
Title A Study on Stream Data Processing with Dynamic
Quality Control

Author(s) Yukonhiatou, Chaxiong

Citation 大阪大学, 2022, 博士論文

Version Type VoR

URL https://doi.org/10.18910/88155

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A Study on Stream Data Processing

with Dynamic Quality Control

Submitted to

Graduate School of Information Science and Technology

Osaka University

2022/1/11

Chaxiong Yukonhiatou

List of Publications

1. Journal Paper

1. Chaxiong Yukonhiatou, Tomoki Yoshihisa, Tomoya Kawakami, Yuuichi Teranishi
and Shinji Shimojo, “A Method to Reduce Transaction Time for Real-time IoT Ap-
plications,” in IPSJ Journal of Information Processing (JIP), pp.701-710, November
2019 [Recommended paper].

2. Chaxiong Yukonhiatou, Tomoki Yoshihisa, Tomoya Kawakami, Yuuichi Teranishi
and Shinji Shimojo, “A fast stream transaction system for real-time IoT applications,”
in Elsevier Internet of Things Journal, Volume 11, pp. 701–710, September 2020
[Recommended paper].

2. International Conference Paper (with review)

1. Chaxiong Yukonhiatou, Tomoki Yoshihisa, Tomoya Kawakami, Yuuichi Teranishi
and Shinji Shimojo, “A Scheme to Improve Stream Transaction Rates for Real-time
IoT Applications,” in Proceedings of the International Conference on Advanced
Information Networking and Applications (AINA), pp 787-798, March 2019 (Best
Paper Award) [acceptance rate: 25%].

2. Chaxiong Yukonhiatou, Tomoki Yoshihisa, Tomoya Kawakami, Yuuichi Teranishi
and Shinji Shimojo, “A Dynamic Intervals Determination Method Based on
Transaction Rates for Real-Time IoT Applications,” in Proceedings of the IEEE
International Workshop on Architecture, Design, Deployment and Management
of Networks and Applications (ADMNET) in Conjunction with the 43rd Annual
International Computer, Software and Applications Conference (COMPSAC), pp.
7-12, July 2019.

i

3. Chaxiong Yukonhiatou, Tomoki Yoshihisa, Tomoya Kawakami, Yuuichi Teranishi
and Shinji Shimojo, “A Performance Evaluation of Object Detections by Progressive
Quality Improvement Approach,” in Proceedings of the IEEE Global Conference
on Consumer Electronics (GCCE), pp 321-325, October 2019.

3. Domestic Conference Paper

1. Chaxiong Yukonhiatou, Tomoki Yoshihisa, Tomoya Kawakami, Yuuichi Teranishi
and Shinji Shimojo, “A Scheme to Improve Stream Data Analysis Frequency for
Real-time IoT Applications,” in Proceedings of the IPSJ Multimedia, Distributed,
Cooperative and Mobile Symposium (DICOMO), pp. 1205-1211, July 2018
[excellent paper].

2. Chaxiong Yukonhiatou, Tomoki Yoshihisa, Tomoya Kawakami, Yuuichi Teranishi
and Shinji Shimojo, “An Implementation of Video Surveillance Systems with Pro-
gressive Quality Improvement Approach,” in Proceedings of the IPSJ Multimedia,
Distributed, Cooperative and Mobile Symposium (DICOMO), pp. 979-984, July
2019.

3. Chaxiong Yukonhiatou, Tomoki Yoshihisa, Tomoya Kawakami, Yuuichi Teranishi
and Shinji Shimojo, “An Implementation of Surveillance Systems with Dynamic
Transaction Intervals under PQI Approach,” in Proceeding of the IPSJ Research
Report onMultimedia Communication and Distributed Processing (2019-DPS-181),
pp. 1-6, December 2019.

ii

Summary

Recently, stream data processing systems such as Apache Flink and Spark Streaming
have attracted considerable research attention. Stream data processing systems are widely
used in various applications that require periodical and continuous data processing such
as object detection and sensor data analysis. In the present stream data processing
applications, sensor devices with network access capability are often applied as data
sources. The computational power of such device is smaller than that of ordinary desktop
computers. Therefore, to enable complex and heavy load stream data processing such as
object detection or state analysis, sensor devices transmit stream data to remote processing
computers with higher computation power to offload the data processes. The processing
computer periodically processes each data item included in the stream data. For instance,
several video surveillance systems execute stream data processes on a remote server to
detect perpetrators in videos captured by surveillance cameras. Two key indexes can be
considered to evaluate the performance of such stream data processing systems, namely,
transaction time and transaction rate. The transaction time corresponds to the period
between the instant at which a data item is produced on a stream data source to the instant
at which the processing computer completes processing it. The transaction rate means the
number of transactions completed per unit time (a second). A smaller transaction time and
a higher transaction rate correspond to enhanced application performance. For instance,
the probability of apprehending perpetrators increases when the processing computer
analyzes the videos within a smaller transaction time and with a higher transaction rate.
To enable performance enhancements, most methods reduce the communication traffic
between the data sources and the processing computer.

Although stream data processes do not always require the original qualities of the data
got from the sensor devices at the data sources, the processing computer in conventional
systems receives original quality data. For example, in certain cases, the processing
computer in face detection systems can recognize faces even when the image size is

iii

smaller than the original size (the quality of data in this case pertains to the resolution).
In certain human detection tasks, the processing computer can detect target humans in a
part of the image area (the quality in this case pertains to the image region). In the SLAM
(Simultaneous Localization andMapping) systems for autonomous robots, original quality
LiDAR (Light Detection And Ranging) data, including the detailed object shape, are not
needed depending on the situation (e.g. detailed object shape is not needed to change the
movement direction to avoid obstacles). By evaluating the necessity of original quality
data, we can reduce the redundant communication traffic in certain situations, thereby
enhancing the performance of stream data processing systems. Therefore, this study
aims to establish a novel progressive quality improvement (PQI) approach to enhance the
abovementioned performance indexes. In this approach, data with different qualities are
generated from the original data. The data with the lowest quality are cyclically sent to
the processing computer. Only in cases when data with higher qualities are needed, the
processing computer progressively collects these data from the data sources. Moreover,
we developed a method to improve the transaction rate by changing the transaction
interval dynamically under the PQI approach. To investigate whether the PQI approach
can enhance the performance in real situations, the PQI strategy was implemented in
a video surveillance system to investigate the differences in the results obtained using
the implemented system and developed simulator. This dissertation is divided into five
chapters.

In Chapter 1, we provide a background overview, the objectives, related work, and the
content of this research.

Chapter 2 describes the proposed PQI approach for stream data processing. The
objective is to reduce the transaction time. Each stream data source generates certain data
having different qualities from the original data. The data are transmitted only if requested
by the processing computer. The quality of data for stream processing progressively
improves. The PQI approach is evaluated through our developed simulator. The results
show that the transaction time of the PQI approach is shorter than that of the conventional
approach when the probability that the process proceeds to the original quality data is
small.

Chapter 3 describes the method to improve the transaction rate under the PQI approach,
termed the cycle-based dynamic interval (PQI-CDI) method. The transaction interval is
dynamically changed based on the transaction time. The processing computer changes

iv

the transaction intervals of each stream data every time when a predetermined number
of transactions are finished. We evaluate the proposed method by using our developed
simulator. The results show that the proposed method can enhance the transaction rate
compared with that of the conventional static interval method.

Chapter 4 explains the implementation of a video surveillance system incorporated
with the proposed PQI-CDI method. We used three camera devices and one processing
computer for the implementation and developed two software for them. We investigate
the differences between the performances obtained by our developed simulator and those
by our implemented system. The experimental results show that the PQI-CDI method
can improve the transaction time and the transaction rate in actual situations although the
performances were not always similar to the simulation results.

Chapter 5 presents the concluding remarks and mentions several future research
directions.

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Research Objectives . 4
1.3 Related Work . 5

1.3.1 Stream Data Processing Systems 5
1.3.2 Video Data Processing . 6
1.3.3 Stream Data Sources . 8

1.4 Organization of the Dissertation . 9

2 Transaction Time Reduction for Stream Data Processing 11
2.1 Introduction . 11
2.2 Related Work for Transaction Time Reduction 13
2.3 Assumed Environment . 14

2.3.1 System Architecture . 14
2.3.2 Application Scenario . 15
2.3.3 Symbol Definitions . 16

2.4 PQI Approach . 16
2.4.1 Basic Idea . 17
2.4.2 Process Flows . 17
2.4.3 Example Flow . 20

2.5 Evaluation of the PQI Approach . 23
2.5.1 Evaluation Setup . 23
2.5.2 Final Probability . 24
2.5.3 Transaction Time . 25
2.5.4 Influence of Number of Streams 29
2.5.5 Influence of Transaction Intervals 30

vi

Contents

2.5.6 Influence of Number of Quality Levels 31
2.5.7 Influence of Final Probabilities 32

2.6 Discussion . 33
2.6.1 Detection Performance . 33
2.6.2 Deciding Parameter Values . 35
2.6.3 Processing Power . 36

2.7 Conclusion . 36

3 A Method to Improve Transaction Rates under the PQI Approach 39
3.1 Introduction . 39
3.2 Related Work for Transaction Rate Improvement 41
3.3 Proposed Method . 42

3.3.1 Adjustment of Transaction Interval 42
3.3.2 Design of Proposed Method 44
3.3.3 Algorithms . 45
3.3.4 Example . 46

3.4 Evaluation of the Transaction-rate Improvement Method 48
3.4.1 Evaluation Setup . 48
3.4.2 Influence of Number of Streams 49
3.4.3 Influence of Cycle Length . 53

3.5 Conclusion . 55

4 Implementation of Video Surveillance System with the PQI-CDI Method 57
4.1 Introduction . 57

4.1.1 Background . 57
4.1.2 Performance Differences Caused by Actual Implementation . . 59

4.2 Related Work for Implementation of Surveillance Systems 60
4.2.1 Surveillance Systems . 60
4.2.2 Systems considering Transaction Intervals 61

4.3 Design of a Video Surveillance System 61
4.3.1 System Architecture . 61
4.3.2 Process Flow for Camera Devices 63
4.3.3 Process Flow for Processing Computers 64
4.3.4 Software Modules . 65

vii

Contents

4.4 Implementation . 68
4.4.1 Equipment . 68
4.4.2 Programs . 68
4.4.3 Sample Images . 69

4.5 Evaluation of the Implemented System 70
4.5.1 Evaluation Environments . 71
4.5.2 Transaction Time . 71
4.5.3 Transaction Rate . 75
4.5.4 Jitter of Transaction Intervals 77
4.5.5 Discussion . 80

4.6 Conclusion . 80

5 Conclusion 83
5.1 Concluding Remark . 83
5.2 Future Work . 85

Acknowledgements 87

viii

List of Figures

1.1 A representative our assumed system 3

2.1 An image of our assumed environment 15
2.2 The flowchart for the stream data sources 18
2.3 The flowchart when higher quality data is requested 19
2.4 Process flow for the processing computer 19
2.5 Example flow of a conventional approach vs. ours 21
2.6 Example image qualities . 25
2.7 A processing image to explain the final probability 26
2.8 Transaction time of each transaction 27
2.9 Distribution of transaction time when the number of streams is five . . . 28
2.10 Distribution of transaction time when the number of streams is seven . . 28
2.11 Average transaction time under different number of streams 30
2.12 Average transaction time under different transaction intervals 31
2.13 Average transaction time under different numbers of quality levels . . . 32
2.14 Average transaction time under different final probabilities 33
2.15 Detection Accuracies . 34

3.1 Example of transaction rates under different transaction intervals 43
3.2 The flowchart for the data sources under the PQI-CDI method 45
3.3 The flowchart for the processing computer under the PQI-CDI method . 46
3.4 Transaction rate under the conventionalmethod (static transaction interval)

vs. the PQI-CDI Method . 47
3.5 Average transaction rates and the number of streams 49
3.6 Average transaction time and the number of streams 50
3.7 Average jitter and number of streams 51
3.8 Average transaction rate and cycle length 52

ix

List of Figures

3.9 Average transaction time and cycle length 53
3.10 Average jitter and cycle length . 54

4.1 System architecture design . 62
4.2 Example images with different quality levels 63
4.3 Generation image of each quality data in the cameras 63
4.4 Processing image of the processing computer 64
4.5 Software architecture of the implemented system 65
4.6 Devices used in the implementation 69
4.7 Example images under the PQI-CDI method 70
4.8 Example images when the PQI-CDI method is not used 70
4.9 Average transaction time when one camera is used 72
4.10 Average transaction time when three cameras are used 74
4.11 Average transaction rate when one camera is used 75
4.12 Average transaction rate when three cameras are used 76
4.13 Average jitter when one camera is used 78
4.14 Average jitter when three cameras are used 79

x

Chapter 1

Introduction

1.1 Background

Recently, stream data processing systems such as Apache Flink1, Spark Streaming2, and
Kafka Streams3 have attracted considerable research attention. In this study, stream data
is defined as a series of data items that is periodically and continuously generated from
a variety of data sources such as camera devices and sensor devices. Representative
examples of stream data include image data, sensor data, and social media feeds.

Stream data processing systems are widely used for various applications such as
detecting objects in video data for real-time event detections (e.g., perpetrator detection
[1–5], license plate detection [6–9], car detection [10–12], etc.), identifying behaviors of
the users for health cares by the vibration sensor data analyses [13,14], extracting disaster
information from social media feeds [15, 16].

Considering the prevalence of object detection systems implementing stream data
processing, object detection systems are regarded as a typical application of stream data
processing in this study.

In the present stream data processing applications, sensor devices with network access
capability are often applied as data sources. For example, compact computers like
Raspberry Pi devices or other micro-computers are often equipped as stream data sources
because their spatial sizes are small, and thus they are easily installable at various places.
The computational power of such a device is smaller than that of ordinary desktop

1https://flink.apache.org/
2https://spark.apache.org/
3https://kafka.apache.org/

1

Chapter 1 Introduction

computers. Therefore, to enable complex and heavy-loaded stream data processing, sensor
devices transmit stream data to remote processing computers with a higher computational
power to offload the data processes. The processing computer periodically processes
each data item included in the stream data. Such stream data processing systems in
which a processing computer processes stream data transmitted by remote stream data
sources are the target systems of this study. A set of processes (including communication
processes) for each data item is termed as a transaction. A time span in that a transaction
is running is termed as a transaction time. A transaction starts from the instant at which
a data item is constructed on a stream data source to the instant at which the processes
for the data item finish on the processing computer. A new transaction starts as soon
as the transaction interval elapses from the instant at which a transaction starts. The
transaction interval is a different value from the transaction time. If the transaction time
is longer than the transaction interval, the transaction overlaps with the next one.

Figure 1.1 shows a representative our assumed system. In the figure, the data
sources are camera devices deployed at an office. The example application is a video
surveillance system. In this system, the image data captured by surveillance camera
devices are transmitted to a processing computer in a security center [17–20] because the
computational resources of the camera devices are often insufficient to accomplish object
detection tasks. In this application, a transaction is a set of processes for each video frame
data. The transaction interval is the time span between the transmissions of frame image
data and the value equals to the inverse value of the frame rate on the camera devices
(1/30 [s] for 30 [Hz] video).

Two key indexes can be considered to evaluate the performance of stream data
processing systems.
(1) Transaction time

As we briefly explained in the above, a transaction time is the time required for
processing a transaction and is the period between the instant at which a stream data
source constructs a data item to the instant at which the processing computer completes
the set of processes for it. The transaction time includes the communication time
and the processing time for the transaction. A shorter transaction time enables stream
data processing systems to get the processing results of a transaction earlier. In video
surveillance systems, the transaction time corresponds to the delay from the time of a
real incident to its detection time on the system. If the delay is long, countermeasures

2

1.1 Background

Network

Processing
Computer

Office

Stream data

Figure 1.1: A representative our assumed system

against incidents may become invalid. For example, if the alarm is delayed due to the
long transaction time, the perpetrator might be able to escape from the surveillance point.
Therefore, the transaction time is a key factor to enhance the performance of stream data
processing systems of which input data come from remote stream data sources.
(2) Transaction rate

The number of transactions completed per second is referred to as the transaction
rate. The transaction rate is the inverse value of transaction interval if there is no resource
competition in the communication network nor the processing computer. When the
transaction is executed on competitive resources and the transaction does not finish within
the transaction interval, the transaction rate becomes smaller than the inverse value of
the transaction interval. In this case, the transaction time eventually gets longer and the
transaction rate becomes smaller. Only in cases where the transaction time equals the
transaction interval value, the transaction rate is the inverse value of the transaction time.
A higher transaction rate enables stream data processing systems to get more frequent
processing results of the transactions. In video surveillance systems, to keep the detection
performance for moving objects, the transaction rate should be higher than a certain value
to obtain enough number of detection process results in a unit time. Therefore, the
transaction rate is a key factor to enhance the performance of stream data processing
systems of which input data come from remote stream data sources.

We use video surveillance systems as typical examples of stream data processing

3

Chapter 1 Introduction

systems. However, our proposed approach does not depend on the contents of the data
when the system architecture is the same as our target system mentioned in this section
and the contents of the data have the quality attributes. For example, the contents of the
data for our proposed approach can be temperature, SLAM (Simultaneous Localization
and Mapping), or so on.

1.2 Research Objectives

This study aims to enhance the performances mentioned above. The research objectives
of this study are described in the following.

• Reduction of transaction time
As explained in the previous section, one of the performance indexes in our target
stream data processing systems is transaction time. To reduce the transaction time,
many methods have been proposed, as described in Section 2.2. Most of these
methods degrade the data qualities such as the image data resolutions to reduce
the communication traffic between the stream data sources and the processing
computer. However, the application performance may deteriorate with the data
quality degradation. For example, the detection accuracies for object detection
applications decrease when the image data resolutions are excessively low. Hence,
one of the objectives of this study is to reduce the transaction time while maintaining
the application performance. The relevant details are presented in Chapter 2.

• Improvement of transaction rate
The other performance index is transaction rate. To improve the transaction rates,
several methods have been proposed, as described in Section 3.2. These methods
target periodic stream transactions and assume static transaction intervals as the
focus on video applications, in which the transaction intervals (the frame rate) are
not changed frequently. If the frame rate changes frequently, the quality of the
experience degrades as a trade-off for changing the transaction intervals. However,
when the transaction interval is long, it results in a lower transaction rate. On
the other hand, when the transaction interval is excessively short, the transactions
overlap, which causes long transaction time and high computational load on the
processing computers, and thus the transaction rate decreases. Hence, one of the

4

1.3 Related Work

objectives of this study is to improve the transaction rate considering the dynamic
adjustment of the transaction interval. The relevant details are presented in Chapter
3.

• Implementation of the proposed approach
To investigate whether the proposed approaches for the transaction time reduction
and transaction rate enhancement are effective in real situations, we implement a
video surveillance system incorporated with the proposed approaches and investigate
the differences in the results obtained from the implemented system and simulation
results. Chapter 4 presents the relevant details.

1.3 Related Work

This section first provides an overview and introduction of the studies relating to stream
data and video data processing systems. After that, we will introduce the studies relating
to stream data sources. The studies relating to transaction time, transaction rate, and
video surveillance systems are described in Subsections 2.2, 3.2, and 4.2, respectively.

1.3.1 Stream Data Processing Systems

Several researchers have proposed stream data processing systems for several decades.
Recent researches focus on cloud computing environments, IoT devices, and so on. The
stream data processing system proposed in [21] used a cloud service to analyze large
amounts of heterogeneous and high-frequency sensor data. The stream data targeted in the
research are generated by IoT (Internet of Things) devices connected to the Internet. The
stream data processing system proposed in [22] also dealt with the stream data that came
from remote stream data sources. The system adopted in-memory streaming and caching
(temporally storing the received data to the memory) technologies for fast processing.
The system extended Kafka streams. Similar to these studies, our target is the stream data
processing systems of which input data come from remote stream data sources.

A two-layer system architecture for stream data processing was proposed in [23]. In the
first layer, the system checks the received data and determines whether to proceed to the
process in the second layer. The checking processes were designed for enabling a much
lighter processing load than the processes in the second layer. Thus, this architecture

5

Chapter 1 Introduction

reduces the processing loads because the system does not execute unnecessary high load
processes. This architecture is also similar to our approach in that unnecessary processes
are skipped by checking their necessity. This method always processes all the sensor
data in the first layer even if the size of the data is large. Therefore, the traffic in the
communication network is not reduced that can cause a long transaction time.

A two-level indexing approach for data collection was proposed in [24]. In this
approach, segmented data are first stored in the memory of the processing computer
having a tree structure in the first level. Next, data segments are passed to the second level
with its reference data to the tree. This approach enables rapid data acquisition because
the processing computer can access each data segment rapidly by using its reference data.
This approach can be applied together with our approach.

As explained in Section 1.1, object detection systems are one of the major systems
using stream data processing techniques. There are many researches for object detection
systems. To improve the system performances for embedded IoT devices, a parallel and
light object detection framework was proposed in [25]. A noise reduction mechanism
by background subtractions for object detection was proposed in [26]. To detect objects
in a short time, a pipelining technique for general purpose graphics processing units
(GPGPUs) was proposed in [27], a method using several GPUs in parallel was proposed
in [28], and an occluded-region reduction method was proposed in [29]. However, these
object detection systems did not consider the necessity of the original quality data, which
our proposed approach considers to improve the performance indexes.

