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Summary

Videos from Closed-Circuit Television (CCTV) cameras are rapidly generated every

minute in accordance with an increasing number of cameras either in public places or

private places in order to increase the efficiency, safety, and security due to criminal and

terrorist attacks. The monitoring proficiency of anomaly events in hundred surveillance

cameras using human labor is ambitious. To overcome this problem, developing intel-

ligent computer vision algorithms to automatically detect events in a video scene is a

viable solution. Anomaly detection in the video has recently gained attention due to its

importance in the intelligent surveillance system. Real-world anomaly events are com-

plicated and it is difficult to define every specific event. Although anomaly detection

algorithms have reached the accuracy level under certain condition, the algorithm may

still be affected by the external and internal variation such as the illumination, direction

of movement object, motion velocity, occlusion and similar object motion.

Even though the performance of the state-of-art methods has been competitive in the

benchmark dataset, the trade-off between the processing time and the accuracy of the

anomaly detection should be considered. This dissertation proposes a framework for

detecting anomalies in video, which designs a "multi-scale U-Net" network architecture

based on generative adversarial network (GAN) structure for unsupervised learning to

detect anomaly in video. To improve the training and testing of the neural network,

Shortcut Inception Modules (SIMs) and residual skip connections are used in the gener-

ator network. Instead of using traditional convolution layers, an asymmetric convolution

was used to reduce the number of training parameters without impacting detection accu-

racy. A multi-scale U-Net kept useful features of an image that were lost during training

caused by the convolution operator. The generator network is trained by minimizing the

reconstruction error on the normal data and then using the reconstruction error as an



iv

indicator of anomalies in the testing phase. This dissertation evaluates the performance

with three benchmark datasets including UCSD Pedestrian, CUHK Avenue and Shang-

haiTech datasets. The experimental results demonstrate that the framework surpasses

the state-of-the-art learning-based methods, which achieved 95.7%, 86.9%, and 73.0%

in terms of AUC. The multi-scale U-Net reduces the number of network parameters by

22.6% compared to the original U-Net architecture. In average, the proposed architec-

ture takes 0.041 seconds per frame. As a result, the complete pipeline can run at 24

frames per second (fps), which is on par or slightly better than the baseline network

architecture, which can run at roughly 22 fps.

This dissertation also proposes a joint representation learning for video anomaly de-

tection. The proposed architecture extracts features from the object appearance and their

associate motion features via different encoders based on ResNet network architecture.

The network architecture is designed to combine spatial and temporal features, which

share the same decoder. Using a joint representation learning approach, the proposed ar-

chitecture effectively learn both appearance and motion features to detect anomalies in

various scene scenarios. The experiments on three benchmark datasets demonstrate the

remarkable detection accuracy with respect to existing state-of-the-art methods, which

achieve 96.5%, 86.9%, and 73.4% in UCSD Pedestrian, CHUK Avenue, and Shang-

haiTech datasets, respectively.
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Chapter 1

Introduction

This dissertation focuses on approaches to detect anomaly in surveillance video using

generative neural network. This chapter describes the research background, objectives

and scopes of this dissertation. Section 1.1 describes the background of the anomaly

detection, followed by motivations and problem statements. Then, Section 1.2 presents

research objectives and contributions of this research. Finally, the overall organization

of this dissertation is summarized in Section 1.3

1.1 Motivation and Problem Statement

Surveillance cameras are crucial that makes to secure shield houses, offices, and sur-

roundings. In recent years, the global surveillance camera market has a significant

growth due to the increase in the adoption at various vanues such as hospitals, streets,

banks, airports, shopping malls, universities, and home security. According to a new

report issued by IHS Markit [1], over one billion surveillance cameras will be installed

worldwide in the end of 2021. With the development of Artificial Intelligence (AI)

technology, along with new innovations in advanced features of the surveillance sys-

tems, Closed Circuit Television (CCTV) cameras are becoming more automated as they

are able to analyse, detect, classify, and track predefinded objects in the video scene.

The report of [2,3] shows that CCTV is associated with a significant reduction in crime.

The findings of the study also revealed evidence of large decreases in crime in other

settings, notably residential regions. Global adoption of AI surveillance is increasing
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Figure 1.1: Percentage of countries by region adopting AI surveillance [4].

at a rapid pace around the world. As shown in Figure 1.1, Feldstein [4] reports that at

least 75 out of 176 countries globally are actively using AI technologies for surveillance

purposes including smart/safe city platform, facial recognition and smart policing.

With COVID-19, the use of contactless technology has also become more popular

and it would further accelerate the growth of the new technology. Many applications

in computer vision (CV) have been proposed in video analytic such as face detection,

human detection, mask detection, object detection, human behavior classification, and

so on. Using video analytics as part of an integrated security system can assist to en-

hance security and safety. In video analytics, the surveillance videos are continuously

analysed in real-time to alert users to things that need attention, which adding an extra

layer of protection by providing security risks before they occur.

Anomaly detection is one of useful applications in CV to detect unusual events in

surveillance video due to the increasing demand in broad domains such as security and

risk management. Using anomaly detection algorithm in video could help to send au-

thorities to the incident quickly enough to disrupt ongoing events, potentially saving
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lives or allowing fleeing criminals to be apprehended quickly. The term "anomaly"

refers to an event that is different from normality. Real-world anomaly events are com-

plicated because of the diversity of possible events. In most surveillance system centers,

monitoring video feeds from hundred CCTV cameras are fairly manual activity using

human labor. It requires operations center engineers to determine if an on-going situ-

ation is an anomaly, which makes this activity error-prone and affected to delays. In

additions, anomaly events generally occur with a low probability, making the effort for

people to track videos wasted.

To overcome this problem, developing intelligent computer vision algorithms to au-

tomatically detect events in a video scene is a viable solution. The challenging to de-

tect an anomaly event is to distinguish the pattern of object movement, i.e. normal or

anomaly, since the video scene captured by surveillance cameras may incur movement

over the time. Video data is high dimensional data containing noise, high variations,

and interactions, making the analysis and defining the anomaly event in the scene more

challenging. Todays anomaly detection approaches have reached the accuracy level un-

der certain condition. However, the algorithm may still be affected by the external and

internal variation such as the illumination, direction of movement object, motion ve-

locity, occlusion and similar object motion. It should be noted that anomaly events in

surveillance video is diverse, it is therefore impossible to learn a model of all that nor-

mal and anomaly events. This dissertation defines anomaly events as those events rarely

occur in the entire video. Video datasets using in this dissertation contain videos of both

normal and anomaly events, whereas the training set contains only the normal event.

In presents, existing anomaly detection approaches learn to model the normal pattern

or normal feature representation from training videos and classify events as abnormal

if they differ from the model. The idea of feature reconstruction from normal training

videos is a commonly used strategy. Further, almost of anomaly detection approaches

can be classified into two categories: handcrafted features [5–7] and deep learning-

based methods [8–13]. Traditional methods based on handcrafted features focused on

understanding, characterizing, and improving features that can be extracted from im-

ages. These handcrafted features usually extract texture, color, or edge information.

However, the complex or crowded scene in the surveillance camera may contain var-

ious objects with occlusions that are difficult to deal with. Recently, video anomaly
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detections based on deep learning have attracted significant attention from the research

community and are able to improve the accuracy of the detection and localization in

complex scenarios by taking advantage of the learnable model of nonlinear transforma-

tion robustness.

Even though the performance of video anomaly detection methods using deep learn-

ing algorithm is improved, it should satisfy the requirements of real-world scenarios de-

tection in terms of high detection accuracy and low processing time. The system should

detect an anomaly immediately to warn the surveillance system officer and the accurate

detecion system can be crucial. Since it is impossible to predict all types of anomalies

in advance that may occur in real-world applications, the system should be able to work

without data labeling. Therefore, this dissertation presents frameworks to address these

criteria. The proposed frameworks based on unsupervised machine learning algorithm,

which is able to detect anomaly in videos without data labeling. Firstly, the framework

focuses on reducing the network parameters and the processing time, while attain the

detection accuracy by employing the Shortcut Inception Modules (SIM), residual skip

connection and asymmetric convolution layers. Secondly, the two encoders structure is

proposed to improve the detection accuracy. The RGB image sequence and the optical

flow are used as inputs of the network, which can be trained to capture both appearance

and motion information.
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Figure 1.2: Overview of this dissertation.

1.2 Research Objectives and Contributions

This section presents the objectives and contributions of this research. The goal of

this research is to create an anomaly detection framework for surveillance video us-

ing unsupervised machine learning, satisfying the requirements on detection accuracy

and the processing time. Figure 1.2 illustrates the overview of this dissertation. This

research improves the performance of video anomaly detecion by focusing on the gen-

erator network of the genrative adversarial network (GAN) in video anomaly detection

framework. Objectives of this dissertation are as follows:

• To develop a framework based on unsupervised machine learning that can auto-

matically detect the anomaly in surveillance videos.

• To reduce the parameters in the neural network, in order to reduce the processing

time of video anomaly detection framework.

• To improve the detection accuracy by investigating the joint representation learn-

ing structure for video anomaly detection.

• To evaluate the performance of video anomaly detection approaches in terms of

the processing time and the detection accuracy.
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Contributions of this dissertation are described as follows.

Firstly, this dissertation proposes a video anomaly detection framework using a

GAN structure. Chapter 3 proposes a framework that focuses on the design of the

network architecture in order to improve the trade-off between detection accuracy and

processing time. Reducing learning parameters of the network can lead to reduce the

processing time, making the video anomaly detection meet the real-time requirements.

