
Title Lighting Analysis of Photometric Stereo for
High-fidelity Shape Reconstruction

Author(s) 郭, 亨

Citation 大阪大学, 2022, 博士論文

Version Type VoR

URL https://doi.org/10.18910/88151

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



 
 
 
 
 
 
 
 
 
 
 

Lighting Analysis of Photometric Stereo for 
High-fidelity Shape Reconstruction 

 
 
 
 
 
 
 
 
 

Submitted to 
Graduate School of Information Science and Technology 

Osaka University 
 

January 2022 
 
 

Heng Guo 





To my parents.





List of Publications 
 
A. Journal Paper 

1. Heng Guo, Zhipeng Mo, Boxin Shi, Feng Lu, Sai Kit Yeung, Ping Tan, and 

Yasuyuki Matsushita: “Patch-based Uncalibrated Photometric Stereo under 

Natural Illumination,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence (TPAMI) (Sep. 2021). 

2. Heng Guo, Fumio Okura, Boxin Shi, Takuya Funatomi, Yasuhiro Mukaigawa, and 

Yasuyuki Matsushita: “Multispectral Photometric Stereo for Spatially-Varying 

Spectral Reflectances,” International Journal of Computer Vision (IJCV) (Minor 

Revision). 

3. Heng Guo, Shuaicheng Liu, Shuyuan Zhu, Heng Tao Shen, and Bing Zeng: “View-

consistent Meshflow for Stereoscopic Video Stabilization,” IEEE Transactions on 

Computational Imaging (TCI) (Aug. 2018). 

4. Heng Guo, Shuaicheng Liu, Tong He, Shuyuan Zhu, Bing Zeng, and Moncef 

Gabbouj: “Joint Video Stitching and Stabilization from Moving Cameras,” IEEE 

Transactions on Image Processing (TIP) (Sep. 2016). 

 

B. International Conference Papers 

1. Heng Guo, Fumio Okura, Boxin Shi, Takuya Funatomi, Yasuhiro Mukaigawa, 

and Yasuyuki Matsushita: “Multispectral Photometric Stereo for Spatially-

Varying Spectral Reflectances: A Well-posed Problem?” In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 

(Jun. 2021). 
 

2. Heng Guo, Shuaicheng Liu, Shuyuan Zhu, and Bing Zeng: “Joint Bundled 

Camera Paths for Stereoscopic Video Stabilization.” In Proceedings of IEEE 

International Conference on Image Processing (ICIP) (Sep. 2016)  

 

C. Domestic Conference Paper 

1. Heng Guo, Boxin Shi, Michael Waechter, Yasuyuki Matsushita: “Self-

calibrating Near-light Photometric Stereo under Anisotropic Light Emission,” 画

像の認識・理解シンポジウム (MIRU)(2020年 8月). 

D. Awards 

1. Heng Guo, Boxin Shi, Michael Waechter, Yasuyuki Matsushita: MIRU学生優

秀賞, 第 23回画像の認識・理解シンポジウム (MIRU)(2020年 8月) 

 

 





Acknowlegements

First, I would like to express my greatest gratitude to my supervisor, Prof. Yasuyuki

Matsushita, for his continuous support, thoughtful comments, and encouragement

throughout my PhD study. Prof. Yasuyuki Matsushita’s supervision helped me derive

ideas, schedule research plans, make presentations and write academic papers. During

the stressful period in 2020 when I had no research achievements, Prof. Matsushita

gave me full support and helped me walk through the difficulties. His wisdom and

kindness will always inspire me.

I am deeply grateful to Prof. Boxin Shi who introduces photometric stereo to

me. He is always enlightening and supportive throughout my Ph.D training, and his

insights and suggestions help me a lot in my research projects.

I was lucky to work with my collaborators, and would like to thank them for their

invaluable advice and help: Prof. Boxin Shi for all my three projects (Chapter 2,

Chapter 3, and Chapter 4); Dr. Michael Waechter for my first projects (Chapter 2);

Dr. Zhipeng Mo, Prof. Feng Lu, Prof. Sai-Kit Yeung, and Prof. Ping Tan for my second

projects (Chapter 3); Prof. Fumio Okura, Prof. Takuya Funatomi, and Prof. Yasuhiro

Mukaigawa for my third projects (Chapter 4);

I would like to show my sincere thanks to my colleagues and friends: Mr. Xu Cao,

Dr. Hiroaki Santo, Mr. Feiran Li, Dr. Zhipeng Mo, Dr. Guanying Chen, Mr. Zhuoyu

Yang, Mr. Kenji Enomoto for their infectious enthusiasm in helping me in both study-

ing and living. I really enjoy the collaborations and insightful discussions with them.

Besides, I would like to acknowledge Dr. Jinglei Shi, Mr. Junming Fan, Mr. Shihong

Liu, Mr. Shuhao Tao, Mr. AshiRiga, Mr. Junfeng Zhou for their accompanies and



viii

supports during my doctoral study.

I would like to express my gratitude to Ms. Mihoko Kaneda and the Graduate

School of Information Science and Technology officers for their support in my daily

life at Osaka University.

Last, I want to thank my parents and beloved one Dan Wang for their unconditional

love, support, and trust.



Abstract of thesis entitled

“Lighting Analysis of Photometric Stereo for High-fidelity

Shape Reconstruction”

Submitted by

Heng Guo

for the degree of Doctor of Information Science and Technology

at Osaka University

in December, 2021

High-fidelity 3D shape reconstruction aims to infer a scene’s detailed geometry

from one or several images, which is desired in various applications, including vir-

tual reality (VR), digital heritage preservation (e-Heritage), image re-lighting, and

re-texturing. Photometric stereo is known to be effective for detailed shape recovery.

Given image observations captured from a fixed camera under varying illuminations,

photometric stereo estimates the orientations of a surface, i.e., surface normals. How-

ever, classical photometric stereo techniques assume the lighting condition to be a

single distant light with a calibrated lighting direction. Also, the image observations

under varying illuminations are captured via multiple shots. The above lighting as-

sumption requires a large space to place light sources sufficiently far away from a

target scene, an additional effort for lighting direction calibration, a darkroom to cap-

ture images under single illumination, and a static target object during the capturing.

It is important to develop photometric stereo methods with analyzing more practi-

cal lighting conditions as it enables applications including accurate shape estimation

under the illumination of practical near LEDs, detailed shape recovery in the natural

environment, and dynamic shape reconstruction. To achieve that, this thesis tackles

three practical lighting conditions for photometric stereo: Anisotropic near-point light,

uncalibrated natural light, and multispectral light.

The first part of this thesis achieves photometric stereo under near point light,
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relaxing the infinitely distant light setting. Real-world point light sources (e.g. LEDs)

have anisotropic radiant intensity distribution (RID), i.e., the radiant intensity is

varying from emission angle. We propose a spherical harmonic-based RID model to

represent the real-world anisotropic light emission, which shows high representation

power for diverse RIDs. We further propose a self-calibrating near-light photometric

stereo method that formulates a linear system to estimate the RID, surface normal,

and depth simultaneously. By accurately modeling the near point light, we show our

method outperforms existing approaches on surface shape recovery under practical

near light illuminations.

The second part of this thesis achieves photometric stereo under uncalibrated nat-

ural light, removing the requirement of the darkroom and light calibration. We take

image observations under unknown natural illuminations and output the surface nor-

mal map. To achieve that, we introduce an equivalent directional lighting model to

estimate the local surface normal up to an orthogonal ambiguity. Then we propose

a graph-based patch merging method to solve the per-patch ambiguities. Compared

to existing methods on uncalibrated natural illumination, we obtain more accurate

results without requiring a fine initial guess of the target shape.

The third part of this thesis considers the problem of single-shot shape recovery

by photometric stereo under multispectral light, also called multispectral photometric

stereo (MPS). It relaxes the requirement of multiple shots to stack images under

varying illuminations, which assumes a target object to be static during the data

capturing. In MPS, observations are stacked into different spectral bands of a single-

shot multispectral image. In this way, MPS can recover shape from a single image and

further achieve dynamic shape reconstruction from a multispectral video sequence.

However, solving surface shape from MPS is known to be ill-posed. We show that

such a problem can be made well-posed for surfaces with uniform chromaticity but

spatially-varying albedos based on our proposed formulation. We further introduce

linear bases extracted from a spectral reflectance database and formulate shape from

MPS under spatially-varying chromaticities and albedos as a well-posed problem.
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Chapter 1

Introduction

1.1 Motivation

3D reconstruction from one or several 2D images is a fundamental inverse problem in

computer vision. The recoveries of the shape and reflectance of real objects enable

applications in a wide variety of fields. For example, virtual shopping has found success

across retail industries due to the COVID-19 pandemic. By extracting products’ 3D

shape and reflectance information, customs can access and choose goods online without

going to physical stores. On the other hand, a great number of cultural heritage and

arts have been in danger of destruction and extinguishment over the past years. With

3D reconstruction, valuable heritage and cultural relics can be preserved in digital

archives and passed down to the future generation.

There are roughly two categories of approaches to solve the 3D reconstruction.

Geometric-based methods such as structure from motion [4] and structure light [5] re-

cover multi-view coarse shape based on the triangulation of matching points between

images. On the other hand, photometric-based approaches such as shape from shad-

ing [6] and photometric stereo [7] give detailed single view shape based on the shading

variation. In this thesis, we focus on the technique of photometric stereo to achieve

high-fidelity 3D reconstruction.

As shown in Fig. 1.1, classical photometric stereo, originally proposed by Wood-
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⋮

[𝑰1, 𝒍1]

[𝑰2, 𝒍2]

[𝑰𝑓, 𝒍𝑓]

Photometric 

Stereo

Surface normal

Data capturing

Fig. 1.1 Given multiple images of a static object captured under different light direc-
tions, photometric stereo can estimate object’s surface normal map, which is visualized
by a pseudo color map.

ham [7] and Silver [8], captures image observations from a fixed camera under varying

lighting directions. Taking the image observations and the corresponding lighting di-

rections as input, photometric stereo aims at recovering the surface normal map of an

object. A surface normal is a unit vector that is perpendicular to the tangent plane to

the surface, encoding the detailed shape information of the surface. Conventionally,

surface normal map is visualized by a pseudo color map. As highlighted in the dashed

box of Fig. 1.1, we show the color mapping of surface normal vectors on a hemisphere.

Photometric stereo is effective for detailed shape reconstruction. However, the

light setting of photometric stereo is restrictive, limiting its application in real-world

scenarios. As shown in Table 1.1, classical photometric stereo [7, 8] assumes the

illumination to be distant light with uniform emission. The lighting direction and

intensity are assumed to be known via calibration. The image observations under

varying illuminations are captured via multiple shots at different timestamps. For

each image observation, the scene is assumed to contain a single illumination. These

lighting assumptions restrict photometric stereo to a laboratory environment, as shown

in Fig. 1.2(a). In the following, we will discuss the detail for each light assumption

and show how it affects photometric stereo to be applied in the wild environment.
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Table 1.1 Lighting analysis of photometric stereo (PS). The marker ✓ and × label
whether the lighting assumptions shown in the header are required or not in classical
photometric stereo [8] and each chapter of this thesis.

Method Distant light with Light calibration Multiple shots to Single
uniform emission Position/direction Intensity record varying lights illumination

Classical PS [8] ✓ ✓ ✓ ✓ ✓
Chapter 2a × ✓ × ✓ ✓
Chapter 3b ✓ × × ✓ ×
Chapter 4c ✓ ✓ × × ✓

a Photometric stereo under anisotropic near-point light
b Photometric stereo under uncalibrated natural light
c One-shot photometric stereo under multispectral light

Distant light with uniform emission The distant light model assumes the point

light source is infinitely far from the target scene so that the same lighting direction

and intensity illuminate all the scene points of a target surface. However, this can only

be approximately realized by finding a large space to place light sources sufficiently

far from a small target object (e.g. cat in Fig. 1.2(a)). In such a case, the irradiance

received by the surface could be low due to the light attenuation, increasing the noise

level of captured images. Besides, the uniform emission requires the point light source

equally emitting lights at varying emission angles, which is unpractical for real-world

LEDs.

Light calibration The lighting directions and intensities are assumed to be known

in classical photometric stereo. To calibrate the lighting direction and intensities, ad-

ditional calibration objects are required, such as the mirror ball [9] shown in Fig. 1.2(a)

for measuring the lighting direction, a uniform Lambertian board (e.g., Macbeth white

balance chart [9]) for calibrating the lighting intensity. Therefore, the light calibration

needs additional efforts and devices, which is not friendly for non-experts. Besides,

as light calibration itself is an ongoing research problem [10], the calibration process

could cause errors and propagate to the photometric stereo.

Multi-shot to record varying lights Photometric stereo requires image obser-

vations under varying illuminations as inputs. This image sequence is recorded via
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Fig. 1.2 Our motivation is extending photometric stereo from laboratory setup (left)
to practical wild environment (right).

multiple shots at different timestamps, as shown in Fig. 1.2(a). During the data cap-

turing, a target object needs to keep static w.r.t. the camera location, limiting the

application of photometric stereo on dynamic scenes.

Single illumination The single illumination requires an input image observation

recording a scene only illuminated by a single light source. To achieve that, a dark-

room shown in Fig. 1.2(a) is required to block illuminations from the environment.

Restricted by the single illumination assumption, photometric stereo cannot walk out

of the darkroom to recover a detailed shape of an object in the natural environment.

This thesis aims to bring photometric stereo out of the laboratory light setting

shown in Fig. 1.2(a) and make photometric stereo capable of dynamic shape recovery.

As shown on the right side of Fig. 1.2, we empower photometric stereo to be more

practical under the following three aspects:

Near point light with anisotropic emission Unlike classical photometric stereo

assuming distant light, we propose a method in Chapter 2 to improve photometric

stereo to be applicable under near-point light such as the street lamps shown in the

golden box of Fig. 1.2(b). Besides, we take the anisotropic radiant intensity distribu-
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tion (RID) of real-world LEDs into consideration, where the light emission at varying

emission directions could be non-uniform. However, the challenge for photometric

stereo under anisotropic near-point light is that the lighting directions and intensities

cannot be treated as the same for varying scene points. As shown in Fig. 1.2(b), light

directions are determined by the relative positions between scene points of the target

object (girl on the skateboard) and the near light source, and the lighting intensity is

influenced by the light falloff and anisotropic RIDs. Both vary from different positions

of the target object.

Uncalibrated natural light Unlike classical photometric stereo assuming each im-

age is only illuminated by a single light source with calibrated/known lighting direc-

tion, we propose a method in Chapter 3 to improve photometric stereo to be applicable

under uncalibrated natural light, which considers all the light sources in the surround-

ing environment, as shown in Fig. 1.2(b). In this way, we require no darkroom and

recover detailed surface shape from image observations captured in a natural envi-

ronment. Also, we remove the potential error caused by light calibration and reduce

the effort for non-experts. However, the challenge for photometric stereo under uncali-

brated natural light is that the illumination for a single image contains all light sources

from the surrounding environment. Therefore, the lighting directions and intensities

for the surface are both spatially-varying, which is more complex compared to the

darkroom setup where the whole surface is illuminated by a single light. Furthermore,

as the environment light is assumed to be uncalibrated, the spatially-varying light

directions and intensities are unknown, making the problem even challenging.

Single-shot shape recovery Unlike classical photometric stereo stacking image

observations under varying illuminations via multiple shots at different timestamps,

we propose a photometric stereo method in Chapter 4 to recover shape from a single-

shot multispectral image, which can be applied in the scenarios of dynamic shape

reconstruction such as the moving skateboard girl shown in Fig. 1.2(b). As classical

photometric stereo requires multiple shots, a target object needs to keep static during
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the data capturing. By using multispectral light sources and a multispectral cam-

era, image observations can be stacked into a multispectral image via a single shot,

i.e., observations at varying light directions are encoded into different spectral bands.

By solving photometric stereo on a multispectral video sequence, we can obtain the

dynamic shape recovery. However, the challenge for photometric stereo under mul-

tispectral light, also called multispectral photometric stereo, is that the problem is

ill-posed due to the multispectral reflectance.

To summarize, the goal of this thesis is to extend photometric stereo from lab-

oratory setup to practical wild environment. We approach this goal by solving the

challenges in photometric stereo under practical anisotropic near-point light and un-

calibrated natural light, and making multispectral photometric stereo to be well-posed

for single-shot shape recovery.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

• A self-calibrating near light photometric stereo method. We introduce a spherical

harmonic based model for representing the local anisotropic radiant intensity

distribution (RID) of the near point light, which is flexible to model diverse

real-world RIDs compared to existing methods. We formulate a linear system

with the proposed RID representation model to simultaneously solve the local

RID calibration and surface shape recovery. Preliminary results of this research

have been published in [11].

• A patch-based uncalibrated photometric stereo method under natural illumi-

nation. We introduce an equivalent directional lighting model to solve surface

normal in a local patch up to an orthogonal ambiguity. To build connections

between patches, we introduce a consistent surface normal clustering method

guided by intensity profiles under natural light. Based on the patch connections,

we further propose a graph-based patch merging method to solve the per-patch
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ambiguities and merge local surface normals to a complete surface normal map.

Preliminary results of this research have been published in [12].

• Well-posed formulations of multispectral photometric stereo (MPS) for single-

shot shape recovery. We show that MPS can be formulated to be well-posed

under monochromatic surfaces with image cues only. We further introduce lin-

ear bases extracted from a spectral reflectance database and formulate MPS as

a well-posed problem under more general spatially-varying chromaticities and

albedos. Preliminary results of this research have been published in [13].

1.3 Outline of thesis

The remainder of this thesis is organized as follows.

Chapter 2 This chapter addresses the problem of photometric stereo under near-

point light with anisotropic emission. We first explain our local radiant intensity

distribution (RID) representation model based on spherical harmonic bases, and show

its strength over previous RID models on the fitting accuracy of the real-world RIDs.

Then we present our self-calibrating near light photometric stereo method to jointly

recover the object shape and the anisotropic RID. Specifically, we take image ob-

servations, point light positions, and sparse depth of the target object as input and

formulate a homogeneous linear system for the RID estimation and the sparse shape

recovery. The dense shape is then iteratively estimated by surface normal integration

and near-light shading model. With the proposed self-calibrating near-light photo-

metric stereo, we show more accurate shape estimation can be obtained under the

illumination of real-world near LEDs. Experimental results on both synthetic and

real data demonstrate the effectiveness of our method.

Chapter 3 This chapter addresses the problem of photometric stereo under uncal-

ibrated natural light. We show uncalibrated photometric stereo under environment
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light can be solved in a “divide and conquer” manner. First, an equivalent directional

lighting model for local surface patches consisting of slowly varying normals is intro-

duced to solve per-patch surface normals up to an arbitrary orthogonal ambiguity.

Then we explain our graph-based patch merging method to merge local surface nor-

mals to a complete surface normal map. Specifically, we build the patch connections

by extracting consistent surface normal pairs via spatial overlaps among patches and

intensity profiles. Guided by these connections, the local ambiguities are unified to a

global orthogonal one through Markov Random Field optimization and rotation av-

eraging. After applying the integrability constraint, we show our solution for surface

normal contains only a binary ambiguity, which could be easily removed. Extensive

experiments using both synthetic and real-world datasets show our method provides

even comparable results to calibrated methods.

Chapter 4 This chapter addresses the problem of single-shot shape recovery from

photometric stereo under multispectral light. We first introduce multispectral photo-

metric stereo (MPS) to recover the surface normal of a scene measured under multiple

light sources with different wavelengths. While it opens up a capability of a single-

shot measurement of surface normal, the problem has been known ill-posed. Then

we show the MPS problem becomes well-posed for surfaces with uniform chromatic-

ity but spatially-varying albedos based on our new formulation. Specifically, if at

least three (or two) scene points share the same chromaticity, the proposed method

uniquely recovers their surface normals with the illumination of no less than four (or

five) spectral lights in a closed-form. After that, we further show that MPS under a

more general setting, spatially-varying both chromaticities and albedos, can become

well-posed if the light spectra and camera spectral sensitivity are calibrated. For this

general setting, we derive a unique and closed-form solution for MPS using the linear

bases extracted from a spectral reflectance database. Experiments on both synthetic

and real captured data with spatially-varying reflectance demonstrate our method’s

effectiveness and the potential for dynamic shape reconstruction.
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Chapter 5 This chapter concludes the thesis by summarizing the algorithms devel-

oped in this dissertation and discussing the future work of photometric stereo under

practical illumination.





Chapter 2

Photometric Stereo under

Anisotropic Near-point Light

2.1 Introduction

3D reconstruction from photos is a topic almost as old as photography itself [14]. In

the last decades, it has become an attractive research field within computer vision

and has become important in countless industrial as well as end-user applications.

Besides geometric approaches such as structure from motion and multi-view stereo,

photometric approaches have also been investigated [7, 8] because of their capability of

recovering detailed shape. The strength of photometric stereo is its ability to recover

surface orientations of very high resolution as well as albedos.