1.3.2 Video Data Processing

We introduce the studies relating to video data processing in this subsection because one
of the attractive stream data is video stream data. For the cases that the computational
resources of the camera devices are insufficient for video data processing, the camera
devices of the proposed systems in [30–33] continuously transmit their captured image
data to remote processing computers. Similar to these studies, the input data in our
assumed system come from remote stream data sources. To reduce the processing time
on the processing computer, several methods have been proposed.

A parallel processing technique for video data processing was proposed in [34]. The
data are distributed to multiple slave processing computers by a primary processing

6

1.3 Related Work

computer, and the results are collected by the primary processing computer. A parallel
processing technique targeting connected vehicles as stream data sources was proposed
in [35]. In the technique, the processes are modeled as a directed graph and are mapped
to the logical network consisting of the connected vehicles. These methods reduced the
transaction time by implementing parallel executions using several processing computers.
These techniques require several processing computers. Stream processing systems
targeted in this study consist of a single processing computer and stream data sources
equipped with compact computers.

The video data processing system proposed in [36] uses the GRIB (Generally Regularly
Distributed Information in Binary) technique to improve the speed of video data processes.
Under the GRIB, the processing computer performs video encoding/decoding processes
in parallel by packing the video data into the GRIB code in binary format. This technique
can be applied to our proposed approach by using the GRIB code.

The video processing systems that realize real-time object tracking using GPGPUs
were developed in [37, 38]. GPGPUs can often reduce the image processing time further
compared with CPUs because their architectures are designed to enable faster image
processing. If the processing computer has GPGPUs, we can adopt similar approach to
these studies.

To reduce video data sizes, various systems use data compression techniques. The
system proposed in [39] uses a data compression algorithm enabling to keep data quality.
To prevent data quality degradation for wireless communications, several image data
compression techniques were proposed in [40, 41]. Moreover, several video coding
systems were developed to reduce video data sizes by compressing the data in [42–44].
Furthermore, several researchers proposed data compression techniques to reduce the data
amount for video stream data transmissions [45–47]. A video surveillance system using a
video encoding/decoding algorithm with data compression for fast data transmissions
between the camera devices and the processing computer was proposed in [48]. The
system architecture in the research is very similar to that in our study. These studies did not
consider the necessity of the original quality data, and thus applied the data compression
techniques according to the application requirements. One of the disadvantages of
compressing video data is the time required for compressing the data at the data sources
and at the processing computer. These data compression techniques can be applied for
each data item in our proposed approach.

7

Chapter 1 Introduction

Several existing encoding techniques consider the data qualities, such as progressive
JPEG (Joint Photographic Experts Group) 4. In the progressive JPEG-based approach, the
image data quality is gradually increased. At the beginning of the image data reception,
a blurred image is shown, and the resolution later improves as the subsequent data
arrive. Scalable video coding (SVC) on H.264 is a video compression algorithm that
enables the performance enhancement for video transmission even under a low-bandwidth
network5. As an extension of the H.264 codec standard, H.264 SVC allows multi-platform
distribution and adaptive video bitrate from a single video file. These approaches can
control the data quality according to the network congestion level. However, in these
encoding techniques, the processing computer always finally receives the designated
quality data. In our proposed approach, the stream data sources transmit higher quality
data only when they are required by the processing computer (see Chapter 2 for details).

1.3.3 Stream Data Sources

Targeting stream data processing systems in which a processing computer processes
stream data transmitted by remote stream data sources, many methods have been proposed
to reduce the communication traffic ([49–52]). Some types of the sensor values such as
temperature or humidity do not change sharply in a second due to temporal or spatial
dependency. Therefore, a scheme for reducing the communication traffic from sensor
devices by removing transmissions of similar data was proposed in [53]. The scheme
also uses an in-memory computing technique to reduce the processing time. A method to
reduce the number of the stream data sources using their physical positions was proposed
in [54]. The method targets finding an extremely different value in stream data and
removes the data sources whose stream data show correlations with others. However,
these methods do not focus on data quality and do not consider the necessity of the original
data quality. In cases where stream data sources run on batteries, power consumption
reduction lengthens their lifetimes. The power consumptions are generally reduced by
reducing the computational loads on the sensor devices. Therefore, the method proposed
in [55] attempts to reduce the power consumption by omitting several data transmissions
and processes. However, omitting them decreases the application performances such as

4https://cloudinary.com/blog/progressive_jpegs_and_green_martians
5https://www.mistralsolutions.com/articles/h-264-svc-update-h-264-video-compression-standard/

8

1.4 Organization of the Dissertation

the number of the data items received.
A method to reduce communication traffic between stream data sources and processing

computers by decreasing the video bitrates was proposed in [56]. The video data sources
set a high bitrate only if objects are detected in the recorded image data. In [57], a
dynamic bitrate adaptation scheme for mobile devices was proposed and evaluated in
real situations. In the scheme, the system dynamically selects the appropriate bitrate
for the mobile device based on the data amount buffered in the memory. In addition, a
method to control the buffer for transactions to maintain the transaction rates on the stream
data sources was proposed in [58]. A method to reduce the communication delays by
controlling the number of data packets for transactions was proposed in [59]. A method
to reduce the processing loads on camera devices was proposed in [60]. The method uses
a light load CoAP (Constrained Application Protocol) and controlls the communication
traffic not to make the camera devices overloaded. However, these researches did not focus
on the progressive improvement of data quality, which is the key idea of our proposed
approach in this study.

1.4 Organization of the Dissertation

This dissertation consists of five chapters, and the rest of this dissertation is organized as
follows.

Chapter 2 describes our proposed progressive quality improvement (PQI) approach
for our target systems. The objective is to reduce the transaction time. Each stream data
source constructs several data items having different qualities from the original data, and
the data items are transmitted only if they are requested by the processing computer.
Accordingly, the quality of the data processed in the processing computer progressively
improves. We evaluate the PQI approach using our developed simulator. The evaluation
parameters are the transaction intervals, number of qualities, and final probability (we
consider progressive coding for image data, and the final probability is the probability
of proceeding to the original quality). The evaluation results show that under a small
final probability, the transaction time of the PQI approach is smaller than that of the
conventional approach.

Chapter 3 describes a method to increase the transaction rate under the PQI approach,
termed the PQI-CDI (PQI with Cycle-based Dynamic Interval) method. The transaction

9

Chapter 1 Introduction

interval is dynamically changed based on the transaction time. The transaction intervals
for each stream data are changed every time when a predetermined number of transactions
are finished. Moreover, due to the adoption of the PQI approach, the communication time
and the processing time are reduced. We evaluate our proposed method by using our
developed simulator. The evaluation results show that the proposed method can enhance
the transaction rate compared with that of the conventional method with static interval.

Chapter 4 explains the implementation of a video surveillance system incorporated
with the proposed PQI-CDI method. In the implementation, three camera devices and
one processing computer were connected via a local area network. We developed two
softwares run on each of them. To investigate the differences between the results obtained
by our developed simulator and those by our implemented system, we measure the
transaction time, transaction rate, and the jitters of the transaction intervals under the
implemented system. The experimental results show that the PQI-CDI method can
improve the transaction time and the transaction rate in actual situations although the
performances are not always similar to the simulation results.

Chapter 5 presents the concluding remarks and describe several future research
directions.

10

Chapter 2

Transaction Time Reduction for Stream
Data Processing

2.1 Introduction

In most applications for stream data processing systems, a shorter transaction time enables
earlier process completion, and thus leads the improvement of application performance.
In the example of perpetrators detection in Section 1.1, the delay in identifying the
perpetrators recorded in the image data shortens as the transaction time is reduced.
Therefore, transaction time is one of the main factors to improve the performance of our
target stream data processing systems.

In our assumed system in this study, stream data sources transmit stream data to the
processing computer. The reduction of the data amount that the data sources transmit
leads to a reduction in the transaction time because the transaction time includes the
communication time and the processing time. A larger data amount causes a longer
communication time and a longer processing time. Therefore, most of the existing
methods reduce the transaction time by reducing the data amount transmitted from the
data sources [61–67]. One of the major approaches to reduce the data amount is the
degradation of data quality, e.g., reducing image data resolutions. The data amount after
quality degradation is smaller than that of the original data. Therefore, the transaction time
is reduced. However, the quality degradation deteriorates the application performance
such as the detection accuracy for object detection and the position estimation accuracy
for SLAM (Simultaneous Localization and Mapping).

The key point in preventing deterioration of the application performance is that the

11

Chapter 2 Transaction Time Reduction for Stream Data Processing

processing computer obtains original quality data as soon as it is needed to perform the
transaction for the data. In some cases, the original quality data are not needed to establish
the transaction. For example, in the case of perpetrator detection, if there are no faces (not
only perpetrators) in the image data, the processing computer does not need the original
quality data because perpetrators are not recorded in the image. The processing computer
can check the necessity of the original quality data by using low quality data. Definitely,
the system needs to control the quality not to deteriorate the application performance.
The data amount of lower quality data is generally smaller than that of the original quality
data. Therefore, by checking the necessity of the original quality data using lower quality
data, it is possible for the processing computer to obtain the original quality data only
when it is needed. The average data amount needed to establish the transaction is reduced,
and thus the transaction time is reduced.

Hence, in this chapter, we propose a progressive quality improvement (PQI) approach
for efficient stream data processing. The goal of this chapter is to reduce the transaction
time without deteriorating the application performance. In our approach, each stream data
source constructs data of that quality is lower than the original quality. The processing
computer progressively collects data needed to obtain higher quality data only if they are
needed. A detailed explanation of this technique is provided in Section 2.4. The drawback
of collecting and processing data of several qualities is that the transaction time increases
when the process proceeds finally to the original quality. However, if the probability that
the process proceeds to the original quality is low, the approach can reduce the average
data processing burden, thereby reducing the average transaction time. The contributions
of this chapter are summarized as follows:

(1) An approach is proposed to reduce the transaction time by progressively collecting
higher quality data.

(2) Evaluations of the proposed approach are performed by our developed simulator.

The rest of this chapter is organized as follows. In Section 2.2, some previous studies
related to our proposed approach are presented. In Section 2.3, the assumed system
environments are explained. Our proposed approach is explained in Section 2.4, is
evaluated in Section 2.5, and is discussed in Section 2.6. Finally, the chapter is concluded
in Section 2.7.

12

2.2 Related Work for Transaction Time Reduction

2.2 Related Work for Transaction Time Reduction

There are various studies related to the transaction time reduction for stream data
processing systems of which input data come from remote stream data sources. We
introduced some stream data processing systems in Subsection 1.3.1. Here, we introduce
some related work especially from the view point of transaction time reduction.

An efficient computational resources (CPU cores, memories) allocation scheme for
stream data processing was developed in [68]. In the scheme, processing computer
allocates the dedicated computational resources for each data stream. The processing time
for each stream data is reduced because the probability of occurring the computational
overheads such as swapping, page faults, and thrashing is reduced. A method to reduce
the delay for starting processing the data was proposed in [69]. This method employs a
queueing model for buffering the data of each stream at the processing computer. The
processing computer prepares separated data queues and selects the data to be processed
in each queue to reduce the processing delay. For object detection systems, which is a
typical application in this study, [70] developed a fast object detection framework. The
programs and the communication parameters of the framework are optimized for the
target systems and thus establishes faster object detection. However, these methods do
not consider the necessity of the original data quality because they do not focus on data
quality.

Some researches on wireless sensor network (WSN) systems have aimed to fast
collection of sensor data which periodically transmitted from sensor devices and are
related to transaction time reduction. A processing loads distribution method for WSN
was proposed in [71]. The method adopts in-network processing, i.e., queries such as data
selection or data aggregation are executed at each sensor device which is an intermediate
node for the data collection network. In-network processing reduces the data amount to
be communicated in the network resulting in the transaction time reduction. [72] and [73]
proposed mechanisms to dynamically adjust the routes for sensor data collection in WSN.
They are similar to the mechanisms with software defined networks and the routes are
controlled by a management device so that the sink device can receive sensor data faster.
However, these methods do not consider data quality and the sink device collects the
sensor data with the original quality.

Some video codecs adopt multi-quality video, which include several video quality

13

Chapter 2 Transaction Time Reduction for Stream Data Processing

data in a video data stream. Therefore, some methods to improve video data quality
progressively were proposed. A quality selection considering the players’ buffer capacities
to reduce the number of video pauses was proposed in [74]. A faster motion vector
calculation method was proposed in [75]. Motion vectors are the directions of moving
objects and are used for video data compression. The method calculates the motion
vector in a short time by using a low quality video data. Several video data compression
techniques such as Wyner-Ziv coding could create several quality data as intermediate
data. Methods to exploit them to establish fine and fast video data compression were
proposed in [76–78]. However, these methods do not consider the necessity of the original
quality data. Stream data processing systems sometimes do not need the original quality
data for the processes as described in Section 1.3.

Some data compression techniques have been also proposed. We explained these
techniques and their drawbacks in Subsection 1.3.2.

2.3 Assumed Environment

In this section, we explain our assumed environment for stream data processing system.

2.3.1 System Architecture

Figure 2.1 displays an image of our assumed environment. A typical application of
stream data processing in this study is object detection systems. Therefore, we drew the
figure assuming that the application is a video surveillance system. The users designate
processes such as those for perpetrator detection to the processing computer. The
processing computer receives necessary data for the processes and continuously executes
the designated processes every time when transaction starts.

Various IoT (Internet of Things) devices, such as surveillance cameras, continuously
get data about their observations such as image data and act as stream data sources. These
data sources and the processing computer connect to a computer network such as a local
area network or the Internet.

The stream data sources and the processing computer can continuously communicate
with each other via the computer network. The stream data sources construct data items
from their observed original data and transmit them to the processing computer when

14

2.3 Assumed Environment

Processing Computer

Data Sources

Computer
Network

Requested Data

Request

Stream Data Sources

Data
User

Figure 2.1: An image of our assumed environment

fixed interval elapses. For example, surveillance cameras transmit image data of a video
frame every 100 [ms] when the frame rate is 10 [Hz]. The processing computer can
request data to the stream data sources if it needs data that the stream data sources own.
The stream data sources transmit the requested data as the responses for the requests.

2.3.2 Application Scenario

In this subsection, we introduce an application scenario. Suppose surveillance cameras
are deployed in an area, and the cameras and a processing computer are connected to
a local area network. The surveillance cameras, the processing computer, and their
connected network use similar architecture as that explained in the previous subsection.
We assume a perpetrator detection service. The service manager designates a process that
notifies the user when designated perpetrators are detected in the image data captured by
the surveillance cameras. For this, the user submits the face images of the perpetrators to
the processing computer beforehand. The processing computer continuously executes
processes to detect faces in the received image data. When the processing computer
detects faces in image data, it checks whether the matched faces are those of perpetrators.
If the processing computer detects perpetrators’ faces, it sends a notification to the user
by e-mail or other messaging services.

15

Chapter 2 Transaction Time Reduction for Stream Data Processing

2.3.3 Symbol Definitions

In this subsection, we define the symbols for our assumed system. Given a system with
stream data sources that transmit image data every �= (= = 1, · · · , #) time unit, = is
the number of stream data sources. Let �=,0 (C) denote the original data of the stream
data source = at the Cth transaction. 0 represents ‘all’ and is not a variable. The stream
data sources can construct & data items, �=,@ (C) (@ = 1, · · · , &), which provide the
data needed to get the @th quality data of �=,0 (C). Subsection 2.4.2.3 describes how to
construct them in our proposed approach. A data size of �=,@ (C) is denoted by (=,@ (C).
�)=,@ (C) denotes the generation time of �=,@ (C) on the data source =. ()=,@ (C) is the
time to start processing �=,@ (C), and �)=,@ (C) is the time to finish processing it on the
processing computer. Here, �)=,@ (C) = ()=,@ (C) + %=,@ (C). %=,@ (C) is the time needed to
process �=,@ (C). The transaction time,))= (C), is the time consumed from data generation
to transaction completion. In the case that the processing computer processes image data
sequentially from the lowest quality, �=,1(C), to the 4= (C)th quality data, �=,4= (C) (C), the
transaction completion time is the time to finish processing �=,4= (C) (C). The time to finish
processing �=,4= (C) (C) is denoted by �)=,4= (C) (C) by the definition. The data generation
time is the time to generate �=,1(C), the lowest quality data. The generation time of
�=,1(C) is denoted by �)=,1(C). Therefore,))= (C) is given by the following equation:

))= (C) = �)=,4= (C) (C) − �)=,1(C). (2.1)

The average transaction time for data-source = is

1
)

)∑
C=1
))= (C), (2.2)

where) is the total number of transactions. The objective is to minimize (2.2).
We denote the probability that the processing computer executes the process for the

(? + 1)th (? = 1, · · · , & − 1) quality data after finishing the process for the ?th quality
data at the Cth transaction as %%A>1=,? (C). For example, the probability to request �1,2(1)
when the processing computer finishes processing �1,1(1) is %%A>11,1(1).

2.4 PQI Approach

In this section, we explain our proposed approach.

16

2.4 PQI Approach

2.4.1 Basic Idea

Generally, data have certain qualities, and the original data gives the highest quality.
Processes can be executed even if the data quality is lower than the original quality, and
data with the highest original quality often give the best performance for applications. For
example, one of the quality indexes of image data is resolution. Image data with 640 x
480 pixels have a higher quality than image data with 320 x 240 pixels. Image processing
to detect faces can be executed for various pixel sizes; whereas higher resolution image
data generally gives higher accuracy because they have more information. In the
SLAM systems, the LiDAR (Light Detection And Ranging) data can be represented as an
image with depth (distance) information. Autonomous robots can change their movement
direction to avoid the obstacles using reduced resolution LiDAR data without detecting
the detailed shape of the obstacles. However, a higher resolution LiDAR data is needed
only if the robot needs to manipulate the obstacles to go through them.

When the processing computer processes data sequentially in the ascending order
of quality in a transaction, they can skip to the next transaction when the subsequent
processes for higher quality data are meaningless. Let us assume, similar to the example
in the introduction section, that a processing computer executes the processes for detecting
perpetrators in video data streams. The processing computer first receives the lowest
quality image data of a frame and executes the processes to detect faces in the image. In
cases where the faces are not detected, the processing computer skips the processing of
higher quality image data because perpetrators will not appear in the frame. The data
amount of lower quality data is smaller than that of the original quality data. Therefore, if
the probability to proceed to the processes of higher quality data is small, the total data
amount required for each transaction can be reduced compared with the cases in which
the stream data sources always transmit the original quality data. Thus, the transaction
times are reduced by maintaining the application performance. This approach is called
progressive quality improvement approach in this study.

2.4.2 Process Flows

In this subsection, we explain the process flows for our proposed PQI approach.

17

Chapter 2 Transaction Time Reduction for Stream Data Processing

Start of the
t th cycle

Get and store Dn,a(t)

Generate Dn,1(t)
from Dn,a(t)

Send Dn,1(t)
to the processing

computer

Receive the
request of Dn,q(t)

Generate Dn,q(t)
from Dn,a(t)

Send Dn,q(t)
to the processing

computer

Start of the
t th transaction

Get and store Dn,a(t)

Generate Dn,q(t) (q=1, …, Q)
from Dn,a(t)

Send Dn,1(t)
to the processing

computer

Receive the
request of Dn,q(t)

Send Dn,q(t)
to the processing

computer

Figure 2.2: The flowchart for the stream data sources

2.4.2.1 Process Flow for Stream Data Sources

Figure 2.2 displays the flowchart for the stream data sources when the Cth transaction
starts. When the Cth transaction begins, the data source = obtains �=,0 (C) and stores the
data in its storage temporarily. The data source then constructs �=,@ (C) (@ = 1, · · · , &)
from �=,0 (C). First, the data source sends �=,1(C) to the processing computer. �=,1(C) is
the lowest quality data. Thus, the stream data source = transmits the lowest quality data
periodically every time when the transaction interval elapses. We regard object detection
for image data as a typical application. A major format for the image data that have several
qualities is the progressive-JPG. The image data encoded by the progressive-JPG simply
concatenate all the differential data for each quality sequentially. Therefore, the camera
devices (data sources) can get �=,@ (C) easily by separating �=,0 (C). Hence, we explained
the case that the data sources construct all the data first. However, the PQI approach can
be applied for the case that the data sources construct �=,@ (C) upon its necessity. The
construction time is short if the data sources can get �=,@ (C) only by simple processes
such as separating �=,0 (C) like the progressive-JPG and is not a large problem.

Figure 2.3 shows the flowchart when higher quality data is requested. When the data
source = receives a request for �=,@ (C), it sends the data to the processing computer.
We explain how to construct data for higher quality data in Clause 2.4.2.3. Apart from
�=,1(C), higher quality data are transmitted upon request based on processing needs.

18

2.4 PQI Approach

Start of the
t th cycle

Get and store Dn,a(t)

Generate Dn,1(t)
from Dn,a(t)

Send Dn,1(t)
to the processing

computer

Receive the
request of Dn,q(t)

Generate Dn,q(t)
from Dn,a(t)

Send Dn,q(t)
to the processing

computer

Start of the
t th cycle

Get and store Dn,a(t)

Generate Dn,q(t) (q=1, …, Q)
from Dn,a(t)

Send Dn,1(t)
to the processing

computer

Receive the
request of Dn,q(t)

Send Dn,q(t)
to the processing

computer

Figure 2.3: The flowchart when higher quality data is requested

Receive Dn,q(t)

Judge the
necessity

No
q=Q

of Dn,q+1(t)

Yes

Finish the
process of t th

transaction

Yes

Request Dn,q+1(t)

Process Dn,q(t)

Figure 2.4: Process flow for the processing computer

2.4.2.2 Process Flow for Processing Computer

Figure 2.4 shows the flowchart of the processing computer. When it receives the data
needed for getting the @th quality data of the data source = at the Cth transaction, �=,@ (C), it
starts processing it. If the @th quality is the highest (original) quality&, the Cth transaction
completes when processing �=,@ (C) is finished. Otherwise, the processing computer
judges the necessity of �=,@+1(C). If �=,@+1(C) is needed for proceeding the processes of
the transaction, the processing computer requests it to the data source =. Note that the
reception of the lowest quality data is push-based. Receptions of higher quality data are
pull-based.

