
Title

Constrained Locating Arrays and Constrained
Detecting Arrays: New Mathematical Structures
for Fault Identification in Combinatorial
Testing

Author(s) 金, 浩

Citation 大阪大学, 2022, 博士論文

Version Type VoR

URL https://doi.org/10.18910/88144

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Constrained Locating Arrays and Constrained

Detecting Arrays: New Mathematical

Structures for Fault Identification in

Combinatorial Testing

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2022

Hao JIN

2

ABSTRACT

Combinatorial interaction testing (CIT) is an efficient black-box software testing method

that can detect failures triggered by interactions of features or components in software

systems. Existing research has shown that most such interactions only involve a small

number of features or components; hence, it is sufficient to test all interactions among

two to six test parameters to reveal system faults. Covering arrays (CAs) are mathematical

structures designed to test all interactions among a fixed number (e.g., two or three) of

parameters. By avoiding testing all interactions with all parameters, CAs can significantly

reduce the testing cost.

However, it is not always possible to use CAs directly in practical testing. In most

cases, real-world systems have complex requirements and restrictions among their testing

space. To test software systems correctly, all test cases in a test suite must satisfy the

constraints imposed by these requirements and restrictions. To overcome this weakness,

constrained CAs (CCAs) which are CAs that only contain constraint-satisfying test cases,

have been used. Because some interactions may violate constraints as well, CCAs only

require testing all interactions that satisfy constraints.

Although CCAs are able to detect the existence of faulty interactions in systems with

constraints at low cost, CCAs cannot identify them from test outcomes. This is because

CCAs do not have a sufficient number of test cases to distinguish faulty from non-faulty

interactions.

i

ii ABSTRACT

With the aim of not only detecting the existence of faulty interactions but also identi-

fying them, locating arrays (LAs) and detecting arrays (DAs) have previously been pro-

posed. LAs and DAs are mathematical structures that can also be used as test suites in

CIT. Although they are slightly larger than CAs, LAs and DAs can identify faulty inter-

actions from their test outcomes. In other words, both LAs and DAs preserve the benefit

of low testing cost from CAs while also being able to identify faulty interactions. Similar

to CAs, LAs and DAs do not take constraints into account. Thus, they cannot be used for

testing of systems with constraints.

This dissertation proposes the notions of constrained LAs (CLAs) and constrained

DAs (CDAs). These arrays are mathematical structures that can be used for fault identi-

fication in the presence of constraints. CLAs and CDAs extend LAs and DAs to testing

systems that have constraints on the test space. In short, CLAs and CDAs require that

all test cases must satisfy constraints. Thus, CLAs and CDAs enhance the applicabil-

ity of LAs and DAs to practical testing problems. In this dissertation, the mathematical

properties of CLAs and CDAs are investigated.

This dissertation also proposes two algorithms for constructing both CLAs and CDAs.

One algorithm is able to generate minimum CLAs and CDAs. It translates the problem

of generating arrays into the satisfiability problem for logical expressions. Using an off-

the-shelf satisfiability checker, the algorithm is able to generate CLAs and CDAs with

minimum sizes. In contrast, the other algorithm is a heuristic algorithm that can generate

minimum or near-minimum CLAs and CDAs in a short time.

Three experiments were conducted in the dissertation. The results of the first exper-

iment show that the satisfiability-based generation algorithm can always generate mini-

mum arrays given sufficient generation time. The results of the second experiment show

that the heuristic generation algorithm scales to problems of practical sizes. In the third

experiment, CLAs and CDAs were applied to two real-world applications. The experi-

ABSTRACT iii

mental results show that faulty interactions were successfully identified using CLAs and

CDAs.

Both CLAs and CDAs provide new choices to testers of software systems. The cost-

efficiency of CLAs and CDAs is appealing, especially for the testing of large-scale sys-

tems, such as highly configurable systems.

iv ABSTRACT

LIST OF MAJOR PUBLICATIONS

(1) Hao Jin, Takashi Kitamura, Eun-Hye Choi, and Tatsuhiro Tsuchiya, A satisfiability-

based approach to generation of constrained locating arrays, In 2018 IEEE Interna-

tional Conference on Software Testing, Verification and Validation Workshops (ICSTW2018),

pp. 285–294, April 2018.

(2) Hao Jin and Tatsuhiro Tsuchiya, Deriving fault locating test cases from constrained

covering arrays, In Proceedings of 2018 IEEE 23rd Pacific Rim International Sym-

posium on Dependable Computing (PRDC2018), pp. 233–240, December 2018.

(3) Hao Jin, Ce Shi, and Tatsuhiro Tsuchiya, Constrained detecting arrays for fault

localization in combinatorial testing, In Proceedings of the 35th Annual ACM Sym-

posium on Applied Computing (SAC’20), pp. 1971–1978, March 2020.

(4) Hao Jin and Tatsuhiro Tsuchiya, A two-step heuristic algorithm for generating con-

strained detecting arrays for combinatorial interaction testing, In Proceedings of

2020 IEEE 29th International Conference on Enabling Technologies: Infrastruc-

ture for Collaborative Enterprises (WETICE2020), pp. 219–224, September 2020.

(5) Hao Jin and Tatsuhiro Tsuchiya, Constrained locating arrays for combinatorial in-

teraction testing, Journal of Systems and Software, vol. 170, no. 110771, December

2020.

v

vi LIST OF MAJOR PUBLICATIONS

(6) Hao Jin, Ce Shi, and Tatsuhiro Tsuchiya, Constrained detecting arrays: mathemat-

ical structures for fault identification in combinatorial interaction testing (submit-

ted).

CONTENTS vii

CONTENTS

Abstract . i

List of Major Publications . v

1 Introduction 1

1.1 Background . 1

1.2 Combinatorial Interaction Testing . 2

1.3 Contribution of This Dissertation . 3

1.4 Overview of Dissertation . 4

2 Preliminaries 7

2.1 Basic Notions of CIT . 7

2.1.1 System Under Test . 7

2.1.2 Test Cases, Test Suites, and Interactions 8

2.2 Test Suites in CIT . 10

2.2.1 Covering Arrays, Locating Arrays, and Detecting Arrays 10

2.2.2 Examples of CAs, LAs, and DAs 12

2.2.3 Constrained Covering Arrays . 15

3 Constrained Locating Arrays 17

3.1 Definitions . 17

3.2 Examples . 19

viii CONTENTS

3.3 Properties of CLAs . 19

4 Constrained Detecting Arrays 27

4.1 Definitions . 27

4.2 Examples . 29

4.3 Properties of CDAs . 29

5 Fault Identification 37

5.1 Case: Constrained Covering Arrays . 37

5.2 Case: Constrained Locating Arrays . 39

5.3 Case: Constrained Detecting Arrays . 41

6 Generation Algorithms 43

6.1 Generation Algorithms for CLAs . 43

6.1.1 Satisfiability-Based Algorithm 44

6.1.2 Heuristic Algorithm . 49

6.2 Generation Algorithms for CDAs . 50

6.2.1 Satisfiability-Based Algorithm 51

6.2.2 Heuristic Algorithm . 55

7 Experiments 61

7.1 Experiment Purposes and Research Questions 61

7.2 Comparison of Generation Algorithms 62

7.2.1 Experimental Settings . 62

7.2.2 CLA: Experimental Results . 64

7.2.3 CDA: Experimental Results . 66

7.2.4 Answer to RQ 1 . 68

7.3 Experiments on Generating Arrays with t ≥ 2 69

CONTENTS ix

7.3.1 Experimental Setting . 69

7.3.2 CLA: Experimental Results . 69

7.3.3 CDA: Experimental Results . 71

7.3.4 Answer to RQ 2 . 71

7.4 Fault Identification in Real-World Systems 73

7.4.1 Experimental Setting . 74

7.4.2 Experimental Results . 75

7.4.3 Answer to RQ 3 . 81

8 Related Work 83

9 Conclusion 87

9.1 Conclusion . 87

9.2 Future Work . 88

Bibliography 89

x CONTENTS

SECTION 1.2 INTRODUCTION 1

CHAPTER 1

INTRODUCTION

1.1 Background

Software systems play a core role in society. With the wide spread of software system

usage, the dependability of software systems is a vital issue to address. Although many

methods have been proposed to ensure the correctness of software systems, software test-

ing is still a central method for guaranteeing that software systems execute as planned.

Software testing uses pre-defined input to examine software systems. By comparing the

output of the systems with expected results, the latent faults can be found and then cor-

rected. If one were able to enumerate all possible inputs and expected outputs of a system,

it would be not difficult to use them in a test plan. However, this strategy, often called

exhaustive testing, is usually impractical for most systems because its cost increases ex-

ponentially with the scale of the system, and the goal of software testing is to find more

faults with less cost.

2 INTRODUCTION CHAPTER 1.

1.2 Combinatorial Interaction Testing

Combinatorial interaction testing (CIT) is an efficient testing strategy that aims to test

all interactions among a specified number of system parameters or system components.

By avoiding testing all interactions with all parameters, CIT test suites can significantly

reduce the cost of testing. The reasons for choosing CIT for testing are reported in

[34, 35, 37]. The research shows that it is sufficient to only test interactions involving

a small number of parameters to reveal most of the latent faults. Checking the interac-

tions among two to six parameters is generally sufficient to ensure that a system works

correctly. Unlike with exhaustive testing, the testing cost of CIT grows logarithmically

as the number of system parameters increases. Using CIT for software development can

reduce testing cost significantly. Surveys on CIT research can be found in, for exam-

ple, [9, 22, 46, 66].

CIT is based on mathematical structures in the field of combinatorial designs. The

most typical class of mathematical structures used for CIT is t-way covering arrays (t-

CAs). In a t-CA, every interaction involving t parameters appears in at least one test case;

thus, the use of a t-CA ensures that all t-way interactions are exercised. In other words,

all faults that are caused by t-way interactions will be detected by t-CAs.

There are many directions to expand the capability of CIT. One is to add fault lo-

calization capability to test suites. The (d, t)-locating arrays (LAs) and (d, t)-detecting

arrays (DAs) proposed in [10] represent test suites that can not only detect but also iden-

tify faulty interactions. The integers d and t are predefined parameters, where d represents

the number of faulty interactions that can be identified and t represents the number of pa-

rameters involved in the faulty interactions. LAs and DAs add this capability to CAs at

the cost of an increased number of test cases. One of the differences between (d, t)-LAs

and (d, t)-DAs appears when there are more than d faulty interactions. In such a case,

SECTION 1.3 CONTRIBUTION OF THIS DISSERTATION 3

(d, t)-LAs may incorrectly regard faulty interactions as non-faulty because of the lack of

test cases. However, (d, t)-DAs can indicate when the number of faulty interactions ex-

ceeds the ability of DAs for the same case and will never identify faulty interactions as

non-faulty. The other difference is that LAs usually have less test cases, i.e., lower testing

cost, than DAs when d and t are the same.

Another direction for expanding CIT is to incorporate constraints. Real-world sys-

tems usually have constraints on the input space. These constraints originate from, for

example, user-defined requirements or running environment restrictions. To test systems

with constraints correctly, proper handling of the constraints is necessary. For example,

all test cases must satisfy the constraints.

In addition, constraints may make some interactions no longer testable. These invalid

interactions require additional handling. Constrained CAs (CCAs) are an extension of

CAs in which such constraints are incorporated. Many previous studies on CIT have

tackled the problem of generating CCAs of small sizes [38, 40, 59].

1.3 Contribution of This Dissertation

The purpose of this dissertation is to extend the notion of LAs and DAs to widen their

applicability to practical testing problems. In this dissertation, constrained LAs (CLAs)

and constrained DAs (CDAs) are proposed. CLAs and CDAs are mathematical struc-

tures that can be used as test suites for identifying faulty interactions in the presence of

constraints. CLAs and CDAs retain the properties of LAs and DAs while enabling fault

identification for systems with constraints. CLAs have less testing cost when compared

to CDAs. However, CDAs can identify faulty interactions more accurately.

In addition to the presence of invalid interactions, constraints may cause some valid

interactions to become no longer identifiable. That is, constraints may make it impossi-

4 INTRODUCTION CHAPTER 1.

ble to identify a non-faulty interaction or set of such interactions from faulty interactions;

hence, a special treatment is required to deal with such an inherently non-identifiable pair.

To address this problem, the concepts of distinguishability and masking are proposed. The

mathematical properties of the newly proposed structures, CLAs and CDAs, are investi-

gated. Also, two generation methods are proposed in this dissertation for both CLAs and

CDAs. One generation method can construct minimum arrays given sufficient time, while

the other can construct minimum or near-minimum arrays in a short time.

1.4 Overview of Dissertation

This dissertation is organized as follows:

Chapter 2 introduces basic notions in the field of CIT, including system models, test

cases, test suites, and interactions. Then, the definitions of existing mathematical struc-

tures, such as CAs, LAs, and DAs, are introduced. CCAs, the constrained version of CAs,

are then defined. Examples of these arrays are also presented in this chapter.

Chapter 3 introduces CLAs, the constrained version of LAs. To propose CLAs, the

notion of distinguishability, which is a relation that constraints may induce on interactions,

is clarified. Then, the definition of LAs is relaxed so that the newly defined CLAs can be

applied to systems with constraints. Examples of CLAs are presented in this chapter, and

the properties of CLAs are also discussed.

Chapter 4 introduces CDAs, the constrained version of DAs. The notion of masking,

which is caused by constraints, is clarified. Using this notion, CDAs are then defined.

The properties of CDAs are also discussed in this chapter.

Chapter 5 demonstrates how CLAs and CDAs can be used in fault identification pro-

cesses.

Chapter 6 proposes generation methods for CLAs and CDAs. Two generation methods

SECTION 1.4 OVERVIEW OF DISSERTATION 5

are designed for each type of array; one method aims to generate minimum arrays, and

the other generates minimum or near-minimum arrays in a short time.

Chapter 7 evaluates the fault identification capabilities of CLAs and CDAs and their

generation methods. An evaluation compares the two methods in terms of generation time

and generated array size. Then, an evaluation on generating arrays with different strengths

t of interactions is performed. Finally, the performance of fault identification using CLAs

and CDAs is examined in open source applications.

Chapter 8 summarizes related work, and Chapter 9 concludes this dissertation.

6 INTRODUCTION CHAPTER 1.

SECTION 2.1 PRELIMINARIES 7

CHAPTER 2

PRELIMINARIES

2.1 Basic Notions of CIT

2.1.1 System Under Test

A system under test (SUT) is modeled as a 3-tupleM = 〈F ,S, ϕ〉. F = {F1, F2, . . . , Fk}

is a set of parameters in the system, where k is the number of all parameters. S =

{S1, S2, . . . , Sk} is a set of domains for all the parameters in F , where Si is the domain

for the parameter Fi. Each domain Si consists of two or more integers ranging from 0 to

|Si| − 1, i.e., Si = {0, 1, . . . , |Si| − 1}. Different integers in Si represent different values

for the parameter Fi. ϕ : S1 × S2 × · · · × Sk → {true, false} is a mapping representing

the system constraints. Parameters and their domains can be regarded as the input of a

program or as system configurations.

Table 2.1 shows a running example of a simple online shopping application SUT.

There is a set of 4 parameters that take 3, 2, 3, and 4 different values in the system.

The constraints in the SUT originate from real-world restrictions or requirements. This

example is taken from [25]. The SUT originally included only one constraint ϕ1. The

constraint ϕ2 is newly added to the original example for demonstration purposes.

8 PRELIMINARIES CHAPTER 2.

Table 2.1: SUT: an online shopping mobile application [25]

F F1 (Total Price) F2 (Shipping Address) F3 (Shipping Method) F4 (Payment Method)

S

0: $50 0: Domestic 0: Same-Day Delivery 0: Visa

1: $500 1: International 1: 2-Day Delivery 1: Mastercard

2: $1000 – – 2: 7-Day Delivery 2: Paypal

– – – – – – 3: Gift Card

ϕ
ϕ1 : Shipping Address = International⇒ Shipping Method 6= Same-Day Delivery

ϕ2 : Payment = Gift Card⇒ Shipping Address = Domestic ∧ Shipping Method = Same-Day Delivery

2.1.2 Test Cases, Test Suites, and Interactions

A test case is an element of S1×S2×· · ·×Sk; that is, a test case is a k-tuple 〈σ1, . . . , σi, . . . , σk〉

such that σi ∈ Si. A test suite is a set of test cases. A test suite is regarded as an N × k

array, where each row represents a test case and there are N test cases. The size of a test

suite (i.e., array) is the number of test cases (rows) in it. Hereinafter, the terms test suite

and array are used interchangeably.

An interaction is a set of parameter-value pairs such that no parameters are over-

lapped. The strength of an interaction is the number of parameter-value pairs in the

interaction. That is, {(Fi1 , σ1), . . . , (Fit , σt)} is an interaction of strength t if and only

if (iff) Fij 6= Fik for any ij, ik (ij 6= ik) and σj ∈ Sij for all ij ∈ {i1, . . . , it}. In this

dissertation, ⋏ is used instead of ∅ to denote the interaction of strength 0, i.e., the empty

set. An interaction is called t-way iff its strength is t. An interaction T1 covers another

interaction T2 iff T2 ⊆ T1. A set of interactions T are independent iff T1 6⊆ T2 for any

T1, T2 ∈ T , T1 6= T2.

A test case is said to cover an interaction iff the value of every parameter involved in

the interaction matches between the test case and interaction. Formally, σ = 〈σ1, . . . , σi, . . . , σk〉

covers an interaction T = {(Fi1 , σ
′
1), . . . , (Fit , σ

′
t)} iff σij = σ′

j for all j ∈ {i1, . . . , it}.

Given a test suite A and interaction T , the set of rows (i.e., test cases) that cover T is

SECTION 2.1 BASIC NOTIONS OF CIT 9

{(F2, 1), (F3, 0)} {(F2, 1), (F4, 3)}

{(F3, 2), (F4, 3)} {(F3, 1), (F4, 3)}

Figure 2.1: Invalid 2-way interactions in the running example

{(F1, 0), (F2, 0)} {(F1, 1), (F3, 2)} {(F1, 0), (F4, 3)}

{(F2, 0), (F3, 0)} {(F2, 1), (F3, 2)} {(F2, 0), (F4, 3)}

. . . (49 in total)

Figure 2.2: Valid 2-way interactions in the running example

signified as ρA(T). Moreover, ρA(T) =
∪

T∈T ρA(T) represents the covering test case

set of an interaction set T . In other words, ρA(T) is the set of rows that cover at least one

interaction in T . Note that ρA(∅) = ∅ and ρA(⋏) = A.

A test case σ is valid iff it satisfies the constraint ϕ, i.e., ϕ(σ) = true; otherwise, it is

invalid. The set of all valid test cases is denoted asR (⊆ S1 × S2 × · · · × Sk). Hence,R

is referred to as the exhaustive test suite consisting of all valid test cases.

The valid/invalid distinction also applies to interactions. Interactions covered by at

least one valid test case are valid; the other interactions, i.e., those that no valid test

cases can cover, are invalid. Symbols It and VIt denote the sets of all t-way interactions

and all valid t-way interactions, respectively. Similarly, this dissertation uses It and VIt

to denote the sets of all interactions and of all valid interactions of strength at most t,

respectively.

