
networks pre-trained by standard datasets [78, 141] for specific tasks.
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In this chapter, we therefore propose a deep learning framework to estimate health
indicators via video-based gait analysis even with limited ground-truth training data. The
contributions of this work are summarized as follows.
1. Health indicator estimation from a walking video.

To our knowledge, this is the first work to estimate health indicators based entirely on
a video of the subject walking. This potentially increases the efficiency and ease of health
indicator measurement compared to the conventional body composition meter.
2. Pre-training and fine-tuning strategies with gait primitives relevant to health indica-
tors.

To enable the use of a deep learning framework even with the limited number of training
data for gait-based health indicators, we use pre-training and fine-tuning strategies. Presently,
there has not been extensive research on a pre-training strategy before fine-tuning in video-
based gait analysis. Thus, we demonstrate that pre-training with gait primitives relevant to
health indicators (e.g., arm swing, stride, the degree of stoop, and body width) is benefi-
cial for the subsequent fine-tuning for the health indicator estimation task. This achieves
an improvement in accuracy compared with training from scratch or pre-training using a
conventional reconstruction task with an auto-encoder.

3.2 Related work

3.2.1 Video-based gait analysis

There is a rich body of literature on video-based gait analysis which we address in this
subsection. Several comprehensive surveys on this topic provide further details for the
interested reader [145–148].

The majority of studies on this topic pertain to gait recognition, i.e., person identification
from walking videos [149–151, 61, 152–154]. Other popular related topics include gender
classification [108] and age estimation [155].

Early studies in video-based gait analysis mainly focused on developing handcrafted gait
features using both model-based approaches [150] and appearance-based approaches [156,
152, 157–159], and applied classical machine learning techniques (e.g., linear discrim-
inant analysis and support vector machines) to the gait features for tasks such as per-
son identification, gender classification, or age estimation. Publicly available gait video
databases [61, 59, 160, 161] played an important role in training the machine learning models
and providing a basis for performance evaluation, although database sizes were limited (i.e.,
at most a few hundred subjects).
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Subsequently, deep learning frameworks were applied to video-based gait analysis [162,
163, 42, 164–168, 47, 169, 170, 49] in a similar fashion to other computer vision topics such
as face recognition, object recognition, semantic segmentation, and human pose estimation.
Because deep learning frameworks generally require substantial training data, the aforemen-
tioned studies typically used larger-scale gait databases [66, 68, 69, 142] (e.g., over 60,000
subjects in [68, 142]) for training and performance evaluation.

In contrast, it is difficult to collect large-scale gait data in the field of medical/healthcare-
oriented gait analysis, both because the number of eligible subjects is limited, and annotation
by a medical professional is required. Thus, studies in this field typically rely on small-scale
gait databases. As a result, handcrafted features and classical machine learning or rule-
based techniques are often employed because they can achieve suitable performance without
substantial training data. For example, Liao et al. [136] and Ajay et al. [138] conducted gait
analysis studies for specific diseases by using a small number of gait data including only 20
to 30 subjects. Aoki et al. [137] and Matsuura et al. [134] tackled the more general topic of
cognitive function estimation from gait for hundreds of subjects, which is a larger dataset
than those used in [136, 138], but still too small to apply a deep learning framework.

There are some studies that have applied deep learning frameworks in the field of medical
gait analysis. For example, Zhang et al. [171] and Camps et al. [172] applied deep learning
frameworks with only 18 and 21 subjects, respectively, with the help of data augmentation to
cover the shortage of training data. The data augmentation, however, does not necessarily
reflect subject diversity.

3.2.2 Fine-tuning in deep learning

Because deep learning frameworks usually require substantial training data that is not neces-
sarily easy to collect, a researcher may decide to use a network pre-trained for general tasks
on large-scale annotated databases (e.g., ImageNet [78], MS-COCO [141]), and fine-tune the
network for a specific task such as object recognition [173, 174], action recognition [175],
image retrieval [176], age estimation [46], person re-identification [177], and computer-aided
diagnosis [178–181].

The networks pre-trained for general tasks with general image databases (e.g., for object
recognition with ImageNet [78]), however, this data is not necessarily effective for fine-tuning
for a specific task, particularly, when there are different domains between the general tasks
and the specific tasks. To address this issue, some researchers prepare another training set for
pre-training, whose domain/task is more relevant to the target task. For example, Yang et
al. [46] pre-trained another network using facial images in addition to the network trained
using a large-scale generic image database, and fine-tuned the two pre-trained networks
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Table 3.1 Health indicators.

Indicator Abbreviation Unit
Measured value

Mean SD

Weight Weight kg 60.5 12.3
Total Body Water TBW L 33.2 6.90
Protein Protein kg 8.93 1.91
Minerals Minerals kg 3.15 0.64
Soft Lean Mass SLM kg 42.7 8.92
Fat Free Mass FFM kg 45.3 9.44
Skeletal Muscle Mass SMM kg 24.9 5.76
Segmental Mean of Arms LBM_MA kg 2.15 0.67
Lean Body Mean of Legs LBM_ML kg 7.30 1.72
Mass Trunk LBM_T kg 19.2 4.26
Limbs’ Lean Body Mass L_LBM kg 18.9 4.71
Body Mass Index BMI kg/m2 22.2 3.53
InBody Score IBS N/A 72.3 5.40
Waist-Hip Ratio WHR N/A 0.812 0.0545
Obesity Degree OD % 103.3 16.0
Body Fat Mass BFM kg 15.2 6.95
Percent Body Fat PBF % 24.7 8.46
Segmental Mean of Arms BFM_MA kg 1.00 0.59
Body Fat Mean of Legs BFM_ML kg 2.54 1.06
Mass Trunk BFM_T kg 7.13 3.62
Visceral Fat Level VFL Level 5.78 3.41

for face-based age estimation. Wang et al. [182] pre-trained a network using pairs of real
magnetic resonance images and manual segmentation annotations by radiologists, and fine-
tuned the network for medical image segmentation. Gong et al. [183] used simulated positron
emission tomography images to pre-train a network, and fine-tuned the network to improve
the quality of the images.