19

Chapter 2 Transaction Time Reduction for Stream Data Processing

2.4.2.3 How to Use Data for Each Quality

There are two typical approaches to construct data for each quality.
In the first approach, the data sources transmit only differential data. In this case, the

processing computer constructs the @th quality data item by combining the differential
data and the (@ − 1)th quality data. For example, image data having 640x480 pixels
resolution can be constructed using four images of 320x240 pixels resolution. Thus, the
amount of the @th quality data item from the stream data source = at the Cth transaction is
given by

@∑
8=1

(=,8 (C) + U=,8 (C). (2.3)

(=,8 (C) is the data amount for the transmission and is the data amount needed to construct
the 8th quality data, not the data amount for the 8th quality data. Here, U=,8 (C) is the
overhead caused by combining the differential data with a lower quality data such as the
data header or the data delimiter. Indeed, the image data encoded by the progressive-JPG
concatenate several differential data sequentially putting the data delimiter in front of
each differential data.

In the second approach, the data sources transmit the entire @th quality data item.
When the data sources cannot pick up only differential data, e.g., the cases that the data
format cannot separate each quality (BMP or RAW for image data), the system adopts
this approach. In this case, the data amount for the transmission is the same as the data
amount of the @th quality data. The overhead of this approach in the aspect of the increase
of the data amount for the transmission is nothing because the data sources transmit the
@th quality data itself.

The average transaction time decreases as the probability that the processes proceed to
higher quality data decreases since more processes are skipped. Therefore, the approach
that gives less probability to proceed to higher quality data should be selected in terms of
the transaction time reduction.

2.4.3 Example Flow

This section demonstrates example flows under the conventional approach and the PQI
approach.

Figure 2.5 shows the situation. In this example, the number of cameras is two.

20

2.4 PQI Approach

Cameras

Our Approach

1 2

Processing
Computer

Time

D1,a(t)

D2,a(t)

D1,a(t)

Conventional Approach

D2,a(t)

D1,a(t+1)

D2,a(t+1)

D1,a(t+2)

D2,a(t+2)

Cameras
1 2

Time

D1,1(t)

D2,1(t)

D1,1(t)

D2,1(t)

D1,1(t+1)

D2,1(t+1)

D1,1(t+2)

D2,1(t+2)

Processing
Computer

D1,2(t+1)

T
ransactio

n tim
e

fo
r D

1 (t+
1
)

D1,a(t+1)

D2,a(t+1)

D1,1(t+1)

D2,1(t+1)

D1,1(t+2)

D1,2(t+1)

D2,1(t+2)

T
ransactio

n tim
e

fo
r D

1,1 (t+
1
)
and D

1,2 (t+
1
)

Figure 2.5: Example flow of a conventional approach vs. ours

First, an example transaction flow is explained under the conventional approach. Camera
1 sends its recorded image data frame-by-frame to the processing computer. In Figure 2.5,
the Cth frame is shown as �1,0 (C) (C = 1, · · · ,)). For example, when the frame rate is 10
[Hz], Camera 1 sends an image data every 0.1 [s]. Hence, �)1,0 (C + 1) = �)1,0 (C) + 0.1.
Additionally, Camera 2 sends its recorded image data to the processing computer. In this
example, the frame rate for Camera 2 is the same as that of Camera 1, but the time to begin
sending the data differs. After Camera 1 sends �1,0 (C), Camera 2 sends �2,0 (C). When
the data transmissions from Camera 1 and Camera 2 overlap, the input communication
bandwidth for the processing computer is equally divided. This is the reason why the
communication speed of Camera 1 decreases while communicating with the processing
computer, as shown in the figure. This is a natural phenomena if the bandwidth is shared
with some entities and not a target problem. After Camera 1 finishes sending �1,0 (C),
the input communication bandwidth is dedicated to Camera 2 whose communication
speed increases as shown in the figure. When the processing computer finishes receiving
�1,0 (C), it begins processing �1,0 (C). While processing �1,0 (C), the processing computer
finishes receiving �2,0 (C). As it processes �1,0 (C) at this time, it stores the received

21

Chapter 2 Transaction Time Reduction for Stream Data Processing

�2,0 (C) in its buffer and begins processing it after finishing with �1,0 (C). Similarly, while
processing �2,0 (C), the processing computer finishes receiving �1,0 (C + 1). It then begins
processing after finishing with �2,0 (C). The transaction time for �1,0 (C + 1) in this case
is shown in the figure. This is the time consumed from the start of sending �1,0 (C + 1) to
the end of �1,0 (C + 1) process.

Next, an example transaction flow is explained under our proposed PQI approach.
Similar to the example for the conventional method, Cameras 1 and 2 send their recorded
image data to the processing computer periodically. Unlike that in the conventional
method, the image data are divided into two quality levels. The first is the lowest, and
the second is the original quality. We assume that the data for the second quality only
includes the difference in data from the first and the amount of the differential data for
each quality data is the same. The data amount of �=,0 (C) is given by the total of each data
amounts of �=,1(C) and �=,2(C). Thereore, the time required to send �=,@ (C) (= = 1, 2,
@ = 1, 2) becomes the half of that needed to send �=,0 (C) over a fixed communication
bandwidth. Therefore, the communication of �1,1(C) does not overlap �2,1(C), although
the communication of �1,0 (C) overlaps that of �2,0 (C) under the conventional approach.
The processing computer does not request the second quality data item in the first cycle
because it cannot detect human faces in the image data. In the (C + 1)th transaction, the
processing computer begins processing �1,1(C +1) after receiving it. Then, the processing
computer requests the second quality data item in the transaction because it detects human
faces in the image data. When Camera 1 receives the request for �1,2(C + 1), it begins
transmission for the difference data between �1,2(C + 1) and �1,1(C + 1). In this example,
the processing computer does not request the second quality data item of �2,1(C + 1).
After receiving �1,2(C + 1), the processing computer executes the necessary processes
and completes the transaction. The transaction time needed for the Cth transaction and for
Camera 1 is visualized in the figure as the time from the start of sending �1,1(C + 1) to
the completed processing of �1,2(C + 1).

In summary, the transaction time of our approach is shorter than that of the conventional
approach because several transmissions of higher quality data are skipped.

In the other approach, the data sources transmit the entire @th quality data in the
transmissions for processing @th quality data. This approach is different from the approach
in that the data sources transmit only differential data, the data amounts for transmissions
from them tend to be larger. Thus, the communication time and the processing time

22

2.5 Evaluation of the PQI Approach

lengthen compared with those in the example flow. However, the transaction time can
be reduced even in this approach if the transaction time is reduced by skipping several
transmissions of higher quality data compared with the conventional approach.

2.5 Evaluation of the PQI Approach

The transaction time under the PQI approach depends on the number of streams, the
transaction intervals, and the number of quality levels. We show the evaluation results
changing these values using our developed simulator in this section.

2.5.1 Evaluation Setup

In this section, we use the simulator that we developed using the C++ programming
language to get the evaluation results.

In this evaluation, we use the parameter values shown in Table 2.1. The ‘Input
Bandwidth’ is the input communication bandwidth of the processing computer. When
the processing computer communicates with multiple data sources simultaneously, the
input bandwidth is fairly shared among them. The ‘Output Bandwidth’ is the output
communication bandwidth of each data source. We set these parameters considering their
reality. The ‘Original Data Amount’ is the amount of the original data that are processed
in each transaction. We get this value by averaging the original data amount for the images
in the open image dataset, ‘pedestrians’, from changedetection.net 1. The dataset includes
1,099 standard JPEG images of 360x240 resolution. These images are frames obtained
from a surveillance camera. The ‘Processing Time Ratio’ is the processing time divided
by the data amount. We use the processing time ratio to get the processing time for each
quality data including the time needed to judge the necessity of higher quality data. For
example, when the time needed to process the image data of that amount is 42.0 [Kbytes]
is 15.8 [ms], the processing time ratio=0.0158/42000 = 3.8 × 10−7. The processing time
depends on various factors such as the processing power of the processing computer, the
data amount of the image data, etc. However, since we cannot measure the performances
without the processing time ratio, we got this value by measuring the average processing
time needed for detecting faces and judging the necessity of higher quality data, using the
1http://jacarini.dinf.usherbrooke.ca/static/dataset/baseline/pedestrians.zip, 2012.

23

Chapter 2 Transaction Time Reduction for Stream Data Processing

Table 2.1: Parameter values for simulation

Input Bandwidth 10 [Mbps]
Output Bandwidth 10 [Mbps]

Original Data Amount 42.0 [Kbytes]
Processing Time Ratio 3.8 × 10−7

image data included in the pedestrian image dataset. The processing time for image data
is given by its data amount times the processing ratio regardless of the data quality in the
assumption for the evaluation. We use OpenCV 2 for detecting faces in the image data.

We assume that the data for each quality is used similar to the first approach explained
in Clause 2.4.2.3.

Thus, the data sources transmit only differential data. U=,8 (C) in the formula (2.3) is 4
[bytes] based on the header and the footer size of progressive-JPG encoded image data.
The progressive-JPG uses the frequency domain for encoding image data. The differential
data for a higher quality data include the data for higher digits of DC (Direct Current) or
AC (Alternating Current) coefficients. The number of the digits included in each data
is generally fixed. The amount of the differential data for each quality becomes almost
the same by encoding image data so that each differential data includes the same number
of the digits. Therefore, we assume that the original data amount is fairly divided into
each quality data. We simulate the stream processing system for 300 [s] to get the average
transaction time. To illustrate image quality, we use substitute images in Figure 2.6 since
the pedestrian images are copyrighted.

We compare our proposed PQI method (we term the method that uses the PQI approach
by the PQI method here) with the No PQI method. The No PQI method corresponds
to the conventional method where the stream data sources always transmit the original
quality data.

2.5.2 Final Probability

For the evaluation, we use the final probability to proceed to the final quality data item,
�%A>1. The details of the final probability are provided in this subsection. We set the
same values for all %%A>1=,? (C) (? = 1, · · · , & − 1), i.e., %%A>1=,? (C) = �%A>11/&−1.
2https://opencv.org/

24

2.5 Evaluation of the PQI Approach

1st 4th

10th

h

7th

Figure 2.6: Example image qualities

We assume the application in that the values of %%A>1 are independent of qualities such
as the case shown in Figure 2.15. Although the values of %%A>1 for each quality would
be different even in this case, we used the same value for the evaluation as an example
value.

We will explain how to get the final probabilities. Figure 2.7 is a processing image
to explain the final probability. The figure shows two transactions, and the image data
for each quality are constructed from the original quality data. The data size of a lower
quality image is smaller. The upper part of the figure is the first transaction. Here, the
process finishes at the lowest quality data because no cars are detected. Therefore, the
process does not proceed to the final quality level. The lower part of the figure is the
second transaction. Here, final quality data are obtained because a car is detected in
the first quality image data. The probability of proceeding to the final quality data is
1/2 = 0.5; therefore, the final probability is 0.5.

2.5.3 Transaction Time

To check the change of the transaction times along the time, we show them of each
transaction in this subsection. The transaction times increase continuously if the

25

Chapter 2 Transaction Time Reduction for Stream Data Processing

q

1

q2 q3 q4

q

1

q2 q3 q4

Proceeds to q1

Proceeds to q4

The first
transaction

The second
transaction

x

Figure 2.7: A processing image to explain the final probability

transactions keep to overlap with others. In this case, the transaction times can be
unrealistically long. Otherwise, the transaction time will be in a certain time range.

We set the transaction interval to 400 [ms], the final probability to 0.7, and the number
of quality levels to five as example values. The result is shown in Figure 2.8. To make the
graph be easily seen, we show only the transaction times of the beginning 30 transactions.
The horizontal axis is the transaction ID, and the vertical axis is the transaction time. We
measured transaction times in the cases that the number of streams is five to seven.

We can see that the transaction time under the PQI method is shorter than the
conventional method in many cases. In cases where the number of streams is less than
seven, the transaction time does not increase so much during the entire simulation. On the
other hand, in cases where the number of streams is seven, the transaction times tend to
keep increasing with a certain cycle under the PQI method because the transactions keep
overlapping with others. This is also similar to the No PQI method and the transaction
times converge under the No PQI method only when the number of streams is five in this
case. The transaction times when the number of streams is six surely tend to increase
gradually as the transaction proceeds. Therefore, in the remaining subsections, we use the
average transaction time for cases in which the transaction time converges, as the index of
performance.

To further understand the distribution of the transaction times, we present the histograms

26

2.5 Evaluation of the PQI Approach

0

100

200

300

400

500

600

700

1 6 11 16 21 26

Tr
an

sa
ct

io
n

 T
im

e
[m

s]

Transaction ID

PQI (5 Streams)
PQI (6 Streams)
PQI (7 Streams)
No PQI (5 Streams)
No PQI (6 Streams)
No PQI (7 Streams)

Figure 2.8: Transaction time of each transaction

of the transaction times. The histogram for the result when the number of streams is five
is shown in Figure 2.9. This is the case that the transaction time converges under both
methods. The horizontal axis is the range of transaction time and the vertical axis is the
number of transactions of that transaction times fall in each range. The result shows that
the PQI method keeps the transaction times under 200 [ms]. On the other hand, most of
the transaction times under the No PQI method distribute at the transaction time close to
200 [ms]. Since the transaction time converges, the distribution of the transaction times
has the upper limit, and it is 182 [ms] under the PQI method and is 248 [ms] under the
No PQI method in the simulated situation.

Figure 2.10 shows the distribution of the transaction time when the number of streams
is seven. This is the case that the transaction time keeps increasing under both methods.
The horizontal axis is the range of transaction time and the vertical axis is the number of
transactions of that transaction times fall in each range. In this case, the transaction times
of most transactions are longer than 1.0 [s] because the transactions keep to overlap with
others during the simulation.

27

Chapter 2 Transaction Time Reduction for Stream Data Processing

0

100

200

300

400

500

600

700

N
u

m
b

er
 o

f
 T

ra
n

sa
ct

io
n

s

Transaction time [ms]

PQI (Final Probability=0.7)

No PQI

Figure 2.9: Distribution of transaction time when the number of streams is five

0

20

40

60

80

100

120

140

160

180

200

N
u

m
b

er
 o

f
Tr

an
sa

ct
io

n
s

Transaction time [ms]

PQI (Final Probability=0.7)

No PQI

482 935

Figure 2.10: Distribution of transaction time when the number of streams is seven

28

2.5 Evaluation of the PQI Approach

2.5.4 Influence of Number of Streams

The data amount received by the processing computer increases as the number of streams
increases. Therefore, a large number of streams has a possibility to keep increasing the
transaction time. To investigate this phenomenon, we next investigate the influence of the
number of streams.

We set the transaction interval to 400 [ms] and the number of quality levels to five as
similar to the previous subsection. Figure 2.11 shows the result of the average transaction
time changing the number of streams. We simulated the transaction time under different
final probabilities (0.001, 0.01, 0.1, 0.3, 0.5, 0.7, and 1.0).

A larger final probability causes a longer transaction time because the processing
computer collects and processes more data. The average transaction time under the No
PQI method increases with the number of streams for cases where the number of streams
was less than six because the data amount that the processing computer receives increases.
For cases where the number of streams is greater than five, the average transaction
time increases sharply because the transaction time increases over time as explained in
Subsection 2.5.3. We observed similar phenomena with the PQI method. However, the
maximum number of streams that the average transaction time does not increase sharply
is larger compared with that of the No PQI method. For example, in the case where the
final probability is 0.7, the average transaction time sharply increases when the number of
streams is seven. Thus, the processing computer can collect data from more data sources
using the PQI method.

In the case where the final probability is 1.0 under the PQI method, all the transactions
proceed to the final quality. Thus, the amount of the data communicated between the
processing computer and the stream data sources is almost the same as that for the No PQI
method. Nevertheless, the average transaction time under the PQI method is shorter than
that under the No PQI method. In the No PQI method, the processing computer finishes
receiving the original data from all the stream data sources at the same time. After that,
the processing computer processes them one by one in the FIFO manner. On the other
hand, in the PQI method, the processing computer can receive data from different stream
data sources while processing the data received from another stream data source because
the transactions include several stages for processing the data for each quality. Since the
processing computer can receive and process data simultaneously, the average transaction

29

Chapter 2 Transaction Time Reduction for Stream Data Processing

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 T

im
e

[m
s]

Number of Streams

No PQI
PQI (Final Probability=0.001)
PQI (Final Probability=0.01)
PQI (Final Probability=0.1)
PQI (Final Probability=0.3)
PQI (Final Probability=0.5)
PQI (Final Probability=0.7)
PQI (Final Probability=1.0)

Figure 2.11: Average transaction time under different number of streams

time is shorter than the No PQI method even in the case where the final probability is 1.0.

2.5.5 Influence of Transaction Intervals

The probability that the transactions overlap with others increases as the transaction
interval shortens. Thus, the transaction time keeps increasing if the transactions keep
overlapping with others. To investigate this phenomenon, we next investigate the influence
of the transaction interval.

We set the number of stream data sources to five, and the number of quality levels to
five. The result of our evaluation is shown in Figure 2.12. The horizontal axis is the
transaction interval and the vertical axis is the transaction time.

The transaction time keeps increasing when the transaction interval is excessively short
as similar to the previous result, and the average transaction time sharply increases. In the
No PQI method, the average transaction time is constant when the transaction interval
is larger than 160 [ms] because the transactions do not overlap. In the PQI method, the
shortest transaction interval that the average transaction time converges is shorter than
that of the No PQI method. For example, in cases where the final probability is 0.7,
the average transaction time converges in the PQI method even when the transaction

30

2.5 Evaluation of the PQI Approach

0

50

100

150

200

250

0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 T

im
e

[m
s]

Transaction Interval [ms]

No PQI
PQI (Final Probability=0.001)
PQI (Final Probability=0.01)
PQI (Final Probability=0.1)
PQI (Final Probability=0.3)
PQI (Final Probability=0.5)
PQI (Final Probability=0.7)
PQI (Final Probability=1.0)

Figure 2.12: Average transaction time under different transaction intervals

interval is 160 [ms], whereas that of the No PQI sample sharply increases. Therefore, the
processing computer can collect data with a shorter transaction interval by using the PQI
method.

2.5.6 Influence of Number of Quality Levels

The number of quality levels influences the average processing time. A large number of
quality levels is unrealistic because the number of quality levels has an upper limit in
actual situations due to the encoding technique. For example, a general progressive-JPG
encoded data has ten scans, and thus the maximum number of quality levels in this case,
is ten. Therefore, the users of the proposed PQI approach such as system managers need
to decide the number of quality levels considering the reduction of the transaction time
and the reality. Hence, we measured the transaction time changing the number of quality
levels.

We set the transaction interval to 400 [ms], and the number of streams to five. Figure
2.13 shows the average transaction time under the different number of quality levels.
The horizontal axis is the number of quality levels, and the vertical axis is the average
transaction time. The average transaction time for the case that the number of quality

31

Chapter 2 Transaction Time Reduction for Stream Data Processing

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 T

im
e

[m
s]

Number of Quality Levels

Final Probability=0.001 Final Probability=0.01
Final Probability=0.1 Final Probability=0.3
Final Probability=0.5 Final Probability=0.7
Final Probability=1.0

Figure 2.13: Average transaction time under different numbers of quality levels

levels is one represents that of the conventional No PQI method because the stream data
sources always transmit the original quality data also in the PQI method.

The average transaction time decreases as the number of quality levels increases
because the average data amount that the processing computer receives decreases as the
original quality data is separated into more quality data. Thus, the processing computer
can avoid redundant data receipts and processes, enabling the transaction time to decrease.
The decreasing rate decreases as the number of quality levels increases because the
amount of each quality data is in inverse proportional to the number of quality levels.

2.5.7 Influence of Final Probabilities

As shown in the previous evaluation results, the average transaction time depends on the
final probability. The data amount received by the processing computer increases with the
final probability increases. Therefore, a larger final probability has a larger possibility to
keep increasing the transaction time. To investigate this, we next investigate the influence
of the final probability.

To maintain the consistency with the previous results, we set the number of quality
levels to five and the transaction interval to 400 [ms]. Figure 2.14 shows the result of

32

2.6 Discussion

0

50

100

150

200

250

0.001 0.01 0.1 1

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 T

im
e

[m
s]

Final Probability

1 Stream

5 Streams

10 Streams

Figure 2.14: Average transaction time under different final probabilities

the average transaction time under different final probabilities. The horizontal axis is the
final probability on a logarithmic scale. The vertical axis is the transaction time.

The transaction time increases with the final probability because the processing
computer collects and processes more data. When the number of data streams is 10 and
the final probability is larger than 0.1, the transaction time increases sharply because the
transaction time is too long and the transactions overlap as similar to the sharp increases
that appeared in other results.

2.6 Discussion

In this section, we discuss some points related to the performances of our proposed PQI
approach.