There are 53 2-way interactions in the running example, in which 4 interactions are

invalid and 49 are valid. All invalid 2-way interactions in the running example are listed

in Figure 2.1. Some valid 2-way interactions are shown in Figure 2.2.

A valid interaction is either faulty or non-faulty. The outcome of execution of a valid

test case is either PASS or FAIL. The outcome is FAIL iff the test case covers one or more

10 PRELIMINARIES CHAPTER 2.

faulty interactions; the outcome is PASS otherwise. The outcome of a test case execution

is deterministic. This assumes that if a test case in the model represents a high-level test

plan, the actual test cases, which are not modeled, are fixed and do not alter the outcome

under the test plan. The outcome of a test suite is the collection of outcomes of all rows

in it. In the running example, there are 3× 2× 3× 4 = 72 test cases in total, of which 48

are valid. In other words, |R| = 48 for the SUT.

2.2 Test Suites in CIT

The mathematical structures of covering arrays (CAs), locating arrays (LAs), and detect-

ing arrays (DAs), are prevalently used as test suites in CIT. The three types of arrays are

designed to test an SUT without constraints (ϕ = true or ϕ = ∅), and they have different

testing purposes. CAs contain less test cases than ordinary test suites (i.e., exhaustive

test suites, LAs, DAs, etc.), so they can detect the existence of faults with very little cost.

LAs and DAs, however, can not only detect faults but also identify faulty interactions by

means of test outcomes.

2.2.1 Covering Arrays, Locating Arrays, and Detecting Arrays

A CA has a parameter t that indicates the strength of interactions to be tested. A t-way

CA (t-CA) can be formally defined as follows:

t-CA ∀T ∈ It : ρA(T) 6= ∅

This condition requires that all t-way interactions T in It will be tested by at least one

row in the array. In other words, all t-way faulty interactions, if they exist, can be revealed

by a t-CA. The definition of a t-CA also implies that all interactions of strength no larger

than t, i.e., t-way interactions, are covered by at least one test case. That is, a t-CA is also

a (t− 1)-CA when t > 0. Thus, a t-CA can also be defined as follows:

SECTION 2.2 TEST SUITES IN CIT 11

t-CA ∀T ∈ It : ρA(T) 6= ∅

The test cost of t-CAs is much less than that of exhaustive test suites because t-CAs

do not need to cover all interactions that have strengths larger than t. However, CAs

cannot locate or identify faulty interactions correctly. Because t-CAs require that all t-

way interactions appear in some test cases, two or more t-way interactions may only

appear in the same set of test cases. That is, if some non-faulty interactions only appear in

the set of failed test cases, it is impossible to distinguish the non-faulty interactions from

the faulty ones using the test outcome.

Meanwhile, LAs and DAs can be used to not only detect the existence of faulty in-

teractions but also identify them. LAs and DAs were first proposed by Colbourn and

McClary in [10]. They introduced a total of six types for both LAs and DAs according

to fault identification capability. Two types of them exist only in extreme cases. The re-

maining four types, namely, (d, t)-, (d, t)-, (d, t)-, (d, t)-LAs (and DAs), are as follows

(d ≥ 0, 0 ≤ t ≤ k):

(d, t)-LA ∀T1, T2 ⊆ It such that |T1| = |T2| = d :

ρA(T1) = ρA(T2)⇔ T1 = T2

(d, t)-LA ∀T1, T2 ⊆ It such that 0 ≤ |T1| ≤ d, 0 ≤ |T2| ≤ d :

ρA(T1) = ρA(T2)⇔ T1 = T2

(d, t)-LA ∀T1, T2 ⊆ It such that |T1| = |T2| = d and T1, T2 are independent :

ρA(T1) = ρA(T2)⇔ T1 = T2

(d, t)-LA ∀T1, T2 ⊆ It such that 0 ≤ |T1| ≤ d, 0 ≤ |T2| ≤ d and T1, T2 are independent :

ρA(T1) = ρA(T2)⇔ T1 = T2

12 PRELIMINARIES CHAPTER 2.

(d, t)-DA ∀T ⊆ It such that |T | = d, ∀T ∈ It :

ρA(T) ⊆ ρA(T)⇔ T ∈ T

(d, t)-DA ∀T ⊆ It such that 0 ≤ |T | ≤ d, ∀T ∈ It :

ρA(T) ⊆ ρA(T)⇔ T ∈ T

(d, t)-DA ∀T ⊆ It such that |T | = d, ∀T ∈ It and T ∪ {T} is independent :

ρA(T) ⊆ ρA(T)⇔ T ∈ T

(d, t)-DA ∀T ⊆ It such that 0 ≤ |T | ≤ d, ∀T ∈ It and T ∪ {T} is independent :

ρA(T) ⊆ ρA(T)⇔ T ∈ T

The parameter d of these arrays represents the number of faulty interactions that the

arrays can correctly identify, while t represents the strength of the target interactions.

Writing d or t in place of d or t means that the arrays permit at most of d faulty in-

teractions or strength at most t. For instance, a (1, 2)-LA or DA can locate one 2-way

faulty interaction, while a (2, 5)-LA or DA can locate at most two faulty interactions with

strength no greater than five. When dealing with It, it is required that T1, T2, or T ∪ {T}

be independent because if there are T1, T2 ∈ It such that T1 ⊂ T2, whether T2 is faulty or

not cannot be determined when T1 is faulty.

The properties of LAs and DAs and the relations among different types of arrays are

elaborated on in [10].

2.2.2 Examples of CAs, LAs, and DAs

Examples of CAs, LAs, and DAs are shown in Tables 2.3 and 2.4. Note that there may be

different t-CAs of the same sizes (even if all of them are optimal for the given SUT). This

also applies to LAs and DAs.

SECTION 2.2 TEST SUITES IN CIT 13

(a) 2-CA

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 2 2

σ3 0 1 0 3

σ4 0 1 1 1

σ5 1 0 0 1

σ6 1 0 2 3

σ7 1 1 0 2

σ8 1 1 1 0

σ9 2 0 0 3

σ10 2 0 1 2

σ11 2 0 2 0

σ12 2 1 1 3

σ13 2 1 2 1

(b) 3-CA

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 0 2

σ3 0 0 0 3

σ4 0 0 1 1

σ5 0 0 2 0

σ6 0 0 2 2

σ7 0 0 2 3

σ8 0 1 0 1

σ9 0 1 1 0

σ10 0 1 1 2

σ11 0 1 1 3

σ12 0 1 2 1

σ13 1 0 0 1

σ14 1 0 1 0

σ15 1 0 1 2

σ16 1 0 1 3

σ17 1 0 2 1

σ18 1 1 0 0

σ19 1 1 0 2

σ20 1 1 0 3

σ21 1 1 1 1

σ22 1 1 2 0

σ23 1 1 2 2

σ24 1 1 2 3

σ25 2 0 0 0

σ26 2 0 0 2

σ27 2 0 0 3

σ28 2 0 1 1

σ29 2 0 2 0

σ30 2 0 2 3

σ31 2 1 0 1

σ32 2 1 1 0

σ33 2 1 1 2

σ34 2 1 1 3

σ35 2 1 2 1

σ36 2 1 2 2

Figure 2.3: CAs for the running example (constraints ignored)

14 PRELIMINARIES CHAPTER 2.

(a) (1,2)-LA

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 1 1

σ3 0 0 1 2

σ4 0 1 0 3

σ5 0 1 2 0

σ6 0 1 2 2

σ7 1 0 0 1

σ8 1 0 1 0

σ9 1 0 2 1

σ10 1 1 0 0

σ11 1 1 0 2

σ12 1 1 1 1

σ13 1 1 2 3

σ14 2 0 0 2

σ15 2 0 0 3

σ16 2 0 1 1

σ17 2 0 2 3

σ18 2 1 0 0

σ19 2 1 1 3

(b) (1,2)-DA

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 0 2

σ3 0 0 1 1

σ4 0 0 2 3

σ5 0 1 0 1

σ6 0 1 1 3

σ7 0 1 2 0

σ8 0 1 2 2

σ9 1 0 0 1

σ10 1 0 1 3

σ11 1 0 2 0

σ12 1 0 2 2

σ13 1 1 0 3

σ14 1 1 1 0

σ15 1 1 1 2

σ16 1 1 2 1

σ17 2 0 0 3

σ18 2 0 1 0

σ19 2 0 1 2

σ20 2 0 2 1

σ21 2 1 0 0

σ22 2 1 0 2

σ23 2 1 1 1

σ24 2 1 2 3

Figure 2.4: An LA and DA for the running example (constraints ignored)

SECTION 2.2 TEST SUITES IN CIT 15

2.2.3 Constrained Covering Arrays

The arrays introduced above are designed to test SUTs without constraints. However,

real-world systems usually have complicated constraints among parameters. Hence, the

constraint handling technique must be considered.

Constrained CAs (CCAs) are the constrained version of CAs. CCAs are the most

common form of test suites used in CIT. Most test generation tools for CIT are in effect

generators of CCAs.

Definition 1 (CCA). An array A that consists of valid test cases is a t-CCA iff the follow-

ing condition holds:

t-CCA ∀T ∈ VI t : ρA(T) 6= ∅

The definition of CCAs requires that all valid t-way interactions be covered by at

least one test case in the test suite. This condition implies that every valid interaction of

strength smaller than t is also covered by at least one test case. That is, a t-CCA is also a

(t− 1)-CCA when t > 0. Thus, a t-CCA can also be defined as follows:

t-CCA ∀T ∈ VIt : ρA(T) 6= ∅

Figure 2.5a shows a 2-CCA for the running example. It can be observed that none

of the invalid interactions, such as {(F2, 1), (F3, 0)} and {(F2, 1), (F4, 3)}, appear in any

rows in Figure 2.5a.

16 PRELIMINARIES CHAPTER 2.

(a) 2-CCA

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 0 3

σ3 0 1 1 1

σ4 0 1 2 2

σ5 1 0 0 2

σ6 1 0 0 3

σ7 1 0 2 1

σ8 1 1 1 0

σ9 2 0 0 1

σ10 2 0 0 3

σ11 2 0 1 2

σ12 2 1 2 0

(b) 3-CCA

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 0 1

σ3 0 0 0 2

σ4 0 0 0 3

σ5 0 0 1 1

σ6 0 0 2 0

σ7 0 1 1 0

σ8 0 1 1 2

σ9 0 1 2 0

σ10 0 1 2 1

σ11 0 1 2 2

σ12 1 0 0 0

σ13 1 0 0 1

σ14 1 0 0 2

σ15 1 0 0 3

σ16 1 0 1 0

σ17 1 0 2 2

σ18 1 1 1 1

σ19 1 1 1 2

σ20 1 1 2 0

σ21 1 1 2 1

σ22 2 0 0 0

σ23 2 0 0 1

σ24 2 0 0 2

σ25 2 0 0 3

σ26 2 0 1 0

σ27 2 0 1 2

σ28 2 0 2 1

σ29 2 1 1 0

σ30 2 1 1 1

σ31 2 1 2 0

σ32 2 1 2 2

Figure 2.5: A 2-CCA and 3-CCA for the running example

SECTION 3.1 CONSTRAINED LOCATING ARRAYS 17

CHAPTER 3

CONSTRAINED LOCATING ARRAYS

Incorporating constraints into LAs is not as straightforward as for CAs. In addition to

the existence of invalid interactions, constraints may cause some valid interactions to be

no longer identifiable from others. This fact consequently makes the definition of LAs

no longer valid for SUTs with constraints. To solve such a problem, the non-identifiable

interactions should be clarified first. Then, the definition of LAs must be relaxed so that

the constrained versions of LAs can be applied to SUTs with constraints.

3.1 Definitions

LAs identify faulty interactions with test outcomes. In an LA, a set of interactions is

uniquely mapped to a set of test cases. Hence, when a test suite is executed, a set of faulty

interactions can be uniquely identified according to the failed test cases. However, with

the existence of constraints, a set of interactions may be restricted to appear in the same

set of test cases, which is mapped to another set of interactions. Consequently, LAs cannot

be applied to the SUT. In the running example, the case can be illustrated as follows.

Constraint ϕ2 in Table 2.1 enforces every test case that has the parameter-value pair

(F4, 3) to always contain the parameter-value pairs of (F2, 0) and (F3, 0). Then, the set of

18 CONSTRAINED LOCATING ARRAYS CHAPTER 3.

the single interaction Ta = {{(F2, 0), (F4, 3)}} will always have the same covering test

cases as another set of the single interaction Tb = {{(F3, 0), (F4, 3)}}. The definition of

(1, 2) (or (1, 2), (1, 2), and (1, 2))-LAs cannot be held for the running example.

The relation between two such sets of interactions is called indistinguishability. The

formal definition is as follows.

Definition 2. A pair of sets of valid interactions, Ta and Tb, are distinguishable iff

ρR(Ta) 6= ρR(Tb).

If Ta and Tb are distinguishable, it is denoted as Ta 6∼ Tb; otherwise, it is denoted as

Ta ∼ Tb.

Note that even if no constraints exist, there can be some indistinguishable pairs of in-

teraction sets. In the running example, the two interaction sets Tc = {{(F1, 0)}, {(F1, 1)}, {(F1, 2)}}

and Td = {{(F3, 0)}, {(F3, 1)}, {(F3, 2)}} are indistinguishable even if the constraints

are omitted because the covering test sets for both interaction sets are R. If two sets of

interactions are indistinguishable, there is no other method to distinguish them from each

other according to test outcomes.

Based on the definition of distinguishable interaction sets, (d, t)-, (d, t)-, (d, t)-, and

(d, t)-CLAs, the constrained versions of the corresponding LAs, can be defined as fol-

lows.

Definition 3. Let d ≥ 0 and 0 ≤ t ≤ k. Let VIt be the set of all valid t-way interactions

and VIt be the set of all valid interactions of strength at most t. An array A that consists

of valid test cases or no rows is a (d, t)-, (d, t)-, (d, t)- or (d, t)-CLA iff the corresponding

SECTION 3.3 EXAMPLES 19

condition below holds:

(d, t)-CLA ∀T1, T2 ⊆ VIt such that |T1| = |T2| = d :

T1 6∼ T2 ⇔ ρA(T1) 6= ρA(T2)

(d, t)-CLA ∀T1, T2 ⊆ VIt such that 0 ≤ |T1|, |T2| ≤ d :

T1 6∼ T2 ⇔ ρA(T1) 6= ρA(T2)

(d, t)-CLA ∀T1, T2 ⊆ VIt such that |T1| = |T2| = d and T1, T2 are independent :

T1 6∼ T2 ⇔ ρA(T1) 6= ρA(T2)

(d, t)-CLA ∀T1, T2 ⊆ VIt such that 0 ≤ |T1|, |T2| ≤ d and T1, T2 are independent :

T1 6∼ T2 ⇔ ρA(T1) 6= ρA(T2)

(in extreme cases where no two such interaction sets T1, T2 exist, any A is a CLA)

The intuition of the definition is that if the SUT has a set of d (or ≤ d) faulty inter-

actions, then the test outcome obtained by executing all test cases in A will be different

from the one that would be obtained if the SUT had a different set of d (or ≤ d) faulty

interactions, unless the two interaction sets are not distinguishable.

3.2 Examples

Examples of a (1, 1)- and (2, 1)-CLA for the running example are shown in Table 3.1.

Table 3.2 shows a (1, 2)-CLA for the running example. Given an SUT, the minimum CLA

and minimum LA for the SUT (constraints ignored) may be different in size even when d

and t are the same; constraints may cause the sizes of CLAs to increase or decrease.

3.3 Properties of CLAs

Observation 1. A (d, t)-CLA is a (d, t)- and (d, t)-CLA. A (d, t)-CLA and (d, t)-CLA

are both a (d, t)-CLA. A (d, t)-CLA and (d, t)-CLA are a (d− 1, t)-CLA and (d− 1, t)-

20 CONSTRAINED LOCATING ARRAYS CHAPTER 3.

(a) (1, 1)-CLA

F1 F2 F3 F4

σ1 0 0 0 3

σ2 0 1 2 1

σ3 1 0 0 2

σ4 1 0 1 1

σ5 2 0 0 1

σ6 2 1 1 0

(b) (2, 1)-CLA

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 1 2

σ3 0 0 2 1

σ4 1 1 1 0

σ5 2 0 0 3

σ6 2 1 2 2

Figure 3.1: A (1, 1)-CLA and (2, 1)-CLA for the running example

CLA, respectively. A (d, t)-CLA and (d, t)-CLA are a (d, t− 1)-CLA and (d, t− 1)-CLA,

respectively.

Observation 2. Suppose that the SUT has no constraints, i.e., ϕ(σσσ) = true for all σσσ ∈

V1 × . . . × Vk, and that an LA A exists. Then, 1) A is a CLA with the same parameters,

and 2) any CLA with the same parameters as A is an LA (which is possibly different from

A) with the same parameters.

Lemma 1. A pair of sets of valid interactions, T1 and T2, are distinguishable iff there is

a valid test case that covers some interaction in T1 or T2 but no interactions in T2 or T1,

respectively, i.e., for some valid test case σσσ ∈ R, (∃T ∈ T1 : T ⊆ σσσ)∧(∀T ∈ T2 : T 6⊆ σσσ)

or (∃T ∈ T2 : T ⊆ σσσ) ∧ (∀T ∈ T1 : T 6⊆ σσσ).

Proof. (If part) Suppose that there is such a valid test case σσσ. Consider an array A that

contains σσσ. Then, either σσσ ∈ ρA(T1) ∧ σσσ 6∈ ρA(T2) or σσσ 6∈ ρA(T1) ∧ σσσ ∈ ρA(T2);

thus, ρA(T1) 6= ρA(T2). (Only if part) Suppose that there is no such valid test case, i.e.,

for every valid test case σσσ, (∀T ∈ T1 : T 6⊆ σσσ) ∨ (∃T ∈ T2 : T ⊆ σσσ) and (∀T ∈

T2 : T 6⊆ σσσ) ∨ (∃T ∈ T1 : T ⊆ σσσ). This means that for every valid test case σσσ,

SECTION 3.3 PROPERTIES OF CLAS 21

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 0 3

σ3 0 0 1 1

σ4 0 1 1 2

σ5 0 1 2 0

σ6 1 0 0 2

σ7 1 0 0 3

σ8 1 0 1 2

σ9 1 1 1 1

σ10 1 1 2 0

σ11 1 1 2 2

σ12 2 0 0 1

σ13 2 0 0 3

σ14 2 0 2 0

σ15 2 1 1 0

σ16 2 1 1 2

σ17 2 1 2 1

Figure 3.2: A (1, 2)-CLA for the running example

22 CONSTRAINED LOCATING ARRAYS CHAPTER 3.

(∀T ∈ T1 : T 6⊆ σσσ) ∧ (∀T ∈ T2 : T 6⊆ σσσ) or (∃T ∈ T1 : T ⊆ σσσ) ∨ (∃T ∈ T2 : T ⊆ σσσ).

Hence, for any test case σσσ in A, σσσ 6∈ ρA(T1) ∧ σσσ 6∈ ρA(T2) or σσσ ∈ ρA(T1) ∧ σσσ ∈ ρA(T2).

As a result, for any A, ρA(T1) = ρA(T2).

