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ABSTRACT

Combinatorial interaction testing (CIT) is an efficient black-box software testing method
that can detect failures triggered by interactions of features or components in software
systems. Existing research has shown that most such interactions only involve a small
number of features or components; hence, it is sufficient to test all interactions among
two to six test parameters to reveal system faults. Covering arrays (CAs) are mathematical
structures designed to test all interactions among a fixed number (e.g., two or three) of
parameters. By avoiding testing all interactions with all parameters, CAs can significantly

reduce the testing cost.

However, it is not always possible to use CAs directly in practical testing. In most
cases, real-world systems have complex requirements and restrictions among their testing
space. To test software systems correctly, all test cases in a test suite must satisfy the
constraints imposed by these requirements and restrictions. To overcome this weakness,
constrained CAs (CCAs) which are CAs that only contain constraint-satisfying test cases,
have been used. Because some interactions may violate constraints as well, CCAs only

require testing all interactions that satisfy constraints.

Although CCAs are able to detect the existence of faulty interactions in systems with
constraints at low cost, CCAs cannot identify them from test outcomes. This is because
CCAs do not have a sufficient number of test cases to distinguish faulty from non-faulty

interactions.
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With the aim of not only detecting the existence of faulty interactions but also identi-
fying them, locating arrays (LAs) and detecting arrays (DAs) have previously been pro-
posed. LAs and DAs are mathematical structures that can also be used as test suites in
CIT. Although they are slightly larger than CAs, LAs and DAs can identify faulty inter-
actions from their test outcomes. In other words, both LAs and DAs preserve the benefit
of low testing cost from CAs while also being able to identify faulty interactions. Similar
to CAs, LAs and DAs do not take constraints into account. Thus, they cannot be used for

testing of systems with constraints.

This dissertation proposes the notions of constrained LAs (CLAs) and constrained
DAs (CDAs). These arrays are mathematical structures that can be used for fault identi-
fication in the presence of constraints. CLAs and CDAs extend LAs and DAs to testing
systems that have constraints on the test space. In short, CLAs and CDAs require that
all test cases must satisfy constraints. Thus, CLAs and CDAs enhance the applicabil-
ity of LAs and DAs to practical testing problems. In this dissertation, the mathematical

properties of CLAs and CDAs are investigated.

This dissertation also proposes two algorithms for constructing both CLAs and CDAs.
One algorithm is able to generate minimum CLAs and CDAs. It translates the problem
of generating arrays into the satisfiability problem for logical expressions. Using an off-
the-shelf satisfiability checker, the algorithm is able to generate CLAs and CDAs with
minimum sizes. In contrast, the other algorithm is a heuristic algorithm that can generate

minimum or near-minimum CLAs and CDAs in a short time.

Three experiments were conducted in the dissertation. The results of the first exper-
iment show that the satisfiability-based generation algorithm can always generate mini-
mum arrays given sufficient generation time. The results of the second experiment show
that the heuristic generation algorithm scales to problems of practical sizes. In the third

experiment, CLAs and CDAs were applied to two real-world applications. The experi-
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mental results show that faulty interactions were successfully identified using CLAs and
CDA:s.

Both CLAs and CDAs provide new choices to testers of software systems. The cost-
efficiency of CLAs and CDAs is appealing, especially for the testing of large-scale sys-

tems, such as highly configurable systems.
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CHAPTER 1

INTRODUCTION

1.1 Background

Software systems play a core role in society. With the wide spread of software system
usage, the dependability of software systems is a vital issue to address. Although many
methods have been proposed to ensure the correctness of software systems, software test-
ing is still a central method for guaranteeing that software systems execute as planned.
Software testing uses pre-defined input to examine software systems. By comparing the
output of the systems with expected results, the latent faults can be found and then cor-
rected. If one were able to enumerate all possible inputs and expected outputs of a system,
it would be not difficult to use them in a test plan. However, this strategy, often called
exhaustive testing, is usually impractical for most systems because its cost increases ex-
ponentially with the scale of the system, and the goal of software testing is to find more

faults with less cost.
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1.2 Combinatorial Interaction Testing

Combinatorial interaction testing (CIT) is an efficient testing strategy that aims to test
all interactions among a specified number of system parameters or system components.
By avoiding testing all interactions with all parameters, CIT test suites can significantly
reduce the cost of testing. The reasons for choosing CIT for testing are reported in
[34,35,37]. The research shows that it is sufficient to only test interactions involving
a small number of parameters to reveal most of the latent faults. Checking the interac-
tions among two to six parameters is generally sufficient to ensure that a system works
correctly. Unlike with exhaustive testing, the testing cost of CIT grows logarithmically
as the number of system parameters increases. Using CIT for software development can
reduce testing cost significantly. Surveys on CIT research can be found in, for exam-

ple, [9,22,46,66].

CIT is based on mathematical structures in the field of combinatorial designs. The
most typical class of mathematical structures used for CIT is t-way covering arrays (t-
CAs). In a t-CA, every interaction involving ¢ parameters appears in at least one test case;
thus, the use of a ¢-CA ensures that all £-way interactions are exercised. In other words,

all faults that are caused by ¢-way interactions will be detected by t-CAs.

There are many directions to expand the capability of CIT. One is to add fault lo-
calization capability to test suites. The (d, t)-locating arrays (LAs) and (d, t)-detecting
arrays (DAs) proposed in [10] represent test suites that can not only detect but also iden-
tify faulty interactions. The integers d and ¢ are predefined parameters, where d represents
the number of faulty interactions that can be identified and ¢ represents the number of pa-
rameters involved in the faulty interactions. LAs and DAs add this capability to CAs at
the cost of an increased number of test cases. One of the differences between (d, ¢)-LAs

and (d,t)-DAs appears when there are more than d faulty interactions. In such a case,
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(d,t)-LAs may incorrectly regard faulty interactions as non-faulty because of the lack of
test cases. However, (d, t)-DAs can indicate when the number of faulty interactions ex-
ceeds the ability of DAs for the same case and will never identify faulty interactions as
non-faulty. The other difference is that LAs usually have less test cases, i.e., lower testing
cost, than DAs when d and ¢ are the same.

Another direction for expanding CIT is to incorporate constraints. Real-world sys-
tems usually have constraints on the input space. These constraints originate from, for
example, user-defined requirements or running environment restrictions. To test systems
with constraints correctly, proper handling of the constraints is necessary. For example,
all test cases must satisfy the constraints.

In addition, constraints may make some interactions no longer testable. These invalid
interactions require additional handling. Constrained CAs (CCAs) are an extension of
CAs in which such constraints are incorporated. Many previous studies on CIT have

tackled the problem of generating CCAs of small sizes [38,40, 59].

1.3 Contribution of This Dissertation

The purpose of this dissertation is to extend the notion of LAs and DAs to widen their
applicability to practical testing problems. In this dissertation, constrained LAs (CLAs)
and constrained DAs (CDAs) are proposed. CLAs and CDAs are mathematical struc-
tures that can be used as test suites for identifying faulty interactions in the presence of
constraints. CLAs and CDAs retain the properties of LAs and DAs while enabling fault
identification for systems with constraints. CLAs have less testing cost when compared
to CDAs. However, CDAs can identify faulty interactions more accurately.

In addition to the presence of invalid interactions, constraints may cause some valid

interactions to become no longer identifiable. That is, constraints may make it impossi-
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ble to identify a non-faulty interaction or set of such interactions from faulty interactions;
hence, a special treatment is required to deal with such an inherently non-identifiable pair.
To address this problem, the concepts of distinguishability and masking are proposed. The
mathematical properties of the newly proposed structures, CLAs and CDAs, are investi-
gated. Also, two generation methods are proposed in this dissertation for both CLAs and
CDAs. One generation method can construct minimum arrays given sufficient time, while

the other can construct minimum or near-minimum arrays in a short time.

1.4 Overview of Dissertation

This dissertation is organized as follows:

Chapter 2 introduces basic notions in the field of CIT, including system models, test
cases, test suites, and interactions. Then, the definitions of existing mathematical struc-
tures, such as CAs, LAs, and DAs, are introduced. CCAs, the constrained version of CAs,
are then defined. Examples of these arrays are also presented in this chapter.

Chapter 3 introduces CLAs, the constrained version of LAs. To propose CLAs, the
notion of distinguishability, which is a relation that constraints may induce on interactions,
is clarified. Then, the definition of LAs is relaxed so that the newly defined CLAs can be
applied to systems with constraints. Examples of CLAs are presented in this chapter, and
the properties of CLAs are also discussed.

Chapter 4 introduces CDAs, the constrained version of DAs. The notion of masking,
which is caused by constraints, is clarified. Using this notion, CDAs are then defined.
The properties of CDAs are also discussed in this chapter.

Chapter 5 demonstrates how CLAs and CDAs can be used in fault identification pro-

CESSES.

Chapter 6 proposes generation methods for CLAs and CDAs. Two generation methods
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are designed for each type of array; one method aims to generate minimum arrays, and
the other generates minimum or near-minimum arrays in a short time.

Chapter 7 evaluates the fault identification capabilities of CLAs and CDAs and their
generation methods. An evaluation compares the two methods in terms of generation time
and generated array size. Then, an evaluation on generating arrays with different strengths
t of interactions is performed. Finally, the performance of fault identification using CLAs
and CDAs is examined in open source applications.

Chapter 8 summarizes related work, and Chapter 9 concludes this dissertation.
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CHAPTER 2

PRELIMINARIES

2.1 Basic Notions of CIT

2.1.1 System Under Test

A system under test (SUT) is modeled as a 3-tuple M = (F, S, ¢). F = {F}, Fy, ..., Fy}
is a set of parameters in the system, where k is the number of all parameters. & =
{S1,Ss, ..., Sk} is a set of domains for all the parameters in F, where .S; is the domain
for the parameter F;. Each domain .S; consists of two or more integers ranging from O to
|S:| — 1,ie.,.5; ={0,1,...,]S;| — 1}. Different integers in S, represent different values
for the parameter F;. ¢ : S; X Sy X - -+ X Sy, — {true, false} is a mapping representing
the system constraints. Parameters and their domains can be regarded as the input of a
program or as system configurations.

Table 2.1 shows a running example of a simple online shopping application SUT.
There is a set of 4 parameters that take 3, 2, 3, and 4 different values in the system.
The constraints in the SUT originate from real-world restrictions or requirements. This
example is taken from [25]. The SUT originally included only one constraint ¢;. The

constraint ¢, is newly added to the original example for demonstration purposes.
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Table 2.1: SUT: an online shopping mobile application [25]

F | Fy (Total Price) F5 (Shipping Address) Fj (Shipping Method) F); (Payment Method)
0: $50 0: Domestic 0: Same-Day Delivery 0: Visa
1: $500 1: International 1: 2-Day Delivery 1: Mastercard
S 2: $1000 - 2: 7-Day Delivery 2: Paypal
—_ - - 3: Gift Card
¢1 : Shipping Address = International = Shipping Method # Same-Day Delivery
0 ¢ : Payment = Gift Card = Shipping Address = Domestic A\ Shipping Method = Same-Day Delivery

2.1.2 Test Cases, Test Suites, and Interactions

A test case is an element of S7 x Sy X - - X S; that is, a test case is a k-tuple (01, ..., 04, ..., 0%)

such that o; € S;. A test suite is a set of test cases. A test suite is regarded as an N X k
array, where each row represents a test case and there are N test cases. The size of a test
suite (i.e., array) is the number of test cases (rows) in it. Hereinafter, the terms test suite
and array are used interchangeably.

An interaction is a set of parameter-value pairs such that no parameters are over-
lapped. The strength of an interaction is the number of parameter-value pairs in the
interaction. That is, {(F},,01),...,(F};,,0.)} is an interaction of strength ¢ if and only
if (iff) F;, # F;, for any i;,4 (i; # i) and 0; € S;; for all i; € {41,...,4;}. In this
dissertation, A is used instead of () to denote the interaction of strength 0, i.e., the empty
set. An interaction is called ¢-way iff its strength is ¢. An interaction 7 covers another
interaction 75 iff 75 C T7. A set of interactions 7 are independent iff Ty € 'T5 for any
1,1, € T,Ty #Ts.

A test case is said to cover an interaction iff the value of every parameter involved in

the interaction matches between the test case and interaction. Formally, o = (o1,...,0;, ...

covers an interaction 1" = {(Fy,,01),...,(F;,,01)} iff 05, = o’ forall j € {i1,...,i:}.

Given a test suite A and interaction 7', the set of rows (i.e., test cases) that cover T is
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{(F2,1), (F3,0)F {(F2, 1), (Fu, 3)}
{(F5,2), (Fa,3)F {(F5, 1), (F1,3)}

Figure 2.1: Invalid 2-way interactions in the running example

{(F1,0), (F2, 00} {(F1,1), (F3,2)} {(F1,0), (F4,3)}
{(£2,0), (£3,0)}  {(F2,1), (F3,2)}  {(F2,0), (Fi,3)}
. (49 1in total)

Figure 2.2: Valid 2-way interactions in the running example

signified as p4 (7). Moreover, ps(T) = Uper pa(T) represents the covering test case
set of an interaction set 7. In other words, p4(7) is the set of rows that cover at least one
interaction in 7. Note that p4(0) = @ and pa(L) = A.

A test case o is valid iff it satisfies the constraint ¢, i.e., ¢(o) = true; otherwise, it is
invalid. The set of all valid test cases is denoted as R (C S; x Sy X - -+ x Sg). Hence, R
is referred to as the exhaustive test suite consisting of all valid test cases.

The valid/invalid distinction also applies to interactions. Interactions covered by at
least one valid test case are valid; the other interactions, i.e., those that no valid test
cases can cover, are invalid. Symbols Z; and VZ, denote the sets of all {-way interactions
and all valid t-way interactions, respectively. Similarly, this dissertation uses Z; and VI,
to denote the sets of all interactions and of all valid interactions of strength at most ¢,
respectively.

There are 53 2-way interactions in the running example, in which 4 interactions are
invalid and 49 are valid. All invalid 2-way interactions in the running example are listed
in Figure 2.1. Some valid 2-way interactions are shown in Figure 2.2.

A valid interaction is either faulty or non-faulty. The outcome of execution of a valid

test case is either PASS or FAIL. The outcome is FAIL iff the test case covers one or more
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faulty interactions; the outcome is PASS otherwise. The outcome of a test case execution
is deterministic. This assumes that if a test case in the model represents a high-level test
plan, the actual test cases, which are not modeled, are fixed and do not alter the outcome
under the test plan. The outcome of a test suite is the collection of outcomes of all rows
in it. In the running example, there are 3 x 2 x 3 x 4 = 72 test cases in total, of which 48

are valid. In other words,

R| = 48 for the SUT.

2.2 Test Suites in CIT

The mathematical structures of covering arrays (CAs), locating arrays (LAs), and detect-
ing arrays (DAs), are prevalently used as test suites in CIT. The three types of arrays are
designed to test an SUT without constraints (¢ = true or ¢ = (), and they have different
testing purposes. CAs contain less test cases than ordinary test suites (i.e., exhaustive
test suites, LAs, DAs, etc.), so they can detect the existence of faults with very little cost.
LAs and DAs, however, can not only detect faults but also identify faulty interactions by

means of test outcomes.

