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Abstract

Recently, using data in sports has been attracting more and more attention for various purposes such

as advanced strategic analysis and e�cient player training. For example, if players’ positions are

obtained, we can know distance covered and playing area per game for each player. Also, by labeling

actions such as passes and shoots in addition to the positional data, we can understand positions where

attacks occur frequently. In fact, the German national football team acquired and analyzed various

data in a game with high-resolution cameras, such as the speed of players and balls, the movement

of the opponent team, etc. for creating a new training menu. As a result, they won the 2014 World

Cup with the use of big data. The Japan national rugby team has also achieved great success by

thoroughly analyzing positions of the players. Therefore, in many professional sports, data analysis

experts participate in teams to collect and analyze practice and match data.

On the other hand, data utilization is not yet widespread in amateur sports such as universities’

clubs. This is mainly due to the small number of sta↵. Even in a major sports data collection company,

action data such as the numbers of passes and shoots are collected by manually labeling them. Many

tools have been developed to collect data more easily. However, the actions are labeled by three experts

in each game. The first person labels actions of the home team, the second one labels actions of the

away team, and the third one checks the actions labeled by the other two. Therefore, in amateur

sports, it is di�cult to collect data and label them from daily practices and games. Additionally, it is

hard to spend a lot of time for preparing for data collection because the reservation time for courts

or fields is tight. Therefore, in order to secure enough practice time, it is necessary to mitigate the

time and workload required to install sensor(s) for data collection. Single modal methods which use a

single type of sensor(s) are useful to solve the problem. In these methods, we can start to collect data

simply by attaching or deploying devices to the player’s body, vehicle, or outside the court. For this

reason, in this dissertation, we design single modal methods to collect players’ positions and actions

as the data necessary for the analysis.

Sports data collection methods are divided into two approaches: sensor-based methods that attach

devices to players such as an inertial sensor and a heart rate sensor, and device-free methods that

use non-contact devices such as cameras and radars. The movement and state of the player can be

directly measured by attaching an inertial sensor to the player. However, there is concern that players’

performance may deteriorate due to discomfort when attaching the device. Because of the risk of injury
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in sports with contact, wearable devices such as smartwatches are sometimes not preferred as well. On

the other hand, when using a camera, we can obtain images without any e↵ect on players’ performance.

However, we need to detect and track the players in the video. Furthermore, action recognition from

the video is required from movements of players. Therefore, we propose data collection methods that

support various environments by two types of approaches: inertial sensors and a single camera.

Our goal is to design methods for data collection that support various environments in sports.

We rely on a single type of devices for collecting position and action data with low cost in terms of

workload. We design methods based on inertial sensors and a single camera. In this dissertation, four

primary contributions will be made toward automatically collecting sports data for data analysis in

various environments.

First, we design a localization method using inertial sensors. Focusing on wheelchair sports, we

perform dead reckoning using the displacement and orientation of a player obtained from three inertial

sensors attached to wheelchair wheels axles and under the chair. The relative position from the start

position is estimated by accumulating the displacement for a short unit time in the orientation of the

wheelchair. However, an accumulation of errors by sharp movement and/or peculiar to the sensor which

is called drift becomes a problem. Therefore, in this study, we propose a method for position correction

for dead reckoning using inertial sensors. We propose three types of correction methods: correcting

by beacon attached to a goal, manually correcting from video, and correcting using collisions between

wheelchairs. For evaluation, we collected data from actual wheelchair basketball games. From the

result, we confirmed how localization errors accumulate in wheelchair sports and the e↵ect of position

correction frequency on position estimation accuracy.

Secondly, we design localization using video so that data can be collected even in a circumstance

where an inertial sensor cannot be attached to a player. We detect the skeleton of a person moving in

the image and propose a localization method that is robust to the pose during movement. When per-

forming localization using video, it is necessary to first detect people in a video and get the coordinates

in the image where they are. However, existing methods are limited in that all skeletons are visible

and/or that both feet are not floating in the air. Therefore, in this study, to localize people using the

coordinates of their waist, which is likely visible and little height fluctuation during movement. Fur-

thermore, we propose a correction method using the skeleton of the lower body for various poses when

the target does not move. For evaluation, we collected images including 4 orientations and 5 poses of

people and compared our method with existing methods. As a result, we confirmed that our method

mitigated the increase of the error in various environments and this result shows the versatility of our

method. Furthermore, a distance between people has become important in sports where masks can

be avoided due to the recent spread of coronavirus infection. Therefore, we developed a close-contact

detection system using this localization method and we could lead the behavior modification to avoid

the close-contact by using it in an actual sports competition.

Thirdly, we propose an action recognition method using inertial sensors. Attaching sensors directly
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to the human body is sometimes avoided in sports where contact occurs. Therefore, we attach the

sensor to sports equipment and estimate the movement of the arm. In our method, we focus on

wheelchair sports, estimate the timing when a force is applied to the wheel from the change in rotation

of the wheel, and divide sensor data in time where one maneuver action is likely performed. Next, one

maneuver action is classified for each of the divided data sequences. Furthermore, by comparing the

movements of the left and right wheels, wheelchair movement recognition such as sprints and turns

is performed. By using our method in actual games, we could quantify the tendency and e�ciency

of maneuver actions for each player. This makes our method support understanding the maneuver

behavior with high-level players and making an e�cient training menu.

Fourthly, we propose an action recognition method using only video data. In existing action recog-

nition methods, a person is first detected, and then the movement of the arm or foot is recognized for

the person in the rectangle which is output from human detection. However, they focus on movements

of the limbs without considering positions in the field. Therefore, in the existing methods, it is di�cult

to classify di↵erent actions with similar movements such as passes and shoots. In this study, we created

a dataset including actions that are di↵erent even if they are similar movements and confirmed the

classification problem of the existing methods. Furthermore, we assume that a player’s position and

movement on the court a↵ect the action decision, and propose an action recognition method consider-

ing positional information. As an evaluation result, it can be seen that the actions in sports are related

to the position where actions are performed and we can classify with higher accuracy by considering

it.

Through these contributions, we have shown that it is possible to automatically collect sports

data easily and with a low workload in various environments. This dissertation has established the

foundation of a data collection and analysis system, which can be used even in environments with

limits to the number of people in the team or time to use the facilities for sports.
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Chapter 1

Introduction

Recently, using data in sports has been attracting more and more attention, and it is used for various

purposes such as advanced strategic analysis and e�cient player training. The sports data required for

analysis is a wide variety. For example, if players’ positions are obtained, we can know distance covered

and playing area per game for each player. By labeling actions such as passes and shoots in addition

to the positional data, we can understand a team’s tactics positions where attacks occur frequently.

Furthermore, we focus on one action such as pushing an object, we may be able to understand how to

apply force to the object more quickly and e↵ectively by analyzing the movement in the action. For

example, the German national football team acquired and analyzed various data in one game with

high-resolution cameras, such as the speed of players and balls, the movement of the opponent team,

etc. They created and executed a new training menu based on the data. As a result, it is said that the

major factor of the victory in the 2014 World Cup is the use of big data [1]. The Japan national rugby

team has also achieved great success by thoroughly analyzing positions of the players [2]. Therefore,

in many professional sports, data analysis experts participate in teams to collect and analyze practice

and match data. Additionally, such sports data utilization has attracted attentions of many people

even in some minor and amateur sports.

On the other hand, data utilization is not yet widespread in amateur sports such as universities’

clubs. This is mainly due to the small number of sta↵. Even in a major sports data collection company,

action data such as the numbers of passes and shoots are collected by manually labeling them. Many

tools have been developed to collect data more easily. However, the actions are labeled by three experts

in each game. The first person labels actions of the home team, the second one labels actions of the

away team, and the third one checks the actions labeled by the other two. Therefore, in amateur

sports, it is di�cult to collect data and label them from daily practices and games. Additionally, it is

hard to spend a lot of time for preparing for data collection because the reservation time for courts

or fields is tight. Therefore, in order to secure enough practice time, it is necessary to mitigate the

time and workload required to install sensor(s) for data collection. Single modal methods which use a

single type of sensor(s) are useful to solve the problem. In these methods, we can start to collect data
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simply by attaching or deploying devices to the player’s body, vehicle, or outside the court. For this

reason, in this dissertation, we design single modal methods to collect players’ positions and actions

as the data necessary for the analysis.

Sports data collection methods are divided into two approaches: sensor-based methods that attach

devices to players such as an inertial sensor and a heart rate sensor, and device-free methods that

use non-contact devices such as cameras and radars. The movement and state of the player can be

directly measured by attaching an inertial sensor to the player. However, there is concern that players’

performance may deteriorate due to discomfort when attaching the device. Because of the risk of injury

in sports with contact, wearable devices such as smartwatches are sometimes not preferred as well. On

the other hand, when using a camera, we can obtain images without any e↵ect on players’ performance.

However, we need to detect and track the players in the video. Furthermore, action recognition from

the video is required from movements of players. Therefore, we propose data collection methods that

support various environments by two types of approaches: inertial sensors and a single camera.

To collect these data, many systems and studies have been proposed. For indoor localization with

inertial sensors, dead reckoning is used. In dead reckoning, the relative movement trajectory from

the initial position is estimated by accumulating the moving direction and displacement for each unit

time, which are estimated by geomagnetism, gyroscope, and acceleration. At that time, if an absolute

position at any time is given, the other absolute positions in the entire time can be estimated. Using

this technique, several localization methods are proposed for smartphones [3] and mobile robots [4].

However, the moving objects in these studies are supposed to move forward and/or along the wall of the

building. When using videos for localization, it is necessary to detect and track people and transform

those people from the pixel coordinates in the image to the actual coordinates. Therefore, localization

is realized by combining the technologies in each task. Several studies have proposed methods using

detectors that output bounding boxes or skeletons [5–7]. In these methods, they regard the bottom

edge of the bounding box or the midpoint of both ankles as the position of the person in the image.

However, because the bounding box does not recognize the parts of the human body, if the lower body

is invisible due to occlusion, the other parts such as the waist may become the bottom edge of the

bounding box. In addition, even if the parts of the human body are recognized, when the midpoint

between both ankles is regarded as the position of the person, the pose in which one leg floats in the

air is not considered. It is a big problem because such a pose frequently occurs during exercise. Also,

regarding action recognition, many methods specialized for each sport have been proposed because

the movements of the arms and legs can be directly collected when the inertial sensor is used [8–10].

However, in sports with hard contacts, the installation on-body locations may be limited. Action

recognition using videos is one of the main topics in computer vision, where many methods have been

proposed [11, 12]� However, these studies focus on the movement of players itself without positions

in the field. Some actions in sports, such as passes and shoots, need to be counted as di↵erent actions

even if the movements are very similar. Even with the same action ”throwing the ball”, it is necessary
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to recognize where the ball was thrown. However, it is di�cult to classify them based on human centric

movements. Therefore, these existing methods of localization and action recognition focus on the use

in daily life without consideration of actions and pose changes that are unique in sports. It is also

sometimes necessary to change the method of collecting data depending on the environment.

Our goal is to design methods for data collection that support various environments in sports.

We rely on a single type of devices for collecting position and action data with low cost in terms of

workload. We design methods based on inertial sensors and a single camera. In this dissertation, four

primary contributions will be made toward automatically collecting sports data for data analysis in

various environments.

First, we design a localization method using inertial sensors. Focusing on wheelchair sports, we

perform dead reckoning using the displacement and orientation of a player obtained from three inertial

sensors attached to wheelchair wheels axles and under the chair. The relative position from the start

position is estimated by accumulating the displacement for a short unit time in the orientation of the

wheelchair. However, an accumulation of errors by sharp movement and/or peculiar to the sensor which

is called drift becomes a problem. Therefore, in this study, we propose a method for position correction

for dead reckoning using inertial sensors. We propose three types of correction methods: correcting

by beacon attached to a goal, manually correcting from video, and correcting using collisions between

wheelchairs. For evaluation, we collected data from actual wheelchair basketball games. From the

result, we confirmed how localization errors accumulate in wheelchair sports and the e↵ect of position

correction frequency on position estimation accuracy.

Secondly, we design localization using video so that data can be collected even in a circumstance

where an inertial sensor cannot be attached to a player. We detect the skeleton of a person moving in

the image and propose a localization method that is robust to the pose during movement. When per-

forming localization using video, it is necessary to first detect people in a video and get the coordinates

in the image where they are. However, existing methods are limited in that all skeletons are visible

and/or that both feet are not floating in the air. Therefore, in this study, to localize people using the

coordinates of their waist, which is likely visible and little height fluctuation during movement. Fur-

thermore, we propose a correction method using the skeleton of the lower body for various poses when

the target does not move. For evaluation, we collected images including 4 orientations and 5 poses of

people and compared our method with existing methods. As a result, we confirmed that our method

mitigated the increase of the error in various environments and this result shows the versatility of our

method. Furthermore, a distance between people has become important in sports where masks can

be avoided due to the recent spread of coronavirus infection. Therefore, we developed a close-contact

detection system using this localization method and we could lead the behavior modification to avoid

the close-contact by using it in an actual sports competition.

Thirdly, we propose an action recognition method using inertial sensors. Attaching sensors directly

to the human body is sometimes avoided in sports where contact occurs. Therefore, we attach the
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sensor to sports equipment and estimate the movement of the arm. Because small sensors are developed

underway, we believe that the built-in sensors in sports equipment will develop in the future and it

does not increase the risk of injury even in sports with many contacts. In our method, we focus on

wheelchair sports, estimate the timing when a force is applied to the wheel from the change in rotation

of the wheel, and divide sensor data in time where one maneuver action is likely performed. Next, one

maneuver action is classified for each of the divided data sequences. Furthermore, by comparing the

movements of the left and right wheels, wheelchair movement recognition such as sprints and turns

is performed. By using our method in actual games, we could quantify the tendency and e�ciency

of maneuver actions for each player. This makes our method support understanding the maneuver

behavior with high-level players and making an e�cient training menu.

Fourthly, we propose an action recognition method using only video data. In existing action recog-

nition methods, a person is first detected, and then the movement of the arm or foot is recognized for

the person in the rectangle which is output from human detection. However, they focus on movements

of the limbs without considering positions in the field. Therefore, in the existing methods, it is di�cult

to classify di↵erent actions with similar movements such as passes and shoots. In this study, we created

a dataset including actions that are di↵erent even if they are similar movements and confirmed the

classification problem of the existing methods. Furthermore, we assume that a player’s position and

movement on the court a↵ect the action decision, and propose an action recognition method consider-

ing positional information. As an evaluation result, it can be seen that the actions in sports are related

to the position where actions are performed and we can classify with higher accuracy by considering

it.

In this dissertation, we propose sports data collection methods by two measures, in addition to a

method of directly attaching inertial sensors to players, and a not invasive method of using only video

taken from the outside, which does not need to consider problems of sensor attachment. As a result,

we have realized the construction of automatic data collection platforms in the field of sports. And we

focus on the collection of two types of data in each collection measure. One is positional data which

is the basis of data analysis and another is action data which is important for understanding the team

tactics and/or a player’s performance. In the indoor localization task, we propose a method that can

be applied even in an environment with sharp movement during exercise, using the characteristics of

pose changes, vehicles, and actions specific to sports. Additionally, when using inertial sensors in an

action recognition task, by using the device attached to the sports equipment, we recognize fine arm

movements without directly attaching them to players. When using video in action recognition, we

propose a model specialized for sports considering positional data.

Through these contributions, we have shown that it is possible to automatically collect sports

data easily and with a low workload in various environments. This dissertation has established the

foundation of a data collection and analysis system, which can be used even in environments with

limits to the number of people in the team or time to use the facilities for sports.
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The rest of this dissertation is organized as follows. Chapter 2 reviews related work on localization

and action recognition. Chapter 3 explains the dead reckoning for localization, which is using inertial

sensors. Chapter 4 proposes the localization method using a single camera and position correction

method by considering human poses. Chapter 5 describes maneuver action recognition method using

inertial sensors. Chapter 6 proposes action classification model considering positional data using only

video. Finally, Chapter 7 summarizes and concludes this dissertation.
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Chapter 2

Related Work

2.1 Indoor Localization by Attaching Device to Targets

Localization method by the sensor device alone is called dead reckoning [13]. In dead reckoning, the

relative position from the start position is estimated by accumulating the displacement for a short

unit time in the orientation of the targets. To deal with this problem, there is a method that uses

deep neural networks to dynamically adapt the noise parameters of the filter. It achieve competitive

performance with top-ranked methods which use LiDAR or stereo vision. However the targets of

the method is only wheeled vehicle and the method does not assume sharp movements occurred in

sports. Therefore, to reset the accumulated error, dead reckoning is generally used in combination

with other localization methods such as using Wi-Fi [14, 15], beacon [3, 16], camera [17, 18], laser [4],

and etc. For example, in Reference [3], Using a smartphone in a pedestrian’s pocket, the number of

steps is estimated from the accelerometer, autonomous navigation is performed in combination with

the direction estimated from the angular velocity sensor, and the position is corrected when a signal

is obtained from the beacon. Reference [4] proposes a method that combines dead reckoning based on

the speed of the left and right wheels of a wheeled mobile robot and laser positioning.