Theorem 2. If A is an array consisting of all valid test cases, then A is a CLA with any

parameters.

Proof. Let T1 and T2 be any interaction sets that are distinguishable. By Lemma 1, a valid

test case σσσ exists such that (∃T ∈ T1 : T ⊆ σσσ) ∧ (∀T ∈ T2 : T 6⊆ σσσ) or (∃T ∈ T2 : T ⊆

σσσ) ∧ (∀T ∈ T1 : T 6⊆ σσσ). Because A contains this test case and by the same argument of

the proof of the if-part of Lemma 1, ρA(T1) 6= ρA(T2).

Theorem 3. Let t be an integer such that 0 ≤ t < k. If an N×k array A is a (t+1)-CCA,

then A is also a (1, t)-CLA.

Proof. Recall that an array A is a (1, t)-CLA iff ρA(T1) 6= ρA(T2) for all T1, T2 ⊆ VIt

such that 0 ≤ |T1| ≤ 1, 0 ≤ |T2| ≤ 1, and T1 and T2 are distinguishable (see Definition 2;

note that T1 and T2 are independent because they contain at most one interaction).

Now suppose that an N × k array A is a (t + 1)-CCA such that 0 ≤ t < k. If

|T1| = |T2| = 0, then T1 = T2 = ∅, and thus they are not distinguishable. If |T1| = 1

and |T2| = 0, then ρA(T1) 6= ∅ because A is a (t + 1)-CCA, and thus any T ∈ VIt+1 is

covered by some row in A. Because ρA(∅) = ∅, ρA(T1) 6= ρA(T2) = ∅ holds for any T1,

T2 ⊆ VT t if |T1| = 1 and |T2| = 0. The same argument clearly holds if |T1| = 0 and

|T2| = 1.

For the remainder of the proof, the case in which |T1| = 1 and |T2| = 1 is con-

sidered. This proof will show that ρA(Ta) 6= ρA(Tb) (i.e., ρA({Ta}) 6= ρA({Tb}))

always holds for any Ta, Tb ∈ VIt if {Ta} and {Tb} are distinguishable. Let Ta =

{(Fa1 , ua1), . . . , (Fal , ual)} and Tb = {(Fb1 , vb1), . . . , (Fbm , vbm)} (0 ≤ l,m ≤ t). Also,

SECTION 3.3 PROPERTIES OF CLAS 23

let F = {Fa1 , . . . , Fal} ∩ {Fb1 , . . . , Fbm}, i.e., F is the set of factors that are involved in

both interactions. There are two cases to consider:

(1) For some Fi ∈ F, ui 6= vi. That is, the two interactions have different values on

some factor Fi. In this case, Ta and Tb never occur in the same test case. Because

A is a (t+ 1)-CCA, ρA(Ta) 6= ∅ and ρA(Tb) 6= ∅. Hence, ρA(Ta) 6= ρA(Tb).

(2) F = ∅ or for all Fi ∈ F, ui = vi. That is, the two interactions have no common

factors or have the same value for every factor in common. Because {Ta} and {Tb}

are distinguishable, there must be at least one valid test case σ in R that covers

either Ta or Tb but not both. Suppose that σ covers Ta but does not cover Tb. In

this case, there is a factor Fj ∈ {Fb1 , . . . , Fbm}\F such that the value on Fj of

σ, denoted by wj , is different from vj because otherwise, Tb would be covered by

σ. Now, consider an (l + 1)-way interaction T ′
a = Ta ∪ {(Fj, wj)}. Because the

valid test case σ covers T ′
a, T ′

a is a (l + 1)-way valid interaction. Because A is a

(t+1)-CCA and l+1 ≤ t+1, A contains at least one row that covers T ′
a. This row

covers Ta but does not cover Tb because the value on Fj is wj and wj 6= vj . Hence,

ρA(Ta) 6= ρA(Tb). The same argument applies to the case in which σ covers Tb but

not Ta

As a result, ρA(T1) 6= ρA(T2) holds for any T1, T2 ⊆ VT t if |T1| = |T2| = 1, and they are

distinguishable.

Lemma 4. Suppose that an N × k array A is a (1, t)-CLA such that 1 ≤ t ≤ k. Then, A

is a t-CCA.

Proof. Because A is a (1, t)-CLA, ρA(T1) 6= ρA(T2) for any T1, T2(6= T1) ⊆ VI t such

that |T1|, |T2| ≤ 1. Hence, if T1 = ∅ and T2 = {T} for any T ∈ VIt, then ρA(T1) =

ρA(∅) = ∅ 6= ρA(T2) = ρA(T).

24 CONSTRAINED LOCATING ARRAYS CHAPTER 3.

Theorem 5. If an N × k array A is a (1, t)-CLA such that 1 ≤ t ≤ k, then A is a

(1, t)-CLA.

Proof. Suppose that A is a (1, t)-CLA such that 1 ≤ t ≤ k. By Lemma 4, A is a t-CCA;

thus, by Theorem 3, it is a (1, t− 1)-CLA. Recall that A is a (1, t)-CLA iff ρA(T1) 6=

ρA(T2) for all T1, T2 ∈ VIt such that T1 and T2 are distinguishable and 0 ≤ |T1|, |T2| ≤ 1

(note that T1 and T2 are trivially independent). If |T1| = |T2| = 0, then T1 and T2 are both

∅ and thus indistinguishable. If |T1| = 0 and |T2| = 1, then T2 = {T} for some T ∈ VIt.

Because A is a t-CCA, ρA({T}) 6= ∅ for any T ∈ VIt. Therefore, ρA(T1) 6= ρA(T2).

Clearly, this argument holds when |T1| = 1 and |T2| = 0.

In the following part, the proof assumes that |T1| = |T2| = 1. Let T1 = {Ta} and T2 =

{Tb}, where Ta, Tb ∈ VIt. Without loss of generality, the proof assumes that the strength

of Ta is at most equal to that of Tb, i.e., 0 ≤ |Ta| ≤ |Tb| ≤ t. If 0 ≤ |Ta| ≤ |Tb| ≤ t−1 and

{Ta} and {Tb} are distinguishable, then ρA(T1) 6= ρA(T2) because A is a (1, t− 1)-CLA.

If |Ta| = |Tb| = t and {Ta} and {Tb} are distinguishable, then ρA(T1) 6= ρA(T2) because

A is a (1, t)-CLA.

Now consider the remaining case where 0 ≤ |Ta| < |Tb| = t. Assume that {Ta}

and {Tb} are distinguishable. Below shows that ρA(T1) 6= ρA(T2) under this assumption.

Because of the assumption, at least one of the following two cases holds. Case 1: for

some σ ∈ R, Ta ⊆ σ and Tb 6⊆ σ. Case 2: for some σ ∈ R, Ta 6⊆ σ and Tb ⊆ σ.

Let Ta = {(Fa1 , ua1), . . . , (Fal , ual)} and Tb = {(Fb1 , vb1), . . . , (Fbt , vbt)} (0 ≤ l ≤

t − 1). Also, let F = {Fa1 , . . . , Fal} ∩ {Fb1 , . . . , Fbt}, i.e., F is the set of factors that are

involved in both interactions.

Case 1: Let σ1 be any test case inR such that Ta ⊆ σ1 and Tb 6⊆ σ1. Choose a factor

Fbi , 1 ≤ i ≤ t, such that the value on Fbi in σ1 is different from vbi . Such a factor must

always exist because otherwise, Tb ⊆ σ1. Let wbi denote the value on Fbi in σ1. Then,

the interaction T̂ = Ta ∪ {(Fbi , wbi)} is covered by σ1 (T̂ ⊆ σ1) and thus is valid. The

SECTION 3.3 PROPERTIES OF CLAS 25

strength of T̂ is l (if Fbi ∈ F, in which case ubi = wbi) or l + 1 (if Fbi 6∈ F). For any test

case σ ∈ R, T̂ ⊆ σ ⇒ Tb 6⊆ σ holds because wbi 6= vbi . Because A is a t-CCA and the

strength of T̂ is at most t, A has a row that covers T̂ . This row covers Ta but not Tb; thus,

ρA(T1) 6= ρA(T2).

Case 2: Let σ2 be any test case in R such that Ta 6⊆ σ2 and Tb ⊆ σ2. Also, let Ť

be any t-way interaction such that Ť = Ta ∪ {(Fbi1
, vbi1), . . ., (Fbit−l

, vbit−l
)} for some

Fbi1
, . . . , Fbit−l

6∈ F . In other words, Ť is a t-way interaction that is obtained by extending

Ta with some t− l factor-value pairs in Tb.

If Ť is valid, then {Ť} and {Tb} are distinguishable because Tb ⊆ σ2 and Ť 6⊆ σ2

(because Ta 6⊆ σ2 and Ta ⊆ Ť). A is a (1, t)-CLA; thus, A must have a row r that covers

either Ť or Tb, i.e., Ť ⊆ r ∧ Tb 6⊆ r or Ť 6⊆ r ∧ Tb ⊆ r. Ť ⊆ r ∧ Tb 6⊆ r directly implies

Ta ⊆ r∧Tb 6⊆ r, while Ť 6⊆ r∧Tb ⊆ r implies Ť\Tb 6⊆ r, which means Ta 6⊆ r. Hence,

ρA(T1) 6= ρA(T2).

If Ť is not valid, then it can be shown that Ta and Tb never appear simultaneously in

any test case σ ∈ R as follows. If there is some test case σ in R in which Ta and Tb

are both covered, then Ť is also covered by some test cases (including σ) in R, i.e., Ť is

valid. The contraposition of this argument is that if Ť is invalid, then there is no test case

in R that covers Ta and Tb. Because A is a t-CCA and Ta, Tb ∈ VIt, ρA(Ta) 6= ∅ and

ρA(Tb) 6= ∅. Hence, ρA(T1) 6= ρA(T2).

26 CONSTRAINED LOCATING ARRAYS CHAPTER 3.

SECTION 4.1 CONSTRAINED DETECTING ARRAYS 27

CHAPTER 4

CONSTRAINED DETECTING ARRAYS

Similar to LAs, applying the constraint handling technique to DAs is not direct. In ad-

dition to the existence of invalid interactions, the conditions required by the definition

of DAs cannot always be satisfied because of constraints. In this chapter, this problem

is explained. Then, the dissertation proposes CDAs as the constrained version of DAs.

Finally, some examples of CDAs and proofs on properties of CDAs follow.

4.1 Definitions

Based on the definition of DAs, faulty interactions are identified with patterns of failed

and passed test cases. This holds because of the requirements in the definition of DAs,

i.e., ρA(T) ⊆ ρA(T)⇔ T ∈ T (where T and T are a t- or t-way interaction and a set of

t- or t-way interactions, respectively and A is an array). In other words, if an interaction T

is not included in an interaction set T , then the covering test set of the interaction T must

not be a subset of the covering test set of the interaction set T . Thus, different interaction

sets are mapped to different sets of test cases in a strict manner. However, such mapping

cannot be guaranteed if constraints exist.

This problem can be described using the running example in Table 2.1. Let T =

28 CONSTRAINED DETECTING ARRAYS CHAPTER 4.

{T1} = {{(F2, 0), (F4, 0)}} be the set of one 2-way interaction and T2 = {(F3, 0), (F4, 0)}

be a 2-way interaction. Because of the constraint ϕ1, every valid test case that covers T2

also covers T1, but there exist valid test cases that cover T1 but not T2. In other words,

ρA(T2) is a subset of ρA(T) = {ρA(T1)} as long as the array A contains only valid test

cases. Therefore, the definition of DAs no longer holds in the SUT.

Moreover, assume that T1 is the faulty interaction; then, all test cases in ρA(T) will

fail. That is, all test cases in ρA(T2) will fail. In this case, a tester can determine that T1 is

the faulty interaction, while they cannot determine whether T2 is also faulty. The relation

between an interaction set and an interaction above is called masking in this dissertation.

Definition 4. A set T of valid interactions masks a valid interaction T iff T 6∈ T and

∀σ ∈ R : T ⊆ σ ⇒ (∃T ′ ∈ T : T ′ ⊆ σ).

If T masks T , it is denoted as T � T ; otherwise, it is denoted as T 6� T . By definition,

T 6� T iff T ∈ T or

∃σ ∈ R : T ⊆ σ ∧ (∀T ′ ∈ T : T ′ 6⊆ σ).

Based on the definition of masking, (d, t)-, (d, t)-, (d, t)-, and (d, t)-CDAs, the con-

strained versions of the corresponding DAs, are defined as follows.

Definition 5. Let d ≥ 0 and 0 ≤ t ≤ k. An array A that consists of valid test cases or no

rows is a (d, t)-, (d, t)-, (d, t)- or (d, t)-CDA iff the corresponding condition shown below

SECTION 4.3 EXAMPLES 29

holds:

(d, t)-CDA ∀T ⊆ VI t such that |T | = d, ∀T ∈ VIt :

T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T))

(d, t)-CDA ∀T ⊆ VI t such that 0 ≤ |T | ≤ d, ∀T ∈ VIt :

T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T))

(d, t)-CDA ∀T ⊆ VIt such that |T | = d, ∀T ∈ VIt and T ∪ {T} is independent :

T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T))

(d, t)-CDA ∀T ⊆ VIt such that 0 ≤ |T | ≤ d, ∀T ∈ VIt and T ∪ {T} is independent :

T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T))

4.2 Examples

Examples of a (1, 1)- and (2, 1)-CDA for the running example are shown in Table 4.1.

Table 4.2 shows a (1, 2)-CDA for the running example. Given an SUT, the minimum

CDA and the minimum DA for the SUT (constraints ignored) with the same d and t may

have different sizes. Depending on constraints, the minimum sizes of CDAs may be larger

or smaller than those of DAs.

4.3 Properties of CDAs

Observation 3. A (d, t)-CDA is a (d, t)-CDA and (d, t)-CDA. A (d, t)-CDA and (d, t)-

CDA are both a (d, t)-CDA. When d > 0, a (d, t)-CDA and (d, t)-CDA are a (d− 1, t)-

CDA and (d− 1, t)-CDA, respectively. When t > 0, a (d, t)-CDA and (d, t)-CDA are a

(d, t− 1)-CDA and (d, t− 1)-CDA, respectively.

Observation 4. Suppose that the SUT has no constraints, i.e., ϕ(σ) = true for all σ ∈

R = V1×V2× · · ·× Vk, and that a (d, t)-DA A exists. Then, A is a (d, t)-CDA. This also

30 CONSTRAINED DETECTING ARRAYS CHAPTER 4.

(a) (1, 1)-CDA

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 1 2 1

σ3 1 0 0 3

σ4 1 0 1 1

σ5 1 1 1 2

σ6 2 0 0 3

σ7 2 0 2 2

σ8 2 1 1 0

(b) (2, 1)-CDA

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 0 3

σ3 0 0 2 1

σ4 0 1 1 2

σ5 0 1 2 0

σ6 1 0 1 1

σ7 1 0 0 1

σ8 1 0 0 2

σ9 1 0 0 3

σ10 1 1 1 0

σ11 1 1 2 1

σ12 2 0 0 3

σ13 2 0 1 2

σ14 2 0 2 0

σ15 2 1 1 1

σ16 2 1 2 2

Figure 4.1: A (1, 1)-CDA and (2, 1)-CDA for the running example

SECTION 4.3 PROPERTIES OF CDAS 31

F1 F2 F3 F4

σ1 0 0 0 0

σ2 0 0 0 1

σ3 0 0 0 3

σ4 0 0 1 1

σ5 0 0 2 2

σ6 0 1 1 2

σ7 0 1 2 0

σ8 0 1 2 1

σ9 1 0 0 2

σ10 1 0 0 3

σ11 1 0 1 0

σ12 1 0 2 1

σ13 1 1 1 1

σ14 1 1 2 0

σ15 1 1 2 2

σ16 2 0 0 0

σ17 2 0 0 1

σ18 2 0 0 2

σ19 2 0 0 3

σ20 2 0 1 2

σ21 2 0 2 0

σ22 2 1 1 0

σ23 2 1 1 1

σ24 2 1 2 2

Figure 4.2: A (1, 2)-CDA for the running example

32 CONSTRAINED DETECTING ARRAYS CHAPTER 4.

applies when d or t is replaced with d or t, respectively.

Theorem 6. For d ≤ τt, a (d, t)-CDA is equivalent to a (d, t)-CDA.

Proof. Trivially, a (0, t)-CDA is a (0, t)-CDA. Let A be a (d, t)-CDA such that 1 ≤ d ≤ τt

and t > 0. The following will show that A is a (d − 1, t)-CDA. Let T and T be a set of

d− 1 valid interactions of strength t and a t-way valid interaction, respectively. If T � T

or T ∈ T , then T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T)) holds trivially. The remainder of

the proof considers the case where T 6∈ T and T 6� T . In this case, there is some σ ∈ R

such that T ⊆ σ and σ 6∈ ρR(T). Because |T ∪ {T}| ≤ τt, R − ρR(T ∪ {T}) is not

empty. Let T ′ be any t-way interaction that appears in a test case in R − ρR(T ∪ {T})

and has exactly the same t parameters as T . Note that T and T ′ cannot appear in any

test case simultaneously. Let T ′ = T ∪ {T ′}. T ′ 6� T because T ⊆ σ, σ 6∈ ρR(T),

and σ 6∈ ρR(T
′). Because A is a (d, t)-CDA and T ′ 6� T , ρA(T) 6⊆ ρA(T ′). Hence,

ρA(T) 6⊆ ρA(T), which means that T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T)). By

induction, A is a (d′, t)-CDA for any 0 ≤ d′ ≤ d, and thus is a (d, t)-CDA.

Theorem 7. For d = t = 0 or d ≤ τ1 and t > 0, a (d, t)-CDA is equivalent to a

(d, t)-CDA.

Proof. Trivially, (0, t)-CDA is a (0, t)-CDA. Let A be a (d, t)-CDA such that 1 ≤ d ≤ τt

and t > 0. Below, the proof will show that A is a (d− 1, t)-CDA. Let T ⊆ VIt such that

T is independent and |T | = d − 1. Let T be a valid interaction of strength at most t. If

T � T or T ∈ T , then T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T)) holds trivially.

Consider the remaining case where T 6� T and T 6∈ T . In this case, there is some

σ ∈ R such that T ⊆ σ and σ 6∈ ρR(T).

Case |T | > 0: Because |T ∪ {T}| = d ≤ τ1 and every interaction in T ∪ {T} has

strength at least one,R− ρR(T ∪ {T}) is not empty. Let T ′ be an interaction of strength

t that appears in a test case inR− ρR(T ∪ {T}) and has a different value on at least one

SECTION 4.3 PROPERTIES OF CDAS 33

parameter from T . Let T ′ = T ∪ {T ′}. T ′ is independent because T is independent, and

T̂ 6⊂ T ′ for any T̂ ∈ T . Note that if T̂ ⊂ T ′, T̂ would occur in the test case with T ′. Also,

T ′ 6� T because T ⊆ σ, σ 6∈ ρR(T), and σ 6∈ ρR(T
′). Because A is a (d, t)-CDA, T ′ is

independent, and T ′ 6� T , ρA(T) 6⊆ ρA(T ′) holds. Hence, ρA(T) 6⊆ ρA(T).

Case T = ⋏ (i.e., |T | = 0): As ⋏ 6∈ T , every interaction in T has strength at least one.

