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Abstract

A comfortable air-conditioned environment increases labor productivity and learning e�ciency. In

indoor environments used by many people, such as o�ce buildings and schools, it is necessary to

realize an appropriate air-conditioned environment that considers users’ thermal sensation. However,

it is di�cult to always provide the air conditioning control required by the users in these facilities. This

is because the ideal environment changes dynamically due to spatial heterogeneity of the environment,

outdoor weather changes, and human density changes. In addition, it is di�cult to realize an air-

conditioned environment that considers all the people’s preferences in the same space by using the

existing air conditioning control. This is because thermal sensation di↵ers among individuals due to

the e↵ects of clothing and metabolism, even in the same air conditioned environment.

Many researchers proposed systems using machine learning to estimate the dynamically changing

thermal sensation of individuals using physiological sensing devices. In addition to environmental

factors, i.e., temperature and humidity, these devices can be used to estimate thermal sensation with

data collected from a thermal camera and a wearable sensor. The thermal sensation is useful to

determine comfortable settings for air conditioning systems. However, some problems are not addressed

in the flow of the construction of the machine learning model to estimate thermal sensation.

A thermal camera is widely used to measure human body temperature for various healthcare

applications, including thermal sensation estimation. Smartphone thermal cameras are in the market

as mobile thermal sensing devices. However, thermal images captured by smartphone thermal cameras

are not accurate in monitoring human body temperature due to the small body that is vulnerable to

temperature change.

On the other hand, the development of sensing technologies on the high-end device has enabled the

estimation of human thermal sensation, which helps e�cient heating, ventilation, and air conditioning

control. However, in most existing literature, the personal thermal sensation is estimated using only

opportunistic data as features, and evaluations are conducted in static environments. In real situations,

we are exposed to dynamic environments, owing to human mobility and changes in airflow. Therefore,

it is necessary to estimate personal thermal sensation in dynamic surrounding environments.

In addition, even using an appropriate estimation model, dataset imbalance causes biased estima-

tion, which is harmful for the estimation of rare cases. Thermal sensation datasets are usually imbal-

anced because hot/cold environments rarely appear in air-conditioned environments. Therefore, many
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researchers have applied data augmentation for rare samples to balance thermal sensation datasets,

called data balancing. In physiological sensing, estimations of human states such as thermal sensa-

tion using machine learning often regard the target problems as classification problems for simplicity.

However, to achieve estimations of human states with finer granularity, regression is more appropriate

than classification because regression estimates numerical values. Because regression problems output

continuous numerical values, data balancing algorithms for classification problems are not suitable for

regression problems. Some algorithms are proposed for data balancing in regression problems. How-

ever, they do not consider time-series feature values commonly used in psychological and physiological

state estimation.

Our research goal is to build a machine learning model to estimate thermal sensation. Building the

model requires three key steps: the physiological data collection, the selection and construction of the

machine learning model, and the training schemes to address the imbalanced dataset.

Firstly, we propose ThermalWrist, a dynamic o↵set correction method for thermal images captured

by smartphone thermal cameras. We fully utilize the characteristic which is specific to thermal cam-

eras: the relative temperatures in a single thermal image are highly reliable, although the absolute

temperatures fluctuate frequently. ThermalWrist combines thermal images with a reliable absolute

temperature obtained by a wristband sensor based on the above characteristic to correct the o↵set

error. The evaluation result in an indoor air-conditioned environment shows that the mean absolute

error and the standard deviation of face temperature measurement error decrease by 49.4% and 64.9%,

respectively. In addition, Pearson’s correlation coe�cient increases by 112%, highlighting the e↵ec-

tiveness of ThermalWrist. We also investigate the limitation with respect to the ambient temperature

where ThermalWrist works e↵ectively. The result shows ThermalWrist works well in the normal o�ce

environment, which is 22.91�C and above.

Secondly, we propose TSVNet, a deep learning-based method reflecting time-series changes to ad-

dress the dynamic environment. This method combines opportunistic features and time-series features

in the deep learning framework by transfer learning. We collected data for a total of 123 days, which

included the dynamic environment data from 21 subjects, for the evaluation. The results indicate

that our method improves F1-score by 5.8% compared with a baseline method. We also design a

data balancing method for regression problems on imbalanced datasets, including time-series data. In

addition, the result of the lookback time evaluation shows that the use of physiological information in

the previous 10 minutes improves the performance of the method.

Thirdly, we propose a SMOTE-based method to alleviate the distribution bias by data augmenta-

tion in the regression problem using a time-series physiological data dataset. To consider the temporal

dependency of time-series data, we extend a distance function to measure the distance between two

samples in the dataset. We use Dynamic Time Warping (DTW) distance to define the distance be-

tween time-series samples. Our method interpolates synthetic time-series using the DTW distance

between rare samples. The e↵ectiveness of the proposed method was confirmed for datasets of thermal

4



sensation and core body temperature collected in uncontrolled environments. The results show that

our method improves the performance of regression models for minor cases with a bit of decline in the

mean average error.

We propose a framework to build a machine learning model to estimate thermal sensation from the

data collection to train the model through these contributions. The complete system will appropriately

estimate rare cases, i.e., hot and cold, which possibly include extra energy use. This dissertation has

established how we utilize our physiological data to build a machine learning model that estimates our

thermal sensation.
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Chapter 1

Introduction

In recent years, as mentioned in the Sustainable Development Goals (SDGs) [1], which are an urgent

call for action by all countries in a global partnership, energy consumption all over the world con-

tinues to increase. Since the air-conditioning application accounts for a high percentage of all energy

consumption [2], the reduction of extra energy consumption related to air-conditioning control, such

as overcooling, is expected to have a significant e↵ect on reducing the energy consumption of the

building. In addition, it has been found that comfortable air-conditioned environments increase labor

productivity [3] and learning e�ciency [4]. In indoor environments used by many people, such as o�ce

buildings and schools, it is necessary to create appropriate air-conditioned environments in terms of

users’ thermal sensation. However, it is not easy to always control the air conditioning system in these

buildings according to users’ demands. This is because the ideal environments change dynamically due

to spatial heterogeneity, outdoor weather changes, and human density changes. It is also challenging

to realize air-conditioning environments that consider all the people’s preferences in the same space

by using the existing air-conditioning control system. This is because thermal sensation varies from

person to person due to the e↵ects of clothing and metabolism, even in the same air-conditioning

environment. In recent years, there has been much research on estimating the dynamically changing

thermal sensation of individuals using sensing devices to tackle such challenges.

Many researchers proposed systems using machine learning to estimate the dynamically changing

thermal sensation of individuals using physiological sensing devices. In addition to environmental

factors, i.e., temperature and humidity, these devices can be used to estimate thermal sensation with

data collected from a thermal camera and a wearable sensor. The thermal sensation is useful to

determine comfortable settings for air conditioning systems. However, some problems are not addressed

in the flow of the construction of the machine learning model to estimate thermal sensation.

Data collection is another challenge in thermal sensation estimation. Specifically, a thermal cam-

era is a sensing device that helps estimate thermal sensation because it provides facial temperature

data, sensitively reflecting human thermal sensation. In addition, psychological states, for example,

cognitive load [5], thermal sensation [6, 7], stress [8] and emotion [9], are estimated by monitoring the
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skin temperature. Although some wearable devices with skin temperature sensors are available (e.g.,

E4 wristband [10], and Embrace 2 [11]), their applications are still limited due to the limitation of

single point measurement. For this reason, thermal cameras are widely used to monitor skin tempera-

ture because they can measure temperature distributions quickly without physical contact. Recently,

thermal cameras have become easy to use because low-cost and minimized models are available on the

market. For example, FLIR ONE [12] is a low-cost thermal camera that is attached to a smartphone.

We can measure our skin temperature anytime, anywhere thanks to such smartphone thermal cameras.

However, the accuracy of the low-cost thermal camera is insu�cient to monitor the skin temperature

compared with the high-end models. Thermal cameras are categorized into two types: those with

cooled infrared detectors and those with uncooled infrared detectors [13]. The performance of the

cooled detectors is much higher than the other, although they are bulky and expensive due to the

cooling apparatus. Therefore, the smartphone thermal cameras are with uncooled infrared detectors.

The uncooled infrared detector element converts its temperature rise to electric signals. The object’s

temperature is principally calculated from the signals and their emissivity. The measured temperature

greatly fluctuates by the parameters configured by the user, the rising temperature of the camera’s

body, the e�ciency of the element, and the packaging method [13]. By these e↵ects, the measurement

error of the smartphone thermal camera is larger than the high-end one. For example, the error range

is ±3�C or ±5%, which is larger than the range of human skin temperature changes in daily life.

This is clearly not enough for various healthcare applications. The dynamic correction method for

smartphone thermal cameras is needed for human thermal sensing to address this challenge.

Some smart ACs reduce energy consumption by controlling the airflow based on the user’s po-

sition estimated by an infrared sensor. However, appropriate control is non-trivial because thermal

sensation inherently contains subjective feelings. Fanger proposed an index called PMV (Predicted

Mean Vote) that represents human thermal sensation in 7 levels from -3 to +3 (i.e., cold, slightly cool,

neutral, slightly warm, warm, hot) [14]. PMV is widely used in recent research as a 7-point ASHRAE

(American Society of Heating, Refrigerating and Ari-Conditioning Engineers) scale, an international

air conditioning association. PMV calculates thermal sensation from environmental factors, such as

temperature, humidity, wind speed, radiation temperature, and personal factors such as metabolism

and clothing. However, it has been reported that the thermal sensation calculated using PMV is not

necessarily equal to the thermal sensation actually felt by humans because PMV does not consider

individual di↵erences appropriately and assumes the environment is in a steady state. In order to con-

sider such subjective factors, TSV (Thermal Sensation Vote) [15] is often used as a thermal sensation

index. To estimate TSV, Ranjan et al. proposed a contact-less estimation method based on machine

learning from air temperature and skin temperature [6]. However, a thermal camera requires capturing

the user’s face, which is not always possible due to the camera angle, user’s body/face direction, etc.

On the other hand, Barrios et al. used heart rates measured by a chest heart rate monitor to estimate

the thermal sensation [16]. Although it can continuously monitor users’ physiological data, wearable
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sensors such as a wristband sensor are preferable in daily use.

Many studies have shown the e↵ectiveness of machine learning in estimating psychological or phys-

iological states using physiological data as input. However, it is ethically and physically di�cult to

collect a large amount of data without bias in uncontrolled environments. Specifically, the amount

of data in rare cases is especially small compared to common data. Therefore, the distribution bias

may cause overfitting in machine learning. For example, in the thermal sensation dataset, hot/cold is

rarely reported compared to the response labeled neutral. When we use such a dataset to train the

machine learning model, the estimator tends to output the neutral label. To address this problem,

many data balancing methods are proposed. Data balancing is a way of pre-processing the data to

increase its size, diversity, and robustness. Synthetic Minority Oversampling Technique (SMOTE) [17]

is one of the methods to balance the dataset. SMOTE augments the data in minor classes by inter-

polation for classification problems. To estimate the physiological or psychological state such as the

thermal sensation, regression is more appropriate than classification because regression estimates such

state as continuous numerical values. As a data balancing for regression problems, SMOTER [18]

were proposed based on SMOTE. However, it does not assume that time-series feature as an input,

which is commonly used in psychological or physiological state estimation. Therefore, to balance the

regression dataset, including time-series data, we need to design the framework to augment time-series

data, which helps to build an estimator that executes balanced estimation.

In this dissertation, three primary contributions will be made. We tackle three key challenges to

build the machine learning model for TSV estimation: accurate physiological data collection, selection

and construction of the machine learning model, and the training schemes to address the imbalanced

dataset.

Firstly, to overcome the fluctuation of the measurement by smartphone thermal cameras, we pro-

pose an o↵set correction method for thermal images captured by smartphone thermal cameras. We

fully utilize the key feature of the thermal cameras: the measurement fluctuation is mainly caused by

the o↵set, which is common in all the pixels in a single thermal image. In other words, we can measure

the di↵erence of temperature correctly between any pair of pixels in the same thermal image, even

using the smartphone thermal camera. Our method combines thermal images with a reliable absolute

temperature obtained by a wristband sensor based on the above feature. First, we obtain a thermal

image including a reference point (a wrist or a palm) of which absolute temperature is measured by a

wearable device (a wristband sensor). Second, we estimate the o↵set at the reference point by compar-

ing the temperature measured by the thermal camera and the wristband sensor. Finally, our method

corrects temperature in the thermal image by adding the o↵set to all the pixels. Since the wristband

sensor covers the measurement point, the thermal camera cannot directly capture the temperature of

the same point. Therefore, we define the reference point as the point that is highly correlated with the

point measured by the wristband sensor. This method uses a palm or a wrist as the reference point

and compares the performance through the real experiment. We compare the two reference points and
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discuss their features through the real data with 876 samples collected from eight subjects.

Secondly, we propose TSVNet, which combines opportunistic data from a thermal camera with

time-series data from a wristband sensor for thermal sensation estimation. TSVNet estimates users’

TSV based on their physiological data and face temperature distribution by machine learning. TSVNet

is a deep learning-based method reflecting time-series changes to address dynamic environments. The

basic idea is as follows. First, we train the partial estimator using time-series data only. Second,

to combine the knowledge extracted from the time-series data with the opportunistic data, TSVNet

transfers the partial network of the estimator for the time-series data to the input of the latter combined

TSV estimator. Finally, the transferred network is combined with the opportunistic data as the input

to the latter combined TSV estimator. We collected data for a total of 123 days, which included data

collected under dynamic environments from 21 subjects for the evaluation. Because our experiment

was conducted in realistic environments, most of the TSVs labeled by participants are 0 (Neutral).

This makes the estimation more challenging compared with the existing state-of-the-art studies, which

divide the occupant’s thermal state into comfort and discomfort [19], [20], [21]. Because such an

imbalanced dataset is used, we also propose a data balancing method for the time-series data in the

regression problem to prevent biased learning. The results indicate that our method improves F1-score

by 5.8% compared with a baseline method. We also design a data balancing method for regression

problems on imbalanced datasets, including time-series data. In addition, the result of the lookback

time evaluation shows that the use of physiological information in the previous 10 minutes improves

the performance of the method.

Thirdly, we propose a data balancing method for regression with time-series feature values based

on SMOTER. We extend a distance function to consider the temporal dependency of time-series data.

To define the distance between time-series samples, we use Dynamic Time Warping (DTW) distance as

used in TS SMOTE [22]. TS SMOTE is designed to extend SMOTE to time-series data. Our method

interpolates synthetic time-series using the DTW distance. We apply our method to two imbalanced

datasets with time-series feature values for evaluation. The first dataset is the thermal sensation

dataset, which consists of time-series physiological data measured by a wristband sensor as a feature

value and thermal sensation vote (TSV) as a response value. The second dataset is the core body

temperature dataset. A tympanic temperature sensor measures the core body temperature during

exercise. Feature values are measured by a wristband sensor, chest strap sensor, and environmental

sensor. The result shows that our method improves the performance of regression models for rare cases

with a little decline in the mean average error.

Our study overcomes challenges in order to build a machine learning model to estimate human

thermal sensation by physiological sensing. The key contributions in this thesis are as follows.

• We propose an o↵set correction method for thermal images measured by a smartphone thermal

camera using a reference point combined with the specific features of thermal cameras.
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• We construct the estimator that combines the physiological information acquired as time-series

data and the opportunistically measured data using transfer learning.

• We propose a data balancing method for regression with time-series feature values considering

the temporal dependency of time-series data.

The rest of this dissertation is organized as follows. Chapter 2 reviews related work on thermal

sensing, thermal sensation estimation, and data balancing method. Chapter 3 explains the design

and performance of our correction method for smartphone thermal cameras. Chapter 4 proposes the

thermal sensation estimator, which combines opportunistic and time-series data. Chapter 5 describes

the novel method to balance the regression dataset, including time-series data. Finally, Chapter 6

summarizes and concludes this dissertation.
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Chapter 2

Related Work

2.1 Related Work on Thermal Camera Sensing

2.1.1 Applications Using Skin Temperature

Many research has revealed the relation between human mental states and skin temperature. Choi

et al. [23] investigate the possibility of the use of human body skin temperature to assess thermal

sensation using the temperature sensor on the skin. Chernyshov et al. [24] present the system for

tracking positive cognitive and emotional states by using temperature sensors on eyeglasses. Genno et

al. [8] use facial skin temperature to evaluate stress and fatigue. They revealed the fatigue is the load

of the stress by assuming the estimation formula. Understanding the stress of humans is a crucial issue

in our society. Recently, Japanese companies have been obligated to conduct the stress check test for

the employees by law [25]. As used in the work mentioned above, thermal cameras are one of the key

technologies to record stress levels noninvasively and automatically. In addition, smartphone thermal

cameras extend the advantages of thermal cameras in terms of ubiquitous applications.