2.6.1 Detection Performance

The value of the final probability for the preparator detection application depends on the
performance of the face detection. Therefore, we evaluated the performance. For the
evaluation, we used 250 images with 640 x 480 resolution in that there is one face and
created two types of progressive-JPG images. The first ’Normal’ type is created so that

33

Chapter 2 Transaction Time Reduction for Stream Data Processing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

R
at

e

Scan Number

False Positive (Normal)

False Negative (Normal)

False Positive (DC)

False Negative (DC)

Figure 2.15: Detection Accuracies

the amount of the differential data for each scan becomes almost the same. The other
‘DC’ type is created so that the number of the significant digits for the DC coefficient
increases as the scan number increases. The number of the scans is ten. We detected the
faces in the images. Figure 2.15 shows the result. The horizontal axis is the scan number
and the vertical axis is the rate value. The false positive rate means that the number of the
incorrect face detections divided by the number of the detected faces. The false negative
rate means that the number of the misdetected faces divided by the number of the faces in
the images.

In the ‘Normal’ case, the false negative rate is zero under all the scan numbers. On
the other hand, the false positive rate is approximately 0.2 except where the scan number
is one. When the scan number is one, the image is unclear and the possibility of the
incorrect detection becomes also low. In this case, the processing computer requests a
higher quality data when faces are detected so as to reduce the false positive rate because
the false negative rate is zero. In the ‘DC’ case, the false negative rate is zero when the
quality level is larger than four. Therefore, if the processing computer requests a higher
quality data when the faces are detected, the lowest quality should be larger than four.
Otherwise, there is the possibility that the processing computer fails to get clear image
even if faces appear in the image when the data quality is less than five.

34

2.6 Discussion

2.6.2 Deciding Parameter Values

The users of the PQI approach such as system managers need to decide some parameter
values. We discuss some of themain parameters for the PQI approach as follows. Although
parameters such as the amount of each data item and the communication bandwidth
influence the transaction time, they are not discussed here because the users cannot strictly
control them generally.

• The number of streams: A larger number of data streams causes more communica-
tion traffic between the data sources and the processing computer. In cases where
transactions continuously overlap, the transaction time increases toward infinity, as
shown in Figure 2.11. Therefore, obviously, the number of streams should be small
so that such situations do not occur.

• Transaction intervals: As shown in Figure 2.13, an excessively short transaction
interval increases the transaction time. On the other hand, a longer transaction
interval decreases the transaction rate. Therefore, the transaction interval should be
decided considering the transaction time and the transaction rate. We propose a
method to improve the transaction rate under the PQI approach in the next chapter.
In the cases that the system manager adopts the proposed method in the next chapter,
he/she does not need to decide the transaction interval because the value of the
transaction interval is automatically calculated.

• The number of quality levels: As shown in Figure 2.13, a larger number of quality
levels further reduces the average transaction time when the final probability is
less than 1.0 because the average data amount transmitted from the data sources
decreases. However, an excessively large number of quality levels is unrealistic
because the number of quality levels has an upper limit in actual situations due
to the encoding technique. A larger number of quality levels also requires more
generations of data items causing a longer generation time. Moreover, a larger
number of quality levels requires more processes on the stream data sources as
discussed in the next item. Therefore, the number of quality levels should be
decided considering the transaction time and the reality.

35

Chapter 2 Transaction Time Reduction for Stream Data Processing

2.6.3 Processing Power

In the PQI approach, the computational load for generating the data items having several
different quality levels occurs on the stream data sources. However, this is realistic because
some camera devices implement the codec that enables several quality video data such
as H.264/SVC. SVC is the technique to change the video quality based on the network
congestion level. Since the process for generating the data having several different quality
levels is similar to the process for generating several quality video data, the processing
load caused by the data generation in the PQI is not a large problem.

Moreover, the processing load on the processing computer increases compared with
the No PQI method when the final probability is 1.0 because it needs to judge the necessity
of higher quality data in addition to the processing for the original (final) quality data.
However, the load is reduced further under a smaller final probability. Therefore, in the
situation that the final probability is small, there is a possibility that the average processing
load on the processing computer is reduced.

2.7 Conclusion

Transaction time is one of the main factors that need to be considered to improve the
performance of stream data processing applications. Transaction time can be further
reduced by accounting for data quality. To reduce the transaction time, we proposed an
efficient stream data processing method using a PQI approach. In our proposed method,
the processing computers progressively collect higher quality data only in cases where
they are needed for processing. By reducing the average data amount for data collection
and processing, our proposed method reduces average transaction time. We used our
developed simulation to evaluate the PQI approach and confirmed that the approach can
reduce the transaction time further than the conventional No PQI method when the final
probability is small. Moreover, we confirmed that the transaction time increases sharply
when the number of streams or the final probability is excessively large, or the transaction
interval is excessively short because the transactions continue to overlap with others.

Since a typical application of stream data processing is object detection system as
described in Subsection 2.3.1, we set the parameter values for the evaluation assuming that
the data type is image data. Meanwhile, our proposed PQI approach does not depend on

36

2.7 Conclusion

the contents of the data as far as they have the quality attributes. We found the following
points: 1) Our proposed PQI approach can reduce the transaction time even when the
final probability is 1.0 by using several quality data because the processing computer can
perform the processes and the communications simultaneously, 2) A larger number of
quality levels enables further transaction time reduction. However, an excessively large
number of quality levels is unrealistic because the number of quality levels has an upper
limit in actual situations due to the encoding technology.

One of the remaining issues is the use of multiple processing computers. The
transaction time can be further reduced by distributing the processing loads to several
processing computers. For this, an efficient algorithm for the data sources to select the
processing computer to transmit data is required. Another issue is how to construct the
data for each quality. A lower final probability gives a further transaction time reduction.
Therefore, the system can reduce the transaction time further by constructing the data
for each quality so as to make the average final probability lower. Moreover, we will
investigate the performances where our proposed approach is applied for other contents
data.

37

Chapter 3

A Method to Improve Transaction Rates
under the PQI Approach

3.1 Introduction

In Chapter 2, we introduced the PQI approach to reduce the transaction time for stream
data processing. In this chapter, we propose another method that improves the transaction
rate under the PQI approach.

Most of the stream data processing applications such as video surveillance systems
can adjust transaction intervals. For example, consumer video cameras generally have
configuration settings to adjust the interval to capture the video frames. The transaction
rate for an application varies depending on its transaction interval and transaction time. In
such stream data processing applications, a higher transaction rate leads to more frequent
transactions and enables the improvement of application performance. In the example
of perpetrator detection, the number of faces detected in a time period increases as the
transaction rate increases because the number of images that the processing computer
receives increases as the transaction rate increases. If a perpetrator passes by quickly
across the field of view of a camera, the surveillance system may miss the face of the
perpetrator when the transaction rate is low. Therefore, the transaction rate is one of
the main factors to improve the performance of stream data processing systems. In case
where the transaction rate is excessively high and the processing computer does not detect
new faces in different images, the number of the detected faces does not increase. In
such cases, by giving an upper limit to the transaction interval, the system can avoid
the unnecessary increase of the frame rate. In this chapter, we distinguish between

39

Chapter 3 A Method to Improve Transaction Rates under the PQI Approach

transactions and processes as similar to other chapters. A transaction consists of some
processes (see Subsection 3.3).

To improve transaction rates, methods of reducing communication time for transferring
data from the stream data sources to the processing computer have been published [79–81].
These studies aimed to increase the transaction rate by reducing the communication time.
They assumed periodic stream data transactions and static transaction intervals because
their general focus was on video applications that prefer static transaction interval. If the
frame rate of the video changes frequently, the quality of the user’s experiences decreases.

However, communication time and processing time change dynamically depending
on the amounts of transmitted data in each transaction. For example, consider that the
cameras transmit image data at 10 [fps] to the processing computer, i.e., the image data
are sent every 100 [ms]. This time span corresponds to the transaction interval, and a
shorter interval enables higher rates. Therefore, when the transaction interval is long,
it results in a lower transaction rate. On the other hand, when the transaction interval
is excessively short, the processing computer receives overlapping stream data, which
causes a long transaction time and a high computational load on the processing computers.
This results in decreasing the transaction rate. Moreover, we need to assume that the
transaction time varies according to the necessity of the quality level in the stream data
processing application when we apply the PQI approach.

Hence, this chapter aims to improve the transaction rate by changing the transaction
intervals dynamically under the PQI approach. In our proposed method, the transaction
interval is changed according to the requests from the processing computer. The transaction
rate is further improved by changing transaction interval depending on the transaction time.
A straightforward approach is to change the transaction interval for every transaction based
on the previous transaction time. However, frequent changes in intervals are not preferable
for visual applications such as video data processing in which a frequent interval change
decreases the quality of experience. Therefore, we introduce a mechanism to avoid
unmoderated changes of interval. The contributions of this chapter are summarized as
follows:

(1) An algorithm is proposed to keep the transaction rate as high as possible by
adjusting the transaction intervals.

(2) A method is proposed to avoid frequent transaction interval changes according to
the application demand.

40

3.2 Related Work for Transaction Rate Improvement

The remainder of this chapter is organized as follows. In Section 3.2, we introduce
related works. Our proposed method is explained in Section 3.3, and the performance
evaluation results are described in Section 3.4. Finally, we conclude the chapter in Section
3.5.

3.2 Related Work for Transaction Rate Improvement

To improve transaction rates, several methods have been proposed in the literature. A
method to improve the transaction rate for multidimensional stream data was proposed
in [82]. This method aims to increase the transaction rate by reducing the processing loads
per transaction. In their method, the streaming data sources sends only the necessary
dimensional axes of data for processing. As the processing computer does not receive
unnecessary data, there is no need for data refinement activities to reduce processing
loads. However, this method assumed a static transaction interval, thus the applications
need to set an appropriate transaction interval for the multidimensional stream data.

The methods proposed in [83] and [84] use object detection frameworks to detect
objects as fast as possible. They proposed fast object detection algorithms to improve
the transaction rates. However, their frameworks does not care the necessary quality of
image data which our PQI approach can adjust.

To improve transaction rates for object detection, various approaches have been
proposed, such as searching-area reduction [85], detection accuracy improvement [86,87],
and dynamic background updating [88–91] focused on hardware (e.g., field-programmable
gate arrays) for improvements. Their methods improve transaction rates by reducing the
processing time. However, they also assume a static transaction interval. The performance
and quality of object detection applications are not improved even there is an available
capacity in the processing computer to process to achieve higher transaction rates.

GPGPUs, digital signal processors, and field-programmable gate arrays designated for
stream data processing are recently developed to improve the transaction rate. In [92], the
authors proposed a simple data processing model for these processing units to enable low
complexity performance prediction for stream data processing. Their model is expressed
by straight directed graphs with queues at each vertex. Vertices represent processing
kernels. They compared the amount of the stream data (called flow) that the kernels
receive per second in their proposed model with that in real situations. Their results

41

Chapter 3 A Method to Improve Transaction Rates under the PQI Approach

shows that the modeled flow matched with the actual flow when the queuing scheme is
simple such as batching, i.e., picking up data from the queue when the data amount stored
in the queue exceeds the threshold. However, the proposed model does not consider the
data quality.

3.3 Proposed Method

We propose a method called the PQI-CDI (Progressive Quality Improvement approach
with Cycle-based Dynamic Interval) method. In this section, we first discuss about the
adjustment of the transaction interval to improve the transaction rate. After that, we
explain the design and the algorithms of the PQI-CDI method. Further, we show an
example how to improve the transaction rate under the PQI-CDI method.

3.3.1 Adjustment of Transaction Interval

In this subsection, we explain how transaction rate changes depending on transaction time
and transaction interval.

Figure 3.1 shows the three cases which covers the different combinations of transaction
time and transaction interval. We assume that there is one processing computer. For
simplicity, we consider a case where the transaction time equals to processing time
on the processing computer in this figure. In the figure, the horizontal axis shows the
elapsed time. Each gray box represents the transaction time. The transaction time without
overlapping is 50 [ms]. We assume that the computational resources of the processing
computer are divided equally among each data processing in this example.

The line 1 indicates the case where the transaction interval is 70 [ms]. As the
transaction interval is greater than the transaction time, the transactions do not overlap.
However, the processing computer needs to wait for 20 [ms] for the next transaction after
the previous transaction finishes. This wastage of time results in a smaller number of
transaction processes. In this case, the number of transactions that finishes between 0
[ms] and 10 [ms] is one.

The line 2 indicates the case where the transaction interval is 30 [ms]. As the
transaction interval is less than the transaction time, the transactions overlap. Because one
processor on the processing computer processes all transactions, overlapping transactions

42

3.3 Proposed Method

Interval:
70 [ms]

Interval:
50 [ms]

Interval:
30 [ms]

0 100
Time [ms]

50
The number of transactions is 1

The number of transactions is 1

The number of transactions is 2

Transaction Time (50 [ms]) Transaction Time (50 [ms])

Transaction Time (75 [ms])
Transaction Time (75 [ms])

Transaction Time (75 [ms])
Transaction Time (75 [ms])

Transaction Time (50 [ms])Transaction Time (50 [ms])

In the case when transaction interval is longer
than the transaction time

In the case when transaction interval is shorter
than the transaction time

In the case when transaction interval is the same
as the transaction time

1

2

3

Figure 3.1: Example of transaction rates under different transaction intervals

cause resource competitions. The transaction time increases because the processing
computer needs to execute processes to multiple transactions simultaneously. In this case,
the transaction time for the first transaction is 630 [ms]. This is because the processing
computer processes one data until 30 [ms] and retains the data that require 500−300 = 200
[ms] for the process at this time. Between 300 [ms] and 600 [ms], the processing computer
processes two data items and retains the data that require 200 − (600 − 300)/2 = 50 [ms]
for the process at this time. Between 60 [ms] and 630 [ms], the processing computer
processes three data items and finishes the transaction at 630 [ms]. As in this case,
overlapping transactions increase the transaction time and result in a lower transaction
rate. In this case, the number of transactions that finishes between 0 [ms] and 100 [ms] is
one.

The line 3 indicates the case where the transaction interval is 50 [ms]. As the
transaction interval is the same as the transaction time, the transactions do not overlap
and there is no wasted time in these transactions. In this case, the number of transactions
that finish between 0 [ms] and 100 [ms] is two.

As shown in the above example, the highest transaction rate is obtained when the
transaction interval is the same as the transaction time. If the transaction interval is
smaller than the transaction time, the transaction time eventually gets longer and the
transaction rate becomes smaller. In this case, the transaction rate converges near zero
if the observation period has enough length. The transaction time fluctuates depending
on the available processing power of the processing computer and the communication

43

Chapter 3 A Method to Improve Transaction Rates under the PQI Approach

bandwidth. Therefore, the transaction interval should be adjusted to dynamically changing
transaction time to improve the transaction rate.

3.3.2 Design of Proposed Method

In the PQI-CDI method, the system changes transaction intervals dynamically and adopts
the PQI approach to reduce transaction time. In our proposal, we assume that there is one
processing computer to process transactions.

The details of the PQI approach and its evaluation results are described in Chapter
2, where we demonstrated that the PQI approach reduces transaction time. However,
the transaction interval under the original PQI approach is static and cannot improve the
transaction rate. Therefore, the PQI-CDI method dynamically changes the transaction
intervals. For this, the PQI-CDI method determines the timings to change the intervals
and new transaction intervals.

These are explained below.

3.3.2.1 Timings to Change Intervals

A frequent adjustment of intervals increases the transaction rate. Less frequent changes
decrease the transaction rate because it also takes time to adjust the transaction intervals.
The transaction interval is not changed until the next adjustment time even when the
transactions are overlapped. The appropriate timing for interval changes depends on
the communication time and the processing time as these times change dynamically.
Therefore, we determine the period for changing transaction intervals by introducing a
notion which we call cycles.

3.3.2.2 Determining New Intervals

In the PQI-CDI method, we define a parameter�= which specifies a cycle length to change
the intervals. When the number of the complete transactions reaches �=, the processing
computer changes the transaction intervals of the data source =. We assume the data
sources (e.g., camera devices) can adjust the transaction interval arbitrarily. For example,
on camera devices, we can implement the transaction interval adjustment function by
specifying the timing of the camera image data capturing process. Once the transaction

44

3.3 Proposed Method

Start of the t th
cycle

Get and store
Dn,a(t)

Generate Dn,1(t)
from Dn,a(t)

Send Dn,1(t)
to the processing

computer

Receive the
request of Dn,q(t)

Generate Dn,q(t)
from Dn,a(t)

Send Dn,q(t)
to the processing

computer

Receive a request of
changing interval to i

Rearrange the start of
the next cycle

Set
In=i

Figure 3.2: The flowchart for the data sources under the PQI-CDI method

interval changes, the processing computer starts counting the number of transactions. We
adopt the average transaction time from the previous cycle as the new interval.

The average transaction time �E4))= (C) is given by the following equation:

�E4))= (C) =
∑�=

g=C−�=+1))= (g)
�=

. (3.1)

))= (g) is the transaction time of the data source = at the gth transaction.

3.3.3 Algorithms

In this subsection, we explain the algorithms for the data sources and the processing
computer respectively.

Figure 3.2 shows the flowchart of data sources in the case where the processing
computer requests the change of the transaction intervals. When the data source = receives
the request to change the transaction interval to 8, the data source changes the transaction
interval and resets the counting value of the number of transactions for the next cycle.

Figure 3.3 shows the flowchart of the processing computer. When it receives �=,@ (C),
it processes the data. When @ = &, the Cth transaction finishes. Otherwise, the
processing computer judges the necessity of �=,@+1(C). In case that �=,@+1(C) is needed
for process execution, the processing computer requests �=,@ (C) to the stream data source
=. Otherwise, the transaction finishes. We represent the counter which increments after
the transaction from = finishes as 2=. In the PQI-CDI method, the processing computer

45

Chapter 3 A Method to Improve Transaction Rates under the PQI Approach

Receive Dn,q(t)

Request Dn,q+1(t)

Process Dn,q(t)

q=Q

No

Yes

Yes

Finish the process
of t th cycle

Send a request for
changing interval to

i=AveTTn(t)
t=t-c+1, ・・・, t

Check
cn<Cn

cn=1cn++

Yes

No

No

Judge the
necessity of

Dn,q+1(t)

Figure 3.3: The flowchart for the processing computer under the PQI-CDI method

then checks whether 2= reaches �= when a transaction finishes. Here, �= is the interval
needed to change the transaction interval of the data-source =. If 2= reaches �=, the
processing computer calculates 8 = �E4))= (C) and sends a request to = in order to change
the transaction interval to 8. Then, 2= is initialized as zero and the new cycle starts.

3.3.4 Example

Figure 3.4 illustrates the transaction rate of the conventional method (static transaction
interval) and the PQI-CDI method. In the example, the number of the stream data sources
is one for simplicity. The data source is a camera device and transmits image data to the
processing computer.

We first explain the transaction rate under the static transaction interval. In the upper
part of the figure, the transaction interval is static and is 100 [ms] for all transactions. The
first transaction starts at 0 [ms], at which time the cameras transmit their recorded image
data to the processing computer. After the processing computer finishes receiving the
image data, it begins detecting objects in the image data. In this first transaction, these
processes (shown in the blue area) finish after 40 [ms]. Therefore, the transaction time is
40 [ms], and the processing computer waits for another 60 [ms] before receiving the data
for the next transaction. Therefore, transactions begin every 100 [ms]. For the second
transaction, the image processing time is different from the first transaction owing to the

46

3.3 Proposed Method

Cycle length =2

(0.04+0.02)/2 = 0.03
(0.03+0.04)/2=0.035 (0.05 +0.03)/2 = 0.04

0.04 0.03 0.04

Static
Interval

PQI-CDI

0.02

0.0 0.5
Time

0.05

0.03

Interval

0.1 0.2 0.3 0.4

0.020.04 0.03 0.04

0.05

0.03

The number of transaction is 5

The number of transaction is 6

Waiting timeWaiting time Waiting time Waiting time Waiting time

Waiting time Waiting time Waiting time Waiting time Waiting time

Cycle length =2 Cycle length =2

Figure 3.4: Transaction rate under the conventional method (static transaction interval)
vs. the PQI-CDI Method

fluctuation of the processing power and is 20 [ms]. In this case, the transactions do not
overlap, and the transaction rate is given by the inverse value of the transaction interval,
which is 10.

The lower part of the figure shows the situation under the PQI-CDI method. In the
PQI-CDI method, the processing computer calculates the average transaction time of the
past �= (= = 1, · · · , #) transactions for each camera device =, and sets the average value
as the new transaction interval. To provide a simple example, we set the cycle length to
two transactions (�==2). The processing computer requests to change the transaction
interval at the end of each cycle. For example, for a case in which the first transaction time
lasts 40 [ms] and the second last 20 [ms], the average transaction time is 30 [ms]. This
value is then sent to the camera to influence the next transaction interval. From 0 to 500
[ms], in this example, the number of transactions under the PQI-CDI method is six. Thus,
the transaction rate is 6000/500 = 12 and is larger than that under the static interval.

47

Chapter 3 A Method to Improve Transaction Rates under the PQI Approach

3.4 Evaluation of the Transaction-rate Improvement

Method

3.4.1 Evaluation Setup

In this subsection, we explain the evaluation setup.