2.2.1 Covering Arrays, Locating Arrays, and Detecting Arrays

A CA has a parameter ¢ that indicates the strength of interactions to be tested. A t-way

CA (t-CA) can be formally defined as follows:
t-CA VT €Z: pa(T) #0

This condition requires that all ¢-way interactions 7" in Z; will be tested by at least one
row in the array. In other words, all ¢-way faulty interactions, if they exist, can be revealed
by a t-CA. The definition of a ¢-CA also implies that all interactions of strength no larger
than ¢, i.e., t-way interactions, are covered by at least one test case. That is, a t-CA is also

a (t —1)-CA when t > 0. Thus, a t-CA can also be defined as follows:
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t-CA VT €T, :pa(T) #0

The test cost of t-CAs is much less than that of exhaustive test suites because t-CAs
do not need to cover all interactions that have strengths larger than ¢t. However, CAs
cannot locate or identify faulty interactions correctly. Because ¢-CAs require that all ¢-
way interactions appear in some test cases, two or more t-way interactions may only
appear in the same set of test cases. That is, if some non-faulty interactions only appear in
the set of failed test cases, it is impossible to distinguish the non-faulty interactions from

the faulty ones using the test outcome.

Meanwhile, LAs and DAs can be used to not only detect the existence of faulty in-
teractions but also identify them. LAs and DAs were first proposed by Colbourn and
McClary in [10]. They introduced a total of six types for both LAs and DAs according
to fault identification capability. Two types of them exist only in extreme cases. The re-
maining four types, namely, (d,t)-, (d,t)-, (d,%)-, (d,)-LAs (and DAs), are as follows

d>0,0<t<k):

(d,t)-LA  VT;,T5 C I, such that |T;| = |T3| = d :
pa(Ti) = pa(Tz) & T =T
(d,t)-LA  VYTi,Ta CT;suchthat 0 < |T7| < d,0 < |To| < d:

pa(Ti) = pa(T2) & T =T

(d,t)-LA V71, T2 C 7, such that | T;| = |T3| = d and T1, T, are independent :
pa(Th) =pa(Ta) & Th =T,
(d,t)-LA VT, T C Z; such that 0 < |T1| < d,0 < |T3| < d and Ty, T, are independent :

pa(T) = pa(T2) & Ti =Tz
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(d,t)-DA VT CZ,suchthat |T|=d,VT €Z; :
pa(T) Cpa(T) = TeT
(d,t)-DA VT CZ;suchthat 0 < |T| < d,VT €T, :

paA(T) Cpa(T) =TT

(d,)-DA VT C Z; suchthat |T| = d,VT € Z, and T U {T'} is independent :
pa(T) S pa(T) =TT
(d,t)-DA VT CZ;suchthat 0 < |T| < d,VT € Z, and T U {T} is independent :

pa(T) S pa(T) =T eT

The parameter d of these arrays represents the number of faulty interactions that the
arrays can correctly identify, while ¢ represents the strength of the target interactions.
Writing d or 7 in place of d or ¢ means that the arrays permit at most of d faulty in-
teractions or strength at most ¢. For instance, a (1,2)-LA or DA can locate one 2-way
faulty interaction, while a (2, 5)-LA or DA can locate at most two faulty interactions with
strength no greater than five. When dealing with Z,, it is required that 77, 75, or 7 U {T'}
be independent because if there are 77,75 € T, such that T} C T, whether T is faulty or
not cannot be determined when 77 is faulty.

The properties of LAs and DAs and the relations among different types of arrays are

elaborated on in [10].

2.2.2 Examples of CAs, LAs, and DAs

Examples of CAs, LAs, and DAs are shown in Tables 2.3 and 2.4. Note that there may be
different ¢t-CAs of the same sizes (even if all of them are optimal for the given SUT). This

also applies to LAs and DAs.
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(a) 2-CA

F F, F F
o, |0 0 0 0
o, | 0 0 2 2
o5/ 0 1 0 3
o, |0 1 1 1
os |1 0 0 1
o | 1 0 2 3
o |1 1 0 2
os |1 1 1 0
oo |2 0 0 3
oowl2 0 1 2
onl2 0 2 0
ol 2 1 1 3
ol 2 1 2 1

(b) 3-CA

N F Fy Fy
o |0 0 0 O
o, |0 0 0 2
o3 |0 0 0 3
o, |0 0 1 1
o; |0 0 2 0
o |0 0 2 2
or |0 0 2 3
og |0 1 0 1
oy | 0 1 1 0
op| 0 1 1 2
o | 0 1 1 3
oo | 0 1 2 1
o3| 1 0 0 1
oyu| 1 0 1 0
o;| 1 0 1 2
og| 1 0 1 3
o7 1 0 2 1
o | 1 1 0O 0
o | 1 1 0 2
oy | 1 1 0 3
on| 1 1 1 1
o9 | 1 1 2 0
o3 | 1 1 2 2
oy|l 1 2 3
o2 0 0 O
ox|2 0 0 2
oxn|2 0 0 3
o |2 0 1 1
oxn|2 0 2 0
oxp|2 0 2 3
on |2 1 0 1
opl2 1 1 0
o |2 1 1 2
ou |2 1 1 3
o2 1 2 1
ox |2 1 2 2

Figure 2.3: CAs for the running example (constraints ignored)
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(a) (1,2)-LA (b) (1,2)-DA

o Fy, F3 Fy L F, F5 Fy

oo | 0 0 0 O cp |0 0 0 O
o, | 0O 0 1 1 o, | 0 0 0 2
o3 | 0 0 1 2 o3 | 0 0 1 1
o, |0 1 0 3 o, |0 0 2 3
o; | 0 1 2 0 o; |0 1 0 1
os | 0O 1 2 2 os | 0O 1 1 3
o | 1 0 0 1 oc; |0 1 2 0
os | 1 0 1 O os | 0 1 2 2
o9 | 1 0 2 1 oy |1 0 0 1
o | 1 1 0 O oy | 1 0 1 3
o1 | 1 1 0 2 o1 0 2 0
oo | 1 1 1 1 oLl 1 0 2 2
o3| 1 1 2 3 o3| 1 1 0 3
oyl 2 0 0 2 o | 1 1 1 0
o2 0 0 3 os| 1 1 1 2
os| 2 0 1 1 og| 1 1 2 1
o7 2 0 2 3 o2 0 0 3
os| 2 1 0 O osg| 2 0 1 0
opw| 2 1 1 3 opl| 2 0 1 2
oyxn| 2 0 2 1

oo | 2 1 0O O

oxn| 2 1 0 2

o3| 2 1 1 1

oyl 2 1 2 3

Figure 2.4: An LA and DA for the running example (constraints ignored)
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2.2.3 Constrained Covering Arrays

The arrays introduced above are designed to test SUTs without constraints. However,
real-world systems usually have complicated constraints among parameters. Hence, the
constraint handling technique must be considered.

Constrained CAs (CCAs) are the constrained version of CAs. CCAs are the most
common form of test suites used in CIT. Most test generation tools for CIT are in effect

generators of CCAs.

Definition 1 (CCA). An array A that consists of valid test cases is a t-CCA iff the follow-
ing condition holds:

t-CCA VT € VI, : pa(T) #0

The definition of CCAs requires that all valid t-way interactions be covered by at
least one test case in the test suite. This condition implies that every valid interaction of
strength smaller than ¢ is also covered by at least one test case. That is, a t-CCA is also a

(t — 1)-CCA when t > 0. Thus, a t-CCA can also be defined as follows:
t-CCA VT € VZ;: pa(T) # 0

Figure 2.5a shows a 2-CCA for the running example. It can be observed that none
of the invalid interactions, such as {(F5, 1), (F5,0)} and {(F2, 1), (Fy, 3)}, appear in any

rows in Figure 2.5a.
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(a) 2-CCA (b) 3-CCA

o F, F3 Fj BB OF B
o |0 0 0 0

o, | 0 0 0 O
oy |0 0 0 1
oo | 0O 0 O 3 o310 0 0 2
o3 | 0 1 1 1 o, )0 0 0 3
o5 | 0 0 1 1

o, | 0O 1 2 2
os| 0 0 2 0
o |1 0 0 2 o0 1 1 0
os | 1 0 0 3 os |0 1 1 2
o, |0 1 2 0

o; | 1 0 2 1
ow| 0 1 2 1
os |1 1 1 0 o |0 1 2 2
oy | 2 0 0 1 o1 0 0 0
o3| 1 0 0 1

ool 2 0 0 3
o | 1 0o 0 2
o1 2 0 1 2 o5l 1 0 0 3
o2 1 2 0 os| 1 0 1 0
oz |1 0 2 2
os| 1 1 1 1
ow| 1 1 1 2
on| 1 1 2 0
on| 1 1 2 1
0|2 0 0 0
ox| 2 0 O 1
oyl 2 0 0 2
o2 0 0 3
oyx| 2 0 1 0
on |2 0 1 2
o | 2 0 2 1
on| 2 1 1 0
o2 1 1 1
o512 1 2 0
op |2 1 2 2

Figure 2.5: A 2-CCA and 3-CCA for the running example
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CHAPTER 3

CONSTRAINED LOCATING ARRAYS

Incorporating constraints into LAs is not as straightforward as for CAs. In addition to
the existence of invalid interactions, constraints may cause some valid interactions to be
no longer identifiable from others. This fact consequently makes the definition of LAs
no longer valid for SUTs with constraints. To solve such a problem, the non-identifiable
interactions should be clarified first. Then, the definition of LAs must be relaxed so that

the constrained versions of LAs can be applied to SUTs with constraints.

3.1 Definitions

LAs identify faulty interactions with test outcomes. In an LA, a set of interactions is
uniquely mapped to a set of test cases. Hence, when a test suite is executed, a set of faulty
interactions can be uniquely identified according to the failed test cases. However, with
the existence of constraints, a set of interactions may be restricted to appear in the same
set of test cases, which is mapped to another set of interactions. Consequently, LAs cannot
be applied to the SUT. In the running example, the case can be illustrated as follows.
Constraint ¢, in Table 2.1 enforces every test case that has the parameter-value pair

(Fy, 3) to always contain the parameter-value pairs of (F5,0) and (F3,0). Then, the set of
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the single interaction 7, = {{(F2,0), (Fy,3)}} will always have the same covering test
cases as another set of the single interaction 7, = {{(F3,0), (F4,3)}}. The definition of

(1,2) (or (1,2), (1,2), and (1, 2))-LAs cannot be held for the running example.

The relation between two such sets of interactions is called indistinguishability. The

formal definition is as follows.

Definition 2. A pair of sets of valid interactions, T, and Ty, are distinguishable iff

pr(Ta) # pr(Ts).

If T, and T, are distinguishable, it is denoted as T, + Ty, otherwise, it is denoted as

Ta ~ T

Note that even if no constraints exist, there can be some indistinguishable pairs of in-
teraction sets. In the running example, the two interaction sets 7. = {{(F1,0)}, {(F1, 1)}, {(F1,2)}}
and Ty = {{(F3,0)},{(F3,1)},{(F5,2)}} are indistinguishable even if the constraints
are omitted because the covering test sets for both interaction sets are R. If two sets of
interactions are indistinguishable, there is no other method to distinguish them from each

other according to test outcomes.
Based on the definition of distinguishable interaction sets, (d, t)-, (d,t)-, (d,?)-, and

(d,?)-CLAs, the constrained versions of the corresponding LAs, can be defined as fol-

lows.

Definition 3. Letd > 0 and 0 < t < k. Let VI, be the set of all valid t-way interactions
and VI, be the set of all valid interactions of strength at most t. An array A that consists

of valid test cases or no rows is a (d, t)-, (d,t)-, (d,t)- or (d,)-CLA iff the corresponding
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condition below holds:
(d,t)-CLA  VTi, T2 C VI, suchthat |Ti| = |To| = d :
Ti # Tz = pa(Th) # pa(T2)
(d,t)-CLA YT, T2 C VI, suchthat 0 < |T1|,|T2| < d:
T Tz pa(Th) # pa(Ta)
(d,t)-CLA VT, Ts C VI; such that |T,| = |Tz| = d and T;, T, are independent
Tv # Tz = pa(Th) # pa(T2)

(d,)-CLA VT, Ta € VI, such that 0 < |Ti|, |T2| < d and Ty, T are independent

T Ta & pa(Th) # pa(Ta)

(in extreme cases where no two such interaction sets Ty, T exist, any A is a CLA)

The intuition of the definition is that if the SUT has a set of d (or < d) faulty inter-
actions, then the test outcome obtained by executing all test cases in A will be different
from the one that would be obtained if the SUT had a different set of d (or < d) faulty

interactions, unless the two interaction sets are not distinguishable.

3.2 Examples

Examples of a (1,1)- and (2, 1)-CLA for the running example are shown in Table 3.1.
Table 3.2 shows a (1,2)-CLA for the running example. Given an SUT, the minimum CLA
and minimum LA for the SUT (constraints ignored) may be different in size even when d

and ¢ are the same; constraints may cause the sizes of CLAs to increase or decrease.

3.3 Properties of CLAs

Observation 1. A (d,1)-CLA is a (d,t)- and (d,)-CLA. A (d,t)-CLA and (d,t)-CLA

are both a (d,t)-CLA. A (d,T)-CLA and (d,t)-CLA are a (d — 1,1)-CLA and (d — 1,t)-
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(a) (1,1)-CLA (b) (2,T)-CLA

o F, F3 F L F, F3 Fy
oo/ 0 0 0 3 o,/ 0 0 0 O
o, | 0 1 2 1 o, | 0 0 1 2
o3| 1 0 0 2 o3/ 0 0 2 1
o, | 1 0 1 1 o, |1 1 1 0
o 2 0 0 1 o512 0 0 3
o | 2 1 1 0 og| 2 1 2 2

Figure 3.1: A (1,1)-CLA and (2, 1)-CLA for the running example

CLA, respectively. A (d,)-CLA and (d,t)-CLA are a (d,t — 1)-CLA and (d,t — 1)-CLA,

respectively.

Observation 2. Suppose that the SUT has no constraints, i.e., ¢(a) = true for all o €
Vi x ... %XV}, and that an LA A exists. Then, 1) A is a CLA with the same parameters,
and 2) any CLA with the same parameters as A is an LA (which is possibly different from

A) with the same parameters.

Lemma 1. A pair of sets of valid interactions, T, and T, are distinguishable iff there is
a valid test case that covers some interaction in T, or Ts but no interactions in T or Ty,
respectively, i.e., for some valid test casec € R, (3T € T, : T Co)ANNT € T2 : T Z o)
or(3T €T TCao)NNT €T, :T Z o).