However, in contrast to geometric approaches, photometric stereo typically re-

quires much more controlled setups: A fixed camera viewpoint, fixed focal length and

exposure, and images. It further requires taking multiple pictures under varying light-

ing directions. Early photometric stereo approaches [15, 16] assumed the light to be

from a distant light source (e.g. sunlight), yielding parallel, uniform light, as shown

in Fig. 2.1(a). This is however hard to perfectly achieve in real experiments using

LEDs as light sources. Since setups whose light is not perfectly distant suffer from

the effects of light fall-off and spatially varying lighting directions, algorithms that
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𝒔𝑖

𝑅1

𝒍𝑖𝑗

𝒙𝑗
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Fig. 2.1 Distant light illumination vs near light illumination. (a) Distant light (e.g.,
sun light) has uniform light emission at varying angles, the lighting directions for
varying scene points are the same. (b) Different scene points have varying lighting
directions under the illumination of a near point light located at si. The light emissions
is modeled by the radiant intensity distribution (RID), as visualized by the equal
radiant emission contours shown in dashed line. The RID illuminating a surface is
located at a local smooth area R1 shown in orange.

assume parallel light produce reconstruction errors. Near-light photometric stereo al-

gorithms [17, 18], on the other hand, do account for these effects and thereby allow

working with much more compact experiment setups. As shown in Fig. 2.1(b), differ-

ent scene points receive varying lighting directions and intensities determined by the

relative position between LED and the surface.

To achieve accurate shape recovery, existing near-light photometric stereo meth-

ods require precise calibration of involved point light sources, which includes their

3D positions and their radiant intensity distributions (RIDs) [19, 20]. The RID rep-

resents the radiant intensity of a light source under different emitted directions. As

an anisotropic RID example shown in Fig. 2.1(b), the radiant at emitted directions

lik attenuate quicker than that of lij. Usually, different point light sources in the real

world have different RIDs. To address the attenuation caused by RID when estimating

an object shape, usually a calibration object is required to measure the position and

intensity distribution of point light sources represented by a parametric model, before
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applying near-light photometric stereo algorithms. Existing calibration approaches

have some disadvantages:

1. A reference object with known geometry such as a plane with uniform albedo

and Lambertian reflectance is required for the RID calibration [19, 20], which is

not readily available in many real-world scenarios;

2. The radiance emitted by a point light typically changes over time due to ramp-up

time and camera auto-exposure [21], leading to different photometric observa-

tions between the RID calibration step and the following image acquisition step;

3. Current RID representation models [19, 20] used in RID calibration and near-

light photometric stereo [18, 21] are limited to radially symmetric RIDs, which

is not flexible enough to handle a diversity of RIDs in the real world.

To address these problems, we propose a self-calibrating photometric stereo frame-

work in which object shape reconstruction and RID calibration are conducted simulta-

neously without the use of a reference object. Our key observation is that the observed

RID highlighted in orange curve in Fig. 2.1(b) is located in a local region when illu-

minating an object. We assume this local RID is smooth and can be interpolated by

spherical harmonic bases. Based on this RID representation, we aim to estimate the

shape of a Lambertian object with given calibrated point light positions and an initial

estimate of a sparse depth map for the target object.

This chapter makes the following contributions.

• We propose a near-light photometric stereo method with RID auto-calibration

without using a reference object.

• We propose an easy-to-fit RID representation in a local region for real-world

anisotropic light emission.

• We show our self-calibrated near-light photometric stereo solution achieves higher

accuracy on shape recovery than the state-of-the-art method.
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2.2 Related work

Our work is related to point light source calibration and near-light photometric stereo.

Point light source calibration. The calibration of a point light source can be

roughly separated into two tasks: light position calibration and the light radiant in-

tensity distribution calibration. The former one has been well studied in recent years.

Previous methods [22–25] triangulate multiple light positions from specular highlights

on mirror objects with the known shape, such as a sphere or a plane. Recently, Bun-

teong and Chotikakamthorn et al. [26] propose a method that uses specular highlights

and shadows to estimate point light positions and their directions. Santo et al. [10]

calibrate the light positions from the shadow positions of pins onto a diffuse plane.

With the small pinhead size, this method obtains higher accuracy in localizing the

light source.

On the other hand, few works target the light radiant intensity distribution es-

timation. To model the RID of point lights, the most direct way is assuming the

relative luminous flux in any direction is isotropic. This assumption is reasonable

when light is far from the object. Under the near-light setting, the light attenuation

caused by anisotropic RID of real-world point lights is non-negligible. Therefore more

specific models should be adapted. Park et al. [19] and Visentini et al. [20] use a set

of polynomials to approximate the radial symmetric RIDs. Another option is using an

exponential function with cosine as bases to represent the RID. This model is widely

used in existing near-light photometric stereo methods [18, 21, 27, 28], since the power

parameter can be estimated from the datasheet of the point lights. To extend the rep-

resentation power of the cosine-power based RID, Moreno et al. [29] use the sum of

multiple Gaussian or cosine-power basis functions to describe a wide range of RIDs

based on the light propagation characteristics. However, when given RID, there is no

strategy to determine which basis function should be selected.

Given the RID representation model, how to estimate the parameter in the model

becomes a more challenging problem. Existing methods [19, 20] solve the problem
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with a planar Lambertian board with uniform albedo. Specifically, Park et al. [19]

calibrate the point light RID based on the property that the shading on a Lambertian

plane illuminated by a point light with radial symmetric RID is bilaterally symmetric.

However, the optimized RID is sensitive to the expensive symmetry searching of the

projected light pattern on the Lambertian plane. To avoid this problem, Visentini-

Scarzanella and Kawasaki [20] find the symmetry axis by inspection of the global

irradiance maxima, and a closed-form solution for both position and RID of point

lights are also presented in this work. Different from these two methods, which rely

on a textureless Lambertian plane and radial symmetric RID assumption, we use

spherical harmonic bases to represent a general form of RID and have no requirement

of any reference objects.

Near-light photometric stereo. Starting from the work of Iwahori et al. [30] and

Clark [31], light propagation models used in photometric stereo have been extended

from distant and directional lighting to nearby point light sources. Near-light photo-

metric stereo is a non-linear problem since the distance and the anisotropic attenuation

of point light sources are coupled with the local surface normals. To solve this non-

linear problem, calibrated near-light photometric stereo methods [32–37] estimate the

object shape and albedo in an alternative way, i.e., estimating the surface normal and

albedo from fixed lighting first and then integrating the depth from normal and up-

dating the lighting from the current depth. The other way to solve the non-linearity in

near-light photometric stereo is using variational methods [17, 18, 38, 39]. Such meth-

ods use image ratios to formulate the problem into a quasi-linear partial differential

equation. More recently, Quéau et al. [18] review the existing methods and propose a

provably convergent method of near-light photometric stereo.

In order to avoid the point light calibration, Papadhimitri et al. proposed an un-

calibrated near-light photometric stereo method [40]. However, the point light RID

is assumed as isotropic in this work. To make the problem more tractable, semi-

calibrated photometric stereo approaches are proposed where light positions or direc-

tions are given, but the RIDs remain unknown. This notation was first proposed by
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Cho et al. [41] under distant light setting, and then extended into near point light

setup [18, 21, 27, 28]. However, prior information about the point light angular char-

acteristics and specific reference objects are needed to recover the RID in [18, 21, 28].

In order to release this requirement, self-calibrating near-light photometric stereo tries

to recover object shape and RID for each point light automatically. Recently, Xie et

al. [42] propose an auto-calibration method to estimate depth map and surface albedo

under isotropic near point lights. Different from their method, our self-calibrating

near-light photometric stereo method is able to handle more general anisotropic RIDs

and obtain accurate RID calibration and object shape simultaneously.

2.3 Near-light image formation model

Before presenting our self-calibrating near light photometric stereo method under

anisotropic light emission, we first introduce the image formation model under the

near-light illumination and derive the problem setting in this chapter.

We assume a Lambertian object is captured by using a fixed perspective camera

with a linear radiometric response and illuminated by anisotropic point light sources.

In the following, we use i and j as indices for point light sources (or their corresponding

images) and pixels (or their corresponding surface points), respectively.

Given the above assumptions, a measured irradiance mij ∈ R can be written as

mij = eijb⊤
j lij, (2.1)

where bj = ρjnj ∈ R3 is an albedo-scaled surface normal vector with albedo defined

as ρj ∈ R+ and surface normal denoted as nj ∈ S2 ⊂ R3, eij ∈ R+ is the irradiance

emitted from light i on a surface corresponds to pixel j, and lij ∈ S2 ⊂ R3 is a unit

lighting direction vector. Further, we denote a 3D point light location as si ∈ R3 and

surface point position as xj ∈ R3. We then have

lij = si − xj

∥si − xj∥2
, (2.2)
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eij = fij

d2
ij

= fi(lij,ω
i
s)

∥si − xj∥2
2
, (2.3)

where fi : S2 × S2 → R is the i-th radiant intensity distribution function (RIDF), fij

is the RID from point light si to scene point xj, ωi
s denotes the point light principal

direction (visualized in Fig. 2.1)(b), and 1/d2
ij accounts for the light fall-off due to the

distance dij between j-th scene point and i-th light. Based on the perspective camera

model, the relationship between 3D scene point xj and its image coordinates pj is

xj = zjK−1pj, (2.4)

where K is the camera intrinsic matrix, and zj is the depth at j-th pixel. Combining

Eq. (2.1) to Eq. (2.3), we have

mijd
2
ij

fij

= b⊤
j lij. (2.5)

In a matrix form for representing all p pixels and q lights, the near light image forma-

tion mode in Eq. (2.5) can be written as

vec(M ⊙ D ⊙ D ⊘ F) = L vec(B⊤), (2.6)

where M, D, and F with the size of q×p are matrices that contain all mij, dij, and fij,

respectively, and B is a matrix that stacks all albedo-scaled surface normal bj horizon-

tally. Operators ⊙, ⊘, and vec(·) represent element-wise multiplication, element-wise

division, and vectorization. Further, L̄j ∈ Rq×3 stacks all lighting directions on the

j-th pixel and L is formed by the block diagonalization of L̄j:

L =



L̄1

L̄2
. . .

L̄p


. (2.7)

Given observations M, the corresponding point light positions si, camera parameter K
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Fig. 2.2 The pipeline of our self-calibrating near-light photometric stereo.

and a sparse depth map ẑ of the object (we assume it is given for now, and introduce

how we capture it in the experiment section), our goal is to simultaneously estimate

object shape (dense normal and depth) and anisotropic radiant intensity distribution,

namely the depth vector z of all zj, the normal matrix N of all nj, the albedo vector

ρ of all ρj, and all RIDFs fi.

2.4 Self-calibrating near-light photometric stereo

The complete pipeline of our method is shown in Fig. 2.2. Our method takes near-light

image observations, calibrated LED positions and the sparse depth map of an object

as inputs, aiming at recovering the dense object shape, albedo, and the local RIDs for

each point light source. There are two modules in our algorithm: Radiant intensity

distribution (RID) estimation and dense surface reconstruction, i.e., we first calculate
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NSPW570DS NCSB119B-V1 NSPG346LS

NESB146ANSPW510DSNSPWF50DS

Fig. 2.3 RIDs of real point light sources visualized by polar graphs, where the polar
axis represents the radiant intensity. The LEDs are from NACHIA Corp datasheet
1with product names shown on the top. Notice that the RID of product “NESB146A”
is not radially symmetric.

the light RID, then input it to the surface reconstruction process for obtaining dense

depth and surface normals. Next, we will introduce the two modules in detail.

2.4.1 Radiant intensity distribution representation

We use RIDF to represent the RID in a parametric way. As visualized in Fig. 2.1(b),

the RIDF could be defined with regard to the point light principal direction ωi
s and

lighting direction lij, i.e., fi(lij,ω
i
s). For isotropic point light source, the RIDF is a

constant as the light is emitted equally in all directions. However, RIDs for most real-

world LEDs are anisotropic, as shown in Fig. 2.3. To model the anisotropic RIDF,

existing methods [18, 27] adopt an empirical cosine-power based function, i.e.

fi(lij,ω
i
s) = cosµi(l⊤

ijω
i
s), (2.8)

where µi is a hyper-parameter representing the radient intensity attenuation. The

value of µi varies from different LED products. As both µi and ωi
s are unknown,

previous methods [18, 27] need to calculate the attenuation parameter µ from the LED
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Fig. 2.4 Visualization of spherical harmonic basis function yk(·) at different orders in
the 3D Cartesian coordinates, where white means positive values and black is associ-
ated with negative values.

datasheet provided by the manufactures and calibrate the LED principal direction ωi
s

with a flat Lambertian calibration board. Although the cosine-power based model is

simple, it has limited representation power for real RIDs, e.g., the radial asymmetric

RID of “NESB146A”.

Different from the cosine-power based RID model, our RID model is based on

spherical harmonic (SH). As shown in Fig. 2.4, spherical harmonics are a frequency-

space basis for representing functions defined over the sphere. They are the spherical

analogue of the 1D Fourier series. We observed that RIDF is a function defined in

the spherical coordinate system, therefore it is convenient to represent it with the

linear combination of a set of SH bases. Besides, as the RIDFs under varying principal

direction ωi
s are always spherical functions, we can omit the ωi

s and take the lighting

direction as the only variable in our RIDF, i.e.,

fi(lij,ω
i
s) = fi(lij) =

h∑
k=1

ci
kyk(lij). (2.9)

where ci
k and yk(·) denote the coefficient and the basis of the k-th spherical harmonics

of i-th point light. Compared to the cosine-power based RID model, we avoid the esti-
1https://www.nichia.co.jp/en/product/led.html

https://www.nichia.co.jp/en/product/led.html
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mation of the light principal direction ωi
s and the attenuation parameter µ. Besides, as

SH basis can approximate any functions in the spherical coordinate system, our RID

model is adapt to various RIDs which even do not hold the radial symmetry (e.g.,

“NESB146A” in Fig. 2.3).

On the other hand, the lighting direction from point light to the object falls into

a limited region R1 as shown in Fig. 2.1(b). For photometric stereo, we mainly care

about the radiant intensity distribution in this local region. It is reasonable to assume

the RID in this patch is smooth; therefore the local RID can be sufficiently represented

by a low-order SH basis. Actually, based on our experiments, we found the top-10

coefficients of SH are enough to represent the local RID.

In a matrix form, Eq. (2.9) can be written as

vec(F) =
[
Y1| · · · |Yp

]⊤
vec(C), (2.10)

where C is the matrix containing all coefficient ci
k and Yj is defined as,

Yj =



y1(L̄j)

y2(L̄j)
. . .

yh(L̄j)


. (2.11)

Given the SH-based RID model, we will show in the following section that the

unknown SH coefficients C can be self-calibrated in near-light photometric stereo.

2.4.2 Radiant intensity distribution estimation

In this section, we will show how to determine the albedo scaled-normal map and the

RID for each point light. By merging the near-light image formation model Eq. (2.6)

and the RID representation model Eq. (2.10), we derive our energy function including
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a shading term Es and RID term Er as follows

argmin
C̃,G,B

∥∥∥Qvec(G) − Lvec(B⊤)
∥∥∥2

2︸ ︷︷ ︸
Es

+λ

∥∥∥∥∥vec(G) −
[
Y1| · · · |Yw

]⊤
vec(C̃)

∥∥∥∥∥
2

2︸ ︷︷ ︸
Er

, (2.12)

where Q = diag(vec(M ⊙ D ⊙ D)), and diag(·) denotes the diagonalization operator.

λ is the weight to balance the two terms (fixed as 0.027 in our experiment), G is the

inverse RID matrix with its element equal to 1/fij and C̃ is the spherical harmonic

coefficient matrix for the inverse RID. Notice that it is reasonable to assume the inverse

RID can be interpolated by SH basis since it is also defined on spherical coordinate.

Since we replace F with inverse RID matrix G, the above energy function can be

formulated as a homogeneous linear system:

L Q 0

0 I [Y1| · · · |Yw]⊤


︸ ︷︷ ︸

A∈R2pq̂×(3p+pq̂+hq̂)


vec(B⊤)

vec(G)

vec(C̃)


︸ ︷︷ ︸

y

= 0, (2.13)

where p, q̂ and h represent the number of images, sparse points with known depth

and SH bases. To obtain a non-trivial solution from Eq. (2.13), A should have 1D

nullspace, which leads to the following inequality:

2pq̂ ≥ 3p + pq̂ + hq̂ − 1,

h ≤ p + 1 − 3p

q̂
.

(2.14)

By applying singular value decomposition on A, the albedo-scaled surface normal B,

inverse RID G and the SH coefficient C̃ can be solved up to a scale ambiguity. We

then conduct per-pixel normalization on B to obtain surface normal and albedo. In

this way, we achieve near-light photometric stereo with self-calibrating the RID.

Note that in the optimization of Eq. (2.13), the depth should be known so that we

can compute the the lighting directions L. However, it is not necessary to know the

complete depth map for the purpose of computing the RID coefficient. Therefore, we
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only require a sparse depth map ẑ (e.g. from a stereo camera) as input to calibrate

the RID for each point light and solve the corresponding sparse surface normals N̂.

In the next section, we will show how to recover a complete depth map with obtained

RIDs and sparse surface normals.

Algorithm 1: Self-calibrating Near-light Photometric Stereo.
Input :

Point light locations s
Sparse depth map ẑ
Image observations M
MaxIters T , Threshold τ , λ, η
Solve C̃, B̂ and G based on Eq. (2.12);
Estimate the initial complete normal map N(0) from sparse normal N̂
following [43];
while convergence do

Update depth z(t) from normal N(t) by surface normal integration in Eq. (2.16)
Update the normal N(t+1) and albedo ρ(t+1) from z(t) by minimizing the shading
term Es in Eq. (2.12).
if ∥z(t+1) − z(t)∥ ≤ τ then

break
end if

end while
Output :

Dense surface normal map N, depth map z, albedo ρ;
Coefficients C̃ of the inverse RIDF for each point lights;

2.4.3 Dense surface reconstruction

In this section, we follow the idea of [43] to first recover the initial complete surface

normal map, and then iteratively refine the complete depth and surface normal map

guided by the shading cues and normal integration. Following [43], with sparse depth

ẑ and sparse normal N̂ from the last section, the complete surface normal field can be

calculated on the distinct patches containing such sparse oriented points. We refer to

the obtained dense surface normal as the initial surface normal map N(0) and use it

in computing the complete depth map.

As stated in [44], the relationship between depth and surface normal under the
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perspective projection can be written as,


∇zl = [ψ,γ]⊤,

ψ(u, v) = − n1

un1 + vn2 + fln3
,

γ(u, v) = − n2

un1 + vn2 + fln3
,

(2.15)

where zl = ln z denotes the depth in logarithmic scale, fl is the camera focal length,

u and v represent the 2D image coordinate, N(u, v) = [n1, n2, n3]⊤.

Based on the depth and surface normal relationship, we obtain the complete depth

map by surface normal integration [44, 45] with considering the prior of known sparse

depth ẑ, i.e.,
ηI

∆

 zl =

 ηẑl

∂ψ
∂u

+ ∂γ
∂v

 , (2.16)

where η defines the weight for the sparse depth constraint, ∆ refers to a Laplacian

operator. With obtained log-scaled depth zl, we recover the depth map by z = ezl .

With initial dense surface normal N(0) and sparse depth ẑ, we recover a complete

depth map z(0) from Eq. (2.16). By minimizing the near-light shading term Es shown

in Eq. (2.12), we can further obtain a refined surface normal N(1) with fixed depth

map z(0) and RIDs as input. The above two steps formulate an alternative optimiza-

tion process summarized in Algorithm. 1. Based on our experiment, accurate surface

normal and depth can be obtained up to 5 iterations.

2.5 Experiments on synthetic dataset

We evaluate our method on a synthetic dataset in the setting of anisotropic near-light

illumination. We first present a RID representation power comparison between the

cosine-power model used in [18] and our spherical harmonic based model. After that,

we compare with [18] on the accuracy of surface normal and depth estimation.
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SK6812RGBW NCSB119B-V1

NSPWF50DS NESB146A

QD18GT Ours

Fig. 2.5 The representation power comparison of different approaches on four real
world RIDs. The LED product name of the point lights are shown on the top of each
RID plot.

2.5.1 Evaluation on RID representation power

In Fig. 2.5, we fit four real-world RIDs at a local region defined in the range of 50

degrees deviated from the point light principal direction. Under this local region, we

show the fitting comparison with the cosine-power based model used in QD18 [18].

The hyper-parameter µ of the cosine-power based model is extracted from the LED

datasheet. The number of SH basis used in our RID model is 9. From Fig. 2.5,

it is clear that our method gets better RID fitness. We further give a quantitative

evaluation of the local RID fitting on real-world RIDs, where the fitting accuracy is

defined by the mean squared error between the ground-truth and fitted RIDs. As

shown in Fig. 2.6, we collect 204 real-world RIDs from LED manufactures and show

the fitting error of our method and the cosine-power based model in log scale. On

diverse LED products, our RID model achieves better RID fitness in the local region,

demonstrating the representation power of our spherical harmonic based RID model

over the previous method.
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Fig. 2.6 Quantitative comparison of the RID representation power on 204 real RIDs
from LED manufactures.