In this research, a “multi-scale U-Net” network architecture has been employed which

acts as a generator network. Shortcut Inception Modules (SIMs) and residual skip con-

nection are employed to increase the ability of the training and testing of the neural

network. In the stage of feature extractions, spatial and temporal features are extracted

through the multi-scale U-Net architecture. Further, PatchGAN [14] has been utilized

as a discriminator network to distinguish the ground truth image and the output image

from the generator. This researches also uses the optical flow in training to optimize the

training parameters. Instead of using traditional convolutional neuarl network (CNN)

layers, the proposed framework apply the idea of an asymmetric convolution layer and

increase the width of the network architecture in order to attain both of small model

size and high training efficiency. This research evaluates the performance of the frame-

work with three benchmarks datasets including UCSD Pedestrian, CUHK Avenue, and

ShanghaiTech datasets. Experiments on the benchmark datasets show the effectiveness

of the proposed framework for video anomaly detection. In additions, the results show

that the proposed module acheive better performance in term of detection accuracy com-

pared to the traditional U-Net architecture.

Secondly, some of the anomaly detection approaches use only appearance infor-

mation as the input, which lacks of motion information. Since anomalies in real-world

scenarios are diverse, using only appearance information could not be enough to capture

the anomaly object in video scenes. Therefore, this dissertation designs a new scheme

of convolutional neural network architecture for video anomaly detection. Chapter 4

aims to improves the detection accuracy of video anomaly detection by proposing the

two encoders network structure. The first encoder uses the RGB image sequence as an

input to extract the appearance feature and the second encoder used the optical flow as

an input to extract the motion feature. The proposed network architecture combines a

representation of the appearance and the motion features. Two encoders in the proposed
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network are based on ResNet architecture [15] as its capability of capturing appearance

features. The RGB image sequence and the optical flow are fed to different encoders in

order to improve the feature extraction of the object appearance and the motion. Finally,

features from two encoders are fused to combine useful features obtained by encoding

of two inputs. The network contains 18 layers, where the first 13 layers are encoder

layers consisting of convolutional layers and stacking of residual blocks followed by

the fusion layer, and the remaining is the decoder layers. This research uses a filter size

of 7x7 in the first layer to extract the feature on a large object size in the image. The

experimental results of the proposed network architecture demonstrate the remarkable

detection accuracy with respect to existing state-of-the-art methods.

1.3 Overview of the Dissertation

This dissertation is organized into five chapters including this chapter. Contents of the

remaining chapters are described as follows.

Chapter 2 provides some background and related works of the anomaly detection in

a video. This chapter also provides the knowledge required for understanding the algo-

rithms used in this dissertation such as U-Net and ResNet architecture. Traditional video

anomaly detection and learning-based methods are described in this chapter, including

histogram of oriented gradient (HOG), histogram of optical flow (HOF), autoencoder

(AE), recurrent neural network (RNN), long short term memory (LSTM), generative

adversarial network (GAN). The details of benchmark datasets are described in the re-

maining of this chapter.

Chapter 3 presents the proposed video anomaly detection framework using deep

generative network. A multi-scale U-Net containing SIMs, residual skip connection

and an asymmetric convolution layer are explained in details. The experimental setup

and results of the proposed framework are described and discussed in this chapter.

Chapter 4 explains the details of the proposed network architecture of a joint repre-

sentation learning for anomaly detection in surveillance videos. A feature fusion layer

and a two-encoders structure based on ResNet backbone are described in this chapter.

Chapter 5 summarizes the main results and directions of the future work based on

the research provided in this dissertation.





Chapter 2

Background and Literature Review

In this chapter, the background knowledge, concepts and methods that used for the

main contributions are provided. This chapter also provided literature reviews of video

anomaly detection. Machine learning algorithms based on unsupervised learning are

explained in Section 2.1 such as autoencoder (AE), recurrent neural network (RNN),

long short term memory (LSTM) and generative adversarial network (GAN). Network

architectures using in this dissertation including U-Net and ResNet are explained in

detail in Section 2.2. Next, Section 2.3 explain existing video anomaly detection algo-

rithms including traditional handcrafted features and learning-based methods. Finally,

the details of benchmark datasets are described in the remaining of this chapter.

2.1 Machine Learning Algorithms

Machine learning (ML) is a subfield of AI in which computers learn from data to im-

prove their performance on a certain task without being explicitly programmed. Over

the last few years, ML algorithms are widely used in many research fields and have

demonstrated effectiveness in addressing challenging problems in vision, speech, natu-

ral language processing and understanding, and the other areas with a lot of input data.

There are two main major branches of ML algorithms: supervised learning and unsu-

pervised learning. In supervised learning, labels of the input data are given and it can

be used to improve the model performance, whereas labels are not available in unsu-

pervised learning. Since anomalies are rarely occurred in the video scenes, making it
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Figure 2.1: A strucutre of Autoencoder.

difficult to label any possible anomaly events. Therefore, this dissertation focuses on

solving the problems using unsupervised learning where labels are not available in the

training dataset. In the following subsections, this chapter present unsupervised learning

algorithms using in video anomaly detections including AE, RNN, LSTM, and GAN.

2.1.1 Autoencoder (AE)

In the case of supervised learning problems, the input layer represents the features that

fed into the neural network, and the label assigned to each observation is represented by

the output layer. During the training, the neural network determines which parameters

help minimize the error between the input and its predicted output for each observation

and the true label. In unsupervised learning, the neural network uses multiple hidden

layers to learn representations of the input layer, but the label is not given in the train-

ing. Autoencoder (AE) [16] is one of unsupervised machine learning algorithm, which

comprises two parts, an encoder and a decoder, as illustrated in Figure 2.1. The encoder

gϕ captures the context of the input X by extracting the feature to a vector Z, called

latent vector or representation learning, and the decoder fθ converts this newly learned

representation and output the reconstructed image X ′ to be consistent to its input.

The aims of AE is similar to the concept of dimensionality reduction [17–19]. AE

forced to learn the most useful properties of the input data, capturing the underlying

structure or pattern of the data, which chooses important information to capture and
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discards irrelavant or less important information. Specifically, the latent vector Z is ex-

tracted by the encoder function g(·) parameterized by ϕ and the output is reconstructed

by a decoder function f (·) parameterized by θ . The parameters (ϕ ,θ) are learned to-

gether to reconstruct the output. Mean Square Error (MSE) can be used to as the quality

metric indicating the difference between input and output. MSE loss of AE (LAE(ϕ ,θ))
is calculated as follows.

LAE(ϕ ,θ) =
1
n

n

∑
i=1

(X (i)− fθ (gϕ (X (i))))2, (2.1)

where n is the total number of data elements and X (i) is the input data at the element i.

Variational AE (VAE) [20] is an alternative AE in which the encoder outputs a dis-

tribution instead of a fixed vector in AE. A distribution consists of two vectors, a vector

of means µ and a vector of standard diviations σ . These two vectors form random vari-

ables. The VAE is able to sample across a continous space based on what it has learned

from the input data [21].

2.1.2 Recurrent Neural Network (RNN)

RNN is a type of neural network that is suited for sequential data. The data can be

sentences (sequence of words) or videos (sequence of images). In a traditional neural

network, all inputs (and outputs) are independent of each other, where RNN qualifies

a recurrent data at each time step generally related to the previous one. RNN uses

the "memory," also called "state," to capture the information in the past and used it to

predict the future. In the video task, the RNN uses a convolution neural network (CNN)

to generate feature representations from the input image and passes it to the state. The

state starts as a zero matrix and it is upated with each frame of the video. At the end of

process, the final state is used to generate the output of the RNN.

The main component of RNN is the RNN cell, whose inputs are pass through these

cells. Given a video consists of N frames, the structure of the RNN is depicted in Figure

2.2. Firstly, the cell combines the current state (h0) with the current frame ( f rame1)

to generate a new state (h1). Then, the same process is applied to the next frames. At

the end of this process, we end up with the final state (hn). To generate a new state, the

following equation is calculated.



12 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.2: A basic strucutre of RNN cell for a video.

ht = tanh(Wrecht−1 +Winputxt +b) (2.2)

Variables in Eq. 2.2 are denoted as follows.

• b is the bias.

• Wrec is the recurrent weight matrix, Winput is the weight matrix of the input.

• xt is the input video at frame t.

• ht−1 is the current state, and ht is the new state.

2.1.3 Long Short Term Memory (LSTM)

LSTM [22] is one of ML algorithms that are applied with a sequence data. It is a vari-

ant of the basic RNN. LSTM presented a new idea by incorporating the recurrent gate

called "forget gate," which prevents backpropagated errors from vanishing or exploding

occurred in RNN. In other words, LSTM worked well with long sequences data and

can be stacked together to capture higher level information. The structure of LSTM is

illustrated in Figure 2.3 and summarized with these equations as follows.

ft = σ(Wf × [ht−1,xt ]+b f ) (2.3)

it = σ(Wi × [ht−1,xt ]+bi) (2.4)

Ĉt = tanh(WC × [ht−1,xt ]+bC) (2.5)

Ct = ft ×Ct−1 + it ×Ĉt) (2.6)

ot = σ(Wo × [ht−1,xt ]+bo) (2.7)
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Figure 2.3: The structure of typical LSTM unit.

Figure 2.4: Graph of Sigmoid and Tanh functions.

ht = ot × tanh(Ct) (2.8)

Let (Wf ,b f ),(Wi,bi),(WC,bC) and (Wo,bo) are weight matrixs and biases of the for-

get gate ft , the input gate it , the cell state gate Ct and the output gate ot , respectively.

Equation 2.3 represents forget gate layer ft at time t, which decides what information to

throw a way from cell state using sigmoid function σ(·). The sigmoid function outputs

values between 0 and 1, as demonstrated in Figure 2.4. Equations 2.4 and 2.5 are used

to determine new information is to be added to. Equation 2.6 combines old and new

information. The hidden state ht is computed based on the cell state Ct and the output

gate ot using tanh (tanh outputs value between -1 to 1, as shown in Figure 2.4), which

determines how much the cell state affects the output.
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Figure 2.5: GAN representation.