Because |T | = d− 1 < τ1,R− ρR(T) is not empty. Let T ′ be any t-way interaction that

appears in a test case inR− ρR(T). Let T ′ = T ∪ {T ′}. Because of the same argument

as in the case |T | > 0, T ′ is independent and T ′ 6� T , and thus ρA(T) 6⊆ ρA(T ′). Hence,

ρA(T) 6⊆ ρA(T).

As a result, T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T)). By induction, A is a (d′, t)-CDA

for any 0 ≤ d′ ≤ d, and thus is a (d, t)-CDA.

Theorem 8. A (d, t)-CDA is a t-CCA. A (d, t)-CDA is a t-CCA.

Proof. Let T ∈ VIt. Let A be a (d, t)-CDA or (d, t)-CDA. Then, T 6� T ⇒ (T ∈ T ⇔

ρA(T) ⊆ ρA(T)) for any T ⊆ VI t such that |T | ≤ d. If |T | = 0, then T = ∅, in which

case T 6� T , T 6∈ T , and ρA(T) = ∅. Hence, ρA(T) 6= ∅.

Theorem 9. R, the exhaustive test suite, is a (d, t)-, (d, t)-, (d, t)- and (d, t)-CDA for any

d and t.

Proof. Let T be a valid interaction and T be a set of valid interactions. Below, the proof

will show that T 6� T ⇒ (T ∈ T ⇔ ρR(T) ⊆ ρR(T)). If T 6� T and T 6∈ T ,

then there is some σ ∈ R such that T ⊆ σ and ∀T ′ ∈ T : T ′ 6⊆ σ, in which case

σ ∈ ρR(T) − ρR(T). That is, T 6� T ⇒ (T 6∈ T ⇒ ρR(T) 6⊆ ρR(T)). In addition,

T ∈ T ⇒ ρR(T) ⊆ ρR(T) holds trivially. As a result, the theorem follows.

Theorem 10. A (d, t)-CDA is also a (d, t)-CLA; a (d, t)-CDA is also a (d, t)-CLA; a

(d, t)-CDA is also a (d, t)-CLA; and a (d, t)-CDA is also a (d, t)-CLA.

34 CONSTRAINED DETECTING ARRAYS CHAPTER 4.

Proof. Let A be a (d, t)-CDA. Let T1 and T2 be different sets of t-way interactions of size

d and mutually distinguishable. ρR(T1) 6= ρR(T2) by the definition of distinguishability.

Without loss of generality, the proof assumes that T1 6⊂ T2. Denote the test case that exists

in ρR(T1) but not in ρR(T2) as σe. There exists at least one valid interaction T in T1 that

is covered by σe. T2 does not mask T , and T 6∈ T2 because σe ∈ ρR(T) ∧ σe 6∈ ρR(T2).

Because A is a (d, t)-CDA, T2 6� T , and T 6∈ T2, ρA(T) 6⊆ ρA(T2) holds. Hence, there

exists a row σ′
e in A such that σ′

e covers T but does not cover any interactions in T2, that

is, σ′
e ∈ ρA(T1) ∧ σ′

e 6∈ ρA(T2) holds. Thus, ρA(T1) 6= ρA(T2) holds; hence, A is a

(d, t)-CLA. The same argument holds whenever |T1| and |T2| are at most d. Therefore, it

follows that a (d, t)-CDA is a (d, t)-CLA.

Next, let A be a (d, t)-CDA or (d, t)-CDA. Let T1 and T2 be different sets consisting

of exactly d interactions of strength at most t or at most d interactions of strength at most

t, respectively. Then, the same argument for the case of (d, t)-CDAs and (d, t)-CDAs

holds. As a result, the theorem follows.

Theorem 11. A (d+ t)-CCA is a (d, t)-CDA.

Proof. Suppose that A is a (d + t)-CCA. The theorem holds if ρA(T) 6⊆ ρA(T) for any

T ∈ VIt and T ⊆ VIt such that 0 ≤ |T | ≤ d, T 6∈ T , T 6� T , and {T} ∪ T

is independent. The proof shows this by constructing a valid interaction T̂ of strength

≤ d+ t that covers T but cannot appear with any interaction in T in the same row. If such

a T̂ exists, some row of A contains it because A is a (t + d)-CCA. This row is in ρA(T)

but not in ρA(T); thus, ρA(T) 6⊆ ρA(T).

Because T 6� T , there must be a valid test case σ that covers T but does not cover any

T ′ ∈ T . Let σ = 〈s1, s2, . . . , sk〉. σ can be regarded as k-way interaction {(F1, s1), (F2, s2),

. . . , (Fk, sk)}. T̂ is constructed by starting from T̂ = T and gradually expanding it by

applying the following process for all T ′ ∈ T . First, select any (Fi, v) ∈ T ′ such that

si 6= v. This can be done because T ′ is not covered by σ (and thus ⋏ 6∈ T). Then, add

SECTION 4.3 PROPERTIES OF CDAS 35

(Fi, si) to T̂ . Finally, T̂ becomes the desired interaction.

Corollary 1. A (d+ t)-CCA is a (d, t)-CLA.

Proof. The corollary is obvious according to Theorems 10 and 11.

36 CONSTRAINED DETECTING ARRAYS CHAPTER 4.

SECTION 5.1 FAULT IDENTIFICATION 37

CHAPTER 5

FAULT IDENTIFICATION

This chapter explains how CCA, CLA, and CDA arrays are used to detect and locate faulty

interactions. The parameters of the arrays are considered as d = 1 and t = 2. Suppose

that the 2-way CCA, (1, 2)-CLA, and (1, 2)-CDA shown in Figures 2.5a, 3.2, and 4.2 are

used as test suites. Figures 5.1, 5.2, and 5.3 summarize the results of test cases when

executed under the following two scenarios.

(1) The only faulty interaction is Tα = {(F1, 0), (F2, 0)}.

(2) There are two faulty interactions Tβ = {(F1, 0), (F3, 0)} and Tγ = {(F1, 0), (F4, 1)}.

5.1 Case: Constrained Covering Arrays

In Case 1, within the test cases in the 2-CCA (Figure 2.5a), only σ1 and σ2 fail. The

two-way interactions that appear only in those failed test cases are as follows (the faulty

interaction is indicated by an underline):

{(F1, 0), (F2, 0)} {(F1, 0), (F3, 0)} {(F1, 0), (F4, 0)}

{(F2, 0), (F4, 0)} {(F3, 0), (F4, 0)} {(F1, 0), (F4, 3)}

38 FAULT IDENTIFICATION CHAPTER 5.

F1 F2 F3 F4 Case1 Case2

σ1 0 0 0 0 Fail Fail

σ2 0 0 0 3 Fail Fail

σ3 0 1 1 1 Pass Fail

σ4 0 1 2 2 Pass Pass

σ5 1 0 0 2 Pass Pass

σ6 1 0 0 3 Pass Pass

σ7 1 0 2 1 Pass Pass

σ8 1 1 1 0 Pass Pass

σ9 2 0 0 1 Pass Pass

σ10 2 0 0 3 Pass Pass

σ11 2 0 1 2 Pass Pass

σ12 2 1 2 0 Pass Pass

Figure 5.1: 2-CCA and test outcomes in Cases 1 and 2.

SECTION 5.2 CASE: CONSTRAINED LOCATING ARRAYS 39

In Case 2, the failed test cases are σ1, σ2, and σ3; thus, the candidates for faulty interac-

tions are

{(F1, 0), (F2, 0)} {(F1, 0), (F3, 0)} {(F1, 0), (F4, 0)}

{(F2, 0), (F4, 0)} {(F3, 0), (F4, 0)} {(F1, 0), (F4, 3)}

{(F1, 0), (F3, 1)} {(F1, 0), (F4, 1)} {(F2, 1), (F4, 1)}

{(F3, 1), (F4, 1)}

For both cases, it is impossible to further reduce the candidates of faulty interactions. It

can be concluded that CCAs can be used to detect the existence of faulty t-way interac-

tions. However, it is impractical for CCAs to identify the faulty interactions.

5.2 Case: Constrained Locating Arrays

Suppose that the (1, 2)-CLA (1, 2-CLA) shown in Figure 3.2 is used. In Case 1, the test

cases σ1, σ2, and σ3 fail and all the other test cases pass. The interactions that appear

only in the failed test cases are as follows:

{(F1, 0), (F2, 0)} {(F1, 0), (F3, 0)} {(F3, 0), (F4, 0)}

{(F1, 0), (F4, 3)} {(F1, 0), (F4, 1)}

The core idea of CLAs is that they allow a test outcome to be uniquely associated with a

set of faulty interactions, which is mathematically represented as T1 = T2 ⇔ ρA(T1) =

ρA(T2). In this case, ρA(T) = ρA({Tα}) = {σ1, σ2, σ3} holds only for T = {{(F1, 0), (F2, 0)}},

provided that T ⊆ VI2 and |T | ≤ 1. Thus, the faulty interaction is correctly identified.

Now consider Case 2. The failed test cases are the same as in Case 1, i.e., σ1, σ2,

and σ3. Hence, the conclusion that Tα is the only faulty interaction is also the same.

This incorrect result is caused by the number of faulty interactions not agreeing with the

assumption (namely, d = 1). In general, if faulty interactions exceed the number assumed,

CLAs may identify non-faulty interactions as faulty but also identify faulty interactions

40 FAULT IDENTIFICATION CHAPTER 5.

F1 F2 F3 F4 Case1 Case2

σ1 0 0 0 0 Fail Fail

σ2 0 0 0 3 Fail Fail

σ3 0 0 1 1 Fail Fail

σ4 0 1 1 2 Pass Pass

σ5 0 1 2 0 Pass Pass

σ6 1 0 0 2 Pass Pass

σ7 1 0 0 3 Pass Pass

σ8 1 0 1 2 Pass Pass

σ9 1 1 1 1 Pass Pass

σ10 1 1 2 0 Pass Pass

σ11 1 1 2 2 Pass Pass

σ12 2 0 0 1 Pass Pass

σ13 2 0 0 3 Pass Pass

σ14 2 0 2 0 Pass Pass

σ15 2 1 1 0 Pass Pass

σ16 2 1 1 2 Pass Pass

σ17 2 1 2 1 Pass Pass

Figure 5.2: (1, 2)-CLA and test outcomes in Cases 1 and 2.

SECTION 5.3 CASE: CONSTRAINED DETECTING ARRAYS 41

as non-faulty.

5.3 Case: Constrained Detecting Arrays

Suppose that the (1, 2)-CDA ((1, 2)-CDA) shown in Figure 4.2 is used to locate faulty

interactions. For Case 1, the failed test cases are σ1, σ2, σ3, σ4, and σ5. The interac-

tions occurring only in the failed test cases are all identified as faulty. In this case, these

interactions are

{(F1, 0), (F2, 0)} {(F1, 0), (F3, 0)} {(F1, 0), (F4, 3)}

Tα is correctly identified as faulty, whereas {(F1, 0), (F3, 0)} and {(F1, 0), (F4, 3)} are in-

correctly identified as faulty. Because {Ta}masks {(F1, 0), (F3, 0)} and {(F1, 0), (F4, 3)}

(i.e., {Tα} � {(F1, 0), (F3, 0)} and {Tα} � {(F1, 0), (F4, 3)}), it is inherently impossible

to determine that {(F1, 0), (F3, 0)} and {(F1, 0), (F4, 3)} are not faulty when Tα is faulty.

However, it should be noted that if the assumption that the number of faulty interactions

is d = 1 is relied on, just as in the case of the CLA above, one could correctly identify

only Tα as faulty. In fact, Theorem 10 shows that any CDA is a CLA.

For Case 2, the failed test cases are σ1, σ2, σ3, σ4, and σ8. The interactions identified

as faulty are

{(F1, 0), (F3, 0)} {(F1, 0), (F4, 1)} {(F1, 0), (F4, 3)}

Although the last interaction is in fact not faulty, all the faulty ones are correctly identified.

In general, when using a CDA, faulty interactions are never wrongly identified as non-

faulty, even if the number of faulty interactions exceeds the assumed number d.

42 FAULT IDENTIFICATION CHAPTER 5.

F1 F2 F3 F4 Case1 Case2

σ1 0 0 0 0 Fail Fail

σ2 0 0 0 1 Fail Fail

σ3 0 0 0 3 Fail Fail

σ4 0 0 1 1 Fail Fail

σ5 0 0 2 2 Fail Pass

σ6 0 1 1 2 Pass Pass

σ7 0 1 2 0 Pass Pass

σ8 0 1 2 1 Pass Fail

σ9 1 0 0 2 Pass Pass

σ10 1 0 0 3 Pass Pass

σ11 1 0 1 0 Pass Pass

σ12 1 0 2 1 Pass Pass

σ13 1 1 1 1 Pass Pass

σ14 1 1 2 0 Pass Pass

σ15 1 1 2 2 Pass Pass

σ16 2 0 0 0 Pass Pass

σ17 2 0 0 1 Pass Pass

σ18 2 0 0 2 Pass Pass

σ19 2 0 0 3 Pass Pass

σ20 2 0 1 2 Pass Pass

σ21 2 0 2 0 Pass Pass

σ22 2 1 1 0 Pass Pass

σ23 2 1 1 1 Pass Pass

σ24 2 1 2 2 Pass Pass

Figure 5.3: (1, 2)-CDA and test outcomes in Cases 1 and 2.

SECTION 6.1 GENERATION ALGORITHMS 43

CHAPTER 6

GENERATION ALGORITHMS

This chapter demonstrates the algorithms designed to generate CLAs and CDAs. The

target arrays are fixed to (d, t)-CLAs and (d, t)-CDAs for convenience of explanation.

Algorithms for generating other CLAs and CDAs, i.e., (d, t)-CLAs, (d, t)-CDAs, etc.,

can be easily derived from the proposed algorithms. The remainder of the chapter is

divided into two parts, one about generation algorithms for (d, t)-CLAs and the other

about generation algorithms for (d, t)-CDAs. Both parts introduce two algorithms, each

designed in different directions: one can generate minimum arrays given sufficient time,

while the other can generate arrays in a short time.

6.1 Generation Algorithms for CLAs

In this section, two algorithms for generating (d, t)-CLAs are proposed. Although little

research exists on the generation of LAs, there has already been a large body of research

on CCA generation in the combinatorial interaction testing field. The two proposed algo-

rithms are inspired by use of existing CCA generation algorithms.

44 GENERATION ALGORITHMS CHAPTER 6.

6.1.1 Satisfiability-Based Algorithm

The first algorithm leverages a satisfiability solver. The problem of generating a CLA

of a given size is reduced to the satisfiability problem of a logical expression. A logical

expression is satisfiable iff it evaluates to true for some valuation, i.e., assignment of

values to the variables. The algorithm first estimates the upper bound on the minimum

size of a CLA and uses it as the initial CLA size. Then, it creates a logical expression

that is satisfiable iff a CLA of the initial size exists. The logical expression is in turn

evaluated by a satisfiability solver. In addition, the logical expression is specially designed

so that the valuation that satisfies it directly represents a CLA. Satisfiability solvers can

produce such a satisfying valuation when the expression is satisfiable; hence, a CLA can

be obtained from the output of the solver. By repeating this process while decreasing the

CLA size, the algorithm can obtain the smallest CLA.

Logic Expression

To represent an array with a collection of variables, the naı̈ve matrix model is applied. The

naı̈ve matrix model was originally used by Hnich et al. [24] to find CAs. In this model,

an N × k array is represented as an N × k matrix of integer variables as follows:

A =

p11 · · · p1k
...

pN1 · · · pNk

The variable pni represents the value on the parameter Fi in the n-th test case. The domain

of pni is Si = {0, 1, . . . , |Si| − 1}. For the array A to become a (1, t)-CLA, the following

conditions are imposed on A using logical expressions:

(1) The rows of A represent valid test cases.

(2) All valid t-way interactions are tested.

SECTION 6.1 GENERATION ALGORITHMS FOR CLAS 45

(3) T1 6∼ T2 ⇔ ρA(T1) 6= ρA(T2), where T1, T2 are interaction sets containing one valid

t-way interaction.

The logical expressions that represent the above two conditions are presented below. By

conjuncting all the expressions, it is possible to obtain a single logical expression to check

for satisfiability.

Condition 1 In A, the n-th row is expressed as a tuple of k variables 〈pn1 , pn2 , . . . , pnk〉.

As defined in Section 2, a test case is valid iff it satisfies the constraints represented by ϕ,

which is a Boolean-valued formula over parameters F1, . . . , Fk. Let ϕ|pn1 ,pn2 ,...,pnk denote ϕ

with each Fi replaced with pni . Then, the following expression enforces A to only contain

valid test cases:

Valid :=
N∧

n=1

ϕ|pn1 ,pn2 ,...,pnk

Condition 2 The following condition ensures that all valid t-way interactions are cov-

ered by at least one row in the array A, where N is the size of rows of A:

Cover(VIt) :=
∧

{(px1 ,vx1),...,(pxt ,vxt)}∈VIt

N∨
n=1

(t∧
i=1

(pnxi
= vxj

)
)

Condition 3 To let the distinguishable pairs of interaction sets stay distinguishable in

A, the following condition can be applied:

IdentifyCLA(Ta, Tb) :=
N∨

n=1

(d∨
a=1

t∧
j=1

(pnaj = vaj)⊕
d∨

b=1

t∧
k=1

(pnbk = vbk)
)

where interaction sets Ta = {{Fa11
, va11 , . . . , Fa1t

, va1t}, . . . , {Fad1
, vad1 , . . . , Fadt

, vadt}}

and Tb = {{Fb11
, vb11 , . . . , Fb1t

, vb1t}, . . . , {Fbd1
, vbd1 , . . . , Fbdt

, vbdt}} are indistinguish-

able, i.e., Ta 6∼ Tb.

This condition focuses on the distinguishable pairs of interaction sets. To keep pairs

distinguishable in the array A, the condition requires at least one interaction in the one

46 GENERATION ALGORITHMS CHAPTER 6.

set (for example, Ta) to appear in a row in A and let no interactions in the other set (Tb)

appear in the same row. Under this condition, ρA(Ta) 6= ρA(Tb) holds in the array A. Note

that for given Ta and Tb, ρA(Ta) 6= ρA(Tb) holds iff IdentifyCLA(Ta, Tb) is satisfiable.

This dissertation defines U as follows:

U := {(Ta, Tb) | Ta, Tb ⊆ VIt, |Ta|, |Tb| = d, Ta 6∼ Tb}

By ANDing IdentifyCLA(Ta, Tb) for all (Ta, Tb) ∈ U , an expression that represents the third

condition is obtained.

The whole expression The whole expression that will be checked for satisfiability is

obtained by conjuncting the expressions defined above as follows:

existCLA := Valid ∧ Cover(VIt) ∧
∧

(Ta,Ta)∈U

IdentifyCLA(Ta, Tb)

By checking the satisfiability of this expression, whether a (d, t)-CLA of size N exists or

not can be determined. If it is satisfiable, then a CLA of size N exists. In this case, the

satisfying valuation for the N ×k variables pni represents all the entries of one such CLA.

Meanwhile, if the expression is unsatisfiable, then it can be concluded that no (d, t)-CLA

of size N exists.