2.1.2 Applications Using High-end Thermal Camera

Thermal cameras have been recently used for the estimation of human thermal comfort. Burzo et al. [7]

divide the thermal comfort into three levels: “hot discomfort,” “comfort,” and “cold discomfort” and

combine other biosensors with a thermal camera to estimate the thermal comfort. Ranjan et al. [6]

estimate the thermal sense using thermal images and propose a method to reduce energy consumption

in buildings. Stress or cognitive load estimation methods are shown by many researches [5, 26, 27,

28, 8, 29, 30]. Abdelrahman et al. [5] present an unobtrusive indicator of users’ cognitive load based

on thermal images by monitoring forehead and nose temperature. The other emotions are estimated

by monitoring the skin temperature [31]. Pavlidis et al. [32] detect lies based on bloodstream increase

estimated by thermal images. López et al. [33] and Basu et al. [9] propose methods to estimate

human emotion by facial temperature distribution. Thermal cameras are also useful to measure such

psychological states since they do not disturb user behavior.
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Table 2.1: Thermal cameras used in existing work

Author Thermal camera Accuracy
Abdelrahman et al. [5] Optris PI160 ±2 °C or ±2%
Or et al. [27] MikroScan 7200V ±2 °C or ±2%
Kang, et al. [28] MikroScan 7200V ±2 °C or ±2%
Shastri et al. [29] FLIR SC6000 ±2 °C or ±2%
Ranjan et al. [6] FLIR A655sc ±2 °C or ±2%
Burzo et al. [7] FLIR A40 ±2 °C or ±2%
Basu et al. [9] InfReC R300 ±1 °C or ±1%
Gane et al. [34] FLIR SC640 ±2 °C or ±2%
Ebisch et al. [35] FLIR SC3000 ±1 °C or ±1%
Manini et al. [36] FLIR SC660 ±1 °C or ±1%
Hahn et al. [37] testo 881 ±2 °C or ±2%

However, most of the existing work, shown in Table 2.1, use a high-end thermal camera that has

high accuracy, such as ±2 °C or ±2%, or higher. In reality, we can not always use such high-end thermal

cameras, causing the problem of frequent fluctuations of measurement by low-cost (i.e., smartphone)

thermal cameras.

2.1.3 Applications Using Smartphone Thermal Camera

Some applications using smartphone thermal cameras have been developed since their release. Nurmi

et al.[38] developed a low-cost solution for search and rescue operations using smartphone thermal

cameras. Mauriello et al.[39] evaluated energy-e�ciency issues in building environments. However, they

use smartphone thermal cameras for measuring objects whose temperature range is much wider than

human skin temperature. In addition, there are some applications for medical supports. For example,

Jaspers et al.[40] use the smartphone thermal camera for the burn wound assessment. However, they

measure temperature di↵erences between the burn wound and healthy skin. As far as we know, there

are no applications to measure human skin temperature using only smartphone thermal cameras. This

is because smartphone thermal cameras are suitable for the measurement of relative temperature rather

than absolute temperature.

2.1.4 Calibration of Thermal Cameras

Thermal cameras need to calibrate [41] to measure accurate temperatures. The purpose of calibration

is to determine the accurate quantitative relations between camera output and incident radiation.

Malmivirta et al.[42] mitigate the smartphone thermal camera’s error using a deep learning-based

calibration technique. They achieve smartphone thermal camera calibration without any additional

device. However, the error larger than 1 °C still remains. Our target scenarios are measuring human

skin temperature change over time, which requires higher accuracy. For the calibration procedure [13],

di↵erent temperature black bodies are used, whose emissivity is close to unity and radiometric quan-
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tities and spectral quantities are well defined. Therefore, the calibration method gives us relations

of proper output and the black body’s temperature. Instead of the blackbody, shutter-based calibra-

tion [43] is widely used since a blackbody is large, heavy, and expensive. Therefore, a method that

is inspired by object-based calibration can be achieved by leveraging di↵erent parts of the same body

with similar emissivity for calibration.

Several factors causing errors still exist on the thermal camera in a real environment. The emissivity

of a target object is one of the factors, which is the e�ciency of the surface in thermal energy emission.

The emissivity is a specific parameter dependent on a component of a substance. Mitchell et al. [44]

reported the di↵erence in the emissivity of human skin is 0.95 – 0.99, caused by the di↵erence in the

blood flow and skin color. This 4% di↵erence leads to ±0.25�C error in the measurement of skin

temperature. In order to determine the emissivity, it is necessary to measure the temperature of an

object whose emissivity is known, such as black body tape [45]. This issue based on the idea that the

reference points share almost the same emissivity with the target have to be considered to measure

human body temperature. Therefore, the method which is not a↵ected by skin color is required

because the body parts of the same person as the reference and the target are used. Moreover, in the

environment which is in daily life, where blood flow does not change greatly.

However, the correction of the other factors is still challenging. Electrical noise and noise due to

fluctuation in the scaling of thermal energy are the remaining major factors. To mitigate these e↵ects,

we essentially need high-end thermal cameras if we do not rely on any additional devices.

2.2 Related Work on Thermal Sensation

2.2.1 Thermal Sensation and Physiological Information

Originally, Fanger proposed the predicted mean vote (PMV) based on the 7-point scale [14]. The

PMV calculates the thermal sensation from environmental factors, such as temperature, humidity,

wind speed, and heat radiation, and factors on the human body, such as metabolism and the amount

of clothing. However, the PMV requires the measurement of input values around the target person,

which is di�cult in a real-world setting. In addition, the PMV assumes a static environment, where

the thermal sensation is not dynamic. The actual thermal sensation labeled by the occupant is called

TSV. It has been reported that the PMV does not always agree with the TSV [46], [15]. This is

because the TSV reflects individual preferences, of which estimation is inherently di�cult.

Many methods have been proposed to estimate thermal comfort. Brager et al. [47] proposed a

method that switches the model depending on the season. This study indicates that it is di�cult to

estimate the TSV by simply sensing only environmental factors, such as indoor temperature. Accord-

ing to Fanger [14], thermal sensation changes with environmental factors, such as temperature and

humidity, as well as human factors, such as metabolic rate and clothing. Takada et al. [48] proposed

a model to estimate the TSV in a dynamic environment from the core temperature and average skin
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temperature of each part of the human body obtained using the 7-point method [49]. These studies

indicate that body temperature is an essential factor for determining human thermal sensation. There

is also a method [50] that detects discomfort owing to the air-conditioned environment with high accu-

racy using only heart rate fluctuations. It demonstrates that the TSV can be estimated using detailed

heart rate variability. Heart rate variability is one of the indexes of relaxation. It is calculated by

frequency analysis of the heart rate signal. Electrodermal activity is an index of sweating [51]. There

are many studies that use it as an index of the TSV [52], [53], [54]. Electrodermal activity is observed

actively when the user is in hot environments.

2.2.2 Estimation of Thermal Sensation Using Wearable Sensors

Barrios et al. [16] estimated the TSV using a method based on machine learning from the heart rate

data measured by a chest strap sensor. Although a wristband sensor, used as a heart rate sensor,

is also considered in this study, the measurement error is larger than that of a chest strap owing

to motion artifact. Because of this reason, they also implied that the heart rate measured by the

wristband sensor could not be used as a feature value. Liu et al. [55] proposed the use of a wearable

sensor on the ankle in addition to an arm-mounted sensor and the chest strap sensor. An estimator

was constructed for individuals by collecting physiological information in their daily lives. While this

method can estimate the TSV with consideration to the subject’s di↵erence, it requires many wearable

sensors. In addition, it is di�cult to introduce such sensors in a real-world setting, such as o�ces or

schools, from the perspective of invasiveness.

Studies have also been conducted to estimate the PMV using wearable sensors. Hasan et al. [56]

proposed a method to calculate the PMV by estimating a person’s metabolic rate from their heart

rate and acceleration measured by a wristband sensor. However, it is known that the PMV does

not necessarily correspond to the user’s thermal sensation in the real-world setting because it does

not assume a dynamic environment [46], [15]. Thus, air conditioning control or the evaluation of the

environment according to the PMV is not always appropriate. In addition, most methods use only

statistical values, such as the average value of the measured physiological information for the past

several minutes or hours. Moreover, they do not consider the fluctuations of physiological information.

Deep learning-based methods, such as long short-term memory (LSTM), become key solutions to

perform an estimation corresponding to a dynamic environment. This is because the deep learning-

based methods can extract time-series fluctuation information from the time-series samples of each

physiological information compared with other traditional approaches.

2.2.3 Estimation of Thermal Sensation Using Thermal Images

In recent studies, a thermal camera has been used to estimate the TSV because it can non-invasively

measure skin temperature, such as the face temperature distribution. Li et al. [57] proposed a thermal

camera network to assess thermal comfort in multi-occupancy spaces. Our method can be utilized in
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such an environment with occupants wearing a wrist-worn device. Ranjan et al. [6] suggested that

energy consumption in a building can be reduced by estimating the TSV using a thermal image. Fur-

thermore, Aryal et al. [20] estimated the TSV by combining thermal images and other biosensors.

Their method improved the estimation accuracy using features, including statistical values, e.g., av-

erage, maximum, and minimum, in a dynamic environment where the indoor temperature gradually

changes. However, their work focused on comparing the pairs of sensors as feature values. Therefore,

the evaluation was conducted using a continuous dataset from static subjects. In other words, they

did not assume an actual environment, which includes the situation where a thermal image cannot

be captured, as mentioned in Section 4.1. Additionally, this study did not evaluate how the previous

measurement values a↵ect the estimation of the TSV. The performance can be improved by focusing

on how time-series data from only a wristband sensor improves the estimation accuracy in an actual

environment.

Cosma et al. [58] extracted the temperature of multiple parts of the face from a thermal image. They

collected learning data in a steady environment with an air conditioner (AC) at a fixed temperature

setting and evaluated the estimation accuracy in a dynamic environment where the temperature setting

is gradually changed. However, because they intentionally reproduced extreme environmental change,

slight changes in room temperature in the actual environment are not evaluated. Specifically, in these

studies, the maximum and minimum room temperatures were changed to approximately 30�C and

20�C, respectively. Moreover, they did not assume a dynamic environment in which the surrounding

environment changes intermittently owing to a person’s movement to another location and the gradual

adaption of the human body to the environment. For such reason, thermal cameras can not deal with

dynamic environments. To deal with the problem, time-series information from a wristband sensor

helps to complement the lack of information only using thermal cameras.

2.2.4 Deep Learning-based Approaches

Various research has shown that deep learning-based techniques better estimate TSV than other tradi-

tional machine learning techniques. Hu et al. [59] showed their deep transfer learning-based approach

was superior to other machine learning approaches such as Naive Bayes, Support Vector Machine,

Decision Tree, Multi-layer perceptron, and k-Nearest Neighbors. However, this study transfers the

knowledge trained by open datasets, which do not consider the dynamic situation. Morresi et al. [60]

proposed TSV estimation models based on multiple machine learning algorithms, including Convo-

lutional Neural Network (CNN) and Long Short-Term Memory (LSTM). They showed these neural

network-based approaches using time-series data e↵ectively worked on estimating TSV in a dynamic

environment. However, this study collected the dynamic data under the environment where the air

temperature was drastically changed in the range wider than 10�C in the same trial. By contrast, our

method focuses on more realistic environments where the air temperature is controlled normally.

Especially, LSTM, which is a special kind of RNN, is capable of learning long-term dependencies.
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Basic RNN has a chain of repeating neural network modules with a single tanh layer. Instead of such

a simple structure, LSTM is specialized to keep information longer than simple RNN as described in

Ref. [61]. Many researchers found that LSTM works well on a large variety of applications, including

TSV estimation.

The deep learning-based approach is suitable for a realistic environment because it can extract more

information. Transfer learning is one of the approaches to combine multiple deep neural networks.

Therefore, it can also be used to combine the opportunistic features and the time-series features.

To extract time-series-based information and opportunistic information, the estimators are trained

separately in the transfer learning framework. The information is concatenated after the extractions

using those deep neural networks. The eventual estimator can be trained after the concatenation.

2.2.5 Applications Using Estimated TSV

The TSV is a useful metric for evaluating the energy e�ciency of buildings. Cóstola et al. [62] proposed

a novel performance indicator to describe trends in the energy performance of buildings based on

TSV. Giamalaki et al. [63] conducted a questionnaire survey on the thermal experience of elderly

people in their residences. The TSVs they collected indicate greater dissatisfaction with the thermal

environment in heating than in the cooling season. Jain et al. [64] proposed an optimization framework

for the comfort-energy trade-o↵. They realized the framework using an application that can record

the change of the AC setting. TSV estimation can directly suggest comfortable AC settings without

collecting such records. Enhancement of TSV estimation performance can make the suggestion more

accurate.

Optimized spot-type personalized air-conditioners have been attracting more attention recently

because they can conserve building energy. Zhu et al. [65] proposed the cooling e�ciency index for

personalized air-conditioners. Their system utilizes computational fluid dynamics and Fanger’s ther-

moregulation model to simulate heat loss from the human body. Moreover, Qiao et al. [66] proposed a

novel personal cooling vest incorporated with phase change materials and ventilation fans. Also, ap-

propriate HVAC control enhances productivity [3] and learning performance [4], [67] in o�ce buildings

and schools. TSV estimation can also be used to optimize the trade-o↵ between thermal sensation and

energy consumption for such a spot-type air-conditioner.

2.3 Related Work on Data Balancing

2.3.1 SMOTE-based Data Balancing

In order to deal with the imbalanced datasets, researchers proposed data augmentation methods. The

basic strategy is pre-processing the data to increase its size and diversity [68]. SMOTE is a predomi-

nant data augmentation for classification. Chawla et al. [17] showed the advantages of this approach

compared to other alternative sampling techniques on several real-world problems using several clas-
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sification algorithms. Because of the advantage, methods derived from the SMOTE are proposed [69],

such as Adaptive Synthetic sampling approach (ADASYN) [70] and Borderline-SMOTE [71]. The

SMOTE-based extensions replace the original interpolation procedure with other more complex ones,

such as clustering and probabilistic functions.

Furthermore, filtering extensions after SMOTE are proposed, such as SMOTE + Tomek [72] and

SMOTE + ENN [73]. To clarify the boundaries between classes, they remove unnecessary samples

from the dataset after the data augmentation. They are kinds of undersampling techniques. In this

desertion, to focus on evaluating the data augmentation of time-series data, the combination with

undersampling is out of scope. However, those undersampling techniques can be applied after the data

augmentation.

For regression problems, SMOTER [18] and SMOGN [74], which is an extension of SMOTER

with Gaussian noise, are proposed. These methods extend SMOTE for regression problems by using

the relevance function representing the density of the training data. In Chapter 5, we extend this

algorithm for regression problems based on SMOTER, which is one of the SMOTE-based extensions

for regression problems. It separates the minor cases from the distribution by a user-defined threshold.

After the separation, it generates new cases based on weighted averages between pairs in minor cases.

2.3.2 Data Balancing for Time-series Classification

For time-series classification, some balancing methods were proposed by generating the synthetic sam-

ple. TS SMOTE [22] is an extension of SMOTE designed for time-series data. It introduced DTW in

the time-series merging algorithm in the augmentation. On the other hand, OHIT [75] was proposed

as an oversampling method for the imbalanced time-series classification. OHIT is di↵erent from the

state-of-the-art oversampling algorithms because it generates structure-preserving synthetic samples.

These methods are based on generating samples using the feature of time-series categorized as the

same class. In contrast, data balancing methods for time-series regression, which can not use classified

time-series samples, are not fully investigated.

2.3.3 Learning-based Data Balancing

Another approach for data augmentation is known as generative models [76] which are based on

deep learning, such as Generative Adversarial Networks (GANs) [77] and Variational Autoencoders

(VAEs) [78]. These learning-based approaches can generate synthetic time-series data and augment

training datasets e↵ectively [79]. The algorithms model the real data distribution Pr by learning a

distribution P✓ parameterized by ✓. The data is generated by learning a function g✓ which transform

a noise with gaussian distribution Z such that P✓ ⇡ g✓(Z). The approaches generate realistic values

in several domains, such as computer vision and cybersecurity [80].

However, the generative models need training, which means the generative model may overfit com-

mon values when we use an imbalanced dataset. To deal with the problem, it needs a specialized loss
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function, which makes the model more complicated, or data balancing before the training. Therefore,

the data augmentation method based on the algorithmic approach, which does not need training, is

required.
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Chapter 3

Smartphone Thermal Camera
Correction Using a Wristband
Sensor

3.1 Introduction

Thermal cameras are widely used to monitor the temperature [81] because they can measure temper-

ature distributions quickly without physical contact. For this reason, they are used in various fields

such as animals [82, 83], agriculture [84], buildings [85] and humans. For example, thermal cameras

are applied to humans for anomaly detection such as heatstroke [86] and infection [87]. Human skin

temperature is also used for estimating various psychological states such as stress and thermal com-

fort [5, 6, 88]. Their applications are still limited due to the limitation of single-point measurement

with some wearable devices with skin temperature sensors are available (e.g., E4 wristband [10] and

Embrace 2 [11]),

Recently, thermal cameras have been widely used because low-cost and miniaturized models are

available on the market. For example, FLIR ONE [12] is a low-cost thermal camera attached to a

smartphone. Thanks to such smartphone thermal cameras, we can measure our skin temperature

anytime, anywhere. However, the accuracy of the low-cost thermal camera is insu�cient to monitor

the skin temperature compared with the high-end models.