Similarly, we pre-train our network using large-scale databases for gait analysis, add
some layers to the network, and then fine-tune the network for the target task. Specifically,
we explore suitable tasks for pre-training in this work to achieve suitable fine-tuning for the
subsequent health indicator estimation.
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3.3 Health indicators

We briefly introduce the health indicators used in our work. The indicators are summarized
in Table 3.1. The health indicators are measured using a body composition meter InBody270
(InBody Japan Inc.), and the descriptions of the indicators are as follows:

• Weight, total body water (TBW), protein, minerals, body fat mass (BFM), soft lean
mass (SLM), and skeletal muscle mass (SMM) signify the body weight and the mass of
each body composition factor measured directly. The sum of TBW, protein, minerals,
and BFM is equal to the weight. SLM is the mass of all the muscles, and SMM is
the mass of muscles to move the skeleton, which is more directly related to the motor
function. The percent body fat (PBF) is the ratio [%] of BFM to the body weight.

• Fat free mass (FFM) is calculated as the weight minus BFM. The basal metabolic rate
(BMR), which is the energy a person consumes daily to sustain vital activities, can be
calculated from the FFM using the Cunningham equation [184]:

vBMR = 370+21.6× vFFM.

Because the right-hand side of this equation is calculated using only FFMs and con-
stants, we omit the BMR estimation.

• Body mass index (BMI) is calculated using weight w and manually inputted height h
by the following equation:

vBMI = w/h2.

• InBody score (IBS) is an indicator originally defined by the manufacturer of the body
composition meter, and is calculated by comparing the measured value and standard
value of BFM and FFM. Obesity degree (OD) is the ratio of measured weight to
standard weight. The standard weight is dependent on the height.

• Waist-hip ratio (WHR) is the estimated ratio of waist circumference and hip circumfer-
ence. Visceral fat level (VFL) is a grading of visceral fat in the horizontal section of
the abdomen around the navel. Both indicators are estimated by the body composition
meter using the measured data.

• Segmental lean body mass (LBM)/body fat mass (BFM) refers to the muscle/body fat
mass of each arm/leg and the trunk. The output of the body composition meter includes
the value for each limb. Because we observe the subject walking from a side view in
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this work, it is difficult to distinguish motions derived from left and right arms/legs.
We therefore use an average of the LBM/BFM over the left and right arms/legs.

• Skeletal muscle index (SMI) evaluates the motor function and is calculated using the
total muscle mass of the limbs vL_LBM and the height h by the following equation:

vSMI = vL_LBM/h2.

This indicator is output by the body composition meter, but data acquisition errors for
some subjects preclude us from including it in our work. We therefore substitute SMI
with the summation of segmental LBM of the arms and legs to form the limb lean body
mass (L_LBM).

3.4 Health indicator estimation using gait-primitive net-
works

3.4.1 Overview

Fig. 3.1 provides an overview of the proposed method to estimate the health indicators from
a walking video. First, we design a deep neural network whose input is a gait template
image (e.g., [156, 152, 157–159]) and the output is a gait primitive (e.g., arm swing, body
width). We pre-train this network using publicly available large-scale gait databases (e.g.,
[68, 69, 142]) and refer to it as a gait primitive network. Secondly, we design a deep neural
network where the input is the gait template image, and the output is the indicators. We
achieve this by adding some layers to the gait primitive network and fine-tuning it with a
limited number of training data. We describe the details in the following subsections.

3.4.2 Gait template image

Gait recognition researchers have proposed a variety of gait template images such as gait
energy image (GEI) [156] a.k.a. averaged silhouette [185], frequency-domain features [152],
gait flow image [158], chrono-gait image [151], and masked GEI [159]. Among them, GEI
is the most frequently used method in video-based gait analysis because it is simple yet
effective.

The GEI is obtained by averaging cropped silhouette images, whose size is 88 by 128
pixels, over one gait period, as shown in Fig. 3.1 (see inputs for the network). It encodes both
static body shape (e.g., body part width with white pixels) and dynamic motion (e.g., arm
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Fig. 3.1 Overview of the proposed method.

swing and leg movement with grey pixels). There are some literature reported correlations
between muscle strength and walking ability, e.g., walking speed [41, 186, 187], which can
be considered as correlations between muscle mass (i.e., SLM, SMM, etc.) and motion
characteristics of gait; while others reported correlations between body fat mass (BFM) or
percent body fat (PBF) and body shape parameters such as waist circumference [129–132].
In addition, the waist-hip ratio (WHR) itself is an indicator that describes body shape. This
suggests that to estimate all of the indicators, the input data is required to contain both motion
and shape information. The GEI is therefore suitable as the input for the network to estimate
the health indicators as well as the gait primitives. The GEI is therefore suitable as the input
for the network to estimate the health indicators as well as the gait primitives.