Proof. (If part) Suppose that there is such a valid test case a. Consider an array A that
contains . Then, either 0 € ps(Ti) Ao & pa(Tz) ora & pa(Ti) Ao € pa(Tz);
thus, pa(71) # pa(72). (Only if part) Suppose that there is no such valid test case, i.e.,
for every valid testcase o, (VI' € T, : T' € o)V (3T € T3 : T C o) and (VI €

To : T £ o)V (3T € T : T C o). This means that for every valid test case o,
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o Fy, Fs Fy

op |0 0 0 O
o, | 0 0 0 3
o3 | 0 0 1 1
o, |0 1 1 2
os | 0 1 2 0
os | 1 0 0 2
o |1 0 0 3
os | 1 0 1 2

oo |1 1 1 1

019 1 1 2 0

012 2 0
013 2 0 0 3
014 2 0

015 2 1 1

N O O

016 2 1 1

(o e 2 1 2 1

Figure 3.2: A (1,2)-CLA for the running example
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VIeTh : TZo)ANNT €To:TZo)or (T €T, T Co)vV(E@T €Ty:T Co).
Hence, for any test case o in A, 0 & pa(Ti) Ao & pa(Tz2) oro € pa(Ti) Ao € pa(T2).
As aresult, for any A, ps(T1) = pa(Tz). O

Theorem 2. If A is an array consisting of all valid test cases, then A is a CLA with any

parameters.

Proof. Let T, and 75 be any interaction sets that are distinguishable. By Lemma 1, a valid
test case o exists suchthat (37 € 71 : T Co)ANNVT' € Ta: T L o)or (IT € To: T C
o) N(VT' € Ty : T Z o). Because A contains this test case and by the same argument of

the proof of the if-part of Lemma 1, pA(7;) # pa(72). O

Theorem 3. Let t be an integer suchthat0 <t < k. Ifan N X k array Aisa (t+1)-CCA,

then Ais also a (1,t)-CLA.

Proof. Recall that an array A is a (1,%)-CLA iff p(T7) # pa(T2) forall 71,7 C VI,
such that 0 < |77] < 1,0 < |73] < 1, and 7; and 73 are distinguishable (see Definition 2;
note that 7; and 75 are independent because they contain at most one interaction).

Now suppose that an N x k array A is a (f + 1)-CCA such that 0 < ¢ < k. If
|7T1| = |T2| = 0, then 71 = 75 = (), and thus they are not distinguishable. If |7;| = 1
and |T3| = 0, then pA(T1) # () because A is a (t + 1)-CCA, and thus any T € VI, is
covered by some row in A. Because p4(0) = 0, pa(T1) # pa(T2) = 0 holds for any 71,
T, € VT, if |Ti| = 1 and |T5| = 0. The same argument clearly holds if | 7;| = 0 and
Tl = 1.

For the remainder of the proof, the case in which |7;| = 1 and |T3| = 1 is con-
sidered. This proof will show that pa(7,) # pa(Ty) (.e., pa({1a}) # pa({Ip}))
always holds for any T,,T, € VZ, if {T,} and {T,} are distinguishable. Let T, =

{(Fal,ual),. PN (Fal,ual)} and Tb = {(Fbl,vb1)7. PN (Fbm,vbm)} (O S l,m S t). AlSO,
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let F

={F,,....F,}N{Fy,,...,F,}, ie, F is the set of factors that are involved in

both interactions. There are two cases to consider:

)

)

For some F; € F,u; # v;. That is, the two interactions have different values on
some factor F;. In this case, T, and 7} never occur in the same test case. Because

Aisa (t+ 1)-CCA, pa(T,) # 0 and pA(T,) # 0. Hence, pa(T,) # pa(Ty).

F = () or for all F; € F,u; = v;. That is, the two interactions have no common
factors or have the same value for every factor in common. Because {7} and {7} }
are distinguishable, there must be at least one valid test case o in R that covers
either 7;, or T}, but not both. Suppose that o covers 7, but does not cover 7;. In
this case, there is a factor F; € {F},,..., [}, }\F such that the value on F; of
o, denoted by wj, is different from v; because otherwise, 7, would be covered by
o. Now, consider an (I + 1)-way interaction 7, = T, U {(F}, w;)}. Because the
valid test case o covers 1, 1" is a (I + 1)-way valid interaction. Because A is a
(t4+1)-CCAand [+ 1 < t+1, A contains at least one row that covers 7. This row
covers 1, but does not cover 7} because the value on F} is w; and w; # v,. Hence,
pa(Ty) # pa(Ty). The same argument applies to the case in which o covers T}, but

not T,

As aresult, pa(T;) # pa(T2) holds for any 77, 7o € VT, if |T1| = |T2| = 1, and they are

distinguishable. O

Lemma 4. Suppose that an N x k array Ais a (1,t)-CLA such that 1 <t < k. Then, A

is a t-CCA.

Proof. Because A is a (1,t)-CLA, pa(T1) # pa(Tz) for any 71, T2(# Ti) € VI, such

that |71|,|7s] < 1. Hence, if 71 = () and 75 = {T'} for any T € VZ,, then p4(T;) =
pa(0) =0 # pa(T2) = pa(T). 0
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Theorem 5. If an N x k array A is a (1,t)-CLA such that 1 < t < k, then Ais a

(1,7)-CLA.

Proof. Suppose that A is a (1,¢)-CLA such that 1 < ¢t < k. By Lemma 4, A is a t-CCA;
thus, by Theorem 3, it is a (1, — 1)-CLA. Recall that A is a (1,7)-CLA iff p4(71) #
pA(Tz) for all T, T; € VI, such that 7; and 7; are distinguishable and 0 < |T7|,| 73| < 1
(note that 77 and 7 are trivially independent). If | 71| = | 73| = 0, then 77 and 75 are both
() and thus indistinguishable. If |7;| = 0 and |T;| = 1, then T, = {T'} for some T € VI,.
Because A is a t-CCA, po({T}) # 0 for any T € VZ,. Therefore, pa(Ti) # pa(T2).
Clearly, this argument holds when |71 = 1 and |75| = 0.

In the following part, the proof assumes that |7;| = |73| = 1. Let T, = {1, } and T3 =
{T,}, where T,, T}, € VI,. Without loss of generality, the proof assumes that the strength
of T, is at most equal to that of T}, i.e., 0 < |T,,| < |Tp| < t. If 0 < |T,| < |Tp| < t—1and
{T,} and {T,} are distinguishable, then p(7;) # pa(Tz) because Aisa (1, — 1)-CLA.
If |T,| = |T,| = t and {7}, } and {7} } are distinguishable, then p4(7;) # pa(7z) because
Aisa(1,t)-CLA.

Now consider the remaining case where 0 < |T,| < |T,| = t. Assume that {7}
and {7} } are distinguishable. Below shows that p4(7;) # pa(73) under this assumption.
Because of the assumption, at least one of the following two cases holds. Case 1: for
someo € R, T, Coand T, € o. Case 2: forsome o € R, T, Z o and T}, C 0.

Let T, = {(Fuay Uay),- -, (Faystug)} and T, = {(Fpy, 0p), -+, (Epy,00,)} (0 < 1 <
t—1). Also, let F' = {F,,,..., F,} N{Fy,,..., F},}, i.e, F is the set of factors that are
involved in both interactions.

Case 1: Let o4 be any test case in R such that T, C o; and T}, € o1. Choose a factor
Fy,, 1 <1 < t, such that the value on [}, in o is different from v;,. Such a factor must

always exist because otherwise, 7, C o;. Let w, denote the value on F;, in 0. Then,

the interaction 7' = T}, U {(Fy,, ws,)} is covered by o (T’ C o) and thus is valid. The
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strength of T is [ (if F,, € F, in which case up, = wy,) or | + 1 (if F}, ¢ F). For any test
casec R, T Co = T, < o holds because wy, # vp,. Because A is a t-CCA and the
strength of T is at most t, A has a row that covers T'. This row covers T, but not Ty; thus,
pa(Th) # pa(Tz).

Case 2: Let o be any test case in R such that T, Z o5 and T, C 3. Also, let T
be any ¢-way interaction such that 7' = T, U {(Fb s veg, )s oo (B, s 0, )} for some
Fo oo By, ¢ F. In other words, T is a t-way interaction that is obtained by extending
T, with some ¢t — [ factor-value pairs in 7.

If T is valid, then {7} and {T;} are distinguishable because T, C o5 and T' Z o
(because T, o5 and T, C T)). Ais a (1,t)-CLA; thus, A must have a row r that covers
either T or Ty, i.e., T Cr AT, Z r or T Cr AT, Cr. TCrAT, ¢ r directly implies
T, Cr ATy L r,while T Z v ATy, C v implies T\T,  r, which means 7, Z r. Hence,
pa(Th) # pa(T2).

If T is not valid, then it can be shown that 7, and T}, never appear simultaneously in
any test case o € R as follows. If there is some test case o in R in which 7}, and T,
are both covered, then T is also covered by some test cases (including o ) in R, i.e., T is
valid. The contraposition of this argument is that if 7" is invalid, then there is no test case

in R that covers T, and T;,. Because A is a t-CCA and T,,, T, € VI, pa(T,) # () and
pa(Ty) # 0. Hence, pa(Tr) # pa(T2). O
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CHAPTER 4

CONSTRAINED DETECTING ARRAYS

Similar to LAs, applying the constraint handling technique to DAs is not direct. In ad-
dition to the existence of invalid interactions, the conditions required by the definition
of DAs cannot always be satisfied because of constraints. In this chapter, this problem
is explained. Then, the dissertation proposes CDAs as the constrained version of DAs.

Finally, some examples of CDAs and proofs on properties of CDAs follow.

4.1 Definitions

Based on the definition of DAs, faulty interactions are identified with patterns of failed
and passed test cases. This holds because of the requirements in the definition of DAs,
i.e., pa(T) C pa(T) & T € T (where T and T are a t- or t-way interaction and a set of
t- or t-way interactions, respectively and A is an array). In other words, if an interaction T’
is not included in an interaction set 7, then the covering test set of the interaction 7" must
not be a subset of the covering test set of the interaction set 7. Thus, different interaction
sets are mapped to different sets of test cases in a strict manner. However, such mapping
cannot be guaranteed if constraints exist.

This problem can be described using the running example in Table 2.1. Let 7 =
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{11} = {{(F2,0), (Fy,0)}} be the set of one 2-way interaction and 75 = {(F3,0), (Fy,0)}
be a 2-way interaction. Because of the constraint ¢, every valid test case that covers 75
also covers 77, but there exist valid test cases that cover 77 but not 75. In other words,
pa(T3) is a subset of pa(T) = {pa(11)} as long as the array A contains only valid test

cases. Therefore, the definition of DAs no longer holds in the SUT.

Moreover, assume that 77 is the faulty interaction; then, all test cases in p4(7) will
fail. That is, all test cases in p4(7%) will fail. In this case, a tester can determine that 7 is
the faulty interaction, while they cannot determine whether 75 is also faulty. The relation

between an interaction set and an interaction above is called masking in this dissertation.

Definition 4. A set T of valid interactions masks a valid interaction T iff T ¢ T and

Vo eR:TCo=3T"eT:T Co).

If T masks T, it is denoted as T > T; otherwise, it is denoted as T # T. By definition,

THATif T €T or

dJoeR:TCoANNT' €T :T o).

Based on the definition of masking, (d,t)-, (d,t)-, (d,%)-, and (d, )-CDAs, the con-

strained versions of the corresponding DAs, are defined as follows.

Definition 5. Let d > 0 and 0 < t < k. An array A that consists of valid test cases or no

rows is a (d,t)-, (d,t)-, (d,%)- or (d,t)-CDA iff the corresponding condition shown below
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holds:

(d,t)-CDA  NT C VI, suchthat |T| = d,NT € VI, :
T#T=(TeT < paT) CpalT))

(d,t)-CDA YT C VI, suchthat 0 < |T| < d,VT € VI, :
TH#T=(TeT < pa(l) S pa(T))

(d,t)-CDA YT C VI, suchthat |T| = d,VYT € VI, and T U {TY} is independent :
TH+T=(TeT < pa(T) C pa(T))

(d,1)-CDA VYT C VI; suchthat 0 < |T| < d,VT € VI, and T U {TY} is independent :

TH#T = (TeT < palT) C pa(T))
4.2 Examples

Examples of a (1,1)- and (2,1)-CDA for the running example are shown in Table 4.1.
Table 4.2 shows a (1,2)-CDA for the running example. Given an SUT, the minimum
CDA and the minimum DA for the SUT (constraints ignored) with the same d and ¢ may
have different sizes. Depending on constraints, the minimum sizes of CDAs may be larger

or smaller than those of DAs.

4.3 Properties of CDAs

Observation 3. A (d,1)-CDA is a (d,t)-CDA and (d,t)-CDA. A (d,t)-CDA and (d,?)-
CDA are both a (d,t)-CDA. When d > 0, a (d,t)-CDA and (d,t)-CDA are a (d — 1,7)-
CDA and (d — 1,t)-CDA, respectively. When t > 0, a (d,1)-CDA and (d,t)-CDA are a

(d,t —1)-CDA and (d,t — 1)-CDA, respectively.

Observation 4. Suppose that the SUT has no constraints, i.e., (o) = true for all o €

R =VixVyx---xVi, and that a (d,t)-DA A exists. Then, A is a (d,t)-CDA. This also
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(b) (2,1)-CDA

(a) (1,T)-CDA

F, F, F; F,
o1/ 0 0 0 0
oy 0 1 2 1
o5/ 1 0 0 3
o, 1 0 1 1
os| 1 1 1 2
os| 2 0 0 3
or| 2 0 2 2
os| 2 1 1 0

F, F F3 Fy
oo |0 0 0 O
o, | 0O 0 O 3
o3 | 0 0 2 1
o, |0 1 1 2
o | 0 1 2 0
os | 1 0 1 1
o |1 0 0 1
os | 1 0 0 2
oo | 1 0 0 3
ool 1 1 1 O
o | 1 1 2 1
o2 2 0 0 3
o3| 2 0 1 2
ou| 2 0 2 0
o5 2 1 1 1
o | 2 1 2 2

Figure 4.1: A (1,1)-CDA and (2, 1)-CDA for the running example
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F, F F3 Fy
o, |0 0 0 O
o, | 0 0 0 1
o3 | 0 0 O 3
o, |0 0 1 1
o | 0 0 2 2
os | O 1 1 2
o |0 1 2 0
os | 0 1 2 1
o9 | 1 0 2
oy | 1 0 3

012 1
013 1 1 1 1

014 1 1 2 0

o | 1 1 2 2
og| 2 0 0 O
o7 2 0 0 1
og| 2 0 0 2
ool 2 0 0 3
oyl 2 0 1 2
oy | 2 0 2 O
oxn| 2 1 1 0

0923 2 1 1 1

094 2 1 2 2

Figure 4.2: A (1,2)-CDA for the running example
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applies when d or t is replaced with d or T, respectively.
Theorem 6. For d < 7, a (d,t)-CDA is equivalent to a (d,t)-CDA.