We also evaluate our RID representation model under a different number of bases

and varying local RID regions. As shown in Fig. 2.7, for the same range of RID, the

fitted RIDs from our method deviate from the ground truth (GT) by decreasing the

number of spherical harmonic bases. On the other hand, under the same number of

bases, when increasing the local RID region from −50◦ ∼ 50◦ to −80◦ ∼ 80◦, the

fitting error from our RID model increases as the target RID curve becomes more

complex. From a practical point of view, it is rare in photometric stereo that the

observed RID covers the range of −80◦ ∼ 80◦. In such a case, the LED is put pretty

close to the surface. However, even for that local RID range, we show that the target

RID curve can still be approximated in a relatively high accuracy from our RID model

with at least 10 bases.

2.5.2 Comparison on shape estimation

We compare our method with the semi-calibrated photometric stereo algorithm QD18 [18],

in which the cosine-based model is used for RID representation. The inputs for

QD18 [18] include the principal lighting directions and the hyper-parameter µ for

the RID model, and a rough distance between object and camera for generating the

initial depth map. As stated in the paper, the optimized shape output is sensitive to

this initial depth map. To get a fair comparison, we use our initial depth z(0) obtained

from Sec. 2.4.3 as the initial depth input for QD18 [18].
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Fig. 2.7 Local RID fitting using different number (i.e., h = 1, 5, 10) of spherical har-
monic bases. The top and bottom rows show the RID fitting results in the local range
of −50◦ ∼ 50◦, and −80◦ ∼ 80◦.)

We render three synthetic objects: Bunny, FatTony and Julia with the size of

14 cm, as shown in the left side of Fig. 2.8. The camera is located at the world center

with the focal lens and image resolution as 85 mm and 960×640. We locate the object

50 cm far from the camera. For illumination, we use 49 point light sources arranged

in a 7 × 7 regular grid and capture 49 images by lighting on/off the LEDs one after

another. The light source locations are in the range of (X, Y, Z) = (±21, ±21, 10), with

the unit of centimeter. We assign the same RID to all the point lights on the board.

On the right side of Fig. 2.8, we show the qualitative results of the estimated depth,

normal and their corresponding error maps under the RID of “NCSB119B-V1.” The

error distributions show the influence of inaccurate modeling of the anisotropic RIDs.

As our RID model is flexible for diverse RIDs, the surface normal and depth estimates

from our method is more accurate than QD18 [18], and the corresponding error maps

are uniform. We also provide quantitative comparison results on depth, surface normal

and RID between our method and QD18 [18], as shown in Table 2.1 to Table 2.3. To

calculate the accuracy of depth and normal, we calculate the mean absolute error

and mean angular error between the estimation and the ground truth. Since there is

a global scale ambiguity between our estimated RID and the ground truth RID, we
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Fig. 2.8 Evaluation on shape estimation accuracy using synthetic dataset. The left side
shows the near-light image observations. The right side shows the GT and estimated
depth and surface normals, the corresponding absolute error maps and the angular
error maps. Even rows give the surface normal estimates and odd rows give the depth
estimates.
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first calculate this global scale to align the RID estimation with the ground-truth and

then evaluate the mean squared error on scaled RID. From the quantitative evaluation

results, our self-calibrating photometric stereo method outperforms QD18 [18] on both

shape and RID estimation.

Table 2.1 Comparison on depth estimation evaluated by mean absolute error in mm

Method RID Bunny FatTony Julia
NCSB119B-V1 0.031 0.034 0.025

Ours NSPWF50DS 0.016 0.017 0.015
SK6812RGBW 0.016 0.017 0.016

NCSB119B-V1 0.767 1.171 2.104
QD18 [18] NSPWF50DS 1.381 0.530 1.154

SK6812RGBW 1.309 1.301 1.376

Table 2.2 Comparison on normal estimation evaluated by mean angular error in degree.

Method RID Bunny FatTony Julia
NCSB119B-V1 0.02 0.04 0.10

Ours NSPWF50DS 0.24 0.01 0.28
SK6812RGBW 0.10 0.19 0.32

NCSB119B-V1 1.49 3.51 5.19
QD18 [18] NSPWF50DS 2.25 2.02 3.01

SK6812RGBW 2.51 3.03 3.45

Table 2.3 Comparison on RID estimation evaluated by mean squared error.

Method RID Bunny FatTony Julia
NCSB119B-V1 1.02e-6 1.23e-6 7.96e-6

Ours NSPWF50DS 2.02e-5 1.29e-7 1.41e-5
SK6812RGBW 1.33e-5 3.68e-5 3.47e-5

NCSB119B-V1 4.72e-5 3.38e-4 3.14e-4
QD18 [18] NSPWF50DS 1.56e-4 6.13e-5 8.42e-5

SK6812RGBW 1.57e-4 2.59e-4 1.60e-4
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Fig. 2.9 Hardware setup for capturing near-light image observations.

2.6 Experiments on real dataset

As shown in Fig. 2.9, our capture setup includes two Canon EOS 5D Mark IV cameras

with 85mm lens and a LED array board containing 256 point light sources with their

positions calibrated. We carefully design LED distributions and the distance to a

target object to maintain a near-light illumination. Specifically, the LED board has

the size of 50×50 cm and we put it 1 m far from the target object, whose size is roughly

in the range of 25 × 25 cm so that different scene points are illuminated by varying

lighting directions, fall-offs and radiant intensities. The baseline between two cameras

is 16.5 cm. We apply a semi-global stereo matching algorithm [46] to calculate the

disparity between stereo image pairs and further obtain an initial sparse depth map

of the target. Our LED board is equipped with LED diode “SK6812RGBW” from

OPSCO Optoelectronics Corp2. The product’s theoretical RID is shown in Fig. 2.5.

To build our real dataset, we choose two objects: Barrel and Pot as shown

on the left side of Fig. 2.9. The object size is in the range of 25 × 25 cm so that the

illumination can be treated as near-light. For each object, we first capture stereo image

pairs under the natural light for computing the initial depth via stereo matching [46].

Then we capture 256 image observations under the point light illumination as the

input of our near-light photometric stereo. As shown on the right side of Fig. 2.10,

the estimated shape, albedo, and surface normal from our method and previous work
2Normand SC6812RGBW LED, http://www.normandled.com/Product/view/id/883.

html. Retrieved Nov. 16, 2021

http://www.normandled.com/Product/view/id/883.html
http://www.normandled.com/Product/view/id/883.html
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Fig. 2.10 Comparison on shape and albedo estimation between our method and
QD18 [18] on real dataset. Our method achives more reasonable results from the
side view of the shape estimation.

QD18 [18] are presented. From the side view of the shape estimation, our method

achieves more reasonable shape reconstructions, especially for the Barrel object.

Therefore, with the proposed flexible RID model and the self-calibrating near-light

photometric stereo, we can obtain more accurate shape estimation under practical

anisotropic point light illumination.

2.7 Conclusion

In this chapter, we propose a self-calibrating near-light photometric stereo method

to handle shape recovery under anisotropic point lights. Our key observation is that

the RID is defined in a spherical coordinate, and the interest RID in the photometric

stereo task is located in a local region, which derives our RID representation model

based on spherical harmonic bases. Given the sparse depth as input, we first conduct

RID calibration with the proposed RID model, then iteratively recover complete object

shape based on near-light image formation model and the surface normal integration.
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Limitations Our method is limited to Lambertian reflectance and known sparse

depth map. To handle general surface reflectance, a possible solution is extracting the

low-frequency components from image observations, which are close to Lambertian

reflectance as stated in [47]. The sparse depth map obtained from stereo matching

contains noise in practice. That influences the optimization of RID calibration and

shape reconstruction. In our future work, we will apply the variational approach used

in [18, 27] to improve the robustness of our method on noisy sparse depth input.

Besides, when the local RID has large variations, our RID representation with

limited order of spherical harmonic bases becomes less accurate. In such cases, we

can increase the number of spherical harmonic bases to improve the representation

power. However, more image observations and sparse depth points are required to

estimate additional unknowns from the basis coefficients in our RID model, as shown

in Eq. (2.14). Therefore, our method cannot fit complex local RIDs accurately when

we have limited input images and sparse points with known depth.

Finally, in addition to the qualitative comparison shown in Fig. 2.10, it is better

to conduct a quantitative evaluation on real data. To achieve that, the ground-truth

surface normal, depth, and albedo corresponding to the near-light images are required.

In our future work, we plan to build a real-world dataset for near-light photometric

stereo, from which we can compare existing methods with ours quantitatively.



Chapter 3

Photometric Stereo under

Uncalibrated Natural light

3.1 Introduction

Given an image sequence of a Lambertian object illuminated by three non-coplanar

directional lights, surface normals of the object could be estimated by photometric

stereo [7]. The pixel-level details of surface normal estimates are of great interest

for applications in 3D computer vision such as visual inspection [48] and augmented

reality [49].

The classic photometric stereo setup has two assumptions on lighting: directional

and calibrated lighting, which restrict the applicability of conventional photometric

stereo. The directional lighting model assumes a single point light source placed far

away from the target object, and typically requires the data capture to be conducted

in a dark lab setting, as shown in Fig. 3.1(a). The calibrated lighting assumption

needs an additional step for measuring both lighting intensities and directions, and

calibrating lighting itself is also an ongoing research problem [10]. If the former as-

sumption is relaxed, the problem becomes calibrated photometric stereo under natural

illumination, while relaxing the latter assumption leads to uncalibrated photometric

stereo under directional lighting. A fully calibration-free method under general light-
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(a) Observation under calibrated directional light (b) Observation under uncalibrated natural light
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Fig. 3.1 Calibrated directional light vs. Uncalibrated natural light. The top left circle
at each image observation shows the environment map for the scene. The visible
hemisphere illustrates the illumination difference for one scene point under two light
setting, where the unknowns are shown in red.

ing is desired because it will push photometric stereo from the laboratory setup to the

practical wild environment and simplify the effort of 3D scanning for non-experts.

Generalizing calibrated and directional lighting assumptions at the same time will

make the problem rather complicated. As shown in Fig. 3.1(a), we show an image

observation under a single calibrated directional light, where the environment map

shown in the top left circle records the lighting directions and intensities of the sur-

rounding illumination. For one scene point, the illumination could come from all

possible directions in the visible hemisphere determined by its surface normal direc-

tion (lights with directions out of the visible hemisphere are blocked, leading to attach

shadows). However, in the case of single directional light in the darkroom, the environ-

ment map contains only a single point with its position and pixel value indicating the

lighting direction and intensity. If we generalize the single directional illumination to

the natural illumination as shown in Fig. 3.1(b), the environment map becomes more

complicated as the surrounding environment contains multiple direct or indirect light

sources. Therefore, one scene point is illuminated by varying lighting directions and

intensities in the domain of the visible hemisphere. Besides, If we further assume an

uncalibrated natural light setting, all the lighting directions and their corresponding

intensities are unknown, making the problem even more challenging.

To solve photometric stereo with uncalibrated natural illumination, existing meth-
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Fig. 3.2 Pipeline of patch-based uncalibrated photometric stereo. Variables shown in
red represent the unknowns in our method. The assumptions in different stage of our
method is shown in blue.

ods [50–53] require a rough shape of the target object. Although the initial shape

can be obtained from multiview geometry [53], object shape prior (e.g., face [51]) or

RGBD cameras [3], it either needs extra system setup or restricts the application into

pre-defined shapes. Recent work [54] uses a balloon-like perspective depth map for

the shape initialization and estimate the surface shape and reflectance by an end-to-

end variational optimization framework. However, the recovered shape accuracy after

the optimization is still sensitive to depth initialization. On the other hand, Jung et

al. [55] restrict the natural illumination as the skylight and solve the outdoor photo-

metric stereo based on the prior of skylight distribution. Brahimi et al. [56] provide

a closed-form solution for photometric stereo under general unknown lighting and

perspective camera projection. However, the environment lighting is approximated

by global first-order spherical harmonics, which has a gap with real-world natural il-

lumination [57]. In summary, existing methods for uncalibrated photometric stereo

under natural illumination are still limited due to the requirement of initial shapes

and restrictive lighting approximation models.

In this chapter, we propose a photometric stereo method for uncalibrated natural

illumination that relieves the requirements used in existing methods. We develop a “di-

vide and conquer” approach to first “divide” the problem into tractable sub-problems

with locally-resolvable ambiguity, and then “conquer” them jointly by merging all sub-

results as a complete solution. Our key observation is that for a small surface patch
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with similar surface normal directions, the visible hemisphere of an environment map

also shows smooth changes. Therefore, the environment lighting for that local patch

could be approximated as equivalent directional lighting by summing up all samples

on the visible hemisphere. Based on the above observations, we present our method

as shown in Fig. 3.2, where the “divide” and “conquer” processes are corresponding

to the two modules in the pipeline.

In the “normal estimation in local patch” stage, we assume the surface normals

in an extracted patch have similar directions so that the patch illumination can be

approximated by equivalent directional lights. Following directional lighting-based

uncalibrated photometric stereo techniques [58], we further assume the local patch

has uniform albedo and non-planar shape, then the surface normals can be recovered

up to an orthogonal ambiguity. In the “graph-based patch merging” stage, we resolve

the orthogonal ambiguity in each patch and merge local shapes to a complete surface.

Specifically, we first cluster consistent (equal) surface normal pairs and use them to

calculate relative orthogonal transformations, which describe the geometry relation-

ship among patches. Then an orthogonal ambiguity graph Go is constructed with

nodes and edges being set to the unknown patch-wise orthogonal ambiguities and the

known relative orthogonal transformations. As the 3 × 3 orthogonal ambiguity can be

decomposed into a binary part and a 3D rotation part, we divide the orthogonal ambi-

guity graph into a binary ambiguity graph Gb and a rotation ambiguity graph Gr. We

formulate the binary ambiguity estimation on Gb as a per-patch labeling problem, and

solve it by a Markov Random Field (MRF) optimization [59]. Guided by the relative

rotations (edges of the rotation ambiguity graph Gr), we solve the rotation ambiguities

in each patch by introducing rotation averaging [60] algorithms which has been widely

applied in structure from motion framework [61]. After the patch merging stage, the

unknown patch-wise orthogonal ambiguities can be determined up to a global orthog-

onal ambiguity. By further assuming the whole surface to be integrable, this global

orthogonal ambiguity can be finally reduced to a convex/concave ambiguity.

An earlier version of this work appeared in [62]. Different from the graph-based
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patch merging method presented in this chapter, the patch merging process in [62]

takes consistent surface normal pairs as constraints and constructs an angular distance

matrix with the element calculated by propagating angular distance along the shortest

path between any two surface normal directions. Then the complete surface normal

map is solved up to a global orthogonal ambiguity by conducting matrix factorization

on this angular distance matrix. We refer this method as matrix-based patch merg-

ing method (MPM) corresponding to our newly proposed graph-based patch merging

method (GPM) in this chapter. Compared with [62], this work improves the surface

normal estimation accuracy by replacing MPM with GPM, and provides analysis of

surface normal clustering under natural illumination via consistent orthogonality con-

dition. To demonstrate the effectiveness of our new method, additional experiments on

both synthetic and real data are also presented. To summarize, the main contributions

of our work are as follows:

1. We explore the equivalent directional lighting model to solve patch-wise surface

normal up to local ambiguities, bypassing the explicit requirement of global

information of environment maps.

2. We extend the surface normal clustering via intensity profiles from directional

lighting to general lighting case, and propose a consistent orthogonality condition

to extract consistent surface normal pairs.

3. We introduce a rotation averaging and an MRF optimization to solve patch-wise

orthogonal ambiguities and merge local surface normal solutions to a complete

surface normal map up to a global orthogonal ambiguity.

Our output surface normal map only contains a concave/convex binary ambiguity.

As proved in [56], it is an inherent ambiguity in uncalibrated photometric stereo under

orthogonal camera projection and cannot be solved with image cues only. However, it

can be either manually removed with little effort or resolved with shape prior.



38 Photometric Stereo under Uncalibrated Natural light

3.2 Related work

There are two major restricting assumptions that need to be relaxed for photomet-

ric stereo [7] to be applied to practical applications – calibrated directional lighting

assumption and Lambertian reflectance assumption. Correspondingly, to make photo-

metric stereo work in more realistic scenes, there are two directions to generalize the

conventional approach – generalization of lighting assumption and generalization of the

reflectance model. This chapter focuses on the former problem, thus both calibrated

and uncalibrated photometric stereo methods with non-Lambertian objects (e.g., [63–

67]) are beyond the scope, and we refer the readers to [68] for a comprehensive review

and comparison of non-Lambertian photometric stereo methods.

3.2.1 Calibrated, directional lighting

The calibrated Lambertian photometric stereo with directional lighting assumption is

the most classic setup. The first photometric stereo work [7] and its robust extensions

rely on these assumptions. Various robust approaches have been proposed to eliminate

deviations from the classic model by treating the corrupted measurements as outliers,

such as Random Sample Consensus (RANSAC) [69, 70], median-based approach [71],

low-rank matrix factorization (Robust-PCA) [72], and expectation maximization [73].

Wu et al. [74] formulate the calibrated dense photometric stereo problem as a Markov

network. The per-pixel surface normal, encoded in the graph node, is optimized by

minimizing the surface geometry smoothness (smoothness term) and the distance be-

tween its normal initialization (data term). Similar to their method, our proposed

GPM also formulates the patch merging problem to a graph structure, but with dif-

ferent graph content and optimization scheme. As we have no light calibration or

initial normal map, our optimization target encoded in the node is the patch-wise

orthogonal ambiguity constrained by the relative orthogonal transformations assigned

to the graph edges. The optimizations for the binary ambiguity and the rotation

ambiguity are solved with MRF and rotation averaging, separately.
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3.2.2 Calibrated, natural lighting

Natural illumination can be calibrated directly by using a mirror sphere as a light probe

or indirectly by approximating sunlight as a dominant directional source. With mirror

sphere measured environment maps, Yu et al. [2] show photometric stereo results by

directly sampling the captured natural illumination. Ackermann et al. [75] implement

photometric stereo for outdoor webcams using a time-lapse video, and Abrams et

al. [76] show the necessity of using images taken over many months (thousands of

images) for sufficiently observing illumination variations. Jung et al. [77] develop

parameterized sun and sky lighting models to apply photometric stereo under outdoor

illumination. Their latter work [55] refines the sky model and obtains better normal

estimates on cloudy days. Shen et al. [78] provide an analysis about the limitation of

point light source modeling for 1-day outdoor photometric stereo. Hold-Geoffroy et

al. [1] show that outdoor observations recorded within a few hours could constrain a

reliable normal estimation.

3.2.3 Uncalibrated, directional lighting

Photometric stereo without calibrated lighting as known input is called uncalibrated

photometric stereo. Even if the lighting assumption is directional lighting, the solu-

tions to both surface normal and lighting are not unique due to some inherent ambi-

guities. The shape (or lighting) can be estimated up to a 3 × 3 linear ambiguity [58].

When the surface is integrable, this ambiguity further reduces to a 3-parameter Gener-

alized Bas-Relief (GBR) ambiguity under orthographic projection [79, 80] and vanishes

under perspective camera projection [81]. Existing methods focus on the estimation

of the 3 unknowns in GBR ambiguity to recover the normal estimates by using priors

on albedo [82, 83], detecting local maximum diffuse points [84], or reflectance sym-

metry [85, 86]. If multiview inputs are available, the directional lighting directions

could also be indirectly estimated, and photometric constraints are used to refine the

shape [87, 88]. The lighting can also be semi-calibrated with directions being provided
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Table 3.1 Summary of uncalibrated photometric stereo methods under natural illumi-
nation, where f , o, p, and k represent the numbers of images, spherical harmonic (SH)
lighting basis, valid pixels, and extracted patches, respectively. Our method solves
uncalibrated photometric stereo under a moderately flexible lighting model without
requiring a initial shape prior.

Method Initial shape Lighting
model

Lighting
parameter

Representation
power

[56] None Global SH f × 4 Weak
[3, 52] Depth sensor Global SH f × o Weak
[54] Visual hull [90] Global SH f × o Weak

[53, 91] MVGa Global SH f × o Weak
[92] Planarc SV-SHb f × 3 × p Strong
[93] Depth sensor SV-SH f × o × k Strong

Ours None SV-directional f × 3 × k Moderate
a Multiview geometry
b Spatially-varying (SV) spherical harmonic (SH) lighting
c The method [92] is validated by near-planar objects.

and intensities remaining unknown [89].

3.2.4 Uncalibrated, natural lighting

This is the most challenging category of lighting conditions since it is general and un-

known. Table 3.1 summarizes existing uncalibrated photometric stereo methods under

natural illumination. Brahimi et al. [56] approximate the shading of the whole surface

with a first-order SH globally, where the number of lighting parameters to be optimized

is 4f . With the integrability constraint, they show that the uncalibrated natural light

photometric stereo under perspective camera projection is well-posed. However, the

first-order SH is a simplified natural lighting representation. For the second-order SH

representation (o = 9), there is a 9 × 3 (= 27 unknowns) linear ambiguity in esti-

mated surface normals [94]. Unfortunately, this high-dimensional ambiguity cannot

be completely removed without additional information. Existing methods require ini-

tial shapes from depth sensor [3, 52], or multiview geometry [95] to make the problem

solvable. Recently, Haefner et al. [54] propose a variational optimization framework

to recover shape, reflectance, and illumination jointly. Although their method auto-
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matically initializes shape from silhouette [90], the embedded non-convex optimization

framework is still sensitive to the initialization of depth, albedo, and lighting vectors.

