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Summary

Videos from Closed-Circuit Television (CCTV) cameras are rapidly generated every
minute in accordance with an increasing number of cameras either in public places or
private places in order to increase the efficiency, safety, and security due to criminal and
terrorist attacks. The monitoring proficiency of anomaly events in hundred surveillance
cameras using human labor is ambitious. To overcome this problem, developing intel-
ligent computer vision algorithms to automatically detect events in a video scene is a
viable solution. Anomaly detection in the video has recently gained attention due to its
importance in the intelligent surveillance system. Real-world anomaly events are com-
plicated and it is difficult to define every specific event. Although anomaly detection
algorithms have reached the accuracy level under certain condition, the algorithm may
still be affected by the external and internal variation such as the illumination, direction

of movement object, motion velocity, occlusion and similar object motion.

Even though the performance of the state-of-art methods has been competitive in the
benchmark dataset, the trade-off between the processing time and the accuracy of the
anomaly detection should be considered. This dissertation proposes a framework for
detecting anomalies in video, which designs a "multi-scale U-Net" network architecture
based on generative adversarial network (GAN) structure for unsupervised learning to
detect anomaly in video. To improve the training and testing of the neural network,
Shortcut Inception Modules (SIMs) and residual skip connections are used in the gener-
ator network. Instead of using traditional convolution layers, an asymmetric convolution
was used to reduce the number of training parameters without impacting detection accu-
racy. A multi-scale U-Net kept useful features of an image that were lost during training
caused by the convolution operator. The generator network is trained by minimizing the

reconstruction error on the normal data and then using the reconstruction error as an
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indicator of anomalies in the testing phase. This dissertation evaluates the performance
with three benchmark datasets including UCSD Pedestrian, CUHK Avenue and Shang-
haiTech datasets. The experimental results demonstrate that the framework surpasses
the state-of-the-art learning-based methods, which achieved 95.7%, 86.9%, and 73.0%
in terms of AUC. The multi-scale U-Net reduces the number of network parameters by
22.6% compared to the original U-Net architecture. In average, the proposed architec-
ture takes 0.041 seconds per frame. As a result, the complete pipeline can run at 24
frames per second (fps), which is on par or slightly better than the baseline network
architecture, which can run at roughly 22 fps.

This dissertation also proposes a joint representation learning for video anomaly de-
tection. The proposed architecture extracts features from the object appearance and their
associate motion features via different encoders based on ResNet network architecture.
The network architecture is designed to combine spatial and temporal features, which
share the same decoder. Using a joint representation learning approach, the proposed ar-
chitecture effectively learn both appearance and motion features to detect anomalies in
various scene scenarios. The experiments on three benchmark datasets demonstrate the
remarkable detection accuracy with respect to existing state-of-the-art methods, which
achieve 96.5%, 86.9%, and 73.4% in UCSD Pedestrian, CHUK Avenue, and Shang-

haiTech datasets, respectively.
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Chapter 1
Introduction

This dissertation focuses on approaches to detect anomaly in surveillance video using
generative neural network. This chapter describes the research background, objectives
and scopes of this dissertation. Section 1.1 describes the background of the anomaly
detection, followed by motivations and problem statements. Then, Section 1.2 presents
research objectives and contributions of this research. Finally, the overall organization

of this dissertation is summarized in Section 1.3

1.1 Motivation and Problem Statement

Surveillance cameras are crucial that makes to secure shield houses, offices, and sur-
roundings. In recent years, the global surveillance camera market has a significant
growth due to the increase in the adoption at various vanues such as hospitals, streets,
banks, airports, shopping malls, universities, and home security. According to a new
report issued by IHS Markit [1], over one billion surveillance cameras will be installed
worldwide in the end of 2021. With the development of Artificial Intelligence (Al)
technology, along with new innovations in advanced features of the surveillance sys-
tems, Closed Circuit Television (CCTV) cameras are becoming more automated as they
are able to analyse, detect, classify, and track predefinded objects in the video scene.
The report of [2,3] shows that CCTYV is associated with a significant reduction in crime.
The findings of the study also revealed evidence of large decreases in crime in other

settings, notably residential regions. Global adoption of Al surveillance is increasing
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Figure 1.1: Percentage of countries by region adopting Al surveillance [4].

at a rapid pace around the world. As shown in Figure 1.1, Feldstein [4] reports that at
least 75 out of 176 countries globally are actively using Al technologies for surveillance
purposes including smart/safe city platform, facial recognition and smart policing.

With COVID-19, the use of contactless technology has also become more popular
and it would further accelerate the growth of the new technology. Many applications
in computer vision (CV) have been proposed in video analytic such as face detection,
human detection, mask detection, object detection, human behavior classification, and
so on. Using video analytics as part of an integrated security system can assist to en-
hance security and safety. In video analytics, the surveillance videos are continuously
analysed in real-time to alert users to things that need attention, which adding an extra
layer of protection by providing security risks before they occur.

Anomaly detection is one of useful applications in CV to detect unusual events in
surveillance video due to the increasing demand in broad domains such as security and
risk management. Using anomaly detection algorithm in video could help to send au-

thorities to the incident quickly enough to disrupt ongoing events, potentially saving
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lives or allowing fleeing criminals to be apprehended quickly. The term "anomaly"
refers to an event that is different from normality. Real-world anomaly events are com-
plicated because of the diversity of possible events. In most surveillance system centers,
monitoring video feeds from hundred CCTV cameras are fairly manual activity using
human labor. It requires operations center engineers to determine if an on-going situ-
ation is an anomaly, which makes this activity error-prone and affected to delays. In
additions, anomaly events generally occur with a low probability, making the effort for

people to track videos wasted.

To overcome this problem, developing intelligent computer vision algorithms to au-
tomatically detect events in a video scene is a viable solution. The challenging to de-
tect an anomaly event is to distinguish the pattern of object movement, i.e. normal or
anomaly, since the video scene captured by surveillance cameras may incur movement
over the time. Video data is high dimensional data containing noise, high variations,
and interactions, making the analysis and defining the anomaly event in the scene more
challenging. Todays anomaly detection approaches have reached the accuracy level un-
der certain condition. However, the algorithm may still be affected by the external and
internal variation such as the illumination, direction of movement object, motion ve-
locity, occlusion and similar object motion. It should be noted that anomaly events in
surveillance video is diverse, it is therefore impossible to learn a model of all that nor-
mal and anomaly events. This dissertation defines anomaly events as those events rarely
occur in the entire video. Video datasets using in this dissertation contain videos of both

normal and anomaly events, whereas the training set contains only the normal event.

In presents, existing anomaly detection approaches learn to model the normal pattern
or normal feature representation from training videos and classify events as abnormal
if they differ from the model. The idea of feature reconstruction from normal training
videos is a commonly used strategy. Further, almost of anomaly detection approaches
can be classified into two categories: handcrafted features [5—7] and deep learning-
based methods [8—13]. Traditional methods based on handcrafted features focused on
understanding, characterizing, and improving features that can be extracted from im-
ages. These handcrafted features usually extract texture, color, or edge information.
However, the complex or crowded scene in the surveillance camera may contain var-

ious objects with occlusions that are difficult to deal with. Recently, video anomaly
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detections based on deep learning have attracted significant attention from the research
community and are able to improve the accuracy of the detection and localization in
complex scenarios by taking advantage of the learnable model of nonlinear transforma-
tion robustness.

Even though the performance of video anomaly detection methods using deep learn-
ing algorithm is improved, it should satisfy the requirements of real-world scenarios de-
tection in terms of high detection accuracy and low processing time. The system should
detect an anomaly immediately to warn the surveillance system officer and the accurate
detecion system can be crucial. Since it is impossible to predict all types of anomalies
in advance that may occur in real-world applications, the system should be able to work
without data labeling. Therefore, this dissertation presents frameworks to address these
criteria. The proposed frameworks based on unsupervised machine learning algorithm,
which is able to detect anomaly in videos without data labeling. Firstly, the framework
focuses on reducing the network parameters and the processing time, while attain the
detection accuracy by employing the Shortcut Inception Modules (SIM), residual skip
connection and asymmetric convolution layers. Secondly, the two encoders structure is
proposed to improve the detection accuracy. The RGB image sequence and the optical
flow are used as inputs of the network, which can be trained to capture both appearance

and motion information.
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Figure 1.2: Overview of this dissertation.

1.2 Research Objectives and Contributions

This section presents the objectives and contributions of this research. The goal of
this research is to create an anomaly detection framework for surveillance video us-
ing unsupervised machine learning, satisfying the requirements on detection accuracy
and the processing time. Figure 1.2 illustrates the overview of this dissertation. This
research improves the performance of video anomaly detecion by focusing on the gen-
erator network of the genrative adversarial network (GAN) in video anomaly detection

framework. Objectives of this dissertation are as follows:

* To develop a framework based on unsupervised machine learning that can auto-
matically detect the anomaly in surveillance videos.

* To reduce the parameters in the neural network, in order to reduce the processing
time of video anomaly detection framework.

» To improve the detection accuracy by investigating the joint representation learn-
ing structure for video anomaly detection.

* To evaluate the performance of video anomaly detection approaches in terms of

the processing time and the detection accuracy.
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Contributions of this dissertation are described as follows.

