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Abstract

In this thesis, we discuss the 7-tilting finiteness for three classes of finite-dimensional
algebras over an algebraically closed field.

First, we consider the class of two-point algebras. We completely determine the 7-tilting
finiteness for minimal wild two-point algebras. Based on this complete classification, we
are able to determine the 7-tilting finiteness for some tame two-point algebras.

Second, we consider the class of simply connected algebras. We show that a simply
connected algebra is 7-tilting finite if and only if it is representation-finite. We also show
that the 7-tilting finiteness of non-sincere algebras can be reduced to that of sincere
algebras. Then, by combining these new results with some previous results of other
scholars, we can get a complete list of 7-tilting finite sincere simply connected algebras.
Moreover, we can determine the 7-tilting finiteness for several related algebras, such as
tubular algebras, hypercritical algebras, and locally hereditary algebras.

Last, we consider the class of (classical) Schur algebras. Here, we do not consider
the 7-tilting finiteness blockwise even though some block algebras of Schur algebras are
discussed. We determine the 7-tilting finiteness of Schur algebras except for a few small
casedl} In particular, the 7-tilting finiteness of Schur algebras is completely determined
if we consider an algebraically closed field of characteristic 3 in this thesis. This is a
fundamental effort toward the 7-tilting finiteness of g-Schur algebras, infinitesimal Schur

algebras and so on.

IThese small cases are settled in another paper jointed with Toshitaka Aoki. Hence, we actually have
a complete classification.
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Chapter 1

Introduction

1.1 Background

Tilting theory originated from the research of Bernitein, Gelfand and Ponomarev
[BGP] in 1973, in which the well-known BGP-reflection functor was introduced and was
aimed to construct equivalences between module categories of finite-dimensional algebras.
Then, the insights of [BGP] quickly attracted the attention of mathematicians. After
decades of development, tilting theory is now considered not only as one of the main tools
in the representation theory of finite-dimensional algebras, but also an essential tool in
the study of many areas of mathematics. In particular, Rickard [Ric] proved that tilting
theory is a necessary ingredient for constructing derived equivalence of finite-dimensional
algebras over an algebraically closed field.

The crucial concept in tilting theory is the notion of tilting modules, which was first
considered by Auslander, Platzeck and Reiten [APR], and was axiomatized by Brenner and
Butler [BB]. One of the essential properties of tilting modules is the so-called mutations.
Very roughly speaking, it can be explained as follows. Let =T/ ® --- @ T; ®--- © T,
(T; # T; it i # j) be an object in a subclass C of an additive category. If we can
replace a direct summand Tj by T7 (% T}) via a certain procedure to get a new object
pi(T) == (T/T;) © T}, so that u;(T) also lies in C, then y;(T) is called the mutation
of T with respect to Tj. From this perspective, it is known that the mutation at an
indecomposable direct summand of tilting modules is not always possible.

Starting from 2014, 7-tilting theory introduced by Adachi, Iyama and Reiten [AIR]

has drawn more and more attention. Here, 7 is the Auslander-Reiten translation.

Definition. Let A be a finite-dimensional algebra over an algebraically closed
field K. A right A-module M is called support T-tilting if Homg(M,7M) =0
and |M| = |B| taking over B := A/A(1 — e)A, namely, e is an idempotent of
A such that the direct summands of eA/(erad A) are exactly the composition
factors of M. Here, rad A is the Jacobson radical of A. Moreover, a support
T-tilting module M is called 7-tilting if B = A.
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A support 7-tilting module can be regarded as a generalization of tilting modules from
the viewpoint of mutation, that is, the mutation at an indecomposable direct summand
of support 7-tilting modules is always possible. Therefore, 7-tilting theory is an evolved
form of tilting theory and has many better properties. Several mathematicians have shown
that 7-tilting theory is closely related to many areas of mathematics, including categorical,
combinatorial representation theory and geometric representation theory. In particular,
support 7-tilting modules are in bijection with other objects, such as two-term silting
complexes, functorially finite torsion classes, cluster-tilting objects, left finite semibricks
and so on. We refer to [AIR] and [Asal for more details.

Let A be a finite-dimensional algebra over an algebraically closed field K. We recall
that A is called representation-finite if A has only finitely many isomorphism classes
of indecomposable A-modules. Otherwise, we say that A is representation-infinite. For
example, if A := KA is a path algebra of a finite quiver A, then A is representation-finite
precisely when the underlying graph of A is a disjoint union of Dynkin diagrams of type
A,,DD,,Es E; and Eg. This is the so-called Gabriel’s theorem due to Peter Gabriel.

Similar to the representation-finiteness, a modern notion named 7-tilting finiteness is

introduced by Demonet, Iyama and Jasso [DILJ] in 2015.

Definition. A finite-dimensional algebra A over an algebraically closed field K
is called 7-tilting finite if there are only finitely many pairwise non-isomorphic

basic 7-tilting A-modules. Otherwise, A is said to be 7-tilting infinite.

For the examples of 7-tilting finite algebras, one can immediately find that representation
finite algebras are 7-tilting finite. Besides, local algebras, i.e., algebras with only one
simple module, are known to be 7-tilting finite. However, it is not easy to check whether a
representation-infinite algebra is 7-tilting finite or not, such that the following question

attracts our attention.

Question. Let A be a representation-infinite algebra over an algebraically
closed field K. Is there a way to check the 7-tilting finiteness of A?

It is worth mentioning that the 7-tilting finiteness for several classes of algebras has
been determined, such as algebras with radical square zero [Ad1], preprojective algebras
of Dynkin type |[Mi], Brauer graph algebras [AAC]|, biserial algebras [Mo] and so on.
In particular, it has been proved in some cases that 7-tilting finiteness coincides with
representation-finiteness, including gentle algebras [Pl], cycle-finite algebras [MS], tilted
and cluster-tilted algebras [Zi], quasi-tilted algebras [AHMW] and so on.

According to the currently known results, we have a characterization for the 7-tilting
finiteness of path algebras, which is similar to Gabriel’s theorem. We present this charac-
terization here and one can find a proof in Remark [£.2.2} If A = K'A is a path algebra of
a finite quiver A, then A is 7-tilting finite if and only if the underlying graph of A is a
disjoint union of Dynkin diagrams of type A,,,D,, Eqs, E; and Eg.

12



1.2 The subject of this thesis

We always assume that A is an associative unital finite-dimensional algebra over an
algebraically closed field K. If A is an indecomposable algebra, then A is also assumed to
be basic. Without loss of generality, such an algebra A is isomorphic to a bound quiver
algebra KQ/I, where K( is the path algebra of the Gabriel quiver QQ = Q4 of A and
is an admissible ideal of K@Q. In fact, KQ/I gives a complete representation theoretical
description of A: the number of vertices in () is just the number of simple A-modules, the
arrows and loops in ) together with the ideal I encode the structure of indecomposable

projective (injective) A-modules, and many other properties of A can be read off.

We recall that the Kronecker algebra K( o —= o) is 7-tilting infinite (see Lemma(3.1.1

for a proof) and this is actually well-known. If () has multiple arrows, namely, there exist
at least two arrows which share the source and the target, then A ~ KQ/I is 7-tilting
infinite for any admissible ideal I, because A admits K( o —=o ) as a quotient algebra
(see Proposition [2.3.5)).

We also notice that local algebras, i.e., algebras with only one simple module, are
always 7-tilting finite. Indeed, let B be a local algebra. If a B-module M satisfies 7M # 0,
then there exists a non-zero map M — soc 7 M, so that M is 7-tilting if and only if M = B.
This motivates the study of two-point algebras, which we will consider in Chapter 3. In
fact, the 7-tilting finiteness of minimal wild two-point algebras is completely determined,
where A is called minimal wild if A is wild but any proper quotient of A is not. We find
that most of minimal wild two-point algebras are 7-tilting finite.

In the process of studying two-point algebras, the main variables depend on loops and
oriented cycles. Thus, we want to see what happens if A ~ K@Q/I does not have multiple
arrows, loops and oriented cycles, but has many vertices. As the first example of such

algebras, we may consider triangle quiver and rectangle quiver as follows.

< O0=<—20
~— O0=<=—0
< O0=<—20

<~ O0=<—-020
< 0O0=<—20

O<—0<—
O%Ohn-
O<—0<—
O<—O0=<——--"
O@Oh

Triangle quiver Rectangle quiver

In these examples, the algebra A ~ KQ/I is presented by a triangle or rectangle quiver
() and an two-sided ideal I generated by all possible commutativity relations (depicted
by dotted lines). Here, a commutativity relation stands for the equality w; = ws of two

different paths w; and wsy having the same source and target.
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This motivates the study of simply connected algebras, which is a rather large class of
algebras and contains triangle and rectangle quivers as special cases. We deal with simply
connected algebras in Chapter 4. We show that a simply connected algebra is 7-tilting
finite if and only if it is representation-finite. Moreover, we recall that an algebra A is called
sincere if there exists an indecomposable A-module M such that all simple A-modules
appear in M as composition factors. Otherwise, A is called non-sincere. Regarding the
algebras with many vertices, we show that the 7-tilting finiteness of non-sincere algebras
can be reduced to that of sincere algebras. Based on this, we get a complete list of 7-tilting
finite sincere simply connected algebras.

We now explain the structure of this thesis. The main results of each chapter are also
mentioned here. In Chapter 2, we review the background of the representation theory of
finite-dimensional algebras and the basic definitions in 7-tilting theory. Then, we describe
in detail how 7-tilting theory and silting theory are related to each other. Several reduction
theorems on 7-tilting finiteness of algebras are also presented in this chapter.

In Chapter 3, we completely determine the 7-tilting finiteness of minimal wild two-point
algebras. Also, by using this result, we can determine the 7-tilting finiteness for several

other two-point algebras. The main result in this chapter is the following.

Main Theorem 1 (Theorem [3.2.3). Let W; be a minimal wild two-point algebra from
Table W (see Appendix [A.1)). Then,

(1) Wy, Wy, W3 and W; are 7-tilting infinite.
(2) Wy and Wy ~ W3y, are 7-tilting finite.

In Chapter 4, we prove that 7-tilting finiteness coincides with representation-finiteness
in the class of simply connected algebras. We also determine the 7-tilting finiteness
for several related algebras, such as tubular algebras, hypercritical algebras and locally

hereditary algebras. The main results in this chapter are presented as follows.

Main Theorem 2 (Theorem [4.2.3)). Let A be a simply connected algebra. Then, A is

7-tilting finite if and only if it is representation-finite.

Main Theorem 3 (Theorem [4.2.8)). Let {e1,ea,...,e,} be a complete set of pairwise
orthogonal primitive idempotents of A. If A is non-sincere, then A is 7-tilting finite if and
only if A/Ae;A is 7-tilting finite for any 1 < i < n.

In Chapter 5, we determine the 7-tilting finiteness of Schur algebras except for the
cases in (x). These exceptional cases are settled in a joint work with Toshitaka Aoki, see
[AW], so that the classification is actually complete. For the convenience of readers, we

present the related results in the end of Chapter 5.

(p: 2,n=2,r=28,17,19;
p=2,n=3,r=4;
p=2,n2=951r=0>5;

()

(P25 n=2p"<r<p’+p-1

14



Let n,r be two positive integers and V' an n-dimensional vector space over an alge-
braically closed field F of characteristic p. We denote by V®" the r-fold tensor product
V@V ®p---®p V. Then, the symmetric group G, has a natural action (by permutation)
on V®" which makes it a module over the group algebra FG, of G,. Then, the endomor-
phism ring Endgg, (V®") is called the Schur algebra and we denote it by S(n, 7). The main
result in Chapter 5 is the following.

Main Theorem 4 (Theorem m, Table , Table , Table . Except for the cases
in (%), the Schur algebra S(n,r) is 7-tilting finite if and only if one of the following holds.

(1) p=0orp>r;

(2) p=2,n=2,2<r<7orr=0911,13,15;
(3) p=2,n=3o0r4,r=23,5;

4) p=2,n>=5r=23;

(5) p=3,n=2,3<r<1l;

(6) p=3,n=3,r=23,4,5,7,8;

(7) p=3,n>=4,r=23,4,5;
8)p=5,n=2p<r<p’—1;

9) p=2b,n=23,p<r<2p—1

In order to prove the above result, we have to check the 7-tilting finiteness for some block
algebras of S(n,r). Then, we get the number of pairwise non-isomorphic basic support
T-tilting modules for block algebras of representation-finite and tame Schur algebras. Let
S(n,r) be a representation-finite or tame Schur algebra and B an indecomposable block
algebra of S(n,r). It is known from [Er] and [DEMN| Section 5] that the block algebra
B is Morita equivalent to one of F, A,,, D3, Dy, Ry and H4 (see Section for the

definitions). Then, we have

Main Theorem 5 (Theorem and Lemma [5.2.3). Let s7-tilt B be the set of pairwise

non-isomorphic basic support 7-tilting B-modules. Then,

B Ay | D3| Dy | Ry | Ha
#srtilt B | (>) | 28 | 114 | 88 | 96 |

where (z) is the binomial coefficient.

15
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Chapter 2
Preliminaries

In this chapter, we review the background of the representation theory of finite-
dimensional algebras and the basic knowledge of quiver representations. We also explain
in detail what 7-tilting theory is and the connection between 7-tilting theory and silting
theory. In particular, we present several reduction theorems in this chapter.

A finite quiver @ = (Qo, @1, s,t) is a quadruple consisting of two finite sets: the vertex
set Qo and the arrow set (01, and two maps: s,t : Q1 — Qo which associate to each
arrow « € (Q its source s(a) € Qg and its target t(a) € Qo, respectively. A non-trivial
path in @ is a sequence ajas - -, (n > 1) of arrows which satisfies s(a;11) = t(a;)
with 1 <7 < n— 1. For a non-trivial path ajas---«a,, we set s(ajag---a,) = s(aq)
and t(cjag - - ay) = t(ay). Then, ayas - - «, is called a cycle when s(a;) = t(«,), and
aias - - -y, is called a loop when it is a cycle and n = 1. We denote by e; the trivial path
which satisfies s(e;) = t(e;) = 4, for each vertex i € Qo.

Let K be an algebraically closed field. The path algebra K@) is the K-algebra whose
basis is given by the set of all paths in ) and such that the multiplication of two paths

wy, we is given by

the composition wywy  if t(wy) = s(ws),
wy - Wy =

0 otherwise.

We call the two-sided ideal of K() generated by all arrows in ), the arrow ideal of K()
and denote it by Rg. A two-sided ideal I of K () is said to be admissible if there exists
m > 2 such that (Rg)™ C I C (Rg)?. In this case, KQ/I is called a bound quiver algebra.

In this thesis, we always consider an associative finite-dimensional K-algebra A with
an identity over an algebraically closed field K. We denote by A°P the opposite algebra
of A. We denote by mod A the category of finitely generated right A-modules and by
proj A (resp., inj A) the category of finitely generated projective (resp., injective) right
A-modules. For any M € mod A, we denote by |M| the number of isomorphism classes of
indecomposable direct summands of M.

We say that two K-algebras A and B are Morita equivalent if their module categories

mod A and mod B are equivalent. Then, any K-algebra A is Morita equivalent to a bound

17



quiver algebra K@ /I, where K( is the path algebra of the Gabriel quiver Q) = Q4 of A
and [ is an admissible ideal of K. For each vertex i € (), we denote by e; (same with
the trivial path on 7) the primitive idempotent of A associated with i, and by S; (resp., P;)
the corresponding simple (resp., indecomposable projective) A-module. We often describe
A-modules via their composition factors. For example, we denote the simple module .S; by

i and then, 1 = g; is an indecomposable A-module M with a unique simple submodule S,

such that M /Sy ~ S;. We refer to [ASS] for more details.
It is well-known from Drozd’s Tame and Wild Theorem [Dro] that all finite-dimensional

algebras A can be divided into two disjoint classes:

(1) A is tame if for any dimension d, there exists a finite number of K[z]-A-bimodules
M; (1 < i < ng), which are finitely generated and free as left K[x]-modules such
that all but finitely many isomorphism classes of indecomposable right A-modules of
dimension d, are of the form K{x]/(z —w) ®k[ ;) M; withw € K and i € {1,2,...,n4}.
More precisely, let p4(d) be the least number of K[x]-A-bimodules satisfying the

above condition for dimension d > 1. We recall from [Sk3, Section 1.5] that

e A is representation-finite if and only if p4(d) = 0 for any d.

e A is of domestic type if there is a constant C' with p4(d) < C for any d.

e A is of polynomial growth type if there are positive integer m and constant C'
such that pa(d) < Cd™ for any d.

(2) A is wild if there is a finitely generated K (X,Y)-A-bimodule M which is free
over K (X,Y) and sends non-isomorphic indecomposable K (X, Y)-modules via the

functor M ®g (x,yy — to non-isomorphic indecomposable A-modules.

We have the following hierarchy and each of the inclusions is proper. In this thesis, a

tame algebra always means a representation-infinite tame algebra.

rep.-finite

domestic

polynomial growth

tame non-polynomial growth

We will need the following definitions.
Definition 2.0.1. Let A be a set. A partial order on A is a relation < such that

(1) (reflexivity) x < z,
(2) (antisymmetry) z <y and y < x imply = = v,
(3) (transitivity) x <y and y < z imply z < z,

for all z,y,z € A. We call (A, <) a partially ordered set, or poset for short.

18



Definition 2.0.2. Let (A, <) be a poset and z,y € A. We say that y is covered by =z if
y < z and there is no z € A with y < z < . Then, the Hasse quiver H(A) of A consists
of vertices representing the elements of A, and there is a unique arrow z — y from z to y

if and only if y is covered by x.

Definition 2.0.3 (|B1, Definition 1.3], see also [HR1]). Let A be an algebra. An A-module
M is called a tilting module if | M| = |A|, Ext! (M, M) = 0 and the projective dimension

of M is at most one.

2.1 7-tilting theory

For any right A-module M, we denote by add(M) (resp., Fac(M)) the full subcategory
of mod A whose objects are direct summands (resp., factor modules) of finite direct sums
of copies of M. In order to give the definition of the Auslander-Reiten translation 7, we
first recall the standard K-duality

D := Homg(—, K) : mod A <— mod AP
and the A-duality
(=)* :=Homu(—, A) : proj A <— proj AP,

Then, the Nakayama functor v := D(—)* is defined by the composition of D and (—)*. It

is well-known that the Nakayama functor v induces equivalences of two categories

proj A.(;_lﬂnj A,

14

where v~! := Hom4 (DA, —) is the quasi-inverse of v. For any M € mod A with a minimal

projective presentation
P P —o,
the Auslander-Reiten translation 7M of M is defined by the following exact sequence
0 — 7M — vP" 5y P

Definition 2.1.1 ([AIR] Definition 0.1]). Let M € mod A. Then,

(1) M is called 7-rigid if Hom4 (M, M) = 0.

(2) M is called 7-tilting if M is 7-rigid and |M| = |A]|.

(3) M is called support 7-tilting if M is a 7-tilting (A/AeA)-module with respect to an

idempotent e of A.

Corresponding to support 7-tilting modules, we may define support 7-tilting pairs. For
any M € mod A and P € proj A, the pair (M, P) is called a support 7-tilting pair if M
is 7-rigid, Hom4 (P, M) = 0 and |M| + |P| = |A|. Obviously, a pair (M, P) is a support
7-tilting pair if and only if M is a 7-tilting (A/AeA)-module and P = eA.

We denote by 7-rigid A (resp., sT-tilt A) the set of isomorphism classes of indecomposable

7-rigid (resp., basic support 7-tilting) A-modules.
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Example 2.1.2. Let A := K( 1 <—;_>2 )/ < af,Ba >. We denote by S, Sy the simple
A-modules and by Py, P, the indecomposable projective A-modules. One may check that
TSl = SQ,TSQ = Sl and TP1 = TPQ = 0. Then, we have T—rigid A= {Pl,Pg,Sl, S270} and
st-tilt A={P, ® P, P, ® 51,52 ® P>, S1,59,0}. In particular, P, @ Py, P, & Sy, So @ P»
are T-tilting modules and (51, P), (S,, P1) are support 7-tilting pairs.

We recall the following proposition to illustrate the relation between 7-rigid modules

and 7-tilting modules.

Proposition 2.1.3 ([AIR] Theorem 0.2]). Any 7-rigid A-module is a direct summand of

some T-tilting A-module.

We recall the concept of left mutation, which is the core concept of 7-tilting theory.
Before doing this, we need the definition of minimal left approximation. Let C be an
additive category and X,Y objects of C. A morphism f: X — Z with Z € add(Y) is
called a minimal left add(Y")-approximation of X if f satisfies

e cvery h € Hom¢(Z, Z) that satisfies ho f = f is an automorphism,
e Home(f,Z") : Home(Z,Z') — Home (X, Z') is surjective for any Z' € add(Y),

where add(Y") is the category of all direct summands of finite direct sums of copies of Y.

Definition-Theorem 2.1.4 ([AIR) Definition 2.19, Theorem 2.30]). Let T'= M & N be
a basic support 7-tilting A-module with an indecomposable direct summand M satisfying

M ¢ Fac(N). We take an exact sequence with a minimal left add(/N)-approximation f:
ML>N’—>cokerf—>O,

where coker f is the cokernel of f. We call p;,(T") := (coker f) @ N the left mutation
of T with respect to M, which is again a basic support 7-tilting A-module. (The right
mutation u3,(7T") can be defined dually.)

We may construct a directed graph H(s7-tilt A) by drawing an arrow from 73 to Ty if
T is a left mutation of 77. On the other hand, the set s7-tilt A has a poset structure with
respect to the partial order < defined as follows. For any M, N € sr-tilt A, let (M, P) and
(N, Q) be their corresponding support 7-tilting pairs, respectively. We say that N < M if
Fac(IN) C Fac(M), or equivalently, Hom4(NN,7M) = 0 and add(P) C add(Q). Then,

Proposition 2.1.5 ([AIR, Theorem 2.33, Corollary 2.34]). The directed graph H(sT-tilt A)
1s exactly the Hasse quiver of the poset sT-tilt A.

The following statement implies that an algebra A is 7-tilting finite if we can find a

finite connected component in H(s7-tilt A).

Proposition 2.1.6 ([AIR], Corollary 2.38]). If the Hasse quiver H(st-tilt A) contains a
finite connected component A, then H(st-tilt A) = A.
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Example 2.1.7. Let A= K( 1 <—Z_>2 )/ < af, Ba >. We take an exact sequence with a
minimal left add(P;)-approximation f = a - — of Ps:

eﬁi>2—>cokerf—>0.

Then, we have coker f = 51 and pp (A) = P & S;. Similarly, we can compute the left
mutations step by step such that the Hasse quiver H(s7-tilt A) is given as follows,

s _PosS = Sy

—2 N Pt

So® Py S

PoP

Lastly, according to the duality (—)* = Hom(—, A), we have

Proposition 2.1.8 ([AIR] Theorem 2.14]). There exists a poset anti-isomorphism between
sT-tilt A and sT-tilt A°P.