Thermal cameras are categorized into two types: those with cooled infrared detectors and those

with uncooled infrared detectors [13]. The performance of the cooled detectors is much higher than the

other, although they are bulky and expensive due to the cooling apparatus. Therefore, the smartphone

thermal cameras are with uncooled infrared detectors. The uncooled infrared detector element converts

its temperature rise to electric signals. The temperature of the object is principally calculated from

the signals and their emissivity. The measured temperature greatly fluctuates in accordance with the

parameters configured by the user, the camera’s body heat, the e�ciency of the element, and the
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packaging method [13]. By these e↵ects, the measurement error of the smartphone thermal camera

is larger than the high-end one. The error range of FLIR ONE is ±3�C or ±5%, which is larger

than the range of human skin temperature changes in daily life. This is not enough for various

healthcare applications. For example, Abdelrahman [5] reported the nose temperature downs 1.49 °C
when participants read a literary piece accompanied by increasing the cognitive load.

To overcome this problem, we propose a dynamic o↵set correction method for thermal images of

faces captured by smartphone thermal cameras. We fully utilize the key feature of the thermal cameras:

the measurement fluctuation is mainly caused by the o↵set, which is common in all the pixels in a

single thermal image. In other words, we can measure the di↵erence of temperature correctly between

any pair of pixels in the same thermal image, even using the smartphone thermal camera. There is a

method that uses the temperature reference fixed in the environment. It is actually used in airports

etc. However, our method does not require any fixed devices and achieves accurate mobile thermal

measurement. Our method combines thermal images with a reliable absolute temperature obtained by

a wristband sensor based on the above feature. First, we obtain a thermal image including a reference

point (a wrist or a palm) of which absolute temperature is measured by a wearable device (a wristband

sensor). Second, we estimate the o↵set at the reference point by comparing the temperature measured

by the thermal camera and the wristband sensor. Finally, our method corrects temperature in the

thermal image by adding the o↵set to all the pixels.

Since we assume to measure the skin temperature, the reference point should be any point, which

has an emissivity as large as the face. We use the wristband sensor as an accurate thermometer, which

is widely used in daily life. Since the wristband sensor covers the measurement point, the thermal

camera cannot directly capture the temperature of the same point. Therefore, we define the reference

point as the point which has a high correlation with the point measured by the wristband sensor. In

this chapter, we use a palm or a wrist as the reference point and compare the performance through

the real experiment.

To evaluate our method, we conducted real experiments with eight subjects in an indoor air-

conditioned environment. The mean absolute error and the standard deviation of the face temperature

measurement error decrease by 21.0% and 68.3%, respectively, and Pearson’s correlation coe�cient

increase by 138%, highlighting the e↵ectiveness of our method. In addition, we show the combination

of our method and the correction by continuous averaging observations improves the evaluation values.

Finally, in order to evaluate the influence on our method due to environmental temperature change,

we conducted an additional experiment in the cool environment and reveal the limitation with respect

to the ambient temperature.

The main contributions of this paper are summarized as below:

• We propose an o↵set correction method for thermal images of faces measured by a smartphone

thermal camera by using a reference point combined with the specific feature of thermal cameras

without any fixed devices.
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• We compare the two reference points and discuss their features through the real data with 876

samples collected from eight subjects.

• We investigate the limitation of our method on ambient temperature and show it can be used in

the indoor air-conditioned environment.

3.2 Smartphone Thermal Camera Correction Method

3.2.1 Overview

Infrared detectors built in thermal cameras composed of a number of detector elements having di↵erent

signal responsibilities. To measure quantitatively, the nonuniformity is corrected using a method called

nonuniformity correction (NUC) [41]. Because of NUC, there is little di↵erence in the accuracy between

detector elements. Therefore, the error of a thermal image is a common o↵set over all pixels.

Figure 3.1: Overview of the o↵set correction

We correct the o↵set by setting a reference point in a thermal image. Figure 3.1 shows an overview

of our method. We assume a user wears a wristband sensor such as an E4 sensor to measure her wrist

skin temperature in real-time. The input is wrist temperature measured by the wristband, a visible

image, and a thermal image. We extract the skin temperature of body parts from the thermal image

by using image processing techniques. To do this, we apply pre-processing to match each pixel in the

visible image with the temperature in the thermal image. Based on linear regression, the reference

point temperature is estimated from the temperature of the wrist. By comparing the reference point

temperature measured by the wristband sensor and the thermal image, we estimate the o↵set. Finally,

we obtain the target point temperature by adding the o↵set to the thermal image.

We note that the limitation of wristband thermometers is low reliability when people sweat. How-

ever, our target applications include comfort level estimation for air conditioning and psychological

stress estimation in daily life. We assume most of these applications are used in air-conditioned indoor
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Figure 3.2: Position di↵erence of visible and thermal cameras

Figure 3.3: Result of overlapping

Figure 3.4: Image pre-processing steps

environments where people seldom sweat. Therefore, we are able to rely on a wristband thermometer

as a reference.

3.2.2 Image Pre-processing

As shown in Figure 3.2, the visible image and the thermal image have slightly di↵erent views due to the

di↵erence between camera positions. This means, for example, the palm pixels in the visible image are

not exactly equivalent to those in the thermal image. Therefore, if we recognize a target region (e.g., a

palm) in the visible image and then obtain the temperature distribution of the area from the thermal
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Figure 3.5: Palm region extraction

image, the distribution wrongly contains the temperature of di↵erent parts. Figure 3.3 shows that this

problem greatly a↵ects temperature extraction, especially for a small part such as a fingertip and a

nose. Also, the position di↵erence has a large impact on feature extraction from the distribution, such

as the minimum value and the maximum value. Therefore, we apply image pre-processing to match

each pixel in the visible image with its correct temperature in the thermal image.

In pre-processing, the key idea is that both images share almost the same edges. Figure 3.4 shows

the steps in the pre-processing. First, edge detection using the Canny algorithm [89] is performed on

both images. Smoothing based on a Gaussian filter is applied to both images after edge detection.

Finally, Normalized Cross Correlation [90] is used for template matching.

3.2.3 Reference Point Temperature Extraction

The temperature of any pixel in the visible image can be extracted from the thermal image after the

pre-processing. In this paper, we propose two reference points close to the wristband. One is a palm,

and the other is a wrist around the wristband. In the following sections, we describe the temperature

extraction for each reference point.

Palm Temperature Extraction

We extract a palm from a visible image based on skin color as shown in Figure 3.5 because it is di�cult

to detect hands from thermal images. This is because the skin is easily cooled by the atmosphere in

the cold environment, and it is assimilated into the background in the thermal image.

We use an object detector using OpenCV based on Haar-like feature [91] to detect a palm from

a visible image. The position of the palm can be obtained as a rectangle. Since we can obtain the

area, including other parts such as a background and clothing, we need to further extract the palm

region. For this purpose, we use an approach for human skin detection proposed by Tan et al. [92]. We

use the green value of RGB color space and the saturation value of HSV color space [93] to obtain a

squared histogram of color values in the face. We regard a pixel whose distance from the center of the

smoothed histogram [94] is within three times of the standard deviation as a skin pixel. We extract

the temperature of the skin pixel and calculate the average of the temperatures as a palm temperature
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Figure 3.6: Flow of wrist temperature extraction

Tpalm meas. The definition is given as

Tpalm meas =

P
(x,y)2P T (x, y)

|P | , (3.1)

where (x, y) is a coordinate in a visible image and P is a set of the extracted skin pixels. Also, T (x, y)

is the temperature of (x, y) and |X| is the number of elements in the set X. P is defined as

P = {(x, y)|(x, y) 2 Rhand \ Chand}, (3.2)

where Rhand is a set of coordinates in the detected palm rectangle and Chand is a set of coordinates

whose colors are regarded as skin.

Wrist Temperature Extraction

We extract a wrist from a visible image based on the wristband color. Di↵erent from the palm detector

implemented in OpenCV, we need to implement the wristband detector. In this paper, we manually

extracted rough positions of the wristband. However, we note that this may be easily achieved by

attaching a special marker or collecting training data. The flow of the wrist temperature extraction

is shown in Figure 3.6. First, to highlight the wristband, we conduct threshold processing based on

the hue value from HSV color space. Next, we conduct edge detection, enclose the detected edges

in a rectangle, and extract temperatures in the enclosed box from corresponding pixels of thermal

images. Finally, we extract wrist temperature Twrist meas by calculating the average of top 10% in the

temperature distribution. Twrist meas is defined as

Twrist meas =

P
(x,y)2W T (x, y)

|W | , (3.3)
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Figure 3.7: Face skin detection

where W is a set of the wrist coordinates which is defined as

W = {(x, y)|(x, y) 2 Rwrist \ Cwrist}. (3.4)

In the above equation, Rwrist is a set of coordinates in the enclosed box of the wristband and Cwrist is

a set of coordinates whose temperature is in the top 10%.

3.2.4 Reference Point Temperature Estimation

As we mentioned earlier, thermal cameras cannot capture the temperature of the point measured by

the wristband sensor since it is covered by the wristband sensor itself. Therefore, we need to correlate

the wristband temperature with the temperature of the reference points. For this purpose, we construct

regression models given as

y = a+ bx, (3.5)

where x is an explanatory variable which is a temperature reported by the wristband sensor, y is a

target variable as a temperature of the reference point (Test) which is a palm (Tpalm est) or a wrist

(Twrist est). a and b are parameters determined by training data.

3.2.5 Target Part Extraction

In this chapter, we select faces as the target part because the face temperature is used in many

applications [6, 8, 5, 24]. We note that our method can also be applied to other target parts. We

use the face detector of OpenCV based on Haar-like feature [91]. Since we can obtain a face position

as a rectangle, including a background, we need to extract the temperatures of facial skins from the

thermal image. For this purpose, we use an approach for human skin detection [92] to the visible image

and extract from the corresponding point in the thermal image. Figure 3.7 shows an example of skin

detection. We extract face temperature Tface by calculating the average of face pixels. The definition

is given by
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Table 3.1: Specification of FLIR T540 and FLIR ONE

FLIR T540 FLIR ONE 2
IR Sensor Resolution 464⇥ 348 160⇥ 120
Accuracy ±1�C or ±1% ±3�C or ±5%

(10–35�C) (0–35�C)
Thermal Sensitivity 0.04�C 0.15 °C

Tface =

P
(x,y)2F T (x, y)

|F | , (3.6)

where F is a set of coordinates in the detected face rectangle.

3.2.6 O↵set Correction

We obtain the corrected temperature Tcorr of the target by adding the o↵set C to the temperature

Ttarget of the target in the thermal image as below.

Tcorr = Ttarget + C

C = Test � Tmeas.

(3.7)

The o↵set C is calculated for the reference point (either a palm or a wrist) by subtracting the temper-

ature Tmeas measured by the thermal camera from the temperature Test estimated by the regression.

Namely, Test is either Tpalm est or Twrist est and Tmeas is either Tpalm meas or Twrist meas.

3.3 Evaluation

3.3.1 Evaluation Settings

For evaluation, we used FLIR ONE 2 and an E4 wristband as a smartphone thermal camera and a

wristband sensor, respectively. We also used a high-end thermal camera, FLIR T540, for the ground

truth. The specifications of FLIR T540 and FLIR ONE 2 are shown in Table 3.1. The smartphone

thermography has a lower resolution and accuracy than the high-end one, but both of them have small

thermal sensitivity, and thermal di↵erences can be accurately measured. E4 wristband measures the

temperature at the sampling rate of 4 Hz. We use the mean temperature per minute for the evaluation.

The accuracy of the temperature sensor is 0.2 °C within 36�39 °C and its thermal sensitivity is 0.02 °C.
It is accurate enough to calculate a reference point temperature.

To evaluate our method in detail, we conducted two experiments at di↵erent ambient temperatures.

All subjects gave their informed consent for inclusion before they participated in the study. The study

was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by

the Ethics Committee of Graduate School of Information Science and Technology, Osaka University
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(201811). First, we collected the real data from eight male subjects aged the twenties for six hours. In

the experiment, we captured both visible and thermal images seven times with a ten-second interval

every 30 minutes. During the experiment, the subjects were asked to wear E4 wristbands and work as

usual in the laboratory. They sat in front of the thermal cameras with the palms of both hands facing

toward the cameras without any overlap. After removing some images which are incorrectly captured,

876 samples (i.e., pairs of the visible and thermal images) were collected in total. The maximum

and the minimum numbers of samples per subject are 105 and 77, respectively. The average room

temperature of the experiment was 26.18 °C and the standard deviation was 0.80 °C. The highest and

the lowest air temperatures in the room were 30.6 °C and 21.9 °C, respectively.
In addition, we conducted an experiment in a roughly controlled cool environment to evaluate the

influence on our method due to environmental temperature change. We used the same equipment as

the previous experiment and collected data from two subjects in their early twenties for 14 hours for

each subject over two days. Both of them participated in the previous experiment. We capture the

images seven times with a ten-second interval every 30 minutes. In total, we collected 448 samples.

The average temperature of the room was 17.16 °C and standard deviation was 1.14 °C.
Hereafter, we denote the former experiment as “lab” and the latter experiment as “cool.” We note

that the room temperature of the lab experiment is clearly warmer than the cool experiment.

3.3.2 Confirmation of Thermal Camera’s Feature

We found that thermal cameras are suitable for measuring the temperature di↵erence in the same

image, even if a low-cost smartphone thermal camera. To confirm it, we compare the temperature

di↵erence between the face and around wristband measured by the high-end thermal camera with the

35



24 26 28 30 32 34 36

24

26

28

30

32

34

36

Figure 3.10: Relation between temperature measured by wristband and palm temperature

same measurement by the smartphone thermal camera. Figure 3.8 illustrates the relation between them

in the lab experiment showing a high correlation coe�cient was 0.94. However, Figure 3.9 shows a low

correlation between the measurement by the high-end thermal camera and the smartphone thermal

camera. The correlation coe�cient was 0.21, which is totally di↵erent from the temperature di↵erence.

From the results, we see smartphone thermal cameras can still capture temperature di↵erences, which

is comparable with the high-end ones. We also note that the temperature di↵erence measured by

the smartphone thermal camera tends to be slightly higher than the high-end one. We describe it in

section 3.3.4.

3.3.3 Reference Point Temperature Estimation

We evaluated the performance of the temperature estimation of the reference points by linear regression.

The purpose of the experiments is to build models to estimate the reference point temperature from

the wristband temperature. Therefore, we used the thermal images captured by the high-end thermal

camera to collect the training data.

The regression functions are su�cient to understand the di↵erence temperature between palm/wrist

and wristband as shown in figure 3.10 and figure 3.11. Figure 3.10 and figure 3.11 show the relation

between the reference points’ temperature measured by the high-end thermal camera and the temper-

ature measured by the wristband in both experiments described in section 3.3.1. The palm is used as

a reference point in figure 3.10, and the wrist is used as a reference point in figure 3.11. The line on

the figures is the regression lines, and they also show the estimation formulas. The regression function

for estimating the palm temperature is given as

Tpalm est = �10.2505 + 1.2651 Twristband. (3.8)

The mean absolute error was 0.7598 °C.
On the other hand, the regression function for estimating the wrist temperature is given as

36



27 28 29 30 31 32 33 34 35 36

28

30

32

34

36

Figure 3.11: Relation between temperature measured by wristband and temperature around wristband

Baseline

Palm

Wrist

-14 -12 -10 -8 -6 -4 -2 0 2

Figure 3.12: Error distributions of face temperature

Twrist est = 12.1492 + 0.6437 Twristband. (3.9)

The mean absolute error was 0.3460 °C.
From the above results, we see that the wrist temperature can be estimated more accurately than

the palm. This is natural because of the closeness to the point measured by the wristband sensor.

However, the errors of the two methods are much smaller than the error of the smartphone thermal

camera. It shows both are valid as reference points. We further investigate the performance of our

method based on the above regression functions in the next section.

3.3.4 Dynamic O↵set Correction

Figure 3.12 shows the error distributions of the baseline (without correction), our palm referenced

method, and our wrist referenced method. We see that the distribution approaches 0 in the palm

referenced method while the error dispersion becomes smaller in the wrist referenced method. Our

methods remove the large error in the baseline completely. The result is important to capture changes

and abnormalities of body temperature. It is because that applications need to be sensitive to capture
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Table 3.2: Result of dynamic o↵set correction

Method MAE SD CORR
Baseline 0.93 1.59 0.21
Palm referenced 0.73 0.72 0.44
Wrist referenced 0.79 0.50 0.49

the change of the body temperature between a person at di↵erent times. Also, when we capture a

single person in a thermal image for abnormality detection, such as fever screening, we have to capture

the body temperature without large error in an one-shot thermal image.