3.4.3 Gait primitives

The gait primitives refer to the fundamental components describing a subject’s gait charac-
teristics including motion characteristics, like arm swing, stride, and the degree of motion
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(a) Arm swing candidate areas

Front swing
candidate area

Back swing
candidate area

(b) Arm swing areas

Front arm
swing area

Back arm
swing area

Fig. 3.2 Measurement of forward and backward arm swing. Reprinted with permission from
Springer [107], COPYRIGHT (2009).

symmetry; pose characteristics, like the degree of stoop and pitch; and shape characteristics,
like height and body width, etc. To effectively pre-train the network, the gait primitives must
be relevant to the motor function and the body shape, which are subsequently relevant to the
health indicators. Furthermore, it is preferable to automatically extract the gait primitives
without laborious manual annotation for a large-scale gait database.

Considering these criteria, we select four gait primitives: forward arm swing, backward
arm swing, back straightness, and stride length, as proposed in [107]. These gait primitives
are relevant to motion characteristics of walking, and are measurable automatically from
a cropped silhouette sequence. Although relatively simple handcrafted methods are used
to extract these gait primitives [107], their reliability has been demonstrated through an
experience-based long-run exhibition of video-based gait analysis conducted in a science
museum, where over 70,000 visitors joined the demonstration over approximately one
year [188, 189].

We briefly explain each of the gait primitives in the following paragraphs and refer
interested readers to [107] for further details.

• Forward arm swing (FAS) and backward arm swing (BAS)

The front-end and back-end lines of the torso are extracted from a cropped silhouette
at a single support phase and then forward/backward arm swing candidate regions are
set. Areas swept by silhouettes in the forward/backward arm swing candidate region
are counted as the degree of forward/backward arm swing, as shown in Fig. 3.2

• Back straightness (BS)

The back-end line of the torso is extracted, and the slope of the back-end line is
regarded as the back straightness. Specifically, if the line is more vertical, the back is
straighter, and a less vertical result signifies stoop.
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GEI Static constituent
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width assessment

Fig. 3.3 Measurement of body width. The average row width of the silhouette in each region
is calculated as the body width.

• Stride length (SL)

The gait period is obtained as the time shift that maximizes the auto-correlation of
the cropped silhouette sequence along the temporal axis [152]. The total traveling
distance during a walking sequence is computed by subtracting the start position from
the end position, and the walking speed is then computed by dividing the total traveling
distance by the elapsed time during the walking sequence. Finally, the stride length is
regarded as the traveling distance over half of a gait period, and hence it is calculated
as the product of the walking speed and half of the gait period.

Furthermore, since the above-mentioned four gait primitives only contain motion and
pose characteristics and do not contain shape characteristics, we designed an automatically
extracted shape-oriented primitive, i.e., body width shown in Fig. 3. We first extract
an almost static foreground part of the GEI by thresholding with 75% of the maximum
intensity and compute the average width of the static part for different height ranges: a chest
region (24 ≤ y ≤ 40), a waist region (48 ≤ y ≤ 64), and a hip region (64 ≤ y ≤ 80). This
measurement lacks support in the literature, but we have demonstrated its correlation with
some health indicators by analyzing the data measured by the subjects (Fig. 3.4).

We showed the distribution of the gait primitives in Fig. 3.5.

3.4.4 Pre-training the gait primitive network

We used GEINet [42] as the backbone for our gait primitive network. GEINet is a standard
convolutional neural network (CNN) and is utilized in tasks such as person identification [42],
gender classification, and age estimation [47].
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Fig. 3.4 Relationship between body width and some health indicators. It can be seen that
these three health indicators and hip body width are positively correlated.
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(a) Forward arm swing.
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(c) Back straightness.
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(d) Stride length.
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(f) Body width of waist region.
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Fig. 3.5 Samples of gait primitive values for 1,000 subjects randomly selected.
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The structure of the gait primitive network is almost the same as the original GEINet, as
shown in Fig. 3.6, where the leading six layers are two sequential triplets of convolution,
pooling, and normalization layers, followed by two fully connected layers. While the last
layer outputs 1,024 units in the original GEINet for person identification, the last layer (fc2)
in our gait primitive network outputs only one unit, because each gait primitive is defined
as a scalar value (i.e., one dimension). The penultimate layer (fc1) outputs 1024 units. The
other detailed configurations for the convolution and pooling layers are shown in Table 3.2,
where the number and size of the kernels are slightly different from the original GEINet to
suit our health indicator estimation task.
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Fig. 3.6 Structure of the gait primitive network that takes a GEI as input and outputs the
gait primitive. The abbreviations conv, norm, pool, and fc refer to convolutional layer,
normalization layer, pooling layer, and fully connected layer, respectively. This convention
is consistent throughout this paper. The layers with gray background rectangles are used in
fine-tuning.

Table 3.2 Layer configurations for GEINet. Act. denotes the activation function.

Layer #Kernels Size/stride Act. Pooling

conv1 81 5×5×1/1 ReLU
pool1 3×3/2 Max pooling
conv2 45 7×7×81/1 ReLU
pool2 2×2/2 Max pooling

Once the gait primitive network structure is designed, we pre-train each gait primitive
network using a training set composed of pairs of GEIs and each corresponding gait primitive
so as to minimize a loss function, i.e., mean absolute error (MAE) between estimated gait
primitives through the gait primitive network and gait primitives measured by the handcrafted
method in [107] (i.e., a sort of the ground-truth gait primitives).
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Fig. 3.7 Network structure for health indicator estimation in conjunction with two gait
primitive networks. The outputs from the penultimate layers of the two gait primitive
networks are concatenated and fed into a fully connected layer to estimate health indicators.
The two sets of layers with gray background rectangles are from the pre-trained primitive
networks.