Firstly, this dissertation proposes a video anomaly detection framework using a
GAN structure. Chapter 3 proposes a framework that focuses on the design of the
network architecture in order to improve the trade-off between detection accuracy and
processing time. Reducing learning parameters of the network can lead to reduce the
processing time, making the video anomaly detection meet the real-time requirements.
In this research, a “multi-scale U-Net” network architecture has been employed which
acts as a generator network. Shortcut Inception Modules (SIMs) and residual skip con-
nection are employed to increase the ability of the training and testing of the neural
network. In the stage of feature extractions, spatial and temporal features are extracted
through the multi-scale U-Net architecture. Further, PatchGAN [14] has been utilized
as a discriminator network to distinguish the ground truth image and the output image
from the generator. This researches also uses the optical flow in training to optimize the
training parameters. Instead of using traditional convolutional neuarl network (CNN)
layers, the proposed framework apply the idea of an asymmetric convolution layer and
increase the width of the network architecture in order to attain both of small model
size and high training efficiency. This research evaluates the performance of the frame-
work with three benchmarks datasets including UCSD Pedestrian, CUHK Avenue, and
ShanghaiTech datasets. Experiments on the benchmark datasets show the effectiveness
of the proposed framework for video anomaly detection. In additions, the results show
that the proposed module acheive better performance in term of detection accuracy com-

pared to the traditional U-Net architecture.

Secondly, some of the anomaly detection approaches use only appearance infor-
mation as the input, which lacks of motion information. Since anomalies in real-world
scenarios are diverse, using only appearance information could not be enough to capture
the anomaly object in video scenes. Therefore, this dissertation designs a new scheme
of convolutional neural network architecture for video anomaly detection. Chapter 4
aims to improves the detection accuracy of video anomaly detection by proposing the
two encoders network structure. The first encoder uses the RGB image sequence as an
input to extract the appearance feature and the second encoder used the optical flow as
an input to extract the motion feature. The proposed network architecture combines a

representation of the appearance and the motion features. Two encoders in the proposed
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network are based on ResNet architecture [15] as its capability of capturing appearance
features. The RGB image sequence and the optical flow are fed to different encoders in
order to improve the feature extraction of the object appearance and the motion. Finally,
features from two encoders are fused to combine useful features obtained by encoding
of two inputs. The network contains 18 layers, where the first 13 layers are encoder
layers consisting of convolutional layers and stacking of residual blocks followed by
the fusion layer, and the remaining is the decoder layers. This research uses a filter size
of 7x7 in the first layer to extract the feature on a large object size in the image. The
experimental results of the proposed network architecture demonstrate the remarkable

detection accuracy with respect to existing state-of-the-art methods.

1.3 Overview of the Dissertation

This dissertation is organized into five chapters including this chapter. Contents of the
remaining chapters are described as follows.

Chapter 2 provides some background and related works of the anomaly detection in
a video. This chapter also provides the knowledge required for understanding the algo-
rithms used in this dissertation such as U-Net and ResNet architecture. Traditional video
anomaly detection and learning-based methods are described in this chapter, including
histogram of oriented gradient (HOG), histogram of optical flow (HOF), autoencoder
(AE), recurrent neural network (RNN), long short term memory (LSTM), generative
adversarial network (GAN). The details of benchmark datasets are described in the re-
maining of this chapter.

Chapter 3 presents the proposed video anomaly detection framework using deep
generative network. A multi-scale U-Net containing SIMs, residual skip connection
and an asymmetric convolution layer are explained in details. The experimental setup
and results of the proposed framework are described and discussed in this chapter.

Chapter 4 explains the details of the proposed network architecture of a joint repre-
sentation learning for anomaly detection in surveillance videos. A feature fusion layer
and a two-encoders structure based on ResNet backbone are described in this chapter.

Chapter 5 summarizes the main results and directions of the future work based on

the research provided in this dissertation.






Chapter 2
Background and Literature Review

In this chapter, the background knowledge, concepts and methods that used for the
main contributions are provided. This chapter also provided literature reviews of video
anomaly detection. Machine learning algorithms based on unsupervised learning are
explained in Section 2.1 such as autoencoder (AE), recurrent neural network (RNN),
long short term memory (LSTM) and generative adversarial network (GAN). Network
architectures using in this dissertation including U-Net and ResNet are explained in
detail in Section 2.2. Next, Section 2.3 explain existing video anomaly detection algo-
rithms including traditional handcrafted features and learning-based methods. Finally,

the details of benchmark datasets are described in the remaining of this chapter.

2.1 Machine Learning Algorithms

Machine learning (ML) is a subfield of Al in which computers learn from data to im-
prove their performance on a certain task without being explicitly programmed. Over
the last few years, ML algorithms are widely used in many research fields and have
demonstrated effectiveness in addressing challenging problems in vision, speech, natu-
ral language processing and understanding, and the other areas with a lot of input data.
There are two main major branches of ML algorithms: supervised learning and unsu-
pervised learning. In supervised learning, labels of the input data are given and it can
be used to improve the model performance, whereas labels are not available in unsu-

pervised learning. Since anomalies are rarely occurred in the video scenes, making it



10 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Input A low dimt_ansional representation of Output
the input - latent vector

7

Encoder Decoder
—» Z —>

94 fo

\ 4
g

Figure 2.1: A strucutre of Autoencoder.

difficult to label any possible anomaly events. Therefore, this dissertation focuses on
solving the problems using unsupervised learning where labels are not available in the
training dataset. In the following subsections, this chapter present unsupervised learning

algorithms using in video anomaly detections including AE, RNN, LSTM, and GAN.

2.1.1 Autoencoder (AE)

In the case of supervised learning problems, the input layer represents the features that
fed into the neural network, and the label assigned to each observation is represented by
the output layer. During the training, the neural network determines which parameters
help minimize the error between the input and its predicted output for each observation
and the true label. In unsupervised learning, the neural network uses multiple hidden
layers to learn representations of the input layer, but the label is not given in the train-
ing. Autoencoder (AE) [16] is one of unsupervised machine learning algorithm, which
comprises two parts, an encoder and a decoder, as illustrated in Figure 2.1. The encoder
8¢ captures the context of the input X by extracting the feature to a vector Z, called
latent vector or representation learning, and the decoder fy converts this newly learned
representation and output the reconstructed image X’ to be consistent to its input.

The aims of AE is similar to the concept of dimensionality reduction [17-19]. AE
forced to learn the most useful properties of the input data, capturing the underlying

structure or pattern of the data, which chooses important information to capture and
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discards irrelavant or less important information. Specifically, the latent vector Z is ex-
tracted by the encoder function g(-) parameterized by ¢ and the output is reconstructed
by a decoder function f(-) parameterized by 6. The parameters (¢, 0) are learned to-
gether to reconstruct the output. Mean Square Error (MSE) can be used to as the quality
metric indicating the difference between input and output. MSE loss of AE (Lsg(¢,0))
is calculated as follows.

Lap(9,0) = = ¥ (XD — fo(g4(XD)))?, 2.1)

S| =

i=1

where 7 is the total number of data elements and X ) is the input data at the element i.

Variational AE (VAE) [20] is an alternative AE in which the encoder outputs a dis-
tribution instead of a fixed vector in AE. A distribution consists of two vectors, a vector
of means u and a vector of standard diviations o. These two vectors form random vari-
ables. The VAE is able to sample across a continous space based on what it has learned
from the input data [21].

2.1.2 Recurrent Neural Network (RNN)

RNN is a type of neural network that is suited for sequential data. The data can be
sentences (sequence of words) or videos (sequence of images). In a traditional neural
network, all inputs (and outputs) are independent of each other, where RNN qualifies
a recurrent data at each time step generally related to the previous one. RNN uses
the "memory," also called "state," to capture the information in the past and used it to
predict the future. In the video task, the RNN uses a convolution neural network (CNN)
to generate feature representations from the input image and passes it to the state. The
state starts as a zero matrix and it is upated with each frame of the video. At the end of
process, the final state is used to generate the output of the RNN.

The main component of RNN is the RNN cell, whose inputs are pass through these
cells. Given a video consists of N frames, the structure of the RNN is depicted in Figure
2.2. Firstly, the cell combines the current state (o) with the current frame (frame;)
to generate a new state (k). Then, the same process is applied to the next frames. At
the end of this process, we end up with the final state (4,). To generate a new state, the

following equation is calculated.
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Figure 2.2: A basic strucutre of RNN cell for a video.

hy = tal’lh(vvrechtfl + VVinputxt + b) (2.2)

Variables in Eq. 2.2 are denoted as follows.

* b is the bias.
* Wi 1s the recurrent weight matrix, Wi, 1s the weight matrix of the input.
* X; is the input video at frame ¢.

e h;_ is the current state, and /; is the new state.

2.1.3 Long Short Term Memory (LSTM)

LSTM [22] is one of ML algorithms that are applied with a sequence data. It is a vari-
ant of the basic RNN. LSTM presented a new idea by incorporating the recurrent gate
called "forget gate," which prevents backpropagated errors from vanishing or exploding
occurred in RNN. In other words, LSTM worked well with long sequences data and
can be stacked together to capture higher level information. The structure of LSTM is

illustrated in Figure 2.3 and summarized with these equations as follows.

fi =Wy x [h_1,%]+by) (2.3)
ir = 0(W; X [hy—1,%] + bi) 2.4)
C, = tanh(W¢ x [h;_1, %] + bc) (2.5)
C=fixC_1+ixC) (2.6)

O = G(Wo X [hl—laxt] +b0) (27)
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Figure 2.4: Graph of Sigmoid and Tanh functions.

h[ =0 X tanh(C,) (28)

Let (Wr,bs), (Wi, bi), (We,be) and (W,, b,) are weight matrixs and biases of the for-
get gate f;, the input gate i, the cell state gate C; and the output gate o;, respectively.
Equation 2.3 represents forget gate layer f; at time ¢, which decides what information to
throw a way from cell state using sigmoid function o (-). The sigmoid function outputs
values between 0 and 1, as demonstrated in Figure 2.4. Equations 2.4 and 2.5 are used
to determine new information is to be added to. Equation 2.6 combines old and new
information. The hidden state /; is computed based on the cell state C; and the output
gate o; using tanh (tanh outputs value between -1 to 1, as shown in Figure 2.4), which

determines how much the cell state affects the output.



14 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

real image ©

Training M

dataset

L

173
real/fake

Discriminator D L.
prediction

Noise
vector 2

Generator G

GAN

fake image z¢

Figure 2.5: GAN representation.