Compared to modeling the natural illumination for the whole surface with a global SH

lighting, existing methods [92, 93] propose spatially-varying spherical harmonic (SV-

SH) lighting models. Maier et al. [93] divide a surface into k patches and model the

per-patch SH lighting independently. Quéau et al. [92] further optimize the per-pixel

SV-lighting direction directly. Although the SV-SH model can accurately represent

the natural light, the uncalibrated photometric stereo becomes highly ill-posed due to

numerous unknown lighting parameters to be optimized. To make the problem solv-

able, these methods require dedicated shape initialization [92, 93] and non-physical

lighting regularization [92].

Similar to Maier et al. [93], our method models the natural illumination with SV-

directional lighting in local patches. As shown in Table 3.1, compared to the global

SH lighting approximation, our lighting model has a stronger representation power for

real-world natural illumination. Compared to the SV-SH model applied in Maier et al.

[93], the SV-directional model is less flexible. However, with this moderate flexibility

for natural lighting approximation and the physical assumptions on patches (uniform

albedo, non-planar shape), we can obtain patch surface normals without requiring a

shape initialization used in [93].

3.3 Normal estimation in local patch

Our method is based on the Lambertian image formation model under natural light.

We assume direct illumination (i.e., ignoring cast shadow, inter-reflection) and assume

the camera is radiometrically calibrated or has a linear response, i.e., the pixel bright-

ness equals to the scene radiance. Let us consider a photometric stereo image sequence

illuminated by f different environment maps. In default, for each valid pixel, we ex-

tract a patch Nk (k = {1, 2, . . . , p}, where p is the total number of pixels) centered at

the pixel location. In the following, we first approximate the illumination at a local
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Patch
size

Env.
Maps

Beach

Uffizi0

Grace

𝑟𝑟 = 1 𝑟𝑟 = 10 𝑟𝑟 = 30

𝑣𝑣 = 0.25° 𝑣𝑣 = 1.71° 𝑣𝑣 = 5.10°

Fig. 3.3 Illustration of environment lighting approximation. Patches highlighted by
concentric red circles contain varying radii r and mean angular difference of surface
normal v. For each patch, we draw the equivalent directional lighting directions (dot on
spheres) and intensities (red means strong while black means weak) for three different
environment maps (figures courtesy of [96]).

patch with an equivalent directional lighting model, and then estimate the surface

normals within the patch by conventional uncalibrated photometric stereo algorithms.

3.3.1 Equivalent directional lighting model

Given a scene point with Lambertian albedo ρ and surface normal n ∈ S2 ⊂ R3 , its

pixel brightness is written as

b =
∫

Ω
ρL(ω) max((n⊤ω), 0)dω, (3.1)
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where ω ∈ S2 ⊂ R3 is a unit vector in the visible hemisphere Ω, and L(ω) is the

environment lighting intensity from direction ω.

For any surface normal vector nk, it uniformly receives illumination from direction

ω sampled on the visible hemisphere Ωk = {ω | n⊤
k ω ≥ 0} of the environment map.

Then for any ω ∈ Ωk we may perform the spherical integration over Ωk to obtain the

pixel brightness:

bk = ρn⊤
k

∫
Ωk

L(ω)ωdω = ρn⊤
k l̄k, (3.2)

where l̄k denotes an equivalent directional lighting as the integral of all samples in Ωk,

and the subscript k indicates that for different surface normals, they face different

visible hemispheres and therefore correspond to different equivalent directional light-

ing. Note here n is a unit vector, but l̄ is not necessary of length one since it encodes

intensity scaled directional lighting direction.

We assume the surface normals in a small patch have similar directions. In this

way, the natural illumination does not show abrupt changes for scene points within

the patch. Given two surface normals within patch Nk, we measure their angular

difference as ⟨nk,i, nk,j⟩ = arccos(nk,i, nk,j). To evaluate surface normal’s variation in

a patch, we define the mean patch angular difference by vk = 1
pk

∑
i⟨nk,i, nk,c⟩, where

c is the patch center index and pk is the number of scene points in that patch. Then

for a surface patch with small mean angular difference vk, all surface normals should

share approximately the same visible hemisphere Ωk as well as l̄k, so their brightness

could be modeled by a single directional light as illustrated in Fig. 3.2. Similar lighting

representation has been applied in [1, 92].

We illustrate and verify our lighting assumption using a synthetic experiment.

Given a surface normal, we calculate its equivalent directional lighting by summing

up all samplings on its visible hemisphere of the environment map, and draw the in-

tensity and direction of such a lighting vector on the sphere as shown in Fig. 3.3. We

use a sphere normal map of 256 × 256 pixels (the radius of the sphere is 128 pixels

in the image domain) and calculate the equivalent lighting under three light probes
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from [96]. By selecting central patches with the radius of {1, 10, 30} pixels (indicated

as red circles), the mean angular difference of surface normals increases from 0.25° to

5.10°, leading to more scattered equivalent directional lighting distributions. For rela-

tively smaller patches (radius ≤ 10, around 300 pixels) whose surface normals having

smaller variation, the corresponding lighting vectors are highly concentrated. In such

case, it is safe for us to apply directional lighting assumptions in a patch-wise manner.

In the following computation, we neither know the direction and intensity of equiv-

alent directional lighting nor solve them explicitly, while we develop an uncalibrated

photometric stereo method to solve the surface normal directly.

3.3.2 Uncalibrated photometric stereo in local patch

Assume a local surface patch Nk is illuminated by f different equivalent directional

lighting Lk = [̄lk,1, l̄k,2, · · · , l̄k,f ]. Denote the matrix stacking all surface normal vectors

n⊤ in patch Nk in a row-wise manner as Nk, denote the patch albedo as ρk = [ρ1, · · · , ρpk
],

then the image brightness of this patch, denoted as Bk, could be written as follows

Bk|pk×f = diag(ρk)Nk|pk×3Lk|3×f , (3.3)

where diag(·) is a diagonalization operator and pk is the total number of pixels in

patch Nk. This representation is different from spherical harmonics for natural light,

where a high-dimensional matrix decomposition (9D decomposition for a second order

spherical harmonics) exists with unknown lighting [53, 94].

According to Eq. (3.3), for each patch the equivalent directional lighting model re-

lieves the problem to be the Lambertian photometric stereo under unknown directional

lighting, which is a well-studied research area with tractable solutions. So we perform

SVD on Bk, as it was done in classic uncalibrated photometric stereo methods [58].

The SVD decomposition gives us Bk = UΣV⊤, wherein ideal case Σ only contains

three non-zero diagonal elements. We further denote Ñk = U
√

Σ and L̃k =
√

ΣV⊤,

where Ñk and L̃k are pseudo surface normals and pseudo equivalent directional light-
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ing for each patch. Here, both the normal and lighting solutions contain an unknown

3 × 3 linear ambiguity, denoted as Qk, since any invertible matrix can be inserted

between Ñk and L̃k to maintain the equality.

As we work on small patches, it is safe to assume a piece-wise uniform albedo.

Suppose pixels within the patch Nk have the same albedo αk, i.e. ρk = αk1, the

pseudo surface normals for this patch should satisfy

∥ñk,iQk∥2
2 = ñk,iQ⊤

k Qkñ⊤
k,i = αk, (3.4)

where ñk,i ∈ R3 is the i-th (i = {1, 2, . . . , pk}) row vector of Ñk. Without losing

generality, we set αk = 1. As Yk = Q⊤
k Qk is an symmetric matrix, we can solve it if

the local patch contains at least 6 pixels with varying surface normals:

[
tri(ñk,1ñ⊤

k,1) · · · tri(ñk,pk
ñ⊤

k,pk
)
]⊤

︸ ︷︷ ︸
E

tri(Yk)︸ ︷︷ ︸
y

= 1, (3.5)

where tri(·) operator extracts the upper triangle matrix elements as a vector. The

residue ∥Ey − 1∥2
2 is recorded as ek

a to measure the reliability of uniform albedo as-

sumption. We conduct SVD on Yk such that Yk = ŨΣ̃Ũ⊤ and assign Q̂k as
√

Σ̃Ũ⊤.

Then we obtain pseudo surface normal map as N̂k = ÑkQ̂k. It has been proved

in [79, 83] that the uniform albedo constraint reduces the 3 × 3 linear ambiguity in

Ñk to an orthogonal one in N̂k such that

Bk = N̂kO⊤
k OkL̂k, (3.6)

where Ok ∈ O(3) is the orthogonal ambiguity that varying from patch to patch. N̂k

and L̂k are the pseudo surface normals and equivalent directional lighting up to an

orthogonal ambiguity w.r.t. their corresponding ground truth, i.e.,

N⊤
k = OkN̂⊤

k ,

Lk = OkL̂k.
(3.7)
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Non-uniform albedo across patches. As shown in Fig. 3.4(a), patches across

the boundary of different albedos cannot keep uniform albedo assumption. Also, the

natural illumination within patches near the feet and the ear part of the Bunny object

cannot be treated as equivalent directional lighting since the surface normals at these

regions vary significantly. Therefore, patch-wise surface normal estimates in these

regions are inaccurate, as visualized in Fig. 3.4(b). Here we first fit an orthogonal

matrix to align the patch-wise pseudo surface normals with the corresponding ground

truth. Then the mean angular error between aligned pseudo surface normals and

the truth surface normals are calculated to measure the patch-wise surface normal

estimation accuracy. Hereafter we denote this error map as patch surface normal

error map.

To reduce the influence of these inaccurate local surface normal estimates in the

following patch merging process, we define a confidence metric to measure the re-

liability of normal estimation. For a surface patch Nk, we evaluate the equivalent

directional lighting approximation by defining a normalized patch re-rendering error

ek
r = ∥Bk − N̂kL̂k∥2

F /∥Bk∥2
F and test the uniform albedo assumption by the residue

ek
a calculated from Eq. (3.36). Based on these two metrics ek

a and ek
r , we define the

surface normal estimation confidence of patch Nk as follows,

ck = e−(βek
r +γek

a), (3.8)

where β and γ are the coefficients used to balance ek
r and ek

a, and we set them as 5

and 0.5 empirically. As shown in Fig. 3.4(b-c), the confidence values of all patches are

consistent with the patch surface normal angular error map.

3.4 Graph-based patch merging method

For each patch, now we have estimated pseudo surface normal N̂k up to an orthogonal

ambiguity Ok, with surface normal confidence measured by ck. In this section, we

will discuss how to merge all the patches into an entire surface. Specifically, we first
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Fig. 3.4 An example of non-uniform albedo causing large errors across patches. (a)
Image observation of the Bunny object with non-uniform albedo. (b) Mean angu-
lar errors (degree) of the patch-wise pseudo surface normals w.r.t. the true surface
normals. Each pixel value encodes the mean angular error of the estimated surface
normals for the patch centered at that pixel location. (c) Confidence map of patch
surface normal estimation.

show consistent surface normal pair extraction from patch overlapping regions and

intensity profiles, followed by the calculation of relative orthogonal transformations

among patches. Taking relative orthogonal transformations as constraints, we intro-

duce MRF optimization and rotation averaging to solve the patch-wise orthogonal

ambiguities and merge the whole surface normal up to a global orthogonal ambiguity.

This global ambiguity is finally reduced to a concave/convex ambiguity by addressing

integrability.

MPM proposed in previous work [62] conducts this step by taking consistent sur-

face normal pairs as constraints and creating an angular distance matrix with its

element filled by propagating angular distance along the shortest path between every

surface normal pairs. The whole surface is then obtained by matrix factorization on

this angular distance matrix. Please refer to the original paper in [62] for details.

However, MPM suffers from error accumulation during the propagation process. Also,

the angular distance between two surface normals could be constrained by all possi-

ble paths connecting the corresponding scene points, only selecting the shortest path

to constraint surface normals cannot guarantee a globally optimized result. As dis-

cussed below, the newly proposed GPM avoids the accumulative error in MPM [62]

and optimizes all the patch connections simultaneously.
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Fig. 3.5 Illustration of consistent surface normal clustering. (a) Consistent surface
normal pairs are extracted from overlapping patch region Θ and scene point pair (q, s)
satisfies consistent orthogonality condition. (b) The relative orthogonal transformation
between patch Nk1 and Nk2 is calculated following the relationship between surface
normals in the overlapping patch region Θ (Eqs. (3.9) and (3.10)). (c) The relative
orthogonal transformation between patch Nk2 and Nk3 is extracted from the consistent
orthogonality condition between scene points q and s (Eqs. (3.13) and (3.14)).

3.4.1 Consistent surface normal clustering

As shown in Fig. 3.5(a), we provide three surface patches Nk1 ∼ Nk3 covering scene

points {w, p, q, s}. For any scene point p located at the overlapping region Θ =

Nk1 ∪ Nk2 shown in the highlight area, the true surface normals from different patches

at this point are consistent, i.e., ⟨nk1(p), nk2(p)⟩ = 0. In Fig. 3.5(b), we show the

relationship of surface normals in the overlapping region between two patches. The

unknown orthogonal ambiguities in patch Nk1 and Nk2 are denoted as Ok1 and Ok2.

Since the true surface normals in the overlapping region Θ are consistent, i.e., Ok1,k2 =

I, the pseudo surface normals of two patches in this region can be aligned by

Ôk1,k2 = O⊤
k2Ok1,k2Ok1 = O⊤

k2Ok1. (3.9)

Obviously Ôk1,k2 ∈ O(3) encodes the relationship between unknown orthogonal ambi-

guities of the two patches. We name it relative orthogonal transformation and it can
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be solved by aligning pseudo surface normals in the overlapping regions, i.e.,

Ô∗
k1,k2 = argmin

Ôk1,k2

∥Ôk1,k2N̂⊤
k1(Θ) − N̂⊤

k2(Θ)∥2
F ,

s.t. Ôk1,k2 ∈ O(3).
(3.10)

Equation (3.10) is an Orthogonal Procrustes problem and we follow Gower et al. [97]

to solve Ôk1,k2.

Besides finding consistent surface normal pairs via spatial overlaps, the existing

method [98] shows that pixels with strong correlation in their intensity profiles (an

ordered sequence of scene irradiance at a pixel across images) have the same surface

normals. This observation is proved to be valid under distant directional lighting.

However, given natural illumination, correlated intensity profiles do not necessarily

lead to consistent surface normals. A counter-example is a constant environment

map, i.e., L(ω) = c, under which all surface normals have correlated intensity profiles.

To approximately extend intensity profile constraint to natural lighting, we propose

a consistent orthogonality condition. For two disconnected scene points q and s as

shown in Fig. 3.5(a), if their surface normals and equivalent directional lighting can

be transformed by an orthogonal matrix simultaneously, i.e.,

Ok2,k3

[
nk2(q) Lk2(q)

]
=

[
nk3(s) Lk3(s)

]
, (3.11)

where Ok2,k3 ∈ O(3) is the orthogonal transformation, then O = I and both surface

normals and equivalent directional lighting for q and s should be consistent. Please

refer to Sec. 3.6.1 for a detailed analysis.

However, what we know from Sec. 3.3.2 are pseudo equivalent lighting and surface

normals of scene points, with unknown orthogonal ambiguities to the corresponding

ground truth. So we extend the consistent orthogonality condition to the pseudo nor-

mal and lighting case. Assume the pseudo equivalent directional lighting and surface
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normals of q and s can be aligned by an orthogonal matrix Ôk2,k3, i.e.,

Ôk2,k3

[
n̂k2(q) L̂k2(q)

]
=

[
n̂k3(s) L̂k3(s)

]
. (3.12)

Following the relationship shown in Fig. 3.5(c), the truth surface normals and equiv-

alent lighting between q and s can be simultaneously aligned by

Ok2,k3 = Ok3Ôk2,k3O⊤
k2 ∈ O(3), (3.13)

where Ok2 and Ok3 are the orthogonal ambiguities of the surface patches Nk2 and

Nk3 covering point q and s. Since Eq. (3.13) makes the consistent orthogonality

condition true (Ok2,k3 ∈ O(3)), the truth surface normals at scene points q and s are

consistent, i.e., Ok2,k3 = I, ⟨nk2(q), nk3(s)⟩ = 0. Therefore, Eq. (3.12) is an extended

consistent orthogonality condition to cluster consistent surface normals from pseudo

surface normals and pseudo equivalent directional lighting.

Based on Eq. (3.3), if the surface normals and equivalent lighting of two scene points

fit to the consistent orthogonality condition, their intensity profiles are correlated.

Therefore, to cluster consistent normals on the whole surface, we first filter scene point

pairs with correlated intensity profiles, and then check whether the pseudo surface

normals and equivalent directional lighting of each filtered point pair satisfy Eq. (3.12).

Similar to Ôk1,k2, Ôk2,k3 = O⊤
k3Ok2 also encodes the relationship of orthogonal am-

biguities between two surface patches. To calculate relative orthogonal transformation

between patch Nk2 and Nk3, we minimize the following energy function as an Orthog-

onal Procrustes problem [97].

Ô∗
k2,k3 = argmin

Ôk2,k3

∥Ôk2,k3Dk2(q) − Dk3(s)∥2
F ,

s.t. Ôk2,k3 ∈ O(3),
(3.14)

where Dk2(q) = [n̂k2(q) L̂k2(q)] and Dk3(s) follows the same definition.

To summarize, we collect consistent surface normal pairs from overlapping patch

regions and scene points satisfying consistent orthogonality conditions. Based on these
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consistent surface normal pairs, we extract the relative orthogonal transformations

which describe the relationship between unknown patch-wise orthogonal ambiguities.

All relative orthogonal transformations form a set So, which will be used as edges in

the following orthogonal ambiguity graph building process.

3.4.2 Constructing orthogonal ambiguity graph

We create an orthogonal ambiguity graph Go = {V , E} (where V is the set of all nodes

and E is the set of all edges connecting nodes) to build the connections among patches.

As shown in Fig. 3.2, the nodes of a orthogonal ambiguity graph are filled with the

unknown orthogonal ambiguities Ok from all patches. The relationship between or-

thogonal ambiguities can be represented by relative orthogonal transformations, as

shown in Eq. (3.9). Therefore we apply all the elements in relative orthogonal trans-

formation set So to build the edges E of Go. Given surface normal estimation confidence

ci and cj of patch Ni and Nj calculated from Eq. (3.8), we further define the edge

confidence as ci,j = cicj. Intuitively, if the normal estimations of two patches are

reliable, we tend to trust the relative orthogonal transformation between them.

Based on the orthogonal ambiguity graph, we optimize the patch-wise orthogonal

ambiguities via the following minimization:

O∗
1, · · · , O∗

p = argmin
O1,··· ,Op

∑
i,j∈E

µ(O⊤
j Oi − Oi,j),

s.t. Oi ∈ O(3).
(3.15)

where µ(·) is a distance measure between two orthogonal matrices in O(3). Directly

solving Eq. (3.15) is non-trivial, so we decompose the orthogonal ambiguity O into

two parts: binary ambiguity d = |O| ∈ {+1, −1} and rotation ambiguity R ∈ SO(3).

Correspondingly, the orthogonal ambiguity graph can also be divided into binary am-

biguity graph Gb and rotation ambiguity graph Gr as shown in Fig. 3.2. Based on these

two graphs, we recover the patch-wise orthogonal ambiguities by solving their binary

ambiguity part and rotation ambiguity part one after another.
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3.4.3 Optimizing binary ambiguity graph

In binary ambiguity graph Gb, the node value di and the edge value di,j are calculated

from the determinate of the orthogonal ambiguity Oi and the relative orthogonal

transformation Oi,j, respectively. Following Eq. (3.15), the binary ambiguities existing

in nodes should satisfy

{d∗
1, · · · , d∗

p} = argmin
d1,··· ,dp

∑
i,j∈E

(didj − di,j)2,

s.t. di ∈ {−1, 1}.

(3.16)

Equation (3.16) can be interpreted as assigning each node of the undirected graph

Gb a label defined on {−1, 1}. Therefore we formulate the problem as maximizing a

posteriori estimation of binary MRF [99], with the energy function defined as

E(d) =
∑
i∈V

E1(di) + η
∑

i,j∈E
E2(di, dj),

s.t. di ∈ {−1, 1},

(3.17)

where coefficient η is used to balance the data term E1 and the smoothness term E2,

i and j represent node indexes. We define the node with maximum degrees in Gb as

the root node and set its binary ambiguity as 1, then our data term is defined as

E1(di) =

 ∞ di = −1, i = r

0 others
, (3.18)

where r is the index of the root node. Following Eq. (3.16), we define the smoothness

term as

E2(di, dj) =

 ∞ didj ̸= di,j

1 − ci,j didj = di,j

, (3.19)

where ci,j is the confidence of the edge connecting i-th and j-th node. Given the

definition of the data term and the smoothness term, we minimize the energy function

Eq. (3.17) with TRW-S algorithm [100]. Note that, since the binary ambiguity in the
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root node could be either −1 or 1, the solved binary ambiguities in all nodes can only

be optimized up to a global binary ambiguity.