3.4.5 Fine-tuning the gait primitive network for health indicator esti-
mation

We fine-tune the gait primitive networks for health indicator estimation. Because the output
from the last layer (fc2) of the gait primitive network is just a single unit (i.e., one dimension),
the output itself does not contain sufficient information for health indicator estimation. In-
stead, we utilize the output of the penultimate layer (fc1), which comprises 1024-dimensions,
for health indicator estimation. The output from the penultimate layer is fed into a fully
connected layer (fc2) to estimate one health indicator. Specifically, we fine-tune the layers
from the gait primitive network (i.e., conv1, conv2, fc1) while we train the newly added fully
connected layer fc2 from scratch. For this purpose, we first define the MAE for the health
indicator as LMAE = 1

N ∑
N
i=1 |ŷi −yi|, where N is the number of training data, ŷi and yi are the

estimated health indicator through the network (i.e., an output of fc2) and the ground-truth
of the health indicator for the i-th sample. We then use the LMAE as the loss function to
minimize during network training.

We also use multiple gait primitive networks for further improvement, as shown in
Fig. 3.7. We concatenate the outputs from the penultimate layers of the multiple primitive
networks, and the concatenated feature is fed into a fully connected layer fc2. Thereafter, we
train the network similarly to the aforementioned case of the single gait primitive network.

Some of the health indicators, such as the body weight and the mass of various body
components, are closely related to the subject’s height. However, the input to the network
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(i.e., the GEI) lacks height information because we use height-normalized cropped silhouettes.
The health indicators that are represented by mass in kilograms (e.g., weight and SLM) and
volume in liters (e.g., TBW) are also normalized by the height, specifically, divided by the
cubic height, and height-normalized health indicators are set as estimation targets. We require
the subject’s height information for this normalization, and hence we assume that the subject
provides the height information or we automatically measure the subject’s height from a
captured image with a calibrated camera and a ground plane constraint [190]. Once we
estimate the height-normalized health indicators, we obtain the original health indicators by
un-normalizing them (i.e., multiplying by the cubic height).

3.5 Experiments

3.5.1 Dataset

We used OU-ISIR Gait Database, Large Population Dataset with Age (OULP-Age) [68] for
pre-training the gait primitive networks. More specifically, we extracted a subset of 40,000
subjects out of 63,846 subjects.

We conducted experiments to collect the data used for training and evaluating health
indicator estimation because there is no such publicly available database. We conducted the
experiments twice in March 2019 and September 2019, and recruited a total of 332 subjects
(167 females and 165 males). The ages of the subjects range from 8 to 71 years old, with a
mean age of 34.6 years and a standard deviation of 15.6 years. We obtained informed consent
from the subjects to use the data for research purposes.

We asked each subject to walk on a pre-defined course of approximately 8 meters at
his/her natural walking speed in two sessions: in the morning and in the afternoon. We thus
obtained 653 valid gait videos after removing those with unnatural walking actions (e.g.,
touching the head or hands on the waist while walking). A camera was set up approximately
five meters away from the walking course to capture the walking subject from a side view.
The captured walking video’s frame size was 640 by 480 pixels and it contained 30 frames
per second (fps) for 2.5 seconds (75 frames in total). We extracted silhouettes from the
original walking video, cropped the height-normalized silhouettes, and then extracted the
GEIs.

We also measured the health indicators of each subject using the InBody270 body
composition meter (Fig. 3.8). Because the body composition meter requires the subject’s
height to measure the health indicators, we asked each subject his/her height in advance.
Because of time limitations, each subject’s health indicators were measured only in one

55



Study on health indicator estimation

session, we thus associated the single health indicator measurement with both GEIs extracted
in the two walking sessions for each subject.

3.5.2 Setup

We employed 20-fold cross-validation to fine-tune and evaluate performance. We randomly
divide the entire dataset into 20 groups with approximately equal number of subjects. We
use one group as the validation set, and the rest as the training set in the fine-tuning. That
is, 315 or 316 subjects were used as the training set and 16 or 17 subjects were used as the
validation set.

We evaluated the accuracy using the relative errors of the health indicators, defined as the
ratio of the MAE of the estimated health indicator to the mean of the measured (ground-truth)
values. This scheme enables us to evaluate the accuracy despite the varying scales of the
different health indicators.

In the training stage, the size of mini-batches was 128 and the initial learning rate was
set to 0.001. The number of epochs was set to 200 and 250 for pre-training and fine-tuning,
respectively.

3.5.3 Benchmarks

Because this is the first work to address health indicator estimation from gait, there are
no benchmarks for this specific task. We therefore prepare a suite of benchmarks for this
purpose.

Firstly, to verify the effectiveness of our pre-training and fine-tuning strategy with the
gait primitive networks, we trained the entire network for health indicator estimation from
scratch, denoted as DL (scratch). Note that this is equivalent to the proposed method without
pre-training.

Secondly, to verify the effectiveness of the gait primitives for pre-training, we pre-trained
the network using an auto-encoder (see Fig. 3.9) to minimize the reconstruction errors of
the GEIs. This network contains knowledge related only to the GEI and does not have any
relevance to motor function. The pre-trained encoder part of the network, whose structure is
identical to that of the gait primitive network except for the absence of the last layer (fc2),
was used for fine-tuning in the same way as the proposed method, and is denoted as DL
(auto-encoder + fine-tuning).

In addition, we fine-tune the ResNet50 model pre-trained using ImageNet to compare the
primitive network with the general trained model commonly used for fine-tuning methods.
The trained ResNet50 model can also be considered as a network trained with primitives

56



3.5 Experiments

(a) The body composition meter.

(b) Measuring health indicators with InBody270.