3.4.1.1 Evaluation Parameters

In this evaluation, we assume the application described in Subsection 2.3.2 and use the
parameters shown in Table 2.1. These parameters are similar to those used in Chapter 2,
but we explain them again. The ‘Input Bandwidth’ is the input communication bandwidth
of the processing computer, whose bandwidth is fairly shared among the data sources.
The ‘Output Bandwidth’ is the output communication bandwidth of each data source. We
set these parameters considering their reality. The ‘Original Data Amount’ is the amount
of the original data that are processed in each transaction. We get this value as similar to
Chapter 2. To simplify the evaluation results, we set the same data amount for all data
items. The ‘Processing Time Ratio’ is the processing time divided by the data amount.

We set the same values for all %%A>1=,? (C) (? = 1, · · · , & − 1), i.e., %%A>1=,? (C) =
�%A>11/# . The meaning of the symbols %%A>1=,? (C) and �%A>1 is described in
Subsections 2.3.3 and 2.5.2. We assume that the data for each quality is constructed by
the first approach explained in Clause 2.4.2.3 as similar to Chapter 2. We simulate the
stream processing system for 300 [s] to get the transaction time.

3.4.1.2 Performance Indexes

The primary evaluation item for PQI-CDI is the transaction rate and the transaction time.
A drawback of adopting the dynamic interval is that there would be a fluctuation of
the intervals between transactions which are not preferable for visual applications. To
investigate this, we calculated the average jitter for all transactions which is represented as

#∑
==1

)=∑
C=2
|8=,C − 8=,C−1 |

#∑
==1
()= − 1)

(3.2)

48

3.4 Evaluation of the Transaction-rate Improvement Method

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 R

at
e

[n
u

m
/s

]

Number of Streams

Static Interval (200 [ms])
PQI-CDI (Final Probability=0.1)
PQI-CDI (Final Probability=0.3)
PQI-CDI (Final Probability=0.5)
PQI-CDI (Final Probability=0.7)
PQI-CDI (Final Probability=1.0)

Figure 3.5: Average transaction rates and the number of streams

where # is the number of streams,)= is the number of transactions executed in the =-th
stream, and 8=,C is the transaction interval from the previous transaction for C th transaction
in the = th stream. A smaller average jitter indicates that the transaction intervals are less
fluctuated.

3.4.2 Influence of Number of Streams

We measured transaction rates by changing the number of streams to investigate the
effectiveness of our proposed PQI-CDI method.

In this experiment, we set the cycle length �= = 5 because the jitter of the intervals
was stable as shown in the next section (3.4.3). We set the number of quality levels to
five, and the initial transaction interval is 200 [ms]. Figure 3.5 shows that the results of
the average transaction rate changing the number of data streams. The horizontal axis is
the number of streams, and the vertical axis is the average transaction rate.

The transaction rate under the PQI-CDI method decreases as the number of streams
increases because the data amount that the processing computer communicates with the
stream data sources increases. When the number of streams is small, the PQI-CDI method
achieves a higher average transaction rate than the one with a static interval because the

49

Chapter 3 A Method to Improve Transaction Rates under the PQI Approach

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1 3 5 7 9 11 13 15

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 T

im
e

[m
s]

Number of Streams

Static Interval (200 [ms])
PQI-CDI (Final Probability=0.1)
PQI-CDI (Final Probability=0.3)
PQI-CDI (Final Probability=0.5)
PQI-CDI (Final Probability=0.7)
PQI-CDI (Final Probability=1.0)

Figure 3.6: Average transaction time and the number of streams

network and the processing computer have extra capacity to improve the transaction rate
compared with that of the case in which the transaction interval is fixed to 200 [ms]. The
PQI-CDI method exploits this extra capacity by changing the interval dynamically. The
average transaction rate increases as the final probability decreases because the average
data to be transmitted from the data sources decreases with the final probability and the
extra capacity increases. The static interval ends at a point where the number of the
streams is five because the transaction times diverge when the number of data streams is
greater than five.

Figure 3.6 shows the average transaction time. The horizontal axis is the number of
streams, and the vertical axis is the average transaction time.

In the cases of other final probabilities, the average transaction time is longer than the
static interval. This is because the updated transaction interval is given by the average
transaction time in the previous cycle. However, the transaction time fluctuates for the
reason that the processes probabilistically proceed to the processes for higher quality data
and the transaction time can be longer than the updated transaction interval. Then, the
transactions overlap and the transaction time increases. However, in the case that the final
probability is 0.1, the PQI-CDI method provides a shorter average transaction time than

50

3.4 Evaluation of the Transaction-rate Improvement Method

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15

A
ve

ra
ge

 J
it

te
r

[m
s]

Number of Streams

Static Interval (200 [ms])
PQI-CDI (Final Probability=0.1)
PQI-CDI (Final Probability=0.3)
PQI-CDI (Final Probability=0.5)
PQI-CDI (Final Probability=0.7)
PQI-CDI (Final Probability=1.0)

Figure 3.7: Average jitter and number of streams

the static interval because the network and the processing computer have sufficiently extra
capacity to improve the transaction time. The line for the static interval stops at the point
when the number of streams is five. The reason is the same as the result of the transaction
rate and because the transaction times diverge when the number of data streams is greater
than five.

Figure 3.7 shows the average jitter of the transaction intervals calculated by the formula
(3.2). A smaller value indicates a less fluctuated transaction interval. The horizontal axis
is the number of streams, and the vertical axis is the average jitter of transaction intervals.

In the static interval (200 [ms]) setting, as we can expect, the jitter values are zero.
However, the the evaluation result for static interval ends at a point where the number of
the streams is five because the transaction time is saturated.

The results that correspond to the PQI-CDI method show jitter values greater than
zero because the intervals change dynamically. The jitter tends to increase as the number
of data streams increase. This is because the data amount that is transmitted from all the
data sources increases with the number of streams and the maximum transaction time
lengthens. Therefore, the range of the transaction time becomes wider as the number of
streams increases. As the transaction interval is given by the average transaction time in

51

Chapter 3 A Method to Improve Transaction Rates under the PQI Approach

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 R

at
e

[n
u

m
/s

]

Cycle Length

Final Probability=0.1

Final Probability=0.3

Final Probability=0.5

Final Probability=0.7

Final Probability=1.0

Figure 3.8: Average transaction rate and cycle length

the previous cycle under the PQI-CDI method, a wider range of transaction time gives
a wider range of transaction intervals. Therefore, the jitter generally increases as the
number of streams increases.

Moreover, the jitter increases with the final probability. The reason is similar to the
reason that the jitter increases as the number of streams increases. The data amount that
is transmitted from all the data sources increases with the final probability. Therefore, the
range of the transaction interval increases with the final probability, and thus the jitter
increases.

We can see the jitter is small when the final probability is 1.0 and the number of
streams is one or two. When the final probability is getting closer to 1.0, the transaction
time becomes stable as long as the load of the processor is small because the probability to
process all quality levels in PQI increases. Because the load for the processing computer
is rather small when the number of streams is less than three under the parameters used in
the simulations, the average jitter became small.

52

3.4 Evaluation of the Transaction-rate Improvement Method

0

50

100

150

200

250

300

350

400

450

500

550

600

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 T

im
e

[m
s]

Cycle Length

Final Probability=0.1

Final Probability=0.3

Final Probability=0.5

Final Probability=0.7

Final Probability=1.0

Figure 3.9: Average transaction time and cycle length

3.4.3 Influence of Cycle Length

In the PQI-CDI method, the cycle length influences performance. We investigated the
influence changing the cycle length, �= (= = 1, · · · , #), under different final probabilities.
In this experiment, the cycle lengths for all streams are the same. The initial transaction
interval is 200 [ms], the number of data streams is five, and the number of quality levels
is five as example values.

Figure 3.8 shows the average transaction rate. The horizontal axis is the cycle lengths,
and the vertical axis is the average transaction rate.

We can see that a shorter cycle length gives a higher average transaction rate because
the interval is adjusted frequently with a shorter cycle length.

Figure 3.9 shows the average transaction time. The horizontal axis is the cycle length,
and the vertical axis is the average transaction time.

In the PQI-CDI method, the average transaction time for a higher final probability
is longer because more transactions proceed to the final quality under a higher final
probability. We can see that the average transaction times having lower final probabilities
give shorter average transaction times. The average transaction time tends to increase a

53

Chapter 3 A Method to Improve Transaction Rates under the PQI Approach

0

10

20

30

40

50

60

70

80

1 3 5 7 9

A
ve

ra
ge

 J
it

te
r

[m
s]

Cycle Length

Final Probability=0.1
Final Probability=0.3
Final Probability=0.5
Final Probability=0.7
Final Probability=1.0

Figure 3.10: Average jitter and cycle length

little bit with the cycle length because the transaction interval does not change for a long
period. This causes some transactions to overlap, and it lengthens the communication
time and the processing time. Figure 3.10 shows the average jitter of the intervals under
different final probabilities changing the cycle length. The jitter tends to decrease as
the cycle length increases because the longer the cycle is, the less the intervals change
frequently. We can see the average jitter is smaller than 50 [ms] when the cycle length is
larger than 5 and the final probability is less than 0.7.

On the other hand, when the computation load is high, a longer cycle length increases
the jitter value. This is because it takes time to converge the transaction interval in
PQI-CDI when the computation load is high. In the simulation, the above mentioned
situation occurred when the final probability is 1.0. When the final probability is 1.0 and
the cycle length is 1, the average jitter is small because the transaction interval converges
to the stable transaction time within a small number of interval changes. However, when
the cycle length is two and three, the average jitter becomes large because PQI-CDI
required several interval changes to converge to the actual transaction time.

As a whole, we confirmed that the PQI-CDI could alleviate the fluctuation of the
transaction intervals in stream data processing by adopting an appropriate cycle.

54

3.5 Conclusion

3.5 Conclusion

The transaction rate is one of the main factors that need to be considered to improve
the performance of stream data processing applications. To improve transaction rates,
we proposed the PQI-CDI method, which dynamically changes the transaction interval
under the PQI approach. In the PQI-CDI method, the processing computer changes the
transaction intervals to be the same length as the average transaction time of the previous
cycle. Moreover, the PQI-CDI method adopts the PQI approach to reduce communication
time and processing time.

Our evaluation results revealed that the PQI-CDI method can achieve a higher
transaction rate alleviating the fluctuation in the dynamic transaction intervals under the
appropriate cycle length parameter settings.

In our assumed environment, the complexity and the priority of the processes are
uniforms. However, in the actual environment, they vary depending on the applications.
A potential extension of the PQI-CDI method is considering such heterogeneity of stream
data processes. If the processing computer assigns computing resources according to
the priority, the transaction rate may be improved. The current PQI-CDI method does
not consider multi-processor environments that enable executing multiple stream data
processes simultaneously on one or more processing computers. In this environment, the
processing time is not changed until the number of simultaneous data processes reaches
the number of processors of the stream data processes. Similar to the future work for the
transaction time improvement in Chapter 2, the process assignment algorithms to improve
transaction rate in such an environment is our future work.

55

Chapter 4

Implementation of Video Surveillance
System with the PQI-CDI Method

4.1 Introduction

We first explain the background of the research in this chapter.

4.1.1 Background

In Chapter 3, we proposed the PQI-CDI method which improved the transaction time
and the transaction rate for stream processing systems. In this chapter, we explain the
implementation of a video surveillance system incorporated with the PQI-CDI method.

Our target application is perpetrator detection as described in Section 1.1. For instance,
a video surveillance system in an office is installed to detect perpetrators in the image data
recorded by surveillance cameras. Surveillance cameras are deployed in various places
and are used worldwide [93–97].

Many researchers have examined the video surveillance systems with their recent
proliferation. As discussed in Section 1.1, themain performance indexes are the transaction
time and the transaction rate. To improve the transaction time and the transaction rate,
various systems have been developed in [98–100]. However, the processing computer
in the existing systems collects only the original quality data. By collecting the original
quality data only when they are needed for processing, the average data amount of
data collections is reduced. Therefore, we proposed the PQI approach and its extended
PQI-CDI method in Chapters 2 and 3.

57

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

We used our developed simulator for the evaluation of our proposed approach because
we could easily and rapidly test various situations by changing the evaluation parameters
for the simulator. The simulator models the system shown in Section 1.1 and can simulate
its behaviors. We set the parameters considering the average values in real situations and
revealed the performance improvements established by the PQI-CDI method.

Although our developed simulator can simulate the behaviors of the modeled system,
it is unclear whether an implemented system that adopts the PQI-CDI method give
better performances than the systems without the PQI-CDI method. This is because
it is unrealistic to create the perfect model of a specific implemented system that can
give exactly same performances in the simulator. It is impossible to create a model that
can reflect the performances of all video surveillance systems because the detail of the
implementations depends on their provider. For example, the service provider has the
choice of how to proceed the processes for video stream data. Also, he/she has the choice
of how to implement the communication between the camera devices and the processing
computer. Differences between the procedures in the simulator and those in real situations
result in different performances (Subsection 4.1.2 discussed the details). Therefore, it is
important for our research to investigate the differences between our developed simulator
and an implemented system, and show the effectiveness of the proposed method in actual
situations.

This chapter aims to investigate the differences in the results obtained in the simulations
using the developed simulator and the experiments using an implemented system. We
implement a video surveillance system incorporated with the PQI-CDI method. In the
implemented system, three camera devices are used to serve as the stream data sources,
and a laptop computer functions as the processing computer. We measure the transaction
time, the transaction rate, and the jitters of the transaction intervals under real situations
using our implemented system. The contributions of this chapter are summarized as
follows:

(1) An implementation of the PQI-CDI method, which improves the transaction time
and the transaction rate for stream data processing systems compared with the systems
without the PQI approach. It is difficult to implement a video surveillance system with
the PQI-CDI method because such systems have never been implemented. For the
implementation, we need to design the system architecture (shown in Figure 4.5) and
develop several software modules explained in Section 4.3. Especially, it is difficult to

58

4.1 Introduction

develop the software module that produces the data needed to get @th quality data because
it is required to search the delimiters for each quality in image files. There are no such
existing software modules.

(2) An investigation of the differences in the results of the PQI-CDI method obtained
using the developed simulator and the implemented system.

The remaining chapter is organized as follows. In Section 4.2, we introduce the related
work. In Section 4.3, we explain the system design for the implementation of the video
surveillance system with the PQI-CDI method. The implementation details are presented
in Section 4.4, and experimental results are presented in Section 4.5. Finally, the chapter
concludes in Section 4.6.

4.1.2 Performance Differences Caused by Actual Implementation

We focus on two aspects that cause the performance differences between those given by
our developed simulator and by our implemented system.

First, our developed simulator does not strictly simulate the detailed design of how to
proceed the processes for video stream data such as the processes on the stream data sources
(the camera devices for surveillance systems) and the processes for starting/finishing
the communications between them and the processing computer. This is because these
procedures depend on implementations. If we modeled them strictly in the simulator, the
simulation results would show a specific performance of an implementation.

Second, our developed simulator assumed that the communication channels for the
camera devices and the processing computer were separated. Thus the processing
computer receives the data for each transaction in parallel. In the surveillance systems in
which the processing computer receives each quality data sequentially, the performances
given by the simulator can be different from those of the implemented systems.

In this chapter, we investigate the differences caused by the above points. If our
implemented system is similar to the system modeled by the simulator in detail, it is
natural that the performances under the system are the same as those under the simulator.
Simulators generally have some parameters for their configurations. For the reason
of the errors of these parameters against actual situations, the absolute values of the
performances obtained by simulators differ from those obtained by implemented systems
although the tendencies of the changes in the values are similar. Therefore, we can further

59

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

confirm the effectiveness of our proposed approach if the implemented system shows
better performances than the conventional approach even when it is not similar to the
system modeled by the simulator.

4.2 Related Work for Implementation of Surveillance

Systems

In this section, we first introduce several works for the implementation of surveillance
systems. Our implemented system in this chapter adopts the PQI-CDI method which
changes the transaction interval for the transaction rate improvement. Hence, after that,
we introduce several systems considering transaction intervals and our work related to the
implementation.

4.2.1 Surveillance Systems

H.264 is a well-known video encoding scheme to ensure a high video quality with a limited
communication bandwidth. A surveillance system using H.264 was implemented in [101].
The authors evaluate the video quality and the bandwidth consumption. Although the
authors confirm the reduction of the data amount transmitted from the camera devices to
the viewer machines, they do not aim to reduce the time required to detect objects in the
video surveillance systems.

A scheme to reduce the bandwidth consumption of video surveillance systems was
proposed in [102]. In [102], the camera devices do not transmit data to the processing
computer unless intrusions are detected. The processing computer verifies whether the
intrusion actually occurres and send a notification to the system manager only when the
intrusion occurres. This scheme can reduce the bandwidth consumption between the
camera devices and the processing computer.

A simple approach to reduce the time required to detect objects is to limit the target
area in the image to detect objects. In [103], the system identifies the background by using
a background subtraction technique and reduces the object detection time by omitting the
background area from the target area. Another approach in [104] set a threshold to clarify
the background area. The method regards the pixels for which the difference from the
previous frame image is less than the threshold as the background area. A larger threshold

60

4.3 Design of a Video Surveillance System

yields a larger background area because the pixels thatare even largely different from
that of the previous frame image are regarded as the background area. This method is
similar to our proposed system in that the background is updated (progressive collection
of the remaining data) when an object is detected. However, in the PQI-CDI method, the
transaction interval is dynamically changed to enhance the transaction rate.

4.2.2 Systems considering Transaction Intervals

Most of the existing methods to modify the transaction interval adopt the approach in
which the processing computers requested a change in the transaction intervals for the
camera devices after a fixed number of transactions [105–109]. However, excessively
short transaction intervals cause high computational loads on the processing computers,
decreasing the transaction rates.

In [110], we proposed the PQI approach, which was explained in Chapter 2. In
video surveillance systems using the approach, the camera devices produces several
data having different quality levels. The lowest quality data are always transmitted
to the processing computer. The processing computer progressively collects higher
quality data only when it is needed. Furthermore, we proposed a method to improve the
transaction rate in [111], which was explained in Chapter 3. The processing computer
dynamically changes the transaction interval considering the transaction times of several
past transactions. Although the simulator for the evaluation can simulate the behaviors
of the modeled system, it is unclear whether an implemented system actually gives
better performances than the systems without the proposed method. In this chapter, we
investigate the differences between the results obtained by the simulator and that obtained
by our implemented system [112].

4.3 Design of a Video Surveillance System

In this section, we explain the design for the implemented video surveillance system.

4.3.1 System Architecture

Figure 4.1 shows the system architecture. Some camera devices and a processing computer
are connected to a computer network. The camera devices and the processing computer

61

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

Cameras

Human detections

Processing
Computer

Switching hub

Figure 4.1: System architecture design

can communicate with one another. The computational resources of the camera devices
are lower than that of the processing computer because we assume that compact devices
serve as the camera devices such as Raspberry Pi devices equipped with the camera
modules. The processing computer can be a laptop or a desktop computer, among other
alternatives.

The camera devices obtain image data and produce image data that have different
quality levels. For example, the Raspberry Pi devices obtain the JPEG image data from
the equipped cameras. Notably, in the progressive JPEG format, the image data has
several qualities (known as scans). Figure 4.2 shows an example of the JPEG image data
having different qualities. @1, · · · , @10 represents the quality levels. The lowest quality
data corresponds to the smallest amount of data. These produced data are temporarily
stored in the memory of the camera devices. The processing computer collects the stored
image data from camera devices and executes image processing tasks such as object
detection.

The camera devices and the processing computer adopt the PQI-CDI method to
enhance the transaction time and rate. The details of the PQI-CDI method was explained
in Chapter 3. The camera devices cyclically transmit the lowest quality data and transmit
higher quality data only if required by the processing computer. The processing computer
changes the transaction intervals of each stream data every time when a predetermined
number of transactions finished.

62

4.3 Design of a Video Surveillance System

q1=10.698 Kb q2=35.75 Kb q3=46.394 Kb q4=56.227 Kb q5=120.766 Kb

q6=174.479 Kb q7=175.995 Kb q8=175.995 Kb q9=214.801 Kb q10=293.997 Kb

Figure 4.2: Example images with different quality levels

C
am

er
a’

s
B

uf
fe

r

Camera

Dn,a (t)

…

q1

q2

qQ

……

Interval (In)=0.03 [sec.]

……

Q
u

al
it

y
d

at
a

ge
n

er
at

io
n

Figure 4.3: Generation image of each quality data in the cameras

4.3.2 Process Flow for Camera Devices

The detailed process flow of camera devices was described in Chapters 2 (Figures 2.2 and
2.3) and 3 (Figure 3.2). In this chapter, we briefly explain the process flow for camera
devices designed for our implementation.

Figure 4.3 shows an image of the generation of each quality data in the camera
devices. The transactions at the camera device = (= = 1, · · · #) arise every time when a
predetermined transaction interval elapses. Each camera device obtains �=,0 (C) which is
the original video frame image data of the camera device = at the C th transaction. The
subscript a refers to the original data. After obtaining �=,0 (C), each camera constructs
�=,@ (C) (@ = 1, · · · , &) from �=,0 (C) and temporarily stores the data to its storage. �=,@ (C)

63

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

Processing
computer

…

Requests for a higher quality data and
changing the transaction interval if needed

Needs a high
quality data

q1: Dn,1 (1)

q2

qQ

+ Dn,2 (1)

qQ-1

+ Dn,Q (1) P
ro

c
es

si
n
g

co
m

pu
te

r’
s

bu
ff
e
r

Figure 4.4: Processing image of the processing computer

represents the data needed to construct the @th quality data in combination with �=,? (C)
(? = 1, · · · , @ − 1).