Also, Table 3.2 shows the mean absolute error (MAE), the standard deviation of the error (SD),

and the Pearson’s linear correlation coe�cient (CORR) of the baseline and our methods (including the

baseline). It is obvious that both of our methods reduce MAE and SD compared to the baseline. The

palm referenced method achieves 0.20 °C smaller MAE than the baseline, which is also 0.06 °C smaller

than the wrist referenced method. This is because the resolution of the smartphone thermal camera is

much smaller than the high-end one. We found that the average temperature in a small region (e.g.,

a wrist) tends to become higher when the resolution is high. The low resolution leads to di�culty in

capturing the correct temperature distribution in a small region. This is described in section 3.3.5 for

more detail. On the other hand, the wrist referenced method achieves a smaller SD than the other.

This is because the accuracy of the reference point temperature estimation for the wrist is higher than

the palm. Finally, the CORR of our methods is remarkably higher than the baseline. It means our

methods achieve higher linearity, which indicates the accuracy of sensor correction.

From the above results, the palm referenced method is suitable for accuracy, while the wrist refer-

enced method is suitable for high precision. In practice, accuracy may be more important for many

applications. For example, the applications for cognitive load estimation [5] and thermal comfort esti-

mation [6] need to capture temporal changes and di↵erences among di↵erent persons. However, if we

can mitigate the low-resolution e↵ect of the smartphone thermal camera, the wrist referenced method

may achieve better in terms of both accuracy and precision.

3.3.5 E↵ect of Ambient Air Temperature

The above experiments have shown the e↵ect of the reference point temperature di↵erence on the

performance. Table 3.3 shows the SD of the correction error in each environment. The SD is 0.22 °C
larger than the lab environment.

Figure 3.13(a) – Figure 3.13(d) show the distributions of the top 10% extraction of the wrist temper-

ature. Because the distribution of a smartphone thermal camera includes an o↵set error, the minimum

values of the distributions are aligned. Figure 3.13(a) shows the distribution captured by the high-end

thermal camera in the lab environment, and the line is the average (33.68 °C). Figure 3.13(b) shows

the distribution captured by the smartphone thermal camera in the lab environment, and the line is
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Table 3.3: Di↵erence in standard deviation due to environmental change

Method Lab Cool
Baseline 1.63 1.76
our method 0.50 0.88

the average (33.67 °C). Figure 3.13(c) shows the distribution captured by the high-end thermal camera

in the cool environment, and the line is the average (30.64 °C). Figure 3.13(d) shows the distribution

captured by the smartphone thermal camera in the cool environment, and the line is the average

(30.24 °C). In the warmer temperature environment, the two distributions show the same trends, and

there is the least di↵erence between the averages. However, in the cooler temperature environment,

the two distributions show di↵erent trends, and the average of the high-end one is higher than the

smartphone one. The reason is the di↵erence in resolution. With the decrease of the temperature,

the distribution range becomes larger. Because the low-resolution thermal cameras cannot capture

the detailed distribution, the temperature of the narrow region measured by the smartphone thermal

camera tends to be low.

Figure 3.14 shows the di↵erence between the temperature around the wristband and the face. The

vertical axis is measured by the smartphone one, and the horizontal axis is measured by the high-end

one. The di↵erence in the lab experiment tends to be larger than the di↵erence in the cool experiment.

We assume that we can capture a similar distribution of the face temperature distribution compared

with the wrist because the region of the face is much larger than the region around the wrist. Under

this assumption, the di↵erence in Figure 3.14 means the wrist temperature measured by a smartphone

camera is lower than the ground truth. Therefore, there is a limitation of the temperature variation of

the reference point in our method. The wristband temperature is the criterion of the environmental

temperature.

Figure 3.15 shows the relation between the number of data and the error of our method. The data

in the dataset used for calculating the SD are extracted by setting the lower limit of the temperature

measured by the wristband. When the cool data is mixed at 32.60 °C, the SD suddenly increases. The

wrist temperature border is shown in Figure 3.15 as the blue line. The mean room temperature when

the bordering temperature was recorded was 20.87 °C. For this reason, we consider that the wrist

temperature needs to be 32.60 °C or higher in order to utilize our method with a small error.

3.3.6 Performance in Continuous Measurement

To see the performance of our method in continuous measurement, we also conducted an experiment

in the laboratory environment. The subject is a male aged twenties. We continuously recorded the

images of a subject for 10 minutes.

Figure 3.16 shows the change of the temperature of the baseline, the ground truth, and our method
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Figure 3.13: High-end and smartphone thermal camera distribution in lab and cool environment.

using a palm temperature over time. Even if we remove some large fluctuations of the baseline as

outliers, there still remains a larger error than our method. This is because the error characteristic of

smartphone thermal cameras is unpredictable and sometimes biased due to environmental factors such

as the camera body temperature itself. Meanwhile, our method largely improves the measurement

results following the ground truth.

3.3.7 Comparison with Continuous Measurement Correction

The accuracy of smartphone thermal cameras may be mitigated by conducting multiple measurements

to remove outliers. To see the e↵ect of such simple outlier detection, we captured both visible and

thermal images seven times with a ten-second interval every 30 minutes. Then, we remove outliers

from continuous measurement by defining a suitable threshold. Figure 3.17 shows an example of the
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Figure 3.15: Relation between wristband measured temperature and SD of correction error

outlier removal process. The black line is the mean of the seven measurements, and the red lines are

the thresholds. The thresholds are defined as the temperatures which are higher or lower than the SD

of the seven continuous measurements.

Table 3.4 shows MAE, SD, and CORR for the dataset where the above outlier removal was applied.

We see that all the results are improved by the outlier removal. The MAE of the baseline is especially

improved by the outlier removal, which is slightly better than our method. However, the SD and CORR

of the wrist referenced method are much better than the baseline even with the outlier removal. This

result indicates that our method greatly improves the performance of smartphone thermal cameras
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Figure 3.16: Temperature change over time

Table 3.4: E↵ect of outlier removal

Method MAE SD CORR
Baseline 0.69 0.79 0.37
Palm referenced 0.71 0.79 0.46
Wrist referenced 0.76 0.47 0.56

especially in terms of the ability to follow the changes of the ground truth. Therefore, we have

confirmed that our method is also useful for continuous measurement.

3.4 Conclusion

In this chapter, we presented dynamic o↵set correction for a smartphone thermal camera using a

wristband sensor for low cost and accurate temperature monitoring. The design of our method is

based on the key feature that the measurement fluctuation of the thermal cameras is due to the o↵set,

which is common in all the pixels in a single thermal image. Our method estimates the temperature

of the reference point by regression from the wristband temperature measurement. We selected a

palm and a wrist for the reference points for comparison. Through the real experiment with 876

samples from eight subjects, we confirmed that our method remarkably improved the accuracy on

three evaluation metrics: the mean absolute error, the standard deviation of the error, and Pearson’s

linear correlation coe�cient. The limitation of our method depends on the variance of reference point

temperature distribution. The experiment in a cool environment shows the variance is larger when

the temperature measured by a wristband sensor is lower. The wrist temperature needs to be 32.60 °C
or higher in order to fully utilize our method. This result indicates our method is e↵ective in normal

indoor ambient temperature.
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(a) Raw continuous measurement

(b) After outlier removal

Figure 3.17: Example of removal defining thresholds

43



Chapter 4

Combining Time-Series and
Opportunistic Sensing for Dynamic
Thermal Sensation Estimation

4.1 Introduction

The estimation of a person’s thermal sensation enables the realization of an appropriate thermal

environment. However, it is challenging to always estimate their thermal sensation correctly in indoor

environment. This is because a person’s thermal preference dynamically changes, owing to the spatial

non-uniformity of the environment or a change in the weather [95], [96]. They cause a fluctuation of a

person’s ideal air environment when a person moves to di↵erent spaces, such as di↵erent rooms in the

same building or di↵erent seats in the same room [95]. Therefore, the same air quality control does

not always provide the same environmental comfort. For these reasons, it is necessary to obtain an

individual’s dynamic thermal sensation to monitor the air-conditioned environment.

Many studies have been conducted to estimate thermal sensation. The American Society of Heating,

Refrigerating, and Air-Conditioning Engineers’ 7-point thermal scale [97] has been widely used as

the metrics of human thermal sensation; the seven levels range from -3 to +3 (Cold, Cool, Slightly

cool, Neutral, Slightly warm, Warm, Hot). The actual thermal sensation labeled by the occupant is

called the thermal sensation vote (TSV) using this metric. To estimate the TSV, many studies have

been conducted recently based on machine learning techniques using physiological data measured by

wearable sensors [16], [55]. In these studies, a chest strap sensor was used as the heart rate sensor

instead of a wristband sensor, owing to the limitation of measurement accuracy of the wristband

sensor. However, it is di�cult to introduce the chest strap sensor in a real-world setting, owing to the

user’s burden. Although it can continuously monitor users’ physiological data, a wristband sensor is

more preferable in daily use. However, heart rates measured by wristband sensors are less accurate

than chest heart rate monitors, which means estimation of thermal sensation by a wristband sensor
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is di�cult as reported in Ref.[16]. To solve the above problems, we combine a thermal camera with

a wristband sensor for thermal comfort estimation. Our method estimates user’s TSV based on his

physiological data and face temperature distribution by machine learning. Even if user’s thermal image

cannot be captured, estimation is performed using the wristband sensor. To enhance the accuracy,

we leverage the recent estimation results obtained by the combination of the thermal camera and the

wristband sensor. As a preliminary study, we collected data of wristband sensors and thermal cameras

from 15 male subjects for 128 days in di↵erent seasons in the laboratory environment, capturing 1,476

thermal images in total. We evaluated the e↵ectiveness of our thermal comfort estimation to reduce

energy consumption of ACs. From the result, we confirmed that our method can estimate thermal

comfort with F-measure of 0.85, allowing shifts to the neighboring classes.

As the latter part of this chapter, we focus on the TSV estimation in more realistic situation. A

study have been conducted to estimate the TSV by measuring the body surface temperature using a

thermal camera as a non-invasive sensor to obtain more detailed information [6]. In this study, the

body surface temperature around the face is measured by a thermal camera and added to the feature

set. Consequently, accurate estimation for a static environment has been achieved. However, this study

did not evaluate how people’s thermal sensation change in the transient environment. Furthermore,

in the studies [16], [20], [59], [58], [98] that address a dynamic environment, the dataset used for

evaluation has a temperature range as wide as 8� 10�C. In real air-conditioned environments, such

temperature change does not happen. Therefore, a method is required for TSV estimation in a dynamic

environment, which is more realistic.

However, because the change in physiological information in an air-conditioned environment is

small, the estimation is challenging. For this problem, we propose a TSV estimation method suitable

for a realistic environment using deep learning. The key idea is to combine time-series information with

opportunistic thermal images obtained by thermal cameras to capture a slight change of physiological

information. In the real-world setting, users may move around to di↵erent spaces. Under such a

situation, it is di�cult to continuously measure the environmental data, such as air temperature and

relative humidity, around the user. Therefore, our method uses only opportunistic environmental data

around the user measured by the environmental sensor attached with a thermal camera or a spot-type

HVAC system. Deep learning-based methods are known for the capability to extract information, which

is di�cult to design for humans. In our method, physiological time-series information measured by a

wristband sensor is combined with the temperature distribution of the face, measured by a thermal

camera, to reflect a slight physiological response to the current environment for the estimation of

the TSV. The method is based on the idea that the thermal sensation significantly correlates with

heat-loss from the skin surface in the dynamic environment [99]. To reflect the heat-loss in TSV

estimation, we input the time-series information from the wristband sensor. In this study, we assume

that a wristband sensor periodically measures physiological information, and the face temperature is

measured opportunistically by a thermal camera installed in the environment, such as on the door
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Figure 4.1: Environmental setting

or desk, as shown in Figure 4.1. When the thermal camera measures the temperature, our method

combines it with the physiological information obtained by the wristband sensor to estimate the TSV

based on machine learning. To combine the opportunistic and time-series features, we build our method

based on a deep transfer learning. The basic idea is as follows. First, we train the partial estimator

using time-series data only. Second, to combine the knowledge extracted from the time-series data with

the opportunistic data, our method transfers the partial network of the estimator for the time-series

data to the input of the latter combined TSV estimator. Finally, the transferred network is combined

with the opportunistic data as the input to the latter combined TSV estimator. The detail of the

model is described in Section 4.2.

For evaluation, we collected data from 21 subjects for spring, summer, autumn, and winter. In

total, we collected 1686 TSV inputs. We note that our study is conducted in a challenging environment

because most of the data are collected in an air-conditioned environment to investigate the potential

of improving human comfort in the real-world setting. Therefore, we exclude the data labeled as

discomfort from the collected data for the evaluation, which accounts for 0.8% of total reports of TSV.

As a result, most of the TSVs labeled by participants are 0 (Neutral). This makes the estimation more

challenging compared with the existing state-of-the-art studies, which divide the occupant’s thermal

state into comfort and discomfort [19], [20], [21]. Because such an imbalanced dataset is used, we also

propose a data balancing method for the time-series data in the regression problem to prevent biased

learning. As a result, the macro-averaged F1-score is improved by 5.8% compared with the baseline

estimation without considering the time-series information. Furthermore, we evaluate the length of

time required for the consideration of past physiological information and show that consideration of

the previous 10 minutes is e↵ective in TSV estimation. The main contributions of this study are

summarized below.

• We separately construct the estimator that uses the physiological information acquired as a

time-series and the estimator that combines the time-series information and opportunistically

measured information. The evaluation result shows that our method is more e↵ective than a
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Table 4.1: Features of a thermal camera used in machine learning

# Feature Description
f1 Tface Whole face temperature
f2 Tforehead Forehead temperature
f3 Tcheek r Right cheek temperature
f4 Tcheek l Left cheek temperature
f5 Tnose Nose tip temperature
f6 Tmouth Lips temperature
f7 Tmax Max value in facial pixel
f8 Tmin Min value in facial pixel
f9 Tvar Variance of facial pixel

baseline method.

• In a regression problem, we design a balancing method for an imbalanced dataset, including

time-series data. We demonstrate the e↵ectiveness of the method by evaluating its e↵ect on TSV

estimation performance.

• By changing the duration of the past physiological information used in our method, we reveal

the duration of the past time that should be considered in TSV estimation.

4.2 TSV Estimation Method

4.2.1 Reliability-based Combination of Thermal Camera and Wristband
Sensor

Our method estimates thermal comfort based on features measured by a thermal camera and a wrist-

band sensor by machine learning. We assume large rooms such as o�ces and schools and low-cost

thermal cameras are distributed in the environment. As low-cost thermal cameras, we assume thermal

cameras such as FLIR ONE [12] that can be attached to smartphones. Our method switches between

a combined model and a wrist-based model according to the availability of the thermal images as illus-

trated in Figure 4.1. The features extracted from the thermal images are shown in Table 4.1. Some of

them are used in Ref. [6] while the others are selected based on our analysis using our dataset. From

a thermal image, we extract skin temperatures of di↵erent facial parts by applying image processing

techniques. For the face detection, we use OpenCV face detector based on haar-like feature [91]. For

the detected bounding box of the face, we define the relative positions of each part as shown in Ta-

ble 4.2. Then, to precisely extract skin pixels in the thermal image, we overlay the visible image and

the thermal image as in our previous work [100] and apply a skin detection method [92] to the overlaid

image. Finally, we extract the features from the skin pixels.

The features obtained by a wristband sensor is shown in Table 4.3. We measure skin temperature

(WT), heart rate (HR), and electrodermal activity (EDA). To consider changes over time, we calculate
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Table 4.2: Rectangular calculation formula showing the position of each part of the face

Part x, y Width, Height
Forehead X + 7W/16, Y +H/4 W/8, H/8
Right cheek X +W/5, Y + 9H/16 W/6, H/4
Left cheek X + 19W/30, Y + 9H/16 W/6, H/4
Nose X + 7W/16, Y +H/2 W/8, H/8
Mouth X + 3W/8, Y + 3H/4 W/4, H/8

Table 4.3: Features of a wristband sensor used in machine learning

# Feature Description
f10 WT Wrist temperature
f11 � f13 WTmean nmin WT mean between

{1, 5, 10} minute
f14 � f16 WTdi↵ nmin WT di↵erence between WT

and {1, 5, 10} minute before
f17 HR Heart rate
f18 � f20 HRmean nmin HR mean between

{1, 5, 10} minute
f21 � f23 HRdi↵ nmin HR di↵erence between HR

and {1, 5, 10} minute before
f24 EDA Electrodermal activity
f25 � f27 EDAmean nmin EDA mean between

{1, 5, 10} minute
f28 � f30 EDAdi↵ nmin EDA di↵erence between EDA

and {1, 5, 10} minute before

the means in 1, 5, and 10 minutes and the di↵erence from 1, 5, and 10 minutes ago. The AC mode is

also used as a feature f31 representing heating (+1) or cooling (-1). When the thermal camera cannot

capture user’s face, we use a wrist-based model by using available features. To increase the accuracy,

our method also uses the latest estimation result with the thermal images considering the elapsed time

as a weight representing its reliability.

Cest(t) = a
t�tprevCprev +

�
1� a

t�tprev
�
Cwrist(t), (4.1)

where Cprev is the latest estimated TSV using all features at time tprev. Cwrist(t) is an estimated TSV

using the features without the thermal image at time t. In this paper, a is empirically set to 0.9.