2.1.4 Generative Adversarial Network (GAN)

GAN [23] is a generative model in neural network that uses an adversarial scheme,
which can be trained in an unsupervised manner. Typically, GANs consist of two net-
works, the first network is a generator and another network is a discriminator. As shown
in Figure 2.5, given an input noise vector z, the generator G learns to generate a synthe-
sized data (fake image x), that becomes negative training examples for the discrimina-
tor D. The discriminator D learns to distinguish the output from the generator network
whether it is a fake or real image x. During the training, the generator network uses the
gradients to update its parameters and improve its ability to synthesize data. Therefore,
at each iteration, the discriminator D (parameterized by Pp) tries to maximize the value
function V (G, D), where the generator G (parameterized by Pg) tries to minimize it, as

shown in Equation 2.9.

mGinmng(G,D) = m(%ana\xEx[logD(x,PD)] +E;[1 —1logD(G(z,Ps),Pp)]. (2.9)

We assume that the label of real image is 1 and the fake image is 0. The first term
of V(G, D) represents the averaged log probability estimated by D that x is real. The
second term represents the averaged log probability estimated by D that the output of
the G is fake.
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Figure 2.6: Example of U-Net architecture.

2.2 Network Architectures

Neural networks are complex structures made of artificial neurons that can take in mul-
tiple inputs to produce a single output. The advantage of neural network is that the net-
work has a great ability to learn different levels of representation from both inputs and
feature maps. Currently, there are many neural networks proposed in Al community to
solve problems in classification, detection and other CV problems, in order to improve
the performance and reducing the computation time. U-Net [24] and ResNet [15] are
neural networks that are commonly used in CV researches, especially in video anomaly
detection. This chapter presents the details of these two network architectures in the

following subsections.

2.2.1 U-Net Architecture

U-Net architecture [24] is widely used in object segmentation tasks. The architecture
was originally proposed for biomedical image segmentation. The network structure
of U-Net is illustrated in Figure 2.6. U-Net consists of two parts: the downsampling

part, where input images are compressed spatially but expanded the channel-wise, and
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upsampling part, where representations are expanded spatially while the number of
channls is reduced. U-Net architecture looks similar to the AE structure where the
downsampling is the encoder and the downsampling act as the decoder. Unlike AE, U-
Net proposed skip connections that are employed between the upsampling and down-
sampling parts of the network. Using skip connection allow information to shortcut

parts of the network and flow through to later layers [25].

2.2.2 ResNet Architecture

One of the most powerful network architecture in ML called a residual network or
ResNet [15]. Designing a deep neural network architecture by staking more layers with
gradient-based learning methods and backpropagation may encounter the gradients of
the loss function leads to zero, making the network hard to train. This problems is called
a vanishing gradient problem [15,26]. Therefore, ResNet provides an efficient approach
to create a deep neural network, which builds the stack of residual blocks on top of each
other, where each block contains a skip connection that sums the input and output of
the block, before passing to the next layer. Figure 2.7 shows a single residual block of

ResNet architecture. The residual block can be defined with Equation 2.10 as follows.

y=F@x,{Wi})+x, (2.10)

where x and y are the input and output of the layer. The function F (x,{W;}) is the resid-
ual mapping to be learned. The form of F is flexible, weight layers can increase more
than two layers and it can be fully connected layers or convolutional layers. ResNet
network uses a 34-layer plain network architecture inspired by VGG-19 [27], in which
the shortcut connection is added. As a result, ResNet improves the efficiency of deep

neural networks with more neural layers while minimizing errors of the network.
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Figure 2.7: Residual block in ResNet architecture [15].

2.3 Anomaly Detection in Video

Anomaly detection approaches can be classified into two main categories including a
hand-crafted feature and a learning-based method. Traditional methods based on hand-
crafted features [5-7,28-31] focused on understanding, characterizing, and improving
features that can be extracted from images. These handcrafted features usually extract
texture, color, or edge information. The most widely used handcrafted features for
anomaly detection in the video are the histogram of oriented gradients (HOG) [32],
and histogram of optical flow (HOF) [33,34]. Lu et al. [6] proposed method to detect
abnormal by using sparse combination learning. This proposed method directly finds
the most suitable combination in the dictionary by evaluating the least square error to
represent the input whether normal or abnormal events. Shangdong Wu et al. [35] pro-
posed anomaly detection approach by utilizing low-level trajectory features to describe
the abnormal event. Frequency-based analysis is performed in [36] to automatically
discover rules of normal events, where anomalies could be classified from events that
deviate from these rules. Gaussian mixture models (GMMs) also used in [37] to model
the spatial scene structure from training trajectories. Zhao et al. [32] proposed a fully
unsupervised dynamic sparse coding approach based on an online sparse reconstruction
of query signals from learned event dictionaries. Yang et al. [S] proposed a dictionary
selection model called the sparse reconstruction cost. Anomaly is determined by sparse

reconstruction cost, through a weighted linear reconstruction. However, hand-crafted
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Figure 2.8: Appearance and Motion DeepNet (AMDN) framework for video anomaly
detection proposed by [10].
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features based methods require prior knowledge to define specific parameters for any
possible abnormal patterns, which is difficult to adapt to huge variations of different
video scenes in real-time anomaly detection, especially in the presence of occlusion,

noise, camera motion, and changes in illumination [38].

Recently, deep learning techniques have been attempted to overcome the limitations
of the handcrafted feature by automatically extracting the high-level feature represen-
tations from the image. Learning-based methods currently achieve significant perfor-
mance in a wide range of computer vision applications, which is improving the ac-
curacy and reducing false alarm rate of the detection and recognition [12, 13, 39-45].
Learning-based methods also applied in relative to video anomaly detection such as ac-
tion recognitions [46—-50]. Motion features are required to model the object movement
in a video. A 2D convolution layer will output an image that loses temporal feature of
video signal. Only 3D convolution can extract the temporal feature and output in vol-
ume. Xu et al. [10] presented a novel Appearance and Motion DeepNet (AMDN) based
on unsupervised deep learning for anomalous event detection, as illustrated in Figure
2.8. This method learns discriminative feature representation of both appearance and
motion patterns, early and late fusion scheme are performed to combine appearance and
motion features for discovering unusual activities as well as a joint representation are
presented to capture the correlation between both features. Finally, to detect anomalous
events, one-class SVMs has been proposed followed by late fusion in the last layer of

the network.
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Figure 2.9: Narrowed normality clusters for video anomaly detection proposed by [11].

Ionescu et al. [11] presented abnormal event detection based on a two-stage outlier
elimination algorithm. The method overview is illustrated in Figure 2.9. This work used
appearance features extracted from the last convolutional layer of a pre-trained neural
network to augment spatio-temporal cubes. The algorithm eliminates the outlier using
k-mean clustering and classifies by training a one-class SVM. Each spatio-temporal
cube is evaluated against each one-class SVM model to get a set of normality scores
during the testing process. They obtain an anomaly prediction map for each frame by

piecing together the cubes from all frames.

Pang et al. [51] applied self-trained deep ordinal regression to detect video anomaly
events. The pretrained ResNet-50 [15] is used as a feature extractor. Self-training is a
semi-supervised machine learning [52] that has an ability to cope with a small dataset

in training. It creates more consistent labeled data in training a model with a small la-
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beled dataset and then applying the trained model to unlabeled data. ResNet-50 [15]
also employed in [41] framework called AnomalyNet. AnomalyNet consists of three
blocks: the motion fusion block, the feature transfer block, and the coding block. The
motion fusion block compresses video clips into a single image while removing un-
wanted background elements. Then compressed images are fed to the feature transfer

block. Finally, features are extracted based on a transferable model.

Sultani et al. [53] proposed a framework for training anomaly and normal videos
using Multiple Instance Learning (MIL) by dividing the videos and video segments
into instance and bags. The deep anomaly ranking model has been used to predict
high anomaly scores in order to consider as anomaly event. To avoid labor-intensive
temporal annotations of anomalous segments in training videos, the model is learned
using deep multiple instance ranking framework with weakly labeled data. This work

also introduced a dataset of real-world surveillance videos with 13 realistic anomalies.

Fan et al. [43] proposed video anomaly detection method based on gaussian mix-
ture variational autoencoder. The overview of this proposed method is shown in Figure
2.10. The assumption is that the normal samples can be associated with at least one
Gaussian component of a GMM, while anomalies do not belong to any Gaussian com-
ponent. The AE contains the encoder-decoder structure corresponding to feature extrac-
tion and model construction which permits to learn a mapping from high dimensional
data to a low dimensional latent presentation while ensuring reconstruction accuracy.
This method consists of two-stream framework, i.e. spatial and temporal streams. The
spatial stream operates on RGB frames and captures the appearance anomalies while the
temporal stream is generated to capture the long-term temporal information of motion
anomalies. Finally, a sample based method is used to detect anomalies based on the

joint probabilities of all the components in the GMM.
Luo et al. [54] utilizes convolutional LSTM based on AE (ConvLSTM-AE) to mem-

orize all past frames in order to model both appearance and motion information. De-
convolution network was integrated to reconstruct past frames, and using reconstruction
error to identify whether an anomaly event occurs. Another work proposed in [44] it-
eratively updates sparse coefficients via a stacked RNN to detect anomalies in videos.
Chong et al. [8] proposed an end-to-end architecture for learning video representation,

which included two main components, one for the spatial component and the other for
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Figure 2.10: Gaussian mixture variational autoencoder for video anomaly detection
[43].

the temporal component. The network architecture of [8] is shown in Figure 2.11. The
structure of this network architecture is based on AE that aims to reconstruct the in-
put image. The network of comprises LSTM layers in between encoders and decoders
to learn the sequence spatial features from encoders. There is another approach that
augment the AE algorithm. Gong at al. [55] proposed the improvement of AE with
a memory module called memory-augmented autoencoder (MemAE). The proposed
memory module consists of a memory to record the prototype encoded patterns of nor-
mal events from extracted features. The reconstruction error is also used as the anomaly
detect criterion. The extended version of AE called variational AE (VAE) [20] is em-
ployed in video anomaly detection called Conv-VRNN [39], which considers temporal
information in future frame prediction. An overview of Conv-VRNN is shown in Fig-
ure 2.12. Unlike the encoder in AE, which produces a vector called the latent variable,
VAE produces a distribution on the latent variable that characterizes the pattern of nor-
mal events. This work also combines the ConvLSTM with VAE to better capture the

temporal relationship among frames in a video.