2.2 Silting theory

We denote by CP(proj A) the category of bounded complexes of projective A-modules
and by KP(proj A) the corresponding homotopy category which is triangulated. Besides,
we denote by ~j, the homotopy equivalence in K®(proj A). For any T' € KP(proj A), let
thick T be the smallest full triangulated subcategory containing 7", which is closed under

cones, [+1], direct summands and isomorphisms.
Definition 2.2.1 ([Al, Definition 2.1]). A complex T € KP(proj A) is called presilting if
Homyo proj 4)(T', T'[i]) = 0 for any i > 0.

A presilting complex T is called silting if thick T = KP(proj A). In particular, a silting
complex T is called tilting if Homys(proj 4) (T, T'[i]) = O for any 7 < 0.

Similar to the left mutation of support 7-tilting modules, we recall the irreducible left
silting mutation of silting complexes, see [AI, Definition 2.30]. Let 7= X ® Y be a basic
silting complex in KP(proj A) with an indecomposable summand X. We take a minimal

left add(Y')-approximation 7 and a triangle
X 5 Z — cone(m) — X[1],

where cone(r) is the mapping cone of 7. Then, cone(r) is indecomposable and py(T) :=
cone(r) @Y is again a basic silting complex in KP(proj A), see [AI, Theorem 2.31]. We
call iy (T) the irreducible left (silting) mutation of 7" with respect to X.

Definition 2.2.2. A complex in KP(proj A) is called two-term if it is homotopy equivalent

to a complex T concentrated in degree 0 and —1, i.e.,
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dT

T° 0

1
A ) O N

We denote by 2-silt A the set of isomorphism classes of basic two-term silting complexes
in KP(proj A). Similarly, there is a partial order < on the set 2-silt A which is introduced by
[AI, Theorem 2.11]. For T', S € 2-silt A, we say that S < T if Homys(proj ) (T, S[i]) = 0 for
any ¢ > 0. Then, we denote by H(2-silt A) the Hasse quiver of 2-silt A which is compatible

with the irreducible left mutation of silting complexes.

Proposition 2.2.3 ([AI, Lemma 2.25, Theorem 2.27]). Let T = (T~' — T°) € 2silt A.
Then, we have add(A) = add(T° & T~ and add(T°) Nadd(7T~!) = 0.

Suppose that P, Ps, ..., P, are pairwise non-isomorphic indecomposable projective
A-modules. We denote by [Py], [P, ..., [P,] the isomorphism classes of indecomposable
complexes concentrated in degree 0. Clearly, the classes [P], [P, ..., [P.] in K°(proj A)

form a standard basis of the Grothendieck group Ko(KP(proj A)). If a two-term complex
T in KP(proj A) is written as

<é Pi@bi N é P’i@ai>’

i=1 i=1

then the class [T] can be identified by an integer vector

9(T) = (a; — bi)icqr2,..n} € Z7,
which is called the g-vector of T'. Then, we have the following statement.

Proposition 2.2.4 ([AIR, Theorem 5.5]). A basic two-term silting complex T is uniquely
determined by its g-vector g(T).

Example 2.2.5. Recall that A = K( 1 <%_' 2)/ < af,Pa >. Then,

= —0—>P,®P,—>0—>---, and

T2:..._>p2@>p1@2_>0_>...

are basic two-term silting complexes. Moreover, we have g(77) = (1,1) and g(7») = (2, —1).
Next, we explain the connection between 7-tilting theory and silting theory.

Theorem 2.2.6 ([AIR, Theorem 3.2]). There exists a poset isomorphism between st-tilt A
and 2-silt A. More precisely, the bijection is given by mapping a two-term silting complex
T to its 0-th cohomology H°(T), and the inverse is given by

f
§

M (P" @ P -2 P,

where (M, P) is the corresponding support T-tilting pair and P" TP M ——0isa

minimal projective presentation of M.
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One may easily find the bijection between s7-tilt A and 2-silt A in the following example.

Example 2.2.7. Let A= K(1 <—Z_>2 )/ < af,Ba >. Then, H(2-silt A) is given by

PP, p-2p,
@P I » ®
L 0—P> | L P1—0 |
osp] — T~ e
0 EBP P, © 0"
— 1 29—
T [ 0—Py ] [ P,—0 ] —
@ - ®
| P2-5Py | | P2-5Py |

We introduce a reduction theorem for complexes in the homotopy category KP(proj A),

which will dramatically reduce the direct calculations in this thesis.

Lemma 2.2.8. Let ~, be the homotopy equivalence in KP(proj A). IfY # 0 and

1
Ty := (0 x W xgy Cotey, 0) € Kb(proj A),
(fl f2>
1 g
Ty = (0 Xovy™M2lzeXxe M 0) € KP(proj A),

then we have Ty ~y 17 and Ty ~, T3, where

Tr = (0 y 2>z 0) € KP(proj A),
— (i) o
7 =(0 Y ZOM 0) € K°(proj A).

Proof. (1) We define ¢ : Ty — 17 and ¢ : T — T} as follows,

1
T, - 0 x W gy e, 0
A A A
0o (?)I‘(f,l) 1:J1
| | |
17 - 0 0 5 Y 5 Z 0

Then, we have ¢ o9 = Idzr and
¢O<P: (07 (Pf(l]) 71) ~h IdTlu

because the difference Idy, — 1 o ¢ is null-homotopic as follows,

1
T, - 0 ._X (f) X oY (*gOf,g?.Z ._O
(1,0) |
. Lanl 0 o o
5 P ’a ¥
T : 0 X 0 XY . Z 0

(2) We define ¢ : Ty — T3 and ¢ : Ty — Ty as follows,
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<f1 f2>
1 g
h1 ho

15 : 0 XepY——Z XM 0
A A
10 .
e ()Y
17 0 Y (fQ_flog) ZoM 0
h27h10g
Then, we have ¢ o ¢ = Idry and
_ 1—f10
vor=((671-(34,1)) ~»1an
In fact, the difference Idp, — ¢ o ¢ is null-homotopic as follows,
<f1 f2>
1 g
Ty : 0 Xoy "l zoXxoM -0
0. (600) (040 0 .
oG] )
15 : 0 XY 7 ZeXeM 0
i
hi ha
Therefore, we have Ty ~j, 17 and Ty ~}, 17 O

2.3 r-tilting finite algebras

In this section, we will introduce the main object we are interested in. Recall that A is

a finite-dimensional basic algebra over an algebraically closed field K.

Definition 2.3.1. We call A a 7-tilting finite algebra if there are only finitely many

isomorphism classes of basic 7-tilting A-modules. Otherwise, A is called 7-tilting infinite.
Moreover, we have some equivalent conditions for A to be 7-tilting finite.

Proposition 2.3.2 ([DL], Corollary 2.9]). An algebra A is T-tilting finite if and only if
one of (equivalently, any of) the sets T-rigid A, st-tilt A and 2-silt A is a finite set.

A typical example of 7-tilting finite algebras is the class of representation-finite algebras.
In particular, we have known the number #s7-tilt KA for a representation-finite path

algebra KA. We recall this result as follows.

Proposition 2.3.3 ([Ad2, Proposition 1.6], [ONFRl Theorem 1]). Let KA be a path
algebra with a finite quiver A whose underlying graph is one of Dynkin diagrams of type
A, D, Eq, E;, Eg. Then, #s7-tilt KA is independent of the orientation of A and

A An Dn(n>4) EG E7 Eg
#sr-tilt KA | 5 (30F7) | [%7'] | 833 | 4160 25080 |

where (z) is the binomial coefficient and [3] = TX£().
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Since the class of 7-tilting infinite algebras is infinite, we are interested in the minimal
cases among all 7-tilting infinite algebras. We recall that an algebra B is said to be
a quotient (or quotient algebra) of an algebra A if there exists a surjective K-algebra

homomorphism ¢ : A — B.

Definition 2.3.4. An algebra A is called minimal 7-tilting infinite if A is 7-tilting infinite,
but any proper quotient algebra of A is 7-tilting finite.

It is known that any path algebra K'A with a finite quiver A whose underlying graph is
one of Euclidean diagrams of type an, ﬁ)n(n > 4), ]EG, I~E7, Eg, is minimal 7-tilting infinite.
Besides, Mousavand also introduced this notion independently in his recent work [Mo],
where the author is trying to give a complete classification of minimal representation-infinite
algebras in terms of 7-tilting finiteness.

We recall two reduction theorems for the 7-tilting finiteness of an algebra A, which

will imply the importance of minimal 7-tilting infinite algebras.
Proposition 2.3.5 (|[DLJ, Theorem 4.2], [DIRRT] Theorem 5.12]). If A is T-tilting finite,

(1) the quotient algebra A/I is T-tilting finite for any two-sided ideal I of A,
(2) the idempotent truncation eAe is T-tilting finite for any idempotent e of A.
In Proposition 2.3.5 (1), we may reduce the question on A to the question on A/I if we

take a special two-sided ideal I of A. This technical method is powerful and it is provided
by Eisele, Janssens and Raedschelders [EJR]. We recall this method as follows.

Proposition 2.3.6 ([EJR] Theorem 1]). Let I be a two-sided ideal generated by central
elements which are contained in the Jacobson radical of A. Then, there exists a poset

isomorphism between st-tilt A and st-tilt (A/I).

We notice that the 7-rigid-brick correspondence is also useful for determining the
T-tilting finiteness of an algebra A. Recall that K is assumed to be an algebraically
closed field. Then, M is called a brick if End4(M) = K. We denote by brick A the set of

isomorphism classes of bricks in mod A.

Proposition 2.3.7 ([DIJ, Theorem 4.2]). Let A be a finite-dimensional algebra. Then, A
1s T-tilting finite if and only if the set brick A is finite.

When we compute the number #s7-tilt A in some cases, Proposition may greatly

reduce the direct calculations of left mutations. For example, let A := KQ/I with
Q : aC1<—Z_>2 and I :< o? — pv,vau >.

We denote the indecomposable projective A-modules by P, and P,. Then, we have
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N N €2
/a\ 2/” /1\ /2 /V\ /1\
p=ap o ~92 1 andP="Y*_ _VH~1" 9
N NN 2 N
o’ o 1 2 v 1
\a4/ \1/ ]/Q{zlj, 2

Now, we may focus on the central element uv + v of A, and consider the quotient algebra

A= Al <puv+wvp >. Let P, and P, be the indecomposable projective A-modules. Then,

~ /61\ /1\ =~ €2 2
P = « po~1 2 andPr= v ~1.
QL 9 Vo 1

By direct calculation, one may find that the Hasse quiver H (s7-tilt Z) is as follows,

1 2 9 9
1269%*> b1 — P2 — 2

12@% 1@% 1 0
1
2 2 1~5 1

Thus, we deduce that #s7-tilt A=3. By Proposition , we have #s7-tilt A = 8.
Next, we consider #s7-tilt A for an arbitrary 7-tilting finite algebra A. We say that a
right A-module M is support-rank s if there exist exactly s nonzero primitive orthogonal
idempotents eq, ey, ..., es of A such that Me; # 0. Then, we denote by as(A) the number
of pairwise non-isomorphic basic support 7-tilting A-modules with support-rank s for
0 < s < |AJ. It is obvious that ag(A) = 1 and a1(A) = | A]| since it is the local algebra case.

Then, we have

1]

#sT-tilt A= as(A).
5=0

Note that a4(A) is just the number of pairwise non-isomorphic basic 7-tilting A-modules.
Let M be a support 7-tilting A-module. According to Definition [2.1.1, we may assume
that M is a 7-tilting B-module for

B:=A/<1l—e —e— - —e5>,

with some nonzero orthogonal idempotents ej, e, ..., es of A. By [AIR] Proposition
2.2], 7-tilting B-modules are precisely sincere support 7-tilting B-modules, so that the

support-rank of M is equal to |M|. Thus, we have

Proposition 2.3.8 ([Ad2, Proposition 1.8]). Let M be a support T-tilting A-module and
0 < s < |A|. Then, M is support-rank s if and only if | M| = s.

Although the number #s7-tilt A can be determined for some special classes of algebras,
such as path algebras of Dynkin type in Proposition preprojective algebras of Dynkin
type [Mi], etc., but it is not easy to find the number #s7-tilt A for general cases.
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We explain the reasons as follows. If A is a path algebra of Dynkin type, one can
find some recursive relations between a;_1(A) and as(A) such that we get a formula to
calculate #s7-tilt A. If A is a preprojective algebra of Dynkin type A, we may construct
a one-to-one correspondence between (pairwise non-isomorphic basic) support 7-tilting
A-modules and elements in the Weyl group Wa associated with A. Since the number of
elements in Wy is known, we get the number #s7-tilt A.

However, it is difficult to find such a recursive relation or such a one-to-one corre-
spondence in general, so that we can only determine the number #s7-tilt A by direct
computation. We have tried to construct recursive relations between as_;(A) and as(A)
for some examples. Here, we present a representation-finite tilted algebra as an example,
and the proof is given in the Appendix [A.2]

Example 2.3.9. Let Az be the path algebra of o<—o—o0 and A,, := KQ,,/I (n > 4)
the algebra presented by the following quiver @,, and I =< au — fv >,

Qn: 17 4 5 n—1 n.

( ) n—2\n—3

(2) anfl(A“) - anﬂ(An*l) + 32:1 (2:—_34) +2- % + Z @i— 1( ) n—%i-i—l (2(2:1))
(3) an—Q(An> = an—Q(An—l) + an—3(An) + nig 2: 36)

(4) as(A,) = as(Ap—1) + as—1(Ay,) for any 1 < s <n — 3.

These recursive formulas enable us to compute #s7-tilt A,, step by step. For example,

as(Ay) \s
0 1 2 3 4 ) 6 7 8 9 #sT-tilt A,

n

4 1 4 10 16 15 46

5 1 5 15 33 54 52 160

6 1 6 21 54 113 192 187 574

7 1 7 28 82 195 401 700 686 2100

8 1 8 36 118 313 714 1456 2592 2550 7788

9 1 9 45 163 476 1190 2646 5307 9702 9570 29172

We show that A, is a tilted algebra of Dynkin type ID,, and therefore, A,, is representation-
finite following [ASS, VIII. Lemma 3.2]. Let D, (n > 4) be a path algebra with quiver:

3 4 n—1 n.

27



Then, the indecomposable projective D,-modules are displayed as follows,

By Definition-Theorem [2.1.4], it is easy to find that
12
1ip,(Dy) =P @ P& M® P, @@ Py @ Py, where M = 1,

n

and pip, (D,) is a 7-tilting D,-module. Since tilting modules (see Definition [2.0.3) and

7-tilting modules coincide over a path algebra, u;3(ﬁn) is a tilting D,-module. Then,

we have A, = Endj (pp,(Dn)). To see this, we observe the following sequence in the
Auslander-Reiten quiver I'(mod D,,) of D,,,

P

N

Ps——=PFP——=oe

7 N

P4< """"""""""""""" P3/5n< """""""""""" [ ]

Py < S . S < M

We define two non-zero morphisms o : P, — M and u : P, — Py, then au : Py — M.
Similarly, we define $ and —v by P, — M and P, — P>, respectively. Since the composition
P, — P3/S, — M is zero, we have au = fv. (In fact, a,u, 3, v are unique non-zero
morphisms, and there are no non-zero morphisms from P;/S,, to M.)

When we compute the left mutation of support 7-tilting modules, we usually start at
A and end at 0 since A is the maximal element in s7-tilt A. As we explained before, we
divide the whole calculation into the calculations for different support-ranks. We use the

following example to illustrate our method.
Example 2.3.10. Let A := K@Q/I be the bound quiver algebra given by

a1, o, Bacva, 3Py, a3 3a, >

«a B
Q: 1l=—=3=—=4 and I :
a1 33, o33, a3 B3, Baars, cra B0 Ba,

B1 a3
a2 Tllﬁ

2

Since the support 7-tilting A-module with support-rank 0 is unique, we have ag(A) = 1.
Since each simple A-module S; is an A/A(1 — e;)A-module and A/A(1 —¢;)A ~ F, we
observe that the support 7-tilting A-modules with support-rank 1 are exactly the simple
A-modules. Then, a,(A) = |A| = 4.

Let M be a support 7-tilting A-module with support-rank 2, and with supports e; and
e; (i # 7). Then, M becomes a 7-tilting A/J-module with J =< 1—e; —e; >. We denote
by b; ; the number of 7-tilting A/J-modules. For example, if (¢, j) = (1,3), then
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A/J:K(l#?)) /{auBy).

1

Note that fay is a central element of A/.J, we may apply Proposition and Example
to show that the Hasse quiver H(s7-tilt A/.J) is displayed as follows,

® —> O

— T~

[ O

\ / ’

e —>0O

where we denote by e 7-tilting A/J-modules and by o other support 7-tilting (but not
7-tilting) A/J-modules. Hence, we deduce that by 3 = 3. Similarly, we have

(i) | (1.2) (1,4) (2.3) (2.4) (3,4)
biy | 1 1 3 1 3

This implies that as(A) = 12.

Let N be a support 7-tilting A-module with support-rank 3. Then, N becomes a
T-tilting A/L;-module with L; =< e; >, where e; is the only one non-zero primitive
idempotent satisfying Ne; = 0. We denote by d; the number of 7-tilting A/L;-modules.
For example, if 7 = 4, then

A/L4 =K ( 1 %3% 2 ) /<04151, 232, Bacra, 06251%52)-

Similar to the above, we compute the left mutations by hand to show that the Hasse
quiver H(s7-tilt A/L,) is as follows,

SRR\

\>8<
O\

We deduce that dy = 17. If j = 2, then

B1

ey B3
A/L2 =K ( 1<—13(T4> /<a1517a361aa163aﬂ3a37a3ﬁ3>7

and the Hasse quiver H(s7-tilt A/Ls) is shown as follows by direct calculation,
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[ OoZ=XN

O

o/

We deduce that do = 9. Similarly, we have d; = 9 and d3 = 1. Therefore, az(A) = 36.
We may compute ay4(A) by hand, because the support 7-tilting A-modules with support-

rank 4 are just 7-tilting A-modules, which can be obtained by the left mutations starting

with A. See Appendix for a complete list of 7-tilting A-modules and one may easily

construct the part of H(s7-tilt A) consisting of all 7-tilting A-modules. Thus, a4(A) = 61.
Finally, we conclude that #s7-tilt A=1+4+ 12+ 36461 = 114.

2.4 Tilting theory and derived equivalence

We briefly review the connection between tilting theory and 7-tilting theory. We
mention that the definition of tilting modules is given in Definition [2.0.3] Then, it is
shown in [AIR] that any tilting module is a 7-tilting module, and any faithful 7-tilting
module is a tilting module. Here, a right A-module M is called faithful if the annihilator
ann(M) = {z € A| Mx = 0} is zero.

Also, we briefly introduce the connection between tilting theory and derived equivalence.
Let DP(mod A) be the derived category of bounded complexes of modules from mod A,
which is the localization of the homotopy category KP(proj A) with respect to quasi-
isomorphisms. Then, DP(mod A) is also a triangulated category. We recall that two
algebras A and B are said to be derived equivalent if their derived categories D®(mod A)
and DP(mod B) are equivalent as triangulated categories.

It is worth mentioning that tilting modules induce an essential class of derived equiva-
lence of algebras. Let M be a tilting A-module, the endomorphism algebra B = End4 M
is called a tilted algebra of A. In this case, Happel [Hal Corollary 1.7] showed that the

algebras A and B are derived equivalent. More generally, we have

Proposition 2.4.1 (|Ric, Theorem 6.4]). Let A and B be two algebras. Then, A and B

are derived equivalent if and only if
B ~ Ende(proj A) (T)

for a tilting complex T in KP(proj A).
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Chapter 3

Algebras With Two Simple Modules

Since local algebras, i.e., algebras with only one simple module, are always 7-tilting
finite, the class of algebras with exactly two simple modules (up to isomorphism) is
fundamental in 7-tilting theory. In this chapter, we focus on this class of algebras and call
them two-point algebras.

Two-point algebras are also fundamental if we consider the representation type of
general algebras, so that the representation type of two-point algebras has been determined
for many years. We may review these results here: the maximal representation-finite
two-point algebras are classified by Bongartz and Gabriel [BoGl, the tame two-point
algebras are classified by several authors in [BH], [DG], [Gei], [Han| and the minimal wild
two-point algebras are classified by Han [Han].

In [Han|, a minimal wild algebra A is called strongly minimal wild if there is no wild
algebra B with |B| < |A| and a fully faithful exact functor F : mod B — mod A. It is
obvious that any wild algebra A admits a strongly minimal wild algebra B with a fully
faithful exact functor F : mod B — mod A. Notice that strongly minimal wild two-point
algebras are also classified by Han [Han] and this class coincides with the class of minimal
wild two-point algebras, except for an exact special case.

On the other hand, if B is 7-tilting infinite and there is a fully faithful functor
F :mod B — mod A, then A is also 7-tilting infinite since F sends a brick in mod B
to a brick in mod A, see Proposition Therefore, one wants to give a complete
classification of minimal 7-tilting infinite two-point algebras. With this motivation in
mind, we determine the 7-tilting finiteness for (strongly) minimal wild two-point algebras.
According to our result Theorem most of (strongly) minimal wild two-point algebras
are T-tilting finite. We mention that we do not know the 7-tilting finiteness for an arbitrary
wild two-point algebra which has a 7-tilting finite minimal wild two-point algebra as a
quotient algebra.

Toward the complete classification of 7-tilting finite two-point algebras, we also have
to consider tame two-point algebras. However, it is difficult at this moment to give a
complete result on tame two-point algebras, because the tameness of two-point algebras

depends on the technique called degeneration, and it is still open to finding the relation
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between 7-tilting finiteness and degeneration. We may give a partial result on tame
two-point algebras. We recall from [Han| (see Proposition of this chapter) that all
tame two-point algebras can degenerate to a finite set (Table T in [Hanl, see also Appendix
of two-point algebras. Then, we check the 7-tilting finiteness for algebras in Table T.

We point out that Aihara-Kase [AK] and Kase [K] have got some interesting results.
For example, Kase [K, Theorem 6.1] showed that for any natural numbers s and ¢, we can
find a 7-tilting finite two-point algebra A such that the Hasse quiver H(s7-tilt A) is of the

following form

In this case, we say that H(s7-tilt A) is of type H,, and it is easy to find Hsy =~ His.
Besides, it is well-known that the Kronecker algebra K( o —xo ) is 7-tilting infinite (we
present a proof in Lemma for the convenience of readers).