4.2.2 Overview of TSVNet

We propose TSVNet that combines a wristband sensor and a thermal camera by deep learning-based

approach. An overview of TSVNet is shown in Figure 4.2. The values measured by the wristband sensor
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Figure 4.2: Overview of TSVNet

are used as time-series information on the physiological response to slight changes in the air-conditioned

environment. Furthermore, TSVNet occasionally captures the face temperature distribution using a

thermal camera. The face temperature distribution reflects the physiological response to the current

air-conditioned environment [6]. To combine the time-series information and current information, we

build multiple estimators based on deep learning and combine them to construct a combined estimator.

In the following, we construct an estimator based on time-series physiological information measured

by a wristband sensor and an estimator based on occasionally-measured physiological information and

environmental information. Finally, we describe a method to construct the combined estimator.

4.2.3 Preprocessing

Measurement with Wristband Sensor

We extract three types of time-series data from the wristband sensor. First, the heart rate Whr is

extracted as an index of discomfort. It is known that the heart rate increases in uncomfortable environ-

ments, such as hot or cold temperatures [16]. Second, we use the wrist temperatureWtemp because local

thermal sensation a↵ects the whole-body sensation, as mentioned in existing studies [101], [102], [103].

Third, we use electrodermal activityWeda, which is known as an index of sweating [104]. For estimation
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at time t, we use continuously measured physiological data from time t�N to t as follows:

W t
hr = {W t

hr, ...,W
t�N
hr }, (4.2)

W t
temp = {W t

temp, ...,W
t�N
temp}, (4.3)

W t
eda = {W t

eda, ...,W
t�N
eda }, (4.4)

where W t
X is the measured value of the physiological data X obtained by the wristband sensor at time

t. This information is the input to the estimator at time t. We use an average value for 1 minute as

the measured value at time t.

Measurement with Thermal Camera

We assume that a thermal camera captures the temperature distribution of the user’s face when

the user is in front of it. We note that most thermal cameras capture visible images and thermal

images. Therefore, we also assume that the user in the thermal image is identified by state-of-the-art

identification methods using visible images [105]. For the extraction of only the facial temperature

from the temperature distribution around the face, preprocessing is performed, as shown in Figure 4.3.

First, a mask image is generated from the visible image, extracting the facial skin surface. The mask

image is generated using a pixel-wise logical AND operation between the skin detection [92] and the

face detection using the haar-like feature [90]. The skin detection is based on eye detection, which

determines a pixel as the subject’s skin based on the color of pixels around the eyes. Therefore, as

mentioned in the literature [92], the method is robust to variations in illumination, background image,

camera characteristics, and ethnicity. Face detection is based on the haar-like feature implemented in

OpenCV [90]. Finally, only the facial temperature distribution is extracted from the thermal image by
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the generated mask image. Because di↵erent cameras capture the visible and thermal images, there is

a small shift between the positions of the subject in each image. For masking without the shift, it is

necessary to map each pixel in the visible image to one of the pixels in the thermal image. Therefore,

we apply an overlay method [106] based on the edges that typically appear in both images. Using the

above processes, we accurately extract the skin temperature distribution around the face.

As an input to the estimator, features are extracted from the masked temperature distribution.

As shown in Figure 4.4, we extract the temperature around the forehead, right cheek, left cheek,

nasal tip, and mouth. We also use the maximum, minimum, average, and variance of the facial

temperature distribution as statistical information. The respective values at time t are expressed as

T
t
fh, T

t
r chk, T

t
l chk, T

t
ns, T

t
mth, T

t
max, T

t
min, T

t
ave, and T

t
var, hereafter. Each temperature is calculated

as the average of the pixel values in each part defined by rectangles. We define the positions of the

rectangles as listed in Table 4.2. In the table, X,Y ,W , and H are the face’s horizontal coordinate,

vertical coordinate, horizontal width, and vertical width, respectively, and each coordinate is the upper

left vertex coordinate of the rectangle.

4.2.4 Building Combined Estimator

To combine the time-series and opportunistic information for estimation, we construct a combined

estimator based on transfer learning. The configuration of the combined estimator is shown in Fig-

ure 4.5. We apply standardization to all the features extracted by the sensors before they are input to

the estimator.

The structure of the time-series-based estimator TSpart is shown in the upper part of Figure 4.5.

The input data, which is acquired by the wristband sensor as time-series data, is defined as below:

W t = {W t
hr,W

t
temp,W

t
eda}. (4.5)

The estimator is configured using one LSTM layer and two fully connected (FC) layers. The number

of nodes is decided based on the number of features input to the model. Because the features input

to the LSTM layer is three time-series, an extremely large number of nodes may cause overfitting.

Our preliminary experiment found that the performance decreased when the number of nodes was
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Figure 4.5: Estimator configuration

more than 16 because of the overfitting. In other words, it was found that fewer nodes than 16 are not

powerful enough for the estimation. This means the network has not learned the relevant features in the

training data. In this work, the number of nodes is decreased as few as possible for the generalization

while maintaining the performance. Therefore, the number of LSTM output nodes is set to 16. For

the generalization of the model, the number of nodes is reduced as the layer becomes closer to the

output. For this reason, we set the number of the following nodes to eight. For consideration of the

nonlinearity, the ReLU function is used as the activation function for the LSTM layer’s output with

the dropout rate of 0.25. Dropout is one of the most e↵ective and most commonly used regularization

techniques for complex neural networks by randomly dropping out the nodes. Considering the trade-

o↵ between the generalization and fitting performance of the model, we determine the dropout rate is

0.25 for the whole model. The ReLU function is also used for the output of the fully connected layer.

The dropout rate to prevent overfitting is also 0.25. We note that our estimator outputs TSV Vt as a

numerical value by learning it as a regression problem. This is because training for classification does

not consider continuity of relations between features and target values.

The opportunistic features are directly input to the combined estimator. The inputs are acquired

by a wristband sensor, a thermal camera, and an environmental sensor. The data measured by the

wristband sensor is defined as

W 0t = {W t
hr,W

t
temp,W

t
eda}. (4.6)

Moreover, the feature based on the facial temperature measured by the thermal camera is defined as

T t = {T t
fh, T

t
r chk, T

t
l chk, T

t
ns, T

t
mth, T

t
max, T

t
min, T

t
ave, T

t
var}. (4.7)

In addition to the above physiological features, the room temperature A
t
temp and relative humidity

A
t
humid at time t are defined as an environmental feature:

At = {At
temp, A

t
humid}. (4.8)
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A hidden layer of 22 nodes is configured by connecting the first hidden layers of TSpart and the

opportunistic features. The combined estimator is retrained as a regression problem which consists of

four FC layers. The numbers of the nodes are also determined by the aforementioned idea and the

result of a preliminary experiment. As a result, the numbers of the first, second, and third layers’

output nodes are set to 16, 16, and 8, respectively. The ReLU function is used as the activation

function for the FC layer output, and the dropout rate is 0.25.

4.3 Oversampling Imbalanced Data for Regression

The dataset collected in this study is imbalanced, owing to many responses of Neutral, as described in

Section 4.4.4. If we train our estimator on such a dataset, it may be biased to output Neutral. In this

section, we propose a data balancing method for a regression problem, including time-series data.

In this study, we train each estimator as regression problems. Therefore, we use SMOGN [74],

which is a data balancing method for regression problems for oversampling opportunistic features.

SMOGN combines SMOTER [18] and data generation using Gaussian noise. SMOTER is a regression

extension of SMOTE [17], which is an oversampling method for classification. However, we cannot

apply SMOGN to our regression problem with the time-series input because SMOGN does not support

the generation of time-series data. Therefore, we conduct data balancing by combining SMOTER with

TS SMOTE [22], which is a time series data generation method for two-class classification.

The pseudocode of the main algorithm for data balancing is shown in Algorithm 1. First, based

on the SMOTER algorithm, the threshold tE of �(y) is determined to separate the data into major

and minor classes. �(y) is a function that shows the uniqueness of the target value y. A larger value

indicates a smaller number of samples. The data generation for minor classes is performed by dividing

the median of y into data that is smaller and larger than ỹ. The method for generating time-series

data is shown in Algorithm 2. The k-nearest neighbors of the minor class sample case are extracted

based on the distance calculated by dynamic time warping [107]. A new time-series dataset new is

generated by TS SMOTE for the neighbor n, randomly selected from the k-nearest neighbors. After

the target number of samples ng is generated by repeating the above steps, the new generated dataset

newCases is returned.

4.4 Evaluation

4.4.1 Evaluation Setting for Reliability-based TSV Estimation

We collected data using a wristband sensor E4 [10] and a thermal camera FLIR T540 [108] from

15 male subjects for 128 days through one year. The sensors embedded in the E4 wristband are

summarized in Table 4.4. We measure wristband’s features using the sensors at the frequency listed

in the table. We captured seven thermal images with a ten-second interval every 30 minutes and used

the mean of the seven images as a thermal image at that time. The subjects also recorded their TSV
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Algorithm 1 Main SMOTER algorithm

Input: D - A data set
tE - Threshold
%o,%u - Percentages of over- and under-sampling
k - Number of neighbors used in case generation

Output: Dnew - A generated data set
1: rareL ( {hx, yi 2 D : �(y) > tE ^ y < ỹ}
2: newCasesL ( GENSYNTHCASES(rareL,%o, k)
3: rareH ( {hx, yi 2 D : �(y) > tE ^ y > ỹ}
4: newCasesH ( GENSYNTHCASES(rareH,%o, k)
5: newCases ( newCasesL [ newCasesH

6: nrNorm ( %u of |newCases|
7: normCases ( sample of nrNorm case 2 D \ {rareL [ rareH}
8: return newCases [ normCases

Table 4.4: Sensors on E4 wristband

Sensor Frequency
Photoplethysmogram [bpm] 64Hz
Electrodermal activity [µS] 4Hz
Skin temperature [°C] 4Hz

Table 4.5: The number of reported values for each class

Class Number of reports
-3 (cold) 11
-2 (cool) 43
-1 (slightly cool) 185
0 (neutral) 919
1 (slightly warm) 257
2 (warm) 55
3 (hot) 6

and comfort (Yes/No) every 30 minutes. After removing some samples with missing data, we collected

1,476 samples of thermal images with TSV labels in total. Table 4.5 shows the number of reported

values for each class. The uncomfortable label is only reported in the extreme conditions (i.e. +3

and -3). To avoid over-fitting due to unbalanced samples, we apply SMOTE algorithm after removing

classes +3 and -3 because the numbers of samples of these two classes were extremely small compared

with the other classes.

We selected Logistic Regression (LR), Support Vector Machine (SVM), k-Nearest Neighbor (KNN),

and Random Forest (RF) for machine learning algorithms. The evaluation is performed by leave-one-

person-out cross validation which does not use the data of the target subject for the training. We use

precision and recall for evaluation metrics in the following experiments.
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Algorithm 2 Generating synthetic cases

Input: D - A dataset
%o - Percentages of oversampling
k - Number of neighbors used in case generation

Output: Dgen - Generated new cases
1: newCases ( {}
2: ng ( %o/100
3: for all case 2 D do

4: nns ( KNN(k, case,D \ {case})
5: for i ( 1 to ng do

6: n ( randomly choose one of the nns

7: ↵ ( randomly choose in [0, 1]
8: new[y] ( min(case[y], n[y]) + ↵|case[y], n[y]|
9: for all f 2 features do

10: pairs ( DTW(case[f ], n[f ])
11: for t ( 1 to |pairs| do
12: (tnew, vnew) ( TIMEPOINT(pairs[t]case, pairs[t]n, case[f ], n[f ],↵)
13: new[f, tnew] ( vnew

14: end for

15: end for

16: newCases ( newCases [ {new}
17: end for

18: end for

19: return newCases

20: function TIMEPOINT(ta, tb, tsa, tsb,↵)
21: tnew ( min(ta, tb) + (ta + tb)/2
22: vnew ( min(tsa[ta], tsb[tb]) + ↵|tsa[ta]� tsb[tb]|
23: return tnew, vnew

24: end function

4.4.2 Feature Comparison

First, we evaluated the e↵ect of di↵erent features. Table 4.6, Table 4.7, and Table 4.8 show the

comparison between di↵erent feature sets and di↵erent machine learning algorithms. We compare

three feature sets: wristband-based features, thermal camera-based features, and all features. Overall,

RF performs better than the others in all methods although the precision and the recall of each method

are less than 0.5. This result implies the estimation of TSV is challenging due to its subjective aspect.

However, it is still acceptable even if the classification results are shifted to the neighboring classes

in terms of the detection of overuse of electricity. For example, even if a warm state is classified as

slightly warm, it is still an underestimate when the AC is heating. This means both cases are the

states of energy overuse where the AC setting can be controlled to reduce energy consumption in

winter. Therefore, such shifts of classification results are not critical.

From this point of view, we compared the three feature sets by allowing classification shifts to the

neighboring classes. From the results shown in Tables 4.9,4.10, 4.11, we see RF performs well without
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Table 4.6: Estimation result using fea-
tures from wristband sensor

Method Precision Recall
LR 0.22 0.30
SVM 0.24 0.30
KNN 0.21 0.23
RF 0.25 0.32

Table 4.7: Estimation result using fea-
tures from thermal camera

Method Precision Recall
LR 0.29 0.42
SVM 0.32 0.41
KNN 0.31 0.37
RF 0.32 0.41

Table 4.8: Estimation result using all features

Method Precision Recall
LR 0.30 0.43
SVM 0.32 0.41
KNN 0.31 0.38
RF 0.33 0.46

Table 4.9: Estimation result using fea-
tures from wristband sensor allowing
shifts to the neighboring classes

Method Precision Recall
LR 0.68 0.75
SVM 0.67 0.71
KNN 0.65 0.66
RF 0.73 0.73

Table 4.10: Estimation result using
features from thermal camera allowing
shifts to the neighboring classes

Method Precision Recall
LR 0.75 0.79
SVM 0.75 0.78
KNN 0.76 0.81
RF 0.78 0.82

Table 4.11: Estimation result using all features al-
lowing shifts to the neighboring classes

Method Precision Recall
LR 0.75 0.78
SVM 0.76 0.84
KNN 0.76 0.82
RF 0.80 0.86
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Table 4.12: Precision and recall for detection of energy overuse

Method Precision Recall
Our method 0.79 0.92
Wristband only 0.44 0.88

Table 4.13: Confusion matrix using com-
bined model

Predicted
+2 +1 0 -1 -2

+2 4 5 3 0 1
+1 9 21 15 6 0

Actual 0 12 49 93 14 1
-1 3 3 20 1 0
-2 0 0 1 1 0

Table 4.14: Confusion matrix using
wristband-based model

Predicted
+2 +1 0 -1 -2

+2 2 6 5 0 0
+1 22 7 19 3 0

Actual 0 33 26 106 4 0
-1 3 2 20 2 0
-2 0 0 2 0 0

thermal images in terms of F-measure (LR: 0.71, RF: 0.73). Also, RF performs well when we use

a thermal camera only. In addition, the precision and the recall become better with the fusion of

thermal images. Therefore, we have confirmed the e↵ectiveness of combining the wristband sensor and

the thermal camera.

4.4.3 E↵ect of Past Estimation Results

To see the e↵ect of our method considering past estimation results, we compared our method with

the wristband-based method which uses wristband features only. We collected test data on a day in

winter from eight males. We collected a thermal image every 30 minutes for each subject and TSV

labels every 10 minutes.

Figure 4.13 and Figure 4.14 show the confusion matrix of the estimation result using combined

medel and wristband-based model, respectively. Also, Table 4.12 shows the average precision and

recall. From the result, we see that our method achieves precision of 0.79 and recall of 0.92 by

combining the wristband sensor and the thermal camera. From the above result, we confirmed the

potential of our method to detect the overuse of electricity.

4.4.4 Evaluation Settings for TSVNet

We conducted experiments in two scenarios (scenario A and scenario B) to collect the TSVs in a

laboratory environment. The subject can report a TSV within the range of [-3.5, 3.5] by moving the

seek bar up and down on our smartphone application. In the following evaluation, we define the input

TSV in seven levels: [-3.5, -2.5] as Cold, (-2.5, -1.5] as Cool, (-1.5, -0.5] as Slightly cool, (-0.5, 0.5) as

Neutral, [0.5, 1.5) as Slightly warm, [1.5, 2.5) as Warm, and [2.5, 3.5] as Hot. In both scenarios, an

E4 wristband [10] was used as the wristband sensor, and a FLIR T540 [108] was used as the thermal

camera. For preprocessing, we compute the averages of these values every one minute to input the
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Table 4.15: Number of TSV reports in each scenario

TSV Scenario A Scenario B
-3 (Cold) 11 0
-2 (Cool) 42 24
-1 (Slightly cool) 193 88
0 (Neutral) 766 249
1 (Slightly warm) 196 71
2 (Warm) 37 6
3 (Hot) 3 0

Figure 4.6: Distribution of air temperature in each class

estimator. In scenarios A and B, we did not specify the clothing of the subjects. In scenario A, the

experiment was conducted in a static environment We collected TSV reports, thermal images, and

visible images every 30 minutes in an air-conditioned room. During the experiment, the wristband

sensor measured the heart rate, wrist temperature, and electrodermal activity. In this scenario, we

collected data over 98 days from 15 males over all four seasons and obtained 1248 TSVs. The number

of reported TSVs in each class is shown in Table 4.15. Neutral was the most frequently reported

response; 3 (Hot) and -3 (Cold) were hardly reported because we controlled the room environment, as

in daily life. In scenario B, the experiment was conducted in a dynamic environment, where the subject

moved between two rooms every 30 minutes–1 hour. There is a temperature di↵erence between 1�C

and 5�C between them. In this scenario, we collected TSV reports, thermal images, and visible images

every 10 minutes. For this experiment, data were collected over 25 days, including 438 TSV reports

from ten males and two females. The number of TSVs in each class is also shown in Table 4.15. In

this experiment, we assumed the actual environment with a slight temperature di↵erence; therefore, 3

(Hot) and -3 (Cold) were not reported.