When using radio waves, the distance between transmitting and receiving devices can be measured

from the time until the arrival of radio waves. Therefore, by placing multiple radio wave transmit-

ters and receivers on the outside and having the tracking target also have a device, it is possible to

localize. Many researchers have proposed various methods using di↵erent types of devices such as

radio frequency (RF) [19–21]. Bluetooth and Wi-Fi are widely used for close-contact tracing owing

to the wide availability of smartphones. However, the localization accuracy is typically up to a few

meters [20, 21], which is not enough for distance-based close-contact detection. Recently, the millime-

ter wave has attracted the attention of researchers for localization because it has become available in

IEEE 802.11ad and 5G cellular networks [22]. Although it provides centimeter-level localization accu-

racy [19], the deployment cost is still large. Furthermore, because RF signals are reflected, refracted,

and attenuated by people and walls, there are concerns about vulnerability to dynamic environment.
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This is a major problem of localization using radio frequency and there are many studies to handle

the problem [23,24].

2.2 Indoor Localization without Attaching Device to Targets

When localization from the outside without attaching a sensor to a player, methods using a camera or

LiDAR (Light Detection And Ranging) has been proposed. Using LiDAR, we can measure the distance

to objects and humans with centimeter accuracy by measuring the time of flight of laser pulses [25].

References [26,27] proposed target localization using LiDAR fixed in the target environment. However,

we need to deploy LiDAR while incurring deployment cost although it can localize and track targets

accurately.

When using a camera, a commercially available camera can be used, so we can realize localization

lower cost than LiDAR. However, it is necessary to detect and track players in the video. For human

detection in an image, methods for outputting a rectangle surrounding a person [28–31], methods

for detecting the skeleton of the person body [32–34], and methods for distinguishing the person or

not in pixel units of an image [35–37] have been proposed. Detecting a person on pixel-by-pixel is

more accurate, but inference times are longer. When using detector which output bounding box of

a person, it can work in real time even if not using graphics processing units with high cost. For

tracking, many methods have also been proposed [38–41]. For example, in Reference [38],the authors

proposed approach that consisted in predicting object motion using the Kalman filter [42] and then

associating the detections together with the help of the Hungarian algorithm [43]. In addition, in order

to analyze personal data, it is necessary to identify the person in the video. For this reason, a method

of identifying by a player’s uniform number [44], a method of identifying by a player’s face [45], and

a method combining a machine learning algorithm and textual information such as manually labeled

actions [46] have been proposed. By combining the above techniques, the localization of a person in

an image can be realized.

Next, in order to get the actual position in the court for the person, it is necessary to transform

the position from coordinates in image to coordinates in actual world . When two or more cameras are

used, the actual position of the person can be estimated from the parallax if the positional relationship

between the cameras is given [47]. On the other hand, when using one camera, homography [48]

is used. Homography is a transformation that projects a plane to another plane, given the four

point correspondences between the two planes. Therefore, a homography transformation matrix can

transform pixel coordinates in an image into the actual positions, given the distance between the four

points in the real world.

Recently, with the spread of coronavirus, the distance between people has become important to

prevent the infection, and along with this, several localization methods using a single camera have

been proposed [5–7, 49, 50].. For example, References [5, 6] calculate the inter-person distance using
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homography transformation with the bottom edge of the bounding box as the position of the person.

2.3 Action Recognition Using Inertial Sensors

The inertial sensor has many uses depending on the place to fix it and the environment in which it is

used. Therefore, there are numerous studies on behavior recognition using sensors. When using the

inertial sensor built into smartphones and smart watches, there are many studies on action recognition

in daily life [51–54]. For example, Reference [54] is focusing on action recognition algorithm for similar

gait actions using an inertial sensor in wearable and portable electronic devices such as smartphones,

tablets, and smartwatches. In this paper, a method to classify similar gait action (such as walking on

flat ground, up/down stairs, and up/down a slope) is proposed.

Because the smartwatch is fixed to the wrist and can be worn during exercise, it is also used for

action recognition in sports [55–58]. For example, Reference [55] proposes a method that can recognize

18 types of shooting actions in basketball with high accuracy using a wristband with a built-in inertial

sensor. In addition, Reference [56] proposes a method for recognizing the type of swimming and turn

in swimming using a commercially available smartwatch.

Furthermore, there are also researches on action recognition by attaching inertial sensors to various

parts of the body for the purpose of knowing more detailed movements of the body parts [10,59,60]. For

example, Reference [59] proposes a method for recognizing six types of play such as pass and receive in

field hockey from sensors attached to the chest, waist, and left and right wrists. Reference [10] propose

a classification method of football kick types using ankle-mounted inertial sensors. Because important

movements di↵er depending on each sport, it is necessary to carefully select the place to attach the

device to recognize fine actions using inertial sensors.

In wheelchair basketball, there are no studies about action recognition as far as we know. However,

there have been several studies on wheelchair basketball using inertial sensors. For example, References

[61–63] study the relationship between the level of disabilities and the performance. This relationship

must be determined in order to harmonize players with di↵erent level of disabilities, so a classification

system is used to evaluate the functional abilities of players on a point scale of 1 to 4.5. Reference

[61] reports the level of disability and the number of successful shots and passes are correlated for

professional female wheelchair basketball players.These studies do not investigate the design of data

analysis in wheelchair basketball because they focus on the medical aspect of wheelchair basketball

rather than sports. Also, other studies from a medical perspective investigate the risk of heatstroke [64]

or injury [65] during training and games.

Some research work on quantifying athletic performance is carried out by investigating the relation-

ship between moving speeds and wheelchair configurations [66–68]. Such studies reveal the e↵ectiveness

of data analysis in wheelchair basketball although they rely on the measured raw data of acceleration

and angular velocity in controlled environment. In wheelchair basketball, there are no studies about
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action recognition as far as we know.

2.4 Action Recognition Using Cameras

Action recognition using cameras is one of the main topics in computer vision, and large datasets

such as AVA [69] and Kinetics-600 [70] have been prepared and there are many studies [71–73]. For

example, , Reference [73] propose an improved Multi-scale Vision Transformer (MViT) as a general

hierarchical architecture for visual recognition. They use Transformer [74] that adopts the mechanism

of self-attention, di↵erentially weighting the significance of each part of the input data. It is used

primarily in the field of natural language processing, however recently it began to be used in the

field of computer vision. MViT is achieves state-ofthe-art accuracy on widely-used benchmarks across

image classification, object detection, instance segmentation and video action recognition. In terms of

action recognition, this model achieved 87.9 % for Kinetics-600.

To recognize actions in video, it is need to detect and track people as well as position estimation.

However, in action recognition task we are given a video clip that one human performed one action,

and then we classify it. Therefore, the human detection and tracking is out of scope of action recog-

nition task. However, there are several studies that is trying to localize the action both spatially and

temporally in video [11,75]. For example, in Reference [11], Slow Pathway, which detects objects at a

low frame rate and captures spatial features, and Fast Pathway, which detects moving objects at a high

frame rate and captures temporal features. We propose a behavior recognition model Slowfast with.

This model achieved behavior recognition with high accuracy of 81.8 % for data with 600 types of

action labels called Kinetics-600. Recently, in Reference [12], the skeleton obtained by using a skeleton

detector for a person is used as an input for Slow Pathway of Slowfast instead of a low frame rate

image.
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Chapter 3

Localization in Wheelchair Sports
Using Inertial Sensors

3.1 Introduction

Recently, using big data in sports has been attracting more and more attention, and it is used for

various purposes such as advanced strategic analysis and e�cient player training [76,77]. For example,

the German national football team acquired and analyzed about 40 million pieces of data in one game

with high-resolution cameras, such as the speed of players and balls, the movement of the opponent

team, etc. They then created a new training menu based on that data and executed it. As a result, they

won the 2014 World Cup and it is said that using big data is a major factor [1]. The Japan national

rugby team has also achieved great success by thoroughly analyzing the position of the players [2].

From such a background, data utilization is being promoted in minor and/or amateur sports such as

universities’ clubs. In wheelchair basketball, which is one of the sports for people with disabilities, it is

also required to support skill improvement and strategy planning by using data, and several attempts

have been made so far using inertial sensors [63, 78].

In order to collect such a huge amount of data, specialists or many sta↵ for data analysis are

required because it is needed to install cameras and sensors in right place for the data you need.

Therefore, it is di�cult to collect data for daily practice and games in minor sports. Therefore, it is

desired to collect various data without complicated work as much as possible. Data collected in sports

include bio-metric information such as heart rate in addition to positions and accelerations related to

the movement of athletes and balls. In particular, players’ position is the basic data with the widest

range of applications. Therefore, in this chapter, we aim to localize each player in wheelchair basketball

at the lowest possible workload.

For human localization outdoors, GPS (Global Positioning System) is mainly used, and the position

of a player can be tracked with high accuracy in a place where there are no tall buildings in the vicinity,

such as a soccer field. It is expected that the accuracy of GPS will be further improved by the start of
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Figure 3.1: Method Overview

the service of Quasi-Zenith Satellite System [79]. On the other hand, because GPS satellite signals do

not reach indoors, various localization methods such as Wi-Fi and cameras are proposed. Especially

in sports, since there are few privacy issues, it is common to use a camera, and there are some

products [80, 81]. However, in video-based localization, there are tracking failures due to occlusions.

In order to reduce the false negatives in detection, it is necessary to install multiple cameras, which

increases the time and e↵ort for measurement. In addition, it is necessary to identify who the player

is in the video, and under the present circumstances, manual correction is required each time tracking

stops.

On the other hand, in the positioning method in which a sensor is attached to a player, it is known

which player is wearing which sensor, so that it is not necessary to identify the person, which is a big

merit. Because wheelchairs move by wheels, we can obtain players’ trajectory by using the number of

rotations of the wheels. In the case of robots, many methods that combine dead-reckoning by wheel

rotations and distance estimation by laser have been proposed [4]. However, in the case of a non-

electric wheelchair, unlike a robot, it is di�cult to incorporate a sensor in the axle, so it is di�cult to

get the wheel rotation speed accurately. Therefore, in paper [82], the number of rotations of the wheel

is measured by a magnet attached to the spoke of a wheelchair and they localize based on a floor map.

However, because the number of spokes in a wheelchair is limited, the resolution of the measurable

rotation speed becomes rough, and there is a concern that su�cient accuracy cannot be obtained with

wheelchair basketball, which has a big and sharp movement.

23



Table 3.1: Sensor measurement range

Sensor Unit Range
Acceleration G [-16, +16]

Angular Velocity dps [-1500, +1500]
Magnetic Field Gauss [-10, +10]

In this chapter, we propose a localization system using a 9-axis sensor by dead reckoning in

wheelchair basketball. We can use the system with even a low workload because it needs to attach

only three sensors to each player. First, in order to estimate the displacement, the angular velocity

is measured by sensors attached to the left and right axles, and we estimate the rotation speed of

each wheel. Next, the geomagnetism is measured by a sensor attached under the chair. In wheelchair

basketball, the quantity of change in orientation of wheelchairs may not be obtained accurately only

from the rotation speed of the wheels because the wheels are sometimes floating in the air due to

collisions between wheelchairs, so the orientation of wheelchairs are estimated using geomagnetism. In

an environment for sports such as a gym, there are no large electronic devices that disturb the geomag-

netism, so unlike general indoor localization, we can the orientation of wheelchairs from geomagnetism

sensors. Furthermore, we examine several position correction methods for the errors accumulated by

dead reckoning. Specifically, we considered three types: (1) collision between wheelchairs, (2) BLE

(Bluetooth Low Energy) beacon installed at the goal, and (3) random manual correction. The third

correction result helps you know how often you need to get the right position to achieve the desired

accuracy. In wheelchair basketball, wheelchairs frequently collide with each other for the purpose of

blocking the way to a goal. When a collision occurs, the wheelchairs that collided must be adjacent

to each other, so it can be used for position correction. An accelerometer under a wheelchair is used

to detect a collision.

For evaluation, we collected data on 6 players in a wheelchair basketball practice game. As a

result, it can be seen that the average localization error is 5.3 m at the maximum for a game of about

5 minutes, although the error accumulates with time only by dead reckoning. In addition, we evaluated

the e↵ect of using position correction methods by simulation, it can be seen that the average error

is up to 2.8 m when collision and beacon correction are used together. Although su�cient accuracy

cannot be obtained for applications such as detailed tactical analysis, we can use the system for the

purpose of collecting data on wheelchair movement such as movement patterns, sprints, and turns of

each player.
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Figure 3.2: 9-axis motion sensor

Figure 3.3: Sensor Equipment for Dead Reckoning

3.2 Method

3.2.1 Overview

Figure 3.1 shows the overview of the localization method examined in this chapter. In order to collect

detailed data on wheelchair maneuver action, it is essential to attach an inertial sensor to a wheelchair.

As shown in Fig. 3.3, inertial sensors are fixed to the axles of the left and right wheels. We use DSP

wireless 9-axis motion sensors manufactured by SPORTS SENSING Co., LTD 1 (Figure 3.2). The

sensor is capable of measuring 3-axis acceleration, 3-axis angular velocity, and 3-axis geomagnetic data

at a sampling rate of 200 Hz. The measurement ranges of the sensor are shown in Table 3.1. Hereafter,

we use [radians/second] as the unit of angular velocity unless otherwise stated.

By combining these sensor data and wheelchair setting information (e.g. wheel size), the displace-

ment and change in orientation of a wheelchair per unit time are estimated. By repeating this, the

trajectory of each player can be estimated by dead reckoning. Because the position obtained by dead

reckoning is a relative position, to get where a player is on the court it needs at least one absolute

position. Therefore, the absolute position at the start of the match was given manually. Since the error

1https://www.sports-sensing.com/products/sensor/dspmotion/dspms.html
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that accumulates over time is unavoidable with localization using only dead reckoning, we assumed

methods to infrequently correct position. Specifically, we assumed two correction methods using abso-

lute position which are obtained by BLE beacons or manually at random timing. Additionally, when

wheelchairs collide they exist at the same position. Therefore we also assumed a correction method

using relative position between two wheelchairs which collide.

3.2.2 Dead Reckoning

Figure 3.4: Geomagnetic Measurement Results

Localization

Position estimation by dead reckoning is performed by adding a movement vector in the current frame

to the position before one frame. When the estimated position at time t � 1 is (xt�1
, y

t�1) and the

displacement from time t� 1 to t is d, and the orientation at time t� 1 is  t�1, (xt
, y

t) which is the

next estimated position at time t is shown as follows.

x
t = d

t�1 cos t�1 + x
t�1 (3.1)

y
t = d

t�1 sin t�1 + y
t�1 (3.2)

Displacement Estimation

Unlike pedestrians, wheelchairs have wheels, so when the angular velocity at time t is ✓, the amount

of rotation ⇥ at time T is shown as follows.

⇥ =

Z
T

✓(t)dt (3.3)

The angular velocity takes a positive value when the wheelchair moves forward. When the diameter

of the wheel is R, the displacement of each of the left and right wheels can be expressed as follows.

d = R⇥ ⇥

⇡
(3.4)
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The amount of movement dt for the entire wheelchair is calculated using the displacement of left and

right wheels as follows.

d
t =

dr + dl

2
(3.5)

Figure 3.5: Di↵erence in Intensity of Vibration between Collision and Normal

Orientation Estimation

The orientation of a wheelchair can be calculated from the displacement of both wheels and the distance

between the wheels, but the errors accumulate by the errors of displacement of the wheels. However,

wheels are frequently slipping or floating in the air during matches due to collision or hard braking.

Therefore, it is hard to use the displacement of both wheels to get the orientation of a wheelchair.

We thus use a geomagnetism sensor to get the orientation of the wheelchair. In the general indoor

position estimation method, the human rotation is often estimated by a gyro sensor rather than a

geomagnetism sensor, but in an environment such as a gymnasium, there are almost no electronic

devices that cause disturbance of the geomagnetism, so even using geomagnetism we believe that the

orientation can be obtained with high accuracy. In fact, we conducted a preliminary experiment in

an environment where there are no electronic devices. In the preliminary experiment, a wheelchair

orbited along the line of the outer circumference of the court. The result is shown in Figure 3.4. From

this result, it can be seen that the orientation estimation by the geomagnetic sensor installed under

the chair can be performed with higher accuracy than the quaternion combined with the accelerometer

and gyro.
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3.2.3 Localization Correction Method

Correction Using BLE Beacons

By using a BLE beacon, when the beacon signal is received we can know that the beacon is nearby. In

wheelchair basketball, it is important to be under goals both when attacking and when defending, so

players tend to gather under goals. Therefore, we consider correcting the position of the player under

goals by attaching a beacon to goals. Position correction is performed after a beacon attached to a

goal cannot receive the signal from a beacon attached to a wheelchair. Let 0, . . . , F be a period from

when a wheelchair moves to under the goal and starts receiving the beacon signal until it cannot be

received, the estimated position P of the wheelchair during the beacon reception period is expressed

as follows.

P = {(x0, y0), (x1, y1), (x2, y2), ..., (xF , yF )} (3.6)

At that time, the position Paverage = (xaverage, yaverage), which is the average of the estimated position,

is calculated as follows.

Paverage = (

P
F

i=0 xi

F
,

P
F

i=0 yi

F
) (3.7)

Wheelchair position correction is performed by shifting the trajectory during the beacon reception

period so that the Paverage is at the coordinates directly under the goal.

Correction Using Collisions between Wheelchairs

In wheelchair basketball, colliding a wheelchair is frequently occurred for stopping an opponent’s

wheelchair when defending. Therefore, we consider a method of detecting a collision from acceleration

data and correcting the position of each wheelchair.