A generative network is one of learning-based methods proposed to generate more
realistic datasets in anomaly detection. The generative network aims to infer the data
distribution to generate new images that could belong to the same set as training data.
Liu, et al. proposed a framework for anomaly detection based on GAN [12]. The

framework overview is demonstrated in Figure 2.13. To generate a more realistic future
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Figure 2.12: Variational Autoencoder (VAE) for video anomaly detection [39].

frame, a U-Net was used as a primary prediction network (a.k.a. a generator network).
A motion feature is used in training by enforcing the optical flow between predicted
images and ground truth images to be consistent. A skip connection is applied in each
layer of the U-Net architecture [24] to improve the quality of the reconstruction image.
At the end of the training phase, the discriminator network was used to distinguish an
image created by the generator from the ground truth image. To improve the efficiency
of training GAN for anomaly detection, Dong et al. [40] proposed a semi-supervised
approach with a dual discriminator-based GAN, which considers more motion informa-
tion in video clips compared with [12] work. However, some features are lost in these

generator networks during training due to convolution operators of each layer. Network
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architectures in these approaches are required extensive search for varying the depth
of the network in order to balance the trade-off between the detection accuracy and
the processing time. In addition, real-world video scenes are diverse, making anomaly
detection more challenging. Motion information could be considered as input in the
anomaly detecion method to capture the object characteristic in videos.

To resolve this issue, this dissertation presents a framework that consists of a multi-
scale U-Net as a generator network. This research proposes the Shortcut Inception
Module (SIM) and residual skip connection to make a network learn higher-level fea-
tures of images. The proposed framework also employs the idea of asymmetric con-
volution instead of traditional convolution layer to reduce the number of parameters.
Furthermore, this dissertation proposes a joint representation learning to improve the
detection accuracy of video anomaly detection, the network architecture contains two
separate encoders to first extract appearance and motion features. The feature maps
from two encoders are then fused and fed to the same decoder. In practical, due to the
ambiguous nature, rare occurrences, large variance within anomaly events, and the data
imbalance problem of the video anomalies, it is almost impossible to accurately define
the video anomalies with the associated labels in most cases. Hence, the recent trend
demonstrates that unsupervised and semi-supervised training processes are far more ef-
fective than supervised video anomaly detection methods. This dissertation is based on
fully unsupervised learning manner, which learns to detect anomaly in videos without
data labeling. The details of two proposed frameworks are described in Chapter 3 and
Chapter 4, respectively.

The summary of related works are shown in Table 2.1
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Table 2.1: Summary of related works for video anomaly detection based on machine

learning algorithms.

Authors Years | Network Learning  algo- | Datasets
backbones | rithms

Xuetal. [10] 2015 | * AE UCSD, Train

Luo et al. [54] 2017 | * ConvLSTM-AE Avenue, UCSD,
Subway, Exit

Luo et al. [44] 2017 | * Stacked RNN Avenue, UCSD,
Subway, Shang-
haiTech

Chong et al. [8] 2017 | * ConvLSTM-AE | Avenue, UCSD,
Subway, Exit

Sultani et al. [53] | 2018 | Pretrained | Multiple instance | private dataset

C3D learning (MIL)

Liu et al. [12] 2018 | U-Net GAN UCSD, Avenue,
ShanghaiTech

Lu et al. [39] 2019 | VGG VAE-LSTM UCSD, Avenue

Gong at al. [55] 2019 | * AE UCSD, Avenue,
ShanghaiTech

Ionescuetal. [11] | 2019 | - K-means, SVM Avenue, Subway,
UMN

Pang et al. [51] 2020 | ResNet-50 | Self-trained UCSD, Subway,

deep ordinal | UMN
regression

Fan et al. [43] 2020 | * VAE UCSD, Avenue

Dong et al. [40] 2020 | U-Net GAN UCSD, Avenue,
ShanghaiTech

* These approaches uses their own designs of the network backbone.
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2.4 Benchmark Datasets for Video Anomaly Detection

This section presents the benchmark datasets used in video anomaly detection. This
dissertation evaluates the performance with three benchmark datasets including UCSD
Pedestrian, CUHK Avenue and ShanghaiTech. These datasets contain only normal
events in training set, whereas the testing set contains both normal and anomaly events.
The input image resolution of these datasets are different, in this dissetation, each input
is resized to 256x256 with three color channels. The annotation of anomaly is labled
within the anomaly frame in each testing videos. The details of each datasets are de-
scribed in following subsections and the summary of these three benchmark datasets are

presented in Table 2.2.

2.4.1 UCSD Pedestrian Dataset

The UCSD Pedestrian dataset [56] provides two subsets, Pedl and Ped2. The Pedl
subset contains 34 training and 36 testing videos, and the Ped2 contains 16 training
and 12 testing videos. Aanomaly events in the UCSD Pedestrian dataset includes cars,
scooters, wheelchairs, bicycles and people walking across a walkway or in the grass.
The camera viewpoints of Ped] and Ped2 subsets are different. Ped1 subset contains a
group of people walking towards and away from the camera, where Ped2 subset contains
pedestrian movement parallel to the camera plane, and hence anomaly objects of these
video scenes become more diverse. The example of training and testing frames of Ped1

and Ped2 subsets are shown in Figure 2.14 and Figure 2.15, respectively.

2.4.2 CUHK Avenue Dataset

Another widely used dataset in video anomaly detection is CUHK Avenue dataset [6].
This dataset contains 16 training and 21 testing videos with a total of 47 abnormal events
such as abnormal objects, throwing, and strange actions. This dataset is captured from
single outdoor surveillance camera looking at a side of the building with a group of
people walking surroundings. The size of people may vary due to the camera setting
and angle of this dataset. The CUHK Avenue dataset contains some challenging such

as cameras shaking and ourlier in training dataset. The example of this dataset is shown
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Anomaly frames Normal frames

Figure 2.14: Example frames of UCSD Pedestrian 1 subset (red bounding box indicates
anomaly region and using only for visualisation purposes).

Anomaly frames Normal frames

Figure 2.15: Example frames of UCSD Pedestrian 2 subset (red bounding box indicates
anomaly region and using only for visualisation purposes).

in Figure 2.16.

2.4.3 ShanghaiTech Dataset

The ShanghaiTech dataset [12] is one of challenging datasets in video anomaly detec-
tion. This dataset covers challenging scenarios for video anomaly due to large variations
in appearance and viewpoint. Almost all of anomaly datasets for video contain videos
captured from fixed camera viewpoint, which lacks variations in camera angles and
video scenes. The ShanghaiTech dataset consists of 13 scenes with complex light con-

ditions and camera angles of 330 training and 107 testing videos. Moreover, several
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Figure 2.16: Example frames of CUHK Avenue dataset (red bounding box indicates
anomaly region and using only for visualisation purposes).

Normal frames

Figure 2.17: Example frames of ShanghaiTech dataset (red bounding box indicates
anomaly region and using only for visualisation purposes).

scenes for a given scenario have substantial perspective changes, making this dataset
more challenging. Example of training and testing frames of the ShanghaiTech dataset

are illustrated in Figure 2.17.
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Table 2.2: Summary of benchmark datasets for video anomaly detection using in this
dissertation.

Datasets Number | Training/Testing | Example anomalies
of videos | videos
UCSD Ped1 [56] 70 34/36 Cars, skateboards, scooters,

wheelchairs, bicycles and peo-
ple walking across a walkway

UCSD Ped2 [56] 28 16/12 Cars, skateboards, scooters and
bicycles

CUHK Avenue [6] | 37 16/21 Running, throwing and strange
action

ShanghaiTech [12] | 437 330/107 Cars, skateboards, scooters,

bicycles motorbikes, strollers,
and motion anomalies such as
fighting, chasing, pushing and
jumping

2.5 Summary

This chapter has provided the background knowledge of machine learning algorithms in
video anomaly detection. Fundamentals of autoencoder (AE), recurrent neural network
(RNN), long short term memory (LSTM) and generative adversarial network (GAN) are
presented in Section 2.1. Network architectures are described in Section 2.2. Next, the
literature reviews of related works in video anomaly detection are provided, where the
approaches can be classified to two categories such as handcrafted features and learning-
based approaches. Details of benchmark datasets are presented in Section 2.4. This
dissertation used three benchmark datasets to evaluate the performance of the proposed
frameworks, including UCSD Pedestrian, CUHK Avenue and ShanghaiTech datasets.
The experimental results and discussions on these datasets describe in Chapter 3 and
Chapter 4.




Chapter 3

Multi-scale U-Net for Video Anomaly

Detection

This chapter presents the proposed framework for video anomaly detection using deep
generative network structure. The proposed multi-scale U-Net, Shortcut Inception Mod-
ule (SIM) and residual skip connection are described in details. Improvement of the tra-
ditional U-Net network architecture and the design idea of the shortcut inception module
are also described. Experimental results are reported and evaluation in several aspects

is coordinated in the remaining of this chapter.

3.1 Introduction

U-Net network architecture [24] is widely used as feature extraction method in CV re-
searches especially in object segmentation tasks. Problems of using U-Net as a network
backbone are that the network requires extensive architecture search for varying the
depth of the network and its skip connection from encoder to decoder losts some infor-
mative features affecting the detection accuracy due to convolution operations. To solve
these problems, this chapter proposes a framework of the convolutional neural network
architecture for video anomaly detection. The proposed network uses the U-Net as the
baseline architecture. This research modifies and replaces original convolution layers by
SIM and increased the width of the network to make it possible to learn the input image

in higher-level features. This research also applies the idea of asymmetric convolution
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layers so that its representation capability is equivalent to the traditional convolution
layer, while it reduces the number of network parameters, requiring less computation in
comparison with the traditional U-Net architecture.