The satisfiability of the above expression can be checked using constraint satisfaction

problem (CSP) solvers, satisfiability modulo theories (SMT) solvers, or Boolean satisfia-

bility (SAT) solvers with a Boolean encoding of integers.

Computing U

To construct the above logical expression existCLA, it is necessary to obtain U first (see

the subscript of the
∧

in the expression). Computing U requires VIt. The computation

of VIt is discussed later. Here, it is described how one can compute U when VIt is

available.

SECTION 6.1 GENERATION ALGORITHMS FOR CLAS 47

Consider enumerating all Ta-Tb pairs such that Ta 6∼ Tb and |Ta| = |Tb| = d. The

problem here is how to decide whether or not a given Ta and Tb are distinguishable. This

is solvable by using satisfiability solving. Let integer variables p1, p2, . . . , pk symbolically

represent a test case σ; that is,

σ = (p1, p2, . . . , pk)

The domain of pi is {0, 1, . . . , |Si| − 1}. Note that Si is the domain of parameter Fi.

By the definition of distinguishability, given such a T -T pair, Ta and Tb are distin-

guishable iff the following condition holds:

∃σ ∈ R :∃Ta ∈ Ta : Ta ⊆ σ ∧ ∀Tb ∈ Tb : Tb 6⊆ σ∨

∃Tb ∈ Tb : Tb ⊆ σ ∧ ∀Ta ∈ Ta : Ta 6⊆ σ

In other words, the condition holds if there is a valid test case that covers at least one

interaction in the interaction set Ta (or Tb) but does not cover any interactions in the inter-

action set Tb (or Ta). Hence, given Ta and Tb, Ta 6∼ Tb holds iff the following expression

evaluates to true:

checkDistinguishable(Ta, Tb) :=(d∨
a=1

t∧
j=1

(paj = vaj)⊕
d∨

b=1

t∧
k=1

(pbk = vbk)
)
∧ ϕ|p1,p2,...,pk

where Ta = {{Fa11
, va11 , . . . , Fa1t

, va1t}, . . . , {Fad1
, vad1 , . . . , Fadt

, vadt}} and Tb = {{Fb11
,

vb11 , . . . , Fb1t
, vb1t}, . . . , {Fbd1

, vbd1 , . . . , Fbdt
, vbdt}}.

U is obtained by, for every Ta, Tb pair, checking the satisfiability of checkDistinguishable

(Ta, Tb) and keeping the pair in U if the expression is satisfiable.

The Algorithm

The CLA generation algorithm that uses satisfiability solving is shown as Algorithm 1.

The algorithm repeatedly solves the problem of finding a (d, t)-CLA while varying the

48 GENERATION ALGORITHMS CHAPTER 6.

array size N . The array size N starts with a value sufficiently large to ensure the existence

of a CLA and is gradually decreased until no existence of a CLA of size N is proved. To

obtain the initial value of N , the algorithm creates a (d + t)-CCA using an off-the-shelf

algorithm (line 1), where the CCA generation algorithm is represented by the function

generateCCA(M,x), which returns an x-CCA. The algorithm uses the size of the CCA

minus one as the initial N , as any (d + t)-CCA is a (d, t)-CLA. The (d + t)-CCA is

also used for computing VIt because all valid t-way interactions appear in the CCA. The

algorithm enumerates all t-way interactions occurring in the array, thus obtaining VIt.

In the algorithm, generateCLA(M, d, t, N , U) in line 8 represents a function that

produces a (d, t)-CLA of size N by checking the satisfiability of the expression existCLA.

If the expression is satisfiable, then the SMT solver returns the satisfying valuation, in

which case a (d, t)-CLA of size N is obtained because the valuation represents the (d, t)-

CLA. The size N is then decreased by one and the same process is repeated. If the result

of the satisfiability check is UNSAT (unsatisfiable), no CLA of size N exists (denoted as

⊥ in the algorithm). Then, the algorithm returns the CLA of size N + 1 and terminates.

One might think that binary search could work better to vary N than the linear search

adopted by the algorithm. In fact, this is not the case because showing unsatisfiability, that

is, the nonexistence of a CLA, usually takes much longer time than showing satisfiability,

that is, the existence of a CLA. The linear search delays solving an unsatisfiable expres-

sion until all possible sizes are checked, avoiding getting trapped in a long computation

required for the unsatisfiable problem instance.

The size of the expression existCLA increases polynomially in k when t, d, |Si|, and N

are fixed. The expression can be expressed as a Boolean formula with a polynomial size

increase because |Si| is fixed. The Boolean satisfiability problem (SAT) is NP-complete

in general, and there is no reason that the SAT can be solved in polynomial-time for this

particular case. Hence, the time complexity of the algorithm is likely to be exponential.

SECTION 6.1 GENERATION ALGORITHMS FOR CLAS 49

6.1.2 Heuristic Algorithm

Algorithm 2 is the second generation algorithm for (d, t)-CLAs. The algorithm takes an

SUT modelM and integers d, t as input and finally returns a (d, t)-CLA A. The algorithm

employs Theorem 3. This theorem shows that a (d+ t)-CCA is already a (d, t)-CLA and

can identify d t-way faulty interactions. However, a large number of redundant test cases

are included in the CCA, which directly increases the testing code. The algorithm finds

and deletes these redundant test cases so that the testing cost of the CLAs can be reduced.

This algorithm is a heuristic algorithm because it does not guarantee that the output CLA

is optimal in size. Indeed, the resulting CLAs can vary for different runs.

In the first line of the algorithm, the function generateCCA() uses an existing algo-

rithm to generate a (d+ t)-CCA. Then, the function getAllInteractions() is called to enu-

merate all t-way interactions the (d + t)-CCA contains. The interactions obtained are

the set of all valid t-way interactions (i.e., VIt) because all interactions occurring in a

CCA are valid and any (d + t)-CCA contains all t-way valid interactions. Once all the

valid t-way interactions have been collected, it computes a mapping Rows[], which maps

each of them to the set of rows of A that cover it; that is, Rows[] : T 7→ ρA(T), where

T ∈ VI t. Then, using Rows[], a new mapping that maps every interaction set to covering

test case sets is constructed, i.e., SetRows[] : T 7→ ρA(T). This is computed by the

function getSetRows().

In each iteration of the while loop, a row σ is randomly chosen from the CCA. Then,

the algorithm computes SetRows′, which is an upgraded mapping such that SetRows′[] :

T 7→ ρA(T)\{σ}. In other words, SetRows′ is ρA′(T), where A′ is the array obtained

from A by removing σ from it. The function update() is used to obtain SetRows′.

In each iteration of the loop, it is checked whether σ can be removed or not. The row

can be removed if A remains a (d, t)-CLA after the removal. This check is performed by

checking two conditions.

50 GENERATION ALGORITHMS CHAPTER 6.

One condition is that every valid t-way interaction T still has some row that covers it;

i.e., Rows′[T] 6= ∅. It is necessary to check this condition because all t-way interactions

must be checked by at least one test case.

The other condition corresponds to the case where |T1| and |T2| are distinguishable.

The condition is that for every pair of valid, mutually distinguishable t-way interactions,

they still have different sets of rows in which they are covered. In other words, for

Ta, Tb ∈ VIt, if Ta and Tb are distinguishable, then SetRows′(Ta) 6= SetRows′(Tb)

(i.e., ρA′(Ta) 6= ρA′(Tb)).

Clearly, if an interaction T is not covered by σ, the deletion of σ does not alter the set

of rows that cover T . Hence, checking the two conditions can be performed by examining

only the interactions covered by σ, instead of all interactions in VIt.

The loop is iterated until all rows in the initial A have been examined. Finally, the

resulting A becomes a (d, t)-CLA of reduced size.

As stated above, output (d, t)-CLAs vary for different runs of the algorithm, even if

the initial A (i.e., the (d + t)-CCA generated in line 12) is identical for all runs. This is

because the final (d, t)-CLAs obtained also depend on the order of row deletion.

Let s = max1≤i≤k |Si|. Outside the while loop, line 15 has the highest time complex-

ity. It is O((stkt)2dn) because |VIt| ≤ stkt, |ρS()| ≤ n. In the algorithm, lines 20 and 21

have the highest complexity O((stkt)2dn) for the same reason. Let n be the size of the

initial CCA. As a result, the algorithm’s time complexity is O((stkt)2dn2). When s, t, and

d are fixed, the complexity is polynomial in k and n.

6.2 Generation Algorithms for CDAs

This section presents two algorithms for generating CDAs: the satisfiability-based algo-

rithm and heuristic algorithm. The generation of CDAs is limited to (d, t)-CDAs because

SECTION 6.2 GENERATION ALGORITHMS FOR CDAS 51

(d, t)-CDAs are (d, t)-CDAs except in extreme cases (Theorem 7). Also, it is straightfor-

ward to adjust the algorithms to (d, t)-CDAs and (d, t)-CDAs.

6.2.1 Satisfiability-Based Algorithm

Similar to the satisfiability-based algorithm for CLAs, this algorithm also leverages a

satisfiability solver. Because a (d + t)-CCA is already a (d, t)-CDA, the algorithm uses

the size of a (d, t)-CCA as the initial size of a CDA. Then, it creates a logical expression

that is satisfiable iff a CDA of the initial size exists. The logical expression is subsequently

evaluated by a satisfiability solver. A CDA instance can be obtained from the output of the

solver if the logical expression is satisfiable. By repeating this process while decreasing

the CDA size, the algorithm can output the smallest CDA.

Logic Expression

The naı̈ve matrix model, an N × k array, is used as a representation of an N × k matrix

of integer variables as follows:

A =

p11 · · · p1k
...

pN1 · · · pNk

The variable pni represents the value on the parameter Fi in the n-th test case. The domain

of pni is Si = {0, 1, . . . , |Si| − 1}. For the array A to become a (d, t)-CDA, the following

conditions are applied to A:

(1) The rows of A represent valid test cases.

(2) ∀T ⊆ VI t such that |T | = d, ∀T ∈ VIt : T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T))

The reason that the conditions do not require all valid t-way interactions to be tested is

that the definition of (d, t)-CDA implies that all valid t-way interactions appear in at least

52 GENERATION ALGORITHMS CHAPTER 6.

one row, i.e., ∀T ∈ VIt, ρA(T) 6= ∅ iff A is a (d, t)-CDA. The logical expressions that

represent the above two conditions are presented below. A single logical expression can

be obtained by conjuncting all the expressions and will be checked for satisfiability.

Condition 1 The following expression enforces A to only contain valid test cases:

Valid :=
N∧

n=1

ϕ|pn1 ,pn2 ,...,pnk

Condition 2 It is important to note that T 6� T ⇒ (T ∈ T ⇔ ρA(T) ⊆ ρA(T)) is

equivalent to

(T 6� T ∧ T 6∈ T)⇒ ρA(T) 6⊆ ρA(T)

because T ∈ T ⇒ ρA(T) ⊆ ρA(T) holds trivially. Hence, it is able to focus on the case

where T 6� T and T 6∈ T . The right part of this formula, that is, ρA(T) 6⊆ ρA(T), holds

iff there is a row in A that covers T but none of the interactions in T . This condition is

represented by a logical expression as follows:

IdentifyCDA(T , T) :=
N∨

n=1

(t∧
j=1

(pnxj
= vxj

) ∧ ¬
(d∨

L=1

t∧
l=1

(pnyLl
= vyLl

)
))

where T = {{(Fy11
, vy11), . . . , (Fy1t

, vy1t)}, . . . , {(Fyd1
, vyd1), . . . , (Fydt

, vydt)}} and

T = {(Fx1 , vx1), . . . , (Fxt , vxt)}. For given T and T , ρA(T) 6⊆ ρA(T) holds iff Locating(T , T)

is satisfiable.

Then, V is defined as follows:

V := {(T , T) | T ⊆ VI t, |T | = d, T ∈ VIt, T 6� T, T 6∈ T }

By ANDing Locating(T , T) for all (T , T) ∈ V , an expression that represents the second

condition can be constructed.

SECTION 6.2 GENERATION ALGORITHMS FOR CDAS 53

The whole expression The whole expression that will be checked for satisfiability is

obtained by conjuncting the expressions defined above as follows:

existCDA := Valid ∧
∧

(T ,T)∈V

Locating(T , T)

By checking the satisfiability of this expression, whether a (d, t)-CDA of size N exists or

not can be determined. If it is satisfiable, then a CDA of size N exists. In this case, the

satisfying valuation for the N ×k variables pni represents all the entries of one such CDA.

Meanwhile, if the expression is unsatisfiable, then it can be concluded that no (d, t)-CDA

of size N exists.

Computing V

Before constructing the expression existCDA, the expression V must be examined first.

Consider enumerating all T -T pairs such that T ∈ VIt, T ⊆ VI t, |T | = d, T 6∈

T , and T 6� T . The problem here is how to decide whether or not T (⊆ VI t) masks

T (∈ VIt) when T and T 6∈ T are given. This too is possible by employing satisfiability

solving. Let integer variables p1, p2, . . . , pk symbolically represent a test case σ; that is,

σ = (p1, p2, . . . , pk)

The domain of pi is {0, 1, . . . , |Si| − 1}. Note that Si is the domain of parameter Fi.

By the definition of masking, given such a T -T pair, T does not mask T iff the

following condition holds:

∃σ ∈ R : T ⊆ σ ∧ ¬(∃T ′ ∈ T : T ′ ⊆ σ)

In other words, the condition holds if there is a valid test case that covers the interaction

T but does not cover any interactions in the interaction set T . Hence, given T and T ,

54 GENERATION ALGORITHMS CHAPTER 6.

T 6� T holds iff the following expression evaluates to true:

checkUnMasking(T , T) :=
t∧

j=1

(pxj
= vxj

) ∧ ¬
(d∨

L=1

t∧
l=1

(pyLl
= vyLl

)
)
∧ ϕ|p1,p2,...,pk

where T = {{(Fy11
, vy11), . . . , (Fy1t

, vy1t)}, . . . , {(Fyd1
, vyd1), . . . , (Fydt

, vydt)}} and

T = {(Fx1 , vx1), . . . , (Fxt , vxt)}.

U is obtained by, for every T -T pair, checking the satisfiability of checkUnMasking(T , T)

and keeping the pair in U if the expression is satisfiable.

The Algorithm

The satisfiability-based generation algorithm for CDAs is shown as Algorithm 3. The

algorithm repeatedly solves the problem of finding a (d, t)-CDA while reducing the size

from initial N to the size of an optimal CDA. The initial size N is a value large enough

that the existence of a CDA is ensured. By decreasing N , the algorithm finally reaches a

size for which no CDA exists. Finally, the last constructed CDA will be proved to be the

optimal CDA.

To obtain the initial value of N , the algorithm creates a (d + t)-CCA using an off-

the-shelf algorithm (line 29), where the CCA generation algorithm is represented as the

function generateCCA(M,x), which returns an x-CCA. Then, the algorithm uses the size

of the CCA minus one as the initial N , as any (d+ t)-CCA is a (d, t)-CDA. The (d+ t)-

CCA is also used for computing VIt because all valid t-way interactions appear in the

CCA.

In the algorithm, generateCDA(M, d, t, N , U) in line 36 represents a function that

produces a (d, t)-CDA of size N by checking the satisfiability of the expression existCDA.

If the expression is satisfiable, then the SMT solver returns the satisfying valuation, in

which case a (d, t)-CDA of size N is obtained because the valuation represents the (d, t)-

SECTION 6.2 GENERATION ALGORITHMS FOR CDAS 55

CDA. Then, the size N is decreased by one, and the same process is repeated. If the result

is UNSAT (unsatisfiable), no CDA of size N exists (denoted as⊥ in the algorithm). Then,

the algorithm returns the CDA of size N + 1 and terminates.

The time complexity of the algorithm is likely to be exponential for the same reason

explained in the previous section.

6.2.2 Heuristic Algorithm

In this section, a heuristic algorithm is proposed for the generation of (d, t)-CDAs, which

aims to generate (d, t)-CDAs that are not optimal but fairly small in reasonable time.

Theorem 11 shows that a (d+ t)-CCA is already a (d, t)-CDA. Based on this theorem,

a heuristic algorithm (Algorithm 4) can be devised. The algorithm generates a (d + t)-

CCA first. Then, it repeatedly chooses a test case in it at random and checks whether it

is removable. A test case is judged as removable from an array if a new array with the

test case being removed would still be a (d, t)-CDA. If the test case is removable, then it

is removed from the current array. Otherwise, a new test case is chosen and the check is

performed again. This process is repeated until no test case is removable anymore.

The details of the algorithm are as follows. In line 40, the algorithm generates a (d+t)-

CCA S. At this point, S is already a (d, t)-CDA but contains many redundant test cases.

Then, the algorithm collects all valid t-way interactions and maps each interaction T to

its covering test cases ρS(T) in S (line 41). The map obtained here, denoted by Rows[], is

used to compute another map, DiffRows[][], which associates each pair of an interaction set

T and valid interaction T with ρS(T)−ρS(T). Note that ρS(T)−ρS(T) = ∅ iff ρS(T) ⊆

ρS(T). Because S is a CDA, DiffRows[T][T] = ∅ if T � T , and DiffRows[T][T] 6= ∅

otherwise.

Then, the algorithm repeatedly chooses a test case at random and checks whether it

is removable or not. To perform the check, the algorithm constructs a new interaction-

56 GENERATION ALGORITHMS CHAPTER 6.

to-row map DiffRows′[][] that would hold after the test case was removed (line 49). This

can be done by simply removing σ from all DiffRows[T][T]. Subsequently, the algorithm

compares the two maps (line 50). If DiffRows[T][T] 6= ∅ but DiffRows′[T][T] = ∅, then

ρS(T) ⊆ ρS(T), and thus S is no longer a CDA. In this case, the algorithm reserves the

test case for the output test suite A (line 51). Otherwise, it deletes the test case and ac-

cordingly updates DiffRows[T][T] (line 54). When all test cases in the CCA are checked,

the algorithm will terminate, yielding the resulting A.

Let s = max1≤i≤k |Si|. Outside the while loop, line 43 has the highest time com-

plexity, which is O((stkt)dstktn). Inside the while loop, for the same reason, lines 49

and 50 has the highest complexity of O((stkt)dstktn). Let n be the size of the initial

CCA. The algorithm’s time complexity is O((stkt)dstktn2). When s, t, and d are fixed,

the complexity is polynomial in k and n.