In the first section of this chapter, we explain our strategy for reducing (strongly)
minimal wild two-point algebras and algebras in Table T to a small set of two-point algebras.
Then, we determine the 7-tilting finiteness of this small set. In the second section, we
determine the 7-tilting finiteness for all (strongly) minimal wild two-point algebras and all
algebras in Table T. We also observe that our results are useful to determine the 7-tilting
finiteness for several other classes of algebras, such as tame two-point distributive algebras
[Geil, two-point symmetric special biserial algebras [AIP] and so on. We have given some

applications at the end of this chapter.

3.1 A small set of two-point algebras

Let A be a finite-dimensional algebra over an algebraically closed field K. We denote
by rad(A) the Jacobson radical of A and by C(A) the center of A. As explained in Section
2.3, although A has a complicated structure, its quotient algebra

A=A/ < C(A) Nrad(A) >

may have a simpler structure. Moreover, by Proposition we know that #sr-tilt A =
#s7-tilt A and the Hasse quivers H(s7-tilt A) and H(s7-tilt }[) are of the same type. Then,
by using this strategy and Proposition we can restrict (strongly) minimal wild
two-point algebras and algebras in Table T (except for three cases: Wy, Ty and Ts) to a
small list (i.e., Table A) of two-point algebras. (In Table A, an algebra A; is just the bound
quiver algebra K@) /I;, where I; is the admissible ideal generated by the relation (7).)
Thus, as a preparation for proving our main results in this chapter, we shall determine

the 7-tilting finiteness of A; in Table A. We remark that H(s7-tilt A;) is of type H; o and
H(s7-tilt Ag) is of type Hs o, see Example [2.1.7]
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Table 3.1: Table A

A=K (1——=2); Q:1===2
ha= K (1==2); (6) jiv = vp = 0;
Q: 1 2 )8 Q;aC1<—Z—>2
(3) B2 =0;
(4) 8% =0; (7) o = v = v = va = 0;
(8) a? = pv = vu = vau = 0;
Q:aCl—“>2QB (9) @® = pv = v = va = 0;
(5) o® = F =0 (10) a® = pv = vu = vau = vapu = 0;

Q : aCl#2Qﬁ

(1) o® = 3 = pv = vp = ap = fv = 0;
(12) > =32 = v =vp = Bv = va = auf = 0.

Lemma 3.1.1. The Kronecker algebra Ay is minimal T-tilting infinite.

Proof. 1t is easy to check that M = K # K with k € K is a brick in mod A,. Since the

family (My)rex consists of infinitely many pairwise non-isomorphic bricks, Ay is 7-tilting

infinite by Proposition [2.3.7, Then, the minimality is obvious. O]
Lemma 3.1.2. The two-point algebras As and Ay are T-tilting finite.

Proof. Since A3 is a quotient algebra of A4, by Proposition 2.3.5] it suffices to show that
Ay is 7-tilting finite. We show that the poset 2-silt A4 has a finite connected component
and hence, it exhausts all two-term silting complexes in K®(proj A4) by Proposition m
and Theorem [2.2.6 Then, A, is 7-tilting finite following from Proposition 2.3.2] Let P

and P, be the indecomposable projective Aj-modules. We have

€1

I 1 es 9
P= 45 ~3and P, = b~ 2.
nB? 2 A 2
We show that H(2-silt Ay) is of type H; 5 as follows,
|:0*>P1:| [ Pi—0
g g
0— P LO— P> |

J l

0—h P22 2 P2 p PPy Pap rP—07]
f@ N ® - Py . D - oy — D
P2—1>P1@3 f1 pe3 P2®2£>P1@3 P2®2£>P1@3 Py——0 L P,—0 |

Py P

where



Since Homy, (P, Py) = e;Ayes = K@ Kuf @ Kuf? and Homy, (P, P,) = 0, it is not
difficult to compute the left mutations pp (A4) and pp, (Ay4). According to the bijection
introduced in Theorem [2.2.6, one can find the corresponding two-term silting complexes.
We only show details for the rest of the steps.

(HDLet h=XdY :=(0— P) & (P N P%). Then, py (T3) does not belong to

2-silt A4 and therefore, we ignore this mutation. To compute py(T3), we take a triangle
X Y — cone(r) — X[1] with 7 = (0, (@))

We may check that 7 is a minimal left add(Y)-approximation. In fact, by the definition,

e if we compose 7 with the endomorphism

Y p,—" . pgs
k1 k2 k

k162+k2ﬁ+k3B2J l( 01 k,‘? k;) 7Where kl,kQ,kg € K,
0 0 kg

Y p,—" . pgs

then all elements of Homyo o 4,)(X,Y) are obtained;
o [ F1 K2 ks 0 0
o if <0 k1 k2> (0) = (9), then ky = 1 and ky = k3 = 0.

0 0 ki 1

Hence, 7 is indeed a minimal left add(Y")-approximation. We apply Lemma by setting
X=/Z=M=P,Y=Pand XY - Z2d X S M by

(%)
1us® |.
0 up

0 u
i)
1 ps?
Thus, pix(Ts) = (P, -2 P2 @ (P, -1 PE3).

(2) Let Thy = X &Y = (P, 2 PP2) & (P, I P®3). Then, px (To1) ¢ 2-silt Ay. To
compute gy (T1), we take a triangle

Then, 7 is a minimal left add(.X)-approximation. (In fact, we have Endgs(proj a,)(X) = K
since Endy, (P;) = K. Then,

Then, we have

cone(m) = (P @ P, Pfag)Nh(PQﬁPfﬂ)-

62

Y T X9 - cone(r) — Y[1] with m = (( 5) , (

[elelelelelog
OO FO
OoO——OOO

Ende(proj Ag) (X@g) ~ Mat(?), 3, K)

Secondly, Ao = 7 for A € Mat(3, 3, K') implies that A is the identity. Thus, 7 is indeed a
minimal left add(X)-approximation.) Similar to the above, we can apply Lemma [2.2.§

twice by precise settings. Then, we have
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—u 100 4 0 O
—up 010wpuB 0 O
—up? 0100 u O
ez 001 0 puB O
B 0010 0 pu
B2 000 0 0 up

cone(r) = ( P, Pe3 g pe? PO ) o (PS5 PEY).

Thus, p5(Th) = (P, 22 P#2) & (PE2 L p33).
(3) Let Toys = X @Y 1= (Py -2 PP2) @ (P92 225 PE3). Then, py (To1s) ¢ 2-silt Ay

To compute py (Ts12), we take a triangle

X~V —> cone(rr) — X[1] with 7 = ((é;), (gg))

Then, 7 is a minimal left add(Y')-approximation. In fact, if we compose 7 with

Y pgr L pgs

(kzwi—kgﬁ k262> <%1 if %2> , where k‘l, ks € K.
—k2B*  kiea 0 0 ki

Y ppr L. pp3

kike 0O
then all elements of Homys (proj a,)(X,Y") are obtained; if ( 0 kr —kz) (g§

)= (

00
10), then
01

00 k
ki =1 and ky = 0. By applying Lemma twice, we have '
Y 00 0
) (b8 2)
cone(m) = (P, —2 7 porg pe2 01 0 W) pesy | (p Ey py,

Thus, pix (Tor) = (P 2 P) @ (PP2 L5 po3).
(4) Let Toips = X @Y = (P, 5 P) & (PS* 25 P®3). Then, puy(Toin) € 2-silt Ay
To compute py (Th191), we take a triangle
Y "= X% - cone(nr) —= Y[1] with 7 = ((526 eoz> , <é ! 8)).
0 B 001
Then, 7 is a minimal left add(X)-approximation since Endgs (proj a,)(X) = K. Then,

- 0
B —p
0 —up
es O 100pw00
—B e <0100#0>

B 00100 p

cone(m) = ( PQ@2 0 Pl@?’ ) ~p (Po — 0).

Thus, py (Tho1) = (P = P) @ (P, — 0).

(5) Let Thip1o = X @Y := (P, 25 P)) @ (P, — 0). Then, it is clear that oy (To1212)
does not belong to 2-silt Ay and py(Thi212) = (P — 0) & (P, — 0).

To sum up the above, we deduce that H(2-silt Ay) is of type H; 5. By Theorem m,
this is equivalent to saying that H(s7-tilt A4) is of type H; 5. O

We point out that the Hasse quiver H(s7-tilt As) is of type H; 3 as follows,

NN

@3
|

1 1 1
2p12—1P1 2 1
2 2 2

O —— NN
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Lemma 3.1.3. The two-point algebra A5 is minimal T-tilting infinite.

Proof. Note that Aj is a gentle algebra and it is representation-infinite by Hoshino and
Miyachi’s result [HM, Theorem A]. Besides, Plamondon [Pl, Theorem 1.1] showed that a
gentle algebra is 7-tilting finite if and only if it is representation-finite. Therefore, Aj is

7-tilting infinite. For the minimality, we may consider
]\5 = A5/ < oz,uﬁ >

since the socle of Aj is Kauf @ Kuf @ K and any proper quotient As/I of Aj satisfies
auf € I. We denote by P; and P, the indecomposable projective A5—modules, then

Po=co 'n 1y and Pp= % ~ 2
V" aw ws — 2 2 2 g =2

We calculate the left mutation sequences starting from P; & P, and ending at 0, so that

H(s7-tilt A5) is of type Hi4 as follows,

1

2 2
1394 :
|
1 12 1194 1
12P122— 1012 2— 10 —1—0
2272 272 2
This implies that A is 7-tilting finite and As is minimal 7-tilting infinite. O

Lemma 3.1.4. The two-point algebras A7, Ag, Ag and Ay are T-tilting finite.

Proof. Since A7, Ag and Ag are quotient algebras of Ajg, it suffices to show that Ay is

T-tilting finite. The indecomposable projective modules of Ajy are

1 €2 2
v

2andP2:ezA10: l,aﬁ%.
va 1

P =eAp= 02 aaueﬂlﬁl%
o 2

Since Homy , (Py, P2) = eal\jpe; = Kv & Kva & Kva? (resp., Homy,, (Ps, Py) = e1Ajgeq =
Kpu® Kap® Ka?u), we know that the computation of the left mutation sequence started
at P; (resp., P,) is similar to that of A4 (resp., AJ"). Then, by Proposition and the

calculation in Lemma we deduce that the Hasse quiver H(2-silt Ajg) is as follows,

0— Py P21, p@3 R pP2I8, pps P23, pos
|: D :| — D — D — D — @

OT% 0—P, P22 p@? P22 p9? PP,
0— P P—0
D @
JREN Y PL—"P,

l |

f f;
pe3 L, pez Pyl P2 P33Py PO I3, p, P—0
P — D — D — ® — D

P>—0
P-py pe2 72, py LN Py—0 2
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where fi = (¢ 4, 1), fo=(enn), fs = (a*uann) and

0 —op p
v v v 0
91:<Va2)7g2:<1/a>793:(_60‘V)-

rvo 1 4e%

We conclude that H(s7-tilt Ajg) =~ H(2-silt Ayg) is of type Hss. Thus, As, Ag, Ag and
Aqp are T-tilting finite. Next, we determine the type of H(s7-tilt A;) for i = 7,8, 9.

(1) The indecomposable projective Az-modules are

€1
= « = €2
P & and P, 2,

We give the Hasse quiver H(s7-tilt A;) by direct calculation as follows,

Lo~no2 2
12@14’2@1

2
1 1o i 1
12@%4)1@%4)14)0
2

Then, H(s7-tilt A7) is of type Ha .
(2) Similarly, the Hasse quiver H(s7-tilt Ag) is given as follows,

1 2 2 2
2P —»12@%%1

1 2
2 J 1 1 ‘
0

=N

12@% 1@% 1
1
2 2 15 1

Then, H(s7-tilt Ag) is of type Hs 3.
(3) Let Q1 and Q5 be the indecomposable projective Ag-modules. Then,

= e \g = a B
Q1 19 = o @& .

Since Homy, (Q1, Q2) = eaAge; = Kv and Homy, (Qa, Q1) = e1Ages = K@ Kau® Koy,
the computation of the left mutation sequence started at (3 is similar to that of A3”. Then,
by Proposition and the calculation in Lemma [3.1.2] we deduce that H(2-silt Ag) is

presented as follows,

0—G1 Q1-2-Q2 Q1—0
o) : :
0—Q2 0—Q2 Q1-25Qo
0—)Q1
Q251
|
9211, o2 Qf o QF*Iha, 08 15,0, Q1—0
P — (&) — D — 2 ® — [ D i|
Q50 72250, 2220, Q2—0 Qa0

b

where f; = (Y o 2), fo=(ennr)and f3 = (o2papp). By Theorem , we conclude
that H(s7-tilt Ag) ~ H(2-silt Ag) is of type Ha 5. O
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Lemma 3.1.5. The two-point algebras A1 and A5 are T-tilting finite.

Proof. We calculate the Hasse quiver H(s7-tilt Aq;) directly as follows,

2 2

1 2 219 2 212

13@2%%21 @2%—@1 EB%H%

1 11 11 h
21 21

12012 — D12 1 0

Similarly, the Hasse quiver H(s7-tilt Aj5) is shown as follows,

1

NN

2 9 2
12G12—— 5B12
2

1 1
12

1 12 1
2 22—

1 1
212 2— 16
272 2

O Y/ N

DO =

1 1 el—1—
2 2

Then, the statement follows from Proposition [2.1.6] O]

We summarize the results in this section as follows. We know that A, and Aj are

minimal 7-tilting infinite. For others, we have

A; A | As | Ag | Ag | A7 | As | Ao | Ao | Ain | Ape
#st-tilt A; 5 6 8 6 7 8 9 12 8 8
Type Hio | Hiz | His | Hopo | Hos | Has | Hops | Hss | Hasz | Hau

3.2 Minimal wild two-point algebras

In this section, we can solve the question we mentioned at the beginning of this chapter.
We first recall the complete classification for the representation type of two-point algebras.
A complete list of (strongly) minimal wild two-point algebras is given by Han [Han|, which
is displayed by Table W in his paper. (See also Appendix of this thesis.)

Proposition 3.2.1 ([Han| Theorem 1]). Let A be a two-point algebra. Up to isomorphism
and duality, A is representation-finite or tame if and only if A degenerates to a quotient
algebra of an algebra from Table T, and A is wild if and only if A has a minimal wild

algebra from Table W as a quotient algebra.

Proposition 3.2.2 ([Han, Theorem 2|). A two-point algebra A is strongly minimal wild
if and only if it is one of the algebras Wy ~ W3y in Table W.

Now, we are able to state our first result in this chapter.

1'We mention that some relations are omitted in the original Table T in [Han|] so that several algebras
(e.g., Ty and Ty) in the original Table T are not finite-dimensional. However, we have added these omitted
relations in this thesis so that all algebras in Table T are finite-dimensional.
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Theorem 3.2.3. Let W; be a minimal wild two-point algebra from Table W. Then,
(1) Wy, Wy, W5 and Wy are T-tilting infinite.

(2) Others are T-tilting finite. Moreover, we have

Wi Wy | We | Wr | We | Wy | Wig | Wiy | Wig | Wiz | Wiy
#HsT-tilt W; 5] ) 8 ) 7 5 10
Type 7'[1,2 7'[1,3 H1,5 His 7'[1,4 7'[1,2 Hs s
Wi Wis | Wig | Wiz | Wig | Wig | Wag | Way | Waa | Was | Way
#HsT-tilt W, 9 8 9 8 7 8 10
Type Haos | Has | Has | Has Has Hss | Has
Wi Was | Wag | Wag | Wag | Wag | Wio | War | Waa | Wiz | Wiy 7
#HsT-tilt W, 7 8 )
Type Has Hau Hss Hou Hap

where the type of H(sT-tilt W;) is defined in the beginning of this chapter.

Proof. First, one can easily find that Wy, Wy, W3 and W5 have A, as a quotient algebra
and therefore, they are 7-tilting infinite. It is also not difficult to find that Wy is 7-tilting
finite and the Hasse quiver #H(s7-tilt Wy) is of type H; 2 as follows,

1
121 2 2

: l

1 1 1
120 P11 —— 11— 0

W; I A Wi I A
W a? AP W auy A
W o? AP Was a?, pv !
Wg (67 A4 W23 062 +vp, vop Ag
Wy w i | A Wou v Wiy
Wio Was o?, B A;
Wiy i As Wag a, pv A7
Wia 0.8 A, War AT
Wis Wag Apy
op Hy op
W15 y,u Ag W29 All
Wig 0427 vy Ag Wi Aip
Wiz o? AP W3, a+ B,vu
Wisg ) Ag Wiy | a+ B,vp, pv
(6% A6
Wig A Wi a+
7
Waoo | pv +rvp Waa a+ B, uv




Second, we show that Wy ~ W34 (except for Wiy) are 7-tilting finite by determining
the type of H(sr-tilt W;) for i = 6,7,...,34 (i # 14). In order to do this, we can apply
Proposition to construct a two-sided ideal I generated by elements in C(W;)Nrad(W;)
such that s7-tilt A ~ s7-tilt (W;/I). Then, we can find the type of H(s7-tilt W;) following
Table A. Here, we compute the center of an algebra by GAP as shown above, see [GAP].
In particular, we point out that although A; % ng := Wa1 /1, but s7-tilt A7 ~ s7-tilt ng.
To see the latter one, one may check that vu + uv € C (/V[v/m) and therefore,

sT-tilt ng ~ s7-tilt (ng/ < pv,vp >) ~ st-tilt As.

Last, we look at the case Wi4. Note that vap € C(Wiy) and the indecomposable

projective modules of WM = Wi/ < vau > are

el €2
v
Pl = o K and P2 = va -

a?  ap va?

Then, we find that WM is a quotient algebra of Ay by a?u. Thus, by similar calculation
with Ajg in the proof of Lemma , one can check that H(s7-tilt WM) is of type Hs 5.
By Proposition we deduce that H(s7-tilt Wiy) ~ H(s7-tilt WM) is of type Hss. O

Consequently, we can finish the first step toward the complete classification of 7-tilting

finite two-point algebras.

Corollary 3.2.4. A strongly minimal wild two-point algebra A is T-tilting finite if and

only if it does not contain the Kronecker algebra Ay as a quotient algebra.
Similarly, we have the following result for algebras in Table T.
Theorem 3.2.5. Let T; be an algebra from Table T.

(1) Ty, T3 and Ti7 are T-lilting infinite.
(2) Others are T-tilting finite. Moreover, we have the following posets,

T; Ly | Ty | Ts | T6 | T7 | T3 | 1o | To | T
#HsT-tilt T; ) 5 6 5 8 12 8
Type His Hio | His Hia Mz | Hss | Hss
T; Ty | Tis | Taa | Tis | Ths | Ths | Tho | To0 | Tma |

#st-tilt T; 7 6 ) 7 9 ) 6 7 6
Type Hz,s H2,2 7{3,3 7‘[2,3 7'[2,5 7{3,3 7‘[2,2 7‘[2,3 7‘[2,2

Proof. Similar to the proof of Theorem [3.2.3] one can check that 77 has Ay as a quotient
algebra, T3 and T}; have A5 as a quotient algebra. Hence, T, T3 and T}; are 7-tilting
infinite. We may also distinguish the following cases.

Case (Ty). Since v, apy + pva + voyp € C(Ty) and auv € C(Ty) with

Ty := Ty/ < vi,vap, auy + pva >.
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Then, we have uv € O(Tg/ < auv >) and therefore,
sT-tilt Ty ~ s7-tilt (Ty/ < pv,vu, vop >) ~ st-tilt Asg.
Case (Tyg). For any k € K/{0}, we have puv + vu € C(Ty) such that
sT-tilt Thy ~ s7-tilt fgo with fgo = Tao/ < pv,vp >.
Then, the indecomposable projective ng—modules are

e1 2

Pi=o randPo=5" v
up v

Y

and the Hasse quiver H(2-silt T: 90) is given as follows,

1 2 1
12021 —— 12660
2 1 2

2

2
2172 21252 2
21 @2% 21 D33 ’

O e/ P

Thus, H(s7-tilt Tyg) ~ H(sT-tilt TQO) is of type Has.
Case (Ty1). For any ki, ks € K/{0}, we have puv + vu € C(Ty;). Similarly, we have
sT-tilt Tyy ~ s7-tilt (T%1/ < pv,vp >) and the corresponding Hasse quiver is of type Ha .
For the remaining cases, we may apply Proposition to construct a two-sided ideal
I generated by elements in C'(7;) Nrad(7;) such that s7-tilt B ~ s7-tilt (7;/1), as follows,

T; I B T; I B
15 a? A% Tio o v A
1y B Tis | a,uv+vu | Ag
T5 a, Al T14 Oz2 + vy Ag
Ts | a+(* | As T1s o v A7 |
T Tis g Ag
T a + ﬁ Al

8 B, vau+ ~

Tig Ty

Ty | va?u | A auy + uva
Tll 0[277/04[L AS T19 oz,ﬁ,,uu—i— v A6

3.3 Other applications

At the end of this chapter, we give two easy observations. First, we determine the
7-tilting finiteness of two-point symmetric special biserial algebras. We refer to [Sc] for
the basic concepts and properties of symmetric special biserial algebras, or equivalently,
Brauer graph algebras. In [AIP], the authors classified two-point symmetric special biserial

algebras up to Morita equivalence, so that we can determine their 7-tilting finiteness.
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Proposition 3.3.1 ([AIP, Theorem 7.1]). Let A be a two-point symmetric special biserial
algebra. Then, A is Morita equivalent to one of B; = KQ/I; below, where m,n,r € N.

Q : e I (pv)'u = (vp)"v =0,n > 1.

v

u L:ap=va=0a"=(uv)",m=2,n>1.
Q: «a C o—=o )
Is: o =vp =0, ()" = (pra),n > 1.
Ly pave = vopy = pgvy = g = 0,
_Hubz ()™ = (pove)”™, (vip)™ = (vap2)",m,n > 1.
Q: o=——o
Vi,V Is : vy = vy = povy = vapig = 0,

<M1V1M2V2)n = (le/z/hl/l)n» (V1M2V2N1)n = (V2M1V1M2)nan = 1.

Qi oComz0Ds

Is:au=pp=pr=va=0,a"m=)",5"=wu",mr=2n=1.

I =vu=pB=pBv=0, (qyw)" = (pra)", ™ = (vap)",m > 2,n >
n

1.
Ig:a?=3=uw =vu=0,(vauB)" = (Brap)™, (aufr)" = (ufra)*,n > 1.

Then, we have the following observation.

Proposition 3.3.2. Let B; be a two-point symmetric special biserial algebra. Then, B; is
T-tilting finite if i = 1,2,3,6,7; T-tilting infinite if © = 4,5,8. Moreover, we have

Bi By | By BS BG B7
H#sT-tilt B; 6 8 6 8
Type Ho o Hizsz | Hoo | Hags

Proof. One can easily check that B, and B have Ay as a quotient algebra, and Bg has Aj
as a quotient algebra. Therefore, By, Bs and By are 7-tilting infinite.

Next, we show the remaining case by case.