3.4.4 Optimizing rotation ambiguity graph

With binary ambiguity solved, the orthogonal ambiguity in each node is reduced to

rotation ambiguity. Guided by Eq. (3.15), we solve the rotation ambiguity via the

following optimization:

{R∗
1, · · · , R∗

p} = argmin
R1,··· ,Rp

∑
i,j∈E

χ(µ(R⊤
j Ri, Ri,j)),

s.t. Ri ∈ SO(3),

where µ(·) is a distance measure between two rotations in SO(3) and χ(·) is a loss

function defined over this distance measure. This optimization belongs to the rotation

averaging problem [60]. Similar to Sec. 3.4.3, we fix the rotation ambiguity of the root

node as identity, and follow Chatterjee et al. [101] to optimize the rotation ambiguity

in each node. During the rotation averaging optimization, we apply geodesic distance

measurement for µ(·) and choose Cauchy loss function rather than ℓ2 loss function for

χ(·) to improves the robustness when outliers exist in relative rotation transformation

Ri,j. Since the true rotation ambiguity of the root node is unknown, we can only solve

per-patch rotation ambiguities up to a global rotation ambiguity.

After solving rotation ambiguities, we rotate all the patch-wise pseudo surface

normals and average the normals in the overlapping regions to get a complete pseudo

surface normal map N̂. Compared to the ground truth, pseudo surface normal map N̂

has two ambiguities left: a global binary ambiguity and a global rotation ambiguity.

We combine the two ambiguities as a global orthogonal ambiguity Og.

So far, estimated N̂ contains only a global ambiguity w.r.t. the true surface nor-

mal map. This ambiguity can be reduced to a convex/concave ambiguity by forcing

integrability constraint as suggested in [65]. The corresponding proof and the de-

tailed steps for estimating the global ambiguity can be found in the Sec. 3.6.2. The
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Fig. 3.6 Synthetic dataset. Environment maps (visualized as light probes) from sIBL
Archive are shown in the top row. Below we show ground truth normals for three
objects in the first column and examples of rendered images in other columns corre-
sponding to the environment maps above.

remained binary convex/concave ambiguity in our surface normal estimation result

could be easily removed manually.

3.5 Experimental results

We first use synthetic data to verify the quantitative accuracy of our method, followed

by a comparison between the newly proposed graph-based patch merging method (GPM)

and previous matrix-based patch merging method (MPM) [62]. Finally, we show a

comparison with existing methods on real-world data.

3.5.1 Synthetic data setup

We collect 31 real-world environment maps from the sIBL Archive1 as natural illu-

mination sources, which include diverse natural illumination from both indoor and

outdoor scenarios. We use Blender [102] as rendering engine and choose three objects

– Sphere, Bear (from [68]) and Bunny (with increasing geometric complexity) – to
1http://www.hdrlabs.com/sibl/archive.html
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Fig. 3.7 Comparisons between different environment lighting approximation model
shown in Table 3.1. The top row shows the shading maps and the bottom row provides
the absolute error maps and the mean absolute error value of approximated shadings.

render Lambertian reflectance with white albedo under natural illumination. The im-

age resolution of the three objects is fixed to 160×160. Ground truth surface normals

and sample images in our synthetic dataset are shown in Fig. 3.6.

3.5.2 Representation power of lighting model

As shown in Table 3.1, the lighting models used in existing methods include global

SH [54] and SV-SH [93]. We compare the representation power of these two models

with our SV-directional equivalent lighting model. Figure 3.7 shows the comparison

on an example environment map and its corresponding shading under Lambertian

reflectance. Taking the ground-truth shading and surface normal as input, we extract

3 × 3 patches and calculate our equivalent lighting direction for each patch. Then

we assign it as our approximated lighting direction at the patch center. To compare

with SH-based lighting models, we render the shading map with our approximated

lighting directions as shown in the third column of Fig. 3.7. At the same time, we

calculate the second-order global SH lighting coefficients to approximate the shading

given the ground truth surface normal. We also divide the image into patches and

estimate SV-SH lighting to approximate the patch shading in a similar manner to our
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SV-directional model. The absolute error maps w.r.t. the ground-truth shading are

shown in the second row of Fig. 3.7. For representing the natural light in a local patch,

the SV-SH model [93] applies spherical harmonic lighting, which is more flexible than

a single directional light [56] used in our SV-directional model. Therefore, the SV-SH

model has relatively higher approximation accuracy compared to ours. On the other

hand, both models are more accurate than the global SH model [54] as the natural

illumination is spatially-varying.

3.5.3 Lighting model verification

The local surface normal estimation in our method requires the illumination on a

patch to be directional light. Theoretically, if the surface normals within a patch have

the same direction, its natural illumination is equivalent to a single directional light.

However, when surface patches contain diverse normal directions, it is unclear whether

a single equivalent lighting direction represents the patch illumination accurately. In

Sec. 3.3.1, we have defined the mean angular difference of surface normals (denoted

as vn) to evaluate the normal variations in a local patch. Similarly, we can also

define the mean angular difference of equivalent lighting directions (denoted as vl̄)

corresponding to the patch surface normals. This metric can be seen as the error using

a single equivalent lighting direction to approximate the natural illumination within

the patch. As shown in Fig. 3.8, we provide a statistic analysis for vl̄ w.r.t. that of

surface normals vn on local patches. The green bar indicates the median value, the top

and bottom bounds of the black box indicate the first and third quartile values, and

the top and bottom ends of the vertical blue line indicate the minimum and maximum

mean angular difference of equivalent lighting direction. Generally, if a local patch has

a larger normal variation, its illumination is less accurately approximated by a single

equivalent lighting direction.

We also investigate the influence on local surface normal estimation accuracy when

we treat the patch illumination as an equivalent directional light. Given a surface

patch, we first approximate the patch illumination with the equivalent lighting direc-
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Fig. 3.8 Evaluation of equivalent lighting model. Left row provides the mean angular
difference of equivalent lighting directions vl̄ within a 3×3 patch w.r.t. that of surface
normals vn in the corresponding range shown in x-axis. The right row provides the
mean angular error of patch normal estimation w.r.t. vn.

tion of the patch center, then estimate the patch surface normals with this approx-

imated lighting and calculate the mean angular error w.r.t. the ground truth. The

second row of Fig. 3.8 shows the statistic summary of patch surface normal estimation

error w.r.t. the mean angular difference of patch surface normals. Although larger

surface normal variation will make our equivalent lighting model approximation more

difficult, the patch surface normal estimation errors from the approximated lighting

direction remain at a low level ((mean angular error < 1.5°).

3.5.4 Performance under varying lighting conditions

We provide the evaluation of Ours (MPM) [62] and Ours (GPM) on synthetic data

under varying numbers of environment lights. As shown in Fig. 3.9, we select 10 and

15 subsets of environment maps out of 20 in sIBL dataset to test how the normal

estimation accuracy varies with lighting conditions. From the angular error distri-

butions of the Sphere object, by increasing the image observations under varying

natural lights, the surface normal estimation errors become smaller. The table shown

in Fig. 3.9 further provides the evaluation of MPM [62] and GPM on all three syn-

thetic objects. The error values become larger for the Bear and Bunny compared

to the smooth shape of Sphere, which is caused by the difficulty in approximating

equivalent directional lighting on shape patches with rapid normal variation. The



58 Photometric Stereo under Uncalibrated Natural light

#Light 10 15 20

O
ur

s
(M

PM
)

O
ur

s
(G

PM
)

20

0

Object Method f = 10 f = 15 f = 20

Sphere Ours (MPM) 8.87 6.42 3.97
Ours (GPM) 4.47 3.29 2.75

Bear Ours (MPM) 17.13 15.20 14.78
Ours (GPM) 8.93 8.39 7.89

Bunny Ours (MPM) 18.09 16.78 15.21
Ours (GPM) 10.44 9.01 8.69

Fig. 3.9 Comparison between different patch merging methods (MPM & GPM) under
varying numbers of lights (10, 15, and 20). The top two rows show the angular error
distributions from Ours (MPM) and Ours (GPM) of the Sphere object. The table
below provides the mean angular errors (in degree) w.r.t. the ground truth.

mean angular errors shown in the table tell that generally a larger number of input

images and more diverse lighting distributions lead to more accurate surface normal

recoveries. We have also tried further increasing the number of environment maps up

to 31, but the improvement is rather unobvious, so we fix the number of input images

as 20 for the experiments on synthetic data hereafter.

We also observe that under varying lighting conditions and object shapes, Ours (GPM)

has a smaller mean angular error compared to Ours (MPM) [62]. It verifies that

compared to the local shortest path searching strategy used in MPM, GPM’s global

optimization on all connections among patches via MRF optimization and rotation

averaging can achieve more accurate surface normal estimation results.
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Fig. 3.10 Ablation study on the Bear case. The top row shows the error map of normal
estimates at each stage of Ours (GPM). The bottom row gives the binary ambiguity
estimation, where the blue and green pixels correspond to binary ambiguity {1, −1},
respectively. The difference between (e) and (f) is shown in (g). About 6.2% patches
have wrong binary ambiguity estimation.

3.5.5 Ablation study

As shown in Fig. 3.2, our method mainly contains three stages: local surface normal

estimation, patch merging including MRF optimization and rotation averaging, and

global ambiguity determination. Taking the Bear as an example, we analyze the

error of estimated surface normal maps from each stage.

In the first stage, the patch-wise surface normals are solved up to local ambigui-

ties. We first resolve these orthogonal ambiguities by aligning the estimated surface

normal to the ground truth in each patch and then merge aligned patch normals to

build a complete surface normal map. The angular error map of this surface nor-

mal map shown in Fig. 3.10(a) verifies that normal estimation error brought by the

first stage is 1.63°. We can see that inaccurate local surface normal estimates mainly

occur at regions with large normal variations, such as the neck and leg parts of the

Bear, where the equivalent lighting approximations are inaccurate. These inaccurate
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local surface normal estimates further influence the rotation ambiguity and binary

ambiguity estimation in the second stage. Figure 3.10(b) and (c) show the angular

error maps of GPM’s surface normal estimation (up to a global ambiguity) with esti-

mated and the ground truth binary ambiguities shown in Fig. 3.10(e) and (f). After

resolving the patch-wise orthogonal ambiguities with MRF optimization and rotation

averaging, surface normal estimation error has increased to 7.32°, in which MRF op-

timization contributes 0.37° and rotation averaging contributes 5.32°. As shown in

Fig. 3.10(g), 6.2% of the patches have wrong binary ambiguity estimation and they

are mainly distributed at regions with inaccurate local normal estimates. Our com-

plete solution achieves 7.89°, where the error brought by solving the global ambiguity

with integrability is 0.57°.

3.5.6 Comparison with existing methods

Based on the synthetic dataset shown in Fig. 3.6, we compare our method with existing

methods [54] (denoted as “HY19") and [3] (denoted as “HP19") on surface normal

estimation. HY19 [54] is the state-of-the-art method for uncalibrated photometric

stereo under natural lighting. HP19 [3] also recovers detailed shape from a rough

depth map taking image observations under unknown natural light as reference. As

both HY19 [54] and HP19 [3] require depth initialization, we apply OT12 [90] to

generate rough shapes from input images and use them to initialize HY19 [54] and

HP19 [3]. As shown in Fig. 3.11, the surface normal estimates from HP19 [3] are

influenced by its initial shape generated by visual hull [90]. HY19 [54] returns better

results from the shape initialization. However, its normal estimates’ accuracy is still

limited by the global SH lighting approximation. In comparison, Ours (GPM) adopts

a more flexible SV-directional equivalent lighting model and merges local patches by

optimizing all patch connections, therefore achieves the most accurate surface normal

recoveries among all the methods.
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Fig. 3.11 Comparison with existing methods on synthetic data shown in Fig. 3.6. Even
rows show the estimated surface normal maps, and odd rows show the corresponding
angular error maps and the mean angular error values in degree.
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3.5.7 Influence of SV-albedos and shadows

We have tested our method on objects with uniform albedo. Our method can also

be applied to objects with spatially-varying albedos as long as abrupt albedo changes

are not observed within the patch. In Fig. 3.12, the image observations of the first

two columns are rendered with non-uniform albedo maps. Compared to the normal

estimates for uniform albedo shown in Fig. 3.11, the piecewise constant albedo distri-

bution only increases the estimation error from 8.69° to 9.31°. These errors are mainly

brought by the patches across the albedo variation edges. Our method fails to output

accurate surface normal estimates (error becomes 34.70°) for general spatially-varying

albedo distribution as uniform albedo assumption is not valid for all patches.

We also evaluate the influence of cast shadows. Comparing the error distribu-

tion with and without the cast shadow, we observe less accurate surface normal es-

timates (mean angular error increases to 11.28°) around the Bunny’s neck and foot

regions, where cast shadows bring errors to the local surface normal estimation. On the

other hand, when the environment maps include abrupt changes such as high-frequency

light sources, the lighting directions for a surface patch have more variations as the

visibility hemispheres of two surface normals may include/exclude a high-frequency

(the extreme case is a single point light source) light source. As shown in the last

column of Fig. 3.12, we add 100 small synthetic point light sources to all of the 20 en-

vironment maps. As the illumination for a local patch cannot be treated as equivalent

directional lighting, the normal estimation error has increased from 8.69° to 14.59°.

3.5.8 Time and memory consuming

Table 3.2 shows the memory and time usage of our method with two different patch

merging strategies on the three synthetic data shown in Fig. 3.6. Given p nodes

and q edges of the orthogonal ambiguity graph, the memory usage in the GPM is

9(p + q) because the 3D orthogonal matrix has 9 elements. Since the nodes are locally

connected in our orthogonal ambiguity graph, it’s reasonable to assume q = kp, k ≪ p,
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Fig. 3.12 The accuracy of Ours (GPM) is influenced by non-uniform albedos, cast
shadows and environment maps with abrupt changes.

therefore the memory complexity in GPM is belong to O(9p + 9kp) = O(p). On the

other hand, given p pixels, the angular distance propagation matrix has a dimension

of p × p, which leads the memory complexity in MPM [62] to be O(p2). Therefore,

our GPM is more memory efficient compared to MPM [62]. Besides, the angular

propagation matrix in MPM is built from the shortest path searching between every

surface normal pairs, which leads to the time complexity C2
pO(p log(p)) = O(p3 log(p)).

The time complexity in GPM is related to the iterations of rotation averaging and

MRF optimization. Therefore it is hard to represent the time cost in a theoretical

way. From the experiments on the three objects shown in Table 3.2, GPM runs about

3 times faster than MPM [62] in average.

3.5.9 Experiments on real-world dataset

In this section, we evaluate and compare our method using real-world data. We first

introduce three real datasets and their data capturing process for recording image data

under varying natural illuminations. Then we give the shape estimation results from
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Table 3.2 Comparison on Memory and Time Usage.

Method Sphere Bunny Bear Average

Memory Usage Ours (GPM) 0.029 0.041 0.043 0.038
(MB/pix) Ours (MPM) 0.157 0.189 0.175 0.174

Time Usage Ours (GPM) 11.64 11.14 11.16 11.31
(ms/pix) Ours (MPM) 52.35 27.20 28.07 35.87

existing methods and ours.

Real dataset We choose three real-world dataset from [2] (denoted as “YY13"), [1]

(denoted as “HJ15") and HP19 [3]. To obtain image data under varying natural il-

luminations, YY13 [2] fixes the relative position between the target objects and the

camera while moving the whole setup to different places with different natural envi-

ronments; HJ15 [1] captures object appearance within one day (6 hours) in an outdoor

environment; HP19 [3] records images under an uncalibrated indoor environment and

changes the natural lighting condition by additionally moving a point light source. The

datasets from YY13 [2] and HJ15 [1] have a mirror sphere to calibrate the environment

maps, but such information is not used in our method.

Experimental results Surface normal estimation results using Owl (66 images)

object from [1] is shown in Fig. 3.13. We use the ground truth normal provided by the

authors and make a quantitative comparison with existing methods. Surface normal

estimates from HP19 [3] and HY19 [54] have large mean angular errors due to the in-

accurate initial shape from OT12 [90]. The result obtained from MPM [62] generally

looks noisier, but it is quantitatively better than the calibrated result from HJ15 [1],

especially in local regions near the Owl’s eyes where HJ15 [1] shows large errors.

Compared to MPM [62], GPM further improves the surface normal estimation accu-

racy at the body and contour region of the Owl, since all the local patch connections

are globally optimized during the MRF optimization and rotation averaging.

We show the shape estimation results using Horsehead (7 images), Chef (multi-

albedo, 7 images), and Mother&baby (10 images) objects from YY13 [2] in Fig. 3.14.
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Fig. 3.13 Quantitative comparison on real data from HJ15 [1]. The numbers on the
top of error maps are mean angular errors.

Since we do not have the ground truth for these data, we can only qualitatively

compare our results with them by integrating estimated normal fields to the depth map

with [44]. Referring to the geometry recovering results, the shape of the Horsehead

and the Chef recovered from YY13 [2] are near flat, and the estimated head part of

the Mother&baby by YY13 [2] is distorted. Compared to YY13 [2], both MPM

and GPM produce more visually plausible shape estimates without knowing anything

about the lighting conditions. Besides, on the neck part of the Horsehead, the body

part of the Chef and the arm and baby part of the Mother&baby, GPM further

outperforms MPM [62].

Figure 3.15 shows the shape recovery results of 8 challenging scenes from HP19 [3],

where each data includes 20 high resolution (1280×720) images captured under uncal-

ibrated daylight and moving point light sources. PH17 [52], HP19 [3] and HY19 [54]

directly produce depth output with given initial object shape, and achieve visually

plausible shape recoveries on all the eight scenes. Compared with these three meth-
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Fig. 3.14 Qualitative comparison on real data from YY13 [2]. Viewpoints are adjusted
to emphasize the shape distortions.

ods, MPM and GPM are free of depth initialization. Following Quéau et al. [44], we

integrate estimated surface normal from GPM and MPM to the depth. The results

show that both methods obtain reasonable results on Face1, Face2 and Backpack.

Compared to the state of the art HY19, our GPM produces comparable shape esti-

mation in the case of Shirt and even better result on the Vase by providing richer

geometry details. The Tabletcase and Ovenmitt are two flat objects with SV-

albedos. Surface normals of these two objects have nearly the same directions within

a local patch, which is a degenerate case for solving uncalibrated photometric stereo

(Sec. 3.3.2). Also, the complex shape of Rucksack brings large surface normal vari-

ations in local patches, which violates the equivalent directional lighting assumption.

Therefore, both GPM and MPM fail on these three scenes.
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Fig. 3.15 Qualitative comparison on real data from HP19 [3]. GPM achieves compa-
rable results with PH17 [52], HY19 [3] and HP19 [54] on scenes above the dotted line.
The three scenes below the dotted line are the failure cases for both GPM and MPM.
Note that PH17 [52], HY19 [3] and HP19 [54] require a shape prior as initialization,
while GPM and MPM avoid that requirement and directly estimate surface normal
from images.
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3.6 Discussion

In this section, we will present the details of consistent surface normal clustering via

intensity profiles, method of resolving the global orthogonal ambiguity, and the robust

strategy for local surface normal estimation of planar patches.

3.6.1 Consistent orthogonal condition

Assume surface normals at two scene points q and s are n(q) and n(s). The equivalent

lighting of these two scene points under f environment maps are

l̄t(q) =
∫

Ω(q)
Lt(ω)ωdω,

l̄t(s) =
∫

Ω(s)
Lt(ω)ωdω,

(3.20)

where Lt(ω) : R3 → R represents light intensity of t-th environment map under a unit

direction ω ∈ S2 ⊂ R3, Ω(q) and Ω(s) are the visible hemispheres corresponding to

the two surface normals,

Ω(q) = {ω | n⊤(q)ω ≥ 0},

Ω(s) = {ω | n⊤(s)ω ≥ 0}.
(3.21)

As shown in Fig. 3.16(d-e), Since n(q) and n(s) are two unit direction, there must

exists an orthogonal matrix O ∈ O(3) such that On(q) = n(s). As a result, the two

corresponding visible hemispheres can also be aligned by O,

Ω(s) = {ω | n⊤(s)ω ≥ 0}

= {ω | n⊤(q)O⊤ω ≥ 0}

= {Oω | n⊤(q)ω ≥ 0}.

(3.22)

In other word, for any ω ∈ Ω(q), Oω ∈ Ω(s). If the consistent orthogonality condition

is satisfied on these two scene points, both surface normal and equivalent lighting can
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Fig. 3.16 (a) and (b) visualize the f environment maps of two visible hemispheres under
distinct surface normals shown in (d) and (e). (f) shows the equivalent differential
lighting δ̄l1 ∼ δ̄lf defined by the spherical integral of environment lighting intensity
difference illustrated in (c).

be aligned by the same orthogonal matrix, i.e.,

On(q) = n(s)

Ol̄t(q) = l̄t(s) ∀t ∈ (1, f)

O⊤O = I

. (3.23)

With consistent surface normals and equivalent lighting, the intensity profiles of scene

point q and s are correlated. Therefore, correlated intensity profiles between scene

points are the necessary condition of the consistent orthogonality condition.