After generating �=,@ (C) on each camera device, it transmits �=,1(C) to the processing
computer and deletes �=,1(C) from its storage. After the transmission, the camera device
waits for a request for higher quality data for the Cth transaction. If the camera device
receives the request for the @th quality data, it transmits �=,@ (C) to the processing computer
and deletes it from the buffer.

4.3.3 Process Flow for Processing Computers

Details of the process flow for the processing computers were presented in Chapters
2 (Figure 2.4) and 3 (Figure 3.3). In this chapter, we briefly explain the process flow
for the processing computer designed for our implementation. Figure 4.4 illustrates the
processing image of the processing computer. When the processing computer receives
�=,A (C) (A = 2, · · · , &), it starts generating the image data having the Ath quality by
combining it with �=,B (C) (B = 1, · · · , A − 1). The first quality data is �=,1(C) itself and
the processing computer does not need to combine it with other data. After the generation,
the processing computer attempts to detect human faces in the image data by executing the
object detection process. If faces are detected, the processing computer requests �=,A+1(C)
to the camera device =. Otherwise, the Cth transaction completes and the processing
computer waits for the first quality data for the next transaction to be transmitted from the

64

4.3 Design of a Video Surveillance System

Data

Camera device

Communication module

High quality data

transmission module

First quality data

transmission module

Request for changing

transaction interval

qulity

First

 quality data

Request for high

quality data

qulity

High quality

data

Processing Computer

Communication module

Image processing

module

Transaction

interval controller

Display module

Data for

processing

Request for high

quality data
Request for changing

transaction interval

qulity

Image data

Information about

transactions

Requests

Figure 4.5: Software architecture of the implemented system

camera devices.
In the PQI-CDI method, the processing computer updates the transaction interval

after a cycle finishes. The cycle for the camera device = includes �= transactions. If �=
transactions are completed for the camera device =, the processing computer calculates
the new transaction interval and sends the message to change the transaction interval with
the new value to the camera device =.

4.3.4 Software Modules

Figure 4.5 shows the software modules. The system incorporates two types of installed
software: one on the processing computer, and the other on the camera devices. We
explain each module as follows.

4.3.4.1 Camera Devices

The software module for the camera devices consists of three parts.

• Communication Module: The communication module of each camera device
mainly controls the communication with the processing computer. The module first
creates the communication session with the processing computer. The communi-
cation between the camera device and the processing computer is performed on
the created communication session. After the module created the communication
session, it starts transmitting the stream data to the processing computer. In cases
where the communication session breaks down unintentionally, the communication
module tries to establish the handshaking again. The address for the processing

65

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

computer is designated to the camera devices by the user or the stream processing
system manager.

When the communication module gets data from the first quality data transmission
module or the high quality data transmission module in the program, it transmits
the received data to the processing computer.

In the cases that the module receives a request for changing the transaction interval,
it passes the request to the first quality data transmission module. In the cases that
the module receives a request for higher quality data, it passes the request to the
high quality data transmission module.

• First Quality Data Transmission Module: The first quality data transmission
module controls the transmission of the first quality data. When a transaction starts,
the module obtains the original image data from the camera and temporarily stores
it in the buffer. After that, the module produces the data needed for getting @th
quality data, �=,@ (C) (@ = 1, · · ·&), and stores it in the buffer. The transactions
start every time when the transaction interval elapses.

When the first quality data transmission module has produced the first quality data,
�=,1(C), the module passes the data to the communication module and then the
communication module transmits it to the processing computer.

When the first quality data transmission module gets a request for changing the
transaction interval, the module changes the transaction interval to the designated
value.

• High Quality Data Transmission Module: The high quality data transmission
module controls the transmission of higher quality data. When the module gets
a request for higher quality data from the communication modules, it obtains the
requested data from the buffer and passes it to the communication module.

4.3.4.2 Processing Computer

The software module for the processing computer consists of four parts.

• Communication Module: The communication module of a processing computer
mainly controls the communication with the camera devices. The module starts

66

4.3 Design of a Video Surveillance System

waiting for the creation of the communication session from camera devices when
the system starts running. When the communication session with a camera device
is created, it keeps the communication session for communicating with it. In cases
where the communication session breaks down unintentionally, the module releases
the communication session because another new communication session will be
created by the camera device if needed.

When the communication module gets the request for changing transaction interval
from the transaction interval controller, it transmits the request with the new
transaction interval to the camera device.

In the cases that the communication module receives data from the camera devices,
it passes the data to the image processing module.

• Transaction Interval Controller: The transaction interval controller manages the
transaction intervals of each camera device based on the PQI-CDI method.

When the controler receives the information about transactions from the image
processing module, it counts up the number of the transactions from the start of the
cycle (2= in Clause 3.3.2.2) to check whether the number reaches the cycle length,�=
or not. If the number reaches �=, the module calculates the new transaction interval
and sends the request for changing the transaction interval to the communication
module. The information about the transaction times needed to calculate the new
transaction interval (transaction time and camera ID) is included in the information
sent from the image processing module.

• Image Processing Module: The image processing module processes the received
image data according to the user designated processes.

When the module receives the data for processing, it starts executing the processes
to the data and judges the necessity of higher quality data. If higher quality data is
needed to proceed the transaction, the image processing module sends the request
for it to the communication module. If the higher quality data is not needed or
the received data is the original (highest) quality data, the transaction finishes.
Moreover, the module sends the information about transactions to the transaction
interval controller every time when a transaction finishes.

67

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

To check the behavior of the system, the image processing module passes the image
data to the display module.

• Display Module: The display module receives image data from the image process-
ing module and displays the data to the screen of the processing computer.

4.4 Implementation

In this section, we explain our implementation of a video surveillance system.

4.4.1 Equipment

This section describes the equipment used for the implementation. Figure 4.6 shows the
devices used in the implementation. Three Raspberry Pi devices with camera modules and
a laptop computer are connected to a network hub. An NTP (network time protocol) server
is connected to the network for the synchronization of the times among the processing
computers and the stream data sources. Time synchronization is required to measure
the transaction time. The devices can communicate with one another via the computer
network. The desktop computer functions as the processing computer. Table 4.1 lists the
specifications of the implemented system.

4.4.2 Programs

We created two softwares. One is the software for the camera devices, which runs on
each Raspberry Pi device in the system. The program consists of three parts as described
in Clause 4.3.4.1. The Raspberry Pi devices do not originally contain a function to record
different quality data. To produce image data that have different qualities, a function
embedded in OpenCV (version 3.2) is adopted to convert the original image data to the
progressive JPEG format. The converted progressive JPEG images have 10 scans. The
processing computer can produce image data that have several qualities by combining
some scans. For example, by combining five scans, the image data can be regarded to
consist of two qualities.

Another software is for the processing computers, which runs on the laptop computer
in the system. The program consists of four parts as described in Clause 4.3.4.2. The

68

4.4 Implementation

1

Desktop computer

Raspberry Pi devices

Switch

Network cables

Network
cable

Figure 4.6: Devices used in the implementation

Table 4.1: Specifications of the implemented system

Items Details
Recording computer Raspberry Pi 3, 1 [GB] Memory
Camera device Raspberry Pi NoIR Camera Module

V2.1
Processing computer Intel Core i7-1065 (1.3 [GHz] quad-

core), 32 [GB] Memory
Network 100BASE-TX/1000BASE-T

image processing is performed by OpenCV. For the detection of human faces, we used
the function ‘Haar Feature-based Cascade Classifier’, which uses Haar-like features for
human face detection. We confirmed that human faces can be detected also in the lowest
quality image data although the image is unclear.

4.4.3 Sample Images

Figure 4.7 shows an example of images displayed under the PQI-CDI method. The
left-sided image shows the case where the processing computer does not detect humans.
In this case, the processing computer does not request a higher quality data. On the
other hand, the right-sided image shows the case where the processing computer detects
humans. In this case, the processing computer requests the data with the highest quality
to obtain high-resolution image data. Therefore, the resolution of the left-sided image is

69

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

Human detected (104064 Bytes)No human detected (6134 Bytes)

Human detected (104064 Bytes)No human detected (104064 Bytes)

Figure 4.7: Example images under the PQI-CDI method
Human detected (104064 Bytes)No human detected (6134 Bytes)

Human detected (104064 Bytes)No human detected (104064 Bytes)

Figure 4.8: Example images when the PQI-CDI method is not used

lower than that of the right-sided image.
Figure 4.8 shows example images displayed under the conventional approach. Each

camera device transmits its original image data to the processing computer without
producing other quality data. The processing computer executes the human face detection
processes against the clear image, which has the highest quality. The figure shows that
each image shows a clear image even when no face is detected. In this case, the data sizes
for each image are large compared with the case under the PQI-CDI method.

4.5 Evaluation of the Implemented System

To investigate the differences between the simulated performances and the real performance
in this section, we compare the simulation results and actual results obtained using the

70

4.5 Evaluation of the Implemented System

implemented system.

4.5.1 Evaluation Environments

We measured the performances of our implemented system changing the cycle length
and the final probability. If we use live videos for measurements, it is impossible to
strictly control final probabilities because the values depend on the probabilities that
human faces are recorded in the videos. Therefore, we stored the images recorded by each
camera device to its storage and used the images for getting the evaluation results under
different cycle lengths. We measured the performances when the number of the camera
devices is one and three. Based on the setting for the simulation in previous chapters,
we set the bandwidth between the camera devices and the processing computer to 10
[Mbps] by using the QoS controller function of the Windows operating system. To get the
performances using our developed simulator, we use the same parameter values shown
in Tables 2.1. We ran the implemented system for one minute to get each plot in the
results and calculated the average value. The other detail of our implemented system is
explained in Subsection 4.4.1

We compare the performances of our implemented system for the cases with and
without using the PQI-CDI method. Under the PQI-CDI method, the processing computer
dynamically adjusts the transaction interval and adopts the PQI approach. Since some
conventional surveillance systems dynamically change the transaction interval, as the
comparison method, we use the method that does not adopt the PQI approach and
dynamically adjusts the transaction interval every time a fixed number (cycle length) of
transactions finishes. We denote the method by No PQI-CDI method in the following
sections. The No PQI-CDI method is a special case of the PQI-CDI method where the
number of the data qualities is one.

4.5.2 Transaction Time

Transaction time is one of the main performance indexes for surveillance systems. In the
PQI-CDI method, the processing computer changes the transaction interval of each data
source every time when the number of the finished transactions reaches the value of the
cycle length. Therefore, we measured the transaction time by changing the cycle length
to evaluate the performance of our implemented system.

71

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 T

im
e

[m
s]

Cycle Length

No PQI-CDI (Actual) PQI-CDI (Actual, Final Probability=0.0)

PQI-CDI (Actual, Final Probability=0.5) PQI-CDI (Actual, Final Probability=1.0)

No PQI-CDI (Simulation) PQI-CDI (Simulation, Final Probability=0.0)

PQI-CDI (Simulation, Final Probability=0.5) PQI-CDI (Simulation, Final Probability=1.0)

Figure 4.9: Average transaction time when one camera is used

Figure 4.9 shows the average transaction time when the number of the camera devices is
one. The horizontal axis is the cycle length and the vertical axis is the average transaction
time. ‘Actual’ in the legend indicates the average transaction time of our implemented
system and ‘Simulation’ indicates the average transaction time measured by our developed
simulator.

In both the actual case and the simulation case, the average transaction time under
the conventional No PQI-CDI method is longer than that under our proposed PQI-CDI
method when the final probability is 0.0 or 0.5. This is because the PQI-CDI method
reduces the average data amount to be transmitted from the camera devices. Since the
average data amount decreases with the final probability, the average transaction time
under a lower final probability is shorter. When the final probability is 1.0, the average
transaction time under the PQI-CDI method is almost the same as that under the No
PQI-CDI method. This is because the data amount transmitted and processed is almost
the same. The average transaction times in both the actual case and the simulation case
do not change largely even when the cycle length changes. This is because the transaction
time does not change largely even when the cycle proceeds to the next since the transaction

72

4.5 Evaluation of the Implemented System

interval of each cycle, which is given by the average transaction time of the previous
cycle, is almost the same as the transaction time in the cycle. Thus, the transaction time is
not largely influenced by the cycle length when the number of the camera devices is one.
The average transaction time increased as the cycle length got longer in the simulation
results in Chapter 3 because the number of the stream data sources was five in the chapter.

The average transaction time in the actual case is longer than that in the simulation
case under each final probability. This is because the simulator does not strictly simulate
the communication and the processing procedures implemented in our system. In the
implemented system, the camera devices grab the images, convert them to the progressive
JPEG format, and create the data for each quality. After that, they transfer the data to
the communication buffer for the transmission and wait for starting it. On the processing
computer side, it moves the received data in the communication buffer to the main
memory and constructs each quality data. Although our developed simulator simulates
the processing time for each quality data, it ignores the above procedures. It takes some
time for executing them in the implemented system, and thus the average transaction
time in the actual case is longer than that in the simulation case. When the number of
the camera devices is three, the transactions are interfered by other video stream data.
Thus, the transaction time is predicted to depend on the cycle length because there is
a possibility that the transaction time changes when the cycle proceeds to the next one.
Therefore, we measured the transaction time when the number of the camera devices
is three. Figure 4.10 shows the result. In both the actual and the simulation cases, as
we expected, the average transaction time changes along with the cycle length. This is
because the transaction interval does not change for a long period under a longer cycle
length, and thus several transactions overlap when the transaction interval is shorter than
the transaction time, causing a longer transaction time.

Similar to the result of one camera device, the average transaction time under the No
PQI-CDI method is longer than that under our proposed PQI-CDI method when the final
probability is 0.0 or 0.5. The average transaction time in the actual case is longer than that
of the simulation cases under each final probability. This is the same reason as the result
when the number of the camera devices is one. That is because our developed simulator
did not strictly simulate the communication and the processing procedures implemented
to our system.

When the cycle length is small (approximately smaller than three), the average

73

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 T

im
e

[m
s]

Cycle Length

No PQI-CDI (Actual)
PQI-CDI (Actual, Final Probability=0.0)
PQI-CDI (Actual, Final Probability=0.5)
PQI-CDI (Actual, Final Probability=1.0)
No PQI-CDI (Simulation)
PQI-CDI (Simulation, Final Probability=0.0)
PQI-CDI (Simulation, Final Probability=0.5)
PQI-CDI (Simulation, Final Probability=1.0)

Figure 4.10: Average transaction time when three cameras are used

transaction time in the actual case is longer than that in the simulation case under each
final probability. This is the same reason as the result when the number of the camera
devices is three. That is because our developed simulator did not strictly simulate the
communication and the processing procedures implemented to our system.

In the simulation case, the average transaction time increases further than that in the
actual case as the cycle length increases. This is because the simulated communication
time is longer than that of the implemented system when the transactions overlap with
others. Our developed simulator assumed that communication channels for the camera
devices and the processing computer were separated, and thus the processing computer
received the data for each transaction in parallel. On the other hand, the processing
computer received each quality data sequentially in our implemented system. Since it
takes a longer time to receive data by parallel communications, the communication times
in the simulation cases are longer than those in the actual cases when the transactions
overlap. Since a longer cycle length gives a higher probability that the transactions overlap,
the transaction times further increases in the simulation cases than those in the actual
cases.

74

4.5 Evaluation of the Implemented System

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 R

at
e

[n
u

m
/s

]

Cycle Length

No PQI-CDI (Actual) PQI-CDI (Actual, Final Probability=0.0)

PQI-CDI (Actual, Final Probability=0.5) PQI-CDI (Actual, Final Probability=1.0)

No PQI-CDI (Simulation) PQI-CDI (Simulation, Final Probability=0.0)

PQI-CDI (Simulation, Final Probability=0.5) PQI-CDI (Simulation, Final Probability=1.0)

Figure 4.11: Average transaction rate when one camera is used

For example, in the case that the number of the camera devices is one, the average
transaction time under the PQI-CDI method is 48 [ms] when the final probability is 0.5 at
minimum (cycle length is 1). The average transaction time under the No PQI-CDI method
and the same final probability is 58 [ms]. That is, our implemented system achieves
17% shorter average transaction time in this situation. In the case that the number of
the camera devices is one, the average transaction time under the PQI-CDI method is
101 [ms] when the final probability is 0.5 at minimum (cycle length is 1). The average
transaction time under the No PQI-CDI method and the same final probability is 147 [ms]
(31% reduction).

4.5.3 Transaction Rate

The transaction rate is one of the main performance indexes for surveillance systems. To
evaluate the performance of our implemented system, we measured the transaction rate
changing the cycle length.

Figure 4.11 shows the average transaction rate when the number of the camera devices

75

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 R

at
e

[n
u

m
/s

]

Cycle Length

No PQI-CDI (Actual)
PQI-CDI (Actual, Final Probability=0.0)
PQI-CDI (Actual, Final Probability=0.5)
PQI-CDI (Actual, Final Probability=1.0)
No PQI-CDI (Simulation)
PQI-CDI (Simulation, Final Probability=0.0)
PQI-CDI (Simulation, Final Probability=0.5)
PQI-CDI (Simulation, Final Probability=1.0)

Figure 4.12: Average transaction rate when three cameras are used

is one. The horizontal axis is the cycle length and the vertical axis is the average transaction
rate. The legends and the other experimental configurations are the same as the previous
subsection.

In the actual case and the simulation case, the average transaction rate under the
conventional No PQI-CDI method is smaller than that under our proposed PQI-CDI
method when the final probability is 0.0 or 0.5. This is because the PQI-CDI method
attempts to adjust the transaction interval so that the transactions do not overlap with
others. When the final probability is 1.0, the average transaction rate under the PQI-CDI
method is almost the same as that under the No PQI-CDI method because the data amount
transmitted and processed is the same. The average transaction rates in both the actual
case and the simulation case do not change largely even when the cycle length changes.
The reason is the same as the reason that the transaction times when the number of the
camera devices is one do not change largely.

Figure 4.12 shows the average transaction rate when the number of the camera devices
is three. The average transaction rates in both the actual case and the simulation case
decrease as the cycle length increases because the transaction interval does not change

76

4.5 Evaluation of the Implemented System

for a long period under a longer cycle length as similar to the reason explained in the
previous subsection. The decreasing rate in the simulation case is larger than that in the
actual case because the processing computer received the data for each transaction in
parallel in the simulator. The detailed reason is the same as the case for the transaction
time and was explained in the previous subsection.

The average transaction rate under the No PQI-CDI method is smaller than that of our
proposed PQI-CDI method when the final probability is 0.0 or 0.5 as similar to the result
of one camera device. The average transaction rate in the actual case is smaller than that
in the simulation case under each final probability. This is because the simulator did not
strictly simulate the communication and the processing procedures implemented to the
actual system.

For example, in the case where the number of the camera devices is one, the average
transaction rate under the PQI-CDI method is 22 [num/s] when the final probability is 0.5
at maximum (cycle length is 1). The average transaction rate under the conventional No
PQI-CDI method and the same final probability is 17 [num/s]. That is, our implemented
system achieves 29% higher average transaction rate in the evaluation situation. In the
case that the number of the camera devices is three, the average transaction rate under
the PQI-CDI method is 12 [num/s] when the final probability is 0.5 at maximum (cycle
length is 1). The average transaction time under the conventional No PQI-CDI method
and the same final probability is 9.2 [num/s] (30% improvement).

4.5.4 Jitter of Transaction Intervals

We evaluated the jitter of transaction intervals in Chapter 3 as a drawback of dynamic
interval. We measured the jitters in our implemented system.

Figure 4.13 shows the average jitter when the number of the camera devices is one.
The horizontal axis is the cycle length and the vertical axis is the average jitter. The
legends and the other experimental configurations are the same as the previous subsection.

In the actual cases, the average jitter under the conventional No PQI-CDI method is
longer than that under our proposed PQI-CDI method when the final probability is 0.0 or
0.5 (except for the case that the cycle length is one) because the values of the transaction
intervals under these final probabilities are smaller than that under the No PQI-CDI
method as shown in Figure 4.9. The average jitter when the final probability is 0.5 and the

77

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 J
it

te
r

[m
s]

Cycle Length

No PQI-CDI (Actual)
PQI-CDI (Actual, Final Probability=0.0)
PQI-CDI (Actual, Final Probability=0.5)
PQI-CDI (Actual, Final Probability=1.0)
No PQI-CDI (Simulation)
PQI-CDI (Simulation, Final Probability=0.0)
PQI-CDI (Simulation, Final Probability=0.5)
PQI-CDI (Simulation, Final Probability=1.0)

Figure 4.13: Average jitter when one camera is used

cycle length is one under the PQI-CDI method is larger than the jitter under other final
probabilities. This is because the transaction time when the processing computer does
not request the second quality data is shorter than the case when it requests the second
one. Since the range of the transaction time is large compared with the range when the
final probability is 0.0 or 1.0, the average jitter increases. The average jitter in the actual
case decreases as the cycle length increases because a longer cycle length less changes
the transaction interval.

In the simulation case, the average jitter is almost zero except for the case where the
final probability is 0.5. This is because the number of the camera devices is one and the
transaction interval of each cycle is almost the same as the transaction time in the cycle.
Therefore, the transaction time does not change even when the cycle proceeds to the next
one, and thus the transaction interval does not change. The average jitters increased in the
results in Chapter 3 because the number of the stream data sources was five in the chapter.
The average jitter when the final probability is 0.5 in the simulation case is larger than
those under other final probabilities because the transaction time changes depending on
whether the processing computer requests the second quality data or not.