Fig. 3.8 InBody270 and the measurement.
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Fig. 3.9 Network structure of the auto-encoder. The abbreviation upsamp indicates an
upsampling layer. We used the encoder part (layers with gray background rectangles) for
fine-tuning.

that are larger in scale yet further removed in domain from the task, hence it is also possible
to compare the impact on pre-training performance between sample size and primitive-task
relevance. For regression of the health indicators, we replaced the top layer of the trained
ResNet50 model with two serial full-connected layers with the same configuration as fc1 and
fc2 in the proposed approach (see Section 3.4.4). Moreover, due to the insufficient scale of
the dataset, we froze the early layers and trained only the last convolutional block and the
newly added fully-connected layers.

Finally, we employed support vector regression (SVR) as a family of classical machine
learning. The classical machine learning usually works better even with a smaller number
of training data than deep learning-based approaches, while its capability is usually inferior
to the deep learning-based approaches. We therefore investigated the trade-off between the
number of training data and the capability by comparing the proposed method with SVR.

3.5.4 Ablation studies on gait primitives

We conducted ablation studies to determine the best use schema of the primitive networks.
For the gait primitives with motion and pose characteristics, we report the relative errors

for particular health indicators when each single gait primitive, each combination of two gait
primitives, and all four gait primitives are used in Fig. 3.10. We see that the estimation error
increases significantly when we pre-train the networks with the step length gait primitive,
and did not show significant variation when using the other gait primitives. Furthermore,
pre-training using all the gait primitives does not outperform dual network combinations.
Therefore, considering cost-effectiveness, we selected the dual network combination yielding
the highest accuracy — forward/backward arm swing — as the best schema.
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Fig. 3.12 Scatter plots of estimated values vs. the ground truth (i.e., (a)–(d)) and errors of
proposed method vs. other primitive networks (i.e., (e)–(g)), in weight estimation using
motion/pose primitives. In the former plots, the solid black line indicates the equality
between the estimated value and the ground truth, and in the latter ones, the smaller the
horizontal distribution of the points than their vertical distribution, the better the accuracy of
the proposed method than the compared method, and the same for the following.
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Fig. 3.13 Scatter plots of estimated values vs. the ground truth and errors of proposed method
vs. other primitive networks, in BFM estimation using motion/pose primitives.
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Fig. 3.14 Scatter plots of estimated values vs. the ground truth and errors of proposed method
vs. other primitive networks, in weight estimation using shape primitives.
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Fig. 3.15 Scatter plots of estimated values vs. the ground truth and errors of proposed method
vs. other primitive networks, in BFM estimation using shape primitives.
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Table 3.3 MAEs and relative errors of the proposed method of using gait primitive with
motion/pose characteristics and shape characteristics, respectively.

Indicator
Mean MAE Relative error

Motion/pose Shape Motion/pose Shape

Weight 3.63 3.04 6.00% 5.02%
TBW 1.84 1.62 5.54% 4.86%
Protein 0.53 0.46 5.90% 5.12%
Minerals 0.18 0.16 5.69% 4.95%
SLM 2.30 2.09 5.39% 4.89%
FFM 2.45 2.20 5.41% 4.86%
SMM 1.53 1.41 6.15% 5.63%
LBM_MA 0.21 0.20 9.89% 9.24%
LBM_ML 0.43 0.37 5.94% 5.02%
LBM_T 1.15 1.06 6.00% 5.50%
L_LBM 1.20 1.05 6.37% 5.58%
BMI 1.47 1.30 6.64% 5.85%
IBS 3.89 3.34 5.38% 4.62%
WHR 0.03 0.03 4.21% 3.63%
OD 6.51 5.84 6.30% 5.65%
BFM 2.80 2.57 18.40% 16.93%
PBF 3.72 3.43 15.03% 13.87%
BFM_MA 0.23 0.22 23.41% 22.18%
BFM_ML 0.43 0.41 16.95% 16.12%
BFM_T 1.51 1.37 21.14% 19.14%
VFL 1.51 1.40 26.14% 24.27%
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Fig. 3.16 Comparison of the respective best schemes for gait primitives with motion/pose
characteristics and shape characteristics, and their combinations. The “shape” one is body
wide in the hip region and the “motion/pose” one is the combination of forward and backward
arm swing.

On the other hand, for the gait primitives with shape characteristics, we similarly report
the relative errors when pre-training using single, dual or all the three regional body widths
as gait primitives in Fig. 3.11. We found that combining multiple primitive networks resulted
in marginal improvement in accuracy when using gait primitives with shape characteristics.
Therefore, we chose the body width of the hip region, with the lowest error among the single
primitives, as the best schema.

We compare the original MAEs and relative errors of the two best schemas in Table 3.3,
and showed some examples of GEI with the estimated values and ground truth in Table 3.4.
The comparison shows that pretraining using gait primitives with shape characteristics results
in smaller errors in all indicators than using those with motion characteristics. We also tried
to combine the primitive networks of the two best schemas (see Fig. 3.16), but no significant
improvement in accuracy was obtained. Therefore, we decided to directly use the two best
schemas, i.e., forward/backward arm swing and hip region body width, as the proposed
method.

As examples of results, we plotted the estimated values against the ground truth, and
compared the estimation errors of the proposed method with those of other primitive networks,
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for two of the health indicators, i.e., weight and BFM, in Fig. 3.12, Fig. 3.13, Fig. 3.14, and
Fig. 3.15.

On the other hand, we see that the proposed method with the body shape-oriented gait
primitive can relatively accurately estimate the health indicators other than body fat-relevant
ones (i.e., the relative errors are approximately 5%). However, the indicators related to body
fat show higher errors (e.g., from 15 to 30% error) than the other indicators. We hypothesize
that this may be related to the subjects’ clothing — participants in the experiment conducted
in March generally wore thicker clothing, and their body shape would have been obscured
and not properly represented by the silhouette. Furthermore, since the body composition
meter needs to ensure that the sum of TBW, protein, minerals and BFM output is exactly
equal to the weight, it is possible that the measured weight minus the first three values will be
used as the BFM measurement; and the deviation of the measured weight of the subjects will
also vary due to the different clothing. Further validation is therefore still needed in future.