Collision Detection Intensity of vibration Z
t is obtained by subtracting the gravitational acceler-

ation 1G from the resultant acceleration of the 3-axis accelerometer (ax, ay, az) as follows.

Z
t = |

q
at
x

2 + at
y

2 + at
z

2 � 1| (3.8)

Figure 3.5 shows the change in the intensity of vibration in a wheelchair basketball match. From

the figure, it can be seen clearly that the intensity of vibration during collision is more pronounced

than during normal movement. Therefore, collision is detected by threshold. If the time at which a

collision is detected in both wheelchairs is close, it is considered that a collision has occurred between

the two applicable wheelchairs. In the video of a match we collected, there were no more than two

collisions per second. Therefore, we considered it is caused by the same collision if the time di↵erence

between the two big vibrations was within 0.5 seconds. If large vibrations are observed in three or

more wheelchairs, we do not perform the correction. We have chosen the threshold empirically in

which recall was high to prevent that the position would not be corrected by false positives of collision

detection.
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Figure 3.6: Result of Collision Detection

Correction Using Collision There are several possible methods for position correction when a

collision is detected. In this chapter, we consider two types of correction methods. The first is a

method of shifting both positions to the midpoint between the original position of two wheelchairs.

The second method is to set reliability at each wheelchair and shift both positions to the weighted

position according to the ratio of reliability score. The reliability score was set to 1 as the initial value

and to be attenuated by 0.001 every frame. Please note that the lower limit of reliability score was set

at 0.01. The reliability is reset to 1 when the position is corrected by beacons or manually. Assuming

that the positions of both wheelchairs at the time of collision are P1 = (x1, y1) and P2 = (x2, y2) and

the reliability score is L1 and L2, respectively, the corrected positions Pcollision are as follows.

Pcollision = P1 + (P2 � P1)⇥
L2

L1 + L2
(3.9)

Next, the reliability score Lcollision of both wheelchairs are updated according to the ratio of the

original reliability score. The equation for the update is as follows.

Lcollision = L1 + (L2 � L1)⇥
L2

L1 + L2
(3.10)

3.3 Evaluation

3.3.1 Evaluation Setting

We collected data in an actual wheelchair basketball match to evaluate the proposed method. The

time of match was 5 minutes and 17 seconds long and the sampling rate of the sensor data and video

were 200 and 30 frame per second, respectively. The ground truth of the players’ position was obtained
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Figure 3.7: E↵ect of Adjustment of a Wheel Diameter

Figure 3.8: Changes in Location Error Using Dead Reckoning w/o Correction Over Time

from the video. Players were detected in the video and they were manually labeled player ID. For

frames that were not detected due to occlusion, etc., the trajectory of the player was created by linear

interpolation. To calculate the location error between the ground truth and the estimated position, it

is necessary to compare the samples observed at the same time. Therefore, the sampling rate of each

data has been unified to 10 frames per second because the greatest common divisor of each sampling

rate is 10. Euclidean distance is used for location error There were 10 players who participated in

the match, but due to a defect in the sensor or refusal to attach the sensor, only 6 players could be

collected. The wheel diameter of wheelchairs used by players were 670 [mm] only for player ID 3 and
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610 [mm] for the other players. The team of players who could collect data was divided into 4 and 2

players. Since the geomagnetism could not be recorded at the time of data collection, orientation of

wheelchair extracted from the video was used in evaluation.

3.3.2 Results

Collision Detection

Figure 3.6 shows the evaluation results of collision detection. From this result, as the threshold becomes

smaller, the more false positives increases because movements other than collisions are included. Even

if there is an actual collision, if another large vibration is detected at the same time, the collision do not

be detected due to matching issue. Therefore, even if threshold set lower the recall decreases in some

cases. On the other hand it can be seen that the larger the threshold, the more precision increases.

When the threshold was 8, the precision achieved 100Considering the use for position correction, it is

desirable that the precision rate is high because correcting positions between the wrong players will

greatly increase the location error. Based on this evaluation result, we decided to set the threshold to

8 in subsequent evaluations.

Localization without Correction

In dead reckoning, wheel diameter measurements error can have a significant impact on results. There-

fore, we first evaluated the location error when the wheel diameter was set so that the actual length

of the trajectory distance would be the same as the estimated length of the trajectory distance. The

results are shown in Figure 3.7. From this result, it can be seen that adjusting the wheel diameter

does not necessarily improve the performance, so factors other than the wheel diameter measurement

error are large. Therefore, in the subsequent evaluations, the wheel diameter measured in advance is

used.

Figure 3.8 shows the change in location error of dead reckoning over time.From this result, it can be

seen that the error gradually increases with time. This is an unavoidable issue due to the characteristics

of dead reckoning, and it is necessary to handle the problem of error accumulation by correcting the

position using BLE beacons and the like. Nevertheless we used dead reckoning without correction that

gave only the initial position, we achieved the average error 5.3 m at the maximum in the game of

about 5 minutes long. It can also be seen that the increase in the average location error in 2 minutes

was suppressed to about 2.2 m.

E↵ect of Correction

Correction by Beacon Because the BLE beacon could not be installed at the time of data col-

lection, the correction e↵ect of the BLE beacon was evaluated by simulation. We assumed a beacon

attached a goal can receive a signal of a beacon attached a wheelchair in an position of a circle with

a radius of 1 m centered under the goal. The result is shown in Figure 3.9, and it can be seen that
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Figure 3.9: Location Error of Correction by Beacon

Figure 3.10: Changes in Location Error of Correction by Beacon Over Time

the average error can be suppressed to a maximum of about 2.8 m by correcting with a beacon in the

game of about 5 minutes long. This reduces the location error by 41.1 % compared to dead reckoning

without correction. It can also be seen that the error can be more suppressed by combining with other

correction methods. Figure 3.10 shows the change in the average error over time when corrected using

the beacon. From this result, it can be seen that the error continues to be accumulated without cor-

rection, but an average error does not exceed 2.8 m by correction using a beacon. From these results,

although it is not su�cient accuracy for tactical analysis where the positional relationship between

players is important, we believe it can use for the purpose of collecting data on wheelchair movements
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Figure 3.11: Location Error of Manual Correction

Figure 3.12: Location Error of Correction by Collisions

such as maneuver patterns, sprints and turns of each player.

Manual Correction For comparison with correction by beacon, we evaluated the location error

when the estimated position was corrected to the ground truth position based on the recorded video.

In this evaluation, the position is corrected with a probability of 1/200 for each frame. Because the

sampling rate is 10 frame per second correction is performed about once every 20 seconds. When

correcting, one targeted wheelchair was randomly chosen. Some wheelchairs are corrected many times,

while others are never corrected, which is depends on the circumstances. Therefore, we conducted
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Figure 3.13: Location Error of Correction by Collisions in the Center Line Direction Over Time

the experiment 10 times and average error of them was used for evaluation. Figure 3.11 shows the

result. From this result, it is possible to keep the average error within 2 m by manually correction,

but it is high workload. Comparing with the result of correction by beacon (Figure 3.9), it can be

seen that the position error is almost the same. Although the accuracy of the position that is used

for manual correction is much higher than correction by beacon, it is because the manual correction

is performed less frequently than correction by beacon. Actual correction by video requires additional

camera setup and experts for image processing, which leads to an increase in workload. The workload

and localization accuracy are trade-o↵ relation.

Correction by Collisions Figure 3.12 shows the correction result using collision data. The error

is slightly smaller overall. However, no significant improvement in accuracy was seen compared to

correction using images (ground truth) and beacons. The reason is that the correction by collision is

using relative position of each player unlike the above two correction methods, so it depends on both

positions. In the data collected, there was a tendency for the estimated position to shift in the same

direction as a whole due to reasons such as a bias in the actual movement. To confirm it, Figure

3.13 shows the location error in the center line direction over time. In this figure, the positive and

negative values indicate the direction in which the estimated position is deviated. From this result,

it can be seen that all estimated wheelchairs’ positions are shifted in the same direction from ground

truth. In such a case, even if the position is corrected by collision detection, one will move closer to the

actual position and the other will move away from the actual position. It leaded that the average error

could not be significantly reduced. This indicates that the error accumulation is not uniform, and it

is necessary to find out the cause. All players in the data are right-handed, and it is possible that the
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distance the wheels slipped di↵ers due to braking power from right and left. In addition, the data of

only 6 out of 10 players was available this time, and it is considered that the number of collisions was

not enough. Therefore, it is necessary to further investigate the relationship between the number of

collisions and the location error.

3.4 Conclusion

In this chapter, we investigated a localization method using three 9-axis sensors installed on the left

and right wheels and under the chair in wheelchair basketball. For evaluation, we collected data in a

practice match of about 5 minutes long. As a result, it can be seen that the average error was up to

5.3m only by dead reckoning. Furthermore, it was confirmed that the average error would be up to

2.8 m when correction by the BLE beacon installed at the goal was assumed. From these results, it is

hard to use for applications such as detailed tactical analysis, however, we can use the system for the

purpose of collecting data on wheelchair movements such as movement patterns, sprints, and turns of

each player.
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Chapter 4

Localization Focusing on Human
Poses Using a Single Camera
Towards Social Distance Monitoring
During Sports

4.1 Introduction

The Coronavirus disease 2019 (COVID-19) is still prevalent in the world. Meanwhile, sports are impor-

tant to maintain our health physically and mentally. Social distancing is more important during sports

because we may not be able to wear masks to avoid breathing problems, heatstroke, etc [83]. Because

vision-based human detection and tracking has been actively evaluated since before the pandemic,

vision-based systems have been developed to support the management of social distancing [5–7,49,50].

These systems detect and track the skeletons or bounding boxes of humans to estimate interpersonal

distance. However, the position error may increase during sports because the human pose changes fre-

quently. Moreover, the tracking duration of close-contact is important in addition to distance among

people because longer contact leads to higher risk [84]. For the supporting management of social dis-

tancing, the real-time warning of close-contacts is an e↵ective way to avoid the risk of infection. It is

also important to be able to analyze when and where the risk is high. This enables managers of sports

facilities and teams to improve their behavior and rules.

To achieve the goal, we have developed a system designed for sports to detect and track close-

contacts. Our system uses a single camera for low deployment costs and detects skeletons of people

using OpenPose [32]. We select the waist position estimated by OpenPose to represent the position

of the person for its stability in human detection. We then detect a close-contact when the distance

between two persons becomes less than 2 m based on the definition of social distancing in Japan [85].

To improve the position error owing to the pose variation, we adjust the height of the waist according
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to the pose of the legs. We proposed the basic concept of human localization with the waist height

adjustment in Ref. [86]. In this work, we further propose the tracking of people and close-contacts

based on the estimated positions of people. Specifically, for the tracking of close-contacts, the challenge

is occlusion because we rely on a single camera. To solve the problem, we leverage the observation

that most of the false negatives in human detection are caused by occlusion owing to other people.

This is because there are few obstacles in sports facilities. Based on the above observation, we assume

that a person still exists near the last detected position even when s/he disappeared in the proximity

of other people.

To identify people at high risk of infection, it is necessary to identify the close-contact members.

However, person identification [87–89] is another challenging topic which has been addressed by many

researchers. Therefore, we exclude person identification (and inevitably human tracking) out of the

scope of this paper. Instead, we focus on the tracking of close-contacts, i.e. measurement of close-

contact duration regardless of involved persons. This is enough for the real time warning and the

analysis of the time and locations with high risk to improve behavior and rules in sports facilities.

For evaluation, we recorded 834 videos that were 112 min in total including various scenarios with

2724 close-contacts. The results show that we achieve an F1-score of 83.6% for close-contact detection

and an IDF1 [90] of 67.3% for close-contact tracking1. We also confirmed that the start and end times

of more than 80% of the close-contacts are within 1 s, indicating that the close-contacts were correctly

detected and tracked spatially and temporally. Additionally, we applied the system to an actual tennis

tournament to support the management of social distancing. Through feedback on time and locations

with frequent occurrences of close-contacts, we successfully suppressed the occurrence of close-contacts

by changing the behavior of people.

Our contributions are summarized as below.

• We develop a close-contact detection and tracking system using a single camera for sports.

• To reduce the e↵ect of pose variation on the position estimation, we adjust the position of the

waist according to the pose of the legs.

• We design a close-contact tracking system, which is robust to occlusion based on the observation

that occlusion in sport facilities is mostly caused by other people.

• To the best of our knowledge, this is the first study to evaluate the spatio-temporal correctness

of close-contact detection and tracking.

4.2 System Overview

Figure 4.1 illustrates the overview of our system. Our target environment is sports activities in sports

schools, gyms, etc. Our system consists of a single fixed camera and a computer for video processing.

1IDF1 is the ratio of correctly identified detections over the average number of ground-truth and computed detections.
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Figure 4.1: System Overview

The camera is installed at a high place such as a ceiling to capture the target area in the angle of

view. We detect and estimate the positions of humans in the captured image. We then calculate

the interpersonal distance based on the estimated positions to detect the close-contact in real time.

The system notifies a close-contact if detected. The system also records the positions and time of the

detected close-contacts. By analyzing the records, managers of sports facilities and teams can find the

time and places when and where close-contacts occur frequently for the improvement of their behavior

and rules.

4.3 Method

4.3.1 Overview

Figure 4.2 shows the flow of our method. In each frame, we first detect persons using a state-of-the-art

skeleton detector called OpenPose-STAF [32]. OpenPose-STAF detects and tracks a skeleton of a

person in a video. Next, we estimate the position of the detected person based on the skeleton and

the coordinates of four points whose positions are known. The four points correspond to the scene in

the real world and we can transform coordinates of skeletons in an image into the actual positions.

Finally, we detect a close-contact by calculating the interpersonal distance based on their positions. To

mitigate the e↵ect of occlusion, we track the detected people using OpenPose-STAF. We then assume

that a person still exists near the last detected position even if s/he disappears in the proximity of
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Figure 4.2: Method Overview

other people. In this way, we avoid false negatives in the detection and tracking of close-contacts.

4.3.2 Localization

Homography Transformation

For each frame, we estimate the position of the person whose skeleton is detected using OpenPose-

STAF. For localization, we use the homography [48], which is a transformation that projects a plane to

another plane, given the four point correspondences between the two planes. Therefore, a homography

transformation matrix can transform pixel coordinates in an image into the actual positions, given the

distance between the four points in the real world. This means that it is necessary to measure the

distance between these four points in advance.

When a coordinate in an image is (u, v)[pixel], the corresponding coordinate (x, y)[m] in the real

world is obtained by the following equation.

(x, y) = H(u, v) (4.1)

H is the homography transformation matrix represented by the following equation.

H =

2

4
h00 h01 h02

h10 h11 h12

h20 h21 1

3

5 (4.2)

For each point with a given coordinate, we obtain two equations. Because H has eight variables, we

can solve H, given the actual positions of the four points in the image.

Our method uses the key point of the waist for the reference key point whose position is regarded

as the position of the person. This is because the waist key point is stably detected even during

movement compared with other key points such as the legs. We conducted a preliminary experiment

to see how the height of each key point changes during movement. A subject moved across the front

of a camera deployed at the height of 3m. We asked the subject to follow one of the three types of

movements: walking, jogging, and running. The standard deviations of the key point heights for each

movement type are shown in Table 4.1. From this result, we see that the waist height is more stable
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than the other key points. The height of the head fluctuated slightly less than the waist in walking and

jogging. However, we see that the fluctuation becomes larger with the increase of movement intensity

(i.e. running). Therefore, the height of the four points for the homography transformation matrix is

set to 0.9 m, which is the average waist height for adults.

Table 4.1: Standard Deviation of Key Points Height During Movement [cm]

Type
Key Point

Waist Head Right Ankle Left Ankle

Walking 3.32 2.94 11.89 5.88
Jogging 4.53 3.78 14.89 7.96
Running 4.51 8.55 37.54 24.26
Average 4.12 5.27 19.86 12.30

Waist Height Correction

Figure 4.3: Waist Height Correction

While walking and running, the height of the waist does not change significantly. However, it

can change significantly depending on poses such as sitting on a chair or the ground. Because the

height error leads to a position error after the transformation, we mitigate the e↵ect by mapping the

position of the waist onto the plane with the height of 0.9 m. The correction is performed before the

homography transformation.

The overview of the correction is shown in Figure 4.3. We let a coordinate of key point k be

J
k = [uk

, v
k]. The length l(p, q) between key points p and q is defined as below.

l(p, q) =
p

(up � uq)2 + (vp � vq)2 (4.3)

For each leg, OpenPose-STAF outputs three key points, which are the hip, knee, and ankle. The

length |leg| of the leg is obtained by combining the lengths between these joints as follows.

|leg| = l(hip, knee) + l(knee, ankle) (4.4)
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We refer to the di↵erence between the ankle-to-hip height and |leg| as the correction distance d.

The correction distance is defined as below.

d = |leg|� (vhip � v
ankle) (4.5)

If the leg angle against the ground decreases, d increases. This means that the height of the reference

key point (i.e. the waist) in the image is less than the assumed average waist height (i.e. 0.9 m).

Therefore, we correct the hip height by adding d to the original hip height. However, there are some

cases where the leg is not on the ground because of jumping, balancing, etc. For the waist height

correction, we need to use d of the grounded leg because d is calculated assuming that the pose of the

grounded leg lowers the waist height. If both legs are not on the ground, its duration is usually short.