Proof. Trivially, a (0,t)-CDAisa (0,¢)-CDA. Let Abe a (d, t)-CDA such that 1 < d < 7
and ¢ > 0. The following will show that A is a (d — 1,¢)-CDA. Let 7 and T be a set of
d — 1 valid interactions of strength ¢ and a t-way valid interaction, respectively. If 7 > T
orT €T, ,thenT #T = (T €T < pa(T) C pa(T)) holds trivially. The remainder of
the proof considers the case where 7" ¢ T and 7 i T'. In this case, there is some 0 € R
such that 7' C o and 0 & pr(T). Because |T U {T}| < 7, R — pr(T U {T}) is not
empty. Let 77 be any ¢t-way interaction that appears in a test case in R — pr (7 U {T'})
and has exactly the same ¢ parameters as 7". Note that 7" and 7" cannot appear in any
test case simultaneously. Let 7/ = T U {T"}. T’ T because T' C o, 0 & pr(T),
and 0 & pr(T"). Because A is a (d,t)-CDA and 7' # T, pa(T) € pa(T'). Hence,
pa(T) & pa(T), which means that 7 # T = (T € T < pa(T) C pa(T)). By

induction, A is a (d’,t)-CDA for any 0 < d’ < d, and thus is a (3, t)-CDA. O

Theorem 7. For d =t = O ord < 7, andt > 0, a (d,t)-CDA is equivalent to a

(d, )-CDA.

Proof. Trivially, (0,7)-CDA is a (0,7)-CDA. Let Abe a (d,#)-CDA such that 1 < d < 7
and t > 0. Below, the proof will show that A is a (d — 1,7)-CDA. Let T C VI, such that
T is independent and |7| = d — 1. Let T be a valid interaction of strength at most ¢. If
T>=TorTeT,thenT #T = (T €T < pa(T) C pa(T)) holds trivially.

Consider the remaining case where 7 % T and T' ¢ 7. In this case, there is some
o€ Rsuchthat T C o and o & pr(T).

Case |T'| > 0: Because |7 U {T'}| = d < 7 and every interaction in 7 U {7'} has
strength at least one, R — pr(7 U {T'}) is not empty. Let 7" be an interaction of strength

t that appears in a test case in R — pr (7 U {T'}) and has a different value on at least one
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parameter from 7". Let 7' = 7 U {T"}. T is independent because 7 is independent, and
T ¢ T’ forany T' € T. Note thatif T C 7", T would occur in the test case with 7”. Also,
T' % Tbecause T C 0,0 & pr(T),and 0 € pr(T"). Because A is a (d,t)-CDA, T is
independent, and 7" 3 T, pa(T) € pa(T') holds. Hence, paA(T) Z pa(T).

Case T = A (i.e., |T| = 0): As A ¢ T,every interaction in 7 has strength at least one.
Because |7| =d—1 < 11, R — pr(T) is not empty. Let 7" be any ¢-way interaction that
appears in a test case in R — pr (7). Let 7" = T U {T"}. Because of the same argument
as in the case |T'| > 0, 7" is independent and 7" »* T, and thus p4(7T") € pa(T"). Hence,
pa(T) € pa(T).

Asaresult, T # T = (T € T < pa(T) C pa(T)). By induction, Ais a (d’,t)-CDA

for any 0 < d’ < d, and thus is a (d, 7)-CDA. O
Theorem 8. A (d,t)-CDA is a t-CCA. A (d,t)-CDA is a t-CCA.

Proof. LetT € VI,. Let Abe a (d,t)-CDA or (d,)-CDA. Then, T # T = (T € T &
pa(T) C pa(T)) forany T C VZ, such that |T| < d. If |T| = 0, then 7 = (), in which

case T # T, T & T,and pa(T) = (0. Hence, pa(T) # 0. O

Theorem 9. R, the exhaustive test suite, is a (d, t)-, (d,t)-, (d,t)- and (d,t)-CDA for any

dandt.

Proof. Let T be a valid interaction and 7 be a set of valid interactions. Below, the proof
will show that 7 # T = (T € T < pr(T) C pr(T)). U T # Tand T ¢ T,
then there is some o € R such that T C o and VI’ € T : T' ¢ o, in which case
o € pr(T) — pr(T). Thatis, T # T = (T & T = pr(T) € pr(T)). In addition,

T €T = pr(T) C pr(T) holds trivially. As a result, the theorem follows. O

Theorem 10. A (d,t)-CDA is also a (d,t)-CLA; a (d,t)-CDA is also a (d,t)-CLA; a

(d,t)-CDA is also a (d,t)-CLA; and a (d,t)-CDA is also a (d,t)-CLA.



34 CONSTRAINED DETECTING ARRAYS CHAPTER 4.

Proof. Let Abe a (d,t)-CDA. Let 7; and 73 be different sets of ¢-way interactions of size
d and mutually distinguishable. p(71) # pr(72) by the definition of distinguishability.
Without loss of generality, the proof assumes that 7; ¢ 75. Denote the test case that exists
in pr(71) but not in pr(7z) as o.. There exists at least one valid interaction 7" in 7; that
is covered by o.. 75 does not mask 7', and T" & T5 because o € pr(T) A oe & pr(T2).
Because Ais a (d,t)-CDA, Ty # T,and T & Tz, pa(T) € pa(T2) holds. Hence, there
exists a row o, in A such that o/, covers 7" but does not cover any interactions in 73, that
is, o, € pa(Ti) N ol & pa(T2) holds. Thus, pa(T1) # pa(T2) holds; hence, A is a
(d,t)-CLA. The same argument holds whenever |77| and | 73| are at most d. Therefore, it
follows that a (d, t)-CDA is a (d, t)-CLA.

Next, let A be a (d,7)-CDA or (d,?)-CDA. Let 7; and 7, be different sets consisting
of exactly d interactions of strength at most ¢ or at most d interactions of strength at most
t, respectively. Then, the same argument for the case of (d,t)-CDAs and (d,t)-CDAs

holds. As a result, the theorem follows. O]
Theorem 11. A (d +t)-CCA is a (d, t)-CDA.

Proof. Suppose that A is a (d + t)-CCA. The theorem holds if p4(T) € pa(T) for any
T € VI;and T C VI, suchthat 0 < |T| < d, T ¢ T, T # T,and {T} UT
is independent. The proof shows this by constructing a valid interaction T of strength
< d+t that covers 7" but cannot appear with any interaction in 7 in the same row. If such
a T exists, some row of A contains it because A is a (¢ + d)-CCA. This row is in p4(T)
but not in pa(7); thus, pa(T) L pa(T).

Because 7 3 T, there must be a valid test case o that covers 7" but does not cover any
T € T.Leto = (s1, S2,...,Sk). o canbe regarded as k-way interaction {(F71, s1), (Fb, s2),
.. (Fy, sp)}. T is constructed by starting from 7 = T and gradually expanding it by
applying the following process for all 7" € 7. First, select any (F;,v) € T" such that

s; # v. This can be done because 7" is not covered by o (and thus A & 7). Then, add
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(Fi, s;) to T. Finally, T becomes the desired interaction.

Corollary 1. A (d +t)-CCA is a (d, t)-CLA.

Proof. The corollary is obvious according to Theorems 10 and 11.
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CHAPTER 5

FAULT IDENTIFICATION

This chapter explains how CCA, CLA, and CDA arrays are used to detect and locate faulty
interactions. The parameters of the arrays are considered as d = 1 and ¢ = 2. Suppose
that the 2-way CCA, (1,2)-CLA, and (1, 2)-CDA shown in Figures 2.5a, 3.2, and 4.2 are
used as test suites. Figures 5.1, 5.2, and 5.3 summarize the results of test cases when

executed under the following two scenarios.

(1) The only faulty interaction is T, = {(F},0), (F»,0)}.

(2) There are two faulty interactions 7 = {(F},0), (F5,0)} and T, = {(F3,0), (Fy, 1)}

5.1 Case: Constrained Covering Arrays

In Case 1, within the test cases in the 2-CCA (Figure 2.5a), only o, and o5 fail. The
two-way interactions that appear only in those failed test cases are as follows (the faulty

interaction is indicated by an underline):

{(£1,0), (5,0} {(£,0),(F5,00}  {(F1,0), (F1,0)}

{(F2,0), (F3,0)}  {(F5,0),(F4,0)}  {(F1,0), (Fi,3)}
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F, F, F; F) Casel Case2
cp |0 0 0 O Fail  Fail
o, | 0O 0 O 3 Fail Fail
o3 | 0 1 1 1 Pass Fail
o, | O 1 2 2 Pass Pass
o, | 1 0 0 2 Pass Pass
os | 1 0 0 3 Pass Pass
o; |1 0 2 1 Pass Pass
og | 1 1 1 0 Pass Pass
o9 | 2 0 0 1 Pass Pass
opl2 0 0 3 Pass Pass
o1l 2 0 1 2 Pass Pass
o1 | 2 1 2 0 Pass Pass

Figure 5.1: 2-CCA and test outcomes in Cases 1 and 2.
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In Case 2, the failed test cases are o1, 09, and o3; thus, the candidates for faulty interac-

tions are
{(F1,0), (F2,0)}  {(F1,0),(F5,0)}  {(F1,0), (F1,0)}

{(£2,0), (F,0)}  {(F3,0), (Fi,0)}  {(£1,0), (Fy,3)}
{<F1’O)’(F371)} {(F1’0)7(F471)} {(F271)7(F471)}

{(F5,1), (Fy, 1)}

For both cases, it is impossible to further reduce the candidates of faulty interactions. It

can be concluded that CCAs can be used to detect the existence of faulty ¢-way interac-

tions. However, it is impractical for CCAs to identify the faulty interactions.

5.2 Case: Constrained Locating Arrays

Suppose that the (1,2)-CLA (1,2-CLA) shown in Figure 3.2 is used. In Case 1, the test
cases 01, 03, and o3 fail and all the other test cases pass. The interactions that appear

only in the failed test cases are as follows:

{(F1,0), (F3,0)} {(F1,0), (F3,0)} {(£3,0), (F4,0)}

{(F1,0), (Fy,3)} {(F1,0), (Fy, 1)}

The core idea of CLAs is that they allow a test outcome to be uniquely associated with a
set of faulty interactions, which is mathematically represented as 71 = T2 < pa(T1) =
pa(T2). Inthis case, pa(T) = pa({Tn}) = {01, 09,03} holds only for T = {{(F},0), (F»,0)}},
provided that 7 C V7, and |7 | < 1. Thus, the faulty interaction is correctly identified.

Now consider Case 2. The failed test cases are the same as in Case 1, i.e., o1, 09,
and o3. Hence, the conclusion that 7}, is the only faulty interaction is also the same.
This incorrect result is caused by the number of faulty interactions not agreeing with the
assumption (namely, d = 1). In general, if faulty interactions exceed the number assumed,

CLAs may identify non-faulty interactions as faulty but also identify faulty interactions
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F, Fy, F; F, Casel Case2

o, | 0O 0 0 O Fail Fail
o, | 0 0 O 3 Fail Fail
o; | 0 0 1 1 Fail Fail
o, | 0 1 1 2 Pass  Pass
o | 0 1 2 0 Pass Pass
og | 1 0 0 2 Pass Pass
o |1 0 O 3 Pass  Pass
ogs |1 0 1 2 Pass  Pass
o9 | 1 1 1 1 Pass Pass

o | 1 1 2 0 Pass  Pass

o1 | 1 1 2 2 Pass Pass
ool 2 0 O 1 Pass Pass
o312 0 0 3 Pass  Pass
oul| 2 0 2 0 Pass Pass
o5 2 1 1 0 Pass Pass
o | 2 1 1 2 Pass Pass

o7 | 2 1 2 1 Pass  Pass

Figure 5.2: (1,2)-CLA and test outcomes in Cases 1 and 2.
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as non-faulty.

5.3 Case: Constrained Detecting Arrays

Suppose that the (1,2)-CDA ((1,2)-CDA) shown in Figure 4.2 is used to locate faulty
interactions. For Case 1, the failed test cases are o, 09, 03, 04, and o5. The interac-
tions occurring only in the failed test cases are all identified as faulty. In this case, these

interactions are

{(F1,0), (F5,0)} {(F1,0), (F3,0)} {(F1,0), (Fy, 3)}

T, is correctly identified as faulty, whereas {(F71,0), (F5,0)} and {(F71,0), (Fy, 3)} are in-
correctly identified as faulty. Because {7}, } masks {(£71,0), (F3,0)} and {(F3,0), (Fy,3)}
(.., {Tn} > {(F1,0),(F5,0)}and {T,} >~ {(F1,0), (Fy,3)}), itis inherently impossible
to determine that {(F7,0), (F5,0)} and {(F},0), (Fy, 3)} are not faulty when T, is faulty.
However, it should be noted that if the assumption that the number of faulty interactions
is d = 1 is relied on, just as in the case of the CLA above, one could correctly identify
only 7, as faulty. In fact, Theorem 10 shows that any CDA is a CLA.

For Case 2, the failed test cases are o1, 05, 03, 04, and og. The interactions identified

as faulty are

{(F1,0), (F3,0)} {(F1,0), (Fy, 1)} {(F1,0), (Fy,3)}

Although the last interaction is in fact not faulty, all the faulty ones are correctly identified.
In general, when using a CDA, faulty interactions are never wrongly identified as non-

faulty, even if the number of faulty interactions exceeds the assumed number d.



FAULT IDENTIFICATION CHAPTER 5.

F, Fy, F; F, Casel Case2

o | 0 0 O O Fail Fail
o, | 0 0 0 1 Fail Fail
o3 | 0O 0 0 3 Fail Fail
o, |0 0 1 1 Fail  Fail
o5 | 0 0 2 2 Fail Pass
o | 0 1 1 2 Pass Pass
o | 0O 1 2 O Pass Pass
os | 0 1 2 1 Pass Fail
oy |1 0 0 2 Pass Pass
op| 1 0 0 3 Pass Pass
o | 1 0 1 0 Pass Pass
o1z | 1 0o 2 1 Pass Pass
o3| 1 1 1 1 Pass Pass

ol 1 1 2 Pass Pass

0
o5 | 1 1 2 2 Pass Pass
0

ol 2 0 O Pass Pass
oi;| 2 0 0 1 Pass Pass
oi| 2 0 0 2 Pass Pass
ol 2 0 0 3 Pass Pass
oyxn| 2 0 1 2 Pass Pass
oy | 2 0 2 Pass Pass

0
opn| 2 1 1 0 Pass Pass

oy | 2 1 1 1 Pass Pass

oo | 2 1 2 2 Pass Pass

Figure 5.3: (1,2)-CDA and test outcomes in Cases 1 and 2.
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CHAPTER 6

GENERATION ALGORITHMS

This chapter demonstrates the algorithms designed to generate CLAs and CDAs. The
target arrays are fixed to (d,t)-CLAs and (d,t)-CDAs for convenience of explanation.
Algorithms for generating other CLAs and CDAs, i.e., (d,?)-CLAs, (d,)-CDAs, etc.,
can be easily derived from the proposed algorithms. The remainder of the chapter is
divided into two parts, one about generation algorithms for (d,t)-CLAs and the other
about generation algorithms for (d, t)-CDAs. Both parts introduce two algorithms, each
designed in different directions: one can generate minimum arrays given sufficient time,

while the other can generate arrays in a short time.