SECTION 6.2 GENERATION ALGORITHMS FOR CDAS 57

Snippet 1: CLA: satisfiability-based algorithm
Input: SUTM = 〈F ,S, ϕ〉; integers d, t

Output: (d,t)-CLA A

// construct a (d+ t)-CCA for the input SUT

1 S ←generateCCA(M, d+ t)

// get all valid t-way interactions from the (d+ t)-CCA

2 VIt ← getAllInteractions(S, t)

// get all distinguishable pairs U of interaction sets

3 U ← getU (VIt, d, t)

// get the initial size for the CLA to be generated

4 N ← The size of S − 1

5 nextA← S

6 do

// reserve the current test suite instance

7 A← nextA

// SAT checking; the solver returns an instance if satisfiable or the emptyset

otherwise

8 nextA←generateCLA(M, d, t, N,U)

// decrease the size by one

9 N ← N − 1

10 while nextA 6=⊥

11 return A

58 GENERATION ALGORITHMS CHAPTER 6.

Snippet 2: CLA: heuristic algorithm
Input: SUTM = 〈F ,S, ϕ〉; integers d, t

Output: (d,t)-CLA A

// construct a (d+ t)-CCA for the input SUT

12 S ←generateCCA(M, d+ t)

// get all t-way interactions from the (d+ t)-CCA

13 VIt ← getAllInteractions(S, t)

// Rows[T] = ρS(T) for T ∈ VI t

14 Rows[]← mapInteractionToRows(VIt, S)

// SetRows[T] = ∪T∈T ρS(T) for T ⊆ VI t, |T | = d

15 SetRows[]← getSetRows(VIt, S, d)

16 A← S

17 while S 6= ∅ do

18 σ← getRandomTestcase(S)

19 S ← S − {σ}; A← A− {σ}

20 SetRows′[]← update(SetRows[],σ); Rows′[]← update(Rows[],σ)

21 if ∃Ta, Tb s.t. Ta 6∼ Tb : SetRows′[Ta] = SetRows′[Tb] or ∃T : Rows′[T] = ∅

then

// the test case σ is unremovable

22 A← A+ {σ}

23 end

24 else

// the test case σ is removable

25 SetRows[]← SetRows′[]

26 end

27 end

28 return A

SECTION 6.2 GENERATION ALGORITHMS FOR CDAS 59

Snippet 3: CDA: satisfiability-based algorithm
Input: SUTM = 〈F ,S, ϕ〉; integers d, t

Output: (d,t)-CDA A

// construct a (d+ t)-CCA for the input SUT

29 S ←generateCCA(M, d+ t)

// get all valid t-way interactions from the (d+ t)-CCA

30 VIt ← getAllInteractions(S, t)

// get all non-masking pairs U of interaction sets and interactions

31 U ← getU (VIt, d, t)

// get the initial size for the CDA to be generated

32 N ← The size of S − 1

33 nextA← S

34 do

// reserve the current test suite instance

35 A← nextA

// SAT checking; the solver returns an instance if satisfiable or the emptyset,

otherwise

36 nextA←generateCDA(M, d, t, N,U)

// decrease the size by one

37 N ← N − 1

38 while nextA 6=⊥

39 return A

60 GENERATION ALGORITHMS CHAPTER 6.

Snippet 4: CDA: heuristic algorithm
Input: SUTM = 〈F ,S, ϕ〉; integers d, t

Output: (d, t)-CDA A

// construct a (d+ t)-CCA for the input SUT

40 S ← generateCCA(M, d+ t)

// get all t-way interactions from the (d+ t)-CCA

41 VIt ← getAllInteractions(S, t)

// Rows[T] = ρS(T) for T ∈ V It

42 Rows[]← mapInteractionToRows(VIt, S)

// DiffRows[T][T] = ρS(T)− ρS(T) for T ⊆ VI t, |T | = d

43 DiffRows[][]← getDiffRows(VIt, S, d)

44 A← S

45 while S 6= ∅ do

46 σ← getRandomTestcase(S)

47 S ← S − {σ}

48 A← A− {σ}

49 DiffRows′[][]← update(DiffRows[][],σ)

50 if ∃T , T : DiffRows[T][T] 6= ∅ and DiffRows′[T][T] = ∅ then

// the test case σ is unremovable

51 A← A+ {σ}

52 end

53 else

// the test case σ is removable

54 DiffRows[][]← DiffRows′[][]

55 end

56 end

57 return A

SECTION 7.1 EXPERIMENTS 61

CHAPTER 7

EXPERIMENTS

7.1 Experiment Purposes and Research Questions

This chapter shows experimental results on the proposed arrays and generation algo-

rithms. The array generation is mainly focused on (1, 2)-CLAs and (1, 2)-CDAs (d = 1

and t = 2) for the following reasons. First, it is natural to set d to a small value in practice.

Second, the most common form of CIT targets two-way interactions.

In the following sections, the experimental results on the generation algorithms are

presented first. Two different experiments were conducted with respect to two different

purposes of analysis. One was comparing the efficiency between two different algorithm

types, i.e., satisfiability-based and heuristic algorithms, for both CLAs and CDAs. The

other was analyzing the efficiency of the heuristic algorithms when the strength t is greater

than 2. After discussing the generation algorithms, fault identification using CLAs and

CDAs for real-world systems is reported.

To guide the experiments, research questions were set as follows:

RQ1 How do the two types of generation algorithms perform with respect to generation

time and array size?

62 EXPERIMENTS CHAPTER 7.

RQ2 How do the heuristic algorithms perform when the strengths t of CLAs and CDAs

are relatively large (t ≥ 2)?

RQ3 Can CLAs and CDAs be used to identify faulty interactions caused by actual bugs,

especially when the assumptions about the number and strength of faulty interac-

tions do not hold?

7.2 Comparison of Generation Algorithms

7.2.1 Experimental Settings

The generation algorithms were written in C++ language. The CCA generator [61] used in

the programs is an implementation of the IPOG algorithm [38], while the Z3 solver (ver-

sion 4.8.1) [15] was used as the satisfiability checker in the satisfiability-based algorithms.

All experiments were conducted on a machine with an Intel Core i7-8700 CPU, 64

GB memory, and Ubuntu 18.04 LTS OS. For each benchmark instance, the heuristic algo-

rithms were executed 5 times, as they are non-deterministic algorithms. The satisfiability-

based algorithms were run only once because they are deterministic. The timeout period

for each run was set to 1800s.

A total of 20 benchmark instances, numbered from 1 to 20, were performed in the

experiments. These benchmarks can be found in [53]. Detailed information about these

benchmark instances is listed in Table 7.1. In the table, the first two columns show the

benchmark ID and benchmark names. Columns |F| and |ϕ| show the numbers of pa-

rameters and constraints in the benchmarks, respectively. Then, the columns |VI2| and

|I2\VI2| show the numbers of valid and invalid 2-way interactions. The column with the

label |Ta ∼ Tb| shows the numbers of indistinguishable pairs of interaction sets. The final

column with the label |T � T | shows the numbers of masking pairs of interaction sets

SECTION 7.2 COMPARISON OF GENERATION ALGORITHMS 63

Table 7.1: Benchmark information

ID SUT |F| |ϕ| |VI2| |I2\VI2| |Ta ∼ Tb| |T � T |

1 banking1 5 112 102 0 0 0

2 banking2 15 3 473 3 0 208

3 comm protocol 11 128 285 35 16 2,177

4 concurrency 5 7 36 4 69 130

5 healthcare1 10 21 361 8 5 512

6 healthcare2 12 25 466 1 0 124

7 healthcare3 29 31 3,092 59 477 8,700

8 healthcare4 35 22 5,707 38 288 3,359

9 insurance 14 0 4,573 0 0 0

10 network mgmt 9 20 1,228 20 0 189

11 processor comm1 15 13 1,058 13 6 1,510

12 processor comm2 25 125 2,525 854 1,562 35,156

13 services 13 388 1,819 16 93 1,088

14 storage1 4 95 53 18 11 112

15 storage2 5 0 126 0 0 0

16 storage3 15 48 1,020 120 57 3,400

17 storage4 20 24 3,491 24 0 0

18 storage5 23 151 5,342 246 20 10,095

19 system mgmt 10 17 310 14 130 825

20 telecom 10 21 440 11 23 151

64 EXPERIMENTS CHAPTER 7.

and valid interactions. Note that the numbers of indistinguishable interaction sets and of

masking pairs are the values for the case of d = 1 and t = 2.

7.2.2 CLA: Experimental Results

These experimental results are listed in Table 7.2. The first column shows the benchmark

ID. The values are divided into two sections: generation time and sizes of generated

CLAs. In each section, the average value is reported for the satisfiability-based algorithm,

as it is the deterministic, while the maximum, minimum, and average values are reported

for the heuristic algorithm. The symbol “– –” is used to indicate the case that the proposed

algorithms did not terminate within the timeout period. To better compare the generation

results, shorter generation time and smaller sizes of CLAs are noted in bold font.

The satisfiability-based algorithm completed the generation process for three instances,

namely, Nos. 1, 4, and 14. The CLAs obtained for these instances are optimal. However,

the algorithm failed to generate even a single CLA for the other instances. In contrast, the

heuristic algorithm successfully generated CLAs for all benchmark instances. In addi-

tion, the execution time of the satisfiability-based algorithm was always much longer than

that of the other algorithm, sometimes four orders of magnitude longer. There are two

main reasons why the satisfiability-based algorithm is so slow. One is that the algorithm

generates multiple CLAs in a single run. As stated in Chapter 6, it generates (d, t)-CLAs

with sizes varying from the size of a (d + t)-CCA. The CCA’s size simply serves as the

upper bound on the minimum CLA size. As this is not tight bound in general, to obtain an

optimal (d, t)-CLA, the satisfiability solver is executed multiple times. The other reason,

which is more obvious, is that the satisfiability check may be time-consuming. The time

required for the check becomes very long, especially when the algorithm tries to find a

CLA of minimum size minus 1, in which case the answer of the check is UNSAT (unsat-

isfiable). In the field of satisfiability, it is well known that UNSAT instances are usually

SECTION 7.2 COMPARISON OF GENERATION ALGORITHMS 65

Table 7.2: CLA: Experimental results of generating CLAs

ID

Time (second) Size

SMT Two-step SMT Two-step

value max. min. avg. value max. min. avg.

1 626.05 0.11 0.10 0.10 24 28 26 26.8

2 – – 0.22 0.15 0.19 – – 29 27 28

3 – – 0.20 0.16 0.17 – – 35 33 34.40

4 0.53 0.08 0.07 0.07 7 7 7 7

5 – – 0.22 0.20 0.21 – – 49 46 47.60

6 – – 0.27 0.23 0.24 – – 36 33 34.40

7 – – 8.59 7.91 8.20 – – 95 84 91

8 – – 45.07 43.51 44.32 – – 107 102 104.20

9 – – 124.91 123.87 124.39 – – 803 794 798.40

10 – – 2.60 2.56 2.58 – – 210 202 206.40

11 – – 1.03 0.85 0.92 – – 61 57 59.20

12 – – 3.48 3.31 3.40 – – 70 65 67.40

13 – – 7.49 7.28 7.41 – – 203 193 198.40

14 7.57 0.22 0.08 0.11 22 22 22 22

15 – – 0.09 0.09 0.09 – – 36 35 35.60

16 – – 1.17 1.11 1.15 – – 91 85 88.60

17 – – 30.28 29.28 29.72 – – 222 215 218

18 – – 112.85 112.09 112.48 – – 365 355 357.80

19 – – 0.14 0.13 0.13 – – 31 27 29.20

20 – – 0.26 0.24 0.25 – – 54 51 52

66 EXPERIMENTS CHAPTER 7.

more difficult than SAT instances.

The satisfiability-based algorithm is deterministic. As stated above, the CCA size

affects the algorithm’s execution time and, if timeout occurs, the resulting CLA size.

In contrast, the heuristic algorithm is inherently nondeterministic; it generates different

CLAs for different runs. The algorithm decreases the array size by repeatedly removing

a test case selected at random from the current array. A test case can be removed only

if the array remains a CLA after its removal; thus, which test case is removed depends

strongly on earlier selections. Hence, different orders in which test cases are deleted lead

to different CLAs.

7.2.3 CDA: Experimental Results

These experimental results are summarized in Table 7.3. The leftmost column shows the

benchmark IDs. The rest of the table is divided into two parts representing the results

of generation time and of sizes of the generated CDAs. Both parts have two sections

describing the experimental results of the two proposed algorithms. For each problem

instance, the average value is reported for the satisfiability-based algorithm as it is deter-

ministic, while the maximum, minimum, and average values are reported for the heuristic

algorithm.

The numbers with an asterisk (*) in the satisfiability-based algorithm’s columns show

that the generation did not terminate within the time limit. Because the algorithm repeat-

edly generates CDAs with sizes varying until the minimum one is found, CDAs that are

not optimal are constructed during the course of execution. The values with an asterisk

correspond to the smallest (not necessarily optimal) CDAs that were obtained within the

time limit. For example, for benchmark No. 1, the algorithm took 1,557.89s to generate

a CDA of size 25. However, when it was trying to generate a CDA of size 24, the algo-

rithm exceeded the 1800s time limit. There are also some benchmark instances where the

SECTION 7.2 COMPARISON OF GENERATION ALGORITHMS 67

Table 7.3: CDA: Experimental results of generating CDAs

ID

Time (second) Size

SMT Two-step SMT Two-step

value max. min. avg. value max. min. avg.

1 1,557.89* 0.15 0.10 0.13 25* 37 36 36.40

2 – – 0.12 0.09 0.11 – – 42 42 42

3 – – 0.21 0.15 0.17 – – 50 47 48.60

4 0.364 0.10 0.07 0.08 8 8 8 8

5 – – 0.17 0.12 0.14 – – 95 92 94

6 – – 0.20 0.16 0.18 – – 60 57 58.20

7 – – 3.14 2.79 2.95 – – 179 173 176

8 – – 19.87 18.73 19.23 – – 234 220 227.60

9 – – 145.14 130.48 134.31 – – 1,997 1,959 1,971.40

10 – – 1.56 1.48 1.52 – – 405 394 399.40

11 – – 0.67 0.59 0.61 – – 114 111 112

12 – – 3.16 2.94 3.03 – – 122 118 120.20

13 – – 4.82 4.76 4.79 – – 430 413 422.40

14 2.53* 0.12 0.10 0.10 25* 25 25 25

15 – – 0.08 0.07 0.07 – – 51 45 47.60

16 – – 0.64 0.58 0.61 – – 189 185 187.60

17 – – 16.28 15.61 15.88 – – 517 500 506.20

18 – – 130.25 120.02 124.86 – – 860 843 851.60

19 – – 0.12 0.09 0.11 – – 53 49 51.80

20 – – 0.19 0.14 0.16 – – 102 98 99.8

68 EXPERIMENTS CHAPTER 7.

algorithm did not find even one CDA within the time limit. The symbol “– –” is used to

indicate such a case. To compare the average consumed time of the two algorithms, the

better results (i.e., shorter time) are denoted in bold font. The smaller average sizes of

generated CDAs are also denoted in bold font.

The satisfiability-based algorithm completed the generation for only one instance (No.

4). The algorithm was able to find small CDAs for some remaining instances (though it

timed out), such as Nos. 1 and 14, whereas it failed to find even a single CDA for others.

Meanwhile, the heuristic algorithm successfully generated CDAs for all benchmark in-

stances. The execution time of the satisfiability-based algorithm was always much longer

compared with that of the heuristic generation algorithm, which can be observed from

the results of benchmark No. 1. It takes almost four orders of magnitude more time than

the heuristic algorithm. There are two reasons for this, and they are the same as those

for CLAs. One is that the algorithm continuously tries to generate CDA instances before

it generates an optimal CDA. The other reason is that the satisfiability check consumes

much time, especially when the checker computes the generation of a CDA with minimum

size minus one.

7.2.4 Answer to RQ 1

The satisfiability-based algorithms are deterministic algorithms that can always generate

optimal arrays for given SUTs. However, because of the long-time satisfiability checking,

the satisfiability-based algorithms are not practical for real-world testing. Meanwhile,

the heuristic algorithms have balanced capabilities with respect to running time and array

sizes. However, the satisfiability-based algorithms are still an available option. Previous

research [68] has shown that the execution of a test case usually costs several orders of

magnitude more time than the generation of a test case for recent software systems, such

as highly configurable systems. Although the satisfiability-based algorithms may take

SECTION 7.3 EXPERIMENTS ON GENERATING ARRAYS WITH t ≥ 2 69

hours to generate minimum CLAs or CDAs, using the minimum CLAs and CDAs as test

suites still reduces the total time of testing for these software systems.

7.3 Experiments on Generating Arrays with t ≥ 2

7.3.1 Experimental Setting

The results of the previous section showed that the proposed heuristic algorithms can scale

to large problems when the strength t of CLAs and CDAs is two. Next, the dissertation

examines the scalability of the heuristic algorithms with respect to strength of arrays.

In this experiment, the proposed heuristic algorithms were applied to the 20 bench-

mark instances to generate (1, t)-CLAs and (1, t)-CDAs with strength t = 3 and t = 4,

respectively. As in the previous experiments, two heuristic algorithms were run 5 times

for each problem.

7.3.2 CLA: Experimental Results

Table 7.4 summarizes the results of this experiment, including those obtained for t = 2

in Experiment 1. As in Table 7.1, the columns marked with “|VIt|” and “|Ta ∼ Tb|”

show the numbers of valid interactions and pairs of indistinguishable valid interactions of

strength t, respectively. The columns labeled with “average” show the running time of the

proposed algorithm and size of obtained CLAs averaged over 5 runs.

From Table 7.4, it can be observed that the sizes of generated CLAs and the generation

time increased exponentially as the strength increased. For all benchmarks, the speed of

growth in size was much slower than that in generation time. Another observation is that

the growth in size did not change much for benchmark Nos. 4 and 14. This is because

these two benchmarks have relatively small testing space, R, and when the algorithm is

70 EXPERIMENTS CHAPTER 7.

Table 7.4: CLA: Experimental results of generating CLAs with strength 2 ≤ t ≤ 4

No. t |VIt| |Ta ∼ Tb|
average

No. t |VIt| |Ta ∼ Tb|
average

time size time size

1

2 102 0 0.11 26.80

11

2 1,058 6 0.92 59.20

3 324 0 0.13 80.20 3 14,229 231 166.15 280.40

4 513 104 0.16 176.40 4 130,724 – – – – – –

2

2 473 0 0.19 28

12

2 2,525 1,562 3.40 67.40

3 4,290 0 4.32 80.60 3 53,228 67,926 1,404.34 333.40

4 26,728 0 178.48 199.40 4 781,771 – – – – – –

3

2 285 69 0.17 34.40

13

2 1,819 93 7.41 198.40

3 1,650 1,221 0.96 79.80 3 30,031 4,313 – – – –

4 5,978 9,338 6.58 147.20 4 317,228 – – – – – –

4

2 36 16 0.07 7

14

2 53 11 0.11 22

3 55 90 0.07 8 3 71 43 0.08 25

4 35 46 0.07 8 4 25 0 0.08 25

5

2 361 5 0.21 47.60

15

2 126 0 0.09 35.60

3 2,535 118 3.62 190 3 432 0 0.15 116.20

4 11,102 1,151 48.14 565 4 729 0 0.25 305.40

6

2 466 0 0.24 34.40

16

2 1,020 57 1.15 88.60

3 4,076 6 8.45 128.40 3 11,840 1,212 121.43 395.40

4 23,792 183 319.47 414.60 4 89,632 13,982 – – – –

7

2 3,092 477 8.20 91

17

2 3,491 0 29.72 218

3 74,274 18,460 – – – – 3 86,153 0 – – – –

4 1,264,002 – – – – – – 4 1,369,701 – – – – – –

8

2 5,707 288 44.32 104.20

18

2 5,342 20 112.48 357.80

3 191,398 – – – – – – 3 157,949 – – – – – –

4 – – – – – – – – 4 – – – – – – – –

9

2 4,573 0 124.39 798.40

19

2 310 130 0.13 29.20

3 – – – – – – – – 3 1,982 1,591 0.76 88.20

4 – – – – – – – – 4 7,770 10,227 5.82 216

10

2 1,220 0 2.58 206.40

20

2 440 23 0.25 52

3 15,370 1 347.78 1,661.80 3 3,431 225 6.18 208

4 116,350 – – – – – – 4 16,841 1,246 120.46 685.60

SECTION 7.3 EXPERIMENTS ON GENERATING ARRAYS WITH t ≥ 2 71

generating (1, 3)-CLAs for the two benchmarks, all valid test cases are already included.