Therefore, we simply ignore such cases. However, when only one of the left and right legs is not on

the ground, the vertical ankle-to-hip distance of the ungrounded leg becomes shorter than that of the

grounded leg. In other words, d of the ungrounded leg is larger than the other because the lengths of

the left and right legs should be almost the same. Therefore, we use either the left or right leg with the

smaller correction distance. The coordinate of the waist Ĵwaist after correction v̂
waist is given below.

v̂
waist = v

waist +min(d(left), d(right)) (4.6)

We note that, if either of the legs is not detected, we do not perform the correction because we cannot

determine whether the detected leg is on the ground.

4.3.3 Human Tracking

We use Openpose-STAF for human tracking. As mentioned earlier, occlusion is a major challenge in a

single camera setting. We leverage the observation that most of the false negatives in human detection

are caused by occlusion owing to other people in sports facilities. Therefore, we assume that a person

still exists near the last detected position even when s/he disappeared in the proximity of other people.

Specifically, suppose ID
k is the set of IDs of humans detected in frame k. The IDs are given by

OpenPose-STAF. For person i satisfying the following equation, the coordinate (xk�1
i

, y
k�1
i

) in frame

k � 1 is defined as a missing point.

i 2 ID
k�1 ^ i /2 ID

k (4.7)

When a person is temporarily not detected because of occlusion, the corresponding missing point is

defined. If we detect a person with a new ID within ✓d[m] from the missing point, we consider that

the occlusion is resolved and delete the missing point. Meanwhile, a person may move during the

occlusion, e.g. when multiple people are walking in a line. To deal with such cases, we delete a missing

point if we do not detect any person with a new ID within ✓d[m] from the missing point for more than

✓ts. In this chapter, we empirically set ✓d = 2.0[m] and ✓t = 1/3[sec].
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Algorithm 1 Tracking Close-contacts

Require: C
p = {cp1, c

p

2, ..., c
p

k
}(k � 0)

C
c = {cc1, cc2, ..., ccn}(n � 0)

1: sort(Cp) // sort descending order of duration
2: for each c

p

i
2 C

p do
3: NearestID  0
4: NearestDistance ✓d

5: for each c
c

j
2 C

c do
6: if l(cp

i
, c

c

j
) < NearestDistance then

7: NearestID  j

8: NearestDistance l(cp
i
, c

c

j
)

9: end if
10: end for
11: if NearestID 6= 0 then
12: Associate(cp

i
, c

c

NearestID
)

13: sub (cc
NearestID

) from C
c

14: end if
15: end for

4.3.4 Close-contact Detection and Tracking

We perform the close-contact detection and tracking based on the result of human tracking and esti-

mated skeletons with the waist height correction. First, we calculate the distance between each pair

of persons including the missing points. We denote the position of a person with ID i as Pi. We then

calculate the distance d(Pi, Pj) between persons i and j. If the following condition is satisfied, we

detect a close-contact and define the midpoint between Pi and Pj as the point of the close-contact

occurrence.

d(Pi, Pj) 5 2.0[m] (4.8)

To obtain the duration and trajectory of the close-contact, we also track the close-contacts. For this

purpose, it is necessary to associate the close-contacts detected in the previous frame and those detected

in the current frame. Because the close-contacts with a longer duration have a higher risk, we associate

the close-contact with the longest duration in the previous frame with the nearest close-contact in the

current frame within a distance ✓d. Our association algorithm is shown in Algorithm 1.

4.4 Evaluation

4.4.1 Evaluation Setting

We conducted four types of experiments to evaluate the performance of our system in terms of 1)

the e↵ect of waist height correction in localization, 2) the e↵ect of human orientation in localization,

3) localization comparison with other methods, and 4) the accuracy of close-contact detection and
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Figure 4.4: Evaluation Area (E↵ect of Waist Height Correction in Localization)

Figure 4.5: Poses Used in Evaluation

tracking. The details of each experiment are as below.

E↵ect of Waist Height Correction in Localization

For the evaluation of the e↵ect of the waist height correction in the human localization, we collected

images from one participant. We regard the position on the surface of the floor which is straight down

from the waist as the actual position of the subject. We note that we have not obtained the ground

truth of the waist positions directly due to its di�culty. Instead, the subject located at one of the

lattice points in Figure 4.4 with his waist straightly above the lattice points. He took five types of poses

except one-leg-up as shown in Figure 4.5. The poses are standing, sitting (ground), sitting (chair),

half-sitting, and crouching. In this way, we collected data with the ground truth of the positions.

Please note that we have not obtained the ground truth of the height of the waist. For each pose and

position, we obtained images in which all key points of the lower body were detected. For this purpose,

we recorded videos of the subject facing the camera with the height of 2.5m. Finally, we collected 80

images.
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Figure 4.6: Evaluation Area (E↵ect of Human Orientation in Localization)

E↵ect of Human Orientation in Localization

For the evaluation of the robustness, we conducted evaluation in di↵erent camera positions and human

orientations. One participant was located at one of the lattice points in Figure 4.6, and took six

types of poses as shown in Figure 4.5. The poses are standing, sitting (ground), sitting (chair), half-

sitting, crouching, and one-leg-up. There were two types of camera heights: 3.0m and 4.5m, and the

participant faced four orientations: 0°, 90°, 180°, and 270°. The degree increases clockwise with 0°as
the orientation when the person’s body is facing the camera. Finally, we collected 2536 images.

Localization Comparison with Other Methods

Next, we compared our system with other methods using the same data as in Section 4.4.1. In many

related works of close-contact detection, homography transformation is used for human localization.

Therefore, we use other coordinates instead of the waist coordinates in homography transformation and

compare the localization performance. We use the following two types of coordinates: the midpoint of

the coordinates of both ankles [7], the bottom of the bounding box [5,6,49]. There is also a method for

detecting close-contacts based on the size of the overlapping area of the bounding boxes [50]. However,

since the distance between people is not calculated, we cannot compare our system with it. As the

human detector that outputs bounding boxes, we used YOLOv4 [29] as in the Ref. [49] and [6].
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Figure 4.7: Evaluation Area (Close-contact Detection and Tracking)

Close-contact Detection and Tracking Performance

For the evaluation of the close-contact detection and tracking performance, we collected data where

the participants moved according to a predefined scenario. The participants moved in an area of 4.0

m ⇥ 8.0 m as shown in Figure 4.7. To determine the e↵ect of the orientation of the person and the

orientation of the occlusion, the images were taken from three di↵erent angles. To eliminate the e↵ect

of persons out of the target area, we pre-processed the images by manually specifying the target area.

There are three types of scenarios: (1) conversation, (2) passing each other, and (3) passing through.

In all scenarios, each group consisting of one or two subjects moved according to the specified trajec-

tories. In the case of two subjects, the distance between them was always kept within 2.0 m. The

movement in each scenario is shown in Figure 4.8. In scenario (1), two groups walked from di↵erent

starting positions toward the other group’s starting position, stopped near the center, turned around,

and walked back to their original positions. In scenario (2), two groups walked from di↵erent starting

positions to the other group’s starting position. In scenario (3), one group was stationary at a position,

and the other group passed in front of or behind the other group. The stationary group was in one of

three poses which are standing, sitting, and crouching. For each combination of a scenario, the number

of subjects, and a pose, we recorded videos more than 10 times by randomly changing the subjects.

Finally, we collected 278 videos. Because we used three cameras, the total number of videos was 834.

Details of the data are listed in Tables 4.2 and 4.3.

Each subject was asked to move at a constant speed on the trajectory specified in the scenario.

However, the speed was slightly di↵erent for each participant and each trial. Therefore, we recorded

the start and end times of the movement as well as the time at the moment of crossing the red lines

which are 1.0 m away from the center line as shown in Figure 4.7. The ground truth of the trajectories

were then obtained by linear interpolation. We also obtained the ground truth of the close-contact
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Figure 4.8: Movement Scenarios

Table 4.2: Details of Data Collection Scenarios

Scenario Participants Moves Videos

1
1-1 10 30
1-2 10 30
2-2 10 30

2
1-1 10 30
1-2 10 30
2-2 10 30

3

(walking)1-1(stationary) 54 162
1-2 54 162
2-1 56 168
2-2 54 162

Total - 278 834

occurrences from the ground truth of the trajectories.

4.4.2 Results

E↵ect of Waist Height Correction in Localization

First, we evaluated the localization performance. Table 4.4 lists the mean absolute error distance for

each pose. From the results, we observe that we can estimate the position of the standing person with

a low error. However, the error increases as the waist height gets closer to the ground. Additionally,

we successfully decreased the error by an average of 23 cm.

However, we could not observe significant improvement for the pose of sitting on a chair. This

is because the elevation angle of the camera and the angle of the leg were almost equal. When the
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Table 4.3: Details of Data Collection in Scenario (3)

Participants
Pose Moves Videos

(Walking-Stationary)

1-1
standing 18 54
sitting 18 54

crouching 18 54

1-2
standing 18 54
sitting 18 54

crouching 18 54

2-1
standing 18 54
sitting 20 60

crouching 18 54

2-2
standing 18 54
sitting 20 60

crouching 16 48

Total - 218 654

Table 4.4: Mean Absolute Error for Each Pose [m]

Pose Corrected Original E↵ect of correction
Standing 0.056 0.064 -0.008

Sitting (ground) 0.729 1.338 -0.609
Sitting (chair) 0.716 0.779 -0.063
Half-sitting 0.370 0.641 -0.271
Crouching 0.712 0.915 -0.203
Average 0.517 0.747 -0.231

relative angle of the leg (thigh and lower leg) to the camera is 0°, the leg length appears the shortest in

the image while it appears the longest if the relative angle is 90°. In this experiment, the relative angle

of the thigh to the camera was close to 0°, which means the appearance of the leg length in the image

is shorter than the actual length. To address this problem, we may need to obtain a more accurate leg

length using a technique of estimating a 3D pose from a skeleton, for example.

E↵ect of Human Orientation in Localization

Table 4.5 shows the localization performance for di↵erent body orientations and poses. As a result,

when facing backwards (180°), the error was large in the poses such as sitting and crouching where the

legs were hidden by the chair or the person’s body itself because there were many false positives of the

skeleton of the legs. In the standing pose, there are little di↵erence of error in all orientations since

there is no occlusion. This is due to the relationship between the camera and the legs as discussed in

Section 4.4.2. Table 4.6 shows the localization error without the waist height correction. From this
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Table 4.5: Mean Absolute Error [m] for Di↵erent Poses and Orientations (with Waist Height Correc-
tion)

Pose
Orientation

0° 90° 180° 270°
Standing 0.214 0.183 0.144 0.182

Sitting(ground) 1.867 0.819 2.523 0.491
Sitting(chair) 1.342 1.096 1.640 1.527
Half-sitting 0.474 0.589 0.553 0.648
Crouching 0.960 0.413 1.170 0.969
One-leg-up 0.316 0.287 0.200 0.310

Table 4.6: Mean Absolute Error [m] for Di↵erent Poses and Orientations (w/o Waist Height Correction)

Pose
Orientation

0° 90° 180° 270°
Standing 0.219 0.189 0.146 0.186

Sitting(ground) 1.990 2.240 2.247 2.292
Sitting(chair) 1.701 1.882 1.859 1.851
Half-sitting 0.743 0.885 1.002 0.894
Crouching 0.983 1.323 1.228 1.406
One-leg-up 0.313 0.217 0.188 0.248

result, we see that the correction is more or less e↵ective in any orientation and pose. Even if the legs

are bent, if they are facing to the side (90°or 270°), the whole lengths of the legs are visible in the

image. Therefore, the performance greatly improves by the waist height correction.

Localization Comparison with Other Methods

Table 4.7 shows the localization error compared with the other methods. Since the data was collected

in an unobstructed environment, the ground contact part of the body was visible without occlusion.

Therefore, in poses such as sitting (chair) and half-sitting where the ankles are clearly visible, using

the midpoint of the ankles shows the best result. The bottom of the bounding box showed the best

results in poses such as sitting (ground) and crouching where the legs may be invisible depending on

the orientation of the person. However, when using the midpoint of the ankles, the error increases

significantly in a pose in which one leg is floating in the air. This is important because such a pose

occurs frequently during exercise.

In addition, to evaluate the e↵ect of occlusion, we virtually placed a wall at the feet by image

processing when the participant takes a standing pose. The values in parentheses in Table 4.7 are the

heights of the walls. In the method using the bottom of the bounding box, because the skeleton of the

person is not estimated, it is not possible to determine whether the legs are hidden. The error thus
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Table 4.7: Comparison of Localization Mean Absolute Error [m] with Other Methods

Ours Midpoint of Bottom of
Pose (waist) ankles [7] box [6, 49]

Standing 0.181 0.211 0.286
Standing(0.3) 0.244 0.352 0.721
Standing(0.5) 0.210 0.333 1.344
Sitting(ground) 1.504 0.700 0.515
Sitting(chair) 1.475 0.318 0.393
Half-sitting 0.577 0.211 0.402
Crouching 0.931 0.289 0.436
One-leg-up 0.280 0.692 0.230

increases significantly as the height of the virtual wall increases. In these cases, the increase of the

error is mitigated by our method. However, our method has a larger error in sitting and crouching

poses than the result in Section 4.4.2. This is due to false negatives of legs caused by the human

detection. Especially, the pattern on the ground increased false positives in leg detection in a larger

environment. This problem is due to the accuracy of the skeleton detector, which can be improved

by properly using the detected skeletons depending on the situations. For example, we may use the

waist key points when standing or moving, while we use the leg key points when sitting or stationary.

Therefore, as future work, we leverage the poses of the person from the time-series data of the skeleton.

Close-contact Detection and Tracking Performance

Human Detection For the evaluation of the human detection, we use precision and recall. If the

distance between the ground truth and the estimated position is within 1.0 m, we regard the detection

result as a true positive.

As a result, the precision and recall are 84.6% and 92.3%, respectively. The F1 score is 88.5%,

indicating that many close-contacts are correctly detected spatially and temporally. The precision and

recall for each scenario are listed in Tables 4.8 and 4.9, respectively. The number of true positives, false

positives, and false negatives are listed in Table 4.10. From these results, we observe that there are

almost no false negatives in any scenario. However, there are many false positives despite the scenarios

with only two participants. This is because the marker lines on the floor were wrongly recognized as

persons. In the scenarios with more people, the floor was hidden by them, leading to less false positives

(i.e., increase of precision). To avoid the problem, we may consider the use of a high-resolution camera

that can clearly capture the boundary between the floor and a person, or background subtraction to

remove the e↵ect of the floor pattern. In scenario 3, when there is a sitting participant, both precision

and recall are lower than the other scenarios. This is because the waist height correction did not work

well due to the wrong detection of legs. The skeleton detector wrongly recognized the chair as the legs
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Table 4.8: Human Detection Result by Scenarios (Precision[%])

# of Scenario

participants 1 2
3

standing sitting crouching
1-1 72.4 82.5 91.8 69.4 79.9
1-2 87.1 89.6 88.0 61.6 86.6
2-1 90.5 75.2 85.4
2-2 90.8 89.8 95.4 82.7 94.6

Table 4.9: Human Detection Result by Scenarios (Recall[%])

# of Scenario

participants 1 2
3

standing sitting crouching
1-1 98.6 99.0 94.9 81.7 94.3
1-2 97.4 98.5 96.6 70.7 97.3
2-1 97.6 85.2 96.6
2-2 96.9 95.4 95.4 84.5 96.1

of the person, leading to larger position error.

Close-contact Detection For the evaluation of the close-contact detection, we use precision and

recall. If the distance between the ground truth and estimated position is within 1.0 m, we regard the

detection result as a true positive. As a result, the precision and recall are 83.9% and 83.4%, respec-

tively. The F1 score is 83.6%, indicating that many close-contacts are correctly detected spatially and

temporally. The precision and recall for each scenario are listed in Tables 4.11 and 4.12, respectively.

The number of true positives, false positives, and false negatives are listed in Table 4.13. From these

results, we observe that there are almost no false negatives in any scenario. Especially in the simple

scenarios with a small number of people, we could detect close-contacts with higher recall.

However, there are many false positives in the simple scenarios. This is because there are many

false positives in human detection in these scenarios. The precision of close-contact detection is lower

than that of human detection. This happens when there are multiple people in close proximity. For

example, if two true positives and one false positive are close to each other, the close-contact is detected

between each pair. This means three close-contacts are detected. However, one of these is the correct

close-contact while the other two are the wrong close-contacts. Therefore, in such a case, the number

of false positives increases.
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Table 4.10: Human Detection Result (TP, FP, FN)

# of participants Scenario TP FP FN

1-1

1 17179 6534 245
2 16638 3530 162
3(standing) 25326 2265 1356
3(sitting) 21859 9641 4901
3(crouching) 25709 6486 1567

1-2

1 25975 3832 692
2 22462 2603 335
3(standing) 36326 4940 1294
3(sitting) 25806 16082 10689
3(crouching) 35934 5579 1002

2-1
3(standing) 36394 3839 902
3(sitting) 30403 10047 5291
3(crouching) 38739 6597 1356

2-2

1 33610 3412 1058
2 29078 3312 1414
3(standing) 46789 2248 2231
3(sitting) 37961 7965 6967
3(crouching) 52650 3022 2118

Table 4.11: Close-contact Detection Result by Scenarios (Precision[%])

# of Scenario

participants 1 2
3

standing sitting crouching
1-1 57.6 55.5 83.3 82.6 72.2
1-2 78.4 80.4 92.9 91.5 75.8
2-1 - - 84.8 85.5 77.5
2-2 85.1 83.8 85.8 88.4 83.2

Close-contact Tracking Finally, we evaluated the close-contact tracking performance. We used

the Identification Precision (IDP), Identification Recall (IDR) and Identification F1 (IDF1) proposed

in Ref. [90] for the evaluation metrics to focus on the length of correct tracking. This is reasonable

because the duration of close-contacts is important for the assessment of the infection risk.