6.1 Generation Algorithms for CLAs

In this section, two algorithms for generating (d, t)-CLAs are proposed. Although little
research exists on the generation of LAs, there has already been a large body of research
on CCA generation in the combinatorial interaction testing field. The two proposed algo-

rithms are inspired by use of existing CCA generation algorithms.
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6.1.1 Satisfiability-Based Algorithm

The first algorithm leverages a satisfiability solver. The problem of generating a CLA
of a given size is reduced to the satisfiability problem of a logical expression. A logical
expression is satisfiable iff it evaluates to true for some valuation, i.e., assignment of
values to the variables. The algorithm first estimates the upper bound on the minimum
size of a CLA and uses it as the initial CLA size. Then, it creates a logical expression
that is satisfiable iff a CLA of the initial size exists. The logical expression is in turn
evaluated by a satisfiability solver. In addition, the logical expression is specially designed
so that the valuation that satisfies it directly represents a CLA. Satisfiability solvers can
produce such a satisfying valuation when the expression is satisfiable; hence, a CLA can
be obtained from the output of the solver. By repeating this process while decreasing the

CLA size, the algorithm can obtain the smallest CLA.

Logic Expression

To represent an array with a collection of variables, the naive matrix model is applied. The
naive matrix model was originally used by Hnich et al. [24] to find CAs. In this model,

an NV X k array is represented as an NV X k matrix of integer variables as follows:

The variable p} represents the value on the parameter F; in the n-th test case. The domain
of pPis S; = {0,1,...,]S;| — 1}. For the array A to become a (1,¢)-CLA, the following

conditions are imposed on A using logical expressions:
(1) The rows of A represent valid test cases.

(2) All valid t-way interactions are tested.
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(3) T1 # T2 < pa(Ti) # pa(Tz), where Ty, T are interaction sets containing one valid

t-way interaction.

The logical expressions that represent the above two conditions are presented below. By
conjuncting all the expressions, it is possible to obtain a single logical expression to check

for satisfiability.

Condition 1 In A, the n-th row is expressed as a tuple of k variables (p},p5, ..., p}).
As defined in Section 2, a test case is valid iff it satisfies the constraints represented by ¢,
which is a Boolean-valued formula over parameters F1, . .., Fy. Let ¢|,p yn . pn denote ¢
with each F; replaced with p}. Then, the following expression enforces A to only contain

valid test cases:

N
Valid := \ lpp p3....o0

n=1

Condition 2 The following condition ensures that all valid ¢-way interactions are cov-

ered by at least one row in the array A, where N is the size of rows of A:

t
pxi = ij))
1

Cover(VI;) = /\ \/

{(p(El7val)7 :(pztﬂ]zt)}evz i=

Condition 3 To let the distinguishable pairs of interaction sets stay distinguishable in

A, the following condition can be applied:

d t d t
Identifyc;4(Ta, Ty) = \/ \/ /\ Pa, = Va;) @ \/ /\ Py, = Ubk
n=1 a=1j=1 b=1 k=1

where interaction sets 7, = {{Fu,,; Var, s+ -+ Far,s Var, b -+ oo {Fag, s Vag, s -5 Fag,» Vag,
and T, = {{Fb11 s Uby, s e e N /N SN {del s Ubg, s+ - ,det,vbdi}} are indistinguish-
able, i.e., T, % 7.

This condition focuses on the distinguishable pairs of interaction sets. To keep pairs

distinguishable in the array A, the condition requires at least one interaction in the one
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set (for example, 7,) to appear in a row in A and let no interactions in the other set (7;)
appear in the same row. Under this condition, p4(7,) # pa(7y) holds in the array A. Note
that for given 7, and Ty, pa(7,) # pa(Ty) holds iff Identify -, ,(Ta, Tp) is satisfiable.

This dissertation defines U/ as follows:
U:={(To,To) | Tas To S VI, | Tal, | Tol = d, Ta % To}

By ANDing Identify;,(Ta, Tp) for all (7,,T,) € U, an expression that represents the third

condition is obtained.

The whole expression The whole expression that will be checked for satisfiability is
obtained by conjuncting the expressions defined above as follows:
existCLA := Valid N Cover(VZI;) A /\ Identify ;4 (Tas To)
(Ta,Ta)eU

By checking the satisfiability of this expression, whether a (d, t)-CLA of size N exists or
not can be determined. If it is satisfiable, then a CLA of size IV exists. In this case, the
satisfying valuation for the /V x k variables p! represents all the entries of one such CLA.
Meanwhile, if the expression is unsatisfiable, then it can be concluded that no (d, t)-CLA
of size N exists.

The satisfiability of the above expression can be checked using constraint satisfaction
problem (CSP) solvers, satisfiability modulo theories (SMT) solvers, or Boolean satisfia-

bility (SAT) solvers with a Boolean encoding of integers.

Computing I/

To construct the above logical expression existCLA, it is necessary to obtain I/ first (see
the subscript of the A in the expression). Computing U requires VZ;. The computation
of VZ, is discussed later. Here, it is described how one can compute &/ when VZ, is

available.
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Consider enumerating all 7,-7, pairs such that 7, % T, and |7,| = |T,| = d. The
problem here is how to decide whether or not a given 7, and 7, are distinguishable. This
is solvable by using satisfiability solving. Let integer variables py, ps, . . ., pr symbolically

represent a test case o; that is,

o = (p17p27 cee 7pk)

The domain of p; is {0, 1,...,]S;| — 1}. Note that S; is the domain of parameter F;.
By the definition of distinguishability, given such a 7-T pair, 7, and 7, are distin-

guishable iff the following condition holds:

dJoeR AT, €T,: T, Co ANV, €T,: Ty, L oV
I, eTy: T, CoANVT, €T, : T, L o
In other words, the condition holds if there is a valid test case that covers at least one
interaction in the interaction set 7, (or 7,) but does not cover any interactions in the inter-
action set 7, (or 7,). Hence, given 7, and 7,, T, 7 7T, holds iff the following expression
evaluates to true:

checkDistinguishable(T,, Ty) =

d t

d t
(\/ /\(p“j - Uaj) ® \/ /\(pbk = Ubk)) A ¢|p1,m ,,,,, Dk

b=1k=1

where T, = {{Fu, s Vay,s -+ s Farys Var, by oo {Fau, s Vag s - - 5 Fag, s Vag, } and Ty = {{ F,
Vby s - - ,Fblt,vblt}, . {del’vbdl’ . ’det’vbdt}}'

U is obtained by, for every 7, T, pair, checking the satisfiability of checkDistinguishable

(Ta, Tp) and keeping the pair in I/ if the expression is satisfiable.

The Algorithm

The CLA generation algorithm that uses satisfiability solving is shown as Algorithm 1.

The algorithm repeatedly solves the problem of finding a (d,t)-CLA while varying the
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array size N. The array size N starts with a value sufficiently large to ensure the existence
of a CLA and is gradually decreased until no existence of a CLA of size N is proved. To
obtain the initial value of N, the algorithm creates a (d + ¢)-CCA using an off-the-shelf
algorithm (line 1), where the CCA generation algorithm is represented by the function
generateCCA(M,x), which returns an z-CCA. The algorithm uses the size of the CCA
minus one as the initial N, as any (d + ¢)-CCA is a (d,t)-CLA. The (d + t)-CCA is
also used for computing VZ; because all valid ¢-way interactions appear in the CCA. The

algorithm enumerates all ¢-way interactions occurring in the array, thus obtaining VZ,.

In the algorithm, generateCLA(M, d, t, N, U) in line 8 represents a function that
produces a (d, t)-CLA of size N by checking the satisfiability of the expression existCLA.
If the expression is satisfiable, then the SMT solver returns the satisfying valuation, in
which case a (d, t)-CLA of size N is obtained because the valuation represents the (d, t)-
CLA. The size N is then decreased by one and the same process is repeated. If the result
of the satisfiability check is UNSAT (unsatisfiable), no CLA of size /V exists (denoted as

L in the algorithm). Then, the algorithm returns the CLA of size N 4 1 and terminates.

One might think that binary search could work better to vary /N than the linear search
adopted by the algorithm. In fact, this is not the case because showing unsatisfiability, that
is, the nonexistence of a CLA, usually takes much longer time than showing satisfiability,
that is, the existence of a CLA. The linear search delays solving an unsatisfiable expres-
sion until all possible sizes are checked, avoiding getting trapped in a long computation

required for the unsatisfiable problem instance.

The size of the expression existCLA increases polynomially in k& when ¢, d, |.S;|, and N
are fixed. The expression can be expressed as a Boolean formula with a polynomial size
increase because |9;| is fixed. The Boolean satisfiability problem (SAT) is NP-complete
in general, and there is no reason that the SAT can be solved in polynomial-time for this

particular case. Hence, the time complexity of the algorithm is likely to be exponential.
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6.1.2 Heuristic Algorithm

Algorithm 2 is the second generation algorithm for (d, t)-CLAs. The algorithm takes an
SUT model M and integers d, ¢ as input and finally returns a (d, t)-CLA A. The algorithm
employs Theorem 3. This theorem shows that a (d + ¢)-CCA is already a (d, t)-CLA and
can identify d ¢-way faulty interactions. However, a large number of redundant test cases
are included in the CCA, which directly increases the testing code. The algorithm finds
and deletes these redundant test cases so that the testing cost of the CLAs can be reduced.
This algorithm is a heuristic algorithm because it does not guarantee that the output CLA
is optimal in size. Indeed, the resulting CLAs can vary for different runs.

In the first line of the algorithm, the function generateCCA() uses an existing algo-
rithm to generate a (d + ¢)-CCA. Then, the function getAlllnteractions() is called to enu-
merate all t-way interactions the (d + t)-CCA contains. The interactions obtained are
the set of all valid ¢-way interactions (i.e., VZ,) because all interactions occurring in a
CCA are valid and any (d + ¢)-CCA contains all ¢-way valid interactions. Once all the
valid ¢-way interactions have been collected, it computes a mapping Rows|[|, which maps
each of them to the set of rows of A that cover it; that is, Rows|| : T' — pa(T), where
T € VZ,. Then, using Rows|[], a new mapping that maps every interaction set to covering
test case sets is constructed, i.e., SetRows|[|] : T + pa(T). This is computed by the
function getSetRows().

In each iteration of the while loop, a row o is randomly chosen from the CCA. Then,
the algorithm computes Set Rows’, which is an upgraded mapping such that Set Rows’|| :
T — pa(T)\{o}. In other words, Set Rows’ is p(T), where A’ is the array obtained
from A by removing o from it. The function update() is used to obtain Set Rows'.

In each iteration of the loop, it is checked whether o can be removed or not. The row
can be removed if A remains a (d, t)-CLA after the removal. This check is performed by

checking two conditions.
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One condition is that every valid ¢-way interaction 7’ still has some row that covers it;
i.e., Rows'[T] # (. Tt is necessary to check this condition because all ¢-way interactions
must be checked by at least one test case.

The other condition corresponds to the case where |7;| and |75| are distinguishable.
The condition is that for every pair of valid, mutually distinguishable ¢-way interactions,
they still have different sets of rows in which they are covered. In other words, for
T, Ty, € VI, if T, and 7T, are distinguishable, then SetRows'(7,) # SetRows'(Ty)
(ie., par(Ta) # par(To)).

Clearly, if an interaction 7" is not covered by o, the deletion of o does not alter the set
of rows that cover I'. Hence, checking the two conditions can be performed by examining
only the interactions covered by o, instead of all interactions in VZ;.

The loop is iterated until all rows in the initial A have been examined. Finally, the
resulting A becomes a (d, t)-CLA of reduced size.

As stated above, output (d, t)-CLAs vary for different runs of the algorithm, even if
the initial A (i.e., the (d 4 t)-CCA generated in line 12) is identical for all runs. This is
because the final (d, ¢)-CLAs obtained also depend on the order of row deletion.

Let s = maxj<;<k |:S;|. Outside the while loop, line 15 has the highest time complex-
ity. Itis O((s'k*)?¥n) because |VZ;| < s'k!, |ps()| < n. In the algorithm, lines 20 and 21
have the highest complexity O((s'k!)??n) for the same reason. Let n be the size of the
initial CCA. As a result, the algorithm’s time complexity is O((s'k")?*¥n?). When s, ¢, and

d are fixed, the complexity is polynomial in k and n.

6.2 Generation Algorithms for CDAs

This section presents two algorithms for generating CDAs: the satisfiability-based algo-

rithm and heuristic algorithm. The generation of CDAs is limited to (d, ¢)-CDAs because
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(d,t)-CDAs are (d,t)-CDAs except in extreme cases (Theorem 7). Also, it is straightfor-

ward to adjust the algorithms to (d, £)-CDAs and (d, £)-CDA:s.

6.2.1 Satisfiability-Based Algorithm

Similar to the satisfiability-based algorithm for CLAs, this algorithm also leverages a
satisfiability solver. Because a (d + t)-CCA is already a (d, t)-CDA, the algorithm uses
the size of a (d,t)-CCA as the initial size of a CDA. Then, it creates a logical expression
that is satisfiable iff a CDA of the initial size exists. The logical expression is subsequently
evaluated by a satisfiability solver. A CDA instance can be obtained from the output of the
solver if the logical expression is satisfiable. By repeating this process while decreasing

the CDA size, the algorithm can output the smallest CDA.

Logic Expression

The naive matrix model, an N X k array, is used as a representation of an N X k matrix

of integer variables as follows:

D1 Dy
A=
pY - oy

The variable p!' represents the value on the parameter F; in the n-th test case. The domain
of plis S; = {0, 1,...,]S;| — 1}. For the array A to become a (d, t)-CDA, the following

conditions are applied to A:
(1) The rows of A represent valid test cases.
(2) VT CVZ;suchthat |T| =d,NT € VL, : T # T = (T €T < pa(T) C pa(T))

The reason that the conditions do not require all valid ¢-way interactions to be tested is

that the definition of (d, t)-CDA implies that all valid ¢-way interactions appear in at least
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one row, i.e., VT' € VZ;, pa(T) # () iff Ais a (d,t)-CDA. The logical expressions that
represent the above two conditions are presented below. A single logical expression can

be obtained by conjuncting all the expressions and will be checked for satisfiability.

Condition 1 The following expression enforces A to only contain valid test cases:

n=1

Condition 2 It is important to note that 7 % T = (T' € T < pa(T) C pa(T)) is

equivalent to
(THTANT ET) = pa(T) £ pa(T)

because 7' € T = pa(T) C pa(T) holds trivially. Hence, it is able to focus on the case
where 7 % T and T' ¢ T . The right part of this formula, that is, p4(T) € pa(T), holds
iff there is a row in A that covers 7" but none of the interactions in 7. This condition is

represented by a logical expression as follows:

N t d t
Identlf‘))CDATT \/ (/\ pz]:UZEJ)/\_‘(\//\ pyLl = yLl >>
n=1 j=1 L=11[=1
where 7 = {{( Y1y Uy11) (Fyltavy1t)}a'~-, {(Fydlavydl)’ SRR (Fydt7vydt)}} and

T={(Fs,Vs,),--,(Fy,,vs,)}. Forgiven T and T, ps(T) £ pa(T) holds iff Locating(T, T')

is satisfiable.