78

4.5 Evaluation of the Implemented System

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 J
it

te
r

[m
s]

Cycle Length

No PQI-CDI (Actual) PQI-CDI (Actual, Final Probability=0.0)

PQI-CDI (Actual, Final Probability=0.5) PQI-CDI (Actual, Final Probability=1.0)

No PQI-CDI (Simulation) PQI-CDI (Simulation, Final Probability=0.0)

PQI-CDI (Simulation, Final Probability=0.5) PQI-CDI (Simulation, Final Probability=1.0)

Figure 4.14: Average jitter when three cameras are used

Figure 4.14 shows the average jitter when the number of the camera devices is three.
In the actual case, the average jitter under the conventional No PQI-CDI method is longer
than that under our proposed PQI-CDI method when the final probability is 0.0 or 0.5
because the values of the transaction intervals under these final probabilities are smaller
than that under the No PQI-CDI method. The average jitter in the actual case tends
to decrease as the cycle length increases because a longer cycle length less frequently
changes the transaction intervals as similar to the result of one camera device.

In the simulation case, the average jitter under the No PQI-CDI method increases when
the cycle length is small (approximately less than six). Also, the average jitter under the
PQI-CDI method increases when the cycle length is small and the final probability is
0.0 or 1.0. This is because a small number of interval changes leads the convergence
of the transaction interval when the cycle length is 1.0 in these cases. However, several
interval changes are required to converge the transaction interval when the cycle length
gets larger. The average jitter converges to a certain value as the cycle length increases
when the cycle length is large (approximately larger than five in these cases) because the
transaction interval less changes. This phenomenon also appeared in the result when

79

Chapter 4 Implementation of Video Surveillance System with the PQI-CDI Method

the final probability is 1.0 in Figure 3.10. The converged average jitter when the final
probability is 0.0 is smaller than that when the final probability is 1.0 because the value
is smaller. When the final probability is 0.5, the average jitter does not increase even
when the cycle length is small because the average jitter converges after several cycles are
elapsed. Therefore, the average jitter in this case decreases along with the cycle length.

4.5.5 Discussion

Our implemented system has two different points from the system modeled by the
simulator as explained in Subsection 4.1.2.

When the number of the camera devices is small (one camera device in the evaluation
results), the influence caused by the parallel communication in the simulator is not so
large. Therefore, the influence caused by the difference of transaction procedures leads
the differences in the absolute performance values between our implemented system
and our developed system as shown in Figures 4.9 and 4.11. However, we confirmed
that the tendencies of the changes in the values under the implemented system, i.e., the
performances under the PQI-CDI method are better than the conventional No PQI-CDI
method when the final probability is less than 1.0, are similar to those under the simulator.

When the number of the camera devices is large (three camera devices in the evaluation
results), the influence caused by the parallel communication in the simulator is also large.
Therefore, the performances under the simulator depend on the cycle length although
those under the implemented system does not depend on it as shown in Figures 4.10
and 4.12. However, we confirmed that the PQI-CDI method gives better performances
than the No PQI-CDI method when the final probability is less than 1.0 even where the
implemented system is not similar to the modeled system by the simulator.

4.6 Conclusion

The simulator we used in previous chapters did not strictly simulate the detailed design
of how to proceed the processes for video stream data. Also, our developed simulator
assumed that communication channels for the camera devices and the processing computer
were separated. Therefore, in this chapter, we implemented a video surveillance system
and investigated the differences in the results obtained using our developed simulator

80

4.6 Conclusion

and the implemented system. The implemented system adopted our proposed PQI-CDI
method, which reduced the transaction time and improved the transaction rate. We
measured the transaction time, transaction rate, and the jitters of the transaction intervals
under the implemented system for the investigation.

We confirmed that our implemented system properly worked and realized the im-
plementation of the PQI-CDI method. Moreover, we found that the performance of
the implemented system were different from the simulated results in two points. First,
the overheads caused by the differences between the procedures for the simulator and
them in our implemented system deteriorated the performance. Second, the parallel
communications between the processing computer and the camera devices in the simulator
deteriorated the performances compared with the implemented system when the number
of the camera devices is large. Although the simulation results were different from the
results obtained by our implemented system, we confirmed that the PQI-CDI method can
improve the transaction time and the transaction rate in actual situations.

One of the remaining issues in the chapter is adopting the developed system to the
data other than video data. In this chapter, we developed a video surveillance system with
the PQI-CDI method. However, the method does not depend on the contents of the data
as far as we can construct several quality data such as LiDAR (the example scenario is
described in Section 2.4). The amount of the data, the time required for processing them,
or the probability to proceed to the processing of the next quality data depends on the
content of the data. Hence, the performance investigations for other data are our future
work. Another remaining issue is the consideration of communication errors such as data
losses or disconnections. In the case where the processing computer cannot receive the
requested data, it needs to skip the transaction or request the data again. This causes a
lower application performance. However, our developed system does not consider such
communication errors that can deteriorate the application performance.

81

Chapter 5

Conclusion

5.1 Concluding Remark

Stream data processing systems have attracted considerable research attention. In some
systems, a processing computer processes stream data transmitted by remote stream
data sources. Two key indexes could be considered to evaluate the performance of such
stream data processing systems, namely, the transaction time and the transaction rate. A
smaller transaction time and higher transaction rate correspond to an enhanced application
performance. This study aimed at enhancing these performances and the following key
conclusions were derived.

In Chapter 1, we explained the importance of stream data processing and identified the
research issues. We explained the research objectives, related work, and the content of
this research in the chapter.

In Chapter 2, we described our proposed PQI approach aimed to reduce the transaction
time of stream data processing systems of which input data come from remote stream
data sources. In the PQI approach, each stream data source constructs several data of
that qualities are lower than the original quality, e.g., low-resolution image data. Only in
the cases where higher quality data are needed for processing, the processing computer
progressively collect them. By reducing the average data amount of data collections and
for processing, the PQI method reduces the average transaction time. Our simulation
evaluation revealed that our proposed method could reduce the transaction time while
keeping the application performances compared to the conventional No PQI method for
the cases that the final probability is small. Here, the final probability is the probability that
the processing computer finally processes the original quality data in each transaction.

83

Chapter 5 Conclusion

In Chapter 3, we described the PQI-CDI method aimed to improve the transaction rate
by changing the transaction intervals dynamically under the PQI approach. In the PQI-CDI
method, the processing computer changes the transaction intervals to be the same length
as the average transaction time of the previous cycle. Moreover, the PQI-CDI method
adopts the PQI approach to reduce communication and processing times. Our evaluation
results revealed that the PQI-CDI method could achieve a higher transaction rate than a
conventional approach (static transaction interval). However, when the cycle length was
excessively very short, the processing computer would request too many interval changes,
resulting in less fair and inconsistent transaction intervals. If the cycle length was too
long, changing the transaction interval did not cause noticeable improvements.

In Chapter 4, we described the implementation of a video surveillance system
with the PQI-CDI method and its performance evaluation in actual situations. In the
implementation, three camera devices and one processing computer were connected via
a local area network. We developed two software modules for the camera devices and
the processing computer. We confirmed that our implemented system properly worked
and realized the implementation of the PQI-CDI method. Moreover, we investigated the
differences between the performances obtained by our developed simulator and those by
our implemented system. We confirmed that the PQI-CDI method could improve the
transaction time and the transaction rate in actual situations although the performances
were not always similar to the simulation results.

Overall, the proposed methods based on the PQI approach could reduce the transaction
time and improve the transaction rate in some situations. The target system of this study
is stream data processing systems in which a processing computer processes stream data
transmitted by remote stream data sources. Existing such systems did not consider the
necessity of the original quality data that are obtained at the data sources. We opened
up new vista to the research field and proposed a pioneer PQI approach focusing on this
point. In the approach, the processing computer progressively collects higher quality data
from the data sources only in cases when they are needed. The approach, which can be
applied for recently attractive and worldwidely used abovementioned stream processing
systems, brings a large contribution to our lives.

84

5.2 Future Work

5.2 Future Work

Compared to the conventional approach, the PQI approach could reduce the transaction
time under a low final probability, and the PQI-CDI method could achieve a higher
transaction rate. However, certain challenges remain to be addressed.

In the targeted system in this study, one processing computer executes the stream
data processing. One processing computer systems are easy to construct. If the system
management organization owns some other processing computers or exploits virtual
computers provided by cloud services, the computational resources can be enhanced
by using multiple processing computers. In such cases, the transaction time can be
further reduced by distributing the processing load that is concentrated on one processing
computer in this sturdy to others. Therefore, efficient load distribution for the stream
processing system in the cases that the remote stream data sources transmit their data to
some processing computers is a future direction for our research.

In this study, we did not consider the power consumption both of the processing
computer and the stream data sources. As introduced in Subsection 1.3.3, the stream
processing system with the PQI approach can apply several power consumption reduction
schemes. However, the transaction rate degrades by omitting several data transmissions
and processes for the power consumption reduction. Therefore, reduction of the transaction
time and the improvement of the transaction rate considering the power consumption is a
future direction of this study.

Furthermore, we implemented a video surveillance system with three camera devices
and one processing computer. They are connected with each other via a switching
hub. However, recent video surveillance systems could equip more camera devices
that are connected to the Internet due to the recent IoT trends. In such cases, the
communication bandwidths between the camera devices and the processing computer
are not stable. Thus, the transaction time tends to change largely. This causes inefficient
adjustment of the transaction interval by the PQI-CDI method because the method uses
the average transaction time as the new transaction interval. Therefore, the transaction rate
improvement under unstable communication bandwidth situations is a future direction for
our research.

85

Acknowledgements

Upon the completion of this dissertation, I would like to take this opportunity to express
my sincerest gratitude to those who have done their best to support me.

First and foremost, I would like to express my sincere gratitude to my supervisor,
Professor Shinji Shimojo, who not only accepted me as his student but also assisted me to
overcome the limitation of my knowledge as well as providing me valuable advice and
guidance throughout my doctoral research work.

I would like to express my deepest appreciation to Associate Professor Tomoki
Yoshihisa at the Cybermedia Center, Osaka University, for his patient and enthusiastic
guidance along with my studies. I would not be able to work on this challenging and
interesting topic without his suggestions and I could also not have come this far without his
supports. He continuously and convincingly conveyed a spirit of adventure and excitement
to this study. His excellent advice based on his deep knowledge always provided a unique
perspective and new meaning to this study.

I would like to thank Assistant Professor Tomoya Kawakami at University of Fukui
and Dr. Yuuichi Teranishi at National Institute of Information and Communications
Technology. This dissertation would not have been possible without their valuable advice
and guidance. Also thank you for all their trust in my sometimes spontaneous and transient
research ideas.

I would also like to acknowledge the committee members of my dissertation, Professor
Toru Fujiwara and Professor Takahiro Hara. Their insightful and constructive comments
considerably improved the quality of the dissertation.

I would like to express my appreciation to Professor Makoto Onizuka and Professor
Yasuyuki Matsushita at the Department of Multimedia Engineering of the Graduate
School of Information Science and Technology of Osaka University, and Professor
Kaname Harumoto at Osaka University Institute for Datability Science for their innovative
suggestions and warm student life support.

87

Acknowledgements

I wish to express my acknowledgment to JICA AUN/SEED-Net for awarding me the
scholarship with the financial support for the doctoral degree within 3 years. Furthermore,
I extend my sincere appreciation to Osaka University for giving me the great opportunity
to do research in a warm and friendly environment.

My grateful acknowledgment goes also to all professors and supporting staffs in
both Shimojo laboratory and IST office, who always help and give me guidelines and
conveniences during the whole period of my study.

I would like to thank all the students at the Shimojo laboratory for helping me with
some cases about my life in Japan, especially Japanese communication, and for all the
fun we had. It was a great pleasure working with you all. I would like to recognize all my
friends in the Laboratory for the enjoyable and stimulating atmosphere that they provide
with their companion and friendship.

Last but not least, I would like to offer my hearty thanks to my family who always
appreciate my every decision, share my good or bad times, and provide me with their
greatest concerns and cares.

88

References

[1] W. K. Wong and K.T. Leow, “Wireless Webcam based Car Burglar Detection System,”
in Proc. International Conference on Intelligent and Advanced Systems (ICIAS), pp.
1-4, June 2014.

[2] C. N. Bhagwat, Y. N. Krishnan, and K. Badrinath, “Cloud based Intruder Detection
System,” in Proc. International Conference on Electronics and Communication
Systems (ICECS), pp. 1244-1246, February 2015.

[3] J. Zhang and L. Yue, “The Design of Multi-Zone Wireless Burglar Alarm System,”
in Proc. International Conference on Cyberspace Technology (CCT), pp. 469-473,
November 2013.

[4] P. Şchiopu and A. Costea, “Design of Anti Burglar Alarm Systems Detection and
Signaling,” in Proc. IEEE International Symposium for Design and Technology in
Electronic Packaging (SIITME), pp. 111-115, October 2011.

[5] G. Long, “Design of Wireless Burglar Alarm based on Mcu,” in Proc. International
Conference on Multimedia Technology, pp. 3032-3034, July 2011.

[6] P. Choorat, C. Sirikornkarn, and T. Pramoun, “License Plate Detection and Inte-
gral Intensity Projection for Automatic Finding the Vacant of Car Parking Space,”
in Proc. International Technical Conference on Circuits/Systems, Computers and
Communications (ITC-CSCC), pp. 1-4, June 2019.

[7] C. Ahn, B. Lee, S. Yang, and S. Park, “Design of Car License Plate Area Detection
Algorithm for Enhanced Recognition Plate,” in Proc. International Conference on
Computer Applications and Information Processing Technology (CAIPT), pp. 1-4,
August 2017.

89

References

[8] A. Menon and B. Omman, “Detection and Recognition of Multiple License Plate
from Still Images,” in Proc. International Conference on Circuits and Systems in
Digital Enterprise Technology (ICCSDET), pp. 1-5, December 2018.

[9] O. Khin, M. Phothisonothai, and S. Choomchuay, “License Plate Detection of
MyanmarVehicle Images Captured from theDissimilar Environmental Conditions,” in
Proc. International Conference on Advanced Computing and Applications (ACOMP),
pp. 127-132, December 2017.

[10] L. Li, S. Yoon, J. Liu, and J. Yi, “Multi-Scale Car Detection and Localization using
Contour Fragments,” in Proc. IEEE International Conference on Image Processing
(ICIP), pp. 1609-1613, October 2014.

[11] H. Sarıbaş, H. Çevıkalp, and S. Kahvecıoğlu, “Car Detection in Images Taken
from Unmanned Aerial Vehicles,” in Proc. Signal Processing and Communications
Applications Conference (SIU), pp. 1-4, July 2018.

[12] G. Li, X. Fang, K. Khoshelham, and S. O. Elberink, “Detection of Cars in
Mobile Lidar Point Clouds,” in Proc. IEEE International Conference on Intelligent
Transportation Engineering (ICITE), pp. 259-263, October 2018.

[13] R. Cortés, X. Bonnaire, O. Marin, and P. Sens, “Stream Processing of Health-
care Sensor Data: Studying User Traces to Identify Challenges from a Big Data
Perspective,” Procedia Computer Science, Elsevier, Vol. 52, pp. 1004-1009, June
2015.

[14] S. Shao, J. Woo, K. Yamamoto, and N. Kubota, , “Elderly Health Care System
Based on High Precision Vibration Sensor,” in Proc. IEEE International Conference
on Machine Learning and Cybernetics (ICMLC 2019), pp. 1-6, July 2019.

[15] A. De, P. Joao, B. Herfort, A. Brenning, and A. Zipf, “A Geographic Approach for
Combining Social Media and Authoritative Data Towards Identifying Useful Infor-
mation for Disaster Management,” International journal of geographical information
science, Taylor & Francis, Vol. 29, No. 4, pp. 667-689, Febrary 2015.

[16] M. Jahanian, T. Hasegawa, Y. Kawabe, Y. Koizumi, A. Magdy, M. Nishigaki, T.
Ohki, K.K. Ramakrishnan, “DiReCT: Disaster Response Coordination with Trusted

90

References

Volunteers, IEEE International Conference on Information and Communication
Technologies for Disaster Management (ICT-DM 2019), pp. 1-8, December 2019.

[17] X. Lu, C. Ye, J. Yu, and Y. Zhang, “A Real-Time Distributed Intelligent Traffic
Video-Surveillance System on Embedded Smart Cameras,” in Proc. International
Conference on Networking and Distributed Computing, pp. 51-55, October 2014.

[18] N. Abbas and F. Yu, “Design and Implementation of A Video Surveillance System
for Linear Wireless Multimedia Sensor Networks,” in Proc. IEEE International
Conference on Image, Vision and Computing (ICIVC), pp. 524-527, October 2018.

[19] P. Anghelescu, I. Serbanescu, and S. Ionita, “Surveillance System using IP Camera
and Face-Detection Algorithm,” in Proc. International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), pp. 1-6, October 2013.

[20] M. N. Saadat, H. Kabir, Z. A. Long, H. Sofian, and M. F. A. Zuhairi, “Efficient Face
Detection and Identification in Networked Video Surveillance Systems,” in Proc. In-
ternational Conference on Ubiquitous Information Management and Communication
(IMCOM), pp. 1-9, February 2020.

[21] Y. Ge, X. Liang, Y. C. Zhou, Z. Pan, G. T. Zhao, and Y. L. Zheng, “Adaptive Analytic
Service for Real-Time Internet of Things Applications,” in Proc. IEEE International
Conference on Web Services (ICWS), pp. 484-491, July 2016.

[22] R. Bansod, S. Kadarkar, R. Virk, M. Raval, R. Rashinkar, and M. Nambiar, “High
Performance Distributed In-Memory Architectures for Trade Surveillance System,”
in Proc. International Symposium on Parallel and Distributed Computing (ISPDC),
pp. 101-108, June 2018.

[23] A. Akbar, G. Kousiouris, H. Pervaiz, J. Sancho, P. Ta-Shma, F. Carrez, and K.
Moessner, “Real-Time Probabilistic Data Fusion for Large-Scale IoT Applications,”
in IEEE Access, Vol. 6, pp. 10015-10027, February 2018.

[24] J. A. Colmenares, R. Dorrigiv, and D. G. Waddington, “A Single-Node Datastore for
High-VelocityMultidimensional SensorData,” in Proc. IEEE International Conference
on Big Data (Big Data), pp. 445-452, December 2017.

91

References

[25] F. Gao, Z. Huang, Z. Wang and S. Wang, “An Object Detection Acceleration
Framework based on Low-Power Heterogeneous Manycore Architecture,” in Proc.
IEEE World Forum on Internet of Things (WF-IoT), pp. 597-602, December 2016.

[26] W. Huang, Y. Kang, and S. Zheng, “An Improved Frame Difference Method
for Moving Target Detection,” in Proc. Chinese Automation Congress (CAC), pp.
1537-1541, October 2017.

[27] S. Kameyama and Y. Miura, “High Performance of Moving-Object Detection by
Gpgpu based on Pipelining,” in Proc. IEEE International Conference on Consumer
Electronics - Taiwan (ICCE-TW), pp. 9-10, June 2017.

[28] S. Luo, W. Yao, Q. Yu, J. Xiao, H. Lu, and Z. Zhou, “Object Detection based on Gpu
Parallel Computing for Robocup Middle Size League,” in Proc. IEEE International
Conference on Robotics and Biomimetics (ROBIO), pp. 86-91, December 2017.

[29] Y. Tajima, K. Ito, T. Aoki, T. Hosoi, S. Nagashima, and K. Kobayashi, “Performance
Improvement of Face Recognition Algorithms using Occluded-Region Detection,” in
Proc. International Conference on Biometrics (ICB), pp. 1-8, June 2013.

[30] H. Cao, M. Brown, L. Chen, R. Smith, and M. Wachowicz, “Lessons Learned from
Integrating Batch and Stream Processing using IoT Data,” in Proc. International
Conference on Internet of Things, Systems, Management and Security (IoTSMS), pp.
32-34, October 2019.

[31] Y. Lee, M. Lee, M. Lee, S. J. Hur, and O. Min, “Design of A Scalable Data Stream
Channel for Big Data Processing,” in Proc. International Conference on Advanced
Communication Technology (ICAT), pp. 537-540, July 2015.

[32] D. Sun and S.Hwang, “DSSP: StreamSplit ProcessingModel for HighCorrectness of
Out-of-Order Data Processing,” in Proc. IEEE International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE), pp. 193-197, September 2018.

[33] A. Dey, K. Stuart, and M. E. Tolentino, “Characterizing the Impact of Topology on
IoT Stream Processing,” in Proc. IEEE World Forum on Internet of Things (WF-IoT),
pp. 505-510, February 2018.

92

References

[34] D. Puschmann, P. Barnaghi, and R. Tafazolli, “Adaptive Clustering for Dynamic IoT
Data Streams,” in IEEE Internet of Things Journal, Vol. 4, No. 1, pp. 64-74, February
2017.

[35] A. Nassar, A. Mostefaoui, and F. Dessables, “Improving Big-Data Automotive
Applications Performance Through Adaptive Resource Allocation,” in Proc. IEEE
Symposium on Computers and Communications (ISCC), pp. 1-7, July 2019.

[36] Z. Guo, Y. Gao, Y. Jiang and G. Xue, “GRIB Parallel Design of Civil Aviation
Meteorological Data Processing System,” in Proc. International Symposium on
Distributed Computing and Applications for Business Engineering and Science
(DCABES), pp. 34-37, August 2015.