The rest of this chapter is organized as follows. Section 3.2 describes multi-scale U-
Net and explains the ability of the SIM and residual skip connection designs to preserve
the information during training the neural network. Section 3.3 discusses the results of

the evaluation, and Section 3.4 summarizes this chapter.

3.2 Multi-scale U-Net for Video Anomaly Detection

In this section, details of the proposed framework are described, as illustrated in Figure
3.1. Firstly, given an input image sequence, a multi-scale U-Net is utilized as a generator
network G to extract spatial features. Figure 3.2 shows the structure of the multi-scale
U-Net. This research employs SIM inside the multi-scale U-Net to make the network
learning the feature in different scales. Instead of the traditional skip connection of
the U-Net architecture, residual skip connections are applied in the architecture for the
purpose of propagating spatial information which was lost during the convolutional op-
eration from encoder to decoder. Using these residual skip connections is beneficial for
learning higher feature of an image. In the training phase, the optical flow of the gener-
ated image is enforced to be close to that of the ground truth image in order to optimize
the network parameters. Further, PatchGAN [14] uses as a discriminator network D into
the framework to distinguish between the generated image and the ground truth image.

Details of each part describes in subsections below.

3.2.1 Shortcut Inception Modules (SIM)

The U-Net architecture mainly consists of two parts, the encoder and the decoder. The
encoder captures the context of the image by extracting the feature to a small vector
size, called latent vector. On the other hand, the decoder aims to extract the feature and
recover image details from the vector, where the upsampling layer is applied to increase
the size of the feature. Typically, the encoder involves a sequence of two consecutive

3% 3 convolution layers followed by a max-pooling operation. As explained in [57], the



3.2. MULTI-SCALE U-NET FOR VIDEO ANOMALY DETECTION 31

Training phase Testing phase
‘ Multi-scale U-Net

Input image sequence

Residual Skip Connections !

I
== i : | Generated image (,.,) Regularity
| Score
o || [« =2 [ | k| |
cleEmez e s N —
56 2 B 5 B 5|
! T -
D ST
Encoder Decoder : Anomaly Detection
!SIM: Shortcut Inception Module _ _ Generator (G) (Normal/Abnormal)
Ground truth image(l,,;)  Update Parame:ers/Optimize
————— e e s
=1 Intensity, I
gradient Discriminator | |
—————
and optical @D) :
flow losses :

Figure 3.1: Overview of the proposed multi-scale U-Net network architecture.

sequence of two 33 convolutional layers actually resembles a 5x5 convolution opera-
tion with the same input size and output size. To improve the learning efficiency of the
U-Net architecture with feature learning in different scales, a viable way is to integrate
5x5 and 7x7 convolution operations in parallel to the 3 x3 convolution operation. An-
other possible option for improving the detection performance is increasing the size of

the network architecture in terms of the depth and the width [58, 59].

This work uses the U-Net as the base network architecture for the generator network,
however, original convolution layers are modified and replaced by SIM and increased
the width of the network to make it possible to learn the input image in higher-level
features. Figure 3.3 (c) illustrates a proposed SIM inspired by the idea of an incep-
tion module [57] (Figure 3.3 (a)). As described above, the convolutional layers can be
replace with the inception blocks. Although the performance gain can be expected in
introducing the larger size of convolution operations such as 5x5 and 7x7, the parallel
network structure consumes high computational capacity. In the same manner as [57],
this research factorizes and stacks the larger size of 5x5 and 7x7 convolution operators
by a 3x3 convolution operation, the output of the last two 3x3 convolutions compe-
tent to the 5x5 and 7x7 convolutions approximately as shown in Figure 3.3 (b). This
research also takes an advantage of a feature concatenation to extract the feature from

different scales [58]. Then adding a shortcut connection with an additional 1x1 con-
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Figure 3.2: Proposed multi-scale U-Net architecture.

Table 3.1: The architecture details of proposed generator network.

’ Depth \ SIM \ Layer (filter size) \ #filters \ Output ‘

1 SIM1&8 | ACACAC,CI 16, 32, 48, 96 128x128x96
2 SIM2 &7 | ACAC,AC,CI 32, 64,96, 192 64 x64x192
3 SIM3 &6 | AC,ACAC,CI1 64, 128, 192, 384 32x32x384
4 SIM4 &5 | ACACAC,Cl1 | 128, 256,384,768 | 16x16x768
AC= Asymmetric convolution layer, C1= Convolution layer of a 1x1 filter size.

volutional layer to add more non-linearity information to enhance the representation as
well as reducing the network size without a performance penalty [60]. In [61], the tradi-
tional convolution layers are utilized in the inception module. Unlike [61], the proposed
block uses the ideas of the asymmetric convolution operation, which aims to factorize
a standard two-dimensional convolution kernel into two one-dimensional convolution
kernels. For example, a 33 convolution is equivalent to a stacking of a 3x 1 convolu-
tion followed by a 1x3 convolution, which reduces the size of the model and increasing
the training efficiency [57,62, 63].

Details of the proposed SIM are summarized in Table 3.1. This research assigns W;
to control the number of filters used in the proposed module in each depth j. Inside
the SIM, this work assigns %, % and % to each of three convolution layers, respec-
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Figure 3.3: The comparison design of (a) the inception module [57] using 3x3, 5x35,
and 7x7 convolutional filters in parallel. (b) Factorizing and stacking the larger size of
5x5 and 7x7 convolution operators in inception module by a 3 x3 convolution opera-
tion, and (c) the proposed structure of a Shortcut Inception Module (SIM).

tively, as this combination achieved the best results in the preliminary experiment. W;

is computed as follows.

W, = axN;, 3.1)

where N; is the number of filters in the corresponding depth j of the multi-scale U-Net,
and « is a scalar coefficient. Typically, the filters should be gradually increased to pre-
vent the memory usage of the earlier depth from rising the deeper network. Therefore,
the number of filters N; of the network architecture in depth j is set to 25FJ. This re-
search selected o = 1.5 as it keeps the number of parameters slightly below that of the

original U-Net.

3.2.2 Residual Skip Connections

The U-Net architecture [24] also proposed the idea of using the skip connections be-
tween the encoder after the max-pooling operation and the decoder before the deconvo-
lution layer. The aim of the skip connection is to propagate the spatial information that
lost in every convolution operation from the encoder and the decoder, which is benefi-
cial in recovering the clean image. As the design of the U-Net architecture, the features
from the encoder are supposed to be low-level features, and the features from the de-

coder are supposed to be higher level as they are computed in a deep network. Thus,
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Figure 3.4: The comparison design of (a) the residual learning block [15] with (b) the
proposed residual skip connection.

the fusion of these sets of features from encoder-decoder could cause feature learning

which affects the reconstruction output.

Following the deep residual network [15] that proposed the idea of using residual
learning block, as shown in Figure 3.4 (a), This research introduces residual skip con-
nection blocks to the proposed generator network. As illustrated in Figure 3.4 (b), the
proposed residual skip connection block consists of an asymmetric convolution layer of
a 3x 1 convolution layer followed by a 1x3 convolution layer and a shortcut connection
of a 1x1 convolution layer, which allows the network to learn additional information
from the input. In the generator network, instead of concatenating the feature maps
from the encoder to the decoder, this work passes encoder features as the input through
a chain of the residual skip connection block, and the output of the block is concate-
nated with the decoder features. A significant amount of image detail could be lost or
corrupted using more convolution layers [64]. Therefore, the residual skip connections
make it possible to keep useful features lost by the convolution operation, and it is ben-
eficial to train the deep network while still having fewer parameters. This work denoted
a residual skip connection block as RB; j, where i is the number of blocks used in each
depth j. Basically, the feature maps of each layer in the encoder are likely to decrease
as the image down-sampling in every step using the max-pooling layer. Therefore, this
work gradually decreases the number of RB; j, which is i = 4,3,2,1 in each depth j,

respectively. The number of filters in the block is set to the same with N; in each depth

J-
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3.2.3 Objective Functions

At the training time, G learns to map the ground truth image / and the generated image
[ to be consistent. The intensity loss L;,, and the gradient loss Lgy of two images along
two spatial dimensions are used to minimize the reconstruction error between I and 1,

which can be computed as follows.

Liw(I—1) = |l - 1|13 (-2)

Loa(I=1) = |[[I;; = Ti-1,

— L — L4l

i (3.3)
iy — L j—1| = iy — 1 j—1|||1-

The optical flow loss is applied to capture the motion information and to optimize
training parameters. This work used a FlowNet [65] to estimate the optical flow. Fol-

lowing [12], this work applies the L1 distance loss to calculate the motion penalty:

Lpjow(F —F) = ||F —F||2, (3.4)

where F is the ground truth optical flow estimated from two consecutive frames /; and
I,;1 and F is the output optical flow calculated by /; and the generated image /. ;.

In addition to the loss functions described above, this research used an adversarial
loss based on Generative Adversarial Network (GAN) [23] to constrain the training
process and improve model performance [12]. Given an input image sequence, the
proposed multi-scale generator G is trained by the adversarial loss, which encourages
the generator to generate a more realistic image. A discriminator network D is used
to optimize model parameters to make generated image / indistinguishable from the
ground truth image /. This work utilized PatchGAN [14] as a discriminator network.
The PatchGAN maps / to small patches, where a discriminator takes each individual
patch and predicts whether a patch come from 7 or /. A discriminator outputs a scalar
which classifies the patch from I as class 1 and the patch from 7 as class 0. The goal of
training G is to generate an image where D classifies it into class 1. A mean square error

loss function Lyssr and adversarial loss L4, were used as objective functions which can
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be calculated as follows.