From the results, we confirmed that IDP, IDR, and IDF1 are 67.6%, 67.1%, and 67.3%, respectively.

The precision and recall of each scenario are listed in Tables 4.14 and 4.15, respectively. The number

of true positives, false positives, and false negatives are listed in Table 4.16. The IDP decreases in the

scenario with a small number of subjects because of the false positives by the line markers on the floor

as mentioned in Section 4.4.2. However, the IDR decreases with the increase of the number of subjects.

This is because an ID frequently switched with another ID when multiple close-contacts occurred at
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Table 4.12: Close-contact Detection Result by Scenarios (Recall[%])

# of Scenario

participants 1 2
3

standing sitting crouching
1-1 89.0 88.9 93.3 90.9 77.7
1-2 85.7 87.3 92.9 90.6 72.8
2-1 - - 90.5 88.9 82.1
2-2 86.9 86.2 81.0 78.1 73.9

Table 4.13: Close-contact Detection Result (TP, FP, FN)

# of participants Scenario TP FP FN

1-1

1 1831 1347 230
2 1747 1399 267
3(standing) 5280 1061 394
3(sitting) 5309 1121 540
3(crouching) 4393 1694 1245

1-2

1 11150 3069 2004
2 9170 2234 1369
3(standing) 20755 1587 1824
3(sitting) 19616 1819 2023
3(crouching) 15704 5001 5652

2-1
3(standing) 19834 3554 2099
3(sitting) 20984 3565 2707
3(crouching) 17414 5070 3811

2-2

1 22124 3876 3179
2 18005 3485 2814
3(standing) 34000 5636 8074
3(sitting) 36321 4768 29264
3(crouching) 28118 5679 9883

the same time. One of the solutions to solve the problem is a Kalman filter for close-contact tracking

to predict human and close-contact movement.

Next, Tables 4.17 and 4.18 show the precision and recall when occlusion is not considered (i.e.

without the missing point), respectively. The best results in each scenario are shown in bold type.

The number of true positives, false positives, and false negatives are listed in Table 4.19. From

these results, we have achieved significant performance improvements in many scenarios for both IDP

and IDR by continuing to track hidden persons. Therefore, regardless of the frequency of occlusion,

considering occlusions has a large e↵ect. It is because the evaluation metrics IDP and IDR consider

matching between close-contact IDs of the ground truth and the estimated result. For example, if

ID switching occurs, all subsequent ground truth tracks and estimation tracks are considered as false
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Table 4.14: Close-contact Tracking Result by Scenarios (IDP[%])

# of participants
Scenario

1 2
3

standing sitting crouching
1-1 54.8 53.6 81.5 76.1 66.2
1-2 74.4 77.8 74.8 77.5 58.9
2-1 - - 77.4 76.2 70.8
2-2 65.5 61.1 64.2 59.5 58.2

Table 4.15: Close-contact Tracking Result by Scenarios (IDR[%])

# of participants
Scenario

1 2
3

standing sitting crouching
1-1 84.5 85.8 91.3 83.8 71.3
1-2 81.3 84.5 74.8 76.7 56.5
2-1 - - 82.6 79.2 75.0
2-2 66.9 62.8 60.6 52.6 51.7

negatives and false positives, respectively. Therefore, IDP and IDR become better if we keep the same

close-contact IDs for each close-contact track for a longer time. This means that when the occlusion

occurs is more important than the number of occlusions.

We also evaluated the start and end times of the close-contacts. Figure 4.9 shows the cumulative

distribution function (CDF) of the absolute time error. The result shows that 85.1% of the start time

error for all the close-contacts were within 30 frames (i.e., 1 s). 84.7% of the end time errors were also

within 30 frames. Moreover, 71.0% of the elapsed time error were within 30 frames ,whereas 86.0% of

the elapsed time errors were within 60 frames (i.e., 2 s). This is reasonable because both of the start

and end time errors are less than 1 s for more than 84.7% of the close-contacts. We also note that

there is a little uncertainty in the ground truth of the subject positions (i.e., close-contact positions

as well) owing to the manual labeling and linear interpolation. Nevertheless, our system could detect

more than 80% of close-contacts with the start and end time errors within 0.83 s.

4.4.3 Use Case

We used our system in a professional tennis tournament for safety management against COVID-19.

We used close-contacts longer than 4 s in the following analysis because the normal interval between

breaths is approximately 4 s. The results are listed in Table 4.20. In the table, the frequency refers to

the number of close-contacts per hour. Because the number of sta↵ (ball persons and line persons) was

di↵erent in the final match on the third day, we analyzed the final match and other matches separately
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Table 4.16: Close-contact Tracking Result (TP, FP, FN)

# of participants Scenario TP FP FN

1-1

1 1740 1438 347
2 1686 1460 329
3(standing) 5168 1173 507
3(sitting) 4895 1535 949
3(crouching) 4031 2056 1631

1-2

1 10586 3633 2634
2 8876 2528 1680
3(standing) 16716 5626 5882
3(sitting) 16602 4833 5047
3(crouching) 12190 8515 9127

2-1
3(standing) 18099 5289 3860
3(sitting) 18707 5842 5062
3(crouching) 15909 6575 5340

2-2

1 17027 8973 8182
2 13124 8366 7677
3(standing) 25442 14194 16584
3(sitting) 24449 16640 57671
3(crouching) 19665 14132 18475

Table 4.17: Close-contact Tracking Result by Scenarios w/o Missing Point(IDP[%])

# of participants
Scenario

1 2
3

standing sitting crouching
1-1 56.4 44.6 60.1 54.6 54.1
1-2 67.7 69.5 64.2 53.5 62.3
2-1 - - 64.1 60.9 62.0
2-2 54.6 57.8 58.2 51.8 53.8

on the last day.

On the third day, the frequency of the close-contacts was lower than that of the first and second

days. This is because we reported to the tournament management team on the situations (i.e., locations

and timing) where close-contacts frequently occurred at the end of the second day. We noted that the

frequency slightly increased in the final match owing to the increase of the number of sta↵. Overall, the

frequency of the close-contacts decreased significantly after the report based on our system, highlighting

its usefulness for safety management against COVID-19.

Additionally, we analyzed the time and locations of the close-contacts. First, the number of close-

contacts over time is shown in Figure 4.10. Based on the analysis, we found that many close-contacts

occurred not during the game but in between the games. Next, Figure 4.11 shows a heat map of the
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Table 4.18: Close-contact Tracking Result by Scenarios w/o Missing Point(IDR[%])

# of participants
Scenario

1 2
3

standing sitting crouching
1-1 62.1 62.4 50.1 41.6 42.4
1-2 67.1 68.0 57.6 40.0 54.4
2-1 - - 60.2 54.1 56.2
2-2 46.6 53.2 48.0 35.6 41.3

Table 4.19: Close-contact Tracking Result w/o Missing Point (TP, FP, FN)

# of participants Scenario TP FP FN

1-1

1 1279 989 787
2 1226 1521 789
3(standing) 2837 1882 2822
3(sitting) 2477 2100 3449
3(crouching) 2352 1952 3329

1-2

1 8728 4164 4708
2 7146 3129 3454
3(standing) 12867 7161 9659
3(sitting) 11769 7118 9713
3(crouching) 8578 7456 12864

2-1
3(standing) 13209 7383 8804
3(sitting) 13282 8131 10608
3(crouching) 11472 7367 9723

2-2

1 11866 9872 13093
2 11117 8118 9669
3(standing) 20160 14493 21845
3(sitting) 19225 16500 77854
3(crouching) 13560 12593 24513

close-contact locations. From this result, we can observe that close-contacts occurred mostly in the

center of the court and near the referee chair. As a result of checking the video, we found that players

often moved around the referee chair at the changes of the ends and new balls were placed behind the

referee chair, which is the cause of the frequent close-contacts. Additionally, some ball persons did

not maintain a su�cient distance when they waited between games at the center of the court. Our

system can support such analysis by providing spatial and temporal trends of close-contacts for safer

risk management against COVID-19.

In this use case, we introduced an example of using a close-contact detection system in a singles

tennis tournament. There are two players participating in one match, and the moving range of each

player is divided into two by the net. Therefore, there is almost no close-contacts between players
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Figure 4.9: Time Error in Close-Contact Tracking

Table 4.20: Close-Contact Occurrence during Tennis Tournament

Day Time
Close-contact

over 4sec. All
Quantity Frequency Quantity Frequency

1 5:39:41 184 32.5 806 142.4
2 6:17:45 208 33.0 940 149.2
3 1:51:18 29 15.6 147 79.2

3(Final) 1:23:42 34 24.4 158 113.3

All 15:12:26 455 29.9 2051 134.9

during the match. In addition, the position of an umpire, ball persons, and line persons during the

match are fixed. From the above reasons, it is unlikely that close-contacts will occur during the match.

Therefore, the frequency of detected close-contacts was significantly reduced just by alerting the sta↵

to the movement routes. As a future work, we would like to confirm whether it is possible to reduce

the frequency of close-contacts even in an environment where athletes move freely, such as sports

schools. In addition, this result may include false negatives and false positives. Therefore, in order to

investigate how false negatives and false positives occur in actual situations other than the scenarios

we assumed in this section, we would like to conduct comparison with other localization methods such

as using LiDAR and radio signals.

4.5 Conclusion

In this chapter, we proposed a close-contact detection and tracking system using a single camera

during sports. We reduced the e↵ect of the pose variation on the position estimation by adjusting the
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Figure 4.10: Time vs. Number of Close-Contacts

position of the detected person according to the pose of the legs. The evaluation results showed that our

system achieved F1 scores of 83.6% and 67.3% for close-contact detection and tracking, respectively.

Additionally, we confirmed that the start and end time errors were within 1 for more than 80% of the

close-contacts.

One of our future works is to evaluate a method using the upper body skeleton for more robust

position estimation. We also plan to deploy our system in various sports schools and gyms for our new

lifestyle with COVID-19.
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Figure 4.11: Place of Occurrence
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Chapter 5

Maneuver Action Recognition and
Vehicle Movement Classification in
Wheelchair Sports Using Inertial
Sensors

5.1 Introduction

Emerging developments in sensing technology have focused the attention of athletes, coaches and fans

on applying it to data analysis in sports training, strategies and entertainment [76]. One of major

challenges in sports data analysis is to design sophisticated methods suitable for target sports for

useful data collection. In major sports such as football, basketball, and baseball, data analysis is

already essential since many engineers and researchers have developed practical systems to apply it.

However, data analysis in wheelchair basketball (WB) still requires further e↵ort to establish building

blocks essential for data analysis.

Therefore, we have been working on the development of a system to support WB data analysis in

cooperation with athletes and coaches. In WB, players constantly strive to improve their wheelchair

movement techniques since it is important to be able to move the wheelchair quickly and e�ciently

depending on the time and position. In particular, the wheelchair maneuvering, which is movement

of the wheel, is the most basic and important action in all situations. However, the assessment

of maneuvering quality is di�cult due to the lack of quantitative metrics. To support quantitative

analysis of the maneuver quality in this chapter, we propose a method to detect and classify maneuver

actions using inertial sensors. We define the target maneuver actions as PUSH and PULL through

discussion with experts because statistics such as strength and interval of these actions are closely

related to the quality of the maneuver. PUSH is the maneuver of grabbing the rim and pushing it

forward to accelerate the wheel, while PULL is the maneuver of grabbing the rim and stopping the
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wheel or pulling it backwards to decelerate it. Although camera-based approaches are widely used

for sports data analysis, they cannot measure such precise motions. To deal with this problem we

first of all clamped two inertial sensors to the left and right wheels of the wheelchair to measure the

angular velocity of each wheel. Even using inertial sensors, the classification of maneuver actions is still

challenging because of various movements of wheels with di↵erent speeds and directions. To clarify

the maneuvering actions concealed within such complicated movements we employ a segmentation

algorithm followed by classification. First, we segment candidates of maneuver periods by the local

maximum/minimum of the angular velocity since the rotation of the wheel generated by maneuvering

leads to sharp changes in the angular velocity. Then, we classify maneuver actions in each segment

based on thresholds.

In addition to the maneuver, wheelchair behavior is also important. In this chapter, we design a

method to classify types of turns into PIVOT and TURN. This is because the pivot turn is one of

the most important techniques in WB to push an opponent away by applying power e�ciently. For

this purpose, similarly to the maneuver classification, we detect any turns by calculating the amount

of wheelchair rotation from the angular velocities of the both wheels. We then identify PIVOT turns

based on thresholds for each wheel based on the typical movement of the pivot turns.

In order to evaluate the performance of the proposed maneuver classification method, we collected

data from six players in a WB practice game containing 1005 PUSH and 152 PULL actions. From the

results, we confirmed that the precision and recall of both maneuver classifications are more than 84.6%.

We also collected data from 172 pivots and 192 turns to evaluate our turn classification. The result

shows our method successfully classifies PIVOT and TURN with an F-measure of 99.7%. Furthermore,

we show the e↵ectiveness of our classification results in assessing maneuver quality through maneuver

analysis combined with other information such as player positions.

Our contributions are summarized as follows.

• We developed a system to support the data analysis in wheelchair basketball by using inertial

sensors and a camera.

• We designed methods to classify maneuver actions and turns in wheelchair basketball by focusing

on specific movement of wheels.

• We evaluated the performance of our methods by collecting data from athletes.

• We showed the potential of the classification results through the analysis of data collected in a

practice game.

5.2 System Overview

Figure 5.1 illustrates an overview of our system. Instead of manual video analysis currently used by

many teams, we extract statistics from videos and inertial sensors. Figure 5.2 shows a snapshot of
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Figure 5.1: System overview

our system developed for players and coaches. Our system provides player tracking and visualization

of statistics on wheelchair movement. For player tracking, we have implemented DeePSORT [39, 91]

combined with YOLOv3 [28] for object detection. Since YOLOv3 itself cannot detect wheelchairs, we

trained the model by using 602 images of wheelchairs cropped from videos of WB.

On the other hand, precise motions such as maneuver of wheelchairs are extracted from inertial

sensors. In this chapter, we aim at designing a method to detect and classify PUSH and PULL actions

of wheelchair maneuvering. We also design a method to detect and classify PIVOT and TURN. This

leads to the quantification of the maneuver quality by analyzing statistics related to the detected

actions. Furthermore, the detection results can be used for the analysis of strategies and performance

assessment in combination with other information such as players positions. In WB, the basic strategy

is to screen and block the defending opponent and help a team member with making shots. This is very

e↵ective because a wheelchair needs a large area to turn. Therefore, it is important to analyze how

the wheelchair is manipulated to move to the proper position to allow shooting and blocking. Figure

5.3 illustrates an example situation in which a pivot turn is more e�cient than a spin turn. When

the position in front of a player is blocked by an opponent, a pivot turn is more e�cient for moving

forward because the player can move along a straighter path toward the target position by changing

the direction of the opponent. If the player changes direction without a pivot turn, the opponent can

easily screen that player by moving back and forth.

As shown in Fig. 5.4, inertial sensors are fixed to the axles of the left and right wheels. We use

DSP wireless 9-axis motion sensors manufactured by SPORTS SENSING Co., LTD (Figure3.2). The

sensor is capable of measuring 3-axis acceleration, 3-axis angular velocity, and 3-axis geomagnetic data

at a sampling rate of 200 Hz. The measurement ranges of the sensor are shown in Table 3.1. Hereafter,
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Figure 5.2: Snapshot of support system

Figure 5.3: E↵ectiveness of pivot turn

we use [radians/second] as the unit of angular velocity unless otherwise stated.

5.3 Maneuver Classification

5.3.1 Overview

The overview of the proposed method is illustrated in Figure 5.5. The maneuver actions in WB

are instantaneous movements consisting of independent movements of left and right wheels. This

means we need an approach di↵erent from activity recognition for continuous motions such as walking.

Therefore, our method firstly segments the time series of the angular velocity to extract candidate

periods of PUSH and PULL motions without any fixed window size. We then classify the maneuver
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Figure 5.4: Sensor equipment

Figure 5.5: Method overview

actions for each segment. Our target actions are PUSH and PULL since they are frequently observed

in WB. PUSH is the motion to apply force the wheel to the forward direction while the PULL is the

motion to apply force in the reverse (backward) direction. Since the segmented periods are still the

candidates of PUSH and PULL, there is a possibility of other actions. We define the other actions

as OTHERS and design a classification method for the three maneuver actions. The classification

is performed by thresholds for the angular velocity. Finally, we remove the segment classified PULL

when wheelchairs collide with each other because the change in angular velocity is greatly a↵ected by

collision rather than PULL .