58



In total, we collected data for 123 days from 21 subjects. Out of 21 subjects, 6 participated in both

scenarios. Each subject participated in data collection for 2–12 days. Figure 4.6 shows the relationship

between the TSV and room temperature collected during the experiment. Because the numbers of Hot

and Cold reports were small, we merged Hot (Cold) into the reports of Warm (Cool). As shown in

Figure 4.6, the higher the room temperature, the more the TSV tends to approach Warm. However,

the same room temperature may cause di↵erent reports, which makes TSV estimation di�cult.

To confirm that our method estimates TSV without a bias to Neutral, which is most frequently

reported, we evaluate our estimation as a classification problem by separating numerical TSVs into

seven classes. However, because our dataset was collected in a realistic environment, the four extreme

sensations, i.e., Cold, Cool, Warm, and Hot, are hardly reported. Therefore, we treated grouped classes

into three categories, i.e., Cold, Cool, and Slightly Cool as Cool; Hot, Warm, and Slightly Warm as

Warm; and Neutral. The evaluation is performed using leave one group out cross-validation to assess

our method under the situation in which the target person’s data is not included in the training data.

We randomly divide the subjects into four groups. Then, three groups are used as the training data,

and the remaining group is used as the test data. The estimation performance was compared based

on the macro-averaged F1-score Fave of each of three classes of Warm, Neutral, and Cool. It was

calculated by the following formula based on the precision P (c) and recall R(c) of each class c.

Fave =

 
X

c2classes

2P (c)R(c)

P (c) +R(c)

!
/|classes|,

classes = {Warm,Neutral,Cool}.

(4.9)

In addition, we calculate mean absolute error (MAE) as an evaluation metric for numerical estimation.

For the following evaluation, we train the estimator ten times with a random selection of mini-batch

and calculate an average of them. The evaluation metrics are the average of them.

4.4.5 Feature Importance

First, to confirm the same trend for features collected in our air-conditioned environment to those

reported in existing literature [6, 16, 20], feature importance is calculated by inputting {W 0t
,T t

,At},
which are the features defined in Section 4.2.4, for estimation in a random forest. Figure 4.7 shows the

result of calculating the importance of each feature. This value is calculated relative to the impurity

that can be reduced by using a specific feature value when classifying the data. According to the

result, the most useful feature in TSV estimation is the air temperature Atemp. Additionally, the

cheek temperatures Tr chk and Tl chk, and the calculated average temperature Tave of the face are also

important. The wrist temperature Wtemp is the most important among the values measured by the

wristband sensor; however, the heart rate Whr is less critical. We consider that this is influenced by

the heart rate measurement accuracy of the wristband sensor, as reported in existing literature [16].
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Figure 4.7: Importance of each feature for TSV estimation

Figure 4.8: Relationship between lookback time and estimation performance

4.4.6 E↵ective Lookback Time for TSV Estimation

The physiological information measured by a wristband sensor for several minutes is used as a feature

value. We evaluate the length N of the time (lookback time) used as the input to the time-series

estimator TSpart. The estimation performance is shown in Figure 4.8, where the lookback time is

changed between 5–60 minutes. The result highlights the most e↵ective lookback time because the

performance increases if su�cient features are included to explain the current TSV for the overall

dataset.

The estimation performance improves as the lookback time increases to 10 minutes, and it is at its
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Table 4.16: Fave with or without data balancing

TSpart Our method
With balancing 0.383 0.581

Without balancing 0.300 0.462
%� 27.7 25.8

highest (Fave = 0.581, MAE = 0.461) when the lookback time is 10 minutes for the overall dataset.

The result shows that approximately 10 minutes of lookback on physiological information e↵ectively

enhance the estimation performance by reflecting the temporal transition of thermal sensation. We

note that the result is represented by the dataset, including the data collected in a static environment.

Therefore, positive impacts on Fave and MAE possibly become more significant when a user frequently

moves among rooms. On the other hand, we observed a drop in performance when the lookback time

was longer than 10 minutes. If we make the estimator network more complex (e.g., increasing the

number of nodes and adding layers), the performance can be increased. However, it exponentially

increases the computational cost, such as time and memory for both learning and estimation. To

mitigate an HVAC system’s burden, we should reduce such costs. In the following, the lookback time

is set to 10 minutes for evaluation.

4.4.7 E↵ect of Data Balancing

The time-series input dataset to TSpart is balanced by the method combining SMOTER and TS SMOTE,

as described in Section 4.3. In addition, SMOGN is applied to opportunistic features. In this section,

we evaluate how the data balancing a↵ects the estimation performance.

Table 4.16 shows a comparison of Fave with and without data balancing. %� indicates the rate

of Fave improvement, owing to data balancing. The estimation performance of TSpart is the result

that uses the partial feature extractor as an estimator. The result shows that the balancing method

remarkably increase Fave which are 27.7% and 25.8% for TSpart and our method, respectively. As

a result, it is observed that the balancing method works e↵ectively for the estimation performance

because Fave is improved in both cases.

4.4.8 E↵ect of Feature Combination

To evaluate how each feature works for the TSV estimation, we compare the estimation performance

of our method with two estimators TSpart and OPpart using di↵erent features. The performance of

TSpart indicates how only time-series features work for the estimation. In addition, to evaluate how

only opportunistic features work, we use the combined estimator without the output of TSpart. OPpart

uses opportunistic features only.

Table 4.17 and Table 4.18 show comparison of Fave and MAE, respectively. As shown in the

tables, our method shows the highest performance about Fave and MAE for static, dynamic, and
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Table 4.17: Comparison of TSV estimation Fave with feature selection

Method Static Dynamic All
Our method (Combined) 0.568 0.585 0.580

OPpart (Opportunistic) 0.539 0.540 0.552
TSpart (Time-series) 0.385 0.351 0.382

Table 4.18: Comparison of TSV estimation MAE with feature selection

Method Static Dynamic All
Our method (Combined) 0.472 0.431 0.461

OPpart (Opportunistic) 0.479 0.451 0.472
TSpart (Time-series) 0.547 0.599 0.561

overall dataset. The result also shows that only time-series features do not work well compared with

the opportunistic features. However, the combination of them increases the performance because our

method shows the highest performance for each metric, i.e., Fave and MAE. Therefore, the combination

of the time-series and opportunistic features works e↵ectively for TSV estimation.

4.4.9 Comparison with Existing Work

We implement the random forest-based method proposed in Ref. [20] for comparison with one of the

existing state-of-the-art method in dynamic environment as a baseline. As described in the litera-

ture [20], [59], random forest exhibits excellent performance as a machine learning method used for

thermal sensation estimation, particularly for small datasets. In this work, we assume the environ-

ment where we can measure time-series features by a wristband only. Therefore, the features input to

the baseline method are recent measurement from all sensors and time-series based features proposed

in Ref. [20] from wristband sensor. The time-series-based features are categorized into four di↵er-

ent classes. The first one is raw values of measurements, while the second one is derivatives of the

measurements. The third one is shapes of data streams, and the fourth is recent measurements. The

features related to raw values of the measurements contain the minimum, maximum, average, standard

deviation and median of the measurements in the 5-min window. The features related to the deriva-

tive include the minimum, maximum, average, standard deviation and median of the first derivative

of the data stream. The features to capture the shapes of the data streams include the coe�cients

obtained by fitting a first degree (2 coe�cients) and second degree (3 coe�cients) polynomials to the

measurements in the 5-min window. The features to capture recent measurements include the most

recent measurement value, average value of last 10s, and average of the first derivative for the last 10s.

This feature design is the same as Ref. [20].

Table 4.19 and Table 4.20 show the comparison of Fave and MAE, respectively. %� indicates the

percentage of improvement achieved by our method compared with the baseline method labeled as
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Table 4.19: Macro-averaged F1-score of TSV estimation

Method Static Dynamic All
Our method 0.568 0.585 0.580

RF 0.528 0.550 0.548
%� 7.0 6.4 5.8

Table 4.20: Mean absolute error of TSV estimation

Method Static Dynamic All
Our method 0.472 0.431 0.461

RF 0.508 0.471 0.498
%� -7.1 -8.5 -7.4

Table 4.21: F1-score of each class for overall dataset

Method Warm Neutral Cool
Our method 0.344 0.775 0.623

RF 0.344 0.707 0.593
%� 0.0 9.6 5.1

RF. As a result of the evaluation, for RF, Fave for the static, dynamic, and overall dataset were 0.528,

0.550, and 0.548, respectively, and MAE for the static, dynamic, and overall dataset were 0.508, 0.471,

and 0.498, respectively. For our method, Fave for the static, dynamic, and overall dataset were 0.568,

0.585, and 0.580, respectively, and MAE for the static, dynamic, and overall dataset were 0.472, 0.431,

and 0.461, respectively. Given that our method outperformed RF, the deep-learning-based approach

to extract the time-series information improved the TSV estimation performance for all cases.

However, Table 4.21, which shows the F1-score of our method and RF for the estimation of each

class, indicates that the classification of Warm and Neutral is more ambiguous than Cool and Neutral,

even when using our method. One of the reasons is that the electrodermal activity used as an index

of sweating did not work for the classification. This is because the sweating does not typically occur

much during the actual daily Warm state, as shown in Figure 4.9. Therefore, it is suggested that

the detection of sweating by the electrodermal activity is not su�cient to estimate the Warm state

in daily life. Moreover, as observed from the distribution of the temperature on the right cheek

in each class (see Figure 4.10), the body surface temperature drops significantly in the Cool state.

However, in the Warm state, the body surface temperature did not rise considerably from Neutral.

Therefore, the accurate classification between Neutral and Warm is challenging when only sweating

and body surface temperature are considered. To address this limitation, we will collect more data to

construct a personal estimation model that reflects the preference of each subject, such as clothes and

temperature.
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Figure 4.9: Distribution of electrodermal activity in each class

Figure 4.10: Distribution of right cheek’s temperature in each class

4.5 Discussion

The estimation performance mentioned in Section 4.4.9 is relatively low compared with existing studies

that address TSV classification [19], [20], [21], [58], [59]. However, we attempt TSV estimation under

the challenging environment in which extreme temperature is not included. Owing to the above reason,

the absolute error of our estimation result is high. However, one of our results exhibits the possibility

of improving estimation performance by our method in both states, i.e., static and dynamic.

As an alternative to mitigate the dataset imbalance, we may collect data from “controlled” realistic

environments that could occur in daily life. However, conducting experiments to collect physiological

data comprehensively in a controlled environment often arises ethical and legal problems. In addition,

it is di�cult to eliminate the risk of causing problems on health completely. In the case of collecting
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large amounts of training data, these constraints become a big issue to build an estimation model.

In this study, we tackle the issue by using data balancing for physiological data collected in a wild

environment.

Machine learning approaches are used to estimate a response variable, which can be estimated using

explanatory variables from the measurable data. The estimation may not work well due to personal

di↵erences and di↵erences that cannot be captured by the data used as explanatory variables. However,

the estimator performance can be improved by adding explanatory variables and fitting the estimator

to personal data. Although Ref. [109] and Ref. [110] show that the clothing level is an important factor

for person’s thermal sensation, we do not use the clothing level as a feature value. This is because we

focus on applicability of thermal sensation estimation to real-world setting. The estimation of clothing

level is another challenging task which increases system cost for additional sensing devices such as a

depth camera [111].

One of our future challenges is to construct a personal model to improve estimation performance.

Laftchiev et al. [112] proposed a weakly-supervised algorithm to learn the individual thermal comfort

preferences based on an autoencoding framework. Our method may work e↵ectively with such a model

which can learn personal preference. He et al. [113] proposed the use of mobile device batteries as

thermometers, which may be helpful in measuring the air temperature around the subject for more

accurate TSV estimation. Because we collected the TSV reports using a smartphone application,

the smartphone thermometer may be useful to collect personal training data without any additional

sensors.

4.6 Conclusion

In this chapter, we firstly investigated the e↵ectiveness of combining a thermal camera and a wristband

sensor for continuous and accurate thermal comfort estimation. Through the preliminary study using

real data, we confirmed that our method is e↵ective to detect the redundant use of air conditioning.

Secondly, we proposed TSVNet, which is based on deep learning, for TSV estimation. TSVNet com-

bines time-series data with opportunistic data to address a dynamic environment. We demonstrated

that the estimation performance improved in the dynamic environment by utilizing time-series data

measured by a wristband sensor. In addition, the thermal sensation measured in a real-world setting is

imbalanced with a neutral bias. To address this problem, we also proposed the data balancing method

for datasets that contain time-series data. The result indicated that the balancing method e↵ectively

extracted features. We also investigated the duration of time before the measurement that a↵ects

the current thermal sensation. The result showed that the previous 10 minutes is su�cient for the

estimation.
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Chapter 5

Physiological Data Balancing

5.1 Introduction

Machine learning is one of the most commonly used approaches for a wide variety of applications,

including healthcare. Many of the healthcare applications typically use time-series data such as heart

rate and body temperature [114, 115] to estimate psychological or physiological states of humans using

machine learning algorithms. For training estimators, data collection through real experiments is

essential. The challenge in data collection, especially in healthcare applications, is data imbalance,

i.e., the distribution of the dataset is non-uniform. This is natural because minor cases do not frequently

happen in the real world. Especially in thermal comfort estimation, various machine learning-based

estimation methods have been proposed by using physiological and environmental data collected in

real environment. Datasets used in such works are mostly imbalanced because hot/cold environments

rarely appear in an actual air-conditioned environment. The imbalanced dataset causes a problem that

the estimator tends to focus more on the normal samples, neglecting the rare samples. Researchers

have applied data balancing by augmenting the rare samples to mitigate the imbalances of such thermal

comfort datasets. The imbalanced data causes classifiers to be naturally biased towards the majority

class, leading to the performance degradation for important and interest minority samples [116, 17].

This is because standard machine learning methods usually seek the minimization of training errors.

We may be able to collect data in minor cases by designing experiment protocols carefully for some

researches. Nevertheless, such data collection is limited in controlled environments. Therefore, it is

di�cult to collect data in minor cases in uncontrolled environments for researches in the healthcare

domain.

In order to deal with the imbalanced datasets, several strategies have been developed. A data

preprocessing-based approach called data balancing [117] is one of the solutions. The data balancing

changes the data distributions to make the estimators focus on the samples, which are important for

the users. The data balancing is also a way of pre-processing the data to increase its size, diversity,

and robustness of models. Oversampling and undersampling are used for balancing the dataset by
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augmenting minor data and discarding major data, respectively. The former approach is applied based

on existing algorithms such as Synthetic Minority Oversampling Technique (SMOTE) [17]. SMOTE

augments the data in minor classes by interpolation for classification problems. We can apply them to

any existing machine learning algorithms because they adjusts the data distributions before machine

learning.

Chawla et al. [17] proposed SMOTE, which is a predominant data augmentation for data balancing.

They showed the advantages of this approach compared to other alternative sampling techniques

on several real-world problems by using several classification algorithms. It generates new minor

class samples by linear interpolation between neighboring original samples. However, in many real-

world applications, we have high-dimensional data that includes numerical and categorical variables,

which we cannot generate with a simple interpolation-based augmentation. Another approach for

data augmentation is known as generative models [76] based on deep learning such as Generative

Adversarial Networks (GANs) [77]. This is a learning-based approach which generates synthetic data

using a pre-trained generative model from real data. Conditional GANs (cGANs) [118] is a variant of

GANs, which generates data with a class label. For balancing a thermal comfort dataset, Quintana et

al. proposed GANs-based data balancing [119]. This method utilized conditional Wasserstein GAN-

gradient penalty (comfortGAN) to address the problem of the imbalanced thermal comfort dataset.

They showed GAN-based data balancing could augment the thermal comfort dataset to improve the

performance of an estimator. However, the class imbalance may cause biased generation for GANs

because balancing methods using GANs usually train their generators and discriminators from the

imbalanced datasets.

In the former part in this chapter, we propose a data balancing method for thermal comfort datasets

using comfortGAN with a weighted loss function to address this problem. The key idea is introducing

a weighted loss function based on the number of samples in each class while training comfortGAN.

We evaluate our method by using four thermal comfort datasets including three open datasets used in

Ref. [119]. We also use three evaluation metrics propoosed in Ref. [119], which are variability, diversity,

and accuracy to evaluate the performance of data balancing. The result shows that our approach helps

to improve the estimation of the thermal comfort, especially for a small dataset. Our contribution is

that we introduce the loss function considering the di↵erence among the numbers of samples in all

classes to avoid biased training towards major classes.