1
Ladv(D = Z ELMSE (Dgen (Dm,n» 1) (3.5)
Luse(I,1) = (I-1)?, (3.6)

where Dy, (+) is the output of the discriminator network of 7 and m,n denote patch

indexes. Finally, the proposed final objective function L can be computed as follows.

L= 2'intLint + 2fgdLgd + }Ladeadv + A'flowalow; (3.7)

where Ainr, Agd; Aaav, and Ay, are weights of each loss.

3.2.4 Anomaly Detection using Regularity Score

In testing, this work computed the anomaly score in every frame of the testing video
by measuring the similarity of the ground truth image and the generated image. In the
same manner with [12], Peak Signal to Noise Ratio (PSNR) is utilized as the detection
score in the framework. The PSNR calculates the image quality, where a low value of
PSNR means that the image is likely to be abnormal. PSNR is defined as

]2

PSNR(I,,1,) = 101 [max;
ty1t) = 010 . NPRCE
% ?;0(1%(1) - Pt@)z

where max; represents the maximum intensity value in a generated image I. p,(i) and

(3.8)

p:(i) are pixel intensity of index i in I and I, respectively. N denotes the total number
of pixels in the image. Then, the proposed framework obtain a regularity score R(t) for

each frame 7 in the video by normalizing the PSNR to the range of [0,1] as follows:

_ PSNR(I;, [;) — minpsyg

maxpgyg — MiNpsNR

R(?) (3.9)

where the terms minpgyg and maxpsyg are the minimum and maximum values of the
PSNR in every frame of each test video. Finally, the proposed framework detects

anomaly event in an image based on a threshold of regularity score R(z).
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Figure 3.5: PSNRs and loss values of network trained on UCSD Pedestrian, CUHK
Avenue and ShanghaiTech datasets.

3.3 Experimental Results

3.3.1 Experimental Setup

The implementation is based on Tensorflow framework [66] using Python 3.7. The net-
work architecture was trained and tested on NVIDIA Geforce RTX 2080 GPU. Training
is based on Adam optimizer [67] and the batch-size is fixed to 4. In the training and
testing, input images of the network are resized to 256 x 256 of 3 color channels and
normalize it to the range of [-1, 1]. To be consistent with [12], this research has set
4 consecutive images as the input image sequence. Using large models and datasets,
Adam optimizer can efficiently solve practical deep learning problems [67] and it per-
formed better for training GAN as discussed in [68]. Figure 3.5 shows learning curves
trained with different datasets. The final loss of all datasets are significantly decreased
in high iterations. On the other hand, PSNRs of the generated image and the input are
increased, showing the effectiveness of training the proposed network architecture.

Following the framework described in [12], this work uses a receiver operating char-
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acteristic (ROC) curve, Equal Error Rate (EER), and corresponding an area under the
curve (AUC) to evaluate the detection performance for qualitative comparison. ROC is
used to visualise the performance of a binary classifier by plotting the trade-off between
the true positive rate (TPR) and the false positive rate (FPR) with varying its discrimina-
tion threshold. TPR and FPR can be calculated as Eq.3.10 and 3.11, respectively. AUC
used in most previous works [8, 12,42—44,54] measures the entire of two dimensional
area of ROC, which provides an aggregate measure of performance across all possi-
ble classification thresholds. In this study, higher AUC values and lower EER values

indicated better performance of anomaly detection.

TPR = #TP (3.10)
 #TP+#FN '
#FP
FPR= ——— (3.11)
#FP+#TN

where #T P denotes the number of true positive samples, #F P denotes the number of
false positive samples, #7'N denotes the number of true negative samples, and #FN

denotes the number of false negative samples.

Table 3.2: Area under curve (AUC) comparison of proposed framework and [8, 12,42-
44,54] works on UCSD and CUHK Avenue dataset

Methods UCSD Pedl UCSD Ped2 CUHK Avenue
AUC EER AUC | EER | AUC | EER
Chong et al. [8] 89.9% | 12.5% | 87.4% | 12.0% | 80.3% | 20.7%
Conv-AE [42] 81.0% | 27.9% | 90.0% | 21.7% | 80.0% | 25.1%
ConvLSTM-AE [54] | 75.7% - 88.1% - 77.0% -
StackRNN [44] - - 92.2% - 81.7% -
Fan et al. [43] 949% | 11.3% | 92.2% | 12.6% | 83.4% | 22.7%
Liu et al. [12] 83.1% | 23.5% | 95.4% | 12.0% | 84.9% | 20.6%
The Proposed 85.3% | 23.6% | 95.7% | 12.0% | 86.9% | 20.2%
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3.3.2 Results on the UCSD and the CUHK Avenue Dataset

This research has compared the proposed with several anomaly detection methods based
on deep learning, including AE [8,42,43], LSTM [44, 54], and GAN [12] on UCSD
Pedestrian dataset. As summarized in Table 3.2, the proposed framework surpasses
the results reported in the previous works on UCSD Ped2 in terms of detection ac-
curacy. The error rate is comparable to most recent works [8, 12,42-44,54]. The
performance in UCSD Pedl is 85.3% whereas the best result of 94.9% is achieved
by Fan et al. [43], who employed a two-stream network that combines the appearance
and motion of anomalies which may incur considerable computational cost. Another
work that achieved better AUC is Chong et al. [8] that utilized the stacked convolution-
deconvolution layer with ConvLSTM. Moreover, this work has compared the proposed
framework with the baseline framework that utilized the U-Net architecture [12], the
proposed framework outperformed their performances on both UCSD Pedl and Ped2
subset with an AUC of 85.3% and 95.7%, respectively.

The comparative results of the CUHK Avenue dataset are also presented in Table
3.2. The proposed framework further surpass their existing learning-based methods,
reaching the best AUC of 86.9% and EER of 20.2%, indicating that the proposed frame-
work can precisely detect and reduce the false alarm rate of the anomaly detection in the
CUHK Avenue dataset. The AUC is 2.0% above the baseline method reported in Liu et
al. [12], and more than around 7% higher than other frameworks based on AE [8,42,54].

Table 3.3: Area under curve (AUC) comparison of proposed framework and [8, 12,42-
44,54] works on ShanghaiTech dataset.

ShanghaiTech
AUC EER
StackRNN [44] | 68.0% -
Liuetal. [12] | 72.8% | 32.6%
The Proposed | 73.0% | 32.3%

Methods
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3.3.3 Results on the ShanghaiTech Dataset

ShanghaiTech is one of the most challenging dataset in video anomaly detection. It con-
tains various type of anomalies, video scenes and complicated movement. Unlike train-
ing the network with only one video scene in UCSD Pedestrian and Avenue datasets,
the network was trained in several scenes in the ShanghaiTech dataset. Experimental
results presented in Table 3.3 demonstrated that the proposed framework achieved 73%
of AUC, which is 5% better than the work that utilized the stacked of RNN layers. The

performance is slightly improved compared to the baseline method [12].

3.3.4 Qualitative Result of the Proposed Framework

The qualitative results of the proposed framework on three testing videos in the CUHK
Avenue, the UCSD Ped2 and the ShanghaiTech dataset are illustrated in Figure 3.6.
We can see that the generated image tends to achieve a high regularity score while
decreasing when the anomaly occurred (e.g., running, bicycle intrusion). This research
also shows the output of the proposed generator network in Figure 3.7. The result of the
generated image and the image difference compared to the ground truth image indicates
that the image quality of the anomaly area is blurred and distorted due to the fact that
the generator network could not reconstruct the unseen object from the learned model
(i.e. "throwing", "car and bicycle approaching", "strange action"), resulting in a lower
regularity score in these video scenes. Although the proposed framework can detect
anomalies in general scenes with cleared object appearances, the proposed framework
still has limitations to detect occluded anomaly objects. For example, when a group of
people occludes the anomaly object, the proposed framework cannot detect this kind of
anomalies. In addition, camera viewpoints cause anomaly objects in different scenes
to appear differently, which also affects the detection accuracy. For example, camera
viewpoints of the UCSD Ped1 and UCSD Ped2 are different (Figure 3.7), the looks of
cycling people in the UCSD Ped1 dataset is similar to walking people. However, cycling

people can be clearly classified as an anomaly event in the UCSD Ped?2 dataset.
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Table 3.4: AUC for anomaly detection of networks with/wo SIM and residual skip
connection. The results are evaluated on CUHK Avenue dataset.

Model AUC

U-Net [24] 84.9%

Only residual skip connection | 85.1%
Only SIM 86.6%
Multi-scale U-Net 86.9%

Table 3.5: Parameter number comparison of the proposed multi-scale U-Net with/wo
and the original U-Net [24]

Model Number of Parameters
U-Net (baseline) [24] 10,468,932
Proposed wo asymmetric convolution 9,748,210
Proposed with asymmetric convolution 8,102,784

3.3.5 Performance Comparison on Employing an Individual Mod-

ule of the Proposed Framework

Table 3.4 summarizes the performance evaluation result of the proposed framework for
confirming individual contribution. The experiments are performed on CUHK Avenue
dataset using two parts based on the original U-Net architecture as a baseline: the incep-
tion module and the residual skip connection. Firstly, the traditional skip connections
were replaced by the residual skip connection. Secondly, two consecutive 3x3 convo-
lution layers were replaced by the inception module. The result shows that the resid-
ual skip connection slightly improves when included in the U-Net architecture, while
employing the inception module is even more effective to the detection performance.
However, combining the inception module and residual skip connection achieved the

best detection performance compared to the original U-Net architecture.
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3.3.6 Running Time Analysis

A comparison of the parameter number of the original U-Net architecture and proposed
ones are presented in Table 3.5, demonstrating that the multi-scale U-Net reduces the
number of parameters by 22.6% for training and testing an anomaly detection while im-
proving the accuracy. This work also evaluated the computational cost of the proposed
framework on the Shanghaitech dataset. The running times were measured on NVIDIA
Geforce RTX 2080 Ti GPU with 24 GB of RAM. The proposed framework takes 0.041
seconds per frame in averaged. Hence, it can run at 24 frames per second(fps) within
the entire pipeline, which is on par or slightly better than using the baseline network
architecture [24] that is able to run at about 22 fps. Overall, the processing time of the

proposed framework is speeded up by 9% on average.