5.3.2 Preprocessing

Since the raw sensor data contains noise, we apply a Chebyshev type I filter [92] which is a low pass

filter using the Chebyshev polynomials. The Chebyshev polynomials of the first kind are defined by

the recurrence relation.

T0(x) = 1 (5.1)

T1(x) = x (5.2)

Tn+1(x) = 2xTn(x)� Tn�1(x) (5.3)

The ordinary generating function for Tn is

1X

n=0

Tn(x)t
n =

1� tx

1� 2tx+ t2
(5.4)
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Figure 5.6: Example of filtered angular velocity

We let Gn(⌦) be a function of the angular frequency ⌦ of the n-th order low-pass filter as below.

Gn(⌦) =
1

s

1 + "2T 2
n
(

⌦

⌦0
)

(5.5)

Where ", ⌦0, and Tn are a ripple factor, a cuto↵ frequency, and a Chebyshev polynomial of the n-th

order, respectively. We empirically set the above parameters as " = 1.0, ⌦0 = 0.03, and n = 6. Figure

5.6 illustrates an example of the filtering. We see that the raw data is smoothed by filtering the noise.

5.3.3 Segmentation

Each maneuver action consists of grip, move, and release. The time from the grip to the release

widely varies even for the same action, which means that a sliding window with a fixed size does not

work well. Therefore, we apply peak/valley detection in order to extract candidate segments of the

maneuver actions from the time series of the angular velocity. We remove small peaks/valleys due to

noise in addition to peaks/valleys detected within an extremely short interval.

The peak detection is performed as follows. We denote the angular velocity at time t as !(t). We

then determine the time t that satisfies the following condition (5.6) of a local maximum (peak).

!(t� 1) < !(t) > !(t+ 1) (5.6)

Similarly, we also find the time t that satisfies the condition (5.7) of a local minimum (valley).

!(t� 1) > !(t) < !(t+ 1) (5.7)

To remove the peaks and valleys due to noise, we further apply noise filtering based on a promi-

nence [93]. The prominence is used in signal processing to measure how much the peak is prominent
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Figure 5.7: Example of prominence

Table 5.1: Minimum maneuver interval [s] of players

PUSH PULL
Player ID # of PULL Min. Interval # ofPULL Min. Interval

1 113 0.33 40 1.13
2 72 0.30 31 0.86
3 63 0.33 35 0.90
4 90 0.33 32 1.53
5 105 0.30 36 1.00
6 80 0.40 38 1.06

considering the relative height to its surrounding peaks. An example of prominence is shown in Figure

5.7. Vertical arrows show the prominence of three peaks on a prominence island which is the reference

level of the prominence illustrated by the dashed horizontal lines in Figure 5.7. The prominence island

is defined as follows. First, we extend a horizontal line from a peak to the left and right until the

line crosses the signal due to a higher peak or the end of the signal. Then, we find the minimum of

the signal in each of the two intervals. Finally, the higher of the two intervals minimal specifies the

reference level. The height of the peak above the reference level is its prominence. We analyzed the

characteristics of the prominence of angular velocity peaks. Figure 5.8 shows the prominence during

practice and Figure 5.9 shows the height distribution of the prominence. We found there are many

peaks with low prominence due to noise. We therefore chose to exclude peaks with a prominence of

less than 20. If there are multiple peaks/valleys within Tmin, all peaks/valleys except for the one with

the largest/smallest value have also been removed since such extremely fast actions are impossible.

Table 5.1 shows the minimum interval between PUSH and PULL for six players during the game.

From this result, the threshold of the minimum interval Tmin was set to 0.3.
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Figure 5.8: Prominence of angular velocity peaks during practice

Figure 5.9: Distribution of the prominence

Finally, we segment the time series of the angular velocity by the detected peaks and valleys. We let

d
i denote the i-th detected peak or valley for the time series of the detected peaks and valleys. Then,

the i-th segment s
i (i > 0) is defined as (t(di�1), t(di)] where t(di) is the time when d

i is observed.

Since there is no zero-th peak or valley, t(d0) is defined as 0 which is the start of the measurement.

5.3.4 Classification

We classify each segment into PUSH, PUSH, or OTHERS. However, the waveform greatly di↵ers

depending on the speed of the wheelchair even for the same PUSH actions. For example, Figure
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Figure 5.10: Example of PUSH angular velocity

5.10 shows the waveform of the angular velocity during a sprint. The first PUSH segment and the

following PUSH segments are clearly di↵erent. A large velocity change occurs at the first PUSH while

the velocity change in the following PUSH is not as large as the change in the first PUSH. This is due

to the player’s own ability and the speed just before PUSH.

The classification is performed as follows based on the above observation. Each segment s
i is

classified into PUSH if the following three conditions (5.8), (5.10), and (5.11) are satisfied. The PUSH

action maximizes the speed in the short term. Therefore, the first condition is that si ends at a peak.

This is expressed as below.

!(t(di)� 1) < !(t(di)) > !(t(di) + 1) (5.8)

The second condition is that there is a large speed change within the segment period. Since the

degree of the speed change depends on the player’s ability, we determine the threshold Theight for the

amount of speed change considering the player’s ability and the speed before the action. We consider

the player’s ability as the highest speed in a game or practice. When the maximum speed is !max

and the angular velocity at the end of the previous segment is !(t(di�1)), the threshold Theight of the

speed change is defined as given below.

Theight=

8
<

:

!max/16 (!(t(di�1)) >= !max/4)
(!max�3!(t(di�1)))/4 (!max/4 > !(t(di�1)) > 0)
!max/4 (0 >= !(t(di�1)))

(5.9)

Since the amount of speed change within the segment periods must exceed this threshold, the second

condition is given below.

| max
t2(t(di�1),t(di)]

!(t)� min
t2(t(di�1),t(di)]

!(t)| � Theight (5.10)
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The third condition is the rapid speed increase. The increase in speed occurs due to not only PUSH

but also weight shifting and movement of the opposite wheel. On the other hand, in a PUSH action,

it is necessary to grab the rim, leading to a slight instantaneous decrease in speed, before the speed

increase. This leads to a significantly rapid increase of the angular velocity. Therefore, by using the

threshold for the rapid speed increase T
PUSH

�
, the third condition is represented as follows:

max
t2(t(di�1),t(di)]

!
0(t) � T

PUSH

�
, (5.11)

where !0(t) is the time derivative of !(t). When the above three conditions (5.8), (5.10), and (5.11)

are satisfied, segment si is classified into PUSH.

On the other hand, each segment si is classified into PULL if conditions (5.10), (5.12), and (5.14)

are satisfied. Contrary to the PUSH action, the PULL action minimizes the speed in the short term.

Therefore, the first condition is that si ends at a valley. This is expressed as below.

!(t(di)� 1) > !(t(di)) < !(t(di) + 1) (5.12)

The second condition is that there is a large speed change within the segment period. This is same as

the condition (5.10) in PUSH. However, the threshold Theight of the speed change is defined as given

below.

Theight =

⇢
!(t(di�1))� !max/4 (!(t(di�1)) > !max/2)
!max/4 (!max/2 >= !(t(di�1)))

(5.13)

The third condition is the rapid speed decrease occurs. The decrease in speed occurs due to not

only PULL but also to friction and weight shifting. On the other hand, a PULL action needs to grab

the rim, resulting in a rapid decrease in speed. Therefore, by using the threshold for the rapid speed

decrease T
PULL

�
, the third condition is represented as follows.

min
t2(t(di�1),t(di)]

!
0(t) � �TPULL

�
(5.14)

Finally, all of the other segments are classified as OTHERS. An example of the classification result

using the proposed method is shown in Figure 5.11.

5.3.5 Remove Noise by Collision

Wheelchair collisions frequently occur during games. At that moment, a maneuver to stabilize the

wheelchair may be performed. However, the wheel angular velocity decreases rapidly regardless of the

occurrence of maneuvers. Such rapid decreases of the angular velocity are wrongly classified as PULL.

To solve this problem, we detect collisions and change PULL labels within a fixed period from the

collisions to OTHERS. We use acceleration to detect collisions. We also determined the threshold for

68



Figure 5.11: Example of classification result

collision detection and the duration of the period causing wrong PULL labels based on the statistics

as follows.

The magnitude of 3 axis acceleration a[G] can be expressed by the following equation.

a =
q
a2
x
+ a2

y
+ a2

z
[G] (5.15)

The waveforms of the acceleration in sprint and collision are shown in Figure 5.12. We see that the

acceleration is obviously higher during the collision than the other cases. Figure 5.13 shows the range of

the maximum acceleration for 24 collisions observed during one minute of the preliminary experiment.

The minimum value of the maximum acceleration was 10.17. Therefore, we detect a collision when a

exceeds 10[G]. Figure 5.12 shows there are several peaks in addition to the maximum peak at collisions.

In order to investigate the e↵ect of the vibration caused by the collisions, the number of peaks that

exceed 5[G], which is half of the acceleration threshold of 10, is analyzed within 0.1 to 0.6 seconds

from the maximum peaks. As shown in Figure 5.14, the number of peaks around the maximum peak

increases as the range of time is expanded. We also found the increase is small around 0.5 seconds.

Therefore, we determined the duration of the period causing wrong PULL labels as 0.5 seconds.

We note that the speed of the wheelchair does not increase upon collision. This means that collisions

do not cause wrong PUSH labeling. Therefore, PUSH actions are not filtered since PUSH soon after

the collisions typically shows a significant increase in the angular velocity which is totally di↵erent

from wrong PULL labels due to collisions.
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Figure 5.12: Example of acceleration during sprint and collision

Figure 5.13: Distribution of maximum acceleration at collisions

5.4 Turn Classification

5.4.1 Detection

We also classify turns of wheelchairs into PIVOT and TURN (the other turns). As Figure 5.15 shows,

PIVOT is a change of direction with one fixed wheel while TURN is any other change in direction.

TURN has two types of motions, curve and spin. A curve is an action where both wheels move in

the same direction when changing the direction of the wheelchair, while spin moves the wheels in the

opposite directions. From observations and discussions with players and coaches, we define turns as

the movement with the rotation of wheelchairs of more than 60 degrees within 1.5 seconds.

To extract periods that meet the above definition, we calculate the rotation degree of the wheelchair

based on the model of the two-di↵erential wheeled robot [94]. From the inertial sensors, the angular

velocities !rightand!left around the axles of the left and right wheels are obtained. Let r denote the

length of the radius of the wheel. The speeds of the left and right wheels vright and vleft are then
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Figure 5.14: Number of peaks around collisions

Figure 5.15: Type of rotation

respectively expressed as below.

vright = r ⇤ !right (5.16)

vleft = r ⇤ !left (5.17)

Next, we assume that the wheelchair is making a motion around the center of the rotation. As shown

in Figure 5.16, if the angular speed of turning is !turn and the radius of the turn is ⇢, the speed at

the center of the wheelchair v is represented as shown below.

v = ⇢!turn (5.18)

On the other hand, if the distance from the center to the wheel is d, the turn radii of each wheel

increase or decrease by d, and the speeds of the left and right wheels are as follows.

vright = (⇢+ d)!turn (5.19)

vleft = (⇢� d)!turn (5.20)
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Figure 5.16: Wheelchair in turn

Solving for the above formulas yields the following formula:

!turn = (vright � vleft)/2d (5.21)

v = (vright + vleft)/2 (5.22)

⇢ = d(vright + vleft)/(vright � vleft), (5.23)

where !turn, v and ⇢ denote the rotation speed, forward speed and radius of rotation of the wheelchair,

respectively. We use !turn to detect turns as we defined. The center of the rotation is on the left side

of the direction of movement when ⇢ is positive, and vice versa.

5.4.2 Classification

Next, for each detected turn, we classify whether it is a pivot or not. During a pivot, one of the wheels

is stationary. However, it is di�cult to completely stop the wheel. We therefore use the amount of

rotation of the wheel with lower speed during the turn. We represent the amount of rotation of the

wheel with lower speed during the i-th turn as ✓i
lower

defined as:

✓
i

lower
= min

"
X

t2turni

!right(t),
X

t2turni

!left(t)

#
, (5.24)

where turn
i denotes the period of the i-th turn. If ✓i

lower
is less than ⇡/4, it is classified as PIVOT.

In addition, if ✓i
lower

exceeds ⇡/4, the i-th turn is classified as TURN.

5.5 Evaluation

5.5.1 Maneuver Classification

Settings

We collected real data in a practice game for evaluation. The game duration was 317 seconds. We

attached inertial sensors to wheelchairs of six players. The maximum speed observed by each player
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Table 5.2: Max speed [degree/s] of players

Player ID Max Speed(Left) Max Speed(Right)
1 675.7 667.8
2 764.4 725.7
3 630.6 624.6
4 779.3 802.7
5 640.3 693.0
6 636.8 678.6

Table 5.3: Leave-one-person-out cross validation

Threshold Setting F-measure
ID T

PUSH

�
T

PULL

�
PUSH PULL Both

1 1.5 1.5 0.90 0.80 0.89
2 1.5 1.5 0.88 0.81 0.86
3 1.5 1.5 0.83 0.77 0.82
4 1.5 1.5 0.92 0.81 0.90
5 1.5 1.5 0.92 0.86 0.91
6 1.5 2.0 0.91 0.75 0.88

All - - 0.87 0.85 0.88

during the game is listed in the Table 5.2. We manually labeled the maneuver actions by recording

a video. However, due to occlusion and image quality, the labeling was sometimes di�cult. To deal

with such ambiguity in manual labeling, we established the criteria of ground truth. We judged that

the wheel was pushed when it was obvious that the player gripped the rim with the movement going

forward based on the player’s arm motion. We also identified PULL when it was obvious that the

wheel suddenly decelerated or moving backward while the player gripped the rim based on the player’s

arm motion.

After labeling, a total of 1157 maneuver actions were performed, consisting of 1005 PUSH and 152

PULL. Since the ground-truth is labeled manually, we allow 1.5 seconds di↵erence for the detection

time or in other words the detected class is regarded as correct if the same ground-truth label exists

within 1.5 seconds.

Results

Threshold Configuration In our method, we need to configure the thresholds appropriately. To

see the di↵erence in the thresholds for di↵erent players, we conducted a leave-one-person-out cross

validation. The thresholds T
PUSH

�
and T

PULL

�
are set from 1.0 to 3.5 with increments of 0.25 as

below.

(TPUSH

�
, T

PULL

�
) 2 [(1.0, 1.0), (1.0, 1.25), ...(3.5, 3.5)] (5.25)
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Figure 5.17: Average maneuver classification result

Figure 5.18: Classification performance of left and right hands for each player(PUSH )

From the result shown in Table 5.3, we confirm the optimal threshold setting is the same among

5 of the 6 cases in the cross validation. However, we found that the F-measure of the player 3 is

slightly worse than the others. This is mainly because the wheel size of the player 3 was larger than

the others due to the wheelchair configuration. Therefore, we may adjust the thresholds according to

the wheelchair configuration to improve the performance. In the following evaluation, the thresholds

are set as TPUSH

�
= 1.5 and T

PULL

�
= 1.5.

Maneuver Classification Performance Figure 5.17 shows the result of maneuver classification.

From the results, we confirm precision and recall of PUSH are more than 87.1%. We also confirm

the precision and recall of PULL are more than 74.8%. Figures 5.18 and 5.19 show the maneuver

classification performance of the left and right hand for each player. From the results, we see that the

PUSH classification performance is independent of hands in most cases. However, we also see the PULL

classification performance is di↵erent between the left and right hands for players 2 and 6. Furthermore,
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Figure 5.19: Classification performance of left and right hands for each player(PULL)

Figure 5.20: Performance when Theight is fixed

as for player 4, recall of the left side is the lowest in all the players. Conversely, the precision of player

4’s right side is the highest among the other players. This implies that the characteristics of the

maneuver actions may di↵er slightly depending on hands and/or players. The results also mean our

method can potentially assess the quality of maneuver. To improve the performance, in addition to

the maximum speed, we may investigate the factors that can estimate the ability of individual players.

Figure 5.20 shows the result when the threshold Theight is fixed. When the threshold Theight is

low, the recall is high because it can detect small PUSH and PULL. However, the peaks and valleys

due to noises are wrongly recognized as maneuvers, leading to low precision. On the other hand, when

the threshold Theight is high, precision becomes high while recall becomes low. This is because only

maneuver actions with large movement are recognized. Our method achieves the highest F-measure,

which means adjusting the threshold Theight based on the speed works well.
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Table 5.4: Turn dataset
Condition Angle[degree] # of PIVOT # of TURN

Moving 180 27 33
-180 25 39

Stationary 270 20 20
180 20 20
90 20 20
-90 20 20
-180 20 20
-270 20 20

Total 172 192

Table 5.5: Turn classification result
Predicted Class
PIVOT TURN Recall

True PIVOT 172 0 1
Class TURN 1 191 0.9947

Precision 0.9942 1

5.5.2 Turn Classification

Settings

In order to measure the turns while moving, we collected the data by repeating a turn after moving

forward. We asked the player to make either a pivot turn or a spin turn in a specified direction (i.e.

left or right). Also, in order to evaluate turns while stationary, we asked the player to make a turn

with a specified angle from -270 to 270 [degree]. The leftward rotation is considered positive and the

rightward rotation is considered negative. The summary of the collected data is as shown in Table 5.4.

We observed 172 PIVOT and 192 TURN.