Then, V is defined as follows:

={(T, 1) | T CVL,|T|=d,T VL, T+ T,TZT}

By ANDing Locating(T,T) for all (7,T) € V, an expression that represents the second

condition can be constructed.
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The whole expression The whole expression that will be checked for satisfiability is

obtained by conjuncting the expressions defined above as follows:

existCDA := Valid N /\ Locating(T,T)
(T, T)ey

By checking the satisfiability of this expression, whether a (d, t)-CDA of size IV exists or
not can be determined. If it is satisfiable, then a CDA of size N exists. In this case, the
satisfying valuation for the NV x k variables p' represents all the entries of one such CDA.
Meanwhile, if the expression is unsatisfiable, then it can be concluded that no (d, t)-CDA

of size N exists.

Computing V

Before constructing the expression existCDA, the expression V must be examined first.
Consider enumerating all 7-7" pairs such that T € VZ,, T C VZ,, |T| = d, T ¢

T,and T # T. The problem here is how to decide whether or not 7(C VZ,) masks

T(€ VI;) when T and T ¢ T are given. This too is possible by employing satisfiability

solving. Let integer variables pi, po, . . ., pr symbolically represent a test case o; that is,

o = (p17p27"'7pk)

The domain of p; is {0, 1,...,|S;| — 1}. Note that .S; is the domain of parameter F;.
By the definition of masking, given such a 7-7 pair, 7 does not mask 7" iff the

following condition holds:
JoeR:TCoA-(TT"eT:T Co)

In other words, the condition holds if there is a valid test case that covers the interaction

T but does not cover any interactions in the interaction set 7. Hence, given 7 and 7T,
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T + T holds iff the following expression evaluates to true:

checkUnMasking(T,T) =

t d t
/\ px] Ux] _'< \/ /\ (pyLl - UyLl)) A ¢’p1,p2 ..... Dk

where 7 = {{(F, Y1y Uy11> -v(Fy1t>Uy1t>}a---» {<Fyd1’vyd1>’ EER (Fydt7vydt)}} and
T ={(Fa, V), (Fiyy Va,) }-

U is obtained by, for every 7 -1 pair, checking the satisfiability of checkUnMasking (T, T)

and keeping the pair in ¢/ if the expression is satisfiable.

The Algorithm

The satisfiability-based generation algorithm for CDAs is shown as Algorithm 3. The
algorithm repeatedly solves the problem of finding a (d, ¢)-CDA while reducing the size
from initial N to the size of an optimal CDA. The initial size N is a value large enough
that the existence of a CDA is ensured. By decreasing /V, the algorithm finally reaches a
size for which no CDA exists. Finally, the last constructed CDA will be proved to be the
optimal CDA.

To obtain the initial value of N, the algorithm creates a (d + ¢)-CCA using an off-
the-shelf algorithm (line 29), where the CCA generation algorithm is represented as the
function generateCCA(M,x), which returns an x-CCA. Then, the algorithm uses the size
of the CCA minus one as the initial N, as any (d 4 ¢)-CCA is a (d,t)-CDA. The (d + t)-
CCA is also used for computing VZ, because all valid ¢-way interactions appear in the
CCA.

In the algorithm, generateCDA(M, d, t, N, U) in line 36 represents a function that
produces a (d, t)-CDA of size N by checking the satisfiability of the expression existCDA.
If the expression is satisfiable, then the SMT solver returns the satisfying valuation, in

which case a (d, t)-CDA of size N is obtained because the valuation represents the (d, t)-
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CDA. Then, the size N is decreased by one, and the same process is repeated. If the result
is UNSAT (unsatisfiable), no CDA of size NV exists (denoted as | in the algorithm). Then,
the algorithm returns the CDA of size N 4 1 and terminates.

The time complexity of the algorithm is likely to be exponential for the same reason

explained in the previous section.

6.2.2 Heuristic Algorithm

In this section, a heuristic algorithm is proposed for the generation of (d, t)-CDAs, which
aims to generate (d, t)-CDAs that are not optimal but fairly small in reasonable time.

Theorem 11 shows that a (d+1t)-CCA is already a (d, t)-CDA. Based on this theorem,
a heuristic algorithm (Algorithm 4) can be devised. The algorithm generates a (d + t)-
CCA first. Then, it repeatedly chooses a test case in it at random and checks whether it
is removable. A test case is judged as removable from an array if a new array with the
test case being removed would still be a (d, t)-CDA. If the test case is removable, then it
is removed from the current array. Otherwise, a new test case is chosen and the check is
performed again. This process is repeated until no test case is removable anymore.

The details of the algorithm are as follows. In line 40, the algorithm generates a (d+t)-
CCA S. At this point, S is already a (d, t)-CDA but contains many redundant test cases.
Then, the algorithm collects all valid ¢-way interactions and maps each interaction 7’ to
its covering test cases pg(7’) in S (line 41). The map obtained here, denoted by Rows][]|, is
used to compute another map, DiffRows|][], which associates each pair of an interaction set
T and valid interaction T with pg(T) — ps(T). Note that ps(T) — ps(T) = D iff ps(T) C
ps(T). Because S is a CDA, DiffRows[T|[T] = (0 if T = T, and DiffRows[T|[T] # ()
otherwise.

Then, the algorithm repeatedly chooses a test case at random and checks whether it

is removable or not. To perform the check, the algorithm constructs a new interaction-
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to-row map DiffRows’[][] that would hold after the test case was removed (line 49). This
can be done by simply removing o from all DiffRows|T|[T]. Subsequently, the algorithm
compares the two maps (line 50). If DiffRows[T][T| # 0 but DiffRows’[T|[T] = 0, then
ps(T) € ps(T), and thus S is no longer a CDA. In this case, the algorithm reserves the
test case for the output test suite A (line 51). Otherwise, it deletes the test case and ac-
cordingly updates DiffRows|T|[T] (line 54). When all test cases in the CCA are checked,
the algorithm will terminate, yielding the resulting A.

Let s = maxj<;<x |9;|. Outside the while loop, line 43 has the highest time com-
plexity, which is O((s'k")?s'k'n). Inside the while loop, for the same reason, lines 49
and 50 has the highest complexity of O((s'k!)%stk!n). Let n be the size of the initial
CCA. The algorithm’s time complexity is O((s'k?)?s'k'n?). When s, ¢, and d are fixed,

the complexity is polynomial in £ and n.
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Snippet 1: CLA: satisfiability-based algorithm

Input: SUT M = (F, S, ¢); integers d,
Output: (d,t)-CLA A
// construct a (d 4 t)-CCA for the input SUT
1 S «generateCCA(M, d + t)
/1 get all valid t-way interactions from the (d + t)-CCA
2 VI, < getAlllnteractions(S,t)
/1 get all distinguishable pairs I/ of interaction sets
3 U+ getU(VIy,d,t)
/I get the initial size for the CLA to be generated
4 N < Thesizeof S — 1
5 nertA < S
6 do
/l reserve the current test suite instance

7 A — nextA

otherwise
8 nextA < generateCLA(M, d,t, N,U)
// decrease the size by one

9 N+ N-1

10 while nextA #1

11 return A

/I SAT checking; the solver returns an instance if satisfiable or the emptyset
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Snippet 2: CLA: heuristic algorithm

12

13

14

18

19

20

21

22

23

24

25

26

27

Input: SUT M = (F, S, ¢); integers d, t
Output: (d,t)-CLA A

// construct a (d 4 t)-CCA for the input SUT

S <—generateCCA(M, d + 1)

/1 get all t-way interactions from the (d + t)-CCA
VI, < getAlllnteractions(S,t)

Il Rows[T| = ps(T) for T € VI,

Rows|| <— maplInteractionToRows(VZI,, S)

Il SetRows|T| = Urerps(T) for T C VI, |T| =d
SetRows|| < getSetRows(VZ;, S, d)

A+ S

while S # () do

o < getRandomTestcase(S)

S« S—{oh A+ A—{o}

SetRows'[] < update(SetRows|], o); Rows'[] +— update(Rows]], o)

if 37, Ty s.t. To 7 Ty : SetRows'[T,] = SetRows'[Ty) or 3T : Rows'[T] = ()
then
// the test case o is unremovable
A+~ A+ {o}
end
else
/I the test case o is removable

SetRows|| < SetRows'||

end

end

return A
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Snippet 3: CDA: satisfiability-based algorithm

Input: SUT M = (F, S, ¢); integers d,
Output: (d,t)-CDA A
// construct a (d 4 t)-CCA for the input SUT
29 S «generateCCA(M, d + t)
/1 get all valid t-way interactions from the (d + t)-CCA
30 VI, < getAlllnteractions(S,t)
/1 get all non-masking pairs U/ of interaction sets and interactions
31 U <+ getU(VI,,d,t)
/I get the initial size for the CDA to be generated
32 N < Thesizeof S — 1
33 nextA <+ S
34 do
/l reserve the current test suite instance
35 A nextA
/I SAT checking; the solver returns an instance if satisfiable or the emptyset,
otherwise
36 nextA <generateCDA(M, d,t, N,U)
// decrease the size by one

37 N+ N -1

38 while nextA #1

39 return A
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Snippet 4: CDA: heuristic algorithm

Input: SUT M = (F, S, ¢); integers d, t
Output: (d,t)-CDA A
// construct a (d 4 t)-CCA for the input SUT
40 S < generateCCA(M,d +t)
/1 get all t-way interactions from the (d + t)-CCA
41 VI, < getAlllnteractions(S, t)
Il Rows[T| = ps(T) for T € VI
42 Rows|| <— maplInteractionToRows(VI;, S)
/1 DiffRows[T][T] = ps(T) — ps(T) for T C VI, |T| =d
43 DiffRows]||[] < getDiffRows(VZI,, S, d)
44 A S
45 while S # () do
46 o < getRandomTestcase(S)
| S« S—{o}
8 | A~ A—{o}
4 | DiffRows'[][] «— update(DiffRows]]], o)
so | if 37,7 : DiffRows[T||T] # 0 and DiffRows'[T][T] = () then

// the test case o is unremovable

51 A+~ A+ {o}
52 end
53 else

// the test case o is removable

54 DiffRows|][| < DiffRows'[][]
55 end
56 end

57 return A
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CHAPTER 7

EXPERIMENTS

7.1 Experiment Purposes and Research Questions

This chapter shows experimental results on the proposed arrays and generation algo-
rithms. The array generation is mainly focused on (1,2)-CLAs and (1,2)-CDAs (d = 1
and ¢t = 2) for the following reasons. First, it is natural to set d to a small value in practice.
Second, the most common form of CIT targets two-way interactions.

In the following sections, the experimental results on the generation algorithms are
presented first. Two different experiments were conducted with respect to two different
purposes of analysis. One was comparing the efficiency between two different algorithm
types, i.e., satisfiability-based and heuristic algorithms, for both CLAs and CDAs. The
other was analyzing the efficiency of the heuristic algorithms when the strength ¢ is greater
than 2. After discussing the generation algorithms, fault identification using CLAs and
CDAs for real-world systems is reported.

To guide the experiments, research questions were set as follows:

RQ1 How do the two types of generation algorithms perform with respect to generation

time and array size?
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RQ2 How do the heuristic algorithms perform when the strengths ¢ of CLAs and CDAs

are relatively large (¢t > 2)?

RQ3 Can CLAs and CDAs be used to identify faulty interactions caused by actual bugs,
especially when the assumptions about the number and strength of faulty interac-

tions do not hold?

7.2 Comparison of Generation Algorithms

7.2.1 Experimental Settings

The generation algorithms were written in C++ language. The CCA generator [61] used in
the programs is an implementation of the IPOG algorithm [38], while the Z3 solver (ver-
sion 4.8.1) [15] was used as the satisfiability checker in the satisfiability-based algorithms.

All experiments were conducted on a machine with an Intel Core 17-8700 CPU, 64
GB memory, and Ubuntu 18.04 LTS OS. For each benchmark instance, the heuristic algo-
rithms were executed 5 times, as they are non-deterministic algorithms. The satisfiability-
based algorithms were run only once because they are deterministic. The timeout period
for each run was set to 1800s.

A total of 20 benchmark instances, numbered from 1 to 20, were performed in the
experiments. These benchmarks can be found in [53]. Detailed information about these
benchmark instances is listed in Table 7.1. In the table, the first two columns show the
benchmark ID and benchmark names. Columns |F| and |¢| show the numbers of pa-
rameters and constraints in the benchmarks, respectively. Then, the columns |VZ,| and
|Z,\VZ,| show the numbers of valid and invalid 2-way interactions. The column with the
label |7, ~ T,| shows the numbers of indistinguishable pairs of interaction sets. The final

column with the label |7 > T'| shows the numbers of masking pairs of interaction sets
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Table 7.1: Benchmark information
ID SUT Fl 16l VL LV T~ T =T
1 banking1 5 112 102 0 0 0
2 banking?2 15 3 473 3 0 208
3 comm_protocol 11 128 285 35 16 2,177
4 concurrency 5 7 36 4 69 130
5 healthcarel 10 21 361 8 5 512
6 healthcare2 12 25 466 1 0 124
7 healthcare3 29 31 3,092 59 4717 8,700
8 healthcare4 35 22 5,907 38 288 3,359
9 insurance 14 0 4573 0 0 0
10 | network_mgmt 9 20 1,228 20 0 189
11 | processor.comml | 15 13 1,058 13 6 1,510
12 | processor comm?2 | 25 125 2,525 854 1,562 35,156
13 services 13 388 1,819 16 93 1,088
14 storagel 4 95 53 18 11 112
15 storage?2 5 0 126 0 0 0
16 storage3 15 48 1,020 120 57 3,400
17 storage4 20 24 3,491 24 0 0
18 storageS 23 151 5,342 246 20 10,095
19 system_mgmt 10 17 310 14 130 825
20 telecom 10 21 440 11 23 151
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and valid interactions. Note that the numbers of indistinguishable interaction sets and of

masking pairs are the values for the case of d = 1 and ¢ = 2.

7.2.2 CLA: Experimental Results

These experimental results are listed in Table 7.2. The first column shows the benchmark
ID. The values are divided into two sections: generation time and sizes of generated
CLAs. In each section, the average value is reported for the satisfiability-based algorithm,
as it is the deterministic, while the maximum, minimum, and average values are reported
for the heuristic algorithm. The symbol “——"is used to indicate the case that the proposed
algorithms did not terminate within the timeout period. To better compare the generation
results, shorter generation time and smaller sizes of CLAs are noted in bold font.

The satisfiability-based algorithm completed the generation process for three instances,
namely, Nos. 1, 4, and 14. The CLAs obtained for these instances are optimal. However,
the algorithm failed to generate even a single CLA for the other instances. In contrast, the
heuristic algorithm successfully generated CLAs for all benchmark instances. In addi-
tion, the execution time of the satisfiability-based algorithm was always much longer than
that of the other algorithm, sometimes four orders of magnitude longer. There are two
main reasons why the satisfiability-based algorithm is so slow. One is that the algorithm
generates multiple CLAS in a single run. As stated in Chapter 6, it generates (d, t)-CLAs
with sizes varying from the size of a (d + t)-CCA. The CCA’s size simply serves as the
upper bound on the minimum CLA size. As this is not tight bound in general, to obtain an
optimal (d, t)-CLA, the satisfiability solver is executed multiple times. The other reason,
which is more obvious, is that the satisfiability check may be time-consuming. The time
required for the check becomes very long, especially when the algorithm tries to find a
CLA of minimum size minus 1, in which case the answer of the check is UNSAT (unsat-

isfiable). In the field of satisfiability, it is well known that UNSAT instances are usually
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Table 7.2: CLA: Experimental results of generating CLAs

Time (second) Size
ID | SMT Two-step SMT Two-step
value  max. min. avg. | value max. min. avg.