Case (By). If n =1, then pv,vu € C(By). If n > 2, then uv + vy € C(By). Both of
them satisfy s7-tilt By ~ s7-tilt (By/ < pv,vu >) ~ st-tilt Ag.

Case (By). If n =1, then o, vp € C(By). If n > 2, then a, v + v € C(By). Both of
them satisfy s7-tilt By ~ s7-tilt (By/ < v, uv, vy >) ~ sr-tilt Ag.

Case (Bsg). If n =1, then pv,vap € C(Bs). If n > 2, then apv + pva + vap € C(B3)
and apw € C(Bs) such that uv € C(Bs/ < auv >), where

B = Bs/ < vapu, apv + pra >.

Hence, s7-tilt By ~ s7-tilt (B3/ < pv, vau >) ~ s7-tilt As.
Case (Bg). If n =1, then o, § € C(Bg). If n > 2, then «, 5, uv + vu € C(Bg). Both
of them satisfy s7-tilt Bs ~ s7-tilt (Bg/ < «, 5, uv, v >) ~ st-tilt Ag.
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Case (B7). If n =1, then 5, uv € C(B7). If n > 2, then g, auv + pva + vapu € C(By)
and apw € C(By) such that v € C(Br/ < oy >), where

B, = B/ < B,vau, auv + pra >.
Thus, s7-tilt B; ~ s7-tilt (B7/ < 8, pv, vau >) ~ st-tilt Ag. O
Second, we have the following observation.

Proposition 3.3.3. Let A be a connected two-point algebra without loops. Then, A is

T-tilting finite if and only if it is representation-finite.

Proof. By our assumption, the quiver () of A does not contain loops. If () contains multiple
arrows, then A has the Kronecker algebra As as a quotient algebra and hence, A is 7-tilting
infinite. Then, we deduce that if A is 7-tilting finite, then @) is either o —=o0 or o——=o.
On the other hand, any finite-dimensional algebra with quiver o —=o0 or o——=o is

representation-finite from Bongartz and Gabriel [BoGl. O]
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Chapter 4
Simply Connected Algebras

In this chapter, we focus on the class of simply connected algebras, which contains the
algebras presented by a triangle quiver or a rectangle quiver with all possible commutativity

relations as special cases.

O\, S
/ \ / \ v v v v v
Triangle quiver Rectangle quiver

The notion of simply connected algebras was first introduced by Bongartz and Gabriel
[BoGl Section 6] in representation-finite cases. The importance of these algebras is that
we can reduce the representation theory of an arbitrary representation-finite algebra
A to that of a representation-finite simply connected algebra B. More precisely, for
any representation-finite algebra A, the indecomposable A-modules can be lifted to
indecomposable B-modules over a simply connected algebra B, which is contained inside
a certain Galois covering of the standard form A of A, see Proposition for details.

Soon after, Assem and Skowronski [AS| Section 1.2] introduced the definition for an
arbitrary algebra to be simply connected. In the case of representation-finite algebras, this
new definition coincides with the definition in [BoGl. So we take this new definition in
this thesis (see Definition . Then, the class of simply connected algebras is rather
large. For example, it includes tree algebras, tubular algebras, iterated tilted algebras of
Euclidean type ﬁn(n > 4), Eg, E;, Eg and so on.

In particular, a subclass of simply connected algebras has been extensively investigated,
which is called strongly simply connected algebras and introduced by Skowronski [Sk1]. It is

shown in [BrGl Corollary 2.8] that simply connectedness and strongly simply connectedness
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coincide in the case of representation-finite algebras. Then, the hierarchy (in terms of
domestic, polynomial growth and wild) of representation-infinite strongly simply connected
algebras has been completely determined, see [B3], [BPS], [NS1], [NS2], [Pe] and [Sk2].
We have reviewed these results in Proposition [4.1.12] We point out that there are some

inclusions as follows,

{Simply connected algebras}
D {Strongly simply connected algebras}
D {Staircase algebras} U {Shifted-staircase algebras}

5 { Algebras presented by a triangle or a rectangle }

quiver with all possible commutativity relations

In the first section, we review the definition of (strongly) simply connected algebras as
well as the definitions of critical algebras and Tits forms. In the second section, we show
that a simply connected algebra is 7-tilting finite if and only if it is representation-finite.
This allows us to determine the 7-tilting finiteness for several classes of algebras, such as
tubular algebras, hypercritical algebras and locally hereditary algebras. In particular, we
get a complete list of 7-tilting finite sincere simply connected algebras. In the last section,
we completely determine the 7-tilting finiteness for algebras presented by a triangle or a

rectangle quiver with all possible commutativity relations.

4.1 Basic definitions

Let A~ KQ@Q/I be an algebra with @ = (Q, Q1) over an algebraically closed field K.
We may regard KQ/I as a K-category (see [BoGl Section 2|) which the class of objects
is the set Qp, and the class of morphisms from ¢ to j is the K-vector space KQ(i,7)
of linear combinations of paths in () with source ¢ and target j, modulo the subspace

I(i,7) == 1IN KQ(i,7). We recall some well-known definitions without further reference.

A is called triangular if () does not have oriented cycles and loops.

A is called sincere if there exists an indecomposable A-module M such that all simple

A-modules appear in M as composition factors. Otherwise, A is called non-sincere.

A subcategory B of A is said to be full if for any ¢, j € )5, every morphism f : i — j
in A is also in B; a full subcategory B of A is called convex if any path in Q4 with
source and target in Qg lies entirely in ().

A relation p = Y"1 Nw; € I with A; # 0 is called minimal if n > 2 and for each
non-empty proper subset J C {1,2,...,n}, we have Zjej Ajw; ¢ 1.

We introduce the definition of simply connected algebras as follows. Here, we follow the
constructions in [AS| Section 1.2]. Let A ~ K@Q/I be a triangular algebra with a connected
quiver @ = (Qo, Q1, s,t) and an admissible ideal I. For each arrow o € QQq, let o~ be its
formal inverse with s(a™) = t(a) and t(a~) = s(a). Then, we define Q7 :={a™ |« € Q1}.
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A walk is a formal composition w = wyws - - - w, with w; € Q1 U Q7 for all 1 <7 < n.
We have s(w) = s(wy), t(w) = t(w,), s(w;) = t(w;—1) for all « > 1 and we denote by 1,
the trivial path at vertex z. For two walks w and w with s(u) = t(w), the composition
wu is defined in the obvious way. In particular, w = 1w = wlyy). Then, let ~ be the

smallest equivalence relation on the set of all walks in @) satisfying the following conditions:

(1) For each a: z — y in @1, we have aa™ ~ 1, and o~ o ~ 1,,.
(2) For each minimal relation Y ", A\jw; in I, we have w; ~ w; for all 1 <i,j < n.
(3) If u,v,w and w' are walks and u ~ v, then we have wuw’ ~ wvw’ whenever these

compositions are defined.

We denote by [w] the equivalence class of a walk w. Clearly, the product wu of two walks
w and u induces a product [w] - [u] of [w] and [u]. Note that [wu] = [w] - [u].

For a given = € Qo, the set I1;(Q, I,x) of equivalence classes of all walks w with
s(w) = t(w) = x becomes a group via the above product. Since @) is connected, we can
always find a walk u from x to y for two different vertices x and y, so that we can define an
isomorphism from I1;(Q, I, z) to I1;(Q, I,y) by [w] — [u]™" - [w] - [u]. This implies that
I1,(Q, I, z) is independent of the choice of z, up to isomorphism. Then, the fundamental
group of (@, ) is defined by

Hl(Q’]) = H1<Q7[7$)‘

Definition 4.1.1 ([AS| Definition 1.2]). A triangular algebra A is called simply connected
if, for any presentation A ~ K@ /I as a bound quiver algebra, the fundamental group
I, (Q, I) is trivial.

It follows from [BrGl (1.2)] and [MP} (4.3)] that if A is moreover representation-finite,
the above definition coincides with the original definition introduced by Bongartz and
Gabriel [BoGl, Section 6] that A is simply connected if the Auslander-Reiten quiver of
A is simply connected. Let I'(mod A) be the Auslander-Reiten quiver of A, which can
be considered as a path category KT'(mod A). For any indecomposable non-projective

A-module M, we have the following sequence in I'(mod A),

Oc;r N a;
N
™™ : M .

We define oy := Y1 | o a; and the mesh-category m(I'(mod A)) := KT'(mod A)/Ir,,
which is bounded by the mesh-ideal I, := (op | 7M # 0). Then, the standard form A
of A (see [BrGl (3.1)]) is defined to be the full subcategory consisting of all projective
points of the mesh-category m(I'(mod A)). Besides, A is also representation-finite and
I'(mod A) = T'(mod A), see [BoGl Corollary 5.2] for details. We can see the importance of

simply connected algebras in the following proposition.
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Proposition 4.1.2 (|[BrGl Section 3]). Let A = KQa/I4 be a representation-finite algebra.
Then, the standard form A is Morita equivalent to A and A admits a Galois covering
F: B — B/G = E, where B 1s simply connected and G is the fundamental group
I1,(Qa, L4), which is a finitely generated free group.

It is worth mentioning that any representation-finite simply connected algebra is
Standar by [BoG, (6.1)] and therefore, B = Aif Ais simply connected in the above.

Example 4.1.3 ([Ass2, Example 2.2]). We give some examples.

(1) All tree algebras are simply connected.

(2) A hereditary algebra K@) is simply connected if and only if @ is a tree.

Next, we look at a subclass of simply connected algebras, which has been studied

extensively by quiver and relations.

Definition 4.1.4 ([Sk1l, (2.2)]). A triangular algebra A is called strongly simply connected

if every convex subcategory of A is simply connected.
We may distinguish the representation-finite cases as follows.

Proposition 4.1.5 ([BrGl Corollary 2.8]). Let A be a representation-finite triangular
algebra. Then, A is simply connected if and only if A is strongly simply connected.

Example 4.1.6. We have the following examples.

1)
2)
3)
4) Let A:= KQ/I with I :=< aff —~d,aX — yu > and the following quiver Q:

All tree algebras are strongly simply connected.
Completely separating algebras are strongly simply connected, see [Dral.
A hereditary algebra K@ is strongly simply connected if and only if @) is a tree.

(
(
(
(

&o

—

"

Then, A is simply connected but not strongly simply connected, see [Ass2].

We recall the separation property of a triangular algebra A ~ K@ /I, which provides a
sufficient condition for A to be simply connected. We denote by P; the indecomposable
projective module at vertex ¢ and rad P; its radical. Then, P; is said to have a separated
radical (e.g., [ASS| IX, Definition 4.1]) if rad P; is a direct sum of pairwise non-isomorphic
indecomposable modules whose supports are contained in pairwise different connected
components of Q(i), where (i) is the subquiver of ) obtained by deleting all vertices of
() being a source of a path in @ with target ¢ (including the trivial path from ¢ to 7). We
say that A satisfies the separation property if every indecomposable projective A-module

P has a separated radical.

LA modern definition for an algebra A being standard is that A has a universal covering. However, the
definition in [BoG| means that the Auslander-Reiten quiver of A is a mesh-category.
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Proposition 4.1.7 ([Sk1l, (2.3), (4.1)]). Let A be a triangular algebra.

(1) If A satisfies the separation property, then it is simply connected.
(2) A is strongly simply connected if and only if every convexr subcategory of A (or A°P)

satisfies the separation property.

Note that the above condition provides a large class of examples of simply connected
algebras. We recall that the one-point extension B = A[M] of A by an A-module M is
defined by
A 0
M K

If A is simply connected and M = rad P is a separated radical of an indecomposable

B = A[M] :=

projective B-module P, then B is also simply connected following [Ass2, Lemma 2.3].
We point out that the characterization of strongly simply connected algebras has been
extensively investigated, even though it is not easy to recognize whether a given algebra is

simply connected or not.

Proposition 4.1.8 ([ALL Theorem 1.3], [Sk1l, (4.1)]). Let A be a triangular algebra. Then,

the following conditions are equivalent.

(1) A is strongly simply connected.
(2) Every convex subcategory of A (or A°P) satisfies the separation property.

(3) There is a presentation (Q,I) of A such that I11(Q’, I') is trivial for any connected
full convex bounded subquiver (Q',I") of (Q,I).

4.1.1 Tits form

Let A ~ K@Q/I be a triangular algebra and N := {0,1,2,...}. We recall from [B2,
Section 2] that the Tits form g4 : Z9 — Z of A is the integral quadratic form defined by
ga(v) = > vi— 3 v+ Y r(i fv,

1€Qo (i=j)€1 ,J€Qo
where v := (v;) € Z9 and 7(i,j) = |[RN 1(4,7)| with a minimal set R C Ui jeq, 1(4, ) of
generators of the admissible ideal I. Then, the Tits form ¢4 is called weakly positive if
ga(v) > 0 for any v # 0 in N?, and weakly non-negative if g4(v) > 0 for any v € N%o,
It is well-known that the Tits form ¢4 has a close connection with the representation

type of A. Here, we recall the related results for (strongly) simply connected algebras.
Proposition 4.1.9 ([SS2, XX, Theorem 2.9, 2.10]). Let A be a simply connected algebra.
(1) A is representation-finite if and only if the Tits form qa is weakly positive, or
equivalently, if and only if A does not contain a cm’ticaﬂ convex subcategory.

(2) If A is strongly simply connected, then A is tame if and only if the Tits form qa is

weakly non-negative, but not weakly positive.

2As we mentioned in Remark [4.1.11] the definition of critical algebras used here comes from [SS2, XX,
Definition 2.8], but not from [B4].
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4.1.2 Critical algebras

Let I'(mod A) be the Auslander-Reiten quiver of A. A connected component C' of
['(mod A) is called preprojective if there is no oriented cycle in C', and any module in C' is
of the form 77"(P) for an n € N and an indecomposable projective A-module P.

Let A := KA be a hereditary algebra with a tilting A-module T" (see Definition .
Then, the endomorphism algebra B := End4 T is called a tilted algebra of type A. If
moreover, 7' is contained in a preprojective component C' of I'(mod A), then we call B a

concealed algebra of type A.

Definition 4.1.10 ([SS2, XX, Definition 2.8]). A critical algebra is one of concealed
algebras of Euclidean type ]ﬁ)n(n > 4), IEG, IE7 and IES.

Remark 4.1.11. The above definition is different from the original definition of critical
algebras introduced by Bongartz in [B4]: an algebra A is called critical if A is representation-
infinite, but any proper convex subcategory of A is representation-finite. In this thesis,
the critical algebras we use are actually the original critical algebras in [B4] obtained by

admissible gradings, as described in [B4, Theorem 2.

We point out that critical algebras are strongly simply connected. To show this, we
first find in [AS| (1.2)] that critical algebras are simply connected. Since the quiver and
relations of critical algebras are given in [B4] (and [HV]), we observe that each proper
convex subcategory of a critical algebra is also simply connected and hence, critical algebras
are strongly simply connected (see also [SS2, XX, Definition 2.8]).

It is also true that a critical algebra A admits a preprojective component. To show
this, one may combine Proposition and [ASS| IX, Theorem 4.5]. In fact, we observe
that any strongly simply connected algebra admits a preprojective component.

We recall from [HV] that tame concealed algebras consist of critical algebras and
the concealed algebras of Euclidean type b&n Then, tame concealed algebras together
with the so-called generalized Kronecker algebras, are precisely the minimal algebras of
infinite representation type with a preprojective component. Here, an algebra A is called a
minimal algebra of infinite representation type if A is representation-infinite, but A/AeA
is representation-finite for any non-zero idempotent e of A.

In the following, we recall some classes of algebras that play an essential role in the
representation theory of strongly simply connected algebras. The first class of algebras
is tubular algebras, which are introduced by Ringel [Rin, Chapter 5] and have only 6,
8, 9 or 10 simple modules. Tubular algebras are branch-enlargements of the canonical
tubular algebras C(2,2,2,2), C(3,3,3), C(2,4,4) and C(2, 3,6), where the canonical algebra
C(2,2,2,2) is defined by the following quiver and relations

(¢]
%O\K 1S + oz + azfs = 0,
o/ \o

181 + Aaafs + aufBy = 0,

*3>o/ﬁ7
x % A e K/{0,1},

(¢]
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and the canonical algebra C(p, q,r) with p < ¢ < r is defined by the quiver

s op_1
a1 o © o . o ° _ap
//61// B2 Bg—1 m
O o (@] (@] LA (@] (@] o (@]
\ o _— /
(@] (@] LRI (@] (@]

bounded by ajas - o, + B1f2 - By + 7172+ - v = 0. We have known from [HR2) Section
1] that each tubular algebra is derived equivalent to a canonical tubular algebra (of the
same type). In particular, [Sk2 Proposition 2.4] implies that every tubular algebra is
tame, non-domestic, of polynomial growth.

We recall from [Rinl, Section 4.1] that an A-module T is called cotilting if it satisfies
|T| = |A|, Exty,(T,T) = 0 and the injective dimension of 7" is at most one. Then, A and
B are tilting-cotilting equivalent (see [Hal Corollary 1.7]) if there exists a sequence of
algebras A = Ag, Ay,..., A, = B and a sequence of modules T% (0 <4 < m), such that
Ai41 = Endy, T}, and T is either a tilting or cotilting module. According to [H, Theorem
1.1], an algebra that is derived equivalent to a tubular algebra is always tilting-cotilting
equivalent to one of the canonical tubular algebras. Besides, it is shown in [AS] (1.4)] that
an algebra is simply connected if it is tilting-cotilting equivalent to a canonical tubular
algebra. Thus, we conclude that tubular algebras are simply connected.

More generally, the algebras which are derived equivalent to tubular algebras are simply
connected. However, such an algebra could be representation-finite. One may refer to
[Barl, Theorem] for an explicit characterization of representation-finite algebras which are
derived equivalent to tubular algebras.

The second class of algebras is the pg-critical algebras introduced by Norenberg and
Skowronski [NS2]. These algebras stand for the polynomial growth critical algebras, that
is, representation-infinite tame simply connected algebras which are not of polynomial
growth, but every proper convex subcategory is. Following [NS2, Theorem 3.2], one can
understand all pg-critical algebras by quiver and relations obtained from 31 frames and 3
admissible operations. For the sake of simplicity, we omit these quivers and relations.

The third class of algebras is the hypercritical algebras introduced by Unger [Un] (see
also Lersch [Ler| and Wittman [Wi]). An algebra A is said to be hypercritical if A is a

concealed algebra of minimal wild hereditary tree algebras of the following types:

T5: o o D,: o o
N S /
o o 0O—0—=--+—0—0
/N ~
O o @) o —20O
Eg : o E;: o
(o] O—O0—0—0—0—0—0—0

O—O0—0—0—0—0

ng @)

oO—O0—O0—O0—0—0—0—0—0
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where in the case of ﬁn the number of vertices is n 4+ 2 with 4 < n < 8. Similarly, one can
understand hypercritical algebras by quivers and relations ([Un]) and they are strongly
simply connected. Actually, they are minimal wild strongly simply connected algebras as
shown in Proposition below.

We point out that tubular algebras and pg-critical algebras are not necessarily strongly

simply connected while hypercritical algebras must be strongly simply connected.

Proposition 4.1.12 ([BPS| Corollary 1], [Sk2l Theorem 4.1, Corollary 4.3]). Let A be a

representation-infinite strongly simply connected algebra.

(1) A is tame if and only if A does not have a hypercritical algebra as a convex subcategory.

(2) A is tame minimal superpolynomial growth if and only if A is obtained from one of the
frames (1)—(16) in the list of pg-critical algebras in [NS2| by admissible operations.

(3) A is of polynomial growth if and only if A does not have a convex subcategory which
18 pg-critical or hypercritical.

(4) A is domestic if and only if A does not have a convex subcategory which is tubular

or pg-critical or hypercritical.

4.2 Simply connected algebras

In this section, we first show that a 7-tilting finite simply connected algebra is
representation-finite. Then, we prove that the 7-tilting finiteness of a non-sincere al-
gebra can be reduced to the 7-tilting finiteness of a sincere algebra. Therefore, we can get
a complete list of 7-tilting finite sincere simply connected algebras. Last, we determine
the 7-tilting finiteness of several algebras which are related to the representation theory of

(strongly) simply connected algebras. We need the following fundamental lemma.
Lemma 4.2.1. Any critical algebra A is T-tilting infinite.
Proof. We have known from Definition [4.1.10|that a critical algebra A is a minimal algebra

of infinite representation type with a preprojective component Cy. As we mentioned in
the previous section, each pair (M, 7M) with a non-projective A-module M appears in

the Auslander-Reiten quiver I'(mod A) as follows,

N

7O\

™™™ : M .

I e A

Then, by [SS1) X, Proposition 3.2], each pair of indecomposable modules M and N in C4
satisfies rad™ (M, N) = rad‘(M, N) = 0 for £ > 0. This implies that Hom (M, M) = 0
for any M € (4, i.e., any indecomposable module M € C}y is a 7-rigid module. Since A
is representation-infinite, every connected component of I'(mod A) is infinite (see [ASS|
IV, Theorem 5.4] for a proof). Therefore, A has infinitely many pairwise non-isomorphic
indecomposable 7-rigid modules and A is 7-tilting infinite by Proposition [2.3.2] O]
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In the above proof, the following remark is crucial. Some scholars have used this
statement, such as Adachi [AdI] and Mousavand [Mo], to show that 7-tilting finiteness

coincides with representation-finiteness for several classes of algebras.

Remark 4.2.2 (|]Mo, Remark 2.9]). Let A be an algebra with a preprojective component.

Then, A is 7-tilting finite if and only if it is representation-finite.
Theorem 4.2.3. Let A be a simply connected algebra. Then, the following are equivalent.

(1) A is T-tilting finite.
(2) A is representation-finite.

(8) A does not have a critical algebra as a convex subcategory.

Proof. By the definition, a convex subcategory B of A is actually a certain idempotent

truncation of A. If A is 7-tilting finite, then it cannot have a critical algebra as a convex
subcategory by Proposition and Lemma[4.2.1] This implies (1) = (3). By Proposition
4.1.9, one can find (3) = (2). Last, (2) = (1) is obvious. O

As we mentioned in the first section, we have the following immediate results.
Corollary 4.2.4. All tubular, pg-critical and hypercritical algebras are T-tilting infinite.
Corollary 4.2.5. Let A be an algebra which is derived equivalent to a tubular algebra.
Then, A is T-tilting finite if and only if it is representation-finite.

Corollary 4.2.6. Assume that A is a simply connected algebra. If A is not strongly simply
connected, it is T-tilting infinite.