3.5.5 Comparison with benchmarks

We evaluated the relative errors among the benchmarks as shown in Fig. 3.17. SVR (i.e.,
a classical machine learning technique) underperforms compared to deep learning from
scratch for body fat-related indicators, but these two methods are comparable for the other
indicators. Among the deep learning methods, deep learning frameworks trained from scratch
show higher estimation errors for most of the indicators as compared to the method that
is fine-tuned with auto-encoder or ResNet50. Furthermore, the proposed deep learning
framework fine-tuned with the gait primitive network yields the highest accuracy. This
indicates the effectiveness of the proposed pre-training and fine-tuning strategy compared to
training from scratch or fine-tuning a topic-independent general trained model when using a
limited number of training samples for the target task. Also, we observe that it is essential to
pre-train the network with features relevant to the target task (i.e., gait primitives for health
indicator estimation) rather than pre-training in a general way (i.e., using an auto-encoder).
Without proper pre-training the deep learning methods lose their effectiveness and may
become inferior to classical machine learning methods (e.g., while SVR yields less than 10%
error for TBW, pre-training with auto-encoder yields over 10% error).
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Study on health indicator estimation
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Fig. 3.18 Sensitivity analysis of the number of training samples on the relative errors.

3.5.6 Sensitivity analysis of the number of training samples

Because we claim the effectiveness of the proposed method for a relatively small number
of training samples for the target task, we conducted a sensitivity analysis of the number
of training samples on the accuracy of health indicator estimation. For this purpose, we
evaluated the relative errors of the proposed method for selected health indicators as we
decreased the number of training samples, as shown in Fig. 3.18. This experiment indicates
that the proposed method can adequately accomplish the target task when the number of
training samples exceeds 100.

3.5.7 Discussion

Although the proposed method still has some limitations, such as a large error in estimation
of body fat-related indicators, its advantages over existing body composition meters still
exist. In our data collection experiments, it took about 2 minutes per subject to measure
health indicators using a body composition meter, including preparation time (e.g., taking off
and putting on shoes and socks). On the other hand, it took only took only 6 to 8 seconds per
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3.6 Conclusion

subject to capture a gait video, i.e., much faster than the body composition meter. Moreover,
while the body composition meter requires subject’s contact to the device, the gait video
capturing does not require the subject’s contact, which is preferable under the situation of the
current COVID-19 pandemic.

3.6 Conclusion

We proposed a method to estimate health indicators related to body composition using video-
based gait analysis by a deep learning framework. To address the challenge of the small
sample size, we pre-trained the gait primitive networks with a large-scale gait database, and
fine-tuned them with a limited number of health indicator training samples. We confirmed
that the proposed method achieved fairly low relative errors (approximately 5%) for the
health indicators other than body fat-relevant ones, and outperformed the benchmarks.

Future research directions include incorporating age and gender information for health
indicator estimation because the correlation between these factors is well established. In
addition, the temporal information of gait is not exploited by the estimation due to using
GEI as input. Therefore, we will try to use gait features that contain temporal information,
e.g., silhouette sequences. Furthermore, although we used only side-view gait images in this
study, we believe that estimation using data from other view angles is also possible. Since
the multi-view large-scale gait database [68] has been already available, we will try to extend
the proposed method to allow the estimation of health indicators using an arbitrary-view gait
video.

75





Chapter 4

Discussion

In the above study, the author tried the proposed strategies and obtained certain results.
In the diagnostic study of iNPH, the dataset is extremely small. Therefore, the authors

adopted strategy I, i.e., manually designed gait features using the existing medical domain
knowledge for analysis, and successfully judged the results of the tap test.

In the study of health indicator estimation, the scale of the dataset is larger but still
insufficient for a from-scratch deep learning method. The author then adopted strategy II, i.e.,
pre-trained the CNN using general gait features as primitives and fine-tuned the primitive
network using the dataset. The obtained estimator yields an acceptable accuracy.

Both the studies share the characteristic of a small dataset scale, and the different strategies
used for the analyses are due to the different dataset scales and the relevance of the available
domain-specific knowledge to the topic. In the study of iNPH diagnosis, the number of
subjects for each label (tap-positive and tap-negative) was less than 10, which is not even
amenable for classical machine learning methods, but the knowledge of the medical field
was very exhaustive. On the other hand, in the study of health indicator estimation there
were more than 300 subjects, but domain-specific knowledge was only marginally relevant
and could not be directly designed manually for features. The analysis methods used in both
studies were designed separately based on the above characteristics. If these characteristics
are not considered when designing methods, it is hardly possible to obtain good results.

In this chapter, the author conducted some additional experiments as benchmarks to
justify the previous discussion. In addition, the scope of the two strategies is also discussed
in the last section.
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Discussion

4.1 iNPH diagnosis using deep learning approach with the
pre-training-fine-tuning strategy

First, the author attempted to use deep learning approach to judge the results of CSF tap
test in the study of iNPH diagnosis. As in studies of health indicator estimation, the author
attempted to pre-train the network using gait primitives extracted from a large-scale gait
database, and then fine-tuned it using the dataset of iNPH patients.

For the gait primitives, based on the principle of using the information with the strongest
relevance to the study topic, the author chose three gait symptoms of iNPH, i.e., lateral sway,
wide-base gait and petit-pas gait, which could be extracted automatically from a large-scale
database without any manual work. The extraction methods are described below.