Combining Eq. (3.20) with Eq. (3.23) we have

Ol̄t(q) − l̄t(s)

= O
∫

Ω(q)
Lt(ω)ωdω −

∫
Ω(s)

Lt(ω)ωdω

= O
∫

Ω(q)
Lt(ω)ωdω −

∫
Ω(q)

Lt(Oω)(Oω)dω

= O
∫

Ω(q)
[Lt(ω) − Lt(Oω)]ωdω

= Oδ̄lt = 0.

(3.24)
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We denote δ̄lt as equivalent differential lighting, which represents the spherical integral

of the differential environment lighting intensity over the visible hemisphere Ω(p), as

shown in Fig. 3.16. Since O is an invertible matrix, the consistent orthogonality

condition leads to zero equivalent differential lighting.

Obviously, when surface normals at q and s are consistent, zero equivalent differen-

tial lighting can be satisfied as they have the same equivalent lighting. Under the case

of n(q) ̸= n(s), the consistent orthogonality condition requires all the f environment

maps illuminating these two scene points satisfying the following condition:

∫
Ω(q)

[Lt(ω) − Lt(Oω)]ωdω = 0, ∀t ∈ (1, f). (3.25)

It is difficult to analytically prove that unequal surface normal pairs cannot satisfy

the consistent orthogonality condition, since Eq. (3.25) is related to the light intensity

Lt(ω) from f unknown environment maps. As shown in Fig. 3.16, real-world environ-

ment maps are natural HDR images without following any regular distribution. Also,

as we increase the environment lighting amount f , Eq. (3.25) becomes more difficult

to achieve. Therefore, we provide a statistical analysis on real-world environment

maps to verify whether inconsistent surface normal paris may satisfy the consistent

orthogonality condition.

To begin with, we first define a “consistent orthogonal error” d(q, s) to evaluate

whether the light and surface normal of scene points q and s fit to the consistent

orthogonal condition. It can be defined as the mean angular error between vector

set [n(s), l̄1(s), l̄2(s), · · · , l̄f (s)] and [On(q), Ol̄1(s), Ol̄2(s), · · · , Ol̄f (s)], where O is an

orthogonal matrix that aligning the equivalent lights and surface normals between the

two scene points. We consider the two scene points satisfy the consistent orthogonal

condition if their consistent orthogonal error is less than a setting threshold.

We collect 31 real-world environment maps from sIBL Archive, and uniformly

sample 151256 distinct surface normal directions from a sphere and pre-compute the

equivalent lightings for each normal direction of all the 31 environment maps. We set

the threshold for consistent orthogonal error as 0.01° and summarize the mean angular
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Fig. 3.17 Surface normal clustering error w.r.t. different environment lighting numbers
f , with the consistent orthogonality condition satisfied. The statistics of angular errors
are displayed using the box-and-whisker plot: The green bar indicates the median
value, the top and bottom bounds of the black box indicate the first and third quartile
values, and the top and bottom ends of the vertical blue line indicate the minimum
and maximum errors.

error of surface normals satisfying the consistent orthogonal condition w.r.t. different

numbers of environment lights in Fig. 3.17. As an example, in the case of 15 natural

lightings, we randomly sample 15 out of 31 environment maps for 20 times to obtain

20 different environment map groups. For each group, we first extract scene point

pairs whose surface normal and equivalent lighting directions satisfy the consistent

orthogonality condition. Then we record the surface normal angular error of matched

scene point pairs. The mean angular error on all the 20 groups are only 0.027 degrees,

which are quite small numbers.

From the statistic in Fig. 3.17, the surface normal clustering errors with the consis-

tent orthogonality condition on different number of environment maps are near zero.

Therefore, From a practical point of view, it is sufficiently safe to say that under

real-world natural lighting, if surface normals and the equivalent distant lighting di-

rections of two scene points satisfy the consistent orthogonality condition, the two

surface normals and the equivalent lightings have the same directions.
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3.6.2 Resolving the orthogonal ambiguity via integrability

After local surface normal estimation and patch merging process, we can obtain a

complete surface normal map up to a global orthogonal ambiguity. As discussed in [65,

79, 84], this global orthogonal ambiguity can be reduced to a convex/concave binary

ambiguity by addressing the surface integrability constraint. In the following, we first

give the proof and then present the steps to solve the global orthogonal ambiguity.

Proof of resolving orthogonal ambiguity After merging patch surface normals

by optimizing the binary ambiguity graph and the rotation ambiguity graph, we obtain

a complete surface normal map N̂ up a global orthogonal ambiguity Og such that

N = OgN̂. (3.26)

Following Belhumeur et al. [79], if the surface normal n satisfies the integrability

constraint,then

∂

∂x

(
n2

n3

)
= ∂

∂y

(
n1

n3

)
,

n3
∂n2

∂x
− n2

∂n3

∂x
= n3

∂n1

∂y
− n1

∂n3

∂y
.

(3.27)

Denoting the three rows of the orthogonal ambiguity Og as o1, o2, and o3, Substituting

Eq. (3.26) to Eq. (3.27), we obtain the following equality:



n̂3n̂2y − n̂2n̂3y

n̂1n̂3y − n̂3n̂1y

n̂2n̂1y − n̂1n̂2y

n̂2n̂3x − n̂3n̂2x

n̂3n̂1x − n̂1n̂3x

n̂1n̂2x − n̂2n̂1x



⊤

o1 × o3

o2 × o3

 = 0, (3.28)

where × denotes the cross product operator, the subscript x, y represent the partial

derivatives in two directions. As the pseudo surface normal for the complete surface
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is known, we stack Eq. (3.28) for all scene points and obtain a homogeneous linear

system Ax = 0. The non-trivial solution of x is then obtained via SVD on A, result

in the cross product estimates c13 and c23 up to a scale k, i.e.

o1 × o3 = kc13

o2 × o3 = kc23.
(3.29)

On the other hand, as the rows of orthogonal ambiguity Og, o1 ∼ o3 are unit vectors.

Therefore, we can solve the scale k up to a sign ambiguity. As the determinant of

Og can be either 1 or −1, there are 4 candidates of Og satisfying both orthogonal

constraint and integrability constraint, denoted as Og1 ∼ Og4 below:

Og1 = 1
k


c⊤

23

−c⊤
13

−c23 × c13

 , Og2 = 1
k


−c⊤

23

c⊤
13

−c23 × c13

 ,

Og3 = 1
k


−c⊤

23

c⊤
13

c23 × c13

 , Og4 = 1
k


c⊤

23

−c⊤
13

c23 × c13

 .

(3.30)

Obviously, we have Og1 = −Og3, Og2 = −Og4. As the ground truth surface normal

should have the same direction of camera view, two of the four orthogonal ambiguity

candidates are chosen to guarantee the recovered shape to be in front of the camera.

Therefore, the global orthogonal ambiguity can be resolved up to a binary choice of the

remained two candidates. In the geometry side, this binary ambiguity corresponds to

the classical concave-convex ambiguity that occurs in shape from shading [103]. The

conclusion is also consistent with previous methods [65, 79, 84].

Solving the orthogonal ambiguity Ideally, the estimated c13 and c23 from the

homogeneous linear system derived from Eq. (3.28) should comply with the constraint

that c⊤
13c23 = 0. Due to the error introduced by the finite difference and the inaccurate

pseudo surface normals included in Eq. (3.28), the above constraint cannot be satisfied.
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Therefore, we formulate an optimization to address both orthogonal constraint of Og

and the integrability constraint:

argmin
x

∥Ax∥2
2,

s.t. x⊤C⊤
1 C1x = 1,

x⊤C⊤
2 C2x = 1,

x⊤C⊤
1 C2x = 0,

(3.31)

where C1 = [I, 0], C2 = [0, I], and I ∈ R3 is an identity matrix. However, the above

minimization is non-convex and hard to optimize. As the O(3) group is compact, we

solve the orthogonal ambiguity in a discrete Hypothesis-and-Test manner.

As the integrability constraint is invariant from the concave/convex ambiguity, we

can first solve the rotation ambiguity from the global orthogonal ambiguity and then

choose the correct one from Eq. (3.30). Without loss of generality, we decompose the

rotation ambiguity matrix R into three sub-rotations

R = RzRyRx, (3.32)

where Rx, Ry, Rz are rotation matrices along x, y, z axes, corresponding to the rotation

angle θx, θy, θz, respectively. Suppose the ground-truth rotations of Rx, Ry are known,

we can get pseudo surface normal Ñ up to an rotation along the z-axis such that

N = RzRyRxN̂ = RzÑ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 Ñ. (3.33)

Combine Eqs. 3.28 with Eqs. 3.33, we have

ñ2ñ3y − ñ3ñ2y − ñ3ñ1x + ñ1ñ3x

ñ2ñ3x − ñ3ñ2x − ñ1ñ3y + ñ3ñ1y


⊤ sin θz

cos θz

 = 0. (3.34)

Stacking Eq. (3.34) for all pixels, we obtain a constrained optimization system about
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θz as follows

argmin
y

∥By∥2
2, s.t. ∥y∥2

2 = 1, (3.35)

where y = [sin θz, cos θz]⊤. The above optimization can be formulated as a generalized

Eigenvalue problem which has a unique solution [104].

Therefore, we sample different pairs of rotations Rx and Ry, and then solve Rz with

the integrability constraint. For each group of Rx, Ry, Rz, we record integrability cost

as ∥By∥2
2 from the optimization in Eq. (3.35). The rotation ambiguity is correspond-

ing to the group with the smallest integrability cost. As shown in Algorithm 1, we

summarize how to resolve the rotation ambiguity based on the integrability constraint.

With estimated rotation ambiguity R, we can now build the four possible orthog-

onal ambiguity candidates shown in Eq. (3.30). Given the prior that the ground-truth

surface normals have positive z elements in the viewer-oriented coordinate system, we

remove two of the four candidates, and the remaining orthogonal ambiguity candidates

correspond to the convex/concave ambiguity.

Algorithm 2: Solve rotation ambiguity with integrability
Input : Max rotation angles θm

x , θm
y along x and y axes

Output: Rotation ambiguity R
Initialization: Initial best cost cs

1 for θx ∈ (−θm
x , θm

x ) do
2 for θy ∈ (−θm

y , θm
y ) do

3 for Ṅ ∈ {N̂, −N̂} do
4 Calculate Rx, Ry from θx, θy;
5 Rotate pseudo surface normal to Ñ = RyRxṄ;
6 Calculate Rz and record the integrability cost c from Eq. (3.35);
7 if c < cs then
8 cs = c;
9 R = RzRyRx;

10 end
11 end
12 end
13 end
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GT. Normal w/o Planar Approx. w/ Planar Approx.
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20
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Fig. 3.18 Normal estimation for surface with planar patches as shown in the left col-
umn. The middle and right columns show the surface normal estimates, mean angular
errors, and the error distributions w/o and w/ “planar approximation” strategy.

3.6.3 Local surface normal estimation for planar patch

In Sec. 3.3.2, we have shown that surface normal can be solved up to an orthogonal

ambiguity if there are at least 6 scene points within the patch sharing the same albedo

but distinct surface normals. In this way, there exists a unique solution for the linear

system shown below,

[
tri(ñk,1ñ⊤

k,1) · · · tri(ñk,pk
ñ⊤

k,pk
)
]⊤

︸ ︷︷ ︸
E

tri(Q⊤
k Qk)︸ ︷︷ ︸

y

= 1, (3.36)

where ñk is the pseudo surface normal up to a linear ambiguity Qk in k-th surface

patch. When there are no more than 6 diverse surface normals on the patch (e.g. pla-

nar surface), E becomes rank deficient, which reveals the degeneration in our local

surface normal estimation. Such case implies the corresponding surface patch is near

flat especially for large patch size (e.g. 5 × 5, 7 × 7). Therefore, we use a “planar

approximation” strategy to force the pseudo surface normals of the patch sharing the
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same direction rather than following the estimation in Sec. 3.2 for degenerate patches.

As the ground truth patch surface normal map is also near-planar, the pseudo sur-

face normal map as a plane can be approximately aligned to its ground truth with

an orthogonal matrix. Therefore, we can still apply our GPM to solve the per-patch

orthogonal ambiguity including degenerate patches.

As shown in Fig. 3.18, we shown an object with planar local patches. For surface

normal estimates labeled by “w/ Planar Approx.”, we first detect degenerate patches

by checking whether E in Eq. (3.36) is rank-deficient. After that we use “planar

approximation” strategy to generate the pseudo surface normals for degenerate patches

and apply Ours (GPM) to obtain the complete surface normal estimates. From the

error maps shown in the bottom row, the “planar approximation” strategy enables

our method handle the degenerate cases and obtain more accurate surface normal

estimates at the near-planar surface regions.

3.7 Conclusion

We propose a uncalibrated photometric stereo method under unknown natural illumi-

nation. Our method simplifies the natural illumination using the equivalent directional

lighting model that is valid for local patches. We then solve each patch up to an ar-

bitrary orthogonal ambiguity. The patches are further unified through a graph-based

patch merging method (GPM), which introduces MRF optimization and rotation av-

eraging to solve the patch-wise ambiguities up to a global orthogonal ambiguity for the

whole surface. Finally, we resolve the global ambiguity to become a concave/convex

ambiguity, which could be easily removed manually. We believe such a method has

great potential to bring photometric 3D modeling techniques from lab setup with

controlled lighting to wild and large datasets on the Internet.

Limitation. The limitation of our method mainly lies in the local surface normal

estimation process, in which three assumptions need to be satisfied: uniform albedo,

patch surface normals having small angular difference, and non-planar surface with
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6+ distinct surface normals. Our method cannot handle complex albedo maps (e.g.,

general SV-albedo shown in Fig. 3.12 and Tabletcase in Fig. 3.15) when the uniform

albedo assumption becomes invalid for most patches. Also, if the surface normals vary

significantly or cast shadow exists in a local patch, the equivalent directional lighting

approximation is less accurate, which leads to wrong shape estimation results such

as the Rucksack as shown in Fig. 3.15. When given near planar surface such as

the case of Tabletcase and Ovenmitt, our method is also not reliable due to the

degeneration in the local surface normal estimation.

Future work. We hope to develop a more robust local surface normal estimation

method that can handle more complex illumination, texture and cast shadows. To

deal with the degenerate cases of near-planar local patches, we can detect them by

calculating the numerical rank as discussed in Sec. 3.6.3. As this detection process is

not stable due to the shadow and noise in the real-captured images, we left it as one of

our future works. Besides, to resolve the linear ambiguity in local patches as discussed

in Sec. 3, an alternative way is applying integrability rather than uniform albedo

constraint to solve the pseudo normals up to a GBR ambiguity [79, 80]. But how to

solve the patch-wise GBR ambiguities up to a global GBR ambiguity is beyond the

scope of current method. Finally, our patch-wise processing shares similar spirits with

local shading analysis in [105], where they find local shapes have simple parametric

approximation under directional lighting. In contrast, we explore how local shapes

simplify natural illumination representation. It might be interested to combine local

shape constraints in [105] to further narrow the solution space.



Chapter 4

Photometric Stereo under

Multispectral Light

4.1 Introduction

Photometric stereo is effective for the detailed recovery of three-dimensional (3D)

surfaces. Conventional photometric stereo (CPS) methods, originally proposed by

Woodham [7] and Silver [8], use images captured from a fixed camera under varying

lighting directions, which are commonly obtained at different timestamps. Since CPS

methods stack images with time-multiplexing, the target surface has to be static during

Light direction distribution

Light spectra distribution Spectral image observations

Surface normal Recovered shape

Hardware setup

Multispectral photometric stereo setup Output

Wavelength [nm]

LED 1

LED 2
LED 3

LED 4

LED 5

LED 7 LED 8

LED 6

LED 9 LED 10 LED 11

LED 12

White 

LED array

Camera

Input

425nm 440nm 730nm…

Spatially-varying spectral reflectance
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425nm 450nm 485nm 505nm

550nm 590nm 635nm

650nm 675nm 705nm 730nm

Fig. 4.1 Our multispectral photometric stereo setup with 12 narrow-band spectral
LEDs placed at different locations. Taking the spectral image observations as input,
our method outputs a closed-form unique solution of both surface normal and spatially-
varying spectral reflectance.
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the multiple shots. Also, as the inputs of CPS are gray scale or RGB images1, the

spectral property of the material is omitted in the estimated reflectance.

With multispectral photometric stereo (MPS) [106], detailed 3D shape and the

corresponding spectral reflectance can be jointly recovered from a one-shot multispec-

tral image via spectral-multiplexing. In this way, we can achieve detailed shape and

spectral reflectance reconstruction for dynamic objects. However, unlike conventional

time-multiplexing photometric stereo, MPS with Lambertian surfaces remains an ill-

posed problem. In this chapter, we propose a method to make the problem tractable

and provide a unique solution for MPS under spatially-varying reflectance, making the

MPS approaches applicable for dynamic shape reconstruction.

An input image for MPS encodes observations under different lighting directions

in different spectral bands, conveying the information about the surface normals

and spectral reflectances. Figure 4.1 shows our MPS setup, which contains a fixed-

viewpoint camera and 12 narrow-band spectral light sources located at different posi-

tions. From the input spectral image observations, our goal is to estimate both object

shape and spectral reflectance simultaneously. However, under the illumination of f

spectral lights, there are f + 2 unknowns (f for the reflectance of the spectral bands,

and 2 for the surface normal). Since only f observations for each scene point are given,

MPS is inherently underconstrained.

To make the problem tractable, existing methods use additional priors, e.g., initial

shape [107, 108], trained neural networks [109–111], or local smoothness regulariza-

tion [112]. However, these priors are rather restrictive and may not always comply

with actual scenes. Without these priors, existing methods make assumptions on the

spatial distribution of spectral reflectance to solve the problem. Specifically, the spec-

tral reflectance is decomposed/normalized into two parts: Chromaticity and albedo, as

visualized on the top of Fig. 4.2. Based on the spatial distribution of the chromaticity

and albedo, we can obtain four spectral reflectance types (SRT), where an example

object for each type is shown on the bottom of Fig. 4.2.
1When RGB images are used in conventional (single-band) photometric stereo, they are turned

into gray scale images for computing surface normal.
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Chromaticity map Albedo map Spectral reflectance map 

= ⨀

SRT Ⅰ SRT Ⅱ SRT Ⅲ SRT Ⅳ

Gray chromaticity

SV-albedo

Uniform chromaticity

Uniform albedo

Uniform chromaticity

SV-albedo

SV-chromaticity

SV-albedo

Fig. 4.2 (Top) Visualization of the spectral reflectance decomposition in the RGB
space, where ⊙ represents elementwize multiplication. The chromaticity is reated
to the hue and the albedo is related to the saturation. (Bottom) Example objects
of 4 spectral reflectance types (SRT) categoried by the spatial distribution of the
chromaticity and the albedo.

SRT I limits the surface to be gray-chromatic (e.g., statue in Fig. 4.2). MPS under

such assumption is identical to well-posed classical photometric stereo [8]. By assum-

ing SRT II where the object is monochromatic (not limited to gray) with uniform

albedo (e.g., pot in Fig. 4.2), existing methods [113, 114] provide a unique solution for

MPS. However, SRT II is also restrictive for real-world scenes. As shown in [113, 114],

incorrect surface normals are estimated at regions with roughly constant chromatic-

ity but continuously changing albedos. With the relaxation of piece-wise constant

chromaticities and albedos, previous methods [113, 114] also investigated MPS for

spatially-varying chromaticities and albedos (SRT IV) such as the cat case in Fig. 4.2).

However, the spatial clustering of the uniform spectral reflectance regions is not only

cumbersome but also fragile to outliers, such as shadows and specular highlights.

In this chapter, we make MPS work well under spatially-varying spectral re-

flectances. Given a multispectral image under calibrated lighting directions, we first

provide a closed-form MPS solution for surfaces with uniform chromaticity but spatially-

varying albedos (SRT III in Fig. 4.2), without relying on any additional priors. We
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further extend our method to deal with the surface with spatially-varying chromatici-

ties and albedos (SRT IV in Fig. 4.2) by additionally calibrating the light spectra and

camera spectral sensitivity.

Specifically, for SRT III surfaces, we treat the estimation of spectral reflectance and

surface normal as a bilinear optimization problem. We show that the problem can be

turned into a homogeneous system of linear equations, where the surface normal and

spectral reflectances are jointly estimated. Given observations of SRT IV surfaces

and calibrated light spectra and camera spectral sensitivity, we show that closed-form

solutions for both surface normal and spectral reflectance are given in a per-pixel

manner. We achieve this by expressing the spectral reflectance with linear bases,

which are extracted from a material database of bidirectional reflectance distribution

functions (BRDFs) [115]. Unlike previous methods that are restricted to three spectral

channels [107–109, 113, 114], our method allows the use of arbitrarily many spectral

channels. As a side-bonus of this input property, we can also rely on the off-the-shelf

four or more source photometric stereo methods to deal with outliers, such as shadow

and specular highlights, making our methods for both SRT III and IV more robust

than existing RGB-based MPS methods.

To summarize, the primary contributions of our work are as follows.

• We show that MPS for monochromatic surfaces with spatially-varying albedos

(SRT III) can be solved in a closed-form without introducing any external priors,

and we derive the minimal conditions based on the number of spectral lights and

scene points for the problem to have a unique solution.