Proof. By Proposition 4.1.5] such an algebra A must be representation-infinite. O
Corollary 4.2.7. Let A be a simply connected algebra and B = A[M]| the one-point

extension with a separated radical M = rad P for an indecomposable projective B-module

P. Then, B is T-tilting finite if and only if it is representation-finite.
Proof. This follows from the fact that B is simply connected, see [Ass2, Lemma 2.3]. O

Next, we consider non-sincere and sincere algebras. Let {ej,es,...,e,} be a complete

set of pairwise orthogonal primitive idempotents of A. Then, we have

Theorem 4.2.8. A non-sincere algebra A is T-tilting finite if and only if A/Ae;A is
T-tilting finite for any 1 <1 < n.

Proof. 1If A is 7-tilting finite, then A/Ae; A is 7-tilting finite following Proposition m
We assume that any A/Ae; A is 7-tilting finite. Since A is a non-sincere algebra, for
any indecomposable A-module M, there exists at least one e; such that Me;, = 0 and
we may denote B; := A/Ae;A. Then, for any indecomposable 7-rigid A-module M, one
can always find a suitable ¢ such that M becomes an indecomposable 7-rigid B;-module.

Besides, the number of indecomposable 7-rigid B;-modules is finite following Proposition
2.3.2] Hence, A is also 7-tilting finite. O
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Corollary 4.2.9. A non-sincere algebra A is T-tilting finite if and only if all sincere

quotient A/AeA is T-tilting finite for any idempotent e of A.

Therefore, the study of 7-tilting finiteness for non-sincere algebras reduces to that of
sincere algebras. We may apply this strategy to simply connected algebras. Let A be
a representation-finite sincere simply connected algebra (it is actually strongly simply
connected following Proposition [4.1.5). In [B5], Bongartz introduced a list of 24 infinite
families containing all possible A’s with |A| > 72. Then, this bound is refined to |A] > 14
in Ringel’s book |[Rin, Section 6]. Hereafter, Bongartz determined the algebras with
|A| < 13 by the graded tree introduced in [BoG]. Finally, Rogat and Tesche [RT] gave a
list of all possible A’s by Gabriel quiver and relations.

Remark 4.2.10. By Theorem [4.2.3] the list in [RT] provides a complete list of 7-tilting

finite sincere (strongly) simply connected algebras.

4.2.1 Some applications

We first consider the class of triangular matrix algebras. We denote by 73(A) the
algebra of 2 x 2 upper triangular matrices (‘6‘ ﬁ) over an algebra A. Then, the category
mod T2(A) is equivalent to the category whose objects are A-homomorphisms f: M — N
between A-modules M and N, and morphisms are pairs of homomorphisms making the
obvious squares commutative. This reminds us that the category mod T3(A) is closely
connected with the module category of the Auslander algebra of A.

Let A be a representation-finite algebra and {M;, Ms, ..., M} a complete set of
representatives of the isomorphism classes of indecomposable A-modules. Then, the

Auslander algebra of A is defined as End 4 (®;_,M;). We have

Proposition 4.2.11. Let A be a representation-finite simply connected algebra and B :=

Enda (B35, M;) its Auslander algebra. Then, the following conditions are equivalent.

(1) B is T-tilting finite.

(2) B is representation-finite.
(8) Ta(A) is T-tilting finite.

(4) T2(A) is representation-finite.

Proof. Tt follows from [ABl Theorem] that the Auslander algebra of A is simply connected
if and only if A is simply connected. Therefore, B is simply connected and (1) < (2)
follows from Theorem [4.2.3] It is known from [LST] that 75(A) ~ T5(K)® A. Then, T5(A)
is simply connected if and only if A is simply connected (see [LS2]). Hence, (3) < (4) also
follows from Theorem [4.2.3] Lastly, (2) < (4) follows from [AR], Theorem 1.1] or [ARS]
VI, Proposition 5.8]. O
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We point out that if A is a representation-infinite simply connected algebra, 75(A) is
7-tilting infinite. In fact, it is easy to check that 73(A) has A as a convex subcategory.

Next, we consider the class of iterated tilted algebras. We recall that an algebra
A is called iterated tilted of type A (see [AHl, (1.4)] and [HRS, Theorem 3]) if A is
tilting-cotilting equivalent to a path algebra KA.

Proposition 4.2.12. Let A be an iterated tilted algebra of Dynkin type or types ﬁn, I~Ep, (n >
4,p=16,7 or8). Then, A is T-tilting finite if and only if it is representation-finite.

Proof. Tt is shown by [Assl, Proposition 3.5] that iterated tilted algebras of Dynkin type
are simply connected, and by [AS, Corollary 1.4] that an iterated tilted algebra of Euclidean
type is simply connected if and only if it is of types ]13)”, IEP, (n>4,p=6,7or 8). Then,
the statement follows from Theorem [4.2.3] O

At the end of this section, we give another application of Theorem [£.2.3] We claim
that the result below has been published in a joint work [AHMW]| with Takuma Aihara,
Takahiro Honma and Kengo Miyamoto.

We recall that an algebra A ~ K@Q/I is called an incidence algebra if @) is the Hasse
quiver of a finite poset and [ is the ideal generated by all possible commutativity relations,
that is, by all elements w; — wy given by the pairs {w;, ws} of paths in @ having the same

source and target. For example, we define

o a3
O——>O0——>20

ai Q4
Q= O( E o and [ =< ajasazay — P1P20584 >.
o B2 o B3 o

Then, the bound quiver algebra A := K@Q/I is an incidence algebra.

More generally, we recall a larger class of algebras which contains the class of incidence
algebras as a special case. We call an algebra A locally hereditary (see [Baul) if every non-
zero homomorphism between indecomposable projective A-modules is a monomorphism.
Clearly, hereditary algebras, incidence algebras and tubular algebras are locally hereditary.
The class of locally hereditary algebras is rather large and plays an important role in the

representation theory of algebras, we refer to [Les| for more details.

Theorem 4.2.13 (JAHMW, Theorem 4.11]). A 7-tilting finite locally hereditary algebra

15 representation-finite.

Proof. By the definition, a locally hereditary algebra A has no monomial relations and
the quiver Q4 of A is triangular. We observe that if (J4 contains a subquiver of Euclidean
type ]INDn, IEG, IEq or IES, then the corresponding idempotent truncation is a path algebra
because ]ﬁ)n, I~E6, E'], Eg are trees and only possible relations are monomial relations.

We assume that A is 7-tilting finite. Then, the quiver of A does not have a subquiver
of Euclidean type ]INDn, INEG, INE7 or INEg, since the path algebra of such a subquiver is minimal
T-tilting infinite as we mentioned in Section 2.3. Moreover, the local hereditariness makes

A to be an incidence algebra.
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On the other hand, it is shown in [Dra, Theorem 3.3] that an incidence algebra is
strongly simply connected if and only if it does not contain a full subcategory whose quiver

is a crown, i.e., is of the form

O\MO

It is obvious that a crown is just a quiver of Euclidean type :Asn with zigzag orientation.
If a crown appears in the quiver of A, then the corresponding idempotent truncation of
A would surject to the path algebra of the crown, contradicting our assumption that A
is 7-tilting finite. Therefore, A is a strongly simply connected incidence algebra and the
statement follows from Theorem £.2.3] O

4.3 Algebras with rectangle or triangle quiver

In this section, we first recall the constructions of staircase algebras A(\) introduced
by Boos [Bo|, which are parameterized by partitions A. As we will show below, one
can see that an algebra presented by a rectangle quiver with all possible commutativity
relations, is actually a staircase algebra A(\) with A = (m™). Similarly, we introduce the
shifted-staircase algebra A®(\°) parameterized by a shifted partition \* as a generalization

of algebras presented by triangle quivers.

4.3.1 Staircase algebras

We recall that a partition A = (A; > Ay = -+ = A¢) of n is a non-increasing sequence
of positive integers such that ). A\; = n. We may merge same entries of A by potencies,
for example, (3,3,2,1,1) = (3%,2,12). We can visualize A by the Young diagram Y ()),

that is, a box-diagram of which the i-th row contains \; boxes. For example,

Y(32%,2) =

Starting with (1, 1) in the top-left corner, we assign each of the boxes in Y (\) a coordinate

(i,7) by increasing i from top to bottom and j from left to right.
Definition 4.3.1 ([Bd, Definition 3.1]). Let A be a partition. We define @, and I, by

e the vertices of @) are given by the boxes appearing in Y (\);
e the arrows of (), are given by all (¢,5) — (i,7 + 1) and (4,5) — (i + 1, ), whenever
all these vertices are defined.

e [, is a two-sided ideal generated by all possible commutativity relations for all

squares appearing in ().
Then, the bound quiver algebra A(\) := KQ, /I is called a staircase algebra.
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Following the above example, let A = (32,2), the associated quiver @y is given by

Qai,1 Qai,2

(1,1) (1,2) (1,3) 60— o
ﬂ1,1l . 151,2 - 251,3l l/ l l/
(2,1) 221 (2,2) 222 (2,3) ~ o—>o0—>0,
ﬂ2,1l/ /32,2l/ l/ l
(3,1) 224 (3,2) ot

and the corresponding staircase algebra A(\) is defined by
A(N) = KQ»/ < ar,1b12 — Biaceg, ar2b13 — Biatag, as1fao — Bz >.

We denote by AT the transposed partition of a partition A, which is given by the
columns of the Young diagram Y (\) from left to right. Then, A(\) is isomorphic to A(AT).

Moreover, A()) is a basic, connected, triangular, finite-dimensional K-algebra.

Proposition 4.3.2 ([Bol Proposition 3.7]). Let A\ be a partition. Then, the staircase
algebra A(\) is strongly simply connected.

This implies that A(\) is 7-tilting finite if and only if it is representation-finite. Since
the author of [Bo] has given a complete classification of the representation type of A(M),

we can understand all 7-tilting finite staircase algebras by quiver and relations.
Theorem 4.3.3 (|[Bdl Theorem 4.5]). A staircase algebra A(X\) with a partition X of n is
(1) representation-finite (< T-tilting finite) if and only if one of the following holds:
e A {(n),(n—k,1%),(n—2,2),(22,1" )} for k <n.
o n <8 andA¢ {(4,3,1),(3%2),(3,22,1), (4,2,12)}.
(2) tame concealed if and only if A comes up in the following list:
(6,3),(6,2,1), (5, 22), (4,3,1), (4, 2, 12), (3, 22 1), (32, 13), (23, 13), (3,2, 14).
(3) tame, but not tame concealed if and only if A comes up in the following list:
(5%), (5,4), (4%,1),(3°), (3%,2), (3,2%), (2°), (2%, 1).
Otherwise, A(\) is wild.
Let A, be the path algebra of Dynkin type A,, associated with linear orientation. Then,
we define
B = {Bmm | By, 1s the tensor product A, Qx ffn}

Note that B,, ., is presented by a rectangle quiver with all possible commutativity relations
and vice versa. In particular, B,,,, ~ B, ,,. We also note that B,,,, can be regarded as a

special staircase algebra. Hence, we can determine the 7-tilting finiteness of B, .

Corollary 4.3.4. Let B,,, € B. Then, the algebra B,,, is T-tilting finite if and only if
(m,n) or (n,m) € {(1,k), (2,2),(2,3), (2,4) | k € N}.

Proof. 1t is obvious that B,,, is a staircase algebra A(X) with A = (m™) or (n™). Then,
the statement follows from Theorem [£.3.3 O

o7



4.3.2 Shifted-staircase algebras

Now, we consider the triangle quivers. We point out that the quiver of staircase
algebras cannot be a triangle quiver because of the different orientations. One may look

at the following case as an example.

/

A triangle quiver Qy,; A(N) with A = (4,3,2,1)

NN
SN

o
VRN

This motivates us to introduce the shifted-staircase algebras. We recall that a shifted
partition A* = (Aj > A3 > --- > \J) is a strictly decreasing sequence of positive integers.
We can visualize A* by the shifted Young diagram Y (A\®), that is, a box-diagram of which
the i-th row contains )\; boxes and is shifted to the right ¢ — 1 steps. For example, let
A = (4,3,2,1), then

Y(\) =1

Starting with (1, 1) in the top-left corner, we assign each of the boxes in Y (A*) a coordinate

(i,7) with 7 > i by increasing ¢ from top to bottom and j from left to right.
Definition 4.3.5. Let \* be a shifted partition and A°(\°) := KQ,s/I,s such that

e the vertices of ()s are given by the boxes appearing in Y (A\*);
e the arrows of @ys are given by all (i,7) — (4,5 + 1) and (4,5) — (i + 1,7), whenever
all these vertices are defined.

e [, is a two-sided ideal generated by all possible commutativity relations for all

squares appearing in )ys.
Then, the bound quiver algebra A4%(\®) is called a shifted-staircase algebra.

For example, the quiver Qs with A* = (4,3,2,1) is exactly the triangle quiver Qy;
displayed above. In fact, the algebra presented by a triangle quiver with w vertices
(and all possible commutativity relations), is exactly the shifted-staircase algebra A*(\*)
with A* = (n,n—1,...,2,1).

It is obvious that A®(\®) is also a basic, connected, triangular, finite-dimensional

K-algebra. Next, we show that A%*(\*) is strongly simply connected.

Proposition 4.3.6. For a shifted partition \°, A*(\°) is strongly simply connected.
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Proof. Let B be a convex subcategory of A*(\*) and P ;) the indecomposable projective
B-module at vertex (4, ). Then, one can check that rad F; j) is either indecomposable or
decomposed into exactly two indecomposable B-modules. The latter case appears if and
only if (¢,7 + 1) and (i + 1,7) are vertices of the quiver Qg of B, but (i + 1,7 + 1) is not.

For the former case, there is nothing to prove. For the latter case, let Q(i,7) be the
subquiver of () g obtained by deleting all vertices of (g being a source of a path in Qg with
target (i, j). Then, Q(7, ) is decomposed into two disjoint subquivers such that rad P ; is
separated. Hence, B satisfies the separation condition and it is simply connected following
Proposition [4.1.7] Then, the statement follows from the definition of strongly simply

connected algebras, see Definition 4.1.4! O]

Now, we have understood that A%(\*) is 7-tilting finite if and only if it is representation-
finite. In order to classify 7-tilting finite shifted-staircase algebras by quiver and relations,
it is enough to give a complete classification for the representation type of shifted-staircase
algebras. Before to do this, we need the following observation.

Let A* = (A > A3 > --- > \j) and p® = (5 > p5 > --- > pi) be two shifted partitions.
We say that \* < p®if £ <k and \] < pf forall 1 <4 < /4.

Proposition 4.3.7. Suppose \°* < p®. Then, A*(N\°) is a convex subcategory of A®(u*).

We may use an example to understand the above proposition. Let A\* = (4,3,1) and
p® = (4,3,2,1). Then, A°(\°) is presented by

_—

o

O=<=—20

_—

O=<=—O0=<—20

with all possible commutativity relations, while A®(u®) is presented by the triangle quiver
Qi with all possible commutativity relations. One can easily find that A*(\®) is a proper

convex subcategory of A®(u®).
Theorem 4.3.8. For a shifted partition \°, the shifted-staircase algebra A*(\°) is

o representation-finite if and only if \° is one of (n), (m — 1,1) with m > 3, (3,2),
(4,2), (5,2), (6,2), (4,3), (5,3), (5,4), (3,2,1) and (4,2, 1).

e tame concealed if and only if \* is one of (6,3), (7,2) and (5,2,1).

e tame non-concealed if and only if \* is one of (6,4), (6,5), (4,3,1), (4,3,2) and
(4,3,2,1).

Otherwise, A*(\°) is wild.
Proof. We first observe that A°(n) and A®*(m — 1,1) with m > 3 are path algebras of

Dynkin types A,, and D,,, respectively. Thus, both of them are representation-finite.
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Next, we directly construct the Tits form of 4°(\*) for some small cases. Then, we can
use Proposition to check their representation type since A*(\*) is strongly simply
connected. In particular, we use the software GAP to check whether a Tits form is weakly
non-negative (resp., weakly positive) or not, where the method in GAP is introduced by
[DP] (resp., [Ho]). Although we can also check that A*(\®) is critical or not by checking
the Tits form of all convex subcategories of A*(\*), we would like to trust the list of
critical algebras in [B4] since the list is also given independently in [HV].

(1) Assume that Qs ) is labeled as

1 2 3 4 5 6 7 8.

9—10
By the definition of Tits form, we have

2 2 2

qas(8,2)(V) = vV — V1V2 + V) — Vavg — VaVy + Va0 + Vs
2 2 2
— U3Us — V3V1g + Uy — VUaUs + V5 — UsVg + Vg

2 2 2 2
— VgU7 + U7 — U7Ug + Ug + Vg — Vgl19 + Vig-

Then, one can check that

10 20 25 20 16 12 5 1
qAs(8,2) 15 10 = —1.

We deduce that .4%(8,2) is wild following Proposition [4.1.9] Then, we observe that A%(7,2)
is the critical algebra numbered 18 in [B4] and hence, A%(6,2), A°(5,2), A°(4,2) and
A?*(3,2) are representation-finite. Similarly, one can check that A°(7,3) is wild by

2 4 6 6 4 2 1
qA5(7,3) 449 = -1,

and A%(6, 3) is the critical algebra numbered 93 in [B4]. Then, A%(5,3) and .4%(4, 3) are
representation-finite.
(2) Assume that Q) is labeled as

1 3 4 )

8—=9—>10—>11
Then, the Tits form gas5(v) = vXv” is given by

OO

2 -1 0 0 0 0 0 0
-1 2 -1 0 0 -1 1 0 0
0 -1 2 -1 0 0 0 -1 1 0 0
0 0 -1 2 -1 0 0 0 -1 1 0
1 0 -1 2 -1 0 0 0 -1 1
X==1o0 0 -1 2 0 0 -1
2 0 -1 0 0o 2 -1 0
0 1 -1 0 0 -1 2 -1 0
0 0 1 -1 0 0 -1 2 -1 0
0 0 1 -1 0 0 -1 2 -1
0 0 0 1 -1 0 -1 2



It can be checked by GAP that gus(s5)(v) is weakly non-negative, so that A%(6,5) is not
wild by Proposition [4.1.9. On the other hand, A°(6,5) is representation-infinite since it

has the following critical algebra as a proper convex subcategory,

o (@] o (@]
(@] o (@] o

which is numbered 86 in [B4]. Thus, .4°(6,5) is tame non-concealed. We find that .4°(6,4)
is also tame non-concealed since such a proper critical convex subcategory in A%(6,5)
remains in A%(6,4). Then, we find that A*(5,4) is representation-finite since the Tits form
qas(5,4)(v) is weakly positive.
(3) We point out that 4°(6,2,1) is wild by
2 4 6 4 21
qA5(6,2,1) 4 4 =—1,
2

and A°*(5,2,1) is the critical algebra numbered 14 in [B4]. Therefore, A4°(4,2,1) and
A%(3,2,1) are representation-finite. Similarly, A%(5,3,1) is wild by

11 3 4 2
qAs(5,3,1) 2 4 3 = —1.
2
Since A*(4,3,2,1), A°(4,3,2) and A°(4, 3, 1) contain the following critical algebra (see

[B4, Lemma 3.1]) as a proper convex subcategory,

NN
I

they are representation-infinite and not tame concealed. Similar to the case A%(6,5),
the Tits form qusa3,21)(v) is weakly non-negative such that 4°(4, 3,2, 1), A%(4,3,2) and
A*(4,3,1) are not wild.

Lastly, we observe that if A* does not contain one of (8,2),(7,3),(6,5),(6,2,1) and
(5,3,1), then \* is listed in Theorem m Thus, all of the remaining cases are wild. [J

Remark 4.3.9. In fact, A°(8,2) is a minimal wild®| algebra which is the 3rd algebra in
the first line on page 151 of [Unl; A%(7,3) is the 4th minimal wild concealed algebra in
the second line on page 152 of [Unl; A°(6,2,1) is the 1st minimal wild concealed algebra
in the second line on page 150 of [Un|; A%(5,4) is a representation-finite sincere simply
connected algebra, which is numbered 920 of type (5,2, 1) in [RT].

Corollary 4.3.10. A shifted-staircase algebra A°(\*) is T-tilting finite if and only if the
shifted partition \* is one of (n), (m — 1,1) with m > 3, (3,2), (4,2), (5,2), (6,2), (4,3),
(5,3), (5,4), (3,2,1) and (4,2,1).

3 A is called minimal wild if A is wild, but A/AeA is not wild for any non-zero idempotent e of A.
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We define

C .= {C’ | Cy is the algebra presented by a triangle quiver with }

—”(";1) vertices and all possible commutativity relations

Corollary 4.3.11. Let C,, € C. Then, C,, is T-tilting finite if and only if n < 3.
Proof. 1t is obvious that C,, is the algebra A*(\*) with \* := (n,n —1,...,2,1). O

At the end of this section, we may distinguish the following special cases. Let A, be

the path algebra of Dynkin type A, associated with linear orientation. We define
D := {Dn | D, is the tensor product fTQnH QK ffn}
and

E = {En | E, is the Auslander algebra of /YQn}.

Then, D,, is the staircase algebra A()\) with A = (n?"*!) and E, is a quotient algebra of
the shifted-staircase algebra A°(\°) with A* = (2n,2n —1,...,1), modulo some monomial
relations. It is shown in [La, Corollary 1.13] that D,, € D is derived equivalent to E,, € &.

Remark 4.3.12. Prof. Ariki pointed out that the derived equivalence between D,
and FE, gives an example that derived equivalence does not necessarily preserve the 7-
tilting finiteness. Indeed, Proposition [4.2.11| implies that Fs, is 7-tilting finite because
T Q(A;l) = A, @ A, is 7-tilting finite by Corollary , while D, is 7-tilting infinite by
Corollary [4.3.4]
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Chapter 5

Schur Algebras

In this chapter, we focus on Schur algebras which play an important role in the theory
of Schur-Weyl duality. In other words, this class of algebras links representations of the
symmetric group G, with representations of the general linear group GL,,(F) over a field
F. Since the class of Schur algebras was introduced, it has always received widespread
attention and achieved significant influences in representation theory and Lie theory until
now. For example, many derivatives appeared, such as g-Schur algebras, infinitesimal
Schur algebras, Borel-Schur algebras and so on. In particular, the representation type of
Schur algebras is completely determined by various authors, including Erdmann [Ex], Xi
[Xi], Doty-Nakano [DN] and Doty-Erdmann-Martin-Nakano [DEMN].

Let n,r be two positive integers and F an algebraically closed field of characteristic p.
We take an n-dimensional vector space V' over F with a basis {vy, va,...,v,}. We denote
by V" the r-fold tensor product V ®p V ®p - - @p V. Then, V" has a F-basis given by

{vi, ®vi, ® -+ @, |1 <i; <nforall<j<r

Let G, be the symmetric group on r symbols and FG, its group algebra. Then, G,, and
hence also FG,., act on the right on V®" by place permutations of the subscripts, that is,

for any o € G,,
(Uil ® Ui2 ® e ® Uir) "0 = ’Uio-(l) ® Uia(Q) ® e ® ,Uia(r)'

We call the endomorphism ring Endpg, (V") the Schur algebra (see [Mal, Section 2]) and
denote it by Sg(n,r), or simply by S(n,r).