2.1.4 Generative Adversarial Network (GAN)

GAN [23] is a generative model in neural network that uses an adversarial scheme,

which can be trained in an unsupervised manner. Typically, GANs consist of two net-

works, the first network is a generator and another network is a discriminator. As shown

in Figure 2.5, given an input noise vector z, the generator G learns to generate a synthe-

sized data (fake image xG), that becomes negative training examples for the discrimina-

tor D. The discriminator D learns to distinguish the output from the generator network

whether it is a fake or real image x. During the training, the generator network uses the

gradients to update its parameters and improve its ability to synthesize data. Therefore,

at each iteration, the discriminator D (parameterized by PD) tries to maximize the value

function V (G,D), where the generator G (parameterized by PG) tries to minimize it, as

shown in Equation 2.9.

min
G

max
D

V (G,D) = min
G

max
D
Ex[logD(x,PD)]+Ez[1− logD(G(z,PG),PD)]. (2.9)

We assume that the label of real image is 1 and the fake image is 0. The first term

of V (G,D) represents the averaged log probability estimated by D that x is real. The

second term represents the averaged log probability estimated by D that the output of

the G is fake.
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Figure 2.6: Example of U-Net architecture.

2.2 Network Architectures

Neural networks are complex structures made of artificial neurons that can take in mul-

tiple inputs to produce a single output. The advantage of neural network is that the net-

work has a great ability to learn different levels of representation from both inputs and

feature maps. Currently, there are many neural networks proposed in AI community to

solve problems in classification, detection and other CV problems, in order to improve

the performance and reducing the computation time. U-Net [24] and ResNet [15] are

neural networks that are commonly used in CV researches, especially in video anomaly

detection. This chapter presents the details of these two network architectures in the

following subsections.

2.2.1 U-Net Architecture

U-Net architecture [24] is widely used in object segmentation tasks. The architecture

was originally proposed for biomedical image segmentation. The network structure

of U-Net is illustrated in Figure 2.6. U-Net consists of two parts: the downsampling

part, where input images are compressed spatially but expanded the channel-wise, and
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upsampling part, where representations are expanded spatially while the number of

channls is reduced. U-Net architecture looks similar to the AE structure where the

downsampling is the encoder and the downsampling act as the decoder. Unlike AE, U-

Net proposed skip connections that are employed between the upsampling and down-

sampling parts of the network. Using skip connection allow information to shortcut

parts of the network and flow through to later layers [25].

2.2.2 ResNet Architecture

One of the most powerful network architecture in ML called a residual network or

ResNet [15]. Designing a deep neural network architecture by staking more layers with

gradient-based learning methods and backpropagation may encounter the gradients of

the loss function leads to zero, making the network hard to train. This problems is called

a vanishing gradient problem [15,26]. Therefore, ResNet provides an efficient approach

to create a deep neural network, which builds the stack of residual blocks on top of each

other, where each block contains a skip connection that sums the input and output of

the block, before passing to the next layer. Figure 2.7 shows a single residual block of

ResNet architecture. The residual block can be defined with Equation 2.10 as follows.

y = F(x,{Wi})+ x, (2.10)

where x and y are the input and output of the layer. The function F(x,{Wi}) is the resid-

ual mapping to be learned. The form of F is flexible, weight layers can increase more

than two layers and it can be fully connected layers or convolutional layers. ResNet

network uses a 34-layer plain network architecture inspired by VGG-19 [27], in which

the shortcut connection is added. As a result, ResNet improves the efficiency of deep

neural networks with more neural layers while minimizing errors of the network.



2.3. ANOMALY DETECTION IN VIDEO 17

Figure 2.7: Residual block in ResNet architecture [15].

2.3 Anomaly Detection in Video

Anomaly detection approaches can be classified into two main categories including a

hand-crafted feature and a learning-based method. Traditional methods based on hand-

crafted features [5–7, 28–31] focused on understanding, characterizing, and improving

features that can be extracted from images. These handcrafted features usually extract

texture, color, or edge information. The most widely used handcrafted features for

anomaly detection in the video are the histogram of oriented gradients (HOG) [32],

and histogram of optical flow (HOF) [33, 34]. Lu et al. [6] proposed method to detect

abnormal by using sparse combination learning. This proposed method directly finds

the most suitable combination in the dictionary by evaluating the least square error to

represent the input whether normal or abnormal events. Shangdong Wu et al. [35] pro-

posed anomaly detection approach by utilizing low-level trajectory features to describe

the abnormal event. Frequency-based analysis is performed in [36] to automatically

discover rules of normal events, where anomalies could be classified from events that

deviate from these rules. Gaussian mixture models (GMMs) also used in [37] to model

the spatial scene structure from training trajectories. Zhao et al. [32] proposed a fully

unsupervised dynamic sparse coding approach based on an online sparse reconstruction

of query signals from learned event dictionaries. Yang et al. [5] proposed a dictionary

selection model called the sparse reconstruction cost. Anomaly is determined by sparse

reconstruction cost, through a weighted linear reconstruction. However, hand-crafted
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Figure 2.8: Appearance and Motion DeepNet (AMDN) framework for video anomaly
detection proposed by [10].

features based methods require prior knowledge to define specific parameters for any

possible abnormal patterns, which is difficult to adapt to huge variations of different

video scenes in real-time anomaly detection, especially in the presence of occlusion,

noise, camera motion, and changes in illumination [38].

Recently, deep learning techniques have been attempted to overcome the limitations

of the handcrafted feature by automatically extracting the high-level feature represen-

tations from the image. Learning-based methods currently achieve significant perfor-

mance in a wide range of computer vision applications, which is improving the ac-

curacy and reducing false alarm rate of the detection and recognition [12, 13, 39–45].

Learning-based methods also applied in relative to video anomaly detection such as ac-

tion recognitions [46–50]. Motion features are required to model the object movement

in a video. A 2D convolution layer will output an image that loses temporal feature of

video signal. Only 3D convolution can extract the temporal feature and output in vol-

ume. Xu et al. [10] presented a novel Appearance and Motion DeepNet (AMDN) based

on unsupervised deep learning for anomalous event detection, as illustrated in Figure

2.8. This method learns discriminative feature representation of both appearance and

motion patterns, early and late fusion scheme are performed to combine appearance and

motion features for discovering unusual activities as well as a joint representation are

presented to capture the correlation between both features. Finally, to detect anomalous

events, one-class SVMs has been proposed followed by late fusion in the last layer of

the network.
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Figure 2.9: Narrowed normality clusters for video anomaly detection proposed by [11].

Ionescu et al. [11] presented abnormal event detection based on a two-stage outlier

elimination algorithm. The method overview is illustrated in Figure 2.9. This work used

appearance features extracted from the last convolutional layer of a pre-trained neural

network to augment spatio-temporal cubes. The algorithm eliminates the outlier using

k-mean clustering and classifies by training a one-class SVM. Each spatio-temporal

cube is evaluated against each one-class SVM model to get a set of normality scores

during the testing process. They obtain an anomaly prediction map for each frame by

piecing together the cubes from all frames.

Pang et al. [51] applied self-trained deep ordinal regression to detect video anomaly

events. The pretrained ResNet-50 [15] is used as a feature extractor. Self-training is a

semi-supervised machine learning [52] that has an ability to cope with a small dataset

in training. It creates more consistent labeled data in training a model with a small la-
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beled dataset and then applying the trained model to unlabeled data. ResNet-50 [15]

also employed in [41] framework called AnomalyNet. AnomalyNet consists of three

blocks: the motion fusion block, the feature transfer block, and the coding block. The

motion fusion block compresses video clips into a single image while removing un-

wanted background elements. Then compressed images are fed to the feature transfer

block. Finally, features are extracted based on a transferable model.

Sultani et al. [53] proposed a framework for training anomaly and normal videos

using Multiple Instance Learning (MIL) by dividing the videos and video segments

into instance and bags. The deep anomaly ranking model has been used to predict

high anomaly scores in order to consider as anomaly event. To avoid labor-intensive

temporal annotations of anomalous segments in training videos, the model is learned

using deep multiple instance ranking framework with weakly labeled data. This work

also introduced a dataset of real-world surveillance videos with 13 realistic anomalies.

Fan et al. [43] proposed video anomaly detection method based on gaussian mix-

ture variational autoencoder. The overview of this proposed method is shown in Figure

2.10. The assumption is that the normal samples can be associated with at least one

Gaussian component of a GMM, while anomalies do not belong to any Gaussian com-

ponent. The AE contains the encoder-decoder structure corresponding to feature extrac-

tion and model construction which permits to learn a mapping from high dimensional

data to a low dimensional latent presentation while ensuring reconstruction accuracy.

This method consists of two-stream framework, i.e. spatial and temporal streams. The

spatial stream operates on RGB frames and captures the appearance anomalies while the

temporal stream is generated to capture the long-term temporal information of motion

anomalies. Finally, a sample based method is used to detect anomalies based on the

joint probabilities of all the components in the GMM.

Luo et al. [54] utilizes convolutional LSTM based on AE (ConvLSTM-AE) to mem-

orize all past frames in order to model both appearance and motion information. De-

convolution network was integrated to reconstruct past frames, and using reconstruction

error to identify whether an anomaly event occurs. Another work proposed in [44] it-

eratively updates sparse coefficients via a stacked RNN to detect anomalies in videos.