1 162605 0.11 0.10 0.10 24 28 26 26.8
2 —— 0.22 0.15 0.19 —— 29 27 28

3 —— 0.20 0.16 0.17 —— 35 33 3440
4 | 053 0.08 0.07 0.07 7 7 7 7

5 —— 0.22 0.20 0.21 —— 49 46  47.60
6 —— 0.27 0.23 0.24 —— 36 33 3440
7 —— 8.59 791 8.20 —— 95 84 91

8 —— 4507 4351 4432 | —— 107 102 104.20
9 —— 12491 12387 12439 | ——- 803 794 798.40
10| —-- 2.60 2.56 2.58 —-— 210 202 206.40
11 —— 1.03 0.85 0.92 —— 61 57  59.20
12| —- 3.48 3.31 3.40 —— 70 65 67.40
13| —- 7.49 7.28 7.41 —-— 203 193 198.40
14 | 7.57 0.22 0.08 0.11 22 22 22 22
15| —- 0.09 0.09 0.09 —— 36 35  35.60
16 | —- 1.17 1.11 1.15 —— 91 85  88.60
17 —- 30.28 2928 2972 | —-- 222 215 218
18] —— 11285 112.09 11248 | —- 365 355 357.80
19| —- 0.14 0.13 0.13 —— 31 27 29.20
20 —— 0.26 0.24 0.25 —— 54 51 52
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more difficult than SAT instances.

The satisfiability-based algorithm is deterministic. As stated above, the CCA size
affects the algorithm’s execution time and, if timeout occurs, the resulting CLA size.
In contrast, the heuristic algorithm is inherently nondeterministic; it generates different
CLAs for different runs. The algorithm decreases the array size by repeatedly removing
a test case selected at random from the current array. A test case can be removed only
if the array remains a CLA after its removal; thus, which test case is removed depends
strongly on earlier selections. Hence, different orders in which test cases are deleted lead

to different CLAs.

7.2.3 CDA: Experimental Results

These experimental results are summarized in Table 7.3. The leftmost column shows the
benchmark IDs. The rest of the table is divided into two parts representing the results
of generation time and of sizes of the generated CDAs. Both parts have two sections
describing the experimental results of the two proposed algorithms. For each problem
instance, the average value is reported for the satisfiability-based algorithm as it is deter-
ministic, while the maximum, minimum, and average values are reported for the heuristic
algorithm.

The numbers with an asterisk (¥) in the satisfiability-based algorithm’s columns show
that the generation did not terminate within the time limit. Because the algorithm repeat-
edly generates CDAs with sizes varying until the minimum one is found, CDAs that are
not optimal are constructed during the course of execution. The values with an asterisk
correspond to the smallest (not necessarily optimal) CDAs that were obtained within the
time limit. For example, for benchmark No. 1, the algorithm took 1,557.89s to generate
a CDA of size 25. However, when it was trying to generate a CDA of size 24, the algo-

rithm exceeded the 1800s time limit. There are also some benchmark instances where the
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Table 7.3: CDA: Experimental results of generating CDAs

Time (second) Size
ID SMT Two-step SMT Two-step
value max. min. avg. | value max. min. avg.

1 |1,557.89" 0.15 0.10 0.13 25° 37 36 36.40
2 - 0.12 0.09 0.11 —— 42 42 42

3 - 0.21 0.15 0.17 —— 50 47 48.60
4 0.364 0.10 0.07 0.08 8 8 8 8

5 - 0.17 0.12 0.14 —— 95 92 94

6 —— 0.20 0.16 0.18 —— 60 57 58.20
7 —— 3.14 2.79 2.95 —— 179 173 176
8 —— 1987 1873 1923 | —— 234 220  227.60
9 - 145.14 13048 13431 | —- 1,997 1,959 1,971.40
10 —— 1.56 1.48 1.52 —— 405 394 39940
11 —— 0.67 0.59 0.61 —— 114 111 112
12 - 3.16 294 3.03 - 122 118 120.20
13 —— 4.82 4.76 4.79 —— 430 413 42240
14 2.53" 0.12 0.10 0.10 25° 25 25 25
15 —— 0.08 0.07 0.07 —— 51 45 47.60
16 —— 0.64 0.58 0.61 —— 189 185 187.60
17 —— 16.28 1561 1588 | —— 517 500  506.20
18 - 130.25 120.02 12486 | —— 860 843  851.60
19 —— 0.12 0.09 0.11 —— 53 49 51.80
20 —— 0.19 0.14 0.16 -— 102 98 99.8
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algorithm did not find even one CDA within the time limit. The symbol “~ - is used to
indicate such a case. To compare the average consumed time of the two algorithms, the
better results (i.e., shorter time) are denoted in bold font. The smaller average sizes of
generated CDAs are also denoted in bold font.

The satisfiability-based algorithm completed the generation for only one instance (No.
4). The algorithm was able to find small CDAs for some remaining instances (though it
timed out), such as Nos. 1 and 14, whereas it failed to find even a single CDA for others.
Meanwhile, the heuristic algorithm successfully generated CDAs for all benchmark in-
stances. The execution time of the satisfiability-based algorithm was always much longer
compared with that of the heuristic generation algorithm, which can be observed from
the results of benchmark No. 1. It takes almost four orders of magnitude more time than
the heuristic algorithm. There are two reasons for this, and they are the same as those
for CLAs. One is that the algorithm continuously tries to generate CDA instances before
it generates an optimal CDA. The other reason is that the satisfiability check consumes
much time, especially when the checker computes the generation of a CDA with minimum

size minus one.

7.24 Answer to RQ1

The satisfiability-based algorithms are deterministic algorithms that can always generate
optimal arrays for given SUTs. However, because of the long-time satisfiability checking,
the satisfiability-based algorithms are not practical for real-world testing. Meanwhile,
the heuristic algorithms have balanced capabilities with respect to running time and array
sizes. However, the satisfiability-based algorithms are still an available option. Previous
research [68] has shown that the execution of a test case usually costs several orders of
magnitude more time than the generation of a test case for recent software systems, such

as highly configurable systems. Although the satisfiability-based algorithms may take
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hours to generate minimum CLAs or CDAs, using the minimum CLAs and CDAs as test

suites still reduces the total time of testing for these software systems.

7.3 Experiments on Generating Arrays with ¢ > 2

7.3.1 Experimental Setting

The results of the previous section showed that the proposed heuristic algorithms can scale
to large problems when the strength ¢ of CLAs and CDAs is two. Next, the dissertation
examines the scalability of the heuristic algorithms with respect to strength of arrays.

In this experiment, the proposed heuristic algorithms were applied to the 20 bench-
mark instances to generate (1,¢)-CLAs and (1,t)-CDAs with strength ¢ = 3 and t = 4,
respectively. As in the previous experiments, two heuristic algorithms were run 5 times

for each problem.

7.3.2 CLA: Experimental Results

Table 7.4 summarizes the results of this experiment, including those obtained for t = 2

To ~ Tol”

in Experiment 1. As in Table 7.1, the columns marked with “

VZ,|” and “

show the numbers of valid interactions and pairs of indistinguishable valid interactions of
strength ¢, respectively. The columns labeled with “average” show the running time of the
proposed algorithm and size of obtained CLAs averaged over 5 runs.

From Table 7.4, it can be observed that the sizes of generated CLAs and the generation
time increased exponentially as the strength increased. For all benchmarks, the speed of
growth in size was much slower than that in generation time. Another observation is that
the growth in size did not change much for benchmark Nos. 4 and 14. This is because

these two benchmarks have relatively small testing space, R, and when the algorithm is
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Table 7.4: CLA: Experimental results of generating CLAs with strength 2 <t <4

average average
No. VL | 1Ta~ Tl [ . No. VI [T~ Tl :
time size time size
102 0 0.11 26.80 1,058 6 0.92 59.20
1 324 0 0.13 80.20 11 14,229 231 166.15 | 280.40
513 104 0.16 176.40 130,724 —— —— ——
473 0 0.19 28 2,525 1,562 3.40 67.40
2 4,290 0 4.32 80.60 12 53,228 67,926 | 1,404.34 | 333.40
26,728 0 178.48 | 199.40 781,771 -— -— -—
285 69 0.17 34.40 1,819 93 7.41 198.40
3 1,650 1,221 0.96 79.80 13 30,031 4,313 -— -—
5,978 9,338 6.58 147.20 317,228 - —— -——
36 16 0.07 7 53 11 0.11 22
4 55 90 0.07 8 14 71 43 0.08 25
35 46 0.07 8 25 0 0.08 25
361 5 0.21 47.60 126 0 0.09 35.60
5 2,535 118 3.62 190 15 432 0 0.15 116.20
11,102 1,151 48.14 565 729 0 0.25 305.40
466 0 0.24 34.40 1,020 57 1.15 88.60
6 4,076 6 8.45 128.40 16 11,840 1,212 121.43 | 395.40
23,792 183 319.47 | 414.60 89,632 13,982 -— -
3,092 477 8.20 91 3,491 0 29.72 218
7 74,274 18,460 —-— —— 17 86,153 0 —— ——
1,264,002 -— -— -— 1,369,701 -— -— -—
5,707 288 4432 | 104.20 5,342 20 112.48 | 357.80
8 191,398 -— -— -— 18 157,949 -— -— -—
4,573 0 124.39 | 798.40 310 130 0.13 29.20
9 —— —— —-— —— 19 1,982 1,591 0.76 88.20
—— —— —— —— 7,770 10,227 5.82 216
1,220 0 2.58 206.40 440 23 0.25 52
10 15,370 1 347.78 | 1,661.80 || 20 3,431 225 6.18 208
116,350 -— -—— —— 16,841 1,246 120.46 | 685.60
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generating (1, 3)-CLAs for the two benchmarks, all valid test cases are already included.
Thus, the changes in array sizes as well as the generation time did not vary much. With
the 1800s timeout, there were six benchmark problems for which the algorithm ran out
of time while generating (1, 3)-CLAs. The proposed algorithm also failed to generate

(1, 4)-CLAs for ten benchmarks.

7.3.3 CDA: Experimental Results

Table 7.5 lists the results of these experiments. As shown in the table, the column marked
with “|VZ;|” shows the numbers of valid interactions of strength ¢; the column marked

with

T ~ T|” shows the numbers of pairs of an interaction and interaction set that have
masking relations. The columns labeled with “average” show the running time of the
heuristic algorithm and sizes of obtained CDAs, respectively.

It can be observed from the values in the table that the generation time and sizes of
obtained CDAs increased exponentially in general. There are also some exceptions to
this observation, e.g., the benchmarks Nos. 4 and 14. The values of the two benchmarks
did not change as the strength varied. This is because the CDAs include all valid test
cases when t = 2. Both of the benchmarks have only a few parameters with small do-
mains, and thus the testing space is relatively small. In addition, the constraints in the two
benchmarks strongly restrict the testing space, so R equals a (1,2)-CDA.

The heuristic generation algorithm failed to generate (1, 3)-CDAs for 7 benchmarks,

and it failed to generate (1,4)-CDAs for 10 benchmarks.

7.3.4 Answer to RQ 2

The heuristic algorithms for both CLAs and CDAs performed well on generating arrays
with higher strengths of ¢ = 3 and ¢ = 4. Both algorithms generated high-strength

arrays for many benchmarks even though the time limit was relatively short, i.e., 1800s.
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Table 7.5: CDA: Experimental results of generating CDAs with strength 2 <¢ <4

average average
No. | ¢ [VZ,] T =T — : No. | ¢ | |VZ,| | |T =T| : :
time size time size
2 102 0 0.11 35 2| 1,058 1,510 0.61 113.60
1 |3 324 0 0.12 88.80 11 | 3| 14,229 47,202 | 120.61 | 490.20
4 513 832 0.12 190.20 4 | 130,725 - —— ——
2 473 208 0.09 41.80 2| 2,525 35,156 | 611.02 122
2 |3 4,290 3,744 0.99 99 12 | 3| 53,228 | 2,370,351 —— ——
41 26,728 36,608 | 47.37 | 235.60 41 781,772 -— -— -—
2 285 2,177 0.16 47.80 2| 1,819 1,088 4.82 427.80
3 (3 1,650 36,399 0.58 94 13 | 3| 30,031 63,473 -— -—
4 5,978 269,705 | 4.23 162.60 4 —— -—— -—— ——
2 36 130 0.07 8 2 53 112 0.11 25
4 |3 55 342 0.07 8 14 |3 71 165 0.10 25
4 35 120 0.07 8 4 25 0 0.10 25
2 361 512 0.12 94.20 2 126 0 0.07 47
53 2,535 8,655 1.21 327.40 15 |3 432 0 0.10 137
41 11,102 71,160 | 17.75 | 804.40 4 729 0 0.13 368.60
2 466 124 0.14 59 2| 1,020 3,400 0.60 187.80

6 |3 4,076 2,688 3.75 211.20 16 | 3| 11,840 89,072 61.24 | 730.60

4| 23792 | 32,948 | 146.08 | 647 4| 89,623 | 1,186,446 | —— -
2| 3,092 8,700 | 2.87 | 176.20 2| 3491 0 1565 | 508
7 13| 74274 | 622932 | —- - 17 | 3| 86,153 0 - -
411264002 | —- - - 4 —- - - -
2| 5,707 3359 | 1790 | 224 2| 5342 | 10,095 | 119.97 | 849.60
8 3] 191,398 - - —— 18 3| -- - - -
I I — - - —— 4 - - - -
2| 4573 0 13279 | 1,962 2| 310 825 009 | 5220
9 [3] -- - - —— 19 (3] 1982 | 15354 | 054 | 147.40
40 - - - - 4| 7,770 | 134,882 | 4.36 305
2| 1,228 189 1.53 | 396.80 2| 440 151 0.14 102

10 | 3| 15,370 5,514 | 185.06 | 3,113.80 || 20 | 3 | 3,431 2,505 1.93 374.80
4 -— —— -— —— 4] 16,841 20,796 42.61 | 1,102.80
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The generation time grew exponentially with increased strength, while the array sizes

increased much more gradually.

7.4 Identifying Faulty Interactions in Real-World Systems

The third experiment examined CLAs and CDAs with respect to the capability of identi-
fying faulty interactions induced by real software bugs. By definition, CLAs and CDAs
ensure that faulty interactions can be located if underlying assumptions hold. However,
these assumptions may not necessarily hold in reality. The aim of this experiment was to

answer the following research question:

RQ3 Can CLAs and CDAs be used to detect faulty interactions caused by actual bugs, es-
pecially when the assumptions about the number and strength of faulty interactions

do not hold?
The procedure of the experiment was as follows:
Step 1 Construct SUT models for applications under test.

Step 2 Seed bugs into the source code of the application programs to create a collection of

faulty versions.