In the first section, we recall some basic materials for the symmetric group G, and the
Schur algebra S(n,r). Moreover, we give two reduction theorems such that we only need to
consider small n and r, and we explain our strategy to prove S(n,r) to be 7-tilting infinite.
In the second section, we determine the number #s7-tilt A for a representation-finite block
A, or a tame block A of a tame Schur algebra S(n,r). As a consequence, we deduce that
all tame Schur algebras are 7-tilting finite. In the last section, we determine the 7-tilting

finiteness of wild Schur algebras.
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5.1 Symmetric groups and Schur algebras

In this section, we review some of the backgrounds that will be needed in this chapter.
Basically, we refer to some textbooks, such as [Jal, [Ma] and [Sa], for more details on the
representation theory of the symmetric group and the Schur algebra.

Let r be a natural number and A := (A1, A\g, .. .) a sequence of non-negative integers.
We call X\ a partition of r if > . A\ = r with A\; > Xy > --- > 0, and the elements )\;
are called parts of A\. If there exists an n € N such that \; = 0 for all ¢ > n, then we

€N

denote A by (A1, Ag, ..., A,) and call it a partition of r with at most n parts. We denote
by Q(r) the set of all partitions of r and by Q(n,r) the set of all partitions of r with
at most n parts. For example, Q(5) = {(5), (4,1),(3,2),(3,1%),(2%,1), (2, 1%), (1°)} and
0(3,5) ={(5),(4,1),(3,2),(3,1%), (2%, 1)}

Definition 5.1.1. Let A = (A, Ao, ..., A\y) and p = (u1, p2, - - -, 4n) be partitions of .
We say that A dominates p if

)\1+)\2++)\Z>M1+M2++M1

for any ¢ > 1, and we denote by A > . We say that A > p in lexicographic order if there

exists an index ¢ satisfying \; > p; while A\; = p; for any j < ¢.

As mentioned in the previous chapter, we may regard a partition A of  as a box-diagram

[A] of which the i-th row contains A\;-boxes. For example,

[(5,3,2,1)] =

For a prime p, a partition A or a diagram [A] is called p-regular if no p rows of A have the
same length. Otherwise, A or [\ is called p-singular.

We can associate each box « of [A\] with a hook H,, which is the set of boxes below z,
boxes on the right of z and x itself. Then, the hook length |H,| is defined as the number

of boxes in H,. In the above example, the hook lengths are

8l6]4]2]1]
5031
3[1

1

On the other hand, a hook H, is called a p-hook if |H,| = p. Then, we may get the
p-core of [A] (or A\) by removing as many p-hooks as we can. For example, the 3-core of
A= (5,3,2,1) is [ [, which is obtained by the following process

8l6]4]2]1]
s|sfi] SBR[ T TaT) — (21T
1

It can be shown that the p-core of a partition A is independent of the order in which

p-hooks are removed.
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5.1.1 Permutation modules

Let A be a partition of r. A A-tableau ¢ is obtained from [\] by filling the boxes by
numbers {1,2,...,r} without repetition. In fact, ¢ is a bijection between the boxes in [)]
and the numbers in {1,2,...,r}. For any o € G,, we define an action ¢ - o := t oo by
the composition of the bijection ¢ and the permutation o. Then, the column stabilizer of
a A-tableau t is defined as the subgroup C; of G, consisting of permutations preserving
the numbers in each column of ¢. Similarly, the row stabilizer of ¢ is the subgroup R
consisting of permutations preserving the numbers in each row of .

Let ¢,t' be two A-tableaux. We may define a row-equivalence relation t ~t' if t' =t- o
for a 0 € R;. The equivalence class of ¢ under ~ is called a A\-tabloid and is denoted by
{t}. We also define a G,-action on a A-tabloid {t} by {t}-o := {t- o} for any 0 € G,
and this action is well-defined. Then, the A-polytabloid e; associated with a A-tableau ¢ is
defined by e; := {t} - r;, where r; := ) .. sgn(o)o is the signed column sum.

To illustrate our construction above, we give the following example.

Example 5.1.2. Let A =

{

For ¢ = | 112 ‘, we have C; = {id, (13)} and R; = {id, (12)}. Then, the A-tabloid {t} is

L2 fl1]2][2]1]
0 -= {2

1). Then, a complete list of A-tableaux is

(2,
112)[1]3][2]1][2]3][3]1][3]2]
30 l2] i3] 1] 2] a '

and the A-polytabloid e; is

=1t} = {1} (13) =

1 2 2 3
-

Let A be a partition of 7. We denote by M?* the F-vector space spanned by all \-
tabloids. Then, the G,-action on M-tabloids makes M?* into a module over the group
algebra FG,, which is cyclic and generated by any one A-tabloid. We call M* the
permutation module corresponding to A. Moreover, it is clear from the definition that
M? is the induced FG,-module 15, 19" for a Young subgroup Gy of G,, where G, :=
G2 X Gougia+2 400 X X Goggogan 410+ 4 142,01}, 1a, denotes the
trivial module for GG, and 1 denotes induction.

We define a bilinear form ( , ) on the set of all A-tabloids as follows,

1 lf {tl} == {tg},
0 otherwise.

{t:},{t2}) = {

Then, it can be shown that (, ) is a symmetric G,-invariant bilinear form on M?*. For
any FG,-submodule N of M*, we define N* := {z € M* | (z,y) =0 forall y € N}. It is
obvious that N is again a FG,-submodule of M?*.
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Let S(n,r) = Endpg, (V®") be the Schur algebra. We would like to find the basic
algebra of S(n,r) so that we have to find all indecomposable pairwise non-isomorphic
direct summands of V®". As the first step, we recall (e.g., see [Ve, Section 1.6]) that M*
can be regarded as (not necessarily indecomposable) direct summands of V®". Therefore,

we have the following algebra isomorphism,

S(n,r) ~ Endrg, ( &) n,\M’\>,

XeQ(n,r)

where 1 < ny, € N is the number of compositions of » with at most n parts which are

rearrangement of \.

5.1.2 Specht modules and Young modules

In order to find all indecomposable pairwise non-isomorphic direct summands of M?*,
we need Specht modules. Following the conventions in [Ja], we call the submodule S* of

M? spanned by all A\-polytabloids the Specht module corresponding to \.

Theorem 5.1.3 ([Ja, Theorem 4.12, Theorem 11.5]). Let FG, be the group algebra of
the symmetric group G,. If F is a field of characteristic zero, then {SA | A e Q(T)} 18
a complete set of pairwise non-isomorphic simple FG,.-modules. If F is a field of prime
characteristic p, then each Specht module S* with X being p-reqular has a unique (up to
isomorphism) simple top D* := S*/(S* N (S*)4) and {D* | X € Q(r), X is p-regular} is a

complete set of pairwise non-isomorphic simple FG,.-modules.

In the case of a p-singular partition s, all of the composition factors of S* are D* such
that A is a p-regular partition with A > pu.

Let IF be a field of prime characteristic p. The decomposition number [S* : D*] provides
how many times each simple module D* occurs as a composition factor of the Specht
module S*. If we run all partitions of r, then we get the decomposition matrix of FG,.
Usually, we place the p-regular partitions in the decreasing order with respect to the
lexicographic order and above all p-singular partitions. Then, the decomposition matrix of

FG, has the following form, see [Jal, Corollary 12.3].

D*, i p-regular

(1
x 1 O
A * % 1
S*, A p-regular
* ok ok 1
\
R ‘ x k% *
S*, A\ p-singular . s % .
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We recall that a permutation module M* over F is liftable by a p-modular system and
therefore, it has an associated ordinary character ch M?*. Let x* be the ordinary character
corresponding to A (<i> Specht module S*) over a field of characteristic zero. Then,

ch M* = x* + 3 k. x*
u>A
with multiplicities k, which can be zero. We decompose M?* into a sum of indecomposable
direct summands @} ,Y; for n € N. Obviously, each summand Y; is also liftable and has

an associated ordinary character ch Y.

Definition 5.1.4. The unique direct summand Y; which the ordinary character x* occurs

in ch Y}, is called the Young module corresponding to A and is denoted by Y.

It is well-known that the Young module Y* has a Specht filtration which is given
by Y =27, 2 2y D --- D Z, = 0 for some k € N with each Z;/Z; 41 isomorphic to a
Specht module S* with & > X. Moreover, the Young module Y* is self-dual, that is,
YA ~ D(Y?) with respect to D = Homp(—, ). In fact, D(Y?) becomes a right FG,-module
via (f - 0)(z) := f(zo™!) for f € D(Y?), 0 € G, and z € Y.

Theorem 5.1.5 ([Mal, Section 4.6]). The set {Y*| A€ Q(n,r)} is a complete set of

indecomposable pairwise non-isomorphic direct summands of {MA | A € Q(n, r)}

Now, we are able to explain how to construct the basic algebra of the Schur algebra
S(n,r). Let B be a block of the group algebra FG, labeled by a p-core w. It is well-known
that a partition A belongs to B if and only if A has the same p-core w. Then, we define

AEBNQ(n,r)

SB = End]FGT, ( 69 Y/\>

and the basic algebra of S(n,r) is given by € Sp, where the sum is taken over all blocks
of FG,. Moreover, Sg is a direct sum of blocks of the basic algebra of S(n,r). We remark
that if we consider the Young modules Y for partitions A of » with at most n parts, the
Specht modules S* in the Specht filtration of Y* and the composition factors D* which
appear in Y are also corresponding to the partitions with at most n parts. (The reason
is that [S*: DF] £0= u> \.)

In order to understand the explicit structure of Y, we need to know the decomposition
matrix [S* : D¥] and the filtration multiplicities [Y* : S#]. Note that the latter one
[Y* 1 S#] is equivalent to the ordinary character ch Y of Y*. Then, it is worth mentioning
that Henke [He| provided a formula to calculate ch Y* when A is a partition with at
most two parts. We recall these constructions as follows. Let p be a prime. There is a
p-adic decomposition s = 2520 sip® for any non-negative integer s. Now, let s,t be two

non-negative integers, we define a function

p—1—s
fls,t) = 11 ,
ke{0}UN \ P — 1 —tg
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where we set (7;) = 0 if m < n. Moreover, we have

g(s,) ::{1 if f(2t,s+1t) =1,

0 otherwise.

1if f2t+1,s+t+1)=1,

0 otherwise.

and h(s,t) = {

Lemma 5.1.6 ([He, Section 5.2]). Let (r — k, k) be a partition with a non-negative integer

k and ch Y05 the associated ordinary character of Y =5k

(1) If r is even, then

(2) If r is odd, then

where [3] is the greatest integer less than or equal to %.
We may give an example to illustrate our constructions above.

Example 5.1.7. We look at the Schur algebra S(2,11) over p = 2. Let B; be the principal
block of FG4; and B, the block of FGy; labeled by 2-core (2,1). Then, we may find in
[Ta] that the parts of the decomposition matrix [S* : D#] for the partitions in B; and B,

with at most two parts are

(11) (1 (10,1) (1
Bi:(9,2)|0 1 |,B:(83) [1 1
(7,49 \1 0 1 (6,5) \0 1 1

We determine Sp, as follows. By using the formula given in Lemma [5.1.6, we have

ch yon — X(lO,l)’
ch Y33 — X(10,1) 4 X(8,3)7
ch V65 — X(lO,l) + X(8,3) + X(6,5)_

Similar to the proof of [Er, Lemma 4.4], we may read off the Specht filtration of Y* from
the formula, and the composition factors of Young modules are { D101 D®3) DG Tt
is obvious that Y (101 = §(0.1) — p0.1) " By the decomposition matrix above, the Specht
module S®%) has composition factors {D1%) DE3)1 . Since the top of S®&3) is D®3) and
S®3) is a submodule of Y®?  the simple module D% is in the socle of Y®3) . We

deduce the radical series of Y (&%) by using the self-duality of Young modules, that is,

10,1

gaoy P

Yy (8:3) — 63 = D®3) .
S Do
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10,1)

Similarly, the simple module D% appears in the top of Y65 because Y (5 has Specht

filtration whose top is S1%V. As (6,5) is 2-regular, the top of S is D(®®) and the socle
of $(5) is D®3) Since S is the bottom Specht module, it implies that D®?) appears
in the socle of Y65 By the self-duality of Young modules, we deduce that

D®3) Do)
~
Y (6,5) — / D(65) /
~
Do) D®3)

Thus, Sp, = Endrg,, (Y1) @ Y3 @ Y(69) is isomorphic to FQ/I with

a1 [
Q: (10; 1) < (67 5) <B— (87 3) and [ : <041/3h Baaa, crpaia3a, CY25251>7
1 2

where we replace each vertex in @ by A associated with the Young module Y.
Similarly, we use the formula given in Lemma to calculate the characters of Young

modules as follows,
ch Y = (00 ch yO2 =02 ch y @D = () 4 (74

Then, we have

pan
Yy = pi) y0.2) = pO2) y 4 = pT4),
DA

and one may easily check that Sp, is isomorphic to FQ/I & F, where

Q : (11)&’(7, 4) and I : <a161>.

B

Therefore, the basic algebra of S(2,11) over p =2 is Sg, ® Sp,.

5.1.3 Reduction theorems on Schur algebras

We give two useful reduction theorems which will allow us to simplify the general
problem to the cases with small n and r. First of all, it is obvious from the previous

constructions that S(n,r) with n > r is always Morita equivalent to S(r,r). Then,
Lemma 5.1.8. If S(n,r) is T-tilting infinite, then so is S(N,r), for any N > n.

Proof. Let S be the basic algebra of S(N,r). For each A € Q(n,r), we define e, to be
the projector to Y* and take the sum e := > e, over all partitions in (n,r). Then, the

idempotent truncation is

eSe=¢cEndpg, | @ Y*|e=Endrs,| P Y.
AEQ(N,r) AEQ(n,r)

This implies that the basic algebra of S(n,r) is an idempotent truncation of S(N,r) for
any N > n. Thus, the statement follows from Proposition [2.3.5 O
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We recall that the coordinate function ¢;; : GL,(F) — F is defined by ¢;;(g) = g¢;; for
all g = [g;j] € GL,(F), where ¢,j € {1,2,...,n}. Then, we denote by A(n,r) the coalgebra
generated by the homogeneous polynomials of total degree r in ¢;;. In fact, the Schur
algebra S(n,r) is just the dual of A(n,r).

Lemma 5.1.9. If S(n,r) is T-tilting infinite, then so is S(n,n +r).
Proof. 1t has been proved in [Ex] that S(n,r) is a quotient of S(n,n + ). We recall the
proof as follows. Let I = I(n,n + r) be the set of maps

a:{1,2,....n+r} —>{1,2,...,n}

with right Gy, 4,-action. Then, S(n,n + r) has a basis {&.5 | (o, 8) € (I X I)/Gp4.}: the
dual basis of ca(1)5(1)Ca(2)82) * * * Catntn)Bntr) € A(n,n + 7). Then, the elements &, := &40
form a set of orthogonal idempotents for S(n,n + r) whose sum is the identity. Note
that Q(n,n +r) C I is the set of representatives of G,,,-orbits. Let e = > &, be the
idempotent of S(n,n+r), where the sum is taken over all A € Q(n, n+r) such that A, = 0.
Then, by using det (¢;;), we may get

Sn,n+r)/S(n,n+r)eS(n,n+r)~S(n,r).

Therefore, the statement follows from Proposition [2.3.5] n

5.1.4 Strategy on 7-tilting infinite Schur algebras

Let A ~FQ/I be an algebra presented by a quiver () and an admissible ideal I. We
call Q a 7-tilting infinite quiver if A/rad®A is 7-tilting infinite. For example, the Kronecker

quiver () : o ——= o is a 7-tilting infinite quiver, see Lemma |3.1.1{ Then, the following

lemma provides us with three 7-tilting infinite quivers.

Lemma 5.1.10. The following quivers Qi, Qa and Qs are T-tilting infinite quivers,

o—=0,Q 0,Q:0—~o0_—~o.
[ 7

Proof. We look at the following subquivers,

Qi : 21 0 Y — f—
(o]

O —>0 O———O0=<—20

Q| ],Q;:O\ /O,Qg: T

O=<=—-0 O—> 0 <—0 O=<—0O0—>0
Since the path algebra of Q; for i = 1,2,3 is a quotient algebra of A =FQ/I if Q = Q;,
and all of these path algebras are 7-tilting infinite as mentioned in Section 4.2, we conclude

that A/rad®A is 7-tilting infinite if Q = Q1, Qz, Q3 by Proposition [2.3.5] O
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We remark that Adachi [Ad1] (and Aoki [Ao]) provided a handy criteria for the 7-tilting
finiteness of radical square zero algebras, that is, for any algebra A, the quotient A/rad®A
is 7-tilting finite if and only if every single subquiver of the separated quiver for A/rad®A
is a disjoint union of Dynkin quivers. This also gives a proof of Lemma [5.1.10]

We mention that in order to show that S(n,r) is 7-tilting infinite, it suffices to find
a block algebra of S(n,r) which is Morita equivalent to FQ/I with a 7-tilting infinite
subquiver in (). Then, the advantage is that it is not necessary to find the explicit relations
in I. To find a 7-tilting infinite subquiver in S(2,r), it is worth mentioning Erdmann and
Henke’s method [EHI]. Let A = (A, A2) and p = (p1, 12) be two partitions of r, we define
two non-negative integers s := A\; — Ay and ¢ := p; — ps. We denote by v* the vertex in
the quiver of S(2,7) corresponding to the Young module Y *122) with s = A; — Xy. Let
n(v,v") be the number of arrows from v* to v*, then it is shown in [EHI, Theorem 3.1]
that n(vs, v") = n(v',v*) and n(v®,v") is either 0 or 1. We have the following recursive

algorithm for computing n(v¥,v").

Lemma 5.1.11 ([EHI, Proposition 3.1]). Suppose that p is a prime characteristic and
s>t. Let s = sg+ps and t =ty + pt’ with 0 < so,to <p—1 and s',¢ > 0.

(1) If p =2, then

n(w, ") ifsg=to=1o0rsy=ty=0 and s =t mod 2,
n(vs,vt) =<1 if so =ty =0, +1 =5"# 0 mod 2,

0 otherwise.

n(vs 7Ut/) Zf so = lo,
n(vs,v') =< 1 if so+to=p—2,t' +1 =35 %0 mod p,

0 otherwise.

5.2 Representation-finite and tame Schur algebras

In this section, we show that all tame Schur algebras are 7-tilting finite. We first recall
the complete classification of the representation type of Schur algebras. Note that some
semi-simple cases are contained in the representation-finite cases. We may distinguish the
semi-simple cases following [DN]. Namely, the Schur algebra S(n,r) is semi-simple if and

onlyifp=0,orp>r,orp=2n=2r=3.

Proposition 5.2.1 ([Ex], [DEMN]). Let p > 0 be the characteristic of F. Then, the
Schur algebra S(n,r) is representation-finite if and only if p = 2,n = 2,7 = 5,7 or
p=2n=21r<p*orp=2n=3r<2p; tameif and only if p=2,n=2,r =4,9,11
orp=3n=27r=2910,11 orp=3,n=3,r =7,8. Otherwise, S(n,r) is wild.
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5.2.1 Representation-finite blocks

Erdmann [Exrl Proposition 4.1] showed that each block A of a representation-finite
Schur algebra S(n,r) is Morita equivalent to A, := FQ/I for some m € N, which is

defined by the following quiver and relations,

a1 a9 Qm—2 QAm—1
Q:1 2 e m—1—>=m,
B1 B2 Bm—2 Brm—1

I {o1f, 0iaiqn, Bisa Bis Bici — g1 Bipa | 1 < i <m — 2).

Three years later after [Er], Donkin and Reiten [DR] Theorem 2.1] generalized this
result to an arbitrary Schur algebra, that is, each representation-finite block of Schur
algebras is Morita equivalent to A,, for some m € N.

We would like to determine the number of pairwise non-isomorphic basic support

7-tilting modules for a representation-finite block of Schur algebras.

Theorem 5.2.2. Let A, be the algebra defined above. Then, #s1-tilt A,, = (Qm)

m

Proof. Let A, be the Brauer tree algebra whose Brauer tree is a straight line having
m + 1 vertices and without exceptional vertex. Then, it is easy to check that A,, is a
quotient algebra of A,, modulo the two-sided ideal generated by «;(5;. Since a0 is a
central element of A,, and #s7-tilt A,,, = (277:) has been determined in [Aol Theorem 5.6],

we get the statement following Proposition [2.3.6] ]

5.2.2 Tame Schur algebras

The block algebras of tame Schur algebras are well-studied in [Er] and [DEMN]. In
this subsection, we recall these constructions and show that tame Schur algebras are
7-tilting finite. We recall the following bound quiver algebras constructed in [Exr], where
the tameness for them is given in [DEMN| 5.5, 5.6, 5.7].

o Let D;:=FQ/I be the special biserial algebra given by

a1 a2
Q: °<ﬂ—0<ﬂ—0 and [ : <04151,52Oé2,0616Y2/32,Oé25251>-
1 2

e Let D, :=FQ/I be the bound quiver algebra given by

o Bs <04151,042527043517043527CY153,04253,>

QQ: o——o—=o0 and I :
o Baceg, Paa 31, Bacrg — B3

B1 as
az TlﬁQ

o}

e Let Ry :=TFQ/I be the bound quiver algebra given by

a ag as a1 31, arag, B2,

Q: o o o o and [ : .
B B2 B3 g3y — Bro, asfBs — Bacg
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o Let Hy:=TFQ/I be the bound quiver algebra given by

a1 a3
:1—/——=2—=4 and I :

b1 N B3
az || B2

3

a1 31, a1 B, e, s, g,
B3B1, azPBs — Brog — Bacva

We remark that D3, Dy, R4 and H,4 are also tame blocks of some wild Schur algebras.

Lemma 5.2.3. The tame algebras D3, Dy, Ry and Hy are T-tilting finite. Moreover,

A Dy | Dy | Ry | Hy
Ysrtilt A| 28| 114 | 88 | 96 |

Proof. We often use Proposition to reduce the direct calculation of left mutations.

(1) Since ayfy and [y are non-trivial central elements of D3, we may define

13; = D3/ < azfs, fafraray >

so that #sr-tilt 5;, = #s7-tilt D3. Then, we determine the number #s7-tilt 5; by
calculating the left mutations starting with 73;, In fact, this is equivalent to finding the
Hasse quiver H (s7-tilt DNg,) We recall that the indecomposable projective ﬁg,—modules are
1 2 3
PIZQJPQZ% 37P3:%'
3 3 2
Starting with the unique maximal 7-tilting module 53 ~ P & P, & P;, we take an exact
sequence with a minimal left add(P, & Ps3)-approximation f; of Py:
fio1%3

1
2—=2 " — coker f; — 0.