Lateral sway: The author defined the region of 16 pixels at the top of the silhouette (which
with a whole vertical size of 128 pixels) as the head region, and calculated the center of
gravity of its foreground pixels as the head position. The score for lateral sway was calculated
from the trajectory of the head position using the method described in Section 2.2.2.
Wide-base gait: The author defined the region of 28 pixels at the bottom of the silhouette as
the foot region, and extracted the lateral coordinates of the leftmost and rightmost foreground
pixels of the foot region in the whole image sequence, and then calculated the distance
between them as the score of the wide-base gait.
Petit-pas gait: Since all image sequences in the database have the same walking distance,
the author used an existing method [103] to calculate the gait period of the subjects, which
can be considered as a reciprocal of the step length.

Since the dataset of iNPH patients has only front-view images, the author chose 16,000
image sequences from the OU-ISIR MVLP database [67], which also has front-view gait
images, as the pre-training dataset. The GEI and iNPH-related gait primitives extracted from
the dataset were used to pre-train the primitive network. The structure and layer configuration
for the pre-training network are exactly the same as those described in Section 3.4.4.

Subsequently, the author fine-tuned each of the three primitive networks into classifiers
for judging the result labels of CSF tap test. Since judging the results of the CSF tap test
requires comparing the gait of pre- and post-tap, the author calculated differential images
for all combinations of GEI pre- and post-tap for each patient (as shown in Fig. 4.1), and
used them with the ground truth (i.e., labels judged by the physicians) as the training set
for fine-tuning. The structure of the fine-tuning network is almost the same as shown in
Fig. 3.6, except that the output of the last layer (fc2) was changed to two dimensions, i.e., the
predicted probabilities of the two labels (i.e., tap-positive and tap-negative).
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4.1 iNPH diagnosis using deep learning approach

−

Post-tap GEI Pre-tap GEI differential image

Fig. 4.1 Example of the differential image for pre- and post-tap GEI. It is calculated by
subtracting the pre-tap GEI from the post-tap GEI. Where the difference in pixel values is 0,
the value of the corresponding pixel on the differential image is set to 128 (gray as in the
center of the differential image); when the pixel value of the post-tap GEI is greater than the
pre-tap GEI, the corresponding pixel is closer to white, and vice versa.

Table 4.1 Accuracy for CSF tap test judgement using deep learning method.

Primitive Lateral sway Petit-pas gait Wide-base gait

Accuracy 33.3% 51.2% 55.6%

The author used rank-1 accuracy, i.e., the output is considered correct when the label
with the highest probability is the same as the ground truth label, to assess the accuracy
of the prediction, and used leave-one-out cross-validation to test the performance of the
classifier. The data from one patient was retained as the test set, while one tap-positive and
one tap-negative each were randomly selected from the other 17 patients as the validation set,
and the rest were used for training.

As shown in Table 4.1, the accuracy rates of the test sets in classification are quite low.
Moreover, as shown in Fig. 4.2, the classifier is almost always consistent across sequences for
each patient, resulting in either a 100% or 0% accuracy rate. This is rather an identification
of the patient than a determination of the patient’s symptoms, suggesting that the available
data are inadequate for this task.
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Fig. 4.2 Result of CSF tap test which judged by deep learning classification method.

4.2 Health indicator estimation via manually designed fea-
ture

Second, the author attempted to estimate health indicators using manually designed features.
However, without any relevant knowledge about the estimation of health indicators from
gait, the author can only design features by general understanding, that the amount of weight
and body composition is related to body width and area of the silhouette. Therefore, the
author used the three body width data (chest, waist, and hip) described in Section 3.4.3, with
the static component area of the GEI and the whole area of the GEI as manually designed
features, and calculated health indicators using support vector regression.

The author performed a 20-fold cross-validation same as the proposed method to assess
the performance of this method. As shown in Fig. 4.3 the estimation accuracy of the method
using manually designed features is lower than that of the proposed method, which uses
domain-specific knowledge to pre-train the primitive network and fine-tune it with the dataset,
in almost all indicators. Meanwhile, the SVR estimation results using manually designed
features as input have higher accuracy than when GEI is used directly as input. This indicates
that even if the analysis method is not entirely appropriate, it has a role in improving the
accuracy as long as domain-specific knowledge is used.
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Discussion

4.3 iNPH diagnosis via classical machine learning method
with classical handcrafted feature

Classical machine learning methods are believed to work well on small datasets as well.
However, when the dataset scale is as small as the one in the study of iNPH diagnosis, these
methods are also incapable. To demonstrate this, the author tried to use classical machine
learning with classical handcrafted features to judge the results of CSF tap tests for iNPH
patients.

The author extracted local binary pattern (LBP) features using the differential GEIs
illustrated in Section 4.1 and Fig. 4.1, and trained a classifier for tap-positive and tap-negative
labels using support vector machine (SVM).

Table 4.2 Classification accuracy for CSF tap test judgement using SVM with LBP feature.

Label Tap-positive Tap-negative

Accuracy 24.9% 32.6%
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Fig. 4.4 Result of CSF tap test which judged by SVM with LBP feature.
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4.4 Scope of the two strategies

As in Section 4.1, the authors evaluate rank-1 accuracy and use the leave-one-out cross-
validation to test the performance of the classifier. Table 4.2 showed the accuracy of the
tap-positive and tap-negative labels respectively, and both of them are very low. Fig. 4.4
showed the accuracy for each patient separately, and it can be seen that despite the results are
not as extreme as those using the deep learning method in Section 4.1, the variation between
the accuracies of patients within the same label is still significant.