Step 3 Use exhaustive testing to identify faulty interactions that are caused by the seeded

bugs. The identified faulty interactions are used as correct answers.

Step 4 Use CLAs and CDAs to select test cases and locate (or estimate) faulty interactions

using these test cases.
Step 5 Compare the results obtained from CLAs and CDAs with the correct answers.

In the experiments, the parameters of CLAs and CDAs were settod = 1 and ¢ = 2.
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7.4.1 Experimental Setting

Open source software Flex [1] and Gzip [2] were chosen as applications under test, and
their source code was obtained from Software-artifact Infrastructure Repository (SIR) [16]
at the University of Nebraska-Lincoln. At SIR, each of the programs is associated with a
test specification file written in the Extended Test Specification Language [S1]. Test spec-
ification files describe all the options and patterns of the inputs to be tested, together with
the requirements and specifications among the options. SIR also provides the whole test-
ing environment for these programs, which encompasses a bug seeding facility, verified
input-output sets, and a tool chain with an automatic test script generation tool.

Petke et. al. analyzed the test specification files of the two applications and provided
the SUT models with constraints [52]. Their SUT models were used as the SUT models
in this experiment. A summary of the two SUT models is given in Table 7.6.

The bug seeding facility provided by SIR was applied to seed bugs into Flex and Gzip
in this experiment. Exactly one bug was seeded in a single version of each program.

Exhaustive testing was conducted for each application as follows. First, a CCA whose
strength is equal to the total number of factors for the SUT model of the application was
constructed. This CCA represents the exhaustive test suite because it consists of all valid
test cases. Then, a test script was created from the CCA and applied to faulty versions of
the application.

From the test outcome, faulty interactions were identified as follows. The experiment
computed a minimal set of interactions such that 1) every interaction in the set occurs in
some of the failed test cases but not in any of the passed test cases and 2) every failed test
case contains at least one interaction in the set. Here, the set is regarded as minimal if no
smaller set satisfies these conditions. In general, there can be more than one minimal sets,
but a unique set of interactions was identified for every faulty version in our case.

As the SUT model does not completely cover the possible test space of the application,



SECTION 7.4 FAULT IDENTIFICATION IN REAL-WORLD SYSTEMS 75

Table 7.6: SUT models

ID | SUT | |F| |9 Instructure

Command line options with “On” and “Off” are set as parameters with two values
1 |[Flex | 9 12
Command line options with different functions are set as parameters with multiple values

Command line options with string input are discretized using regular expressions
2 | Gzip | 14 61

Command line options with file input are classified using file identifiers

Table 7.7: Seeded bugs

SUT Name Description
F_AA2 array: “array[index]” to “array[index - 1]”
Flex F AA3 if condition: “varl == var2” to “varl = var2”
F_AA6 if condition: “(varl || var2) && var3” to “varl || (var2 && var3)”
| FAULTY_FKL.6 value assignment: “varl += var2” to “varl = var2”
orp FAULTY F_KP_11 loop condition: “——var” to “var — "

no test case failed for some of the faulty versions. The bugs that manifested themselves
are summarized in Table 7.7. The names of the bugs were given by SIR.

Then, the proposed algorithms were executed to generate a (1,2)-CLA and (1, 2)-
CDA for the SUT model. The test scripts were constructed from the CLAs and CDAs and
applied to the set of faulty programs. The faulty interactions located using the CLA-based

test cases were compared with the results of the exhaustive testing.

7.4.2 Experimental Results

The results of the experiments are summarized in Tables 7.8 and 7.9. The two leftmost
columns show the applications and names of the bugs. The remainder of each table is
divided into two parts: the exhaustive testing part and CLA (or CDA) part. Each part

consists of three columns. The “#Tests” column shows the total number of test cases. The
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Table 7.8: CLA: Experimental results for locating faulty interactions

Exhaustive Testing CLA
SUT Name
#Tests #Failed Located #Tests #Failed Located
1-way: {(FastSwithT, FST)}
F_AA2 500 90 32 11 ——
1-way: {(FastSwithT, AlterFast)}
Flex F AA3 500 468 1-way: {(Compability, off)} 32 26 1-way: {(Compability, off)}
4-way: {(Bp, Off), (FastS, FS), (Align, Off), (EqClass, Off)}
F_AA6 500 20 32 5 1-way: {(FastS, FullS)}
1-way: {(FastS, FullS)}
FAULTY _F_KL_6 159 4 3-way: {(SetV, On), (Set4, On), (FileType, ASCII)} 36 2 2-way: {(Set4, On), (FileType, ASCII)}
Gzip
FAULTY FKP_11| 159 79 1-way: {(FileType, ASCII)} 36 20 1-way: {(FileType, ASCII)}
Note:

FastSwithT = Fast Scanner with Table, FST = Fast Scanner Table, AlterFast = Alternate Fast;
Compability = Compability with AT&T Lex; Bp = Bypass use; EqClass = Equivalance Classes;
FastS = Fast Scanner, FS = Fast Scan, FullS = Full Scan;

Set_V = Set V Option; Set 4 = Set 4 Option;
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“#Failed” column shows the number of test cases that failed. The “#Located” column
shows located faulty interactions. Note that the faulty interactions located by exhaustive

testing are the correct answers.

For the two faulty versions denoted by F_ AA 3 and FAULTY F_KP_11, there was
exactly one faulty interaction, and its strength was one. The test cases derived from the

(1,2)-CLAs and (1, 2)-CDAs successfully identified the faulty interaction.

For F_AA _2, there were two faulty interactions, both of strength one, namely, {(FastSwithT,
FST)} and {(FastSwithT, AlterFast)}. Both the CLA-based and CDA-based test cases
failed to locate either of these faulty interactions. Within the CLA-based and CDA-based
test cases, there was no single interaction that appeared in the failed test cases but not
in the remaining 21 passed test cases. However, if it were assumed that there exist two
faulty interactions of strength < 2, the faulty interactions could be identified because no
other interaction pairs coincide with the test outcome. This suggests that even if faulty
interactions cannot be exactly located, the test outcome obtained from CLAs and CDAs

may provide informative clues about them.

Similarly to F_AA_2, the case F_AA_6 also contained two faulty interactions; how-
ever, in this case, one of the faulty interactions was of strength four. In this case, both
the CLA-based and CDA-based test cases correctly located one faulty interaction that of
strength one. The other faulty interaction, namely, {(Bp, Off), (FastS, FS), (Align, On),
(EqClass, Off)}, did not occur in any of the test cases because of its high strength. As a
result, the four-way faulty interaction did not affect the identification of the other faulty

interaction.

The case FAULTY _F_KL_6 contained one faulty interaction whose strength is three.
This means that by definition, the (1, 2)-CLA-based test cases were not able to locate this
interaction. In fact, based on the test outcome, two-way interaction {(Set4, On), (FileType,

ASCII)} was identified as a faulty interaction. This result was not exactly correct, but it is
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useful for fault localization as it is a subset of the correct faulty interaction {(SetV, On),

(Set4, On), (FileType, ASCII)}.

Similarly, the (1, 2)-CDA-based test cases were not able to locate this interaction. The
results of the test cases indicated that there are no faulty 2-way interactions. The results
also indicated that there were two 3-way interactions suspected to be faulty. In contrast
to the CLAs, it was observed from the CDAs that no valid 2-way interactions were faulty
because all valid 2-way interactions appeared in some passed test cases. By definition
of CDAs, all valid interactions of strength < ¢ will appear in some test cases. Thus, it
can be concluded that there were some faulty interactions that have strengths larger than
t (t = 2 in this case). After checking the valid 3-way interactions, it was concluded that
two 3-way interactions were suspicious as faulty. Indeed, one of the faulty interaction

candidates was the truly faulty interaction.

If the number of faulty interactions and their strengths were known before testing, all
faulty interactions could theoretically be identified by CLAs or CDAs. To demonstrate
this, 6-CCAs were also applied to the faulty versions of the two applications. The reason
for using 6-CCAs instead of (2,4)-CLAs or (2,4)-CDAs is that the generation of these
did not terminate within 3h. In contrast, the off-the-shelf CCA generator successfully
generated 6-CCAs within 30min for both SUT models. From Theorem 11 and Corol-
lary 1, 6-CCAs are (2,4)-CLAs and (2,4)-CDAs. The sizes of the 6-CCAs are shown in

Table 7.10.

All faulty interactions in the faulty versions of the applications Flex and Gzip were
identified using the 6-CCA test suites. The number of test cases in the 6-CCA for Flex
was 366, while the 6-CCA for Gzip contained 144 test cases. When compared with the
exhaustive testing, the number of test cases was reduced by 26.8% and 9.4%, respectively.
Note that within the two 6-CCAs, there were a number of redundant test cases for fault

identification. If minimum (2,4)-CLAs and (2,4)-CDAs had been used, the number of
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Table 7.10: (2,4)-CLA and (2, 4)-CDA (6-CCA): Experimental results for locating faulty interactions

# Test
SUT Name Faulty Interactions 6-CCA
Exhaustive Testing | (1,2)-CLA | (1,2)-CDA
used as (2,4)-CLA and CDA
1-way: {(FastSwithT, FST)}
F_AA2 500 32 62 366
1-way: {(FastSwithT, AlterFast)}
Flex F_AA3 1-way: {(Compability, off)} 500 32 62 366
4-way: {(Bp, Off), (FastS, FS), (Align, Off), (EqClass, Off)}
F_AA_6 500 32 62 366
1-way: {(FastS, FullS)}
FAULTY_F KL _6 3-way: {(SetV, On), (Set4, On), (FileType, ASCII)} 159 36 47 144
Gzip
FAULTY_F_KP_11 1-way: {(FileType, ASCII)} 159 36 47 144
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test cases could have been further reduced.

7.4.3 Answer to RQ3

The test cases derived from CLAs and CDAs may fail to locate faulty interactions if there
are more than d faulty interactions or faulty interactions have strength greater than ¢;
however, even in such cases, they can still provide information useful for localization of

faulty interactions.
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CHAPTER 8

RELATED WORK

CIT has been widely used for many years. There have been many reports on the usage
of CIT in real-world testing. Early reports include that of Tatsumi, Fujitsu Ltd in [60].
IBM Global Business Services reported their experience using CIT as solutions for testing
two insurance sector clients in North America [27]. The researchers from IBM Haifa also
shared their stories [26] about using CIT for a customer in the telecommunication industry
and for IBM internal. Microsoft Corporation has been using their CIT tool PICT [14]

since 2000. Am empirical study on using CIT in real-world systems was published in [25].

In CIT, the most studied test suites are in the forms of CAs and CCAs. Many ap-
proaches have been proposed to generate CAs and CCAs. AETG [8] was an early method
for generating CAs. The AETG algorithm is a greedy algorithm that adopts the strategy
of one-test-at-a-time to generate small CAs. In contrast, the greedy algorithm [IPOG [38]
adopts the one-parameter-at-a-time strategy. The IPOG algorithm is used more frequently
as it can generate near-minimum CAs in a very short time. There also exist several meta-
heuristic algorithms for generating CAs and CCAs, such as simulated annealing algo-
rithms [19, 20] and tabu search [18]. The satisfiability-based constructions of CAs and

CCAs can be found in [23,45, 67]. Other research, such as [62-64], explored system
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modeling techniques and test scheduling techniques for CIT. [6,7,21, 36,42] combined

CIT with the field of artificial intelligence.

LAs and DAs were first introduced by Colbourn and McClary in [10]. They analyzed
the mathematical properties of these arrays. As in [10], most studies on LAs and DAs
focus on their mathematical aspects [12,13,41,54,57,58]. The application to screening
experiments for TCP throughput in a mobile wireless network was reported in [3, 11].
Other types of arrays that are intended for fault location include error locating arrays [43,

44] and consecutive detecting arrays [56].

The concept of CLAs was first introduced in [28]. Later, a computational construction
algorithm was proposed in [31]. In [32], the results of applying CLAs to fault identifica-

tion for real-world programs were reported.

In [29], (d,t)-CDAs were introduced for the first time, together with a construction
algorithm using an SMT-solver. The two-step heuristic algorithm was first proposed
in [33]. [30] extended two earlier works: [29] and [33]. In the paper, the implementa-
tion of the algorithm introduced in [33] was improved, and a new set of experiments were

conducted to compare the two different algorithms with the new implementations.

This dissertation expands the two papers [30,32] with examples and new experimental

results.

There are many other approaches to faulty interaction localization without using CLAs,
CDAs, or other related arrays. One of such approach is the use of adaptive testing [4, 5,
39,48-50, 65, 69]. In adaptive testing, when a failure is encountered, new test cases are
adaptively generated and executed to narrow down possible causes. Meanwhile, testing
using CLAs and CDAs is nonadaptive in the sense that test outcomes do not alter fu-
ture test plans. A clear benefit of using nonadaptive testing is that the execution of test
suites, which is often the most time-consuming part of the whole testing process, can be

parallelized.
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CLAs, CDAs, and other arrays of similar kinds are intended to provide sufficient test
outcomes to uniquely identify faulty interactions, while some studies have attempted to
infer faulty interactions from insufficient information with, for example, machine learn-
ing. The studies along this line include [47,55, 68].

Other approaches to identification of faulty interactions can be found in a recent sur-

vey [17].
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CHAPTER 9

CONCLUSION

9.1 Conclusion

This dissertation introduced CLAs and CDAs, which incorporate constraints among test
parameters into LAs and DAs, respectively. CLAs and CDAs generalize LAs and DAs
so that localization of faulty interactions can be performed for systems with constraints.
Several properties of CLAs and CDAs were proved as well as those that relate CLAs and
CDAs with each other and with other array structures, such as CCAs. Then, this disserta-
tion proposed two generation algorithms. The first algorithm generates optimal CLAs and
CDAs using an off-the-shelf satisfiability solver. The second algorithm is heuristic and
generates near-optimal CLAs and CDAs in a reasonable time. The experimental results of
the satisfiability-based algorithm showed that it can generate CLAs and CDAs with min-
imum sizes as long as sufficient generation time is allowed. The results also showed that
the heuristic algorithm scales to problems of practical sizes. The final experiment showed
that both CLAs and CDAs can be used to identify faulty interactions in real-world testing
if the number of faulty interactions and their strengths do not exceed the limitation of d

and ¢ for the arrays.
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9.2 Future Work

There are several possible directions for future work. One is to improve the two algo-
rithms proposed in this dissertation. In the dissertation, the satisfiability-based algorithms
adopted the naive matrix model as a representation of a test suite. However, using other
encoding techniques, such as symmetry breaking, might reduce the solution space and
thus shorten the generation time of the algorithms. In the heuristic algorithms, the test
cases to be checked are chosen at random. Different orders of choosing test cases lead to
different sizes of resulting arrays and different generation times. Finding the best order
of choosing test cases can improve the algorithms as well. The development of new algo-
rithms for CLA and CDA construction also deserves further studies. Both meta-heuristic
search and greedy heuristics may be promising because they have proved to be useful for
the construction of CCAs. Another direction is comparing the capabilities of fault identi-
fication between adaptive testing methods with non-adaptive testing methods with respect

to accuracy of fault identification, testing cost, etc.
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