W=

Then, coker f; = 3 and pp, (D3) = 2@ P, ® P5. Next, we take an exact sequence with a

minimal left add(3 & P;)-approximation f, of P:
P £>§EBP3 — coker fo, — 0,

so that coker fo =4 and yip, (1, (D3)) = &3 @ Py. Similarly, jip (5, (15, (D3)) = § & 4
Then, by the calculation in Example [2.1.7, we have

3

T
e

2

3@%
2oy
\

502

0

In this way, one can calculate all possible left mutation sequences starting with ﬁ; and

ending at 0, so that the Hasse quiver H(s7-tilt 13;,) is as follows,
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Hence, we deduce that D3 is 7-tilting finite and #s7-tilt D3 = 28.

(2) Since faaa, agfs and agfiaq By are central elements of Dy, we define

Dy = D,/ < Pacra, 33, aafra1 fo >

Then, H(s7-tilt Dy) ~ H(s-tilt D;) by Proposition Note that Dj is just the algebra
we dealt with in Example [2.3.10, we have #s7-tilt D, = 114.

(3) Since fiay and faas + Psas are non-trivial central elements of Ry, we define
Ry = Ru/ < pray, frcs + Paag >

and then, #s7-tilt 7€4 = F#s7-tilt R4. Instead of direct calculation, we point out that 7€4 is
a representation-finite string algebra and H(s7-tilt 7%;) can be constructed by the String
Applet [Geu]. Thus, we deduce that #s7-tilt Ry = 88.

(4) We recall that fya; and faas + 33 are central elements of Hy. Then, we define
Hy = Ha/ < rau, Bocrs + By >.
Similar to the strategy in Example [2.3.10, we determine the number #s7-tilt 7% step by
step. First, we have ao(@) =1 and al(@) = 4.
Let M be a support 7-tilting ﬁ—module with support-rank 2, and with supports e;
and e; (i # j). Then, M becomes a 7-tilting H,/J-module with J :==< 1 —¢; — e; >. We
denote by b; ; the number of 7-tilting 721 /J-modules. Then, it is easy to check that

(i) | (1L,2) (1,3) (L,4) (2,3) (2.4) (3,4)
by | 3 1 1 3 3 1

This implies that ag(’}T[;) = 12.

Let N be a support 7-tilting %—module with support-rank 3. Then, N becomes a
T-tilting @/Lj—module with L; :==< e; >, where ¢; is the only one non-zero primitive
idempotent satisfying Ne; = 0. We denote by d; the number of 7-tilting 7—7; / L;-modules.
For example, if 7 = 1, then

Hi/Li = F (3%2%4) / {02, Baiz, g fs).

2 3

By direct calculation, we find that H(s7-tilt H, /Ly) is displayed below, where we denote
by e 7-tilting modules and by o other support 7-tilting (but not 7-tilting) modules.
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Hence, d; = 13. Similarly, we have dy = 1 and d3 = d;y = 9. Therefore, ag(”}T[;) = 32.
Next, we compute the left mutations starting with ill to find all 7-tilting ”;Z; modules
and the number is 47. We refer to Append1xm for a complete list of 7-tilting 7—[4 modules.
Besides, the part of H(s7-tilt 7-[4) consisting of all 7-tilting 7—[4 modules can be obtained.
Thus, we have #sr-tilt Hy = 96. O

Theorem 5.2.4. If the Schur algebra S(n,r) is tame, then it is T-tilting finite.

Proof. We have proved in Lemma that D3, Dy, R4 and H, are 7-tilting finite. Now,
it suffices to make clear that these are all the tame blocks of tame Schur algebras. By
Proposition [5.2.1] it is enough to consider S(2,r) for r = 4,9, 11 over p = 2, S(2,r) for
r=29,10,11 and S(3,r) for r = 7,8 over p = 3. We have already shown in Example |5.1.7
that the basic algebra of S(2,11) over p = 2 is isomorphic to D3 & Ay & F. Then, the
basic algebra of other tame Schur algebras can be found in [DEMN| Section 5]. We recall
the result in [DEMN] as follows.

Let p = 2, the basic algebra of S(2,4) is isomorphic to D3 and the basic algebra of
S(2,9) is isomorphic to D3 ®F @ F. Let p = 3, the basic algebra of S(2,9) is isomorphic to
Dy @ F, the basic algebra of S(2,10) is isomorphic to Dy @ F & F and the basic algebra of
S(2,11) is isomorphic to Dy @ As; the basic algebra of S(3,7) is isomorphic to R4 ®.As® Ay
and the basic algebra of S(3,8) is isomorphic to Ry & Hy4 & As. O

5.3 Wild Schur algebras

In this section, we consider wild Schur algebras except for a few small cases in (x). We
point out that these four small cases in (x) have been settled in a separate paper |[AW]
with Toshitaka Aoki. For the convenience of readers, we will recall the related results
without proof in the last section of this chapter.

;

p=2n=2r=817,19;
p=2n=3r=4
(x)
p=2,n2=5r=0>5;
_ 2
(p=5n=2p"<r<p’+p-—1
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Table 5.1: The 7-tilting finite S(n,r) over p = 2.
r 11213456 ] 7|89 101112

S(2,7)
ro 131415 16| 1718 19|20 |21 | 22| 23
S(2,7)
"lilel3lals el 78] 9l0]n]12]13
n
3
4
5
6

In the rest of this chapter, we will use the decomposition matrix [S* : D#] of FG, given
in [Ja] without further notice.

5.3.1 The characteristic p =2

We assume in this subsection that the characteristic of F is 2. Then, the 7-tilting
finiteness for S(n,r) is shown in Table and the proof is divided into several propositions
as displayed below. Here, the color purple means 7-tilting finite, the color red means
T-tilting infinite, the capital letter S means semi-simple, the capital letter F means

representation-finite, the capital letter T means tame and the capital letter W means wild.
Proposition 5.3.1. Let p = 2. Then, S(2,6), S(2,13) and S(2,15) are T-tilting finite.

Proof. We consider the Young modules Y for partitions A with at most two parts.
(1) The part of the decomposition matrix [S* : D#] for the partitions in the principal
block of FGg with at most two parts is

(6) (1

(5,1 (1 1
4,2)1 1 1|
3) \1 0 1

and the characters of Young FGg-modules are given by Lemma [5.1.6| as follows,
ch Y = (),
ch YD = ©) 6D,
ch Y42 = (&1 4 (42),
ch YOG = (0 G 4 (42) 4 (%)
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Similar to the method in Example [5.1.7, we compute the radical series of Young modules.
Then, one can show that S = Endpe, (Y©® @ Y61 @ Y2 g Y3) is isomorphic to
Ky :=FQ/I with
0:1 @1 9 @2 3 as A and I - < a1y, o, Baais, ez, B3 3251, >
P B2 B3 10102 — o33, Baffray — a3 B30,
(See [DEMN, 3.5] for another method to show this.) Since Sy + a3 and B3fB2a0a3 are

central elements of Iy, we define

Ky = Ka/ (Brau, asBs, BsPacaas).
We have H(s7-tilt Ky) ~ H(sr-tilt Kyz) by Proposition m Then, similar to the strategy
in Example [2.3.10 we have ao(/a) =1 and al(la) =4.

Let M be a support 7-tilting Ia—module with support-rank 2, and with supports e;
and e; (i # 7). Then, M becomes a 7-tilting Ia/J—module with J:=<1—¢; —¢; >. We
denote by b; ; the number of 7-tilting Ia /J-modules. Then, it is easy to check that

(i.5) | (1L2) (1,3) (1L4) (2,3) (24) (3,4)
by | 3 1 1 3 1 3

This implies that as(K;) = 12.

Let N be a support 7-tilting I/Cvz;—module with support-rank 3. Then, N becomes a
T-tilting Ia/Lj—module with L; :=< e; >, where ¢; is the only one non-zero primitive
idempotent satisfying Ne; = 0. We denote by d; the number of 7-tilting la /L;-modules.
If j =1, then

Ki/Li :=F ( P P ) / (aafBa, Bacrs, azBs, Bz facracis).

B2 B3

By direct calculation, we can show that the Hasse quiver H (s7-tilt IAC; /L1) is displayed
below, where we denote by e 7-tilting Ia /Li-modules and by o other support 7-tilting
(but not 7-tilting) Ka / Ll—modules,

We deduce that d; = 17. If j = 4, then

1 2

’/CVAL/L4 =T ( 1 <6—12<B—23 ) /{11, Bra, azBs).
Similarly, the Hasse quiver H(s7-tilt K4 /Ly4) is as follows,
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This implies that dy = 13. Besides, it is not difficult to see that do =d3 =1-3 = 3 by the

number b; ; computed in the previous step. Therefore, Cbg(la) = 36.

We compute the left mutations starting with 164 to find all 7-tilting Ia—modules and
the number is 83. We refer to Appendix for a complete list of 7-tilting Ia—modules.
Therefore, we have #s7-tilt Ky =1+ 4+ 12 4+ 36 + 83 = 136 and the statement follows
from the fact that K4 is the basic algebra of S(2,6).

(2) The group algebra FG3 contains two blocks, i.e., the principal block B; and the
block By labeled by 2-core (2,1). The parts of the decomposition matrix [S* : D*] for the

partitions in By and By with at most two parts are

(13) (1 (12,1) [1
(11,2) |1 1 ’
Vg |11 1 [ P03
’ 85 \1 0 1
(7,6) \1 0 1 1 (8,5)

We may prove that Sp, is isomorphic to Ky, because the characters of Young modules

for FG13 are as follows. (One may compare this with the case of 5(2,6).)
ch Y13 =, (13),
ch Y12 — ,(13) 4 (11.2)
ch YOO — (12 4 (0.0)
ch Y78 — (3 1\ (112) (00 L\ (76),

On the other hand, Sp, is isomorphic to Ay & F by [Er, Proposition 4.1], where A,
is explained at the start of subsection 5.2.1. Therefore, the basic algebra of S(2,13) is
K4 ® Ay @ F, which is also 7-tilting finite.

(3) The group algebra FG45 also contains two blocks and the parts of the decomposition

matrix [S* : D#] for the partitions with at most two parts are as follows,

(15) (1 (14,1) (1
(13,2) | 0 1 (12,3) |1 1
(11,4) [0 0 1 “(10,5)[1 1 1
(9,6) \0 1 0 1/ (87) \1 0 1 1
After computing the characters of Young FG15-modules by Lemma [5.1.6] we deduce that
the basic algebra of S(2,15) is isomorphic to Ky & A; @ F @ F. O
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Now, we look at the case S(2,8). Let B be the principal block of FGg, the part of the

decomposition matrix [S* : D*] for the partitions in B with at most two parts is

(8)
(7,1)
(6,2)
(5,3)
(4%)

On the other hand, Lemma [5.1.6] implies that the characters of Young FGg-modules are

o O OO = =
— = =
S =

1
1

chY® =&,
ch YD = (®) 4 (1)
ch Y62 = (&) 4 (1) 4 1 (62)
ch Y3 = 1 (62) 4 | (5:3),
ch Y — Y& 4 (D 4 (62 4 (5:3) 4 X(42)_

It is obvious that Y® = D®) and we may find others as follows.

D(6:2)
D® DT D® D
~
Yyl = pry) y62) — / D6.2) / , Y63 = D63
~
D® D® DD DY
D(6:2)
DD D®
AN
D63 D6.2)
I I
Y(42) = D(7’1) D(?,l)
I I
D©6:2)  D(5:3)
~N
D® D)

Note that the dimension of Homgg, (Y*, Y#) between two Young modules Y, Y* is equal
to the inner product (ch Y*, ch Y#). By direct calculation, we conclude that Sp =
Endp,(Y® @ YD ¢ Y62 ¢ Y53 @ Y*) is isomorphic to L5 := FQ/I with

. (051 2 2 a3
Q: (5,3) == () =—=(6:2) =—=(7,1) and
/34Tla4
(8)
I- <Oé1/317041044,53013,52&2754CV475451,5404252,ala20é37a252a47535251>>‘

Branag — apaz B3, Boffran — a3 fB3B2, aaBafro — PranaafBa

Here, we replace each vertex in the quiver of S by the partition A associated with the

Young module Y*. We refer to the last subsection for the 7-tilting finiteness of Ls.
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Proposition 5.3.2. Let p = 2. Then, the wild Schur algebras S(2,17) and S(2,19) are
T-tilting finite if and only if S(2,8) is T-tilting finite.

Proof. We show that the basic algebra of S(2,17) is isomorphic to L5 ® Ay ® F @ F. The
blocks of FG7 and the parts of the decomposition matrix [S* : D#] for the partitions with

at most two parts are as follows,

a1 (16,1) (1

(15,2) |1 1 (14’3> 01

(13,4) [0 1 1 oo

(11,6) 10 1 1 (12,571 001
(10,79 \0 1 0 1

9,8) \0O 1 0 1 1

In order to identity Ls, it suffices to check the characters of Young FG7-modules:

ch Y(17) _ X(17)>

ch Y152 — (7 | (152)

ch Y34 — (0D |, (152) 4 (134)

ch YL — (134 4\ (116)

ch YO — (D 4 (152) |\ (34) L (1L6) L | (98)
For the case S(2,19), the blocks of FG19 and the parts of the decomposition matrix

[S* : DH] for the partitions with at most two parts are

(19) /1 (18,1) (1

17,2) [0 1 (16,3) [ 1 1
(15,4)[1 0 1 ,(14,5) [0 1 1
(13,6)[0 0 0 1 12,7 (o 1 1 1
(1,8)\0 0 1 0 1/ (10,99 \0 1 0 1 1

Also, by Lemma we have
ch Y19 — (19 ¢ y (54— (19) |\ (154)
ch YOI — (19 4, (154 4 (118),
ch Y8 — (18D ¢y y(163) — (181 |\ (163)
ch Y145 — | (181 |\ (163) L\ (145) oy y(127) _  (145) 4\ (127)
ch Y109 — \ (181 4\ (163) |\ (145) L (12.7) 4 (109)

Similar to the above, the basic algebra of S(2,19) is isomorphic to L5 ® D3 ®F & F, where
Ds is a 7-tilting finite algebra defined in subsection 5.2.2. m

Proposition 5.3.3. Let p = 2.

(1) If r is even, then S(2,1) is T-tilting infinite for any r > 10.
(2) If r is odd, then S(2,r) is T-tilting infinite for any r > 21.
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Proof. We denote by S(2,7) the basic algebra of S(2,7) and we use Lemma [5.1.11] to

determine the quiver of S(2,7). When we display the quiver of S(2,7), we usually replace

each vertex by the partition A associated with Y*. Then, the quiver of S(2,10) is
(6,4) ——=(10) ,

o

(8,2) ——=(7,3) (5%) (9,1)

and the quiver of S(2,21) is

(17,4) (13,8) =——= (21) (14,7) (18,3) .

(15,6) ——=(11,10) —= (19, 2) (20,1) —/—=(12,9) ——= (16, 5)
Now, it is enough to say that S(2,10) and S(2,21) are 7-tilting infinite by Lemma [5.1.10
Hence, the statement follows from Lemma [5.1.9 O

Proposition 5.3.4. Let p = 2. Then,

(1) the wild Schur algebra S(3,5) is T-tilting finite.
(2) the wild Schur algebra S(n,r) is T-tilting infinite for any n > 3 and r > 6.

Proof. We consider the Young modules Y for partitions A with at most three parts. Then,
Specht modules S* in the Specht filtration of Y* and composition factors D* which appear
in Y are also corresponding to the partitions with at most three parts.

(1) We show that the basic algebra of S(3,5) is 7-tilting finite. The group algebra FGj
contains only two blocks, i.e. the principal block B; and the block B, labeled by 2-core
(2,1). The parts of the decomposition matrix [S* : D#] for the partitions in B; and By
with at most three parts are as follows,

(5)
- (3,2)
(3,1%)
(2%,1)
Combining with [Er, Proposition 5.8], the basic algebra of S(3,5) is isomorphic to Uy @ T,
where Uy :=FQ/I is presented by

Byt (4,1) (1),

1

— N =

1

ai [e %)

a3
Q:1 3 2 3 3 B 4 and I : <04151,&252,041042043,5352@,04353 - ﬁ2042>-
1 2 3

Since fsan + Pzas and [afiaian are non-trivial central elements of Uy, the 7-tilting
finiteness of U, is the same as Zjl; = U,/ (Pacva, Psas, o f1avian) by Proposition m Then,
similar to the strategy in Example , we have ao(Us) = 1 and a1 (Uy) = 4.

Let M be a support 7-tilting Zj{;—module with support-rank 2, and with supports e;
and e; (i # j). Then, M becomes a 7-tilting Z//IZ/J—module with J:=<1—¢; —¢; >. We
denote by b; ; the number of 7-tilting 27; /J-modules. Then, it is easy to check that
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(,5) | (1L2) (1L3) (1L,4) (23) (24) (3,4
b, | 3 1 1 3 1 3

This implies that aQ(ZZ) = 12.

Let N be a support 7-tilting Us-module with support-rank 3. Then, N becomes a
T-tilting Zf/{\;/ Lj-module with L; :=< e; >, where ¢; is the only one non-zero primitive
idempotent satisfying Ne; = 0. We denote by d; the number of 7-tilting Zjl; /L;-modules.
Similar to the case I/Cv4 in Proposition , we have d; = 13, dy = d3 = 3 and dy = 17.
Therefore, as(Uy) = 36.

Finally, we compute the left mutations starting with Zjl; to find all 7-tilting Zj{;—modules
and the number is 83. Since this number can be verified by the String Applet [Geu], we
omit the detailed computation. Therefore, we have #s7-tilt Uy = 1+4+ 12+ 36+ 83 = 136.

(2) We shall show that S(3,6), S(3,7) and S(3,8) are 7-tilting infinite. Then, the
statement follows from Lemma and Lemma [5.1.9) As we are already familiar with
the strategy of determining the radical series of Young modules and the basic algebras of
Schur algebras, we may leave this heavy work to a computer and some mathematicians
indeed did. Here, we refer to Carlson and Matthews’s program [CM].

(2.1) Let B be the principal block of FGg, the part of the decomposition matrix
[S* : DH] for the partitions in B with at most three parts is of the form

6) (1
(5,1) | 1
(4,2) |1
(4,1%) | 2
(3*) |1
(2°) \1
Then, the quiver of Sp = Endrg,( € Y?) is as follows,

O O R = o
—_ = =

[

(2.2) Let B be the principal block of FG7, the part of the decomposition matrix
[S* : D#] for the partitions in B with at most three parts is of the form

(7 (1
(5,2) 10 1
42,101 11
5.12) [1 1 0
3%1) |1 0 1
(3,22) \1 0 1
Then, the quiver of Sp = Endrg.( €  Y?) is as follows,
AEBNQ(3,7)
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o

N\

>~ 0

|

(2.3) Let B be the principal block of FGg, the part of the decomposition matrix

o o

[S* : DH] for the partitions in B with at most three parts is of the form

(8) 1

71 |11

6.2) o 11

5,3 [0 1 11
43121111
@@ lo1010
6,12 [1 1100
422) [2 0101
3%2) \2 0 0 0 1

Then, the quiver of Sp = Endpg,( Y?) is as follows,

AEBNQ(3,8)
] (@] (@]
=i |
] To\l/% ]

By Lemma [5.1.10} we conclude that S(3,6), S(3,7) and S(3,8) are 7-tilting infinite. [
Corollary 5.3.5. Let p = 2. The wild Schur algebra S(4,5) is T-tilting finite.

Proof. We consider the Young modules Y* for partitions A of 5 with at most four parts.
Note that S(3,5) is an idempotent truncation of S(4,5) as we mentioned in Lemma [5.1.8|
Compared with the case S(3,5), the case S(4,5) has only one additional partition (2, 1%)
which appears in the block of FG5 labeled by 2-core (2,1). Then, the basic algebra of
S(4,5) is isomorphic to Uy & Ay based on the result on S(3,5). O

Proposition 5.3.6. Let p = 2. The algebra S(n,4) is T-tilting infinite for any n > 4.

Proof. By our strategy in Section 5.1, one can see that S(n,4) with n > 5 is always Morita
equivalent to S(4,4). So it is enough to show that S(4,4) is 7-tilting infinite. In fact, the
quiver of the basic algebra of S(4,4) displayed below implies our statement.

R ——
O < (]

I

O < O < O

This quiver has been given by Xi in [Xi]. O

Hence, we have already determined the 7-tilting finiteness of wild Schur algebras over
p = 2, except for S(2,r) with r = 8,17,19, S(3,4) and S(n,5) with n > 5.
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Table 5.2: The 7-tilting finite S(n,r) over p = 3.

1121314516 | 7|89 |10|11]|12]13

O | = | W | N

Remark 5.3.7. We recall from [DEMN, 3.6] that the basic algebra of S(3,4) over p = 2
is presented by the bound quiver algebra M, := FQ/I with

a1 B, Baa, i, Ba B, >

aqofs, o331, fran — aafFa

Q: o ) 22 oa,ndI:<

Remark 5.3.8. Let p = 2. The wild Schur algebra S(n,5) with n > 6 is always Morita
equivalent to S(5,5). Moreover, the basic algebra of S(5,5) is isomorphic to N5 & A,
following [Xi, Proposition 3.8], where N5 := FQ/I is presented by
Q: o > o> 0 —>o0=—=o0 with
B1 B2 B3 Ba
I <04151, B2, 333, Bacuy, yaaazay, Bafs P21, Bacy — 0430445453,>.

o030 By — Pragonas, B3B2B100 — aufBaBsBa

5.3.2 The characteristic p = 3

We assume in this subsection that the characteristic of F is 3. Then, the 7-tilting
finiteness for S(n,r) is shown in Table and the proof is divided into the propositions
displayed below. Here, we use the same conventions with Table

Proposition 5.3.9. Let p = 3. Then, S(2,r) is T-tilting infinite for any r > 12.

Proof. We show that both S(2,12) and S(2,13) are 7-tilting infinite and the statement
follows from Lemma [5.1.9} In fact, let B be the principal block of FG}5 and the quiver of

Sp=Endrg,,( @  Y?) following Lemma [5.1.11| is
AEBNQ(2,12)

(11,1) =—=(12),

N N

(9,3) /= (8,4) ———= (6?)

where we replace each vertex by the partition A associated with Y*. Thus, S(2,12) is
7-tilting infinite by Lemma|5.1.10] One can check that S(2,13) also contains a 7-tilting

infinite subquiver as shown above. O
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In the following, we refer to [CM]| for the quiver of Sp without further notice.
Proposition 5.3.10. Let p = 3. Then, S(3,6) and S(3,7) with r = 9 are T-tilting infinite.