4.4 Scope of the two strategies

As shown in the results of the sensitivity analysis of the study on health indicator estimation
(Fig. 3.18), when the dataset scale is less than 100 subjects, it becomes difficult for the deep
learning approach to obtain good results. Therefore, a threshold of 100 subjects can be used
in selecting the applied strategy, i.e., a dataset with a size less than 100 subjects should be
considered as insufficient to competently fine-tune the primitive network (i.e., the scale is
very small in Fig. 1.2), while a dataset larger than 100 subjects but still insufficient for direct
training of the deep neural network can be tried using strategy II.

This threshold is also should be adjusted according to the task to be achieved and the
sample distribution in the actual dataset, etc.

In classification tasks, the interclass distribution of sample size can significantly affect
the classification accuracy. For example, in the study of iNPH diagnosis, if the number of
patients with tap-positive increases many times while the number of tap-negative remains
unchanged, then despite the overall scale of the dataset will become larger, it will still not be
beneficial for the classification task. Therefore, in classification tasks, strategies should be
selected according to the scale of the class with the smallest number of samples, rather than
the scale of the entire dataset.

As for the regression tasks, the distribution of the dataset also affects the accuracy. For
example, if the dataset for the study of health indicator estimation has only subjects with
standard physique without any over- or underweight ones, the trained estimator will have
difficulty in yielding accurate results for the latter. Therefore, the actual scale of the dataset
can be used for selection only if its distribution obeys the prior probability, otherwise the
scale needs to be treated as a smaller one accordingly in the selection.
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Chapter 5

Conclusion

This thesis describes strategies for solving the problem of undersized datasets which is often
experienced when using computer vision methods in the medical topics. Deep learning
methods are frequently used and very effective in current computer vision studies, however,
a dataset with sufficiently large scale is a prerequisite for the availability of this approach.
In the case of topics in the medical field, it is difficult to obtain adequately data, which are
usually only tens to hundreds in size, due to the double limitation of the number of subjects
and professionals. Datasets of this scale are difficult to train deep learning networks with
adequate accuracy, and classical machine learning methods are not competent for complex
analysis of these topics. Therefore, strategies are needed to compensate for the lack of
information due to insufficient datasets for the study of this kind of topics.

The key to this issue is the lack of information, and therefore more information needs
to be introduced into the study as compensation. Thus, what kind of information should be
introduced and how it should be used becomes critical. In this regard, two strategies are
proposed, i.e., using domain-specific knowledge that is as closely related to the topic as
possible, and deciding on the analysis method for the data with sufficient consideration of the
scale of the dataset and the relevance of the domain-specific knowledge for the topic. The
author conducted two application studies as a practice of these strategies, namely the study
of video-based gait analysis for iNPH diagnosis and the study of health indicator estimation
by video-based gait analysis.

In the study on iNPH diagnosis, the dataset obtained by the author contained only 18
subjects. Also, due to site limitations, only front- and back-view walking images can be
captured, which contain less gait information than side-view images. On the other hand,
gait symptoms of iNPH are well described in the medical field, and physicians can make
judgments about a patient’s gait symptoms from front-view videos. Therefore, the author
manually designed gait features that can be extracted from front view images as described in
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Conclusion

medical field works, and developed a method for judging CSF tap test results by analyzing
the values of these features extracted from the subject’s gait videos.

In the study on health indicator estimation, the author obtained a dataset of more than 300
individuals due to fewer restrictions on data collection. However, although it is sufficiently
likely that gait will indicate health indicators, there is still no existing literature that describes
how health indicators can be calculated from gait. The author also tried to train the deep
learning network from scratch using the gait-health indicator dataset, but its results were
not satisfactory. Since there is no direct knowledge of both gait and health indicators, the
author chose to use the sub-optimal, i.e., features that can be measured by gait, which are
gait primitives such as arm swing amplitude and body width. It is possible that these gait
primitives also indicate health indicators and therefore have a certain relevance to this topic.
And since only gait information is required for their measurements, a normal gait database
can be used as a training dataset. The author therefore used a large-scale gait database OULP-
Age, extracted gait primitives using existing methods and trained the primitive networks.
Subsequently, the author fine-tuned the primitive networks using the gait-health indicator
dataset and obtained estimators with acceptable accuracy.

Through the two studies mentioned above, the author demonstrated the effectiveness of
the two strategies proposed in this work. In studies of health indicator estimation, the results
of benchmark experiments demonstrate that using domain-specific knowledge with strong
relevance is better than using it with weaker relevance or not using it at all. On the other
hand, in order to demonstrate the necessity of deciding the data analysis methods according
to the scale of the dataset and the relevance of domain-specific knowledge, the author tried
to exchange the analysis methods in the two studies as additional experiments. The results
showed that the analysis methods were not interchangeable when the scale of the datasets
and the relevance of domain-specific knowledge were different.

The above practice proves the effectiveness of the proposed strategies, but there are still
issues remaining. For topics like iNPH diagnosis where existing domain-specific knowledge
is exhaustive, all the researcher needs to do is to make full use of that knowledge. However,
for topics like health indicator estimation, a specific solution on how to select and utilize
domain-specific knowledge is still lacking. Gait characteristics such as arm swing and stride
length were used as primitives in this study because there are existing, well-established
measurement methods; while body width was added in consideration of the difficulty of
expressing body shape information by the characteristics measured by existing methods,
and its measurement method was developed originally and immature. In the end, however,
body width works better as a gait primitive instead. Therefore, such an approach may not
be effective in other topics, and the gait primitives and their usage now chosen in this topic
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may not be the best option. In the absence of strongly associated domain-specific knowledge,
strategies for the selection and use of existing knowledge still need further research.
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