Chong et al. [8] proposed an end-to-end architecture for learning video representation,

which included two main components, one for the spatial component and the other for
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Figure 2.10: Gaussian mixture variational autoencoder for video anomaly detection
[43].

the temporal component. The network architecture of [8] is shown in Figure 2.11. The

structure of this network architecture is based on AE that aims to reconstruct the in-

put image. The network of comprises LSTM layers in between encoders and decoders

to learn the sequence spatial features from encoders. There is another approach that

augment the AE algorithm. Gong at al. [55] proposed the improvement of AE with

a memory module called memory-augmented autoencoder (MemAE). The proposed

memory module consists of a memory to record the prototype encoded patterns of nor-

mal events from extracted features. The reconstruction error is also used as the anomaly

detect criterion. The extended version of AE called variational AE (VAE) [20] is em-

ployed in video anomaly detection called Conv-VRNN [39], which considers temporal

information in future frame prediction. An overview of Conv-VRNN is shown in Fig-

ure 2.12. Unlike the encoder in AE, which produces a vector called the latent variable,

VAE produces a distribution on the latent variable that characterizes the pattern of nor-

mal events. This work also combines the ConvLSTM with VAE to better capture the

temporal relationship among frames in a video.

A generative network is one of learning-based methods proposed to generate more

realistic datasets in anomaly detection. The generative network aims to infer the data

distribution to generate new images that could belong to the same set as training data.

Liu, et al. proposed a framework for anomaly detection based on GAN [12]. The

framework overview is demonstrated in Figure 2.13. To generate a more realistic future
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Figure 2.11: Convolution LSTM based on AE [8].

Figure 2.12: Variational Autoencoder (VAE) for video anomaly detection [39].

frame, a U-Net was used as a primary prediction network (a.k.a. a generator network).

A motion feature is used in training by enforcing the optical flow between predicted

images and ground truth images to be consistent. A skip connection is applied in each

layer of the U-Net architecture [24] to improve the quality of the reconstruction image.

At the end of the training phase, the discriminator network was used to distinguish an

image created by the generator from the ground truth image. To improve the efficiency

of training GAN for anomaly detection, Dong et al. [40] proposed a semi-supervised

approach with a dual discriminator-based GAN, which considers more motion informa-

tion in video clips compared with [12] work. However, some features are lost in these

generator networks during training due to convolution operators of each layer. Network
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architectures in these approaches are required extensive search for varying the depth

of the network in order to balance the trade-off between the detection accuracy and

the processing time. In addition, real-world video scenes are diverse, making anomaly

detection more challenging. Motion information could be considered as input in the

anomaly detecion method to capture the object characteristic in videos.

To resolve this issue, this dissertation presents a framework that consists of a multi-

scale U-Net as a generator network. This research proposes the Shortcut Inception

Module (SIM) and residual skip connection to make a network learn higher-level fea-

tures of images. The proposed framework also employs the idea of asymmetric con-

volution instead of traditional convolution layer to reduce the number of parameters.

Furthermore, this dissertation proposes a joint representation learning to improve the

detection accuracy of video anomaly detection, the network architecture contains two

separate encoders to first extract appearance and motion features. The feature maps

from two encoders are then fused and fed to the same decoder. In practical, due to the

ambiguous nature, rare occurrences, large variance within anomaly events, and the data

imbalance problem of the video anomalies, it is almost impossible to accurately define

the video anomalies with the associated labels in most cases. Hence, the recent trend

demonstrates that unsupervised and semi-supervised training processes are far more ef-

fective than supervised video anomaly detection methods. This dissertation is based on

fully unsupervised learning manner, which learns to detect anomaly in videos without

data labeling. The details of two proposed frameworks are described in Chapter 3 and

Chapter 4, respectively.

The summary of related works are shown in Table 2.1
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Figure 2.13: Future frame prediction for video anomaly detection based on GAN struc-
ture [12].

Table 2.1: Summary of related works for video anomaly detection based on machine
learning algorithms.

Authors Years Network
backbones

Learning algo-
rithms

Datasets

Xu et al. [10] 2015 * AE UCSD, Train
Luo et al. [54] 2017 * ConvLSTM-AE Avenue, UCSD,

Subway, Exit
Luo et al. [44] 2017 * Stacked RNN Avenue, UCSD,

Subway, Shang-
haiTech

Chong et al. [8] 2017 * ConvLSTM-AE Avenue, UCSD,
Subway, Exit

Sultani et al. [53] 2018 Pretrained
C3D

Multiple instance
learning (MIL)

private dataset

Liu et al. [12] 2018 U-Net GAN UCSD, Avenue,
ShanghaiTech

Lu et al. [39] 2019 VGG VAE-LSTM UCSD, Avenue
Gong at al. [55] 2019 * AE UCSD, Avenue,

ShanghaiTech
Ionescu et al. [11] 2019 - K-means, SVM Avenue, Subway,

UMN
Pang et al. [51] 2020 ResNet-50 Self-trained

deep ordinal
regression

UCSD, Subway,
UMN

Fan et al. [43] 2020 * VAE UCSD, Avenue
Dong et al. [40] 2020 U-Net GAN UCSD, Avenue,

ShanghaiTech
* These approaches uses their own designs of the network backbone.
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2.4 Benchmark Datasets for Video Anomaly Detection

This section presents the benchmark datasets used in video anomaly detection. This

dissertation evaluates the performance with three benchmark datasets including UCSD

Pedestrian, CUHK Avenue and ShanghaiTech. These datasets contain only normal

events in training set, whereas the testing set contains both normal and anomaly events.

The input image resolution of these datasets are different, in this dissetation, each input

is resized to 256x256 with three color channels. The annotation of anomaly is labled

within the anomaly frame in each testing videos. The details of each datasets are de-

scribed in following subsections and the summary of these three benchmark datasets are

presented in Table 2.2.

2.4.1 UCSD Pedestrian Dataset

The UCSD Pedestrian dataset [56] provides two subsets, Ped1 and Ped2. The Ped1

subset contains 34 training and 36 testing videos, and the Ped2 contains 16 training

and 12 testing videos. Aanomaly events in the UCSD Pedestrian dataset includes cars,

scooters, wheelchairs, bicycles and people walking across a walkway or in the grass.

The camera viewpoints of Ped1 and Ped2 subsets are different. Ped1 subset contains a

group of people walking towards and away from the camera, where Ped2 subset contains

pedestrian movement parallel to the camera plane, and hence anomaly objects of these

video scenes become more diverse. The example of training and testing frames of Ped1

and Ped2 subsets are shown in Figure 2.14 and Figure 2.15, respectively.

2.4.2 CUHK Avenue Dataset

Another widely used dataset in video anomaly detection is CUHK Avenue dataset [6].

This dataset contains 16 training and 21 testing videos with a total of 47 abnormal events

such as abnormal objects, throwing, and strange actions. This dataset is captured from

single outdoor surveillance camera looking at a side of the building with a group of

people walking surroundings. The size of people may vary due to the camera setting

and angle of this dataset. The CUHK Avenue dataset contains some challenging such

as cameras shaking and ourlier in training dataset. The example of this dataset is shown
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Figure 2.14: Example frames of UCSD Pedestrian 1 subset (red bounding box indicates
anomaly region and using only for visualisation purposes).

Figure 2.15: Example frames of UCSD Pedestrian 2 subset (red bounding box indicates
anomaly region and using only for visualisation purposes).

in Figure 2.16.

2.4.3 ShanghaiTech Dataset

The ShanghaiTech dataset [12] is one of challenging datasets in video anomaly detec-

tion. This dataset covers challenging scenarios for video anomaly due to large variations

in appearance and viewpoint. Almost all of anomaly datasets for video contain videos

captured from fixed camera viewpoint, which lacks variations in camera angles and

video scenes. The ShanghaiTech dataset consists of 13 scenes with complex light con-

ditions and camera angles of 330 training and 107 testing videos. Moreover, several
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Figure 2.16: Example frames of CUHK Avenue dataset (red bounding box indicates
anomaly region and using only for visualisation purposes).

Figure 2.17: Example frames of ShanghaiTech dataset (red bounding box indicates
anomaly region and using only for visualisation purposes).

scenes for a given scenario have substantial perspective changes, making this dataset

more challenging. Example of training and testing frames of the ShanghaiTech dataset

are illustrated in Figure 2.17.
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Table 2.2: Summary of benchmark datasets for video anomaly detection using in this
dissertation.

Datasets Number
of videos

Training/Testing
videos

Example anomalies

UCSD Ped1 [56] 70 34/36 Cars, skateboards, scooters,
wheelchairs, bicycles and peo-
ple walking across a walkway

UCSD Ped2 [56] 28 16/12 Cars, skateboards, scooters and
bicycles

CUHK Avenue [6] 37 16/21 Running, throwing and strange
action

ShanghaiTech [12] 437 330/107 Cars, skateboards, scooters,
bicycles motorbikes, strollers,
and motion anomalies such as
fighting, chasing, pushing and
jumping

2.5 Summary

This chapter has provided the background knowledge of machine learning algorithms in

video anomaly detection. Fundamentals of autoencoder (AE), recurrent neural network

(RNN), long short term memory (LSTM) and generative adversarial network (GAN) are

presented in Section 2.1. Network architectures are described in Section 2.2. Next, the

literature reviews of related works in video anomaly detection are provided, where the

approaches can be classified to two categories such as handcrafted features and learning-

based approaches. Details of benchmark datasets are presented in Section 2.4. This

dissertation used three benchmark datasets to evaluate the performance of the proposed

frameworks, including UCSD Pedestrian, CUHK Avenue and ShanghaiTech datasets.

The experimental results and discussions on these datasets describe in Chapter 3 and

Chapter 4.



Chapter 3

Multi-scale U-Net for Video Anomaly
Detection

This chapter presents the proposed framework for video anomaly detection using deep

generative network structure. The proposed multi-scale U-Net, Shortcut Inception Mod-

ule (SIM) and residual skip connection are described in details. Improvement of the tra-

ditional U-Net network architecture and the design idea of the shortcut inception module

are also described. Experimental results are reported and evaluation in several aspects

is coordinated in the remaining of this chapter.