Thus, the changes in array sizes as well as the generation time did not vary much. With

the 1800s timeout, there were six benchmark problems for which the algorithm ran out

of time while generating (1, 3)-CLAs. The proposed algorithm also failed to generate

(1, 4)-CLAs for ten benchmarks.

7.3.3 CDA: Experimental Results

Table 7.5 lists the results of these experiments. As shown in the table, the column marked

with “|VIt|” shows the numbers of valid interactions of strength t; the column marked

with “|T ∼ T |” shows the numbers of pairs of an interaction and interaction set that have

masking relations. The columns labeled with “average” show the running time of the

heuristic algorithm and sizes of obtained CDAs, respectively.

It can be observed from the values in the table that the generation time and sizes of

obtained CDAs increased exponentially in general. There are also some exceptions to

this observation, e.g., the benchmarks Nos. 4 and 14. The values of the two benchmarks

did not change as the strength varied. This is because the CDAs include all valid test

cases when t = 2. Both of the benchmarks have only a few parameters with small do-

mains, and thus the testing space is relatively small. In addition, the constraints in the two

benchmarks strongly restrict the testing space, soR equals a (1, 2)-CDA.

The heuristic generation algorithm failed to generate (1, 3)-CDAs for 7 benchmarks,

and it failed to generate (1, 4)-CDAs for 10 benchmarks.

7.3.4 Answer to RQ 2

The heuristic algorithms for both CLAs and CDAs performed well on generating arrays

with higher strengths of t = 3 and t = 4. Both algorithms generated high-strength

arrays for many benchmarks even though the time limit was relatively short, i.e., 1800s.

72 EXPERIMENTS CHAPTER 7.

Table 7.5: CDA: Experimental results of generating CDAs with strength 2 ≤ t ≤ 4

No. t |VIt| |T � T |
average

No. t |VIt| |T � T |
average

time size time size

1

2 102 0 0.11 35

11

2 1,058 1,510 0.61 113.60

3 324 0 0.12 88.80 3 14,229 47,202 120.61 490.20

4 513 832 0.12 190.20 4 130,725 – – – – – –

2

2 473 208 0.09 41.80

12

2 2,525 35,156 611.02 122

3 4,290 3,744 0.99 99 3 53,228 2,370,351 – – – –

4 26,728 36,608 47.37 235.60 4 781,772 – – – – – –

3

2 285 2,177 0.16 47.80

13

2 1,819 1,088 4.82 427.80

3 1,650 36,399 0.58 94 3 30,031 63,473 – – – –

4 5,978 269,705 4.23 162.60 4 – – – – – – – –

4

2 36 130 0.07 8

14

2 53 112 0.11 25

3 55 342 0.07 8 3 71 165 0.10 25

4 35 120 0.07 8 4 25 0 0.10 25

5

2 361 512 0.12 94.20

15

2 126 0 0.07 47

3 2,535 8,655 1.21 327.40 3 432 0 0.10 137

4 11,102 71,160 17.75 804.40 4 729 0 0.13 368.60

6

2 466 124 0.14 59

16

2 1,020 3,400 0.60 187.80

3 4,076 2,688 3.75 211.20 3 11,840 89,072 61.24 730.60

4 23,792 32,948 146.08 647 4 89,623 1,186,446 – – – –

7

2 3,092 8,700 2.87 176.20

17

2 3,491 0 15.65 508

3 74,274 622,932 – – – – 3 86,153 0 – – – –

4 1,264,002 – – – – – – 4 – – – – – – – –

8

2 5,707 3,359 17.90 224

18

2 5,342 10,095 119.97 849.60

3 191,398 – – – – – – 3 – – – – – – – –

4 – – – – – – – – 4 – – – – – – – –

9

2 4,573 0 132.79 1,962

19

2 310 825 0.09 52.20

3 – – – – – – – – 3 1,982 15,354 0.54 147.40

4 – – – – – – – – 4 7,770 134,882 4.36 305

10

2 1,228 189 1.53 396.80

20

2 440 151 0.14 102

3 15,370 5,514 185.06 3,113.80 3 3,431 2,505 1.93 374.80

4 – – – – – – – – 4 16,841 20,796 42.61 1,102.80

SECTION 7.4 FAULT IDENTIFICATION IN REAL-WORLD SYSTEMS 73

The generation time grew exponentially with increased strength, while the array sizes

increased much more gradually.

7.4 Identifying Faulty Interactions in Real-World Systems

The third experiment examined CLAs and CDAs with respect to the capability of identi-

fying faulty interactions induced by real software bugs. By definition, CLAs and CDAs

ensure that faulty interactions can be located if underlying assumptions hold. However,

these assumptions may not necessarily hold in reality. The aim of this experiment was to

answer the following research question:

RQ3 Can CLAs and CDAs be used to detect faulty interactions caused by actual bugs, es-

pecially when the assumptions about the number and strength of faulty interactions

do not hold?

The procedure of the experiment was as follows:

Step 1 Construct SUT models for applications under test.

Step 2 Seed bugs into the source code of the application programs to create a collection of

faulty versions.

Step 3 Use exhaustive testing to identify faulty interactions that are caused by the seeded

bugs. The identified faulty interactions are used as correct answers.

Step 4 Use CLAs and CDAs to select test cases and locate (or estimate) faulty interactions

using these test cases.

Step 5 Compare the results obtained from CLAs and CDAs with the correct answers.

In the experiments, the parameters of CLAs and CDAs were set to d = 1 and t = 2.

74 EXPERIMENTS CHAPTER 7.

7.4.1 Experimental Setting

Open source software Flex [1] and Gzip [2] were chosen as applications under test, and

their source code was obtained from Software-artifact Infrastructure Repository (SIR) [16]

at the University of Nebraska–Lincoln. At SIR, each of the programs is associated with a

test specification file written in the Extended Test Specification Language [51]. Test spec-

ification files describe all the options and patterns of the inputs to be tested, together with

the requirements and specifications among the options. SIR also provides the whole test-

ing environment for these programs, which encompasses a bug seeding facility, verified

input-output sets, and a tool chain with an automatic test script generation tool.

Petke et. al. analyzed the test specification files of the two applications and provided

the SUT models with constraints [52]. Their SUT models were used as the SUT models

in this experiment. A summary of the two SUT models is given in Table 7.6.

The bug seeding facility provided by SIR was applied to seed bugs into Flex and Gzip

in this experiment. Exactly one bug was seeded in a single version of each program.

Exhaustive testing was conducted for each application as follows. First, a CCA whose

strength is equal to the total number of factors for the SUT model of the application was

constructed. This CCA represents the exhaustive test suite because it consists of all valid

test cases. Then, a test script was created from the CCA and applied to faulty versions of

the application.

From the test outcome, faulty interactions were identified as follows. The experiment

computed a minimal set of interactions such that 1) every interaction in the set occurs in

some of the failed test cases but not in any of the passed test cases and 2) every failed test

case contains at least one interaction in the set. Here, the set is regarded as minimal if no

smaller set satisfies these conditions. In general, there can be more than one minimal sets,

but a unique set of interactions was identified for every faulty version in our case.

As the SUT model does not completely cover the possible test space of the application,

SECTION 7.4 FAULT IDENTIFICATION IN REAL-WORLD SYSTEMS 75

Table 7.6: SUT models

ID SUT |F| |ϕ| Instructure

1 Flex 9 12
Command line options with “On” and “Off” are set as parameters with two values

Command line options with different functions are set as parameters with multiple values

2 Gzip 14 61
Command line options with string input are discretized using regular expressions

Command line options with file input are classified using file identifiers

Table 7.7: Seeded bugs

SUT Name Description

Flex

F AA 2 array: “array[index]” to “array[index - 1]”

F AA 3 if condition: “var1 == var2” to “var1 = var2”

F AA 6 if condition: “(var1 || var2) && var3” to “var1 || (var2 && var3)”

Gzip
FAULTY F KL 6 value assignment: “var1 += var2” to “var1 = var2”

FAULTY F KP 11 loop condition: “– –var” to “var – –”

no test case failed for some of the faulty versions. The bugs that manifested themselves

are summarized in Table 7.7. The names of the bugs were given by SIR.

Then, the proposed algorithms were executed to generate a (1, 2)-CLA and (1, 2)-

CDA for the SUT model. The test scripts were constructed from the CLAs and CDAs and

applied to the set of faulty programs. The faulty interactions located using the CLA-based

test cases were compared with the results of the exhaustive testing.

7.4.2 Experimental Results

The results of the experiments are summarized in Tables 7.8 and 7.9. The two leftmost

columns show the applications and names of the bugs. The remainder of each table is

divided into two parts: the exhaustive testing part and CLA (or CDA) part. Each part

consists of three columns. The “#Tests” column shows the total number of test cases. The

76 EXPERIMENTS CHAPTER 7.

Table
7.8:C

L
A

:E
xperim

entalresults
forlocating

faulty
interactions

SU
T

N
am

e
E

xhaustive
Testing

C
L

A

#Tests
#Failed

L
ocated

#Tests
#Failed

L
ocated

Flex

F
A

A
2

500
90

1-w
ay:{(FastSw

ithT,FST
)}

32
11

–
–

1-w
ay:{(FastSw

ithT,A
lterFast)}

F
A

A
3

500
468

1-w
ay:{(C

om
pability,off)}

32
26

1-w
ay:{(C

om
pability,off)}

F
A

A
6

500
20

4-w
ay:{(B

p,O
ff),(FastS,FS),(A

lign,O
ff),(E

qC
lass,O

ff)}
32

5
1-w

ay:{(FastS,FullS)}
1-w

ay:{(FastS,FullS)}

G
zip

FA
U

LT
Y

F
K

L
6

159
4

3-w
ay:{(SetV,O

n),(Set4,O
n),(FileType,A

SC
II)}

36
2

2-w
ay:{(Set4,O

n),(FileType,A
SC

II)}

FA
U

LT
Y

F
K

P
11

159
79

1-w
ay:{(FileType,A

SC
II)}

36
20

1-w
ay:{(FileType,A

SC
II)}

N
ote:

FastSw
ithT

=
FastScannerw

ith
Table,FST

=
FastScannerTable,A

lterFast=
A

lternate
Fast;

C
om

pability
=

C
om

pability
w

ith
A

T
&

T
L

ex;B
p

=
B

ypass
use;E

qC
lass

=
E

quivalance
C

lasses;

FastS
=

FastScanner,FS
=

FastScan,FullS
=

FullScan;

Set
V

=
SetV

O
ption;Set

4
=

Set4
O

ption;

SECTION 7.4 FAULT IDENTIFICATION IN REAL-WORLD SYSTEMS 77

Ta
bl

e
7.

9:
C

D
A

:E
xp

er
im

en
ta

lr
es

ul
ts

fo
rl

oc
at

in
g

fa
ul

ty
in

te
ra

ct
io

ns

SU
T

N
am

e
E

xh
au

st
iv

e
Te

st
in

g
C

D
A

#T
es

ts
#F

ai
le

d
L

oc
at

ed
#T

es
ts

#F
ai

le
d

L
oc

at
ed

Fl
ex

F
A

A
2

50
0

90
1-

w
ay

:{
(F

as
tS

w
ith

T,
FS

T
)}

62
20

–
–

1-
w

ay
:{

(F
as

tS
w

ith
T,

A
lte

rF
as

t)
}

F
A

A
3

50
0

46
8

1-
w

ay
:{

(C
om

pa
bi

lit
y,

of
f)
}

62
47

1-
w

ay
:{

(C
om

pa
bi

lit
y,

of
f)
}

F
A

A
6

50
0

20
4-

w
ay

:{
(B

p,
O

ff
),

(F
as

tS
,F

S)
,(

A
lig

n,
O

ff
),

(E
qC

la
ss

,O
ff

)}
62

10
1-

w
ay

:{
(F

as
tS

,F
ul

lS
)}

1-
w

ay
:{

(F
as

tS
,F

ul
lS

)}

G
zi

p
FA

U
LT

Y
F

K
L

6
15

9
4

3-
w

ay
:{

(S
et

V,
O

n)
,(

Se
t4

,O
n)

,(
Fi

le
Ty

pe
,A

SC
II

)}
47

1
3-

w
ay

:{
(S

et
F,

O
n)

,(
Se

t4
,O

n)
,(

Fi
le

Ty
pe

,A
SC

II
)}

or
3-

w
ay

:{
(S

et
V,

O
n)

,(
Se

t4
,O

n)
,(

Fi
le

Ty
pe

,A
SC

II
)}

FA
U

LT
Y

F
K

P
11

15
9

79
1-

w
ay

:{
(F

ile
Ty

pe
,A

SC
II

)}
47

27
1-

w
ay

:{
(F

ile
Ty

pe
,A

SC
II

)}

N
ot

e:

Fa
st

Sw
ith

T
=

Fa
st

Sc
an

ne
rw

ith
Ta

bl
e,

FS
T

=
Fa

st
Sc

an
ne

rT
ab

le
,A

lte
rF

as
t=

A
lte

rn
at

e
Fa

st
;

C
om

pa
bi

lit
y

=
C

om
pa

bi
lit

y
w

ith
A

T
&

T
L

ex
;B

p
=

B
yp

as
s

us
e;

E
qC

la
ss

=
E

qu
iv

al
an

ce
C

la
ss

es
;

Fa
st

S
=

Fa
st

Sc
an

ne
r,

FS
=

Fa
st

Sc
an

,F
ul

lS
=

Fu
ll

Sc
an

;

Se
t

V
=

Se
tV

O
pt

io
n;

Se
t

4
=

Se
t4

O
pt

io
n;

78 EXPERIMENTS CHAPTER 7.

“#Failed” column shows the number of test cases that failed. The “#Located” column

shows located faulty interactions. Note that the faulty interactions located by exhaustive

testing are the correct answers.

For the two faulty versions denoted by F AA 3 and FAULTY F KP 11, there was

exactly one faulty interaction, and its strength was one. The test cases derived from the

(1, 2)-CLAs and (1, 2)-CDAs successfully identified the faulty interaction.

For F AA 2, there were two faulty interactions, both of strength one, namely, {(FastSwithT,

FST)} and {(FastSwithT, AlterFast)}. Both the CLA-based and CDA-based test cases

failed to locate either of these faulty interactions. Within the CLA-based and CDA-based

test cases, there was no single interaction that appeared in the failed test cases but not

in the remaining 21 passed test cases. However, if it were assumed that there exist two

faulty interactions of strength ≤ 2, the faulty interactions could be identified because no

other interaction pairs coincide with the test outcome. This suggests that even if faulty

interactions cannot be exactly located, the test outcome obtained from CLAs and CDAs

may provide informative clues about them.

Similarly to F AA 2, the case F AA 6 also contained two faulty interactions; how-

ever, in this case, one of the faulty interactions was of strength four. In this case, both

the CLA-based and CDA-based test cases correctly located one faulty interaction that of

strength one. The other faulty interaction, namely, {(Bp, Off), (FastS, FS), (Align, On),

(EqClass, Off)}, did not occur in any of the test cases because of its high strength. As a

result, the four-way faulty interaction did not affect the identification of the other faulty

interaction.

The case FAULTY F KL 6 contained one faulty interaction whose strength is three.

This means that by definition, the (1, 2)-CLA-based test cases were not able to locate this

interaction. In fact, based on the test outcome, two-way interaction {(Set4, On), (FileType,

ASCII)} was identified as a faulty interaction. This result was not exactly correct, but it is

SECTION 7.4 FAULT IDENTIFICATION IN REAL-WORLD SYSTEMS 79

useful for fault localization as it is a subset of the correct faulty interaction {(SetV, On),

(Set4, On), (FileType, ASCII)}.

Similarly, the (1, 2)-CDA-based test cases were not able to locate this interaction. The

results of the test cases indicated that there are no faulty 2-way interactions. The results

also indicated that there were two 3-way interactions suspected to be faulty. In contrast

to the CLAs, it was observed from the CDAs that no valid 2-way interactions were faulty

because all valid 2-way interactions appeared in some passed test cases. By definition

of CDAs, all valid interactions of strength ≤ t will appear in some test cases. Thus, it

can be concluded that there were some faulty interactions that have strengths larger than

t (t = 2 in this case). After checking the valid 3-way interactions, it was concluded that

two 3-way interactions were suspicious as faulty. Indeed, one of the faulty interaction

candidates was the truly faulty interaction.

If the number of faulty interactions and their strengths were known before testing, all

faulty interactions could theoretically be identified by CLAs or CDAs. To demonstrate

this, 6-CCAs were also applied to the faulty versions of the two applications. The reason

for using 6-CCAs instead of (2, 4)-CLAs or (2, 4)-CDAs is that the generation of these

did not terminate within 3h. In contrast, the off-the-shelf CCA generator successfully

generated 6-CCAs within 30min for both SUT models. From Theorem 11 and Corol-

lary 1, 6-CCAs are (2, 4)-CLAs and (2, 4)-CDAs. The sizes of the 6-CCAs are shown in

Table 7.10.

All faulty interactions in the faulty versions of the applications Flex and Gzip were

identified using the 6-CCA test suites. The number of test cases in the 6-CCA for Flex

was 366, while the 6-CCA for Gzip contained 144 test cases. When compared with the

exhaustive testing, the number of test cases was reduced by 26.8% and 9.4%, respectively.

Note that within the two 6-CCAs, there were a number of redundant test cases for fault

identification. If minimum (2, 4)-CLAs and (2, 4)-CDAs had been used, the number of

80 EXPERIMENTS CHAPTER 7.

Table
7.10:

(2,4)-C
L

A
and

(2,4)-C
D

A
(6-C

C
A

):E
xperim

entalresults
forlocating

faulty
interactions

SU
T

N
am

e
Faulty

Interactions

#
Test

E
xhaustive

Testing
(1,2)-C

L
A

(1,2)-C
D

A
6-C

C
A

used
as

(2,4)-C
L

A
and

C
D

A

Flex

F
A

A
2

1-w
ay:{(FastSw

ithT,FST
)}

500
32

62
366

1-w
ay:{(FastSw

ithT,A
lterFast)}

F
A

A
3

1-w
ay:{(C

om
pability,off)}

500
32

62
366

F
A

A
6

4-w
ay:{(B

p,O
ff),(FastS,FS),(A

lign,O
ff),(E

qC
lass,O

ff)}
500

32
62

366
1-w

ay:{(FastS,FullS)}

G
zip

FA
U

LT
Y

F
K

L
6

3-w
ay:{(SetV,O

n),(Set4,O
n),(FileType,A

SC
II)}

159
36

47
144

FA
U

LT
Y

F
K

P
11

1-w
ay:{(FileType,A

SC
II)}

159
36

47
144

SECTION 7.4 FAULT IDENTIFICATION IN REAL-WORLD SYSTEMS 81

test cases could have been further reduced.