Turn Classification Result

The results are shown in Table 5.5. The results show almost all the turns were correctly classified

except only one TURN which is a spin turn during forward movement. To investigate the reason for

the wrong classification, Figure 5.21 shows the amount of rotation of a low-speed wheel during a turn.

This figure shows that it is di�cult to change the moving direction of the wheel suddenly. As a result,

the minimum amount of rotation of TURN during forward movement becomes closer to the maximum

amount of rotation of PIVOT during stop. This leads to a wrong classification. This problem may be

solved by considering the speed before a turn.

76



Figure 5.21: The amount of rotation of a low-speed wheel during a turn

Figure 5.22: Power Di↵erence of Left and Right Hands

5.5.3 Use Cases on Data Analysis

Di↵erence between left and right hands

To see the di↵erence between the left and right hands, we define the power of PUSH action in segment

s
i as the di↵erence in the angular velocity (i.e. maxt2si !(t) �mint2si !(t)). Then, we calculate the

di↵erence in the power between the left and the right wheels when PUSH is recognized for both of

the wheels simultaneously. We assume the left and the right wheels are pushed simultaneously if

both of the peaks at the end of the segments are detected within 0.5 seconds. Figure 5.22 shows the
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Figure 5.23: Basketball court divided into 4 areas

Table 5.6: Percentage of maneuver actions in each area[%]

Area\Action PUSH (Low) PUSH (High) STOP
0 30.1 38.6 31.3
1 16.2 68.7 15.1
2 13.5 71.3 15.1
3 25.7 44.6 29.8

distributions of the di↵erence in power between the left and the right wheels. It is clear that 3 out of 6

players (players 1, 4, and 5) push the right wheel more strongly than the left wheel. This result implies

that some players tend to rely on their dominant hands and to make turns in the same direction.

Relationship between Maneuver Motions and Positions

We analyzed the relationship between the recognized maneuver actions and the positions. The players’

positions are obtained from the video. For the analysis, the basketball court is divided into four areas

by the foul lines and the center line as shown in Figure 5.23. In this analysis, PUSH is categorized into

two types depending on whether the angular velocity of the previous segment is above the threshold

!max/4 (high speed) or not (low speed).

Table 5.6 shows the percentage of the maneuver types in each area. We see that high-speed PUSH

exceeds 68.7% around the areas 1 and 2 which are the center of the areas. In particular, the percentage

of STOP is extremely low in area 2 which is the first area of the opponent’s court. This is because

the players tend to accelerate rapidly for good movements when they are attacking. In addition, the

result indicates that various maneuver types are mixed near the goals (i.e. the areas 0 and 3) because

sophisticated movements are required to avoid or to interfere with opponents.
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Figure 5.24: Speeds of 2 players over time in sprints at 3 di↵erent distances

Sprint Comparison

In training, sprints are often practiced. Figure 5.24 shows the speeds of two players over time in three

trials of sprints at di↵erent distances. The left side is the speed of the left wheel and the right side

is the speed of the right wheel. The x-axis is the number of PUSH actions. For example, the upper

right figure shows player A reached 3.5m/s at the fifth right hand PUSH for all the trials.

As seen from Figure 5.24, in the short and long distance sprints, both players achieved almost

the same speed with the same number of pushes. However, in the middle distance sprint shown in

the red color, player B after the third PUSH shows a smaller increase in speed than yellow, which is

long-distance sprint. This means that player A always achieved high performance in terms of speed

regardless of distance.

5.6 Discussion

In this chapter, we classify maneuver actions and turns for the purpose of assessing maneuvering

quality. Our system allows confirming whether the players to confirm whether the players moved

quickly and/or e�ciently. It also helps them to improve their handling technique. For example, if a

player tries to push a wheel with a strong force, that player can greatly accelerate all at once. At the

same time, the force to grip the rim can become stronger, leading to larger deceleration of the wheel.

By collecting practice data for sprints, players can understand how to e�ciently reach the maximum
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speed without wasting force. Furthermore, we are planning to analyze the relation between the degree

of disability and maneuver statistics measured by our system.

We note that, ”better” actions often depend on situations. This means maneuver actions and

turns recognized by our system may be not enough for analysis in games. To enable game analysis,

we may integrate a video tracking system to use player positions that reflect situations in a game.

Such information about player positions enables us to consider what the best action is at the moment.

For example, a player should conduct a pivot turn if an opponent is blocking the player’s forward

movement.

We assume our system will be used in training and practice games. In o�cial games, the current

rules for wheelchair basketball do not allow the use of sensors [95]. However, since data analysis in

sports is becoming more common, the rules may change in the future.

5.7 Conclusion

In this chapter, we propose two methods to detect and classify maneuver actions and turns of wheelchair

basketball by using inertial sensors. Our design of the proposed method focuses on the specific move-

ment of wheels. The evaluation results showed that our method achieves an F-measure of 88.1% for

classification of maneuver actions. Also, our method achieves an F-measure of 99.7% for the classifi-

cation of turns. Furthermore, we have shown usage cases for data analysis by using the classification

results combined with other information such as player positions.

One topic for future work is applying in order to support technical improvement of maneuvering.

For example, it is possible to achieve e�cient training by quantifying the wheelchair maneuver actions

through feedback to the players. In addition, visualization of changes in the maneuver actions over

time may motivate the players. Furthermore, in cooperation with athletes and coaches, we are planning

to develop a system to support data analysis in wheelchair basketball.
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Chapter 6

Maneuver and Play Action
Recognition in Wheelchair Sports
Using a Single Camera

6.1 Introduction

Recently, data utilization in sports has been attracting attention in all over the world, and it is used

for various purposes such as advanced strategic analysis and e↵ective training. In sports such as soccer

and basketball, the number of actions that utilize balls such as passes and shots are collected and the

data is opened to the public as one of the stats showing the performance of players, and that is used

for entertainment. Wheelchair basketball, which is one of the sports for people with disabilities, is also

required to support technical improvement and strategy planning using data, and several attempts

have been made so far.

Data such as passes and shoots in sports are mainly manually tagged by experts. Many tools

have been developed to make tagging easier, but even at big sports data collecting company Opta

Sports [96], which collects data in 30 di↵erent sports in 70 countries, three experts manually tag each

match. Therefore, it is di�cult to collect data for analysis even in amateur sports such as universities,

and automation of data collection is required. As a method of automatically collecting data in sports,

an approach using an inertial sensor or a camera are considered. In the approach using inertia sensors,

by attaching a sensor to the player’s own body or equipments, it is possible to directly obtain player’s

movements such as acceleration and angular velocity of the limbs, equipments and etc. However, there

is a risk of injury when using in sports with contact. There is also concern that the player’s performance

is deteriorated by bad feelings of attaching sensors. In addition, since one or more sensors are required

for each person, there is a problem that workloads such as mounting and charging sensors is high to

preparation for every time of practices or games. On the other hand, in the camera-based approach,

it is not necessary to attach a sensor to player’s body or equipments, so the e↵ect on the performance
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is small. When using a camera, it is necessary to recognize objects such as hands and legs for each

person in the image, and to recognize how each object moves. To achieve it, many methods use CNNs

for spatial feature extraction in images. Recently, a network model Slowfast involving a Slow pathway,

operating at low frame rate, to capture spatial semantics, and a Fast pathway, operating at high frame

rate, to capture motion at fine temporal resolution has been proposed [11], and it achieved to recognize

daily actions with high accuracy. If the entire court is photographed with a camera, we can collect

much data, which greatly reduces the time and e↵ort required for preparation such as mounting sensor

on each player. Therefore, we consider action recognition method using a camera.

When recognizing actions using a camera in sports, there are problems that actions in sports are

di↵erent from daily actions. Even if the movements of person are very similar, these actions sometimes

have di↵erent meanings in sports. For example, in sports, it is necessary to classify actions such as

passes and shoots, but these actions are similar and it is di�cult to classify. This is because existing

methods including Slowfast focus on movements of the limbs without considering positions in the field.

Therefore, in the existing methods, it is di�cult to classify di↵erent actions with similar movements

such as passes and shoots. They can recognize the movement of releasing the ball from their hands,

but they do not know whether the ball is going to the goal or the ally. Therefore, in this chapter,

we consider that when taking an action, a player’s judge is a↵ected by the position in the court, and

propose a action recognition method that takes into account players’ positions. In our method, we

use Slowfast model to capture human centric movements (gesture) and extract the players’ position

characteristics which is court centric movements by localization. By using these two outputs, we

classify the actions.

For evaluation, we compared our method with the Slowfast-only model. As a result, our method

using location information achieved better accuracy than the Slowfast-only model in all four types of

classifiers. Using the configs that achieved the best accuracy, the accuracy reached 78.7 %, which was

9.6 points higher than the best accuracy using the Slowfast-only model. From these result, it can be

seen that the players’ positions are important in the action recognition task in sports.

6.2 Data Preparation

As far as we know, there is no datasets with tagged actions of wheelchair basketball. Therefore, we

create new datasets. We got a video from actual practice games. The recorded videos’ sampling rate

was 60 frames per second. Wheelchair basketball has ball actions such as passes and shoots, as in

basketball and maneuver actions such as pushing the wheel. Therefore, we defined the 6 types of

action labels which includes 3 ball actions (pass, shoot, and dribble) and 3 maneuver actions (both-

handed pushing, left-handed pushing, and right-handed pushing). In labeling, the type of action, the

start/end frame of the action, and the player ID are recorded for one action. We collected data from

14 of the players who participated in two games. Wheelchair maneuver actions can be obtained from
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Table 6.1: Details of Data

Label Clips Time[s]
Pass 179 168.3
Shoot 99 137.5
Dribble 198 208.4

Both Push 366 209.6
Left Push 200 167.7
Right Push 226 197.1

Total 1268 1088.5

players who do not have the ball, but since there is only one player having the ball during the game,

the data labeled with ball actions is very few compared to the data labeled with maneuver actions.

Therefore, we collected data of ball actions from videos of eight games.

Next, for each labeled action, we create a video clip that trimmed the video from the start to the

end of the action. However, it is very di�cult to manually annotate each person by a bounding box

for each frame. Therefore, we use human detection and tracking technologies. By using them, we need

only record the actual player ID corresponding to tracking ID which is given by tracking technology,

the workload was greatly reduced. In this Chapter, the latest technologies, A and B, were used to

detect and track people, respectively. However, human tracking may fail due to occlusion or going out

of the image. In that case, a complete human trajectory was obtained by linear interpolation until the

next tracking ID was observed. By cutting out the bounding box of the tracking ID corresponding to

the player ID from the start to the end of the action, a video clip of one person performing one action

is generated. As a result, 1268 videos were obtained for about 1089 seconds in total. The average

length per video clip was about 0.86 seconds. The details of the datasets are listed in the Table 6.1.

6.3 Method

The overview of our method is shown in Figure 6.1. Because the human detection and tracking is

out of scope of the action recognition, our method assumed that the person ID and the position of

the bounding box in the video are given. Our action recognition method consists of three blocks: (1)

localization, (2) gesture recognition, and (3) action classification. First, the positions of the players in

input video are estimated. In localization, the coordinates in the image are transformed from the pixel

axis to the world axis by homography [48]. By using this, the place where the action was performed

and the trajectory during the action is obtained. Also, in parallel with localization, human gesture

recognition using Slowfast model is performed. As a result, it outputs the confidence score for each

action label. Finally, these outputs are input to the classifier to determine an action label. For example,

if a running person appears in a video, in localization, we extract the global features such as the speed

and moving direction of the person. On the other hand, in gesture recognition, we extract the local
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Figure 6.1: Method Overview

features such as the crossing of the person’s arms and legs. We then classify the action using these

global and local features. In this way, we realized the action recognition model considering the position

information.

6.3.1 Extraction of Positional Features by Localization

First, the player’s position is estimated for the purpose of extracting the features of the movement in

the court. The coordinates of the center of the bottom of the bounding box detected in the video are

used as the position of the person, and the pixel axis is transformed to the world axis by homography.

Homography requires that the coordinates of the actual world corresponding to the four points in

the image are known. The position data is converted into a form in which the data for input to

the classifier. Specifically, three types of data are obtained: the position pos where the action was

performed, the displacement d during the action, and the change in orientation ✓ during the action.

Because the size and position of the detected bounding box changes between frames, we define the

average position during the action as the position where the action was performed. Assuming that the

number of frames in the action period is F and the position in the frame f is (xf
, y

f ), the position

pos in where the action was performed is calculated as follows.

pos = (
FX

f=1

(xf
, y

f ))/F (6.1)

In addition, we divide the action period into three equal parts, and the average position in each period

is defined as the action start position (xstart, ystart), the action occurrence position (xaction, yaction),

and the action end position (xend, yend), respectively. Displacement during the action period is defined
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as the distance from the action end position to the action start position. Therefore, the displacement

d during the action period is as follows.

d =
p

(xend � xstart)2 + (yend � ystart)2 (6.2)

In addition, we defined the moving direction from the action start position to the action occurrence

position as the orientation before action and we then defined the moving direction from the action

start position to the action end position as the orientation after action. At that time, these orientation

is absolute. Therefore, the relative change in orientation ✓ during the action is the di↵erence between

them, and it it as follows.

✓ =atan2(xend � xstart, yend � ystart)

� atan2(xaction � xstart, yaction � ystart)
(6.3)

Figure 6.2 shows an example of data for a position during a action.

Figure 6.2: Example of Position Data During an Action

The position of the action for each label is shown in Figure 6.3. Since the attack direction is

reversed depending on the team, in order to unify the right direction as the attack direction in the

figure, the position coordinates of the players of the team whose left direction is the attack direction

are converted point-symmetrically with the center of the court as the axis. From this figure, it can

be seen that there is a correlation between each action and the place where the action is performed.

For example, because the goal position and attack direction is fixed the shot can only be seen on the

right court. Also, while dribbling is performed throughout the court, passes are more frequent in front

of each goal. This result shows the characteristics of wheelchair basketball, which is looking for an

ally who can shoot in good condition and many passes are made in front of the goal. In addition, it

can be seen that a pass occurs even outside the court. It is because when the ball has gone out of

court, passes to put inside is performed. On the other hand, in wheelchair maneuver actions, pushing
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by both hands are performed uniformly throughout the court. However, pushing by only left or right

hand is more frequent in front of the goal of each court. This is because the o↵ense and defense are

switched immediately after shoots, and the direction is changed accordingly. In this way, it can be

seen that each action is related to the position where the action was performed.

Figure 6.3: Relationship between Action Labels and Positions

Next, the movement vector (~x, ~y) is defined as follows.

(~x, ~y) = (d ⇤ cos ✓, d ⇤ sin ✓) (6.4)

At that time, the movement vector of each label is shown in Figure 6.4. The positive direction of the

X-axis in this figure is the orientation before action. For example, if a marker is in positive positions

on both the X-axis and Y-axis, it can be seen that the player corresponding to the marker turns to

the left while moving forward during the action was performed. From this figure, it can be seen that

passes and shoots are likely to be performed at low speeds or when stopped, and dribbling is likely to

be performed while moving forward. In some cases, shoots such as layup are performed with a larger

movement than dribbling. On the other hand, the movement vector in terms of wheelchair maneuver

actions has di↵erent clearly. It is because pushing by one hand is performed to change the orientation

of the wheelchair. Therefore, pushing by the left hand is changing the orientation to the right, and

conversely, pushing by the right hand is changing the orientation to the left. That tendency can be

seen from this figure.

6.3.2 Gesture Recognition

Gesture recognition is performed in parallel with localization. The purpose is to extract the local

features which human centric action such as hand and foot movements have. We use Slowfast for

gesture recognition. Slowfast is a network model with a two-pathway for video recognition. One

pathway is designed to capture semantic information that can be given by images or a few sparse

frames, and it operates at low frame rates and slow refreshing speed. In contrast, the other pathway
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Figure 6.4: Relationship between Action Labels and Movement Vector

is responsible for capturing rapidly changing motion, by operating at fast refreshing speed and high

temporal resolution.

For model training, the data were divided into training, validation, and test. For the actions of

handling the ball, data of one of eight games was divided for the test and the others for training and

validation, and for the wheelchair maneuver actions, data of three out of 14 players were divided for

the test and the others for training and validation. Furthermore, the training and validation data were

divided so that the number of training data and validation data was 9 : 1 for each label, and model

training was performed. The details of data division are shown in Table 6.2 The progress of learning is

shown in Figure 6.5. The average error rate in the training and validation data continued to gradually

decrease to about 100 epochs, but after that, the model fitting is progressed only to the training data,

and the decrease in the error rate of validation data has stopped. Finally, the error rate of validation

data converged at about 30%. We changed the way to choose batch and trained with 100 epochs, but

the average error rate in the validation data did not increase or decrease. Therefore, in the training

after 100 epochs, there is no big change in the ranking of the confidence score for each action label,

but it is presumed that the training progressed so that the di↵erence in confidence score between the

predicted label and the other labels became large.