• We introduce a basis representation for the spectral reflectance and present a

closed-form MPS solution for surfaces with spatially-varying chromaticities and

albedos if the light spectra and camera spectral sensitivity are calibrated.

• Our methods for both SRT III and SRT IV are robust to outliers, such as shadows

and specular highlights, because of its capability of applying robust estimation

thanks to that our method can take arbitrary many spectral channels as input.
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Fig. 4.3 Visualization of four spectral reflectance types (SRT) categorized by the spatial
distribution of the chromaticity C(λ) and the albedo ρ, where C̃(λ) and ρ̃ represents
the uniform chromaticity and albedo shared by different scene points. The color maps
provide spatial distribution examples of chromaticities and albedos for each SRT in
the RGB space. Solid and hollow dots show the spectral reflectances of two scene
points at f wavelengths r = [R(λ1), · · · , R(λf )]. This chapter presents unique and
closed-form solutions for both SRT III and IV.

4.2 Related works

As described in previous works [116, 117], the material spectral reflectance R(λ) : R+ → R+

can be decomposed into two parts: Chromaticity C(λ) : R+ → R+ and albedo ρ ∈ R+,

such that R(λ) = C(λ)ρ, where λ represents wavelength. As shown in Fig. 4.3, based

on the spatial distribution of chromaticity and albedo for a surface, we categorize 4

different surface spectral reflectance types (SRT) and order them in a way from simple

to complex. In this section, we introduce existing methods based on their assumptions

on SRT and list their properties for the comparison in Table 4.1.
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Table 4.1 Comparison of MPS methods. OursIII provides a unique solution for a rela-
tively general spectral reflectance (SRT III) without additional priors. OursIV solves
MPS for general spatially-varying spectral reflectance with less restrictive calibration.

SRT Method Input # Lights Additional priors
I [8] MSI1 f ≥ 3 None
II [106] RGB f = 3 Surface integrability
II [118] RGB f = 3 Surface integrability
II [119] RGB f = 3 Irradiance-normal mapping2

II [113, 114] RGB f = 3 None

III [117] RGB f = 3 Initial coarse shape
Pixels with uniform albedo

IV [113, 114] RGB f = 3 Reflectance quantization
Piece-wise constant reflectance

IV [109–111, 120] RGB f = 3 Fixed lighting direction
IV [107, 108] RGBD3 f = 3 Piece-wise constant chromaticity

IV [112] MSI f ≥ 3 Reflectance smoothness
Surface normal smoothness

IV [121] MSI f ≥ 5 Spectral reflectance basis1

III OursIII MSI f ≥ 4 None

IV OursIV MSI f ≥ 4 Calibrated light and camera spectrum
Basis expression of the reflectance

1 Multispectral image 2 Scene-dependent calibration 3 RGB + depth

SRT I If the surface has gray chromaticity, i.e., the chromaticity remains constant

w.r.t. varying wavelength, MPS is identical to classical photometric stereo. Therefore,

given 3 or more spectral bands, a closed-form solution for surface normal can be

obtained without ambiguity [8].

SRT II For monochromatic surfaces with uniform albedo, i.e., all the scene points

share the common chromaticity C̃(λ) and albedo ρ̃, previous methods [106, 118] show

surface normal can be estimated from a single RGB image up to a rotation ambigu-

ity. The correct rotation was approximated by imposing an additional integrability

condition. Hernández et al. [119] establish a one-to-one linear mapping between pixel

measurements and surface normals to reconstruct the deformable cloth shape. This

unknown linear mapping is calibrated via a planar board with a cloth sample fixed

in the center. If the crosstalk between spectral channels is negligible, existing meth-

ods [113, 114] provide a unique solution for surface normals. However, their methods
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are restricted to RGB 3-channel input and cannot be expanded to more channels.

SRT III Few methods focus on the monochromatic surfaces with spatially-varying

albedos, which is commonly seen in natural objects (e.g., wood and rocks) and human

skins. Vogiatzis et al. [117] assume the spectral reflectance of the human face follows

SRT III and obtain detailed reconstructions of faces in real-time. However, their

surface normal estimation results rely on the accuracy of initial geometry and detection

of equal-albedo pixels.

SRT IV If the chromaticity and albedo are both spatially-varying, MPS from a

single multispectral image is ill-posed. Existing methods apply additional regulariza-

tions and provide numerical solutions for MPS. Chakrabarti et al. [114] and Ozawa et

al. [113] relax the spatially-varying spectral reflectance to be piece-wise constant. Since

their methods are both based on 3-channel RGB inputs, they discretize the spectral

reflectance in a 3D space to cluster pixels with equal chromaticities and albedos so

that they can turn the problem into a set of SRT II subproblems. The normal map

is then estimated in each surface region that is predicted as having the same spec-

tral reflectance. The method by Anderson et al. requires a coarse shape from depth

map [107] or stereo pairs [108] and uses it to guide the chromaticity segmentation and

the surface normal estimation. Similar to [113, 114], the piece-wise constant spec-

tral reflectance assumption restricts the flexibility of the target surface’s reflectance.

The normal estimation accuracy is also influenced by the errors introduced by the

reflectance clustering step.

Some recent methods directly take an RGB image as input and apply deep neural

networks to predict the surface normal [109, 110, 120]. However, the lighting directions

are required to be consistent between the training and test procedures. Miyazaki et

al. [112] recover surface normals from a multispectral image with more than three

channels. However, their recovered shape tends to be over-smoothed due to the spatial

smoothness assumption on both surface normal and the reflectance. Fyffe et al. [121]

assume the spectral reflectance lies in a low-dimensional space and represent it with a
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statistical basis set. However, their spectral reflectance bases are scene-dependent and

need to be calibrated with the known surface normal and reflectance pairs. Besides,

the optimization of this method is non-convex and requires a good initialization.

Our method Taking a multispectral image with an arbitrary number of channels

as input, we first formulate MPS for monochromatic surfaces with spatially-varying

albedos (SRT III) as a well-posed problem, and estimate surface normal without in-

troducing external priors [13]. We further show that MPS under SRT IV can be made

tractable if the light spectra and camera spectral sensitivity are calibrated. Different

than existing works [108, 113, 114], we avoid both the piece-wise uniform spectral

reflectance restriction and the reflectance clustering steps by introducing a basis rep-

resentation of the per-pixel spectral reflectance. Compared with Fyffe et al. [121], our

formations for both SRT III and SRT IV are convex, and our extracted spectral re-

flectance bases are shown to be scene independent based on the real data experiments.

4.3 MPS under monochromatic reflectance

Given a multispectral camera with a linear radiometric response and f (geometrically

but not spectrally) calibrated spectral directional lights, we capture a multispectral

image of p scene points on a Lambertian surface by turning on all the spectral lights.

If the crosstalk between spectral bands is negligible, i.e., the observation under each

spectral light is only observed in its corresponding camera channel, observations mi ∈

Rf
+ for the i-th pixel can be written as follows

mi = diag(ti){Lni}+, (4.1)

where ni ∈ S2 ⊂ R3 represents the unit surface normal vector, L ∈ Rf×3 stacks

all the light directions. We use diag(·) as a diagonalization operator and {·}+ as

a non-negative operator, which accounts for attached shadows. For simplicity, we

omit this operator {·}+ in the following explanation. Here, ti ∈ Rf
+ is related to the



4.3 Multispectral photometric stereo under monochromatic reflectance 87

camera spectral sensitivity, light source spectra and the surface spectral reflectance at

f spectral bands. Its element follows

tij =
∫

λ∈Ωj

Ej(λ)Ri(λ)Sj(λ)dλ, (4.2)

where Ωj is the wavelength range of the j-th spectral band, Ej(λ) : R+ → R+ denotes

the spectra of the j-th light, Sj(λ) : R+ → R+ defines the camera spectral sensitivity

at j-th channel, and Ri(λ) : R+ → R+ is the material spectral reflectance of the i-th

scene point. The problem of general MPS is to estimate f + 2 unknowns including t

and surface normal n from f -element measurement vector m, which is unfortunately

an ill-posed problem.

We turn the MPS to be well-posed by assuming the surface following SRT III: The

material spectral response can be decomposed into a uniform chromaticity C̃(λ) and

spatially varying albedos ρi, such that

Ri(λ) = ρiC̃(λ). (4.3)

Combing Eqs. (4.2) and (4.3), we rewrite the spectral image observations for a scene

point of the SRT III surface as

mi = diag(q)ρiLni, (4.4)

where q ∈ Rf
+ is the uniform reflectance devoid of spatially-varying albedos, whose

elements are

qj =
∫

λ∈Ωj

Ej(λ)C̃(λ)Sj(λ)dλ. (4.5)

With the uniform chromaticity C̃(λ), q remains constant over the surface since

both light spectra and camera spectral sensitivity are independent of the scene points.

With the surfaces of SRT III, we found the minimum conditions to yield a unique

MPS solution for surface normal are as follows.
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Theorem 1 Given f spectral observations under varying lighting directions of p scene

points known to share the same chromaticity C̃(λ), their surface normals can be

uniquely determined if either one of the minimal conditions for the number of lightings

and pixels is satisfied:

• Minimal pixel condition (MPC): p = 2, f ≥ 5,

• Minimal lighting condition (MLC): f = 4, p ≥ 3.

In other words, if two scene points share the same chromaticity but varying surface

normals, their surface normals can be uniquely determined given 5 or more lighting

directions. On the other hand, if we know 3 or more scene points sharing the same

chromaticity and their surface normals are non-coplanar, we can recover their normal

directions with 4 or more spectral light sources. In the following subsections, we

present the unique solution for SRT III and provide the proof for minimal solvable

conditions MPC and MLC.

4.3.1 Unique solution for SRT III

Suppose a surface with p scene points sharing the same chromaticity, by representing

all pixels and lighting directions in a matrix form, we rewrite Eq. (4.4) as

M = QLN⊤P, (4.6)

where Q = diag(q) is an f × f diagonal matrix, M ∈ Rf×p
+ records the image obser-

vations of p scene points under f lights, N ∈ Rp×3 stacks all the surface normals in a

row-wise manner, P is a p × p diagonal matrix with its diagonal element defined by

pixel-wise spatially-varying albedos.

The above spectral image formation model has a similar structure with semi-

calibrated photometric stereo (SCPS) [41]. However, the task and physical image for-

mation model between SCPS [41] and our method for SRT III are different. SCPS [41]
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denotes q as light intensities and aims at solving conventional photometric stereo with-

out calibrating the light intensity, whereas ours focuses on the use of relatively general

reflectance assumption (SRT III) and multispectral image cues to formulate MPS as a

well-posed problem without additional priors. The unknown q in our method encodes

the integral of the light spectra, camera spectral sensitivity, and the chromaticity

shared by the scene points, as shown in Eq. (4.5), which is different from the light

intensity notation in SCPS [41].

Given image observations M and the calibrated lighting directions L, we recover

uniform reflectance devoid of albedos Q, surface normal N, and albedo P by minimiz-

ing the following energy function:

{Q∗, N∗, P∗} = argmin
Q,N,P

∥∥∥M − QLN⊤P
∥∥∥2

F
, (4.7)

where ∥·∥F denotes the Frobenius norm. We define B = P⊤N ∈ Rp×3 as albedo-scaled

surface normals. Here, Q is invertible since its diagonal elements are non-zero. Then

we rewrite Eq. (4.6) as

Q−1M − LB⊤ = 0. (4.8)

After vectorizing the unknown parameters Q−1 and B⊤, we obtain

(Ip ⊗ L)vec(B⊤) − [diag(m1) · · · diag(mp)]⊤Q−11 = 0, (4.9)

where vec(·) and ⊗ represent vectorization and Kronecker product operators. Ip ∈ Rp×p

is an identity matrix, 1 is a all-one f -dimensional vector, mi is the i-th column vector

of the image observations M, indicating the measurement at the i-th pixel position.

By concatenating all unknowns of Eq. (4.9) into a vector, we obtain a homogeneous

system of linear equations:

[
−Ip ⊗ L|[diag(m1)| · · · |diag(mp)]⊤

]
︸ ︷︷ ︸

D

vec(B⊤)

Q−11


︸ ︷︷ ︸

x

= 0, (4.10)
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where D ∈ Rpf×(3p+f), and the unknown vector x has the dimension of 3p + f . If D

has 1d right nullspace, the solution of x is obtained up to a scale via a factorization of

D by singular value decomposition (SVD). Based on the prior knowledge that surface

normal has a unit norm, we normalize albedo-scaled surface normals B in x to finally

obtain a unique surface normal estimation.

4.3.2 Minimal conditions for a unique solution

As discussed before, to obtain a non-trivial solution of the homogeneous system in

Eq. (4.10), the right nullspace of D should be one dimension. Therefore, we have

pf ≥ 3p + f − 1. (4.11)

This solvable condition can be interpreted in another way. Given p pixels observed

under f spectral bands, the total number of measurements is pf . Since we assume

a monochromatic surface with spatially-varying albedos, we only need to know the

uniform reflectance devoid of albedos q for one pixel, whose number of unknowns

is f . For the remaining (p − 1) pixels, we need to know albedos with the number of

unknowns (p − 1). Besides, for each pixel, the surface normal has 2 degrees of freedom.

There are thus 2p unknowns for surface normal. Totally, the number of unknowns is

f + (p − 1) + 2p = 3p + f − 1. Since the number of measurements needs to be no less

than the number of unknowns, we obtain the minimal solvable condition of Eq. (4.11).

To further analyze the minimal requirement for the number of lighting directions

and pixels, we rewrite Eq. (4.11) as

(f − 3)(p − 1) ≥ 2. (4.12)

Therefore, the minimal requirements for the number of input lighting directions and

pixels to obtain a unique solution for SRT III surfaces are
 p = 2, f ≥ 5,

f = 4, p ≥ 3,
(4.13)
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which correspond to MPC and MLC in Theorem 1.

4.4 MPS under spatially-varying reflectance

As discussed in the previous sections, general MPS for a surface with spatially-varying

reflectance (both chromaticities and albedos) is ill-posed. In this section, we show

that the MPS under this SRT IV is tractable if the light sources’ spectra E and

camera spectral sensitivity S are calibrated in the form of a vector of their products

e = [E1(λ1)S1(λ1), · · · , Ef (λf )Sf (λf )]⊤ for f distinct spectral bands. By denoting

the material reflectances of corresponding spectral bands as r = [R(λ1), · · · , R(λf )]⊤,

then the image formation model for a pixel under f lights can be written as

m = diag(e)diag(r)Ln. (4.14)

Given the calibrated e, we compute the normalized image observations m̂ for a pixel

by m̂ = m ⊘ e, where ⊘ denotes element-wise division. Then MPS for the SRT IV

surface can be formulated as a bilinear optimization of per-pixel surface normal n and

material spectral reflectance r:

{n∗, r∗} = argmin
n,r

∥m̂ − diag(r)Ln∥2
2 . (4.15)

The problem still has f constraints with f + 2 unknowns. We now show how this

can be further made tractable by introducing the basis representation of the material

reflectances in the next section.

4.4.1 Unique solution for SRT IV

To reduce the number of unknowns in Eq. (4.15) and make the problem well-posed, a

more compact representation for the spectral reflectance r is needed.

We assume the spectral reflectance r is non-zero anywhere and define an inverse

spectral reflectance as r̂ = 1 ⊘ r. Then the normalized image observations for one
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pixel satisfy

diag(m̂)r̂ − Ln = 0. (4.16)

In this expression, the inverse spectral reflectance r̂ lies in a f -dimensional space. We

approximate it with k (< f) independent linear basis to reduce the unknowns, i.e.,

r̂ = Bc, (4.17)

where B ∈ Rf×k is a basis matrix stacking k basis vectors, c ∈ Rk is the unknown basis

coefficients. Combing Eqs. (4.16) and (4.17), we formulate the bilinear optimization

of Eq. (4.15) as a homogeneous linear system,

[−L|diag(m̂)B]︸ ︷︷ ︸
A

n

c


︸ ︷︷ ︸

y

= 0, (4.18)

where A ∈ Rf×(3+k), and y has the dimension of 3 + k. Similar to OursIII discussed in

Sec. 4.3, if A has one-dimensional right nullspace, we can obtain a unique solution y up

to a scale by SVD. The estimated y are chosen as the right-singular vector correspond-

ing to the smallest singular value of A. By incorporating the unit norm constraint for

the surface normal, we can finally resolve the scale ambiguity and uniquely obtain the

estimation of per-pixel surface normal and spectral reflectance.

4.4.2 Spectral reflectance basis extraction

Previous methods conduct linear analysis on MERL BRDF dataset [122] and express

the reflectances by the small number of coefficients associated with the basis vectors.

However, their extracted bases are not suitable for MPS as the spectral information

is omitted. In this chapter, we provide spectral reflectance bases extracted from a

spectral BRDF database.

Dupuy et al. [115] provided a measured spectral BRDF dataset for 62 materials
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with 195 equi-spaced spectral bins covering the 360 ∼ 1000 [nm] range. For each ma-

terial, spectral responses for 8192 incident-outgoing direction samples are provided.

Since we assume the Lambertian model, the spectral reflectances of 8192 directional

samples for one material are treated as that of 8192 Lambertian materials indepen-

dently. By stacking the spectral response of all materials at one wavelength as a row

vector, we build a spectral material database G ∈ R195×507904(=62×8192).

With the wavelengths of f spectral lights calibrated, we obtain the corresponding

spectral material database G̃ ∈ Rf×507904 by sampling the rows of G. To extract bases

for the inverse spectral reflectance r̂, we remove the materials with near-zero spectral

responses at any of the f wavelengths in G̃ and conduct SVD on Ĝ = 1 ⊘ G̃ as

Ĝ = UΣV⊤, (4.19)

where U and V are the left and right orthogonal singular vectors, and Σ is a f × f

diagonal matrix containing the singular values in a descending order. The column

vectors of U provide orthogonal bases for the inverse spectral reflectance r̂.

Determining the number of bases Following the Eckart–Young theorem [123],

we select the first k columns of U as the basis matrix B ∈ Rf×k to approximate the

inverse reflectance r̂. To obtain a non-trivial solution of Eq. (4.18), the number of

independent basis vectors k should be selected to make A ∈ Rf×(k+3) has a one-

dimensional right nullspace. Therefore, the rank of A should satisfy

rank(A) = k + 2 < f. (4.20)

We calculate the numerical rank of A following the threshold strategy suggested

in [124] and iteratively increase the number of bases in B from 1 to f − 3 until A

satisfies the rank requirement. Since our basis extraction is based on measured spec-

tral BRDF dataset [115] containing various spectral reflectance candidates in the real

world, the obtained basis B is expected to fit diverse scenes, as we will demonstrate

it in the real data experiments.
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Fig. 4.4 Synthetic multispectral image rendering of a Bunny surface. The measured
spectral BRDF “paper_yellow” roughly follows SRT III since its spectral response
R(λ) under varying groups of surface normal and light directions can be represented
by a common chromaticity C(λ) with varying scales (albedos).

4.5 Experiments on synthetic dataset

We here introduce experimental results on synthetic datasets. We first describe the

details of synthetic data creation and the baseline settings. Then we compare OursIII

and OursIV with the existing MPS methods.

4.5.1 Experimental settings

Synthetic dataset In our previous work [13], we have verified that OursIII can

accurately recover the surface normal on synthetic surfaces rendered with ideal SRT III
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Fig. 4.5 Synthetic rendering for the SRT IV surface. The spectral reflectance contains
4 materials as labeled by the material distribution mask. The material appearances
are visualized under natural illumination [115].

reflectances. This chapter gives a more realistic synthetic dataset with measured

spectral reflectances. Similar to the synthetic shape and lighting direction distribution

in [13], we choose Bunny as our target shape and regularly sampled 24 synthetic light

directions on a hemisphere with the elevation angle larger than 45°. The light spectra

of the LEDs are narrow-band with the central wavelengths distributed evenly in the

range between 400 ∼ 750 [nm].

To render the reflectance with SRT III, we choose a measured spectral BRDF

“paper_yellow” [115], whose appearance is visualized under a natural illumination

in Fig. 4.4. As shown in the middle row of the figure, we plot part of the spectral

reflectance curves R(λ) of the material under varying groups of surface normals and

light directions. It is clear that most reflectance curves can be approximated by

scaling the thick yellow curve labeled as chromaticity C(λ), except for a few curves.

Therefore, surfaces rendered with “paper_yellow” roughly have a uniform chromaticity

but spatially-varying albedos (SRT III). Following the above rendering setting, we

generate a synthetic multispectral image with 24 channels. The observations under
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LEDs 1, 11, and 23 are visualized in the bottom row.

To render the reflectance with SRT IV, we select 4 different measured spectral

BRDFs as shown in Fig. 4.5. The material distribution labels in the left-top indicate

which BRDF to be applied to the regions on the Bunny surface. We render a synthetic

multispectral image under the 24 lights and visualize it by concatenating the spectral

channels illuminated by LEDs 1, 11, and 23, as shown at the left-bottom of the figure.