In the field of physiological sensing, estimations of human states such as thermal sensation using

machine learning often regard the target problems as classification problems for simplicity [16, 59].

However, to achieve estimations of human states with finer granularity, regression is more appropriate

than classification because regression estimates numerical values. Because regression problems output

continuous numerical values, data balancing algorithms for classification problems are not suitable for

regression problems. For data balancing in regression problems, some algorithms such as SMOTER [18]

were proposed based on SMOTE. SMOTER divides the distribution of the numerical target values
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Table 5.1: Summary of balancing methods

Method time-series target problem
SMOTE No classification
TS SMOTE Yes classification
SMOTER No regression
Proposed method Yes regression

into the major and minor values based on the relevance score of the target value. After that, it

applies undersampling for major cases and oversampling for minor cases. The oversampling strategy

is designed for numerical values based on SMOTE. It uses the weighted average between the target

values of the two minor cases based on the distance between them. Through the above steps, the

dataset for a regression problem is balanced. However, SMOTER does not consider time-series feature

values commonly used in psychological or physiological state estimation.

In this chapter, we secondly propose a data balancing method for regression with time-series feature

values based on SMOTER. In the proposed method, we generate relevance function using probabilistic

density function generated by kernel density estimation. This method does not assume the distribu-

tion of the response variable. Therefore, it does not require the parameter tuning by the user. To

consider the temporal dependency of time-series data, we extend a distance function. To define the

distance between time-series samples, we use Dynamic Time Warping (DTW) distance as used in

TS SMOTE [22]. TS SMOTE is designed to extend SMOTE to time-series data. Our method inter-

polates synthetic time-series using the weighted average and the DTW distance. Table 5.1 summarizes

the di↵erence between our method and other balancing methods in terms of the capability to deal with

time-series features and target problem types. As far as we know, our method is the first to achieve

data balancing for regression problems with time-series feature values.

For evaluation, we apply our method to two imbalanced datasets with time-series feature values.

The first dataset is the thermal sensation dataset, which consists of time-series physiological data

measured by a wristband sensor as a feature value and thermal sensation vote (TSV) as a target value.

The second dataset is the core body temperature dataset. The core body temperature is measured by a

tympanic temperature sensor during exercise. The feature values are measured by a wristband sensor,

a chest strap sensor, and an environmental sensor. The results show that our time-series augmentation

improves the performance of regression models for minor cases with a little decline in the mean average

error.
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Figure 5.1: Architecture of generator
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Figure 5.2: Architecture of discriminator

5.2 Proposed Method

5.2.1 Weighted comfortGAN

Weighted comfortGAN uses the original comfortGAN architecture to augment the thermal comfort

dataset. The architecture is based on cGANs, which is a variant of GANs. The generation and dis-

crimination of samples by cGANs are conditioned on the class label. The generator and discriminator

architectures are summarized in Figure 5.1 and Figure 5.2, respectively.

For the generator, we use five blocks. This block consists of three layers, i.e., a fully connected

layer, a batch normalization layer, and a Rectified Linear Units (ReLU) layer. The numbers of nodes

per layer are 128, 256, 128, 64, and 32 from the first to the last layer. After these blocks, a fully

connected layer with ReLU is used to generate the data. For the discriminator, we use five blocks.

This block consists of three layers, i.e., a fully connected layer, a dropout layer whose dropout rate is

0.5, and a leaky ReLU layer with a slope of 0.2. After these blocks, a fully connected layer is used to

output the label, i.e., real or fake.

The loss function of the original comfortGAN is based on the idea of Wasserstein GAN-gradient

penalty (WGAN-GP). WGAN-GP was proposed to facilitate training convergence and stability com-

pared to GANs. We modify the loss function of the discriminator (Ld) with the weight considering
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the number of samples in each class as follows.

Ld = E
x̃⇠Pg

[D(x̃)W (x)]� E
x̃⇠Pr

[D(x)W (x)] + � E
x̂⇠Px̂

[(k rD(x̂)W (x) k2 � 1)2], (5.1)

where x̂ = ✏x+ (1� ✏)x̃, ✏ ⇠ U [0, 1]. D(x) is the output of the discriminator for input of x. The real

sample x and the fake sample x̃ by the generator is input to the discriminator.

Also, we define the loss function of the generator (Lg) using the weight as follows.

Lg = � E
x̃⇠Pg

[D(x̃)W (x)]. (5.2)

The weight function W (x) is based on the inverse ratio of the number of samples in each class in the

training data as follows.

W (x) =
|samples|

N(x)|classes| , (5.3)

where N(x) is the number of samples in class c(x 2 c). |samples| is the total number of samples in

the training data, and |classes| is the number of classes. In order to keep the expected value of the

loss the same as the original method, we determine the size of the weight. For example, weights for

three classes, i.e., warm, neutral, and cool, with the numbers of samples are 100, 400, and 100, are

determined as 2.0, 0.5, and 2.0, respectively.

5.2.2 Problem Definition of Time-series Augmentation for Regression

Imbalanced regression is a sub-class of regression problems [120]. In this setting, given a training

set D = {hxi, yii}Ni=1, the goal is to obtain a model m(x) that approximates an unknown regression

function Y = f(x) as defined in Ref. [120]. In the problem we address, x is a feature vector that

contains time-series data from Nf sensors as follows.

xi = {f1, . . . ,fNf } (5.4)

fj = {s1, . . . , sNs} (5.5)

where Nf is the number of time-series features, and T is the length of the sample of the time-series fj .

In this paper, Ns is the same constant value for any fj . This is because basic learning approaches for

time-series, such as Recurrent Neural Network (RNN), assume the same length of time-series as their

input.

5.2.3 Time-series Augmentation for Regression

We propose a data augmentation method based on the existing method proposed in Ref [121]. The

overview of the existing data balancing method proposed in Ref [121] is shown in Figure 5.3. The

input and output are an imbalanced original dataset with time-series features and a balanced dataset,

respectively. First, a relevance function �(y) is generated based on the distribution of the target value

y in the original dataset as proposed in SMOTER. The relevance function is automatically generated
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based on a probability density function (PDF) [122]. Second, the original distribution is separated

into minor data Dr and major data Dc by a user-defined threshold tE as follows.

Dr = {hx, yi 2 D|�(y) > tE} (5.6)

Dc = D \Dr (5.7)

After this separation, oversampling and undersampling are carried out on Dr and Dc, respectively.

Based on Dr, we apply time-series data generation. Figure 5.4 illustrates our key idea based

on SMOTER. A synthetic data is interpolated between two samples in Dr with a ratio ↵, which is

determined by the weighted average of them. The data generation in SMOTER needs to define a

distance of a pair of x. Our main contribution is combining the DTW distance with SMOTER. The

distance can be used for time-series interpolative generation conserving original time-series features,

such as shape [22]. As shown in Figure 5.4, synthetic points in the generated time-series are interpolated
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between a pair, which is given by DTW, using the ratio ↵. This existing method succeeded to generate

time-series data conserving the trend of the original data.

However, the generated data does not have natural distribution of the response variable y, i.e.,

thermal sensation. This is because the existing method generate the data based on the threshold

between the common samples and the rare samples. This threshold causes generating the imbalanced

distribution of the response variable y. Therefore, we propose the time-series augmentation method

with probabilistic extraction from rare samples. The proposed method extract a rare sample which is

selected as an original to mimic a synthetic sample, based on the probability calculated the relevance

function. In this extraction procedure, the probability to select a rarer sample is higher. In addition,

we propose the generate method of relevance function. The proposed method is a nonparametric

method that does not require parameter tuning for users without expertise in machine learning by not

assuming the distribution of the response variable y. It is based on the idea that the PDF can be

estimated without requiring parameters by assuming the a distribution for the kernel density estimation

(KDE) [123, 124], which is a PDF estimation method. It uses Scott’s rule whose fitness to real-world

data is empirically guaranteed. The PDF fdens is calculated from KDE as following formula.

fdens(x) =
1

nh

nX

i=0

K

✓
x� xi

h

◆
, (5.8)

where n is the number of samples in the training data, h is the band width, and K is the kernel

function. In the proposed method, we use following Gaussian function as the kernel function.

K(x) =
1p
2⇡

e
(�x2/2)

. (5.9)

The band width h is calculated from Scott’s rule [125], which do not need given parameters as follows.

h ⇡ 1.06un(�1/5)
, (5.10)

where u is the sample standard deviation of the response variable in the training data. The relevance

function is determined based on the distribution of the response variable calculated from KDE. The

generation procedure is summarized in Figure 5.5. The method for generating the relevance function fr

in the proposed method is shown in Algorithm 3. By standardizing the PDF fdens obtained by KDE,

a function fnorm is generated with a maximum value of 1 and a minimum value of 0. By subtracting

the function fnorm from one, we generate the relevance function fr, which returns values closer to 1 for

rare sample and closer to 0 for common sample. After the above procedures, we extract samples based

on the probability using the relevance function fr. The pseudocode of the main algorithm for data

augmentation is shown in Algorithm 4. We use the same procedure to generate time-series sample, i.e.,

Algorithm 2 after the extraction of the sample. The proposed method is summarized in Figure 5.6.
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Figure 5.5: Generation procedure of relevance function

Figure 5.6: Data generation procedure in proposed method
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Algorithm 3 Relevance function generation

Input: y - The list of the response variable
Output: fr - Relevance function

# Kernel density estimation with Scott’s rule
fdens ( KERNELDENSITYESTIMATION(y)
# Normalize density function
fnorm ( fdens/max(fdens)
# Generate relevance function as complementary standardized density function
fr ( 1� fnorm

return fr

5.3 Evaluation on Weighted comfortGAN

5.3.1 Dataset

We evaluate our method by using four datasets, including three open datasets used in Ref. [119].

The first dataset was collected in Ref. [126] from 77 participants in Pittsburgh. The experiment was

conducted for three hours in the controlled environment for one year. They collected environmental

and physiological data with thermal comfort subjective feedback, i.e., uncomfortably cold, slightly un-

comfortably cold, comfortable, slightly uncomfortably warm, and uncomfortably warm, via a mobile

application in the environment where the room temperature is fixed. The second dataset was collected

in Ref. [127] from 30 participants in an educational building in Singapore over two weeks. The sub-

jects reported their thermal preference in three classes, i.e., prefer warmer, comfortable, and prefer

cooler. The third dataset was collected in Ref. [128]. This dataset is from an open-source research

database, which was collected in the two decades of thermal comfort field studies around the world.

The subjects reported their thermal sensation in the American Society of Heating, Refrigerating, and

Air-Conditioning Engineers’ (ASHRAE) 7-point thermal scale [97]. The fourth dataset is used by

TSVNet [121]. This dataset was collected for a total of 123 days from 21 subjects in static and dy-

namic environments. The subjects also reported their thermal sensation by ASHRAE 7-point thermal

scale. Although opportunistic and time-series features are used in TSVNet, we use only the oppor-

tunistic features because we cannot directly input the time-series features to the proposed method. In

addition, we merged the hot/cold samples into the warm/cool samples because of the lack of the rare

samples (i.e. hot and cold). This is because there may be a case that the rare samples of the thermal

sensation are not included in the training data. The summary of the datasets is shown in Table 5.2.

5.3.2 Evaluation Metric

We evaluate our method with three metrics for data balancing proposed in Ref. [119]: (1) variability

of generated samples, (2) diversity of generated samples with respect to the training set, and (3)

machine learning e�cacy or quality of generated samples on classification tasks. The variability of

generated samples is defined as the di↵erence between generated samples randomly drawn from the
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Algorithm 4 Generating augmented dataset

Input: D - A dataset
%o - Percentages of oversampling
k - Number of neighbors used in case generation

Output: Dgen - Generated new cases
1: newCases ( {}
2: ng ( %o ⇤ size(D)/100
3: for i ( 1 to ng do

4: fr ( GENRELEVANCEFUNCTION(D [ newCases)
5: case ( EXTRACTCASE(D, fr)
6: nns ( KNN(k, case,D \ {case})
7: n ( randomly choose one of the nns

8: ↵ ( randomly choose in [0, 1]
9: new[y] ( min(case[y], n[y]) + ↵|case[y], n[y]|

10: for all f 2 features do
11: pairs ( DTW(case[f ], n[f ])
12: for t ( 1 to |pairs| do
13: (tnew, vnew) ( TIMEPOINT(pairs[t]case, pairs[t]n, case[f ], n[f ],↵)
14: new[f, tnew] ( vnew

15: end for

16: end for

17: newCases ( newCases [ {new}
18: end for

19: return newCases

20: function TIMEPOINT(ta, tb, tsa, tsb,↵)
21: tnew ( min(ta, tb) + (ta + tb)/2
22: vnew ( min(tsa[ta], tsb[tb]) + ↵|tsa[ta]� tsb[tb]|
23: return tnew, vnew

24: end function

generated dataset. The diversity of generated samples with respect to the training set is defined as

the di↵erence between closest pairs from generated and training set calculated as Euclidean distance.

The machine learning e�cacy or quality of generated samples on classification tasks is defined as

classification accuracy on a balanced mixture of generated and training samples datasets. It reflects

how the balancing method improves the estimator’s performance. In addition to them, we evaluate our

method with metrics generally used for classification tasks: (4) precision, (5) recall, and (6) F1-score.

They can evaluate how the classification is balanced because they are the averages of each metric

in each class. In addition to these metrics, we conducted further evaluation on the similarity of the

distributions between the original dataset and the generated dataset. We selected the air temperature

as the index of the similarity because the air temperature is the most e↵ective feature for the thermal

comfort estimator [20]. As used in Ref. [119], we train random forest classifier for the thermal comfort

estimation.

We compare the proposed method with three methods. The first one is a baseline method, which

estimates thermal sensation without any data balancing. The second one is a SMOTE-based data
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Table 5.2: Summary of datasets

Dataset # of samples # of features # of classes
Ref. [126] 2067 9 5
Ref. [127] 1474 10 3
Ref. [128] 66397 6 7
Ref. [121] 1688 14 5

Table 5.3: Result of variability

Model
Variability

[126] [127] [128] [121]
Baseline 25.15 146.25 18.39 24.65
SMOTE 48.36 167.29 17.89 22.66
comfortGAN 67.92 137.23 29.16 27.70
Proposed 61.72 139.55 15.86 19.51

Table 5.4: Result of diversity

Model
Diversity

[126] [127] [128] [121]
Baseline 3.45 5.14 0.49 3.34
SMOTE 3.13 5.90 0.61 3.91
comfortGAN 229.05 90.13 15.63 109.95
Proposed 232.83 90.53 17.72 111.13

balancing applied before the training of the estimator. The third one is comfortGAN, a state-of-the-

art method for learning-based data balancing to classify thermal comfort. After these pre-processing,

we randomly chose 70% samples for training of the random forest and the remaining 30% for the test.

5.3.3 Result

The results of the six metrics are summarized in Table 5.3, Table 5.4, Table 5.5, Table 5.6, Table 5.7,

and Table 5.8. As shown in Table 5.4 and Table 5.5 diversity and accuracy were improved or same

compared to comfortGAN. Especially, the proposed method increase diversity for all datasets com-

pare to comfortGAN. This result shows that the weighted loss function works to generate di↵erent

samples from the original dataset while conserving the original trend. This is our contribution, which

has the possibility to augment the sensing data and estimate how the human body responds in a

virtual situation, i.e., simulation between a building environment and occupants. However, variabil-

ity decreased in the three datasets compared to comfortGAN because the proposed method is more

converged throughout the balanced training as shown in Table 5.3. This variability reduction means

the generated dataset does not have a wider distribution than the dataset generated by comfortGAN.
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Table 5.5: Result of accuracy

Model
Accuracy

[126] [127] [128] [121]
Baseline 0.68 0.69 0.42 0.58
SMOTE 0.68 0.65 0.37 0.58
comfortGAN 0.67 0.69 0.42 0.63
Proposed 0.69 0.70 0.42 0.63

Table 5.6: Result of macro-averaged precision

Model
Precision

[126] [127] [128] [121]
Baseline 0.60 0.65 0.35 0.43
SMOTE 0.57 0.59 0.28 0.43
comfortGAN 0.58 0.65 0.35 0.45
Proposed 0.59 0.65 0.35 0.48

Table 5.7: Result of macro-averaged recall

Model
Recall

[126] [127] [128] [121]
Baseline 0.55 0.55 0.27 0.46
SMOTE 0.57 0.59 0.30 0.45
comfortGAN 0.55 0.55 0.27 0.38
Proposed 0.56 0.56 0.27 0.40

However, there is a trade-o↵ between the wide range of distribution of the training data and the accu-

racy of the estimator because completely di↵erent samples can disturb the convergence of the training.

Therefore, the generation of similar distribution is important for the convergence of the training.