3.1 Introduction

U-Net network architecture [24] is widely used as feature extraction method in CV re-

searches especially in object segmentation tasks. Problems of using U-Net as a network

backbone are that the network requires extensive architecture search for varying the

depth of the network and its skip connection from encoder to decoder losts some infor-

mative features affecting the detection accuracy due to convolution operations. To solve

these problems, this chapter proposes a framework of the convolutional neural network

architecture for video anomaly detection. The proposed network uses the U-Net as the

baseline architecture. This research modifies and replaces original convolution layers by

SIM and increased the width of the network to make it possible to learn the input image

in higher-level features. This research also applies the idea of asymmetric convolution
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layers so that its representation capability is equivalent to the traditional convolution

layer, while it reduces the number of network parameters, requiring less computation in

comparison with the traditional U-Net architecture.

The rest of this chapter is organized as follows. Section 3.2 describes multi-scale U-

Net and explains the ability of the SIM and residual skip connection designs to preserve

the information during training the neural network. Section 3.3 discusses the results of

the evaluation, and Section 3.4 summarizes this chapter.

3.2 Multi-scale U-Net for Video Anomaly Detection

In this section, details of the proposed framework are described, as illustrated in Figure

3.1. Firstly, given an input image sequence, a multi-scale U-Net is utilized as a generator

network G to extract spatial features. Figure 3.2 shows the structure of the multi-scale

U-Net. This research employs SIM inside the multi-scale U-Net to make the network

learning the feature in different scales. Instead of the traditional skip connection of

the U-Net architecture, residual skip connections are applied in the architecture for the

purpose of propagating spatial information which was lost during the convolutional op-

eration from encoder to decoder. Using these residual skip connections is beneficial for

learning higher feature of an image. In the training phase, the optical flow of the gener-

ated image is enforced to be close to that of the ground truth image in order to optimize

the network parameters. Further, PatchGAN [14] uses as a discriminator network D into

the framework to distinguish between the generated image and the ground truth image.

Details of each part describes in subsections below.

3.2.1 Shortcut Inception Modules (SIM)

The U-Net architecture mainly consists of two parts, the encoder and the decoder. The

encoder captures the context of the image by extracting the feature to a small vector

size, called latent vector. On the other hand, the decoder aims to extract the feature and

recover image details from the vector, where the upsampling layer is applied to increase

the size of the feature. Typically, the encoder involves a sequence of two consecutive

3×3 convolution layers followed by a max-pooling operation. As explained in [57], the
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Figure 3.1: Overview of the proposed multi-scale U-Net network architecture.

sequence of two 3×3 convolutional layers actually resembles a 5×5 convolution opera-

tion with the same input size and output size. To improve the learning efficiency of the

U-Net architecture with feature learning in different scales, a viable way is to integrate

5×5 and 7×7 convolution operations in parallel to the 3×3 convolution operation. An-

other possible option for improving the detection performance is increasing the size of

the network architecture in terms of the depth and the width [58, 59].

This work uses the U-Net as the base network architecture for the generator network,

however, original convolution layers are modified and replaced by SIM and increased

the width of the network to make it possible to learn the input image in higher-level

features. Figure 3.3 (c) illustrates a proposed SIM inspired by the idea of an incep-

tion module [57] (Figure 3.3 (a)). As described above, the convolutional layers can be

replace with the inception blocks. Although the performance gain can be expected in

introducing the larger size of convolution operations such as 5×5 and 7×7, the parallel

network structure consumes high computational capacity. In the same manner as [57],

this research factorizes and stacks the larger size of 5×5 and 7×7 convolution operators

by a 3×3 convolution operation, the output of the last two 3×3 convolutions compe-

tent to the 5×5 and 7×7 convolutions approximately as shown in Figure 3.3 (b). This

research also takes an advantage of a feature concatenation to extract the feature from

different scales [58]. Then adding a shortcut connection with an additional 1×1 con-
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Figure 3.2: Proposed multi-scale U-Net architecture.

Table 3.1: The architecture details of proposed generator network.

Depth SIM Layer (filter size) #filters Output
1 SIM 1 & 8 AC,AC,AC,C1 16, 32, 48, 96 128×128×96
2 SIM 2 & 7 AC,AC,AC,C1 32, 64, 96, 192 64×64×192
3 SIM 3 & 6 AC,AC,AC,C1 64, 128, 192, 384 32×32×384
4 SIM 4 & 5 AC,AC,AC,C1 128, 256, 384, 768 16×16×768

AC= Asymmetric convolution layer, C1= Convolution layer of a 1x1 filter size.

volutional layer to add more non-linearity information to enhance the representation as

well as reducing the network size without a performance penalty [60]. In [61], the tradi-

tional convolution layers are utilized in the inception module. Unlike [61], the proposed

block uses the ideas of the asymmetric convolution operation, which aims to factorize

a standard two-dimensional convolution kernel into two one-dimensional convolution

kernels. For example, a 3×3 convolution is equivalent to a stacking of a 3×1 convolu-

tion followed by a 1×3 convolution, which reduces the size of the model and increasing

the training efficiency [57, 62, 63].

Details of the proposed SIM are summarized in Table 3.1. This research assigns Wj

to control the number of filters used in the proposed module in each depth j. Inside

the SIM, this work assigns W j
6 , W j

3 , and W j
2 to each of three convolution layers, respec-
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Figure 3.3: The comparison design of (a) the inception module [57] using 3×3, 5×5,
and 7×7 convolutional filters in parallel. (b) Factorizing and stacking the larger size of
5×5 and 7×7 convolution operators in inception module by a 3×3 convolution opera-
tion, and (c) the proposed structure of a Shortcut Inception Module (SIM).

tively, as this combination achieved the best results in the preliminary experiment. Wj

is computed as follows.

Wj = α ∗N j, (3.1)

where N j is the number of filters in the corresponding depth j of the multi-scale U-Net,

and α is a scalar coefficient. Typically, the filters should be gradually increased to pre-

vent the memory usage of the earlier depth from rising the deeper network. Therefore,

the number of filters N j of the network architecture in depth j is set to 25+ j. This re-

search selected α = 1.5 as it keeps the number of parameters slightly below that of the

original U-Net.

3.2.2 Residual Skip Connections

The U-Net architecture [24] also proposed the idea of using the skip connections be-

tween the encoder after the max-pooling operation and the decoder before the deconvo-

lution layer. The aim of the skip connection is to propagate the spatial information that

lost in every convolution operation from the encoder and the decoder, which is benefi-

cial in recovering the clean image. As the design of the U-Net architecture, the features

from the encoder are supposed to be low-level features, and the features from the de-

coder are supposed to be higher level as they are computed in a deep network. Thus,
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Figure 3.4: The comparison design of (a) the residual learning block [15] with (b) the
proposed residual skip connection.

the fusion of these sets of features from encoder-decoder could cause feature learning

which affects the reconstruction output.

Following the deep residual network [15] that proposed the idea of using residual

learning block, as shown in Figure 3.4 (a), This research introduces residual skip con-

nection blocks to the proposed generator network. As illustrated in Figure 3.4 (b), the

proposed residual skip connection block consists of an asymmetric convolution layer of

a 3×1 convolution layer followed by a 1×3 convolution layer and a shortcut connection

of a 1×1 convolution layer, which allows the network to learn additional information

from the input. In the generator network, instead of concatenating the feature maps

from the encoder to the decoder, this work passes encoder features as the input through

a chain of the residual skip connection block, and the output of the block is concate-

nated with the decoder features. A significant amount of image detail could be lost or

corrupted using more convolution layers [64]. Therefore, the residual skip connections

make it possible to keep useful features lost by the convolution operation, and it is ben-

eficial to train the deep network while still having fewer parameters. This work denoted

a residual skip connection block as RBi, j, where i is the number of blocks used in each

depth j. Basically, the feature maps of each layer in the encoder are likely to decrease

as the image down-sampling in every step using the max-pooling layer. Therefore, this

work gradually decreases the number of RBi, j, which is i = 4,3,2,1 in each depth j,

respectively. The number of filters in the block is set to the same with N j in each depth

j.
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3.2.3 Objective Functions

At the training time, G learns to map the ground truth image I and the generated image

Î to be consistent. The intensity loss Lint and the gradient loss Lgd of two images along

two spatial dimensions are used to minimize the reconstruction error between I and Î,

which can be computed as follows.

Lint(Î − I) = ∥Î − I∥2
2 (3.2)

Lgd(Î − I) = ∥|Îi, j − Îi−1, j|− |Ii, j − Ii−1, j|∥1

+∥|Îi, j − Îi, j−1|− |Ii, j − Ii, j−1|∥1.
(3.3)

The optical flow loss is applied to capture the motion information and to optimize

training parameters. This work used a FlowNet [65] to estimate the optical flow. Fol-

lowing [12], this work applies the L1 distance loss to calculate the motion penalty:

L f low(F̂ −F) = ∥F̂ −F∥2, (3.4)

where F is the ground truth optical flow estimated from two consecutive frames It and

It+1 and F̂ is the output optical flow calculated by It and the generated image Ît+1.

In addition to the loss functions described above, this research used an adversarial

loss based on Generative Adversarial Network (GAN) [23] to constrain the training

process and improve model performance [12]. Given an input image sequence, the

proposed multi-scale generator G is trained by the adversarial loss, which encourages

the generator to generate a more realistic image. A discriminator network D is used

to optimize model parameters to make generated image Î indistinguishable from the

ground truth image I. This work utilized PatchGAN [14] as a discriminator network.