7.4.3 Answer to RQ 3

The test cases derived from CLAs and CDAs may fail to locate faulty interactions if there

are more than d faulty interactions or faulty interactions have strength greater than t;

however, even in such cases, they can still provide information useful for localization of

faulty interactions.

82 EXPERIMENTS CHAPTER 7.

SECTION 8.0 RELATED WORK 83

CHAPTER 8

RELATED WORK

CIT has been widely used for many years. There have been many reports on the usage

of CIT in real-world testing. Early reports include that of Tatsumi, Fujitsu Ltd in [60].

IBM Global Business Services reported their experience using CIT as solutions for testing

two insurance sector clients in North America [27]. The researchers from IBM Haifa also

shared their stories [26] about using CIT for a customer in the telecommunication industry

and for IBM internal. Microsoft Corporation has been using their CIT tool PICT [14]

since 2000. Am empirical study on using CIT in real-world systems was published in [25].

In CIT, the most studied test suites are in the forms of CAs and CCAs. Many ap-

proaches have been proposed to generate CAs and CCAs. AETG [8] was an early method

for generating CAs. The AETG algorithm is a greedy algorithm that adopts the strategy

of one-test-at-a-time to generate small CAs. In contrast, the greedy algorithm IPOG [38]

adopts the one-parameter-at-a-time strategy. The IPOG algorithm is used more frequently

as it can generate near-minimum CAs in a very short time. There also exist several meta-

heuristic algorithms for generating CAs and CCAs, such as simulated annealing algo-

rithms [19, 20] and tabu search [18]. The satisfiability-based constructions of CAs and

CCAs can be found in [23, 45, 67]. Other research, such as [62–64], explored system

84 RELATED WORK CHAPTER 8.

modeling techniques and test scheduling techniques for CIT. [6, 7, 21, 36, 42] combined

CIT with the field of artificial intelligence.

LAs and DAs were first introduced by Colbourn and McClary in [10]. They analyzed

the mathematical properties of these arrays. As in [10], most studies on LAs and DAs

focus on their mathematical aspects [12, 13, 41, 54, 57, 58]. The application to screening

experiments for TCP throughput in a mobile wireless network was reported in [3, 11].

Other types of arrays that are intended for fault location include error locating arrays [43,

44] and consecutive detecting arrays [56].

The concept of CLAs was first introduced in [28]. Later, a computational construction

algorithm was proposed in [31]. In [32], the results of applying CLAs to fault identifica-

tion for real-world programs were reported.

In [29], (d, t)-CDAs were introduced for the first time, together with a construction

algorithm using an SMT-solver. The two-step heuristic algorithm was first proposed

in [33]. [30] extended two earlier works: [29] and [33]. In the paper, the implementa-

tion of the algorithm introduced in [33] was improved, and a new set of experiments were

conducted to compare the two different algorithms with the new implementations.

This dissertation expands the two papers [30,32] with examples and new experimental

results.

There are many other approaches to faulty interaction localization without using CLAs,

CDAs, or other related arrays. One of such approach is the use of adaptive testing [4, 5,

39, 48–50, 65, 69]. In adaptive testing, when a failure is encountered, new test cases are

adaptively generated and executed to narrow down possible causes. Meanwhile, testing

using CLAs and CDAs is nonadaptive in the sense that test outcomes do not alter fu-

ture test plans. A clear benefit of using nonadaptive testing is that the execution of test

suites, which is often the most time-consuming part of the whole testing process, can be

parallelized.

SECTION 8.0 RELATED WORK 85

CLAs, CDAs, and other arrays of similar kinds are intended to provide sufficient test

outcomes to uniquely identify faulty interactions, while some studies have attempted to

infer faulty interactions from insufficient information with, for example, machine learn-

ing. The studies along this line include [47, 55, 68].

Other approaches to identification of faulty interactions can be found in a recent sur-

vey [17].

86 RELATED WORK CHAPTER 8.

SECTION 9.2 CONCLUSION 87

CHAPTER 9

CONCLUSION

9.1 Conclusion

This dissertation introduced CLAs and CDAs, which incorporate constraints among test

parameters into LAs and DAs, respectively. CLAs and CDAs generalize LAs and DAs

so that localization of faulty interactions can be performed for systems with constraints.

Several properties of CLAs and CDAs were proved as well as those that relate CLAs and

CDAs with each other and with other array structures, such as CCAs. Then, this disserta-

tion proposed two generation algorithms. The first algorithm generates optimal CLAs and

CDAs using an off-the-shelf satisfiability solver. The second algorithm is heuristic and

generates near-optimal CLAs and CDAs in a reasonable time. The experimental results of

the satisfiability-based algorithm showed that it can generate CLAs and CDAs with min-

imum sizes as long as sufficient generation time is allowed. The results also showed that

the heuristic algorithm scales to problems of practical sizes. The final experiment showed

that both CLAs and CDAs can be used to identify faulty interactions in real-world testing

if the number of faulty interactions and their strengths do not exceed the limitation of d

and t for the arrays.

88 CONCLUSION CHAPTER 9.

9.2 Future Work

There are several possible directions for future work. One is to improve the two algo-

rithms proposed in this dissertation. In the dissertation, the satisfiability-based algorithms

adopted the naı̈ve matrix model as a representation of a test suite. However, using other

encoding techniques, such as symmetry breaking, might reduce the solution space and

thus shorten the generation time of the algorithms. In the heuristic algorithms, the test

cases to be checked are chosen at random. Different orders of choosing test cases lead to

different sizes of resulting arrays and different generation times. Finding the best order

of choosing test cases can improve the algorithms as well. The development of new algo-

rithms for CLA and CDA construction also deserves further studies. Both meta-heuristic

search and greedy heuristics may be promising because they have proved to be useful for

the construction of CCAs. Another direction is comparing the capabilities of fault identi-

fication between adaptive testing methods with non-adaptive testing methods with respect

to accuracy of fault identification, testing cost, etc.

BIBLIOGRAPHY

[1] The Fast Lexical Analyzer - scanner generator for lexing in C and C++,

https://github.com/westes/flex.

[2] GNU Gzip, https://www.gnu.org/software/gzip/.

[3] A. N. Aldaco, C. J. Colbourn, and V. R. Syrotiuk. Locating arrays: A new experi-

mental design for screening complex engineered systems. SIGOPS Oper. Syst. Rev.,

49(1):31–40, Jan. 2015.

[4] P. Arcaini, A. Gargantini, and M. Radavelli. Efficient and guaranteed detection of

t-way failure-inducing combinations. In 2019 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), pages 200–209,

2019.

[5] J. Bonn, K. Foegen, and H. Lichter. A framework for automated combinatorial

test generation, execution, and fault characterization. In 2019 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW),

pages 224–233, 2019.

[6] J. Chandrasekaran, Y. Lei, R. Kacker, and D. R. Kuhn. A combinatorial approach

to explaining image classifiers. In 2021 IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), page preprint, 2021.

89

90 BIBLIOGRAPHY

[7] J. Chandrasekaran, Y. Lei, R. Kacker, and D. R. Kuhn. A combinatorial approach to

testing deep neural network-based autonomous driving systems. In 2021 IEEE In-

ternational Conference on Software Testing, Verification and Validation Workshops

(ICSTW), page preprint, 2021.

[8] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system:

An approach to testing based on combinatorial design. IEEE Trans. on Software

Engineering, 23(7):437–444, July 1997.

[9] C. J. Colbourn. Combinatorial aspects of covering arrays. Le Matematiche, 58:121–

167, 2004.

[10] C. J. Colbourn and D. W. McClary. Locating and detecting arrays for interaction

faults. Journal of Combinatorial Optimization, 15(1):17–48, Jan. 2008.

[11] C. J. Colbourn and V. R. Syrotiuk. Coverage, location, detection, and measurement.

In 2016 IEEE Ninth International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), pages 19–25, April 2016.

[12] C. J. Colbourn and V. R. Syrotiuk. On a combinatorial framework for fault charac-

terization. Mathematics in Computer Science, 12(4):429–451, Dec 2018.

[13] R. Compton, M. T. Mehari, C. J. Colbourn, E. De Poorter, and V. R. Syrotiuk.

Screening interacting factors in a wireless network testbed using locating arrays.

In 2016 IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), pages 650–655, April 2016.

[14] J. Czerwonka. Pairwise testing in real world. practical extensions to test case gener-

ators. In Proc. of the 24th Annual Pacific Northwest Software Quality Conference,

pages 419–430, Oct. 2006.

BIBLIOGRAPHY 91

[15] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Proceedings of the

Theory and Practice of Software, 14th International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, page

337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[16] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact. Empirical Software

Engineering: An International Journal, 10(4):405–435, 2005.

[17] T. Friedrichs, K. Fögen, and H. Lichter. A comparison infrastructure for fault charac-

terization algorithms. In 2020 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), pages 201–210, 2020.

[18] P. Galinier, S. Kpodjedo, and G. Antoniol. A penalty-based tabu search for con-

strained covering arrays. In Proceedings of the Genetic and Evolutionary Com-

putation Conference, GECCO ’17, page 1288–1294, New York, NY, USA, 2017.

Association for Computing Machinery.

[19] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. An improved meta-heuristic search

for constrained interaction testing. In International Symposium on Search Based

Software Engineering (SSBSE), pages 13–22, 2009.

[20] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Evaluating improvements to a meta-

heuristic search for constrained interaction testing. Empirical Software Engineering,

16(1):61–102, 2011.

[21] C. Gladisch, C. Heinzemann, M. Herrmann, and M. Woehrle. Leveraging combina-

torial testing for safety-critical computer vision datasets. 06 2020.

[22] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies: A survey.

Software Testing, Verification and Reliability, 15(3):167–199, Sept. 2005.

92 BIBLIOGRAPHY

[23] B. Hnich, S. Prestwich, and E. Selensky. Constraint-based approaches to the cover-

ing test problem. pages 172–186, 06 2004.

[24] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith. Constraint models for the

covering test problem. Constraints, 11(2):199–219, 2006.

[25] L. Hu, W. E. Wong, D. R. Kuhn, and R. N. Kacker. How does combinatorial testing

perform in the real world: an empirical study. Empirical Software Engineering,

25(4):2661–2693, 2020.

[26] IBM Haifa, https://research.ibm.com/haifa/dept/ svt/papers/CTD Introduction.pdf.

[27] IBM Global Business Services, https://www.ibm.com/downloads/cas/GANDBVKQ.

[28] H. Jin, T. Kitamura, E.-H. Choi, and T. Tsuchiya. A satisfiability-based approach to

generation of constrained locating arrays. In 2018 IEEE International Conference

on Software Testing, Verification and Validation Workshops, pages 285–294, April

2018.

[29] H. Jin, C. Shi, and T. Tsuchiya. Constrained detecting arrays for fault localization

in combinatorial testing. In Proceedings of the 35th Annual ACM Symposium on

Applied Computing, SAC ’20, page 1971–1978, New York, NY, USA, 2020. Asso-

ciation for Computing Machinery.

[30] H. Jin, C. Shi, and T. Tsuchiya. Constrained detecting arrays: Mathematical struc-

tures for fault identification in combinatorial interaction testing, 2021.

[31] H. Jin and T. Tsuchiya. Deriving fault locating test cases from constrained covering

arrays. In 2018 IEEE 23rd Pacific Rim International Symposium on Dependable

Computing (PRDC), pages 233–240, Dec 2018.

BIBLIOGRAPHY 93

[32] H. Jin and T. Tsuchiya. Constrained locating arrays for combinatorial interaction

testing. Journal of Systems and Software, 170:110771, 2020.

[33] H. Jin and T. Tsuchiya. A two-step heuristic algorithm for generating constrained de-

tecting arrays for combinatorial interaction testing. In 2020 IEEE 29th International

Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE), pages 219–224, 2020.

[34] D. Kuhn and M. Reilly. An investigation of the applicability of design of experi-

ments to software testing. In 27th Annual NASA Goddard/IEEE Software Engineer-

ing Workshop, 2002. Proceedings., pages 91–95, 2002.

[35] D. R. Kuhn, R. N. Kacker, and Y. Lei. Introduction to combinatorial testing. CRC

Press, 2013.

[36] D. R. Kuhn, R. N. Kacker, Y. Lei, and D. E. Simos. Combinatorial methods for

explainable ai. In 2020 IEEE International Conference on Software Testing, Verifi-

cation and Validation Workshops (ICSTW), pages 167–170, 2020.

[37] D. R. Kuhn and D. R. Wallace. Software fault interactions and implications for

software testing. IEEE Transactions on Software Engineering, 30(6):418–421, June

2004.

[38] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog/ipog-d: efficient test

generation for multi-way combinatorial testing. Software Testing, Verification and

Reliability, 18(3):125–148, 2008.

[39] J. Li, C. Nie, and Y. Lei. Improved delta debugging based on combinatorial testing.

In 2012 12th International Conference on Quality Software, Xi’an, Shaanxi, China,

August 27-29, 2012, pages 102–105, 2012.

94 BIBLIOGRAPHY

[40] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang. TCA: An efficient two-mode

meta-heuristic algorithm for combinatorial test generation. In Proc. of the 30th In-

ternational Conference on Automated Software Engineering (ASE), pages 494–505.

ACM/IEEE, 2015.

[41] X.-N. Lu and M. Jimbo. Arrays for combinatorial interaction testing: a review on

constructive approaches. Japanese Journal of Statistics and Data Science, 2:641–

667, 12 2019.

[42] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao. Deepct: Tomo-

graphic combinatorial testing for deep learning systems. In 2019 IEEE 26th Inter-

national Conference on Software Analysis, Evolution and Reengineering (SANER),

pages 614–618, 2019.

[43] C. Martı́nez, L. Moura, D. Panario, and B. Stevens. Locating errors using ELAs,

covering arrays, and adaptive testing algorithms. SIAM Journal on Discrete Mathe-

matics, 23(4):1776–1799, 2010.

[44] C. Martı́nez, L. Moura, D. Panario, and B. Stevens. Locating errors using elas,

covering arrays, and adaptive testing algorithms. SIAM Journal on Discrete Mathe-

matics, 23(4):1776–1799, 2010.

[45] T. Nanba, T. Tsuchiya, and T. Kikuno. Using satisfiability solving for pairwise

testing in the presence of constraints. IEICE Transactions on Fundamentals of Elec-

tronics, Communications and Computer Sciences, 95-A(9):1501–1505, 2012.

[46] C. Nie and H. Leung. A survey of combinatorial testing. ACM Computing Surveys,

43:11:1–11:29, feb 2011.

BIBLIOGRAPHY 95

[47] K. Nishiura, E. Choi, and O. Mizuno. Improving faulty interaction localization using

logistic regression. In 2017 IEEE International Conference on Software Quality,

Reliability and Security (QRS), pages 138–149, July 2017.

[48] X. Niu, C. Nie, Y. Lei, and A. T. S. Chan. Identifying failure-inducing combinations

using tuple relationship. In 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation Workshops, pages 271–280, March 2013.

[49] X. Niu, C. Nie, H. Leung, Y. Lei, X. Wang, J. Xu, and Y. Wang. An interleaving ap-

proach to combinatorial testing and failure-inducing interaction identification. IEEE

Trans. Softw. Eng., 46(6):584–615, June 2020.

[50] X. Niu, H. Wu, N. Changhai, Y. Lei, and X. Wang. A theory of pending schemas

in combinatorial testing. IEEE Transactions on Software Engineering, pages 1–1,

2021.

[51] T. Ostrand and M. Balcer. The category-partition method for specifying and gener-

ating functional tests. Commun. ACM, 31:676–686, 06 1988.

[52] J. Petke, M. B. Cohen, M. Harman, and S. Yoo. Practical combinatorial interaction

testing: Empirical findings on efficiency and early fault detection. IEEE Transac-

tions on Software Engineering, 41(9):901–924, 2015.

[53] I. Segall, R. Tzoref-Brill, and E. Farchi. Using binary decision diagrams for com-

binatorial test design. In Proc. of the 2011 International Symposium on Software

Testing and Analysis (ISSTA), pages 254–264. ACM, 2011.

[54] S. A. Seidel, K. Sarkar, C. J. Colbourn, and V. R. Syrotiuk. Separating interaction

effects using locating and detecting arrays. In C. Iliopoulos, H. W. Leong, and W.-

K. Sung, editors, Combinatorial Algorithms, pages 349–360, Cham, 2018. Springer

International Publishing.

96 BIBLIOGRAPHY

[55] K. Shakya, T. Xie, N. Li, Y. Lei, R. Kacker, and D. R. Kuhn. Isolating failure-

inducing combinations in combinatorial testing using test augmentation and classi-

fication. In Fifth IEEE International Conference on Software Testing, Verification

and Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012, pages 620–

623, 2012.

[56] C. Shi, L. Jiang, and A. Tao. Consecutive detecting arrays for interaction faults.

Graphs and Combinatorics, 36(4):1203–1218, 2020.

[57] C. Shi, Y. Tang, and J. Yin. The equivalence between optimal detecting arrays and

super-simple OAs. Designs, Codes and Cryptography, 62(2):131–142, Feb. 2012.

[58] C. Shi, Y. Tang, and J. Yin. Optimal locating arrays for at most two faults. Science

China Mathematics, 55(1):197–206, Jan. 2012.

[59] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life techniques to generate

test cases for combinatorial testing. In Proc. of 28th Annual International Computer

Software and Applications Conference (COMPSAC ’04), pages 71–77, 2004.

[60] K. Tatsumi. Test case design support system. In Proc. of International Conference

on Quality Control (ICQC’87), pages 615–620, 1987.

[61] T. Tsuchiya. Using binary decision diagrams for constraint handling in combinato-

rial interaction testing. CoRR, abs/1907.01779, 2019.

[62] R. Tzoref. Comprehension and evolution of combinatorial models and test plans.

SIGSOFT Softw. Eng. Notes, 45(3):23–24, jul 2020.

[63] R. Tzoref-Brill and S. Maoz. Syntactic and semantic differencing for combinatorial

models of test designs. In Proceedings of the 39th International Conference on

Software Engineering, ICSE ’17, page 621–631. IEEE Press, 2017.

BIBLIOGRAPHY 97

[64] R. Tzoref-Brill and S. Maoz. Modify, enhance, select: Co-evolution of combinato-

rial models and test plans. In Proceedings of the 2018 26th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, ESEC/FSE 2018, page 235–245, New York, NY, USA, 2018.

Association for Computing Machinery.

[65] Z. Wang, B. Xu, L. Chen, and L. Xu. Adaptive interaction fault location based on

combinatorial testing. In 2010 10th International Conference on Quality Software,

pages 495–502, July 2010.

[66] H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman. A survey of constrained combina-

torial testing, 2019.

[67] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi. Greedy combinatorial

test case generation using unsatisfiable cores. In 2016 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 614–624, 2016.

[68] C. Yilmaz, M. B. Cohen, and A. A. Porter. Covering arrays for efficient fault char-

acterization in complex configuration spaces. IEEE Trans. Software Eng., 32(1):20–

34, 2006.

[69] Z. Zhang and J. Zhang. Characterizing failure-causing parameter interactions by

adaptive testing. In Proceedings of the 20th International Symposium on Software

Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, pages

331–341, 2011.

98 BIBLIOGRAPHY

