

Title	Lighting Analysis of Photometric Stereo for High-fidelity Shape Reconstruction
Author(s)	郭, 亨
Citation	大阪大学, 2022, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/88151
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (郭 亭)	
Title	Lighting Analysis of Photometric Stereo for High-fidelity Shape Reconstruction (高精細な3次元形状復元のための照明分析による照度差ステレオ法の高度化)
<p>High-fidelity 3D shape reconstruction aims to infer a scene's detailed geometry from one or several images, which is desired in various applications, including virtual reality (VR), digital heritage preservation (e-Heritage), image re-lighting, and re-texturing. Photometric stereo is known to be effective for detailed shape recovery. Given image observations captured from a fixed camera under varying illuminations, photometric stereo estimates the orientations of a surface, i.e., surface normals. However, classical photometric stereo techniques assume the lighting condition to be a single distant light with a calibrated lighting direction. Also, the image observations under varying illuminations are captured via multiple shots. The above lighting assumption requires a large space to place light sources sufficiently far away from a target scene, an additional effort for lighting direction calibration, a darkroom to capture images under single illumination, and a static target object during the capturing. It is important to develop photometric stereo methods with analyzing more practical lighting conditions as it enables applications including accurate shape estimation under the illumination of practical near LEDs, detailed shape recovery in the natural environment, and dynamic shape reconstruction. To achieve that, this thesis tackles three practical lighting conditions for photometric stereo: Anisotropic near-point light, uncalibrated natural light, and multispectral light.</p> <p>The first part of this thesis achieves photometric stereo under near point light, relaxing the infinitely distant light setting. Real-world point light sources (e.g., LEDs) have anisotropic radiant intensity distribution (RID), i.e., the radiant intensity is varying from emission angle. We propose a spherical harmonic-based RID model to represent the real-world anisotropic light emission, which shows high representation power for diverse RIDs. We further propose a self-calibrating near-light photometric stereo method that formulates a linear system to estimate the RID, surface normal, and depth simultaneously. By accurately modeling the near point light, we show our method outperforms existing approaches on surface shape recovery under practical near light illuminations.</p> <p>The second part of this thesis achieves photometric stereo under uncalibrated natural light, removing the requirement of the darkroom and light calibration. We take image observations under unknown natural illuminations and output the surface normal map. To achieve that, we introduce an equivalent directional lighting model to estimate the local surface normal up to an orthogonal ambiguity. Then we propose a graph-based patch merging method to solve the per-patch ambiguities. Compared to existing methods on uncalibrated natural illumination, we obtain more accurate results without requiring a fine initial guess of the target shape.</p> <p>The third part of this thesis considers the problem of single-shot shape recovery by photometric stereo under multispectral light, also called multispectral photometric stereo (MPS). It relaxes the requirement of multiple shots to stack images under varying illuminations, which assumes a target object to be static during the data capturing. In MPS, observations are stacked into different spectral bands of a single-shot multispectral image. In this way, MPS can recover shape from a single image and further achieve dynamic shape reconstruction from a multispectral video sequence. However, solving surface shape from MPS is known to be ill-posed. We show that such a problem can be made well-posed for surfaces with uniform chromaticity but spatially-varying albedos based on our proposed formulation. We further introduce linear bases extracted from a spectral reflectance database and formulate shape from MPS under spatially-varying chromaticities and albedos as a well-posed problem.</p>	

論文審査の結果の要旨及び担当者

氏名 (郭亭)		氏名
論文審査担当者	主査	教授
	副査	教授
	副査	准教授
	副査	教授

論文審査の結果の要旨

物体の三次元形状復元は、コンピュータビジョンにおける重要な基礎技術である。照度差ステレオ法は、測光学に基づく三次元形状復元手法の一つであり、同一視点下で光源環境を変化させながら対象物体を観察し、物体表面の陰影の変化から物体の三次元形状を推定する。観測画像のピクセルごとの形状情報を獲得できるため、高精細な三次元形状推定が可能であり、文化財などの三次元形状をデジタルデータとして保存するデジタル・アーカイブや、バーチャルリアリティ、ロボティクスなど様々なアプリケーションへの応用が期待されている。本論文では、従来の照度差ステレオにおいて見落とされていた照明条件に関する検討を深め、より実際的なシーンにおいても適用可能な照度差ステレオ法を提案している。本論文の主要な研究成果を要約すると以下の通りである。

1. 点光源が発する光は角度方向に不均一 (anisotropic) であるという実際的な側面を検討し、その不均一性をモデル化した上で自己較正する照度差ステレオ法を提案した。従来の照度差ステレオ法では、均一 (isotropic) な出射光を想定していたが、実際の装置ではその想定からの乖離が計測誤差として現れるという問題があった。本論文では、出射光分布を球面調和関数によってモデル化し、出射光分布と物体形状を同時推定する問題として位置づける新たな照度差ステレオ法を提案している。結果として、近接光源下における照度差ステレオ法の従来手法に比して、高精度な推定が可能になることが示された。
2. 環境光の情報が未知である未較正照度差ステレオ問題では、推定される法線に 3×3 行列による線形な曖昧性が残ることが知られている。この問題に対して、本論文では、局所領域における法線推定結果を統合するアプローチを提案し、さらに法線に関する可積分性を導入することで、元の線形な曖昧性がバイナリの曖昧性に縮退することを示した。結果として、既存の未較正照度差ステレオ法に比べて、曖昧性の自由度が低く、かつ高精度な推定が可能な手法が構築できた。
3. 照度差ステレオ法では、波長の多重化によりワンショットで形状を推定するアプローチが検討されてきた。既存の研究では、多様な反射率を含むシーンにおいては復元される三次元形状に曖昧性が残ることが指摘されており、有用性が高いとは言えなかった。これに対して、本研究ではシーン中の三点が同じ反射率を持つ場合には四方向からの光源を用いることにより（あるいは二点と五方向），この問題が曖昧性のない閉型解を持つことを示した。さらに、光源とカメラの分光特性が既知である場合には、従来では困難であった異なる色相と反射率を持つシーンにおいても、反射率の基底表現を導入することにより凸な問題としてこれを解くことができるることを示した。結果として、従来の多波長照度差ステレオ法よりも適用範囲が広く、かつ高精度な形状推定が実現できた。

以上のように、本論文は照度差ステレオ法の照明に関する検討を深めた先駆的な研究として、情報科学に寄与するところが大きい。よって本論文は博士（情報科学）の学位論文として価値のあるものと認める。