Baselines As the baseline of the experiments, we selected two state-of-the-art MPS

methods: CS16 [114] and OS18 [113], where we implemented OS18 [113] and used

released code of CS16 [114] for evaluation. Since both methods take a 3-channel (i.e.,

RGB) image as input, we selected 3 out of 24 spectral observations to mimic the 3-

channel input image, as shown in Fig. 4.4. To verify the MLC, we tested our method

for SRT III surfaces by assigning the spectral channels recording the observations

under LEDs 1, 11, 21, and 23, which cover the observations used in OS18 [113] and

CS16 [114] for comparison. The number of piece-wise constant chromaticities need

to be set manually in CS16 [114]. To make a fair comparison, we set the number of

chromaticities to be 1 and evaluate their method, OursIII, and the SRT II module of

OS18 [113] in the experiments of SRT II and III surfaces. When making comparisons

on SRT IV surfaces, we use the default number of chromaticity clusters to 100 in

CS16 [114], and compare it with OursIV and the SRT IV module of OS18 [113]. Besides,

in the synthetic experiments, we remove the materials used in the test data from the

spectral reflectance database when extracting the bases for OursIV.

In the following, OursIII and OursIV are given observations under all 24 lights by

default. OursIII(f4) denotes our method for SRT III surfaces under MLC.

4.5.2 Surface normal estimation under SRT III

Using the ground-truth surface normal, we evaluated surface normal estimation accu-

racy by mean angular errors (MAE) in degree. Figure 4.6 shows the results of surface

normal estimation for a synthetic SRT III surface. OursIII achieves the smallest an-
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Fig. 4.6 Surface normal estimation results for an SRT III surface shown in Fig. 4.4.

gular error compared to the other methods. The estimation errors of OS18 [113] and

CS16 [114] are mainly caused by their SRT II assumption and shadows. Also, the lo-

cal polynomial shape regularization used in CS16 [114] additionally brings in errors in

regions with large surface normal variations. OursIII(f4) under MLC is less accurate

than OursIII due to the influence of shadows. However, compared with OS18 [113]

and CS16 [114], OursIII(f4) achieves higher accuracy with only one additional spec-

tral observation appended to the input. This result demonstrates the effectiveness of

our method on SRT III surfaces. In this setting, OursIV is less accurate compared to

OursIII due to its flexible representation power for this restricted setting.

4.5.3 Surface normal estimation under SRT IV

Figure 4.7 shows the surface normal estimation results of a surface with spatially-

varying spectral reflectance (SRT IV). OursIV can handle spatially-varying chromatic-

ities and albedos, therefore producing more accurate surface normal recovery com-

pared to OursIII that assumes the uniform chromaticity. Compared to OS18 [113]

and CS16 [114], OursIV obtains the smallest angular error since we do not assume

piece-wise constant spectral reflectances and require no reflectance clustering. From

the error map shown in Fig. 4.7, the error distribution of OursIV is more uniform and
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Fig. 4.7 Surface normal estimation comparison on the SRT IV surface shown in Fig. 4.5.

has less correlation to the material distribution compared to the other methods. This

result shows the strength of OursIV on surfaces with spatially-varying reflectances.

4.6 Experiments on real dataset

To assess the effectiveness of the proposed methods, we built a multispectral photo-

metric stereo setup to conduct experiments on real data.

4.6.1 Hardware setup

Figure 4.1 (left) shows our multispectral photometric stereo setup, lighting direction

and light spectra distributions. Our setup consists of 12 narrow-band spectral light

sources and a monochromatic camera (FLIR Blackfly S). The light sources are fixed on

a metal frame rig and distributed uniformly around the camera’s optical axis to avoid

biased light distributions. We calibrated the light directions with a monochromatic

mirror ball following the method by Shi et al. [9]. The central wavelength of our

spectral light sources uniformly spans in the range of 400 ∼ 750 [nm], and they

are measured by a spectrometer Sekonic C-800. To verify our method without the

influence of crosstalk across wavelength channels, we captured multiple images with

a monochromatic camera by turning on each spectral light source one after another.
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Spectral observations under LEDs 2, 4, and 10 with the central wavelength 450nm,

550nm, and 650nm are selected to mimic the RGB input for existing 3-channel MPS

methods. We used 4 spectral observations under the illumination of LEDs 2, 4, 9, and

11 to verify the MLC of our method for SRT III surfaces (OursIII).

To obtain the baseline surface normal (we call it the ground-truth (GT) surface

normal hereafter), we additionally put an LED board that contains 256 white light

sources sharing the same spectrum, in a similar manner to CS16 [114]. The GT

surface normal is estimated using a conventional Lambertian least-squares photometric

stereo [7], and we use it for quantitatively assessing the MPS results.

Spectral calibration For OursIV, light sources’ spectra E1, . . . , Ef and camera

spectral sensitivity S1, . . . , Sf need to be calibrated in the form of a vector of their

products e = [E1(λ1)S1(λ1), · · · , Ef (λf )Sf (λf )]⊤. For the calibration, we use a Mac-

Beth ColorChecker board [125] consisting of 24 patches of uniform spectral reflectances

R1, . . . , R24. Based on the image formation model of Eq. (4.14), the ratio of the vector

e’s elements at neighboring spectral channels follows

ej+1

ej

= mj+1

mj

R(λj)
R(λj+1)

l⊤
j n

l⊤
j+1n

. (4.21)

For a scene point on the ColorChecker board, the spectral reflectance ratio R(λj)
R(λj+1)

under different wavelengths is known from measured spectral reflectance curves [126].

The surface normal n of the ColorChecker board can be estimated by the detected

image corners and camera intrinsics [127]. With calibrated lighting directions L and

the multispectral observations m, we estimate the elements of e up to scale by solv-

ing the homogeneous system of equations derived from Eq. (4.21) using all the 24

monochromatic patches of the ColorChecker board. Since we can only recover e up to

scale, the spectral reflectance estimation by OursIV naturally has a scale ambiguity,

but that does not influence the recovery of surface normals.
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Fig. 4.8 Ground-truth surface normal, chromaticity, and albedo of three real objects:
Head-relief, Love-relief and Buddha-relief, where the chromaticity is visu-
alized by mapping 450nm, 550nm and 650nm responses to BGR color channels, re-
spectively. The spectral reflectances for the three reliefs can be categorized as SRT II
to IV from top to bottom, as seen by their centralized albedo histograms and the
distributions of the chromaticities projected to the 2D space via MDS [128].

4.6.2 Real data setup

Based on our hardware setup, we capture a variety of objects for real data experiments.

Prior to the experiment, we examine the SRTs of the scenes by analyzing their spectral

reflectance distributions, as shown in Fig. 4.8. With calibrated e, known light direc-

tions L and the ground-truth surface normal n, we compute the spectral reflectance

r based on the spectral image formation model shown in Eq. (4.14). The estimated

reflectance r is further decomposed into the albedo and chromaticity by taking its

norm as albedo and its direction as chromaticity as depicted in Fig. 4.8 as GT albedo

and GT chromaticity, respectively. The chromaticity is visualized by mapping the

responses at 450nm, 550nm, and 650nm to BGR color channels, respectively.

The last two columns of Fig. 4.8 show the histogram of centralized albedo by

subtracting the mean value, and low-dimensional visualization of chromaticity distri-

butions via multidimensional scaling (MDS) [128], respectively. The Head-relief

has a relatively uniform albedo compared to the Love-relief and Buddha-relief
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since its standard derivation σ of albedos is smaller than the other two. This is

also consistent with the image observations shown in the first column. On the other

hand, the chromaticity distribution of Buddha-relief is more diverse than those of

Head-relief and Love-relief, which indicates the spatially-varying chromaticity

distribution in Buddha-relief. As such, the spectral reflectances of the three real

reliefs roughly follow SRT II, III, and IV.

We also observed that piece-wise constant spectral reflectance assumption used

in [108, 113, 114] is relatively unpractical to approximate the general SRT IV sur-

faces. Although Buddha-relief seems contain three piece-wise monochromatic re-

gions from the image observation under natural illumination, it actually has diverse

chromaticities, making the monochromatic region clustering [108, 113, 114] unstable.

4.6.3 Surface normal estimation results on real data

Based on the captured multispectral image data, we then access the surface normal

estimation accuracy of our method.

Surface normal estimation under SRT III As shown in Fig. 4.9, we com-

pare our methods with baselines on three objects: Head-relief, Love-relief,

and Moai statue. The Head-relief scene follows SRT II, and Love-relief and

Moai statue follow SRT III. Since both existing methods [113, 114] and our meth-

ods (OursIII, OursIV) can handle SRT II, the accuracy of recovered surface normals

are comparable.

We observed large normal estimation errors by CS16 [114] and OS18 [113] on the

Love-relief and the Moai statue, since the spatially-varying albedos violate the

assumptions made in their methods. The error maps of CS16 [114] and OS18 [113]

on the Love-relief highlight the error regions due to the non-uniform albedo dis-

tribution. On the other hand, OursIII yields more accurate surface normal estimation

results, which verifies our method’s strength on SRT III surfaces. Under minimal solv-

able lighting conditions (MLC), the estimation errors of OursIII(f4) increase compared
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Fig. 4.9 Surface normal estimation results for real-world objects with SRT II (Head-
relief) and SRT III (Love-relief and Moai statue).

to using all the 12 lights (OursIII(f12), which is mainly caused by the shadows at the

concave regions.

OursIV provides comparable results with OursIII on both SRT II and III. However,

OursIV requires the spectral calibration of both lights and camera as well as the spec-

tral reflectance bases. Therefore, it is preferred to apply OursIII for monochromatic

surfaces.
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Surface normal estimation under SRT IV Figure 4.10 shows surface normal

estimation results of three SRT IV surfaces: Buddha-relief, Lion, and Puppy.

CS16 [114] and OS18 [113] assume the surface contains a limited number of regions

with uniform spectral reflectances. However, based on the distribution of albedos and

chromaticities shown in Fig. 4.8, such assumption is invalid in the Buddha-relief.

Also, it is difficult to infer the number of distinct albedos and chromaticities in the

Lion and Puppy from the image observation. Therefore, both methods results in

inaccurate surface normal estimates for these scenes.

OursIII cannot handle spatially-varying chromaticities and outputs large errors on

both scenes as well. On the other hand, the proposed method OursIV achieves accurate

results because it explicitly accounts for the SRT IV surfaces. From the error map, it is

seen that inaccurate surface normal estimates are mainly located at the regions where

shadows are observed, and the surface normal estimation accuracy is not influenced

by the spatially-varying reflectances in the results of OursIV.

4.6.4 Discussion

In this section, we discuss our method’s robustness against outliers and applicability

to dynamic scene reconstruction.

4.6.5 Robustness against outliers

Although previous methods [113, 114] provide a unique solution for SRT II without

external priors, their input is restricted to 3-channel RGB image and cannot take

more bands (see appendix). On the other hand, our methods for both SRT III and

SRT IV surfaces can handle multispectral images with 4 or more spectral channels.

This capability of taking many spectral channels allows us to use a robust estima-

tion approach in MPS, in a similar spirit to four or more source photometric stereo

methods [47, 129, 130], to make our method robust against shadows and specular

highlights. Namely, having more spectral channels allows us to discard some of them
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Fig. 4.10 Surface normal estimation results for surfaces with spatially-varying chro-
maticities and albedos (SRT IV): Buddha-relief, Lion, and Puppy.
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Fig. 4.11 Shape estimation results of two shiny objects, where Dog is monochromatic
and Shell has spatially-varying chromaticities. Even rows show estimated surface
normals. Odd rows provide reconstructed surfaces integrated from the surface normal
maps. Closed-up views show the artifacts caused by the specular highlights.

that are corrupted by outliers.

To demonstrate this capability, we use a simple position thresholding strategy used

in [9, 47] to reject outliers in the input observations. Specifically, for each pixel, we

sort the observations and discard shadows and specular highlights as outliers that

correspond to dark and bright observations. The surface normal and the spectral

reflectance can then be estimated using the inlier image observations. In the following,

we denote the robust version of our SRT III method as “OursIII(r),” and our SRT IV

method as “OursIV(r).”

In Fig. 4.11, we test this robust estimation method in comparison to our non-

robust version and previous methods on objects with shiny surfaces: Dog and Shell.

Since the reflectances of the two objects significantly deviate from the Lambertian

reflectance, we cannot trust the surface normal estimated from conventional least-
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squares photometric stereo [7] as the ground truth. Therefore, instead of comparing

the surface normal maps, we applied a surface normal integration method [45] to

reconstruct 3D shapes from estimated surface normals for a qualitative comparison.

As shown in Fig. 4.11, the recovered surface shape from few spectral image obser-

vations is heavily influenced by specular highlights (OS18 [113], CS16 [114] taking 3

spectral bands, and our methods (OursIII(f4), OursIV(f4) taking 4 spectral bands). We

also observe shape distortions at the middle region of Shell in the result of OS18 [113]

and CS16 [114]. These are caused by the inaccurate chromaticity clustering for the

spatially-varying reflectances. By adding more spectral bands under varying light-

ing directions as input (OursIII(f12) and OursIV(f12), shape recovery becomes more

plausible. However, artifacts caused by specularities still remain. By further discard-

ing outlier of specular highlights, more convincing shape reconstruction results are

obtained from the robust version of our method (OursIII(r) and OursIV(r)).

4.6.6 Dynamic shape recovery

We further test the applicability of our method to dynamic scenes using an industrial

multispectral camera IMEC-SM-VIS2, with which image observations at different spec-

tral bands are obtained at once in one shot. As shown in Fig. 4.12, we estimate the

dynamic shape of a deformable SRT IV surface in motion3 and compare the result

with OS18 [113] and CS16 [114]. We choose four pairs of spectral lights and camera

channels having the strongest response at 480nm, 520nm, 590nm, and 635nm to ob-

tain the multispectral input. Three out of the four channels at 480nm, 520nm, and

635nm are used as the input for OS18 [113] and CS16 [114]. The recovered shapes

of OS18 [113] and CS16 [114] are influenced by the spatially-varying reflectance, es-

pecially at the boundary of multi-chromatic regions, as shown in the close-up views.

Also, the shape details are lost in CS16 [114] due to the polynomial local shape con-

straint. On the other hand, the surface normal estimates of OursIV are unaffected by
2https://www.argocorp.com/cam/special/IMEC/IMEC_snapshot.html. Retrieved Mar.

11, 2021
3Please refer to the supplementary video.

https://www.argocorp.com/cam/special/IMEC/IMEC_snapshot.html
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485nm 520nm 590nm 635nm

OursIII OursIV OS18 [113] CS16 [114]

Fig. 4.12 Dynamic shape recovery of a deforming surface with SRT IV. The first row
shows the image observations of a multispectral video frame at varying bands. The last
two rows provide the estimated surface normals and integrated surfaces. Closed-up
views highlight shape distortions caused by spatially-varying reflectance.

the spatially-varying spectral reflectance. As a result, OursIV achieves more reason-

able dynamic shape recovery results on the deformable SRT IV surface. The dynamic

shape recovery from our method has a potential to capture 3D movement and gesture

of the human body, which may benefit the preservation of intangible cultural heritages

such as traditional dances.

4.7 Conclusion

In this chapter, we show that MPS can be turned into a well-posed problem and

provide unique solutions for surface normals under two general spectral reflectance

types. Specifically, if the surface has uniform chromaticity but spatially-varying albe-

dos (SRT III), we show that surface normal can be uniquely determined from 4+

spectral observations without introducing external priors. By further calibrating the

light spectra and the camera spectral sensitivity, we present a closed-form solution

of surface normal and spectral reflectance for surfaces with spatially-varying chro-

maticities and albedos (SRT IV), using a low-rank basis representation of the spectral
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reflectance. Since our methods can take more than 4 spectral channels, our method

can rely on outlier rejection strategies in the MPS setting to effectively remove shad-

ows and specular highlights. Based on the experiments on synthetic and real datasets,

we demonstrate the effectiveness of our MPS method on both SRT III and SRT IV.

Future work To obtain surface shape from a single-shot image, we encode image

observations under varying illuminations at different spectral bands. Compared to the

setting in CPS, we require a negligible crosstalk effect [113, 114], i.e., each spectral

channel only records the image measurement under the corresponding spectral light.

From a practical viewpoint, it is interesting to solve MPS with the crosstalk effect

being considered, which alleviates the requirement of the hardware setting in MPS.

Besides, our MPS method is based on Lambertian reflectance assumption and treats

specular highlights as outliers. It is also interesting to explore the MPS solution under

general non-Lambertian spectral reflectances.
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Conclusions

This thesis focuses on lighting analysis of photometric stereo for high-fidelity shape

reconstruction, aiming to bring photometric stereo out of laboratory light settings.

Back to Table 1.1 and Fig. 1.2 in Chapter 1, classical photometric stereo assumes

distant light with uniform light emission, requires calibration of the lighting direc-

tion and intensity, requires multiple shots to record image observations under varying

illuminations, and assumes each image observation is illuminated by a single light

source. In contrast, the goal of practical photometric stereo is removing all the above

lighting assumptions so that detailed shapes can be recovered from a one-shot image

observation captured under an uncalibrated natural environment, where the scene illu-

mination from real-world near-light sources is accurately modeled. However, removing

all the lighting assumptions to achieve practical photometric stereo is too challenging.

Instead, this thesis divides practical photometric stereo into three sub-problems and

presents photometric stereo solutions under the following three lighting conditions to

approach the goal:

• Near point light with anisotropic emission (Chapter 2)

• Uncalibrated natural light (Chapter 3)

• Multispectral light for one-shot shape recovery (Chapter 4).

A brief summary of the algorithms and techniques introduced is given below.



110 Conclusions

To remove the requirement of infinite distant light, we analyze photometric stereo

under practical anisotropic near point light in Chapter 2. We introduce a flexible

radiant intensity distribution (RID) model based on the observation that local RID is

smooth and can be represented by spherical harmonic bases. The proposed RID model

shows higher fitting accuracy on real world RIDs compared to existing methods. We

further propose a self-calibrating near light photometric stereo which solves the RID

and surface shape jointly via a linear system. Promising results have been achieved

on both synthetic and real data, which clearly demonstrate the effectiveness of the

proposed approach on practical near point light illumination.

To remove the requirement of darkroom and light calibration, we analyze photo-

metric stereo under uncalibrated natural light in Chapter 3. We introduce an equiv-

alent directional lighting model to solve the local surface normal up to an orthogonal

ambiguity under the unknown environment light. We further propose a consistent

orthogonal condition to cluster the consistent surface normal pairs and build the con-

nections between patches. Based on the relationship between local surface patches, a

graph-based patch merging algorithm is introduced to solve the per-patch orthogonal

ambiguity. Results on diverse real datasets clearly show that our method outperforms

previous uncalibrated natural light photometric stereo methods without requiring a

fine initial shape.

To enable photometric stereo for dynamic shape recovery, we analyze photometric

stereo under multispectral light, also called multispectral photometric stereo (MPS),

in Chapter 4. MPS is known as an ill-posed problem. We show that the MPS can be

made well-posed for monochromatic surfaces based on our newly proposed formulation,

and we derive a unique and closed-form solution for the surface normal estimation

in MPS. In addition, we show that a more general setting of spatially-varying both

chromaticities and albedos can become well-posed if the light spectra and camera

spectral sensitivity are calibrated. For this general setting, we also give a unique

and closed-form solution for MPS using the linear bases extracted from a spectral

reflectance database. Experiments on both synthetic and real datasets demonstrate
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that our method recovers surface shape from a single-shot multispectral image, and

achieves dynamic shape recovery from a multispectral video sequence.

Future Work Although the methods proposed in this thesis are novel and achieve

promising results on their specific tasks, there are rooms for each chapter to achieve

the goal of practical photometric stereo. Specifically, Chapter 2 models the real-

world near-light emission, but it still requires light position calibration and capturing

data in a darkroom via multiple shots. Chapter 3 is free of the light calibration

and darkroom, but it assumes a distant light model and requires multiple shots for

image observations under varying natural environments. The varying natural light

can be obtained from moving point light sources in an indoor environment [3] or

varying daylight illuminations at different moments in a day [2]. Chapter 4 removes

the requirement of multiple shots and achieves dynamic shape recovery, but it assumes

distant light and requires darkroom and light direction calibration. It is better to

further reduce the lighting assumptions and hardware requirements in each chapter to

finally achieve practical photometric stereo. Therefore, our future works are listed as

follows:

• Multispectral photometric stereo under near-point light

Our multispectral photometric stereo method assumes the illumination to be

distant spectral light. It is very interesting to combine the methods in Chapter 2

and Chapter 4 to achieve dynamic shape recovery under practical anisotropic

near point lights.

• Uncalibrated multispectral photometric stereo & near-light photometric stereo

In Chapter 2 and Chapter 4, we assume the point light positions and spectral

lighting directions are calibrated. It is useful to develop the corresponding al-

gorithms without light calibration since it requires additional efforts and is not

friendly for the non-expert.

• Photometric stereo under non-Lambertian reflectance
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In this thesis, we assume the surface follows Lambertian reflectance and mainly

make efforts on photometric stereo under the practical light setting. However,

real world surfaces have more general non-Lambertian reflectance. By consider-

ing the general reflectance in photometric stereo, the proposed methods in this

thesis could output more accurate surface normal estimation in real scenarios.
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