3.4 Summary

This chapter presented a framework based on multi-scale U-Net architecture for
anomaly detection in video. The inception modules are employed instead of using
the traditional convolution layers utilized in the original U-Net, making the multi-scale
U-Net has an ability to learn image features in different scales. The skip connections
were replaced by the proposed residual skip connections including shortcut connections,
which increase the ability to train a deeper network while still having fewer parameters.
In the feature extraction part, an asymmetric convolution kernel is applied to reduce
the number of network parameters without degrading the detection accuracy. As a re-
sult in both qualitative and quantitative, the proposed framework based on multi-scale
U-Net achieved better performance with a lightweight model and less memory usage
compared to other learning-based anomaly detection approaches. The overall result il-
lustrated that the design of the proposed framework is able to capture appearance and

motion information to detect anomalies in real-world scene scenarios.



3.4. SUMMARY 43

Normal Scene Throwing Action Normal Scene

=
=}
o

i
N
u

Regularity Score (R)
o o
N U
(6] o

o
o
S

0 200 400 600 800 1000
Frame number

(a) CUHK Avenue

Normal Scene Cycling

e =
9 o
u S

Regularity Score (R)
o
U
o

0.25
0.00
0 25 50 75 100 125 150 175
Frame number
(b) UCSD Ped2
Normal Scene Chasing Normal Scene
— —— —_— S —
1.00

o
N
ul

Regularity Score (R)
o o
N wn
6,1} o

o
o
S

0 100 200 300 400
Frame number

(c) ShanghaiTech

Figure 3.6: Qualitative results of the proposed framework on three testing videos in (a)

CUHK Avenue, (b) UCSD Ped2 and (c) ShanghaiTech dataset. Colored window shows
ground truth anomaly region.
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Figure 3.7: An example of the generated image of the proposed in all datasets: CUHK
Avenue, UCSD Pedl, Ped2, and Shanghaitech datasets. The top row is ground truth
images, the middle shows generated images, and the bottom row is an image difference
between ground truth and generated images.



Chapter 4

Joint Representation Learning for

Video Anomaly Detection

This chapter presents a method to detect anomaly in surveillance video using GAN
structure based on a joint representation learning. The network architecture consists of
two encoders, one for appearance feature and another one for motion feature. The RGB
image sequence and the optical flow are fed to different encoders in order to improve
the feature extraction processes. The details of the proposed two encoders structure and
network architecture are described in Subsection 4.2.1 and 4.2.2, respectively. In the

remaining of this chapter, experimental results and discussions are provided.

4.1 Introduction

Recently, video anomaly detections based on deep learning have attracted significant at-
tention from the research community and are able to improve the accuracy of the detec-
tion and localization in complex scenarios. Many researches in video anomaly detection
attempted to model the normality pattern using unsupervised learning [12, 13,39-44].
These approaches extract the feature from the input RGB image and reconstruct the
output to be the same as inputs. Then the reconstruction error is performed to compute
the anomaly score. However, using only the appearance information in these network
structures is not capable of capturing enough object characteristics for video anomaly

detection. Therefore, this research proposes a joint representation learning structure for
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anomaly detection. The proposed architecture consists of two encoders that extract the
feature from the appearance and the motion. The appearance and motion features are
extracted using ResNet architecture [15]. The ResNet architecture is adopted as the
generator network, as it allows information from previous layers in the network to skip
ahead of one or more layers. Thus, the ResNet architecture can be trained in many

layers without suffering from the vanishing gradient problem.

4.2 Joint Representation Learning for Video Anomaly

Detection

An overview of the proposed method is visualized in Figure 4.1. The proposed net-
work architecture consists of two separate encoders to extract appearance and motion
features. The feature maps from two encoders are then fused and fed to the same de-
coder. This work utilized ResNet [15] as the network backbone due to its capability of
capturing appearance features. The objective of the generator network is to minimize
the reconstruction error between the input image and the generated image by the learned
model. Then this work uses the reconstruction error to compute the regularity score. A
normal scene is expected to have a high score in the testing phase, whereas an anomaly

is expected to have a low score.

4.2.1 Two Encoders Structure

AE is a type of unsupervised learning, which consists of encoder and decoder parts.
The encoder takes an input image to extract the feature into a small size vector called
a latent representation. In contrast, the decoder aims to reconstruct the original image
from the latent representation. Unlike the traditional AE, this research instead employed
two encoders. The first encoder used the RGB image sequence as an input to extract the
appearance feature and the second encoder used the optical flow as an input to extract
the motion feature. In addition, this work uses ResNet [15] as a network backbone in
the proposed architecture. ResNet was designed to allow information from previous
layers in the network to skip ahead of one or more layers, which has shown impressive

performance in anomaly detection and action recognition benchmarks [41,69, 70].
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Figure 4.1: The overview of the proposed method based on two encoders network struc-
ture.

The generator network G (as shown in Figure 4.1) aims to generate the output im-
age X, that looks similar to the ground truth image X, ;. Specifically, given input
image sequence (..., X;—2,X;_1,X;), the spatial encoder takes the image sequence as in-
put, whereas the temporal encoder uses the motion information by generating the optical
flow F; using Flownet [71]. The optical flow uses the change of the image intensity of
two consecutive frames to calculate the motion information caused by the movement of
the object itself or the camera movement. In the proposed method, this work computed
the optical flow using X; | and X; of the input image sequence. The feature maps of two

encoders are then fused and fed to the same decoder.

4.2.2 Network Architecture

The detail of the proposed network architecture is described in Table 4.1. The network
contains 18 layers; the first 13 layers are encoder layers consisting of convolutional
layers and stacking of residual blocks. RGB images and optical flow are fed to a separate

encoder. A fusion layer is applied in the middle of the network, followed by the decoder
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Figure 4.2: Residual block.

layer in the remaining. In detail, the input fed into the first layer with a filter size of
7x7 with a stride of 1 and 64 feature maps are generated so as to output a feature map
of 256 x256x 64, this work uses the large filter size in the first layer of the network in

order to extract the feature on a large object size in the image.

The structure of the residual block is illustrated in Figure 4.2. A residual block
contains two 3x3 convolutional layers with 512 filters and the stride of 1, Rectified
Linear Unit (ReLU) activation function [72] is applied after each convolution layer.
Each residual block contains a skip connection that adds the input and the output of
the convolutional layer before passing the output to the next layer. In the middle of the
network, a fusion layer is utilized to combine a feature map from two encoders with
the output of 32x32 and 1024 feature maps. Finally, the decoder comprises the reverse
architecture of the encoder. Three 3x3 deconvolutional layers and a 7x7 convolutional

layer are placed at the end of the network architecture to form a decoder part.

4.2.3 Model Learning

Generally, the AE approach in video anomaly detection aims to learn the useful features
of normal events. As the structure of the proposed network consists of two encoders, this
research considered the intensity loss L;;, and gradient loss Lgy of the generated image
X and the ground truth X as the main objective functions to minimize the reconstruction

error, which can be calculated as follows.

Lin(X —X) = | X = X|I3 (4.1)
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Table 4.1: The proposed network model structure and configuration.

Layer Filter Size/Stride | #filters Output

S1,T1 Conv(7x7)/1 64 256x256x 64
S2, T2 Conv(3x3)/2 128 128x128x 128

Encoders S3,T3 Conv(3x3)/2 256 64x64x256
S4, T4 Conv(3x3)/2 512 32x32x512

S5-13, T5-13 | Residual block 512 32x32%x512

Fusion 14 Features fusion 1024 | 32x32x1024
15 DeConv(3x3)/2 256 64x64x256

16 DeConv(3x3)/2 128 128 x 128 x64

Decoder 17 DeConv(3x3)/2 64 256x256x64
18 Conv(7x7)/1 3 256x256x%3

Conv = Convolutional layer, DeConv = Deconvolutional layer
S = the spatial encoder layer, T = the temporal encoder layer.

Leg(X = X) = |||1Xi.j — Xiz1 | — 1Xij — Xic 1l + 11Xij — Xij—1 | — X — Xi il
(4.2)

where i, j is the spatial index of an image.

In addition, PatchGAN [14] is utilized as a discriminator network D in the proposed
architecture to discriminate X from X, which maps X to small patches and takes each
individual patch to predict whether a patch comes from X or X. An output of D is
a scalar that classifies the patch from X as class 1 and the patch from X as class 0.
The goal of training G is to generate an image where D classifies it into class 1. The

adversarial loss L4, can be calculated as follows.

N 1 N
Ladv (X) - Z ELMSE (Dgen (X>m,n7 1) (43)
m,n

Lyse(X,X) = (X —X)?, (4.4)

where this work denoted Dy, (.) as the discriminator network of the generated image
X and m,n denote patch indexes. Finally, the objective function L can be computed as

follows.
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L= )LintLint + A'gdLgd + )vadeadw (45)

where Ajn, Aga, Agay are weights of each loss.

4.2.4 Anomaly Detection

This research quantifies the normalities or abnormalities by using only the generator
network G in the testing phase. The work proposed by [12] and Mathieu et al. [73]
proved that Peak Signal to Noise Ratio (PSNR) is a more optimal metric to evaluate the
quality of the next frame prediction. Therefore, PSNR is utilized as the detection score,
where high PSNR indicates that the image is more similar to the ground truth, which
considers to be a normal event. PSNR can be calculated as follows.
]2

(4.6)

PSNR(X,, %) = 10log g — maxe]”
v Lico(p: (i) — Bi(i))?
where maxy represents the maximum intensity value in a generated image X. p:(i)
and p;(i) are pixel intensities of index i in X and X, respectively. N denotes the total
number of pixels in the image. Finally, a regularity score R(¢) at frame ¢ is obtained by

normalizing the PSNR to the range of [0,1] as follows:

_ PSNR(X;,X;) — minpsyg

maxpgyg — MiNpsygR

R(1)

this work denoted minpgyg and maxpgyg as the minimum and the maximum among

4.7)

PSNRs of all frames in testing video.