The PatchGAN maps Î to small patches, where a discriminator takes each individual

patch and predicts whether a patch come from I or Î. A discriminator outputs a scalar

which classifies the patch from I as class 1 and the patch from Î as class 0. The goal of

training G is to generate an image where D classifies it into class 1. A mean square error

loss function LMSE and adversarial loss Ladv were used as objective functions which can
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be calculated as follows.

Ladv(Î) = ∑
m,n

1
2

LMSE(Dgen(Î)m,n,1) (3.5)

LMSE(Î, I) = (Î − I)2, (3.6)

where Dgen(·) is the output of the discriminator network of Î and m,n denote patch

indexes. Finally, the proposed final objective function L can be computed as follows.

L = λintLint +λgdLgd +λadvLadv +λ f lowL f low, (3.7)

where λint ,λgd,λadv, and λ f low are weights of each loss.

3.2.4 Anomaly Detection using Regularity Score

In testing, this work computed the anomaly score in every frame of the testing video

by measuring the similarity of the ground truth image and the generated image. In the

same manner with [12], Peak Signal to Noise Ratio (PSNR) is utilized as the detection

score in the framework. The PSNR calculates the image quality, where a low value of

PSNR means that the image is likely to be abnormal. PSNR is defined as

PSNR(It , Ît) = 10log10
[maxÎ]

2

1
N ∑N

i=0(pt(i)− p̂t(i))2
, (3.8)

where maxÎ represents the maximum intensity value in a generated image Î. pt(i) and

p̂t(i) are pixel intensity of index i in I and Î, respectively. N denotes the total number

of pixels in the image. Then, the proposed framework obtain a regularity score R(t) for

each frame t in the video by normalizing the PSNR to the range of [0,1] as follows:

R(t) =
PSNR(It , Ît)−minPSNR

maxPSNR−minPSNR
, (3.9)

where the terms minPSNR and maxPSNR are the minimum and maximum values of the

PSNR in every frame of each test video. Finally, the proposed framework detects

anomaly event in an image based on a threshold of regularity score R(t).



3.3. EXPERIMENTAL RESULTS 37

Figure 3.5: PSNRs and loss values of network trained on UCSD Pedestrian, CUHK
Avenue and ShanghaiTech datasets.

3.3 Experimental Results

3.3.1 Experimental Setup

The implementation is based on Tensorflow framework [66] using Python 3.7. The net-

work architecture was trained and tested on NVIDIA Geforce RTX 2080 GPU. Training

is based on Adam optimizer [67] and the batch-size is fixed to 4. In the training and

testing, input images of the network are resized to 256 x 256 of 3 color channels and

normalize it to the range of [-1, 1]. To be consistent with [12], this research has set

4 consecutive images as the input image sequence. Using large models and datasets,

Adam optimizer can efficiently solve practical deep learning problems [67] and it per-

formed better for training GAN as discussed in [68]. Figure 3.5 shows learning curves

trained with different datasets. The final loss of all datasets are significantly decreased

in high iterations. On the other hand, PSNRs of the generated image and the input are

increased, showing the effectiveness of training the proposed network architecture.

Following the framework described in [12], this work uses a receiver operating char-
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acteristic (ROC) curve, Equal Error Rate (EER), and corresponding an area under the

curve (AUC) to evaluate the detection performance for qualitative comparison. ROC is

used to visualise the performance of a binary classifier by plotting the trade-off between

the true positive rate (TPR) and the false positive rate (FPR) with varying its discrimina-

tion threshold. TPR and FPR can be calculated as Eq.3.10 and 3.11, respectively. AUC

used in most previous works [8, 12, 42–44, 54] measures the entire of two dimensional

area of ROC, which provides an aggregate measure of performance across all possi-

ble classification thresholds. In this study, higher AUC values and lower EER values

indicated better performance of anomaly detection.

T PR =
#T P

#T P+#FN
(3.10)

FPR =
#FP

#FP+#T N
(3.11)

where #T P denotes the number of true positive samples, #FP denotes the number of

false positive samples, #T N denotes the number of true negative samples, and #FN

denotes the number of false negative samples.

Table 3.2: Area under curve (AUC) comparison of proposed framework and [8, 12, 42–
44, 54] works on UCSD and CUHK Avenue dataset

Methods
UCSD Ped1 UCSD Ped2 CUHK Avenue

AUC EER AUC EER AUC EER
Chong et al. [8] 89.9% 12.5% 87.4% 12.0% 80.3% 20.7%
Conv-AE [42] 81.0% 27.9% 90.0% 21.7% 80.0% 25.1%

ConvLSTM-AE [54] 75.7% - 88.1% - 77.0% -
StackRNN [44] - - 92.2% - 81.7% -
Fan et al. [43] 94.9% 11.3% 92.2% 12.6% 83.4% 22.7%
Liu et al. [12] 83.1% 23.5% 95.4% 12.0% 84.9% 20.6%
The Proposed 85.3% 23.6% 95.7% 12.0% 86.9% 20.2%
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3.3.2 Results on the UCSD and the CUHK Avenue Dataset

This research has compared the proposed with several anomaly detection methods based

on deep learning, including AE [8, 42, 43], LSTM [44, 54], and GAN [12] on UCSD

Pedestrian dataset. As summarized in Table 3.2, the proposed framework surpasses

the results reported in the previous works on UCSD Ped2 in terms of detection ac-

curacy. The error rate is comparable to most recent works [8, 12, 42–44, 54]. The

performance in UCSD Ped1 is 85.3% whereas the best result of 94.9% is achieved

by Fan et al. [43], who employed a two-stream network that combines the appearance

and motion of anomalies which may incur considerable computational cost. Another

work that achieved better AUC is Chong et al. [8] that utilized the stacked convolution-

deconvolution layer with ConvLSTM. Moreover, this work has compared the proposed

framework with the baseline framework that utilized the U-Net architecture [12], the

proposed framework outperformed their performances on both UCSD Ped1 and Ped2

subset with an AUC of 85.3% and 95.7%, respectively.

The comparative results of the CUHK Avenue dataset are also presented in Table

3.2. The proposed framework further surpass their existing learning-based methods,

reaching the best AUC of 86.9% and EER of 20.2%, indicating that the proposed frame-

work can precisely detect and reduce the false alarm rate of the anomaly detection in the

CUHK Avenue dataset. The AUC is 2.0% above the baseline method reported in Liu et

al. [12], and more than around 7% higher than other frameworks based on AE [8,42,54].

Table 3.3: Area under curve (AUC) comparison of proposed framework and [8, 12, 42–
44, 54] works on ShanghaiTech dataset.

Methods
ShanghaiTech
AUC EER

StackRNN [44] 68.0% -
Liu et al. [12] 72.8% 32.6%
The Proposed 73.0% 32.3%
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3.3.3 Results on the ShanghaiTech Dataset

ShanghaiTech is one of the most challenging dataset in video anomaly detection. It con-

tains various type of anomalies, video scenes and complicated movement. Unlike train-

ing the network with only one video scene in UCSD Pedestrian and Avenue datasets,

the network was trained in several scenes in the ShanghaiTech dataset. Experimental

results presented in Table 3.3 demonstrated that the proposed framework achieved 73%

of AUC, which is 5% better than the work that utilized the stacked of RNN layers. The

performance is slightly improved compared to the baseline method [12].

3.3.4 Qualitative Result of the Proposed Framework

The qualitative results of the proposed framework on three testing videos in the CUHK

Avenue, the UCSD Ped2 and the ShanghaiTech dataset are illustrated in Figure 3.6.

We can see that the generated image tends to achieve a high regularity score while

decreasing when the anomaly occurred (e.g., running, bicycle intrusion). This research

also shows the output of the proposed generator network in Figure 3.7. The result of the

generated image and the image difference compared to the ground truth image indicates

that the image quality of the anomaly area is blurred and distorted due to the fact that

the generator network could not reconstruct the unseen object from the learned model

(i.e. "throwing", "car and bicycle approaching", "strange action"), resulting in a lower

regularity score in these video scenes. Although the proposed framework can detect

anomalies in general scenes with cleared object appearances, the proposed framework

still has limitations to detect occluded anomaly objects. For example, when a group of

people occludes the anomaly object, the proposed framework cannot detect this kind of

anomalies. In addition, camera viewpoints cause anomaly objects in different scenes

to appear differently, which also affects the detection accuracy. For example, camera

viewpoints of the UCSD Ped1 and UCSD Ped2 are different (Figure 3.7), the looks of

cycling people in the UCSD Ped1 dataset is similar to walking people. However, cycling

people can be clearly classified as an anomaly event in the UCSD Ped2 dataset.
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Table 3.4: AUC for anomaly detection of networks with/wo SIM and residual skip
connection. The results are evaluated on CUHK Avenue dataset.

Model AUC
U-Net [24] 84.9%

Only residual skip connection 85.1%
Only SIM 86.6%

Multi-scale U-Net 86.9%

Table 3.5: Parameter number comparison of the proposed multi-scale U-Net with/wo
and the original U-Net [24]

Model Number of Parameters
U-Net (baseline) [24] 10,468,932

Proposed wo asymmetric convolution 9,748,210
Proposed with asymmetric convolution 8,102,784

3.3.5 Performance Comparison on Employing an Individual Mod-
ule of the Proposed Framework

Table 3.4 summarizes the performance evaluation result of the proposed framework for

confirming individual contribution. The experiments are performed on CUHK Avenue

dataset using two parts based on the original U-Net architecture as a baseline: the incep-

tion module and the residual skip connection. Firstly, the traditional skip connections

were replaced by the residual skip connection. Secondly, two consecutive 3x3 convo-

lution layers were replaced by the inception module. The result shows that the resid-

ual skip connection slightly improves when included in the U-Net architecture, while

employing the inception module is even more effective to the detection performance.