6.3.3 Action Classification

Finally, we classify action in video using the result of localization and gesture recognition. From the

result of the localization, we obtain four values which are the X and Y coordinate of the position where

the action was performed, displacement during the action, and the change in orientation during the

action. In gesture recognition, we get a confidence score for each class. In this chapter, there are 6

types of action labels, so 6 values are outputted from Slowfast model. Therefore, we input a total of

10 variables to the classifier. Because the output of gesture recognition is required for the training of

the action classifier, the gesture recognition output is obtained by applying the training and validation
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Table 6.2: Details of Training and Validation Data

Label
Train Val Test

Clips Time Clips Time Clips Time
Pass 145 136.3 17 14.8 17 17.2
Shoot 81 112.4 9 12.5 9 12.7
Dribble 155 162.3 18 18.3 25 27.8

Both Push 248 138.0 28 15.3 90 56.3
Left Push 140 119.1 16 13.4 44 35.3
Right Push 162 141.1 19 16.0 45 40.1

Total 931 809.0 107 90.3 230 189.3

Figure 6.5: Training Progress of Gesture Recognition Model

data among the data divided in Section 6.3.2.

6.4 Evaluation

6.4.1 Evaluation Setup

For evaluation, the test data divided in Section 6.3.2 is used. In order to show the e↵ect of our

method more clearly, we compare our method with Slowfast-only. We prepared Slowfast models which

is trained 100 and 200 epochs. We use 4 types of classifiers, which includes Random Forest (RF),

Gaussian Process Classifier (GPC), Neural Network (NN), and Support Vector Machine (SVM). To

determine the hyper-parameters in each classifier, we performed a grid search on the training and

validation data and we used the hyper-parameters that achieved the best accuracy.
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Table 6.3: Classification Accuracy by Model

Model
Slowfast epoch Classifier Accuracy

Slowfast 100

- 68.3
RF 70.0
GPC 76.1
NN 71.7
SVM 76.5

Slowfast 200

- 69.1
RF 74.3
GPC 78.7
NN 77.4
SVM 72.2

6.4.2 Comparison Results of Action Classification Models

Table 6.3 shows the accuracy of action classification by each model. From this result, it can be seen

that even if it use any classifier, our method can classify actions with higher accuracy than Slowfast-

only model by setting appropriate parameters. The highest accuracy in Slowfast-only was 69.1 %

when using a model trained 200 epochs, but the highest accuracy in our method was 78.7 %, and the

accuracy improved 9.6 points. In addition, by combining a classifier with a model trained 100 epochs,

we obtained better results than with a Slowfast-only model trained 200 epochs. From these result,

it can be seen that the position, displacement, and change in orientation of movement of players are

important factors in classifying sports actions.

6.4.3 Classification Accuracy for Each Action Label

Next, we evaluate the classification accuracy for each action label. In our model, we use Slowfast 200

and GPC, which are combinations that achieve the highest accuracy for the gesture recognition model

and the classification model. Tables 6.4 and 6.5 show the results of Slowfast 200 and our model

(Slowfast 200 + GPC), respectively. From these results, it can be seen that both the recall and the

precision have increased for many action labels in our method. In particular, in the model with only

gesture recognition Slowfast 200, there are frequently occurred that pushing by both hands and by the

right hand are misclassified pushing by the left hand. Also, pushing by the left hand is misclassified

as another type of pushing. In contrast, our model achieved to significantly reduce the results of

misclassification as pushing by the left hand. On the other hand, those that were correctly classified as

pushing by the left hand were also classified into several di↵erent labels, and as a result, the number

that could be correctly classified was reduced by 4, but the number of incorrect classification results

could be reduced by 22. Therefore, the recall increased. Although there was no increase or decrease in

the number of correct answers for dribbling and pushing by both hands, the recall increased because
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Table 6.4: Classification Result of Slowfast 200

Predicted
Pass Shoot Dribble Both Push Right Push Left Push Recall

Ground
Truth

Pass 16 1 0 0 0 0 94.1
Shoot 3 6 0 0 0 0 66.7
Dribble 2 0 22 0 1 0 88.0

Both Push 0 1 0 73 1 15 81.1
Right Push 1 0 2 5 10 26 22.7
Left Push 0 2 0 4 7 32 71.1
Precision 72.7 60.0 91.7 89.0 52.6 43.8

Table 6.5: Classification Result of Our Model (Slowfast 200 + GPC)

Predicted
Pass Shoot Dribble Both Push Right Push Left Push Recall

Ground
Truth

Pass 17 0 0 0 0 0 100.0
Shoot 2 7 0 0 0 0 77.8
Dribble 2 0 22 0 0 1 88.0

Both Push 0 4 0 73 5 8 81.1
Right Push 0 0 1 3 34 6 77.3
Left Push 0 3 0 3 11 28 62.2
Precision 81.0 50.0 95.7 92.4 68.0 65.1

the number of misclassified results decreased. The reason why the number of correct answers did not

change is that dribbling and pushing by both hands are performed evenly in various places on the court,

there is little change in orientation, and the action is performed at both low speed and high speed, so

positional information such as position and displacement is not very important in these actions. This

leads the weight of the classification model is concentrated on the confidence score that is the output

of gesture recognition and our model achieved similar results with the Slowfast-only.

6.5 Conclusion

In this chapter, we propose action recognition method using a single camera. First, we localize players

in input video, which purpose is to extract global feature. Next, in parallel with localization, human

gesture recognition is performed, which purpose is to extract local feature. Finally, these outputs are

input to the classifier to determine an action label. In this way, we realized the action recognition

model considering the position information.

For evaluation, we collected data that is di↵erent from the data used for model training and

validation, and we then compared our method with the Slowfast-only model. As a result, our method
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using location information achieved better accuracy than the Slowfast-only model in all four types of

classifiers. Using the configs that achieved the best accuracy, the accuracy reached 78.7 %, which was

9.6 points higher than the best accuracy using the Slowfast-only model. From these result, it can be

seen that the players’ positions are important in the action recognition task in sports.

One topic for future work is to apply our method to other sports. We believe our method can

apply not only to wheelchair basketball but also to sports such as basketball and soccer where a game

field size is fixed. Because, in this case, it is considered that the position and orientation of the players

are closely related to the action decision. Therefore, we would like to collect data on other sports and

show the versatility of our method. In addition, the design of the model that recognizes the gesture

used in our method is optimized for daily action. However, actions in sports are di↵erent from daily

actions, and large and sharp changes occur in a shorter period. Therefore, we would like to evaluate

the accuracy when the setting parameters of the model are changed and create a model that is more

specialized for sports movements.

91



Chapter 7

Discussion

7.1 Sensor Selection

We selected inertial sensors and a single camera for localization and action recognition. However, we

may also be able to design other approaches using other sensors as shown in Tables 7.1 and 7.2. For

example, we can estimate positions of players by deploying a LiDAR (Light Detection And Ranging)

sensor. Because light has high straightness, the distance to the object has little e↵ect on the accuracy.

However, with a single LiDAR sensor, occlusion becomes a problem. The approach using a single

camera also has the same problem. In the image-based approaches, we can recognize a person from

the color information. On the other hand, the raw data obtained by the LiDAR sensor is the depth

information, which requires person identification from the shape and the movement. Furthermore,

since players in many sports take various poses, it is di�cult to recognize a person or a person’s arms

or legs by using LiDAR sensors. In contrast, color information obtained by cameras is more suitable

for recognizing people because we can use important features of a person such as their clothes and

exposed skin.

Another approach is sensing based on radio signals. The distance and direction to the transmitter

can be estimated from the arrival direction, arrival time, and intensity of the received radio signal

at the receiver. Therefore, by attaching a single device to the athlete and attaching multiple devices

outside the court, we can estimate the athlete’s position by triangulation. However, since radio waves

are reflected, refracted, and attenuated by people and walls, there is concern about vulnerability to the

dynamic environment. In addition, since only the position of the attached part is estimated, we need to

attach multiple devices to the arm and foot of the person, for example. Refs. [97,98] proposed device-

free methods for people identification based on radio signals. However, because there are restrictions

on the distance between the person and the sensor and the orientation of the person, it is di�cult to

recognize the action of the person on the court.

In this way, we can design approaches using light or radio signals for localization although they

are not suitable for recognition of the movements of the arms and legs. On the other hand, when an
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inertial sensor is used, unlike radio signals and light, data can be collected simply by attaching the

sensor to the athlete without deploying sensors to the environment. Accumulation of errors is a major

problem, however, movements in a short period are less a↵ected by this problem. Therefore, inertial

sensor-based approaches are suitable for action recognition. In addition, we can directly obtain data

such as acceleration and angular velocity that indicate motion performance. When using videos, there

is no additional device because data can be collected from the camera of a smartphone. It is also more

suitable for recognizing people and limbs than other device-free approaches. For the above reasons,

we selected the inertial sensor and the camera for our design.

Table 7.1: Approaches by Attaching Devices to Players

Sensor Type Advantage Disadvantage

Inertial Sensors

•Precise movement can be ob-
tained
•Directly acquire data such as
acceleration and angular velocity
that indicate the performance of
actions

•Accumulation of error
•Sensing only the position of the
attached part

LiDAR •High accuracy
•Occlusion
•Large device size
•High power consumption

Radio Signals
•Accuracy depends on radio fre-
quency
•Penetrate obstacles

•Interference
•Sensing only the position of the
attached part
•Requires multiple devices
around the court

Table 7.2: Device-free Approaches

Sensor Type Advantage Disadvantage

LiDAR •High accuracy
•Occlusion
•Hard to recognize limbs from
depth information

Radio Signals •Use of widespread devices
•A↵ected by reflection, refrac-
tion, and attenuation
•Low accuracy

RGB Camera
•Use of widespread devices
•Color information is suitable for
limbs recognition

•Occlusion
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7.2 Versatility

The algorithms proposed in this dissertation have the potential to be applied to other sports and

environments.

First, the localization algorithm using the inertial sensor in Chapter 3 can be used for two-wheel-

drive robots and vehicles. In wheelchair sports, errors tend to increase due to movements such as wheel

slippage and floating one wheel. On the other hand, if it is a low-speed moving robot or a normal

wheelchair, it is expected that the error becomes smaller. Even if there are three or more wheels but

two drive wheels, the algorithm of our method can be applied by considering the vehicle design such

as the size of the wheels. However, it cannot be applied when wheels are not used for movement.

Next, since the localization method using the camera proposed in Chapter 4 considers various poses

during exercise, it can also be used in daily life. However, since this method assumes the people in the

image to be at the same height, it cannot be used in places where the height of the ground plane is

not constant, such as stairs and slopes. Additionally, the close-contact detection algorithm assumes an

environment where there are no large obstacles other than people, such as sports schools and gyms. If

the tracking of a person in the video is interrupted, we assumed that the person is hidden by another

person. Therefore, it is di�cult to apply our algorithm in an environment where a person is hidden

by a large obstacle. When monitoring the occurrence of close-contact in such an environment, it is

necessary to use multiple cameras to avoid occlusion.

Next, when recognizing the action with the inertial sensor, it is necessary to determine the mounting

location of the sensor depending on what kind of actions are needed for analysis. In Chapter 5, inertial

sensors are installed on the axes of the left and right wheels to recognize wheelchair maneuvers and

turns. Therefore, in wheelchair sports, it is possible to recognize maneuvers and turns using our

algorithm. However, it is di�cult to recognize other actions such as shoots and passes that are

independent of wheel movements with the same sensor settings. When recognizing a shoot or a

pass, it is necessary to additionally attach inertial sensors to the player’s arms and/or a ball. In

this dissertation, we focused on action recognition of wheelchair maneuvers and turns in wheelchair

basketball. Because the sensor equipment and algorithm were designed for this purpose, our method

cannot be applied to other sports or other actions as it is. However, we believe that we showed

important ideas for designing an action recognition system using inertial sensors in the future. For

example, we showed that it is necessary to attach a sensor to a position that acts in common with

actions of interest. Additionally, we need to consider individual-dependent actions in designing an

action recognition method. In our maneuver recognition method, we regard peaks and valleys of the

angular velocity as a common feature and sharpness and amount of its change an individual-dependent

feature. We believe that this idea can be applied to behavior recognition tasks in other sports and

daily life.

Finally, in the action recognition using the camera proposed in Chapter 6, we have designed a
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method that considers not only the movement of the limbs of the person but also the movement of the

athlete in the court. Therefore, it can be applied to other sports such as soccer and basketball where a

play area is regulated in the rule. In addition, if the position does not significantly a↵ect the judgment

of actions, we cannot expect the improvement of the accuracy even if the position information is

considered. In this dissertation, we worked on action recognition in wheelchair basketball. As a result,

we have found that actions such as dribbling and pushing wheels with both hands were executed

regardless of the players’ positions on the court. Even if position information is added, there is not a

large improvement in the accuracy of these actions compared to other actions. We believe that our

method can be applied to actions other than sports. For example, by replacing a goal, which is the

object of action in sports, with a television and a computer, it will be possible to classify whether the

person is watching television or a computer’s display.

7.3 Recommendations for Data Collection

In this dissertation, we have proposed methods that collect position and action data based on two types

of devices (i.e., inertial sensors and a single camera). In order to collect position data, localization

using a camera that can estimate absolute positions is more appropriate. When using inertial sensors,

it is necessary to correct absolute positions in addition to the inertial sensors due to the accumulated

error. In order to collect action data, it is necessary to install the device at an appropriate position,

however, the approach using an inertial sensor can classify actions with higher accuracy. In addition, it

is suitable for the analysis of actions because it can directly obtain the movement such as acceleration

and speed. When using a camera for action recognition, the accuracy was not as good as the inertial

sensors. However, since it can capture the entire body of a person, it is possible to recognize many

types of actions.

For the above reasons, we recommend using a single camera for the initial data collection. This

approach does not require additional equipment because it uses widespread devices, such as smartphone

cameras. Its workload is also low because we can start data collection only by deploying it around

the court. However, if the accuracy of action recognition by a camera is not su�cient, we need to use

inertial sensors because they are not a↵ected by occlusion and can capture precise movements directly.

Inertial sensors are also required when analyzing each action precisely. There are many uses by fusion

of two types of sensors. For example, the performance of localization and action recognition will be

further improved. Sensor fusion is also helpful for person identification by matching trajectories in

videos and short-term trajectories estimated by inertial sensors.
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Chapter 8

Conclusion

In this dissertation, we introduced a method for collecting data easily, which is specialized for the

sports environment. The main purpose of our research is to design data collection methods which

can be used with low workload for daily practices and games even when the number of people and/or

time are limited. To mitigate the e↵ort for deployment, designed single modal methods which use a

single type of sensor(s). In the proposed methods, we can start to collect data simply by attaching or

deploying devices to the player’s body, vehicle, or outside the court. Another advantage is ease of device

collection after data collection, which is important for reducing workload. In order to collect data, it

is e↵ective to attach the inertial sensor to the place where we want to analyze the motion. Therefore,

we proposed a data collection method using an inertial sensor. Also, in sports where hard contact

occurs, we may need to avoid attachment of inertial sensors because of the risk of injury. Therefore,

we also proposed a method to collect data only from videos. Therefore, we proposed data collection

methods using inertial sensors or a camera that can be applied to di↵erent environments. Another

purpose is to collect the data for the actual analysis using inertial sensors or a camera. Therefore,

we proposed localization methods to obtain players’ position data which is the basis of data analysis

and action recognition methods to obtain the action data for further analysis. The main challenge is

that each existing method does not consider the use in sports. Therefore, we proposed methods that

consider features of sports such as positions of players in the court and pose variations. Through this

dissertation, we have elaborated on four primary contributions as follows.

First, we focus on wheelchair sports and proposed a localization method by dead reckoning using

three inertial sensors attached to wheelchair wheels axles and under the chair. We also proposed

three types of correction methods to handle the accumulation localization error. From the result, we

confirmed how localization errors accumulate in wheelchair sports and the e↵ect of position correction

frequency on position estimation accuracy.

Secondly, we proposed a localization method that is robust to the pose during movement using a

single camera. We correct a human position using the skeleton of the lower body for various poses

when the target does not move. As a result, we successfully decreased the error by an average of 23
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cm and mitigated the increase of the error by occlusion and pose variations.

Thirdly, we proposed a maneuver action recognition method using inertial sensors for wheelchair

sports. In our method, we firstly segments the time series of the angular velocity to extract candidate

periods of actions without any fixed window size. We then classify actions for each segment. Fur-

thermore, by comparing the movements of the left and right wheels, wheelchair movement recognition

such as sprints and turns is performed. As a result, our method achieves an F-measure of 88.1% for

classification of maneuver actions and an F-measure of 99.7% for the classification of turns.

Fourthly, we proposed an action recognition method for sports. In existing action recognition

methods, they focus on actions without considering positions of players in the field. Therefore, we

proposed an action recognition method considering player’s position. As a result, the accuracy of our

method reached 78.7 %, which was 9.6 points higher than the best accuracy of the method without

considering the positional data. This means players’ positions are important in the action recognition

task in sports.

Through these contributions, we have shown that it is possible to automatically collect sports data

easily and with a low workload in various environments. Our study leaves potentials for further studies

for improving the performance of localization and action recognition. For example, it is expected that

the performance of localization and action recognition will be further improved by combining the

method using an inertial sensor and a camera. Especially for action recognition, it is expected that

the classification accuracy for handling ball actions will be improved by embedding an inertial sensor

in the ball or detecting and tracking a ball from images to measure the motion of a ball. We believe

that such an idea can be applied with tools other than balls that are used in sports. In addition, by

collecting bio-metric data such as heart rate, it is possible to analyze di↵erences in performance with

respect to the degree of individual fatigue. This dissertation has established the foundation of a data

collection and analysis system, which can be used even in environments with limits to the number of

people in the team or time to use the facilities for sports.
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