4.3 Experimental Results

4.3.1 Implementation Details

This research performed the experiment on three benchmark anomaly datasets including
the UCSD Ped2 [56], the CUHK Avenue [6], and the ShanghaiTech [12]. The training
set of each dataset contains only normal events. Input images are resized to 256 x256

with three color channels. This research has set 4 consecutive images as the input im-
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age sequence. The network was trained on Tensorflow using NVIDIA RTX 2080 Ti
GPU. In the preliminary experiment, this work achieved the best performance by set-
ting Ains, Agd, Aaav 10 2, 1, and 0.05, respectively. In the same manner as [12,13,39,40],
this work plot the receiver operating characteristic (ROC) curve and compute the area

under the curve (AUC), and use it as the evaluation metrics.

Table 4.2: Performance comparison with [12, 13, 39-44] on CUHK Avenue, UCSD
Ped2, and ShanghaiTech dataset

Methods CUHK Avenue | UCSD Ped2 | ShanghaiTech
Conv-AE [42] 80.0% 85.0% 60.9%
Luo et al. [44] 81.7% 92.2% 68.0%
Fan et al. [43] 83.4% 92.2% -
Liu et al. [12] 84.9% 95.4% 72.8%
Spatio-Temporal U-Net [13] 84.5% 96.5 % -

Dual Discriminator [40] 84.9% 95.6% 73.7 %
AnomalyNet [41] 86.1% 94.9% -
Conv-VRNN [39] 85.7% 96.1% -

The Proposed 86.9 % 96.5 % 73.4%

4.3.2 Results of the Proposed Architecture Compared with Learning-
based Methods

Table 4.2 shows the results of the proposed method compared with several learning-
based methods, including two-stream network architectures, AE and GAN. The pro-
posed method achieved an AUC of 86.9% and 96.5% in the CUHK Avenue and the
UCSD Ped2, respectively, which is outperforming the existing methods. The result of
the ShanghaiTech dataset is 73.4% and it was also improved compared to the work
based on AE [42,44] and GAN [12], but slightly lower than the work from Dong et
al. [40] that utilizes both appearance and motion discriminator-based of the generative
adversarial network.

This research demonstrated the qualitative result of the proposed method on testing
videos in the CUHK Avenue and the UCSD Ped?2 datasets in Figure 4.3 and Figure 4.4,

respectively. It can be seen that the proposed method can detect anomaly events, even
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Normal Scene Strange action Normal Scene  Strange action  Normal Scene

1 41 81 121 161 201 241 281 321 361 401 441 481 521 561 601 641 681 721 761 801 841 881 921
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Figure 4.3: Qualitative results of the proposed method on Avenue dataset.
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Regularity Score (R)
Regularity Score (R)
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Frame Number Frame Number

Figure 4.4: Qualitative results of the proposed method on UCSD Ped?2 dataset.

in the case of the video scene of crowded people. However, for some of the anomaly
events (i.e., strange action), such as people running across the video scene, the regularity
score is rapidly changed to low due to the fact that the motion pattern of the people
movement is unseen in the trained model. For example, in Figure 4.4, when the car was
approaching the video scene, the regularity score trend slowly decreased comparing to
Figure 4.3. This seems to be because only some part of the car has appeared in the
scene, and the proposed method is not able to detect an anomaly object, but when the

whole part of the car gets in the scene, the regularity score is completely low.
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Table 4.3: AUC comparison of the network backbone in the proposed network architec-
ture on UCSD Ped2, CUHK Avenue and ShanghaiTech dataset

Network Backbone | CUHK Avenue | UCSD Ped2 | ShanghaiTech
U-Net [24] 85.3% 95.1% 72.6%
ResNet [15] 86.9% 96.5 % 73.4%

4.3.3 Performance Comparison of using Different Network Back-

bones

The performance of the proposed network architecture was evaluated through a com-
parison with the conventional U-Net network backbone. All the setting is kept in the
same condition including the latent vector size, filter size, number of filters and training
hyperparameters. As shown in Table 4.3, the proposed network architecture utilizing
the ResNet as a backbone network achieved better performance compared to the U-Net
network in terms of detection accuracy. Therefore, this work adapts ResNet as the gen-
erator network in the proposed method. The effectiveness of using a different network
backbone is also discussed in AnomalyNet [41]. The ResNet backbone achieved higher
performance compared to some network backbones that are used in the classification
and detection task. The result suggests that the network backbone is essential for the

generator network in GAN to keep a useful feature during the feature extraction process.

4.4 Summary

This chapter proposed a joint representation learning for anomaly detection in surveil-
lance video. The network architecture consists of two encoders. The first encoder used
the RGB image sequence to extract the appearance feature, and the second encoder used
the optical flow to extract the motion feature. Feature maps from two encoders are fused
and fed to the same decoder. This research used a ResNet [15] as the network backbone.
The experiment results on three benchmark datasets show the effectiveness of the pro-
posed method in terms of detection accuracy compared to the existing learning-based

video anomaly detection methods.






Chapter 5

Conclusion and Future Work

5.1 Summary of Methods and Contributions

In present, machine learning algorithms show promising performance in the context of
Al in various area.Video analytic applications are widely developed in the past decade,
making a surveillance system more autonomous. Anomaly detection in surveillance
video is essential part in security system and attracts attention in computer vision re-
search community. Since anomaly events in surveillance video is diverse, it is impos-
sible to define all possible events of normal and anomaly video. Moreover, video data
is high dimensional data containing noise, high variations, and interactions, making
the analysis and defining the anomaly event in the scene more challenging. This dis-
sertation proposed the framework for video anomaly detection based on unsupervised
machine learning structure to extract semantic representations from video data. These
representations are then used to detect whether the video scene is normal or abnormal
events. Methods proposed in this dissertation are based on a generative network, which
shows the effectiveness of detection accuracy while reducing the processing time and
the error of the detection in real-world scenarios. This dissertation consists of two con-
tributions, where each contribution used different neural network architecture. The first
contribution used the multi-scale U-Net that reduces the processing time, where the
second contribution aims to improve the detection accuracy by utilizing the ResNet ar-
chitecture. The ResNet consumes high computational resource due to the fact that the

network architecture contains many layers compared to the multi-scale U-Net, making
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these two contributions have different directions. In summary, this dissertation provides
the following contributions to solve the problems in anomaly detection in surveillance

video.

* Multi-Scale U-Net: Currently, most of the network architecture in video anomaly
detection attempted to balance the detection accuracy and the processing time. In
the generative network, some features are lost in the generator during training due
to convolution operators of each layer, which affected to the accuracy. In Chapter
3, this dissertation proposed a video anomaly detection based on GAN structure.
The network architecture is based on the U-Net but some modifications are ap-
plied. this work employ Shortcut Inception Module (SIM) and residual skip con-
nection to the generator network called multi-scale U-Net, to make the network
learning higher-level features. Although neural networks acheived significant per-
formance in terms of detection accuracy, speed and computational cost should be
considered for real-world applications. Therefore, this research apply the idea of
an asymmetric convolution layer and increase the width of the network architec-
ture in order to attain both of small model size and high training efficiency. The
proposed multi-scale U-Net reduces the parameter number of training and testing,
while the anomaly detection accuracy still significantly improves.

* Joint representation learning: Typically, the input of neural network in video
anomaly detection approach contains only the appearance information and it is not
capable of capturing enough object characteristics for video anomaly detection. In
Chapter 4, this dissertation proposed a joint representation learning structure for
anomaly detection. This research designed a convolutional neural network for
video anomaly detection that combines a representation of the appearance and
the motion features. The proposed network architecture consists of two encoders
based on ResNet architecture. The RGB image sequence and the optical flow are
fed to different encoders in order to improve the feature extraction of the object
appearance and the motion. This research proposed features fusion of encoders
to combine useful features obtained by encoding the appearance and the motion
features.

* Evaluations on several benchmark datasets: To measure the performance, this

dissertation evaluate the proposed framework and network architecture with three
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benchmark datasets of different scene scenarios including the UCSD Pedestrian,
the CUHK Avenue and the ShanghaiTech datasets. Experiments on the bench-
mark datasets show the effectiveness of the proposed framework and network
architecture for video anomaly detection in terms of both detection accuracy and

processing time.

5.2 Future Work

The proposed designs of network architecture based on generative network currently
achieved a significant improvements in terms of detection accuracy and processing time.
However, the generator network is unable to distinguish an ambiguous anomalous ob-
ject in a scene such as some part of anomaly object is occluded by other objects, same
motions but classifies as different events (e.g. the people running in the park is classi-
fied as normal event but the people running in the bank might be classified as anomaly
event). For future work, this research will explores on experimenting on applying pre-
processing techniques such as background segmentation, human detection before pass-
ing to the feature extraction processes to illuminate unwanted objects. Next, this re-
search will redesigns the network architecture to used the motion features for training,
in order to capture both the appearance and the motion of the object characteristic and
to enhance the performance of the anomaly detection. As the improvement of Al tech-
nologies are attractive by the researchers and the CCTV camera are more automated,
we will also explore the usage of computational resources such as memory size, power
consumption, and the processing time in order to make the video anomaly detection
framework able to work in the embedded system for real-world computer vision appli-
cations. Further, the results of testing anomaly detection including anomaly scenes and
anomaly objects in the real-world scenario can be collected, these data can be used to

create another dataset for anomaly detection and action recognition tasks.
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