However, combining the inception module and residual skip connection achieved the

best detection performance compared to the original U-Net architecture.
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3.3.6 Running Time Analysis

A comparison of the parameter number of the original U-Net architecture and proposed

ones are presented in Table 3.5, demonstrating that the multi-scale U-Net reduces the

number of parameters by 22.6% for training and testing an anomaly detection while im-

proving the accuracy. This work also evaluated the computational cost of the proposed

framework on the Shanghaitech dataset. The running times were measured on NVIDIA

Geforce RTX 2080 Ti GPU with 24 GB of RAM. The proposed framework takes 0.041

seconds per frame in averaged. Hence, it can run at 24 frames per second(fps) within

the entire pipeline, which is on par or slightly better than using the baseline network

architecture [24] that is able to run at about 22 fps. Overall, the processing time of the

proposed framework is speeded up by 9% on average.

3.4 Summary

This chapter presented a framework based on multi-scale U-Net architecture for

anomaly detection in video. The inception modules are employed instead of using

the traditional convolution layers utilized in the original U-Net, making the multi-scale

U-Net has an ability to learn image features in different scales. The skip connections

were replaced by the proposed residual skip connections including shortcut connections,

which increase the ability to train a deeper network while still having fewer parameters.

In the feature extraction part, an asymmetric convolution kernel is applied to reduce

the number of network parameters without degrading the detection accuracy. As a re-

sult in both qualitative and quantitative, the proposed framework based on multi-scale

U-Net achieved better performance with a lightweight model and less memory usage

compared to other learning-based anomaly detection approaches. The overall result il-

lustrated that the design of the proposed framework is able to capture appearance and

motion information to detect anomalies in real-world scene scenarios.
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Figure 3.6: Qualitative results of the proposed framework on three testing videos in (a)
CUHK Avenue, (b) UCSD Ped2 and (c) ShanghaiTech dataset. Colored window shows
ground truth anomaly region.
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Figure 3.7: An example of the generated image of the proposed in all datasets: CUHK
Avenue, UCSD Ped1, Ped2, and Shanghaitech datasets. The top row is ground truth
images, the middle shows generated images, and the bottom row is an image difference
between ground truth and generated images.



Chapter 4

Joint Representation Learning for
Video Anomaly Detection

This chapter presents a method to detect anomaly in surveillance video using GAN

structure based on a joint representation learning. The network architecture consists of

two encoders, one for appearance feature and another one for motion feature. The RGB

image sequence and the optical flow are fed to different encoders in order to improve

the feature extraction processes. The details of the proposed two encoders structure and

network architecture are described in Subsection 4.2.1 and 4.2.2, respectively. In the

remaining of this chapter, experimental results and discussions are provided.

4.1 Introduction

Recently, video anomaly detections based on deep learning have attracted significant at-

tention from the research community and are able to improve the accuracy of the detec-

tion and localization in complex scenarios. Many researches in video anomaly detection

attempted to model the normality pattern using unsupervised learning [12, 13, 39–44].

These approaches extract the feature from the input RGB image and reconstruct the

output to be the same as inputs. Then the reconstruction error is performed to compute

the anomaly score. However, using only the appearance information in these network

structures is not capable of capturing enough object characteristics for video anomaly

detection. Therefore, this research proposes a joint representation learning structure for
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anomaly detection. The proposed architecture consists of two encoders that extract the

feature from the appearance and the motion. The appearance and motion features are

extracted using ResNet architecture [15]. The ResNet architecture is adopted as the

generator network, as it allows information from previous layers in the network to skip

ahead of one or more layers. Thus, the ResNet architecture can be trained in many

layers without suffering from the vanishing gradient problem.

4.2 Joint Representation Learning for Video Anomaly

Detection

An overview of the proposed method is visualized in Figure 4.1. The proposed net-

work architecture consists of two separate encoders to extract appearance and motion

features. The feature maps from two encoders are then fused and fed to the same de-

coder. This work utilized ResNet [15] as the network backbone due to its capability of

capturing appearance features. The objective of the generator network is to minimize

the reconstruction error between the input image and the generated image by the learned

model. Then this work uses the reconstruction error to compute the regularity score. A

normal scene is expected to have a high score in the testing phase, whereas an anomaly

is expected to have a low score.

4.2.1 Two Encoders Structure

AE is a type of unsupervised learning, which consists of encoder and decoder parts.

The encoder takes an input image to extract the feature into a small size vector called

a latent representation. In contrast, the decoder aims to reconstruct the original image

from the latent representation. Unlike the traditional AE, this research instead employed

two encoders. The first encoder used the RGB image sequence as an input to extract the

appearance feature and the second encoder used the optical flow as an input to extract

the motion feature. In addition, this work uses ResNet [15] as a network backbone in

the proposed architecture. ResNet was designed to allow information from previous

layers in the network to skip ahead of one or more layers, which has shown impressive

performance in anomaly detection and action recognition benchmarks [41, 69, 70].
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Figure 4.1: The overview of the proposed method based on two encoders network struc-
ture.

The generator network G (as shown in Figure 4.1) aims to generate the output im-

age X̂t+1 that looks similar to the ground truth image Xt+1. Specifically, given input

image sequence (...,Xt−2,Xt−1,Xt), the spatial encoder takes the image sequence as in-

put, whereas the temporal encoder uses the motion information by generating the optical

flow Ft using Flownet [71]. The optical flow uses the change of the image intensity of

two consecutive frames to calculate the motion information caused by the movement of

the object itself or the camera movement. In the proposed method, this work computed

the optical flow using Xt−1 and Xt of the input image sequence. The feature maps of two

encoders are then fused and fed to the same decoder.

4.2.2 Network Architecture

The detail of the proposed network architecture is described in Table 4.1. The network

contains 18 layers; the first 13 layers are encoder layers consisting of convolutional

layers and stacking of residual blocks. RGB images and optical flow are fed to a separate

encoder. A fusion layer is applied in the middle of the network, followed by the decoder
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Figure 4.2: Residual block.

layer in the remaining. In detail, the input fed into the first layer with a filter size of

7×7 with a stride of 1 and 64 feature maps are generated so as to output a feature map

of 256×256×64, this work uses the large filter size in the first layer of the network in

order to extract the feature on a large object size in the image.

The structure of the residual block is illustrated in Figure 4.2. A residual block

contains two 3×3 convolutional layers with 512 filters and the stride of 1, Rectified

Linear Unit (ReLU) activation function [72] is applied after each convolution layer.

Each residual block contains a skip connection that adds the input and the output of

the convolutional layer before passing the output to the next layer. In the middle of the

network, a fusion layer is utilized to combine a feature map from two encoders with

the output of 32×32 and 1024 feature maps. Finally, the decoder comprises the reverse

architecture of the encoder. Three 3×3 deconvolutional layers and a 7×7 convolutional

layer are placed at the end of the network architecture to form a decoder part.

4.2.3 Model Learning

Generally, the AE approach in video anomaly detection aims to learn the useful features

of normal events. As the structure of the proposed network consists of two encoders, this

research considered the intensity loss Lint , and gradient loss Lgd of the generated image

X̂ and the ground truth X as the main objective functions to minimize the reconstruction

error, which can be calculated as follows.

Lint(X̂ −X) = ∥X̂ −X∥2
2 (4.1)
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Table 4.1: The proposed network model structure and configuration.

Layer Filter Size/Stride #filters Output

Encoders

S1, T1 Conv(7×7)/1 64 256×256×64
S2, T2 Conv(3×3)/2 128 128×128×128
S3, T3 Conv(3×3)/2 256 64×64×256
S4, T4 Conv(3×3)/2 512 32×32×512

S5-13, T5-13 Residual block 512 32×32×512
Fusion 14 Features fusion 1024 32×32×1024

Decoder

15 DeConv(3×3)/2 256 64×64×256
16 DeConv(3×3)/2 128 128×128×64
17 DeConv(3×3)/2 64 256×256×64
18 Conv(7×7)/1 3 256×256×3

Conv = Convolutional layer, DeConv = Deconvolutional layer
S = the spatial encoder layer, T = the temporal encoder layer.

Lgd(X̂ −X) = ∥|X̂i, j − X̂i−1, j|− |Xi, j −Xi−1, j|∥1 +∥|X̂i, j − X̂i, j−1|− |Xi, j −Xi, j−1|∥1,

(4.2)

where i, j is the spatial index of an image.

In addition, PatchGAN [14] is utilized as a discriminator network D in the proposed

architecture to discriminate X̂ from X , which maps X̂ to small patches and takes each

individual patch to predict whether a patch comes from X or X̂ . An output of D is

a scalar that classifies the patch from X as class 1 and the patch from X̂ as class 0.

The goal of training G is to generate an image where D classifies it into class 1. The

adversarial loss Ladv can be calculated as follows.

Ladv(X̂) = ∑
m,n

1
2

LMSE(Dgen(X̂)m,n,1) (4.3)

LMSE(X̂ ,X) = (X̂ −X)2, (4.4)

where this work denoted Dgen(.) as the discriminator network of the generated image

X̂ and m,n denote patch indexes. Finally, the objective function L can be computed as

follows.
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L = λintLint +λgdLgd +λadvLadv, (4.5)

where λint ,λgd,λadv are weights of each loss.

4.2.4 Anomaly Detection

This research quantifies the normalities or abnormalities by using only the generator

network G in the testing phase. The work proposed by [12] and Mathieu et al. [73]

proved that Peak Signal to Noise Ratio (PSNR) is a more optimal metric to evaluate the

quality of the next frame prediction. Therefore, PSNR is utilized as the detection score,

where high PSNR indicates that the image is more similar to the ground truth, which

considers to be a normal event. PSNR can be calculated as follows.