In order to evaluate the similarity between the balanced dataset and the original dataset, we show

the mean and median of air temperature in each class in the original dataset, the balanced dataset by

comfortGAN, and the balanced dataset by the proposed method in Table 5.9 and Table 5.10. Both

methods were trained using the dataset of Ref. [121] in the table. We note that the neutral samples

after data balancing are same as the samples before the data balancing because new neutral samples

are not generated due to the majority. This result indicates that the proposed method can generate the

data conserving the distribution of the original dataset. This is because the training of the generator

may have been well converged owing to the weight function to focus on the rare samples. Therefore,

because of the convergence of the training, the variability slightly drops compared to comfortGAN.

For further evaluation, the distributions of the air temperature in each class generated by comfortGAN

and the proposed method are shown in Figure 5.7. Both methods were also trained using the dataset

of Ref. [121]. This result shows that the proposed method can generate air temperature data whose
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Table 5.8: Result of macro-averaged F1-score

Model
F1-score

[126] [127] [128] [121]
Baseline 0.56 0.58 0.29 0.44
SMOTE 0.57 0.59 0.29 0.44
comfortGAN 0.56 0.58 0.28 0.40
Proposed 0.57 0.59 0.29 0.41

Table 5.9: Mean of air temperature distribution in each class in the datasets

Thermal sensation
Mean of air temperature [�C]

Original dataset comfortGAN Proposed
Warm 27.93 26.02 (�1.91) 27.09 (�0.82)
Slightly warm 26.46 25.35 (�1.11) 26.69 (+0.23)
Neutral 25.58 25.58 (±0) 25.58 (±0)
Slightly cool 23.80 23.37 (�0.43) 24.14 (+0.34)
Cool 22.14 23.26 (+1.12) 23.13 (+0.99)

Table 5.10: Median of air temperature distribution in each class in the datasets

Thermal sensation
Median of air temperature [�C]

Original dataset comfortGAN Proposed
Warm 27.80 25.92 (�1.88) 27.08 (�0.72)
Slightly warm 26.00 25.13 (�0.87) 26.70 (+0.70)
Neutral 25.20 25.20 (±0) 25.20 (±0)
Slightly cool 24.05 23.39 (�0.66) 24.15 (+0.10)
Cool 21.70 23.11 (+1.41) 23.14 (+1.43)

distribution is more similar to the original dataset than comfortGAN. The result for all datasets

had similar trends, i.e., the proposed method generated more similar to the original dataset than

comfortGAN. However, we could not show all the results due to the limitation of the number of pages.

Table 5.6, Table 5.7, and Table 5.8 show the metrics for evaluation of classification performance

for the entire dataset. This result shows that the proposed method improves these metrics without

any degradation in the performance for all datasets. This result is important for the evaluation of

the performance of the classifier trained by the imbalanced dataset because these metrics reflect the

imbalance of the classification performance for both of the classes, i.e. neutral and extreme sensations.

This improvement shows the proposed method can generate rare samples conserving the distribution

of the original dataset for thermal comfort data balancing. There are some cases where the baseline

or SMOTE shows the best score, such as F1-score for the dataset of Ref. [121]. In this case, their

accuracy is lower than the proposed method. This result means there is a trade-o↵ between the

accuracy and the macro-averaged F1-score. In terms of the trade-o↵, the proposed method achieves
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Figure 5.7: Distributions of air temperature in the datasets

better performance than the baseline. This is because the proposed method can generate data with

variability and diversity similar to the original dataset. This leads to the slight improvement of the

performance of the thermal comfort classification by the proposed method.

5.4 Evaluation on Time-series Augmentation for Regression

5.4.1 Dataset

The first dataset is a thermal sensation dataset collected from 21 subjects. The target value of the

dataset is Thermal Sensation Vote (TSV). The subjects reported TSV within the range of [-3.5, 3.5]

by moving the seek bar up and down on our smartphone application. The scale is called the American

Society of Heating, Refrigerating, and Air-Conditioning Engineers’ seven-point thermal scale [97],

which is widely used as the metrics of human thermal sensation; the seven levels range from -3 to +3

(Cold, Cool, Slightly cool, Neutral, Slightly warm, Warm, Hot). In total, we collected 1686 TSV inputs.

The distribution of the TSV inputs is shown in Figure 5.8. Red hatched areas in the figure highlight

the minor distribution. Because most of the data are collected in an air-conditioned environment,

most of the TSVs labeled by the subjects are +1 (Slightly warm), 0 (Neutral), or -1 (Slightly cool).
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Figure 5.8: Distribution of TSV Figure 5.9: Distribution of core body temperature

Three feature values are heart rate, skin temperature, and electrodermal activity collected by an E4

wristband sensor [10]. They are measured continuously as time-series data.

The second dataset is a core body temperature dataset collected from 13 subjects while exercising.

The target value is the core body temperature recorded by a cosinuss° C-Temp [129], which can

measure tympanic temperature. The feature values are measured by two physiological sensors and an

environmental sensor. The first one of the physiological sensors is WHS-3 [130], which is a wearable

heart rate sensor with a chest strap. We use heart rate and in-cloth temperature from WHS-3 as

feature values. The second one is the E4 wristband sensor as used in the TSV dataset. In addition

to the three feature values used in the TSV dataset, we also use acceleration from it. Also, we use

an environmental sensor to measure air temperature and relative humidity as time-series. In total,

eight features are input to an estimator. We collected 750 pairs of the core body temperature and

ten minutes of the eight time-series data through the experiment. The distribution of the core body

temperature is shown in Figure 5.9.

5.4.2 Evaluation Metric

We evaluate the proposed method with evaluation metrics based on precision Pr, recall Rr, and F-

measure Fr for regression problems as proposed in Ref. [131]. Intuitively, the metrics become larger

(i.e. better) when an estimator outputs closer values in rarer cases. The definition is given below.

Pr =

P
�(ŷi)>tE

�(ŷi)↵(ŷi, yi)P
�(ŷi)>tE

�(ŷ)
, (5.11)

Rr =

P
�(yi)>tE

�(yi)↵(ŷi, yi)P
�(yi)>tE

�(yi)
, (5.12)

Fr =
2PrRr

Pr +Rr
, (5.13)
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Figure 5.11: Core body temperature estimator

where yi and ŷi are an actual value and an estimated value by inputting xi to the estimator, respectively.

As defined in Ref. [131], the function ↵ is defined as follows.

↵(ŷi, yi) = I(L(ŷi, yi)  tL)(1� exp(
�k(L(ŷi, yi)� tL)2

tL
2 )), (5.14)

where I is an indicator function which is one if its argument is true and zero otherwise. tL is a threshold

defining an acceptable error within the domain a metric loss function L, e.g., the absolute deviation.

k is a positive number that determines the shape of the function.

5.4.3 Estimator Design

To estimate the numerical target value y, we construct a deep learning-based estimator for each dataset

using an LSTM layer. Figures 5.10 and 5.11 show estimators for the thermal sensation dataset and

core body temperature dataset, respectively. The shape of x is (Nf , Ns) as defined in Section 5.2.2.

The input x consists of three time-series data whose length Ns is ten.

5.4.4 Generation of Relevance Function

The result of the generation of relevance function is shown in Figure 5.12, Figure 5.13, Figure 5.14, and

Figure 5.15. The relevance function generated using the existing method is shown in Figure 5.12 and

Figure 5.12. As shown in these figures, the distributions of the response variable y are biased. This is

because the existing method generate samples by separation into rare class and common class. As a

result, the “common” case in the rare class is selected as the original sample for the generation with

higher probability. The dataset generated from the existing method probably causes biased estimation.

On the other hand, Figure 5.13 and Figure 5.13 show the result of the generation of relevance function

by the proposed method. These samples are generated until the size of the augmented dataset becomes

four times as large as the size of the original dataset. As shown in these figures, the relevance function

generated by the proposed method is not biased compare to the relevance function generated by the

existing method.
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Figure 5.12: Relevance function generated by existing method for TSV dataset

Figure 5.13: Relevance function generated by proposed method for TSV dataset

5.4.5 E↵ect of Data Balancing

We evaluate the proposed method through comparison with baseline, which is without any data bal-

ancing, and SMOTER-based time-series interpolation with Euclidean distance. The latter method

generates a time-series sample by interpolating a synthetic sample between corresponding samples in

original time-series data as shown in Figure 5.16. The figure shows an example of the time-series

generation by each method given two time-series samples. As illustrated in the figure, SMOTER fails

to inherit features of the original time-series samples such as the maximum and minimum values. On

the other hand, the proposed method generates a synthetic time-series sample with the features of the

original time-series samples such as the shape, maximum, and minimum values.

Table 5.11 and Table 5.12 show the evaluation results of the TSV dataset and the core temperature

dataset, respectively. The methods x2, x3, and x4 means the number of samples generated by the

augmentation method. For example, x2 means that the number of samples in the augmented dataset

is twice as many as the number of samples in the original dataset. We note that in addition to the

evaluation metrics defined in Section 5.4.2, we evaluate the mean absolute error (MAE). Generally,
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Figure 5.14: Relevance function generated by existing method for core body temperature
dataset

Figure 5.15: Relevance function generated by proposed method for core body temperature
dataset

MAE becomes low for the test data is biased when the estimator is also biased. Therefore, there is

a trade-o↵ between Fr and MAE when we evaluate the estimator using the imbalanced dataset. We

set the parameters for Table 5.11 as tE = 0.5 and k = 5 for the existing method, and tL = 1 for the

calculation of Fr. For Table 5.12, we set them as tE = 0.5, k = 5, and tL = 1. As shown in the table,

the baseline, which is an estimator trained using imbalanced dataset, result in low Fr for rare cases.

This result is similar to the imbalanced classification problem. The result of Fr shows that the baseline

method fails to estimate rare cases within the acceptable error. In addition, the result of SMOTER

with Euclidean distance showed lower improvement than the proposed method in Table 5.11. This

is because the time-series generation based on the DTW distance can generate time-series samples

close to the original time-series samples. As a result, the proposed method remarkably enhances the

estimator’s performance for rare cases with a little decline of the MAE compared with the baseline.

In Table 5.12, the result of the proposed method shows good trade-o↵ compared with the result of

the SMOTER. The proposed method’s MAE is improved from the baseline because the estimator can
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Figure 5.16: Example of time-series generation by proposed method

Table 5.11: Estimation result for TSV dataset

Method Baseline
SMOTER (Euclidean) Proposed (DTW)

Existing x2 x3 x4 Existing x2 x3 x4
Fr 0.00 0.00 0.11 0.14 0.25 0.00 0.12 0.25 0.25
MAE 0.49 0.50 0.59 0.69 0.72 0.49 0.58 0.66 0.71

Table 5.12: Estimation result for core temperature dataset

Method Baseline
SMOTER (Euclidean) Proposed (DTW)

Existing x2 x3 x4 Existing x2 x3 x4
Fr 0.00 0.57 0.57 0.53 0.53 0.57 0.58 0.61 0.62
MAE 0.42 0.50 0.47 0.47 0.47 0.49 0.45 0.44 0.46

estimate in a larger range than the baseline, which is overfitted to a common sample.

5.5 Conclusion

In this chapter, firstly, we proposed a data balancing method for thermal comfort datasets using

conditional Wasserstein GAN with a weighted loss function. We evaluated the performance of our data

balancing method using six metrics used in the existing work. The result shows our method enhanced

the performance of the classifier because it can generate rare samples conserving the distribution of

the original data for the balancing of the thermal comfort dataset. In addition, the result also shows

the weighted loss function for GANs improves the diversity of the generated dataset compare to GANs
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without the weighted loss function.

In the latter of this chapter, we proposed a data balancing method for regression datasets, including

physiological time-series data. We demonstrated that the estimation accuracy improved for rare cases

by balancing datasets, including time-series data measured by physiological sensors. The result indi-

cated that the balancing method helps the e↵ective extraction of physiological time-series features to

estimate numerical values. As a limitation, we need a further study on the applicability of our method.

TS SMOTE was proposed as a shape-preserving method to augment time-series. TS SMOTE works

well for acceleration time-series to detect epilepsy and falls. Our work applies TS SMOTE-based aug-

mentation for time-series of heart rate, body temperature, electrodermal activity, and acceleration to

estimate thermal sensation and core temperature. However, the applicability of TS SMOTE for other

tasks has not been shown. When we use TS SMOTE-based time-series augmentation, it is necessary

to observe how the augmented dataset a↵ects the estimator’s performance.
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Chapter 6

Conclusion

This dissertation has presented a novel approach to correct the fluctuation of the thermal camera’s

measurement, estimate the thermal sensation using transfer learning, and balance the dataset, includ-

ing time-series for regression. The primary goal of this dissertation is to realize a thermal sensation

estimation method by machine learning approaches. In this dissertation, three primary contributions

have been made. The three key steps to build the machine learning model for TSV estimation are

the physiological data collection, the selection and construction of the machine learning model, and

the training schemes to address imbalanced datasets. The data collection requires accurate sensing to

measure physiological data, especially by mobile devices. Another key step is the selection and con-

struction of the machine learning model. The optimization is also critical to build a machine learning

model to estimate thermal sensation using physiological data. The dataset collected in uncontrolled

environments is usually imbalanced. To deal with the imbalanced dataset is necessary to train the

estimator using the dataset collected in such an environment. This dissertation has elaborated on the

above three primary steps to achieve our goals as follows.

Firstly, we design and evaluate ThermalWrist, a dynamic o↵set correction for a smartphone thermal

camera using a wristband sensor for low cost and accurate temperature monitoring. The key idea is

that the measurement fluctuation of the thermal cameras is caused by the o↵set error common in all

the pixels in a single thermal image. ThermalWrist refers to the temperature to correct the o↵set

error. We selected a palm and a wrist for the reference points and evaluated them by comparing the

correction error. Through the real experiment with 876 samples from eight subjects, we confirmed

that ThermalWrist remarkably improves three evaluation metrics’ accuracy. The limitation of our

method depends on the variance of reference point temperature distribution. The experiment in a

cool environment shows the variance is larger when the temperature measured by a wristband sensor

is lower. The wrist temperature needs to be 32.60 °C or higher in order to utilize our method fully.

This result indicates our method is e↵ective in the usual indoor ambient temperature. The result also

shows that our method corrected large errors because our method corrected the o↵set error of a whole

thermal image. It is important when we use thermal cameras to capture the change and the abnormal
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detection of the body temperature of one-shot observation.

Secondly, we propose thermal sensation estimation using a thermal camera and a wristband sensor.

We combine the di↵erent estimation models by considering temporal decay of the accuracy to work

when a thermal camera can not capture the temperature distribution of the user’s face. Experimental

data was collected over a year from 15 subjects and was used to make it possible to estimate thermal

sensation in all seasons. Through the preliminary study, we confirmed that our method e↵ectively

detects the redundant use of air conditioning. After that, we propose TSVNet. This is a deep learning-

based approach to combine opportunistic data and time-series data. The key idea is to combine models

designed for opportunistic data and time-series data separately by transfer learning. The evaluation

result showed that the estimation performance improved in the dynamic environment by utilizing time-

series data measured by a wristband sensor. In addition, we also proposed the data balancing method

for datasets that contain time-series data. The result indicated that the balancing method e↵ectively

extracted features. We also investigated the duration of time before the measurement that a↵ects

the current thermal sensation. The result showed that the previous 10 minutes is su�cient for the

estimation. As the applicability of our method, the estimator’s performance is not enough to control

HVAC systems automatically without interactions from occupants. However, the improved estimator

will contribute to mitigate stress to occupants for a recommendation of HVAC control, cloth level, and

seat positions in o�ces.

Thirdly, we propose a data balancing method for thermal sensation datasets using conditional

Wasserstein GAN with a weighted loss function. We evaluated the performance of our data balancing

method using six metrics used in the existing work. The result shows our method enhanced the

classifier’s performance because it can generate rare samples conserving the distribution of the original

data for the balancing of the thermal sensation dataset. In addition, we proposed a data balancing

method for regression datasets, including physiological time-series data. We showed that the estimation

accuracy improved for rare cases when we used the balanced dataset. The result indicated that our

method helps the e↵ective augmentation of physiological time-series features to estimate numerical

values. The applicability of our method depends on TS SMOTE, which was proposed as a shape-

preserving method to augment time-series. It was shown that TS SMOTE works well for acceleration

time-series to detect epilepsy and falls in the original work. Our work applies TS SMOTE-based

augmentation for time-series of heart rate, body temperature, electrodermal activity, and acceleration.

Because the applicability of TS SMOTE for other tasks has not been shown, we need to observe how

the augmented dataset a↵ects the estimator’s performance before using the augmentation.

Through these contributions, an estimator of TSV is constructed based on a machine learning

approach. Our study leaves the potentials for further studies for TSV estimation using mobile devices

such as smartphone thermal cameras and wearable sensors. For instance, we expect the estimation

of TSV to be enhanced by precisely considering human body shape information, such as body mass

index and amount of clothes, such as a clo value. Our method can be combined to estimate such values
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based on image processing using visible cameras. The improvement of regression performance by data

balancing infers the performance of numerical value estimations is a↵ected by a response variable

distribution. Therefore, imbalanced regression performance in other domains can also be improved by

generating samples appropriately for each situation. Consequently, this dissertation has established

the foundation of the thermal sensation estimation method to enhance air control in buildings for all

humankind.
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