[37] K. B. Mistree, A. Dutt, and S. V. Kothiya, “Real Time Object Tracking for High
Performance System using Gpgpu,” in Proc. International Conference on Information
Processing (ICIP), pp. 529-534, December 2015.

[38] B. Bosek, L. Horwath, G. Matecki, and A. Pawlik, “High Performance Gpgpu based
System for Matching People in A Live Video Feed,” in Proc. International Conference
on Image Processing Theory, Tools and Applications (IPTA), pp. 448-454, October
2012.

[39] V. Alieksieiev, “One Approach of Approximation for Incoming Data Stream in IoT
based Monitoring System,” in Proc. IEEE Second International Conference on Data
Stream Mining & Processing (DSMP), pp. 94-97, August 2018.

[40] H. Shao, J. Hsu, C. Ngo, and C. Kweon, “Progressive Transmission of Uncom-
pressed Video over mmW Wireless,” in Proc. IEEE Consumer Communications and
Networking Conference, pp. 1-5, January 2010.

[41] C.Komar andC. Ersoy, “Detection Performance Improvement usingRiskAssessment
Framework,” in Proc. IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications, pp. 1888-1893, September 2010.

[42] L. Dao Thi Hue, D. T. Duong, and X. Hoangvan, “Hevc based Distributed Scalable
Video Coding for Surveillance Visual System,” in Proc. NAFOSTED Conference on
Information and Computer Science, pp. 314-318, November 2017.

93

References

[43] R. Ge, Z. Shan, and H. Kou, “An Intelligent Surveillance System based on Motion
Detection,” in Proc. IEEE International Conference on Broadband Network and
Multimedia Technology, pp. 306-309, February 2012.

[44] H. Kim and H. Lee, “A Low-Power Surveillance Video Coding System with Early
Background Subtraction and Adaptive Frame Memory Compression,” in IEEE
Transactions on Consumer Electronics, Vol. 63, No. 4, pp. 359-367, November 2017.

[45] U. A. Agrawal and P. V. Jani, “Performance Analysis of Real Time Object Tracking
System based on Compressive Sensing,” in Proc. International Conference on Signal
Processing, Computing and Control (ISPCC), pp. 187-193, September 2017.

[46] U. A. Agrawal and P. V. Jani, P. Liu, L. Zhao and Y. Ma, “Compressive Sensing of
Multispectral Image based on Pca and Bregman Split,” in Proc. IEEE International
Geoscience and Remote Sensing Symposium, pp. 2558-2561, July 2013.

[47] L. Kong and R. Dai, “Object-Detection-based Video Compression for Wireless
Surveillance Systems,” in IEEE Multimedia, Vol. 24, No. 2, pp. 76-85, April 2017.

[48] L. Liu, Z. Li, and E. J. Delp, “Efficient and Low-Complexity Surveillance Video
Compression using Backward-Channel Aware Wyner-Ziv Video Coding,” in IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 19, No. 4, pp.
453-465, April 2009.

[49] A. Ortega and M. Khansari, “Rate Control for Video Coding over Variable Bit
Rate Channels with Applications to Wireless Transmission,” in Proc. International
Conference on Image Processing, Vol.3, pp. 388-391, October 1995.

[50] O. D. Incel and B. Krishnamachari, “Enhancing the Data Collection Rate of Tree-
based Aggregation in Wireless Sensor Networks,” in Proc. IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks,
pp. 569-577, June 2008.

[51] F. Xhafa, V. Naranjo, S. Caballé, and L. Barolli, “A Software Chain Approach to
Big Data Stream Processing and Analytics,” in Proc. International Conference on
Complex, Intelligent, and Software Intensive Systems, pp. 179-186, July 2015.

94

References

[52] G. Z. Papadopoulos, N. Pappas, A. Gallais, T. Noel, and V. Angelakis, “Distributed
Adaptive Scheme for Reliable Data Collection in Fault Tolerant WSNs,” in Proc.
IEEE World Forum on Internet of Things (WF-IoT), pp. 116-121, December 2015.

[53] Y. Huang and S. Cheng, “Reduction Scheme for Sensor-Data Transmission on A
Big Data Streaming Platform,” in Proc. International Conference on Ubiquitous and
Future Networks (ICUFN), pp. 244-249, August 2018.

[54] X. Peng, Y. He, and L.Tian, “Communication Reduction for Continuous Extreme
Values Monitoring over Distributed Data Streams,” in Proc. Workshop on Power
Electronics and Intelligent Transportation System, pp. 181-187, September 2008.

[55] M. Ramachandra, “Optimization of the Data Transactions and Computations in IoT
Sensors,” in Proc. International Conference on Internet of Things and Applications
(IoTA), pp. 358-363, January 2016.

[56] H. Kanzaki, K. Schubert, and N. Bambos, “Video Streaming Schemes for Industrial
Iot,” in Proc. International Conference on Computer Communication and Networks
(ICCCN), pp. 1-7, August 2017.

[57] P. Zhao, W. Yu, X. Yang, D. Meng, and L. Wang, “Buffer Data-Driven Adaptation of
Mobile Video Streaming over Heterogeneous Wireless Networks,” in IEEE Internet
of Things Journal, Vol. 5, No. 5, pp. 3430-3441, October 2018.

[58] J. Wu, C. Yuen, M. Wang, and J. Chen, “Content-Aware Concurrent Multipath
Transfer forHigh-DefinitionVideo Streaming overHeterogeneousWirelessNetworks,”
in IEEE Transactions on Parallel and Distributed Systems, Vol. 27, No. 3, pp. 710-723,
March 2016.

[59] S. Yu, T. Tian, J. Zhou, and H. Guo, “An Adaptive Packet Transmission Model for
Real-Time Embedded Network Streaming Server,” in Proc. International Conference
on Audio, Language and Image Processing, pp. 848-853, July 2008.

[60] W. U. Rahman, Y. Choi, and K. Chung, “Performance Evaluation of Video Streaming
Application over CoAP in IoT,” in IEEE Access, Vol. 7, pp. 39852-39861, March
2019.

95

References

[61] J. Xu, Y. Andrepoulos, Y. Xiao, and M. Van Der Schaar, “Non-Stationary Resource
Allocation Policies for Delay-Constrained Video Streaming: Application to Video
over Internet-of-Things-Enabled Networks,” in IEEE Journal on Selected Areas in
Communications, Vol. 32, No. 4, pp. 782-794, March 2014.

[62] S. Molina-Giraldo, H. D. Insuasti-Ceballos, C. E. Arroyave, J. F. Montoya, J. S.
Lopez-Villa, A. Alvarez-Mez, and G. Castellanos-Dominguez, “People Detection in
Video Streams using Background Subtraction and Spatial-based Scene Modeling,” in
Proc. Symposium on Signal Processing, Images and Computer Vision (STSIVA), pp.
1-6, September 2015.

[63] S. V. Rao and M. Dakshayini, “Priority based Optimal Resource Reservation Mecha-
nism in Constrained Networks for IoTApplications,” in Proc. International Conference
on Wireless Communications, Signal Processing and Networking (WISPNET), pp.
1228-1233, March 2016.

[64] O. Kulitsa, D. Okladnoy, V. Tverdokhleb, and A. Hahanova, “The Development
Method for Evaluating the Saturation ofVideo FrameBlocks toReduce The Processing
Time of the Video Stream,” in Proc. IEEE East-West Design & Test Symposium
(EWDTS), pp. 1-3, January 2017.

[65] J. Lee, G. Yoon, and H. Choi, “Monitoring of IoTData for Reducing Network Traffic,”
in Proc. International Conference on Ubiquitous and Future Networks (ICUFN), pp.
395-397, August 2018.

[66] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, “Streaming Video over the
Internet: Approaches and Directions,” in IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 11, No. 3, pp. 282-300, March 2001.

[67] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On Reducing IoT Service Delay
Via Fog Offloading,” in IEEE Internet of Things Journal, Vol. 5, No. 2, pp. 998-1010,
April 2018.

[68] T. Buddhika and S. Pallickara, “NEPTUNE: Real Time Stream Processing for
Internet of Things and Sensing Environments,” in Proc. IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 1143-1152, May 2016.

96

References

[69] J. C. Beard and R. D. Chamberlain, “Use of Simple Analytic Performance Models
for Streaming Data Applications Deployed on Diverse Architectures,” in Proc. IEEE
International Symposiumon PerformanceAnalysis of Systems and Software (ISPASS),
pp. 138-139, April 2013.

[70] Q. Hu, S. Paisitkriangkrai, C. Shen, A. Van Den Hengel, and F. Porikli, “Fast
Detection of Multiple Objects in Traffic Scenes with A Common Detection Frame-
work,” in IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 4,
pp. 1002-1014, April 2016.

[71] Y. S. Reddy and K. K. Pattanaik, “A Reply Cache Mechanism to Reduce Query La-
tency of WSN in IoT Sensory Environment,” in Proc. IEEE International Symposium
on Nanoelectronic and Information Systems (INIS), pp. 38-42, December 2016.

[72] T. Theodorou and L. Mamatas, “Software Defined Topology Control Strategies for
the Internet of Things,” in Proc. IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), pp. 236-241, November 2017.

[73] T. Theodorou and L. Mamatas, “CORAL-SDN: A Software-Defined Networking
Solution for the Internet of Things,” in Proc. IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), pp. 1-2, November 2017.

[74] J. Navarro-Ortiz, P. Ameigeiras, J. M. Lopez-Soler, J. Lorca-Hernando, Q. Perez-
Tarrero, and R. Garcia-Perez, “A QoE-Aware Scheduler for HTTP Progressive Video
in OFDMA Systems,” in IEEE Communications Letters, Vol. 17, No. 4, pp. 677-680,
April 2013.

[75] W. Liu, L. Dong, and W. Zeng, “Motion Refinement based Progressive Side-
Information Estimation for Wyner-Ziv Video Coding,” in IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 20, No. 12, pp. 1863-1875, December
2010.

[76] M. H. Taieb, J. Chouinard, K. Loukhaoukha, D. Wang, and G. Huchet, “Progressive
Distributed Video Coding with Multiple Passes for Side Information Update,” in Proc.
International Conference on Sciences of Electronics, Technologies of Information
and Telecommunications (SETIT), pp. 453-459, March 2012.

97

References

[77] Y. Shen, H. Cheng, J. Luo, Y. Lin, and J. Wu, “Efficient Real-Time Distributed Video
Coding by Parallel Progressive Side Information Regeneration,” in IEEE Sensors
Journal, Vol. 17, No. 6, pp. 1872-1883, March 2017.

[78] S. Nazir, V. Stankovic, H. Attar, L. Stankovic, and S. Cheng, “Relay-Assisted
Rateless Layered Multiple Description Video Delivery,” in IEEE Journal on Selected
Areas in Communications, Vol. 31, No. 8, pp. 1629-1637, August 2013.

[79] S. Yu, X. Chen, W. Sun, and Deping Xie, “A Robust Method for Detecting and
Counting People,” in Proc. International Conference on Audio, Language and Image
Processing, pp. 1545-1549, July 2008.

[80] E. Tan and C. T. Chou, “A Frame Rate Optimization Framework for Improving
Continuity in Video Streaming,” in IEEE Transactions on Multimedia, Vol. 14, No. 3,
pp. 910-922, June 2012.

[81] J. C. -. Ju, Y. Chen, and S. Y. Kung, “A Fast Rate-Optimized Motion Estimation
Algorithm for Low-Bit-Rate Video Coding,” in IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 9, No. 7, pp. 994-1002, October. 1999.

[82] J. A. Colmenares, R. Dorrigiv, and D. G. Waddington, “A Single-Node Datastore for
High-VelocityMultidimensional SensorData,” in Proc. IEEE International Conference
on Big Data (Big Data), pp. 445-452, December 2017.

[83] G. M. Dias, M. Nurchis, and B. Bellalta, “Adapting Sampling Interval of Sensor
Networks using On-Line Reinforcement Learning,” in Proc. IEEE World Forum on
Internet of Things (WF-IoT), pp. 460-465, December 2016.

[84] U. A. Agrawal and P. V. Jani, “A Real-Time Object Detecting System using
Compressive Sensing,” in Proc. International Conference on Signal Processing and
Communication (ICSPC), pp. 68-74, July 2017.

[85] M. Zeng, Z. Wei, H. He, and X. Yang, “Application of Improved Bhattacharyya
Coefficient based Multi-Object Detection and Tracking Integrated Strategy,” in Proc.
International Conference on Network Infrastructure and Digital Content (IC-NIDC),
pp. 60-64, August 2018.

98

References

[86] A. Raghunandan, Mohana, P. Raghav, and H. V. R. Aradhya, “Object Detection
Algorithms for Video Surveillance Applications,” in Proc. International Conference
on Communication and Signal Processing (ICCSP), pp. 0563-0568, April 2018.

[87] S. T. Ali, K. Goyal, and J. Singhai, “Moving Object Detection using Self Adaptive
Gaussian Mixture Model for Real Time Applications,” in Proc. International Confer-
ence on Recent Innovations in Signal Processing and Embedded Systems (RISE), pp.
153-156, October 2017.

[88] X. Zhang, “Research on Vehicle Object Detection in Traffic Video Stream,” in Proc.
IEEE Conference on Industrial Electronics and Applications, pp. 1874-1878, June
2010.

[89] R. D. Sharma, S. L. Agrwal, S. K. Gupta, and A. Prajapati, “Optimized Dynamic
Background Subtraction Technique for Moving Object Detection and Tracking,” in
Proc. International Conference on Telecommunication and Networks (Tel-Net), pp.
1-3, August 2017.

[90] A. Hryvachevskyi, S. Fabirovskyy, I. Prudyus, L. Lazko, and J. Matuszewski,
“Method of Increasing the Object Detection Probability by the Multispectral Monitor-
ing System,” in Proc. IEEE International Conference on the Experience of Designing
and Application of Cad Systems (CADSM), pp. 77-80, March 2019.

[91] S. Jin, D. Kim, T. T. Nguyen, D. Kim, M. Kim, and J. W. Jeon, “Design and
Implementation of A Pipelined Datapath for High-Speed Face Detection using Fpga,”
in IEEE Transactions on Industrial Informatics, Vol. 8, No. 1, pp. 158-167, February
2012.

[92] J. C. Beard and R. D. Chamberlain, “Analysis of A Simple Approach to Modeling
Performance for Streaming Data Applications,” in Proc. IEEE International Sympo-
sium on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems, pp. 345-349, August 2013.

[93] M. A. Usman, M. R. Usman, and S. Y. Shin, “An Intrusion Oriented Heuristic for
Efficient Resource Management in End-to-EndWireless Video Surveillance Systems,”
in Proc. IEEEAnnual Consumer Communications&Networking Conference (CCNC),
pp. 1-6, January 2018.

99

References

[94] L. Han, Y. Zhao, S. Yu, B. Zhao, J. Li, and J. Wu, “A General Solution for Multi-
Thread based Multi-Source Compressed Video Surveillance System,” in Proc. IEEE
International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), pp.
95-99, October 2014.

[95] D.Whitman, “The Need and Capability of A Surveillance Data Distribution System,”
in Proc. Integrated Communications, Navigation and Surveillance Conference, pp.
1-6, May 2009.

[96] T. Tsai and C. Chang, “A High Performance Object Tracking Technique with
An Adaptive Search Method in Surveillance System,” in Proc. IEEE International
Symposium on Multimedia, pp. 353-356, December 2014.

[97] H. Wang, W. Cai, J. Yang, and Q. Chen, “Design of Hd Video Surveillance System
for Deep-Sea Biological Exploration,” in Proc. IEEE International Conference on
Communication Technology (ICCT), pp. 908-911, October 2015.

[98] M. Wang, B. Cheng and C. Yuen, “Joint Coding-Transmission Optimization for
a Video Surveillance System With Multiple Cameras," in IEEE Transactions on
Multimedia, vol. 20, no. 3, pp. 620-633, March 2018.

[99] Y. A. Yimamuaishan.Abudoulikemu, Y. Huang and C. Ye, “A Scalable intelligent
service model for video surveillance system based on RTCP," in Proc. International
Conference on Signal Processing Systems, 2010, pp. V3-346-V3-349, August 2010.

[100] L. Kong and R. Dai, “Object-Detection-Based Video Compression for Wireless
Surveillance Systems," in IEEE MultiMedia, vol. 24, no. 2, pp. 76-85, June 2017.

[101] D. Chu, C. Jiang, Z. Hao, and W. Jiang, “The Design and Implementation of
Video Surveillance System based on H.264, SIP, RTP/RTCP and RTSP,” in Proc.
International Symposium on Computational Intelligence and Design, pp. 39-43,
October 2013.

[102] I. R. Khan, A. Hassan, S. Ahsan, S. Alshomrani, andG. Iqbal, “Remote Surveillance
with Reduced Transmission Overhead,” in Proc. International Conference on Frontiers
of Sensors Technologies (ICFST), pp. 435-439, April 2017.

100

References

[103] K. C. Lai, Y. P. Chang, K. H. Cheong, and S.W. Khor, “Detection and Classification
of Object Movement - An Application for Video Surveillance System,” in Proc.
International Conference on Computer Engineering and Technology, pp. 17-21, April
2010.

[104] L. Wu, Z. Liu, and Y. Li, “Moving Objects Detection based on Embedded Video
Surveillance,” in Proc. International Conference on Systems and Informatics (ICSAI),
pp. 2042-2045, May 2012.

[105] A. Premadi, B. Ng, M. S. Ab-Rahman, and K. Jumari, “Real Time Optical Network
Monitoring and Surveillance System,” in Proc. International Conference on Computer
Technology and Development, pp. 311-314, November 2009.

[106] X. Wang, A. Jabbari, R. Laur, and W. Lang, “Dynamic Control of Data Measure-
ment Intervals in A Networked Sensing System using Neurocomputing,” in Proc.
International Conference on Networked Sensing Systems (INSS), pp. 77-80, June
2010.

[107] J. Han, J. Wang, and P. Wang, “on Robust Stability of Dynamic Interval Systems
with Multiple Time-Delays,” in Proc. International Conference on Systems and
Informatics (ICSAI), pp. 239-243, May 2012.

[108] M. Li, W. Tang, and M. Yuan, “Reliability-based Topology Optimization of
Interval Parameters Structures with Dynamic Response Constraints,” in Proc. IEEE
International Conference on Mechatronics and Automation, pp. 469-474, August
2014.

[109] S. Siddiqui, A. A. Khan, and S. Ghani, “Investigating Dynamic Polling Intervals
for Wireless Sensor Network Applications with Bursty Traffic,” in Proc. IEEE
International Conference on Multisensor Fusion and Integration for Intelligent
Systems (MFI), pp. 448-451, November 2017.

[110] C.Yukonhiatou, T.Yoshihisa, Y. Teranishi, Y. Ishi, T.Kawakami, and S. Shimojo, “A
Scheme to Improve Stream Data Analysis Frequency for Real-Time IoT Applications,”
in Proc. Multimedia, Distributed, Cooperative and Mobile (DICOMO) Symposium,
pp. 1205-1211, July 2018.

101

References

[111] C.Yukonhiatou, T.Yoshihisa, Y. Teranishi, Y. Ishi, T.Kawakami, and S. Shimojo, “A
Scheme to Improve Stream Transaction Rates for Real-Time IoTApplications,” in Proc.
International Conference on Advanced Information Networking and Applications
(AINA), Vol 926, P. 787-798. March 2019.

[112] C. Yukonhiatou, T. Yoshihisa, T. Kawakami, Y. Teranishi, S. Shimojo, “An
Implementation of Surveillance Systems with Dynamic Transaction Intervals Under
PQI Approach,” in IPSJ SIG Techical Report, Vol. 2019-DPS-181, No. 3, pp. 1-6,
December 2019.

102

	Introduction
	Background
	Research Objectives
	Related Work
	Stream Data Processing Systems
	Video Data Processing
	Stream Data Sources

	Organization of the Dissertation

	Transaction Time Reduction for Stream Data Processing
	Introduction
	Related Work for Transaction Time Reduction
	Assumed Environment
	System Architecture
	Application Scenario
	Symbol Definitions

	PQI Approach
	Basic Idea
	Process Flows
	Example Flow

	Evaluation of the PQI Approach
	Evaluation Setup
	Final Probability
	Transaction Time
	Influence of Number of Streams
	Influence of Transaction Intervals
	Influence of Number of Quality Levels
	Influence of Final Probabilities

	Discussion
	Detection Performance
	Deciding Parameter Values
	Processing Power

	Conclusion

	A Method to Improve Transaction Rates under the PQI Approach
	Introduction
	Related Work for Transaction Rate Improvement
	Proposed Method
	Adjustment of Transaction Interval
	Design of Proposed Method
	Algorithms
	Example

	Evaluation of the Transaction-rate Improvement Method
	Evaluation Setup
	Influence of Number of Streams
	Influence of Cycle Length

	Conclusion

	Implementation of Video Surveillance System with the PQI-CDI Method
	Introduction
	Background
	Performance Differences Caused by Actual Implementation

	Related Work for Implementation of Surveillance Systems
	Surveillance Systems
	Systems considering Transaction Intervals

	Design of a Video Surveillance System
	System Architecture
	Process Flow for Camera Devices
	Process Flow for Processing Computers
	Software Modules

	Implementation
	Equipment
	Programs
	Sample Images

	Evaluation of the Implemented System
	Evaluation Environments
	Transaction Time
	Transaction Rate
	Jitter of Transaction Intervals
	Discussion

	Conclusion

	Conclusion
	Concluding Remark
	Future Work

	Acknowledgements