PSNR(Xt , X̂t) = 10log10
[maxX̂ ]

2

1
N ∑N

i=0(pt(i)− p̂t(i))2
, (4.6)

where maxX̂ represents the maximum intensity value in a generated image X̂ . pt(i)

and p̂t(i) are pixel intensities of index i in X and X̂ , respectively. N denotes the total

number of pixels in the image. Finally, a regularity score R(t) at frame t is obtained by

normalizing the PSNR to the range of [0,1] as follows:

R(t) =
PSNR(Xt , X̂t)−minPSNR

maxPSNR−minPSNR
, (4.7)

this work denoted minPSNR and maxPSNR as the minimum and the maximum among

PSNRs of all frames in testing video.

4.3 Experimental Results

4.3.1 Implementation Details

This research performed the experiment on three benchmark anomaly datasets including

the UCSD Ped2 [56], the CUHK Avenue [6], and the ShanghaiTech [12]. The training

set of each dataset contains only normal events. Input images are resized to 256×256

with three color channels. This research has set 4 consecutive images as the input im-
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age sequence. The network was trained on Tensorflow using NVIDIA RTX 2080 Ti

GPU. In the preliminary experiment, this work achieved the best performance by set-

ting λint ,λgd,λadv to 2, 1, and 0.05, respectively. In the same manner as [12, 13, 39, 40],

this work plot the receiver operating characteristic (ROC) curve and compute the area

under the curve (AUC), and use it as the evaluation metrics.

Table 4.2: Performance comparison with [12, 13, 39–44] on CUHK Avenue, UCSD
Ped2, and ShanghaiTech dataset

Methods CUHK Avenue UCSD Ped2 ShanghaiTech
Conv-AE [42] 80.0% 85.0% 60.9%
Luo et al. [44] 81.7% 92.2% 68.0%
Fan et al. [43] 83.4% 92.2% -
Liu et al. [12] 84.9% 95.4% 72.8%

Spatio-Temporal U-Net [13] 84.5% 96.5% -
Dual Discriminator [40] 84.9% 95.6% 73.7%

AnomalyNet [41] 86.1% 94.9% -
Conv-VRNN [39] 85.7% 96.1% -

The Proposed 86.9% 96.5% 73.4%

4.3.2 Results of the Proposed Architecture Compared with Learning-
based Methods

Table 4.2 shows the results of the proposed method compared with several learning-

based methods, including two-stream network architectures, AE and GAN. The pro-

posed method achieved an AUC of 86.9% and 96.5% in the CUHK Avenue and the

UCSD Ped2, respectively, which is outperforming the existing methods. The result of

the ShanghaiTech dataset is 73.4% and it was also improved compared to the work

based on AE [42, 44] and GAN [12], but slightly lower than the work from Dong et

al. [40] that utilizes both appearance and motion discriminator-based of the generative

adversarial network.

This research demonstrated the qualitative result of the proposed method on testing

videos in the CUHK Avenue and the UCSD Ped2 datasets in Figure 4.3 and Figure 4.4,

respectively. It can be seen that the proposed method can detect anomaly events, even
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Figure 4.3: Qualitative results of the proposed method on Avenue dataset.

Figure 4.4: Qualitative results of the proposed method on UCSD Ped2 dataset.

in the case of the video scene of crowded people. However, for some of the anomaly

events (i.e., strange action), such as people running across the video scene, the regularity

score is rapidly changed to low due to the fact that the motion pattern of the people

movement is unseen in the trained model. For example, in Figure 4.4, when the car was

approaching the video scene, the regularity score trend slowly decreased comparing to

Figure 4.3. This seems to be because only some part of the car has appeared in the

scene, and the proposed method is not able to detect an anomaly object, but when the

whole part of the car gets in the scene, the regularity score is completely low.
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Table 4.3: AUC comparison of the network backbone in the proposed network architec-
ture on UCSD Ped2, CUHK Avenue and ShanghaiTech dataset

Network Backbone CUHK Avenue UCSD Ped2 ShanghaiTech
U-Net [24] 85.3% 95.1% 72.6%
ResNet [15] 86.9% 96.5% 73.4%

4.3.3 Performance Comparison of using Different Network Back-
bones

The performance of the proposed network architecture was evaluated through a com-

parison with the conventional U-Net network backbone. All the setting is kept in the

same condition including the latent vector size, filter size, number of filters and training

hyperparameters. As shown in Table 4.3, the proposed network architecture utilizing

the ResNet as a backbone network achieved better performance compared to the U-Net

network in terms of detection accuracy. Therefore, this work adapts ResNet as the gen-

erator network in the proposed method. The effectiveness of using a different network

backbone is also discussed in AnomalyNet [41]. The ResNet backbone achieved higher

performance compared to some network backbones that are used in the classification

and detection task. The result suggests that the network backbone is essential for the

generator network in GAN to keep a useful feature during the feature extraction process.

4.4 Summary

This chapter proposed a joint representation learning for anomaly detection in surveil-

lance video. The network architecture consists of two encoders. The first encoder used

the RGB image sequence to extract the appearance feature, and the second encoder used

the optical flow to extract the motion feature. Feature maps from two encoders are fused

and fed to the same decoder. This research used a ResNet [15] as the network backbone.

The experiment results on three benchmark datasets show the effectiveness of the pro-

posed method in terms of detection accuracy compared to the existing learning-based

video anomaly detection methods.





Chapter 5

Conclusion and Future Work

5.1 Summary of Methods and Contributions

In present, machine learning algorithms show promising performance in the context of

AI in various area.Video analytic applications are widely developed in the past decade,

making a surveillance system more autonomous. Anomaly detection in surveillance

video is essential part in security system and attracts attention in computer vision re-

search community. Since anomaly events in surveillance video is diverse, it is impos-

sible to define all possible events of normal and anomaly video. Moreover, video data

is high dimensional data containing noise, high variations, and interactions, making

the analysis and defining the anomaly event in the scene more challenging. This dis-

sertation proposed the framework for video anomaly detection based on unsupervised

machine learning structure to extract semantic representations from video data. These

representations are then used to detect whether the video scene is normal or abnormal

events. Methods proposed in this dissertation are based on a generative network, which

shows the effectiveness of detection accuracy while reducing the processing time and

the error of the detection in real-world scenarios. This dissertation consists of two con-

tributions, where each contribution used different neural network architecture. The first

contribution used the multi-scale U-Net that reduces the processing time, where the

second contribution aims to improve the detection accuracy by utilizing the ResNet ar-

chitecture. The ResNet consumes high computational resource due to the fact that the

network architecture contains many layers compared to the multi-scale U-Net, making
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these two contributions have different directions. In summary, this dissertation provides

the following contributions to solve the problems in anomaly detection in surveillance

video.

• Multi-Scale U-Net: Currently, most of the network architecture in video anomaly

detection attempted to balance the detection accuracy and the processing time. In

the generative network, some features are lost in the generator during training due

to convolution operators of each layer, which affected to the accuracy. In Chapter

3, this dissertation proposed a video anomaly detection based on GAN structure.

The network architecture is based on the U-Net but some modifications are ap-

plied. this work employ Shortcut Inception Module (SIM) and residual skip con-

nection to the generator network called multi-scale U-Net, to make the network

learning higher-level features. Although neural networks acheived significant per-

formance in terms of detection accuracy, speed and computational cost should be

considered for real-world applications. Therefore, this research apply the idea of

an asymmetric convolution layer and increase the width of the network architec-

ture in order to attain both of small model size and high training efficiency. The

proposed multi-scale U-Net reduces the parameter number of training and testing,

while the anomaly detection accuracy still significantly improves.

• Joint representation learning: Typically, the input of neural network in video

anomaly detection approach contains only the appearance information and it is not

capable of capturing enough object characteristics for video anomaly detection. In

Chapter 4, this dissertation proposed a joint representation learning structure for

anomaly detection. This research designed a convolutional neural network for

video anomaly detection that combines a representation of the appearance and

the motion features. The proposed network architecture consists of two encoders

based on ResNet architecture. The RGB image sequence and the optical flow are

fed to different encoders in order to improve the feature extraction of the object

appearance and the motion. This research proposed features fusion of encoders

to combine useful features obtained by encoding the appearance and the motion

features.

• Evaluations on several benchmark datasets: To measure the performance, this

dissertation evaluate the proposed framework and network architecture with three
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benchmark datasets of different scene scenarios including the UCSD Pedestrian,

the CUHK Avenue and the ShanghaiTech datasets. Experiments on the bench-

mark datasets show the effectiveness of the proposed framework and network

architecture for video anomaly detection in terms of both detection accuracy and

processing time.

5.2 Future Work

The proposed designs of network architecture based on generative network currently

achieved a significant improvements in terms of detection accuracy and processing time.

However, the generator network is unable to distinguish an ambiguous anomalous ob-

ject in a scene such as some part of anomaly object is occluded by other objects, same

motions but classifies as different events (e.g. the people running in the park is classi-

fied as normal event but the people running in the bank might be classified as anomaly

event). For future work, this research will explores on experimenting on applying pre-

processing techniques such as background segmentation, human detection before pass-

ing to the feature extraction processes to illuminate unwanted objects. Next, this re-

search will redesigns the network architecture to used the motion features for training,

in order to capture both the appearance and the motion of the object characteristic and

to enhance the performance of the anomaly detection. As the improvement of AI tech-

nologies are attractive by the researchers and the CCTV camera are more automated,

we will also explore the usage of computational resources such as memory size, power

consumption, and the processing time in order to make the video anomaly detection

framework able to work in the embedded system for real-world computer vision appli-

cations. Further, the results of testing anomaly detection including anomaly scenes and

anomaly objects in the real-world scenario can be collected, these data can be used to

create another dataset for anomaly detection and action recognition tasks.
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