Proof. According to Lemma [5.1.9] it suffices to show that S(3,6), S(3,10) and S(3,11)
are T-tilting infinite.
(1) Let B be the principal block of FGg, the part of the decomposition matrix [S* : D#]

for the partitions in B with at most three parts is of the form

(6) 1

5,1) |1 1

4,12) |0 1 1

32 o101
3,211 1111
2 \1 0001

Then, the quiver of Sp = Endrg,( €@ Y?) is as follows.
AEBNQ(3,6)
o]

@)

° \ \ o
\ ) /
(2) Let B; be the principal block of FG1y and Bs the block of FGy; labeled by 3-core

(1?). Then, the parts of the decomposition matrix [S* : D#| for the partitions in B; and

B> with at most three parts are of the form

(10) (1 (10,1) (1
8,2) |1 1 9,2) |1 1
S (7,3) [0 11 B, . (7,4) |0 1 1
Vel (A N R
B3 00 101 (6,5) [0 0 1 0 1
43 \o 01111 423)\0 01 1 11
Then, both the quivers of S, and Spg, are as follows.
Oo-__~o_=~o
o—>ETol—>Eo
By Lemma [5.1.10] the above two cases are 7-tilting infinite quivers. O

Proposition 5.3.11. Let p = 3. The wild Schur algebra S(n,r) is T-tilting infinite for
anyn =4 and r > 6.

Proof. Based on the result of S(3,r), Lemma and Lemma[5.1.9] it suffices to show
that S(4,7) and S(4,8) are 7-tilting infinite.
(1) Let B be the principal block of FGy, the part of the decomposition matrix [S* : DH]

for the partitions in B with at most four parts is of the form
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(7)
(5.2)
(4,3)

(4,2,1)
(3,2,12)
(4,1%)
(2°,1)

Then, the quiver of Sgp = Endgg.( €  Y?) is as follows.
AEBNQ(4,7)

—_ O = O =

o O O = = =
S O == =
O = =

o

o
O

—_

<—@<—

—_

o
O

(2) Let B be the block of FGy labeled by 3-core (1%), the part of the decomposition

matrix [S* : D#] for the partitions in B with at most four parts is of the form

(7,1)
(6,2)
(4%)
(4,2%)
(3,2%,1)

Then, the quiver of Sp = Endrg,( €@ Y?) is as follows.
AEBNQ(4,8)

_= = O = =
O V=
S = =

1
11

@)
-~

A

Obviously, S(4,7) and S(4, 8) are 7-tilting infinite. O

Hence, we have determined the 7-tilting finiteness for all the cases over p = 3.

5.3.3 The characteristic p > 5

The situation on p > 5 is much easier than the situation on p = 2,3. As shown in
Proposition [5.2.1] tame Schur algebras do not appear in this case. Then, the 7-tilting
finiteness for S(n,r) is shown in Table and the proof is divided into two propositions.
Here, we use the same conventions with Table [5.1]

Proposition 5.3.12. Let p > 5. The algebra S(2,7) is T-tilting infinite for any r > p*+p.

Proof. Tt suffices to consider S(2,p? + p) and S(2,p? + p + 1) following Lemma m To

show the 7-tilting finiteness of S(2, p* + p), we choose four partitions

(P*+p), P*+p—1,1),(p* —p.2p), P* — 1L,p+1),

86



Table 5.3: The 7-tilting finite S(n,r) over p > 5.

r _ 2 2 2 _ 2
l~pip+1l~a2p—1|20~p" =1 |p°~p"+p—1|p°+p~o0

Ot | = | W | N

which are contained in the principal block B of FG,2,,. By Lemma [5.1.11] one may

construct the following subquiver in the quiver of Sg.
p(P*+P) ——— ,(P*+p-1,1)

| |

P =p.2p) ——— 4, (P*~1p+1)
This is just the 7-tilting infinite quiver Q; and therefore, S(2,p? + p) is 7-tilting infinite.
Moreover, we can show that S(2,p? + p + 1) contains the 7-tilting infinite quiver Q; as
a subquiver if we choose (p? +p+1),(p*+p—1,2), (p* —p+1,2p) and (p* —1,p+2). O

Proposition 5.3.13. Let p > 5. The wild Schur algebra S(n,r) is T-tilting infinite for
anyn = 3 and r = 2p.

Proof. Tt suffices to consider S(3,r) for r = 2p+ x with 0 < = < 2. Let B be the principal
block of FG,.. Then, the part of the decomposition matrix [S* : D#] for the partitions in
B with at most three parts is of the form
(2p+x) 1
2p—1,14=z) |1

(p+z,p) 011
2p—2,14+z1)|0 1 0 1
(p+z,p—1,1) |1 111
(p-1%2+2)\1 00 0 1 1)
We recall from [Er, Proposition 5.3.1] that the quiver of Sg is

\
/

—_ = =

/N

Then, the statement follows from Lemma [5.1.8] [5.1.9] and [5.1.10] O

Q

Hence, we have already determined the 7-tilting finiteness of wild Schur algebras over
p =5, except for S(2,r) with p>? <r <p*+p—1.
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5.3.4 The remaining cases

In this subsection, we present the 7-tilting finiteness of the remaining cases. We refer
to [AW] for details and proofs.

(1) p=2,n=2,7=28,17,19. It is proved in Proposition that the basic algebra of
S(2,8) is isomorphic to L5, the basic algebra of S(2,17) is isomorphic to FGF @ Ay @ L5
and the basic algebra of S(2,19) is isomorphic to F @ F @& D3 & L. Since F, A, and Dj
are T-tilting finite, the problem in this case is to determine the 7-tilting finiteness of Ls.

(2) p=2,n=3,r =4. It is claimed in Remark that the basic algebra of S(3,4)
is isomorphic to M.

(3) p=2,n>5,r =5. It is claimed in Remark that the basic algebra of S(n,5)
is Morita equivalent to N5 & As.

4 p=5n=2p><r<p’+p—1. We recall from [AW] that the Schur algebra
S(2,r) with p*> < r < p*+p — 1 contains only F, A, with 2 < n < p and D, as block
algebras, where D,,, :== FQ/I (m > 5) is presented by

1 a1
: V51\*3 M 1= with
Q % Vs V4 Um—2 Um-1
2 B2

W3V — Polua, fifbit1, Vig1Vi, Villi — bit1Vit1,3 <1 <m — 2

I < 151, azfz, a1 faz, Bacua Br, cu iz, iz pis, V3P, v3fa, >

Note that D3 and D, are defined in Section 5.2. Since F and A, are 7-tilting finite, the
problem in this case is to determine the 7-tilting finiteness of D, ;.

Finally, we have
Theorem 5.3.14 ([AW]). Let S(n,r) be the Schur algebra over F.
(1) If p=2, then S
(2) If p=2, then S

(2,8)
(3,4)
(3) If p =2, then S(n,5) 5.
(4) If p = 5, then S(2,r) is T-tilting finite for any p* <r < p?* +p— 1.

, S(2,17) and S(2,19) are T-tilting finite.
is T-tilting finite.

2,8
3,4
n,b) is T-tilting infinite for any n >
2

Y
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Appendix A

A.1 Table T and Table W

For the algebras T; and W; in Table T and Table W, respectively, we mean the bound

quiver algebras with an admissible ideal generated by the relation (7).

Table T

V1,2

(1) vip = vapo = (brpig + Lopio) (kivn + kove) = (U + Lapio) (ksvy + kar) = 0,
where k1, ko, k3, k4, gl, gQ, 63, ly € K and kiky 7’é koks, 010y 7’é lols.

) & = pop = v = (vap) = O,
1<neN;

aCo—“>oQﬁ (10) a® = pv = vu = vau = 0;

, ’ (12) a* = pv,va = a?u = 0;
(4)a :ﬁ :N620,2<HEN§ (13)amzya:au—(uu)”:0,2<m€
B)am=p"=au=ps=0,2<m,neN; N,1<neN;
(6) ® = B = 0,ap = pp? (14) o® = pv, vau = 0;
(7) o = 3°=0,ap = ppb; (15) o® = pv,va = o*u = 0;
(8) a* =B =0, au = up; (16) a® = pv,va = vu = 0;

(17) a
(18)a?=p"=vpu=pB=pr=wau)"=0,2<meN 1<neN;

(19) o™ =p"=(vp) " =ap=va=pub=Pr=0,2<mmneN1<reN;
(20) & = pw, % = vy, v = 0, = kpf, k € K/{0};

(21) ™ = " =0, 8% = vu,va = Bu, kia® = pv, ap = kouf,

ki, ko € K/{0},m,n >2,m,n € N.
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Table W

1,402,143 1,42
e — e —
(1) KQ(0,3,0,0); (2) pv = pov = 0;
H1,H42

O < o
V1,2

<3> Valln = Viflo, V1 = ol = [1Ve = [iale = Vi = 0;

aq «
O ()
O—M>O O )
@) "

a2
2 _ 9 _ _ _
(4) af = a5 = aqay = asag =0,

ot = agp = 0; (5) o? = apy = apy = 0;

)
6) o = a2y = 0;
(6) o = oy (15)a =uv=ap=>0
(7) a* = a3 = 0; 2
(16) a® = pv = vap =va* = a*u =0
A7) a* = =vu=au=va®=0
aCo—>oQﬁ . . . - . .
(18) o' = pv = vu = vau = va? = a’*p
0;
2 _ 33 _
E8;a3—£3—au—0,ﬁz (19) a® = uv = vp=va = a’u=0
9)a” =" =ap=ps =0 (20) 0> =va=v 0
=va =vur = aur =
(10) o? = ' = ap = pp* = 0; (21) o> =va=puvu=0
(11) o* = % = auf = pp> = 0; (22) a® =vp=va=aur=a*y=0
(12) o' = 8% = pp* = 0,ap = pp; (23) @® = v, a® =’ =0
(13) @® = B7 = uB? = 0, au = pb; (24) @ = v, o' = vp = vap = va? =0

aCo<M—OQB
25) =2 =vp=pv=va=pl = pr=a’y=0;
26) o = 2 =vp = apu =rva = Br =0
27) o = v, * = vp = ap = pf = fra = 0;

)
)
)
)
) o = pv, * = vp = va = pf = 0;
30) a2 = v, 8 = v = va = By = apf = 0;
)
)
)
)

ap = pp,a? =2 =va = v = prp = vur = 0;
p=pp,a’=p=vp=pr=va=pv=ps=a’uy=0;

Q
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A.2 Supporting materials of Example [2.3.9

We denote by Qs(A) the set of pairwise non-isomorphic basic support 7-tilting A-
modules with support-rank s. In order to give a proof of Example [2.3.9] we need the
following observation. Let A,, be the path algebra presented by

1 2 3 n—1 n.

Then, the indecomposable projective A,-module P; at vertex 1 is the unique indecompos-

able projective-injective A,-module.

Lemma A.2.1 (see also [Ad2]). With the above notations, any T-tilting A,-module T

contains Py as an indecomposable direct summand. Moreover, there exists a bijection

given by Qn(A,) 2T — T/P € Qun_1(A,).

Proof. Let P; be the indecomposable projective A,-module at vertex . By the poset
structure on st-tilt A,,, any 7-tilting A,-module M 2 A, satisfies M < up, (A,,) for some
1 < i< n. Since pp (A,) is support-rank n — 1 and all up (A,,) with i > 2 have P, as
a direct summand, if a 7-tilting A,-module M does not have P; as a direct summand,
there must exist a 7-tilting A,,-module T'= P, ® U such that M < up, (T'). Then, we look
at T = PL@U. If Ue; = 0, we have pup (1) = U by Definition-Theorem so that
T/P € Qn-1(A,). If Uey # 0, each indecomposable direct summand V' of U satisfying
Vey # 0 must be uniserial and top(V') = S5 (i.e., V is a quotient module of P;), so that we
also have up (T) = U by Definition-Theorem , and hence T/P; € Q,—1(A,,). Thus,
we conclude that any 7-tilting A, -module contains P; as a direct summand.

Moreover, the map ¢ : Q.(A,) — @._1(A,) defined by q(T) = T/P; is injective
since T' must have P; as a direct summand. We show that q is also surjective. For any
U € Qn-1(A,), it is not difficult to check that (7U)e; = 0 and Homa, (P;, 7U) = 0. Then,
we can find P, ® U € @Q,(A,,) satisfying q(P, @ U) = U for any U € @Q,,_1(A,,). Thus, we

conclude that q is a bijection. O
It is immediate that a,(A,) = a,_1(A,). This can also be verified by the formula

as(An) — n—s+l (nJrS)7

n+1 s

which is given by [ONER].
In the following, we divide the proof of Example into several propositions. As a
beginning, we find the number #s7-tilt A4, by computing the left mutations starting with

A4. Since the number is small, we can do this by hand.
Example A.2.2. Let P; be the indecomposable projective Aj-module at vertex 7. Then,
P = 213,P2: 2 Py=13and Py =4,
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By direct calculation, we find that (1) all 7-tilting A4-modules are

213@?1@;}@4 213@3@;}@243 213@5@5@213 213@%@3@2 213@;,@5@4
213@3@5@4 213@3@2@243 213@5@3@213 213@%@2@3 213@3@2@2433
23030101 | 230301023 | 2302010, | 10}0104 (2302030 )]
(2) all support 7-tilting Ag-modules with support-rank 3 are
3028505 | 203D, | 30]0%° | 3001 | 10,04 10;04
1O3®,y (101027 302027 | [@]04|]002 | 10,04
23D, 192027 | 1030 |10
(3) all support 7-tilting Ag-modules with support-rank 2 are
34| 104a | D2 | 1D3 104 |33 |22 | D1 |iD1|2D3

Combining the above with ag(A4) = 1 and a;(A4) = 4, we conclude that #s7-tilt Ay = 46.
Proposition A.2.3. For anyn >4 and 1 < s < n — 3, we have
as(An> = as(Anfl) + asfl(An)'

Proof. Let e; be the idempotent of A, at vertex i. For any support 7-tilting A,,-module
M satistying Me, = 0, it is obvious that M is a support 7-tilting A, _;-module. Then,
let Qs(Ay;e,) be the set of the support 7-tilting A,-modules 7" with support-rank s and
Te, # 0. We show that there is a bijection

q : Qs(An; 6n) — stl(An)a

and then, the statement follows from this bijection.
Let X be an indecomposable A,-module with support-rank t < n — 3 and Xe, # 0.
Then, X is an indecomposable module over a path algebra of type A and it corresponds

to a root so that X is of the form

In this case, we denote X by [n — ¢+ 1,n].
Let T € Qs(Ay; e,) and (T, P) the corresponding support 7-tilting pair. There exists
at least one indecomposable direct summand of T', say X, which satisfies Xe, # 0 and we

choose X := [n —t + 1,n] of the largest possible length ¢.
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(1) We show that Te,, = 0 for any arrow m — n —t+ 1. In fact, if t = s, it is true since
T is support-rank s. If t < s — 1, the inequality n —t 4+ 1 > 5 makes m unique and
m = n —t. By the maximality of X, the number of indecomposable direct summands
X' of T with X'’e,, # 0 is at most t and t + |P| =t+n—s <n— 1. (Note that
X'e,_y = 0 is obvious.) We consider the remaining indecomposable direct summand
Y of T satisfying Ye, = 0. Suppose that Ye, ; # 0. It is enough to consider the
following five types of Y

Sl 52 5'3 SQ SB

SQ s SB 84 S4 S4 S4
4 .
S : ) Sn—t 7 Sn—t? Sn—¢> Sn—t
n—t .
. . . S;a
s, Sa Sa Sa

where 4 <n —t < a<n-—1. One can check that [n — ¢ + 1,a + 1] is a submodule
of 7Y for any type above. Then, Homy, (X,7Y) # 0 and it contradicts with
T € Qs(An;en). Therefore, we must have Ye, ; = 0.

(2) According to (1), we can divide 7" into a direct sum W & Z such that the support of
Wis {en_t41,- -, €n_1,€n}, the supports of W and Z are disjoint and the support

of Z does not contain e, with m — n —t + 1. Then, we define
A[n—t+1,n] =N,/ <ert+e+ - Fe,p >

Since T' € Qs(A,; e,) and the supports of W and Z are disjoint, W is actually a
support 7-tilting A,,-module by repeatedly calculating the left mutations started at
direct summands of Z. By Proposition |W| =t since the support-rank of W
is t. Then, W becomes a 7-tilting A,_¢41 n-module. We note that X is the unique
indecomposable projective-injective Ap,_s41 n-module since Ap,_41,,) is isomorphic
to the path algebra A;. By Lemma , the quotient module W/X is a support
7-tilting Ap,—¢ 41 n-module with support-rank ¢ — 1.

(3) Based on the analysis in (1) and (2), we define U := T/ X for any T' € Qs(Ay; e,).
Since T is a support 7-tilting A,,-module with support-rank s, U is a support 7-tilting
Ap-module with support-rank s — 1 by W/X € Qy—1(Ap—¢41,n)) and the fact that
the supports of W and Z are disjoint. Thus, we may define the map from Q,(A,;e,)
t0 Qs 1(A,) by q(T) = U.

Next, we show that the map q defined above is a bijection. On the one hand, we know
that g is an injection. By the analysis in (2), we may define T} := Z1 & X1 V) € Qs(An;en)
and Ty := Zy & Xo & V4 € Qs(Ay; €,,) such that

e X;=[n—t;+1,n]fori=1,2
e the support of Z; is included in {ey,es,...,€, 4,1},

e the support of 75 is included in {ey,e9,...,€, 4,1},
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e the support of Vi is {€n_t;41,€n—t;42, -+ €i1—1, €141, - - -, €n} With exactly one e;,
satisfying Vie;, =0 forn —¢ +1 <4 < n,
e the support of V5 is {€, 1,41, €n—tyi2y- -5 €ir—1,Cint1s- - -, En} With exactly one e,

satisfying Vhe;,, =0 for n —t5 + 1 < ig < n.

Obviously, X; # X, if and only if ¢; # to. If X1 = Xy, T1 # Tb implies Z1 & V) # Zy & V5.
Then, we assume that X; # Xs. If we list the idempotents by increasing the subscripts,
the last two idempotents outside of the support of Z; & V; must be {e, 4, ¢€;, } and the
last two idempotents outside of the support of Zy & V5 must be {e,_,,€;,}. Since t; # t,
we have e,,_s, # €,_4, so that the supports of Z; &V} and Z, @& V, are different. Thus, we
conclude that q(T}) # q(Ts) if T1 # Ty € Qs(Ay;ey).

On the other hand, q is a surjection. We assume that U € Q;_1(A,). Since s—1 < n—4,
there are at least 4 idempotents of A, outside of the support of U.

e If there are exactly 4 idempotents ey, €5, e3 and e; with 4 < ¢ < n outside of the
support of U, then s = n — 3 and U becomes a support 7-tilting Ay ,;-module
with support-rank n — 4. Let P := [4,n] be the indecomposable projective A -
module at vertex 4. Since Ay, is isomorphic to the path algebra A,,_3, we have
T:=P®UE€ Qn3(Ay;e,) by Lemma[A.2.1] and 7" maps to U.

e Otherwise, there are at least two idempotents in {ey, es,...,e,} outside of the
support of U. Let j > 7 > --- > 4 be the first two numbers in decreasing order of
such subscripts. Then, e;; does not appear in the support of 7U, and we can find
an indecomposable projective A,-module P := [i + 1, n| such that Homy (P, 7U) = 0.
Hence, T := P @ U € Qs(Ay;e,). In fact, Te; # 0 and Tey = 0 for any j' # j
satisfying Ue; = 0. Then, T" maps to U.

Therefore, q is a surjection. [

We denote by [2,4, ..., n] (resp., [3,4,...,n]) the indecomposable projective A,,-module
at vertex 2 (resp., 3).

Proposition A.2.4. For any n > 4, we have
an—Q(An> = an—Q(An—1> + an—3(An) + an—?)(An—S)'

Proof. Let e; be the idempotent of A, at vertex i. For any support 7-tilting A,,-module
M satisfying Me, = 0, it is obvious that M is a support 7-tilting A,_;-module. Then,
the number of such modules with support-rank n — 2 is a,_2(A,_1).

Let Q,—2(Ay;e,) be the set of support 7-tilting A,-modules 7' with support-rank
n—2and Te, # 0. For any T € Q,_2(A,;e,), we denote it by T'= X @ U with an
indecomposable direct summand X satisfying Xe, # 0. We may set X :=[n —t+ 1,n]
of the largest possible length ¢, while X = [2,4,...,n] is also allowed if t = n — 2. We
show that py(T) = U and therefore, U € @Q,_3(A,,). Then, we can define a map q from

anZ(An; en) to an:}(An) by q(T) = U
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e If ¢t < n — 3, this is similar to the situation in the proof of Proposition [A.2.3] Thus,
Te,, =0 for any arrow m — n —t+ 1suchthat = XV & Z, where X &V
is a 7-tilting Ap,—¢41n-module with the unique indecomposable projective-injective
App—t41,n-module X, the supports of X ®V and Z are disjoint and the support of Z
does not contain e,, with m — n—t¢+1. By Lemma , we have uy(T) =V @ Z.
In this case, q(T1) # q(Ts) if T} # Ts € Qn_o(Apn;en).

e Let t =n — 2, the support of X is either {es, eq,...,e,} or {es,ey4,...,e,} such that
X is uniquely determined (since the support of X cannot contain all the idempotents
{ea,€3,€4,...,€,}). Then, Te; = 0 is obvious and uy(T) = U is also true. In
fact, let T := X @ U and X := [2,4,...,n]. The condition Te; = Tez = 0 makes
T to be a 7-tilting A, _s-module and makes X to be the unique indecomposable
projective-injective A,,_s-module. By Lemma , we deduce that py(T) = U.
Similarly, one can observe the fact uy(7) = U for X = [3,4,...,n].

Let Xy := [2,4,...,n] and X, := [3,4,...,n]. We observe that the map ¢ defined
above is not an injection because q(X; ® U) = q(X2 ® U) = U whenever U is a 7-tilting
Ay n-module, which appears in the case t = n — 2. Also, it will be useful to mention that
for any T' € Q,_2(A,;e,), if there exists an idempotent e; € {ey, es,...,¢e,} satisfying
Te;=0,thent<n—i<n—4.

Next, we show that the map q : Q,_2(Ay;e,) = Qn_3(A,) is a surjection. For any
U € Qn-3(A,), there exist exactly three idempotents of A, outside of the support of U.

e Suppose that there are at least two idempotents in {ey, es, ..., e,} outside of the
support of U. Let j > i > 4 (or j > ¢ > k > 4if k exists) be the order of such numbers.
Then, e;,1 does not appear in the support of 7U, so that Homy, (P, 7U) = 0 with the
indecomposable projective A,,-module P := [i + 1,n]. Hence, P & U € Q,_2(A,;e,)
maps to U.

Note that for any Y satisfying Y @ U € Q,—2(An;e,) and q(Y & U) = U, the
support-rank of Y @ U is the support-rank of U plus 1. Then, there always exists an
idempotent ey € {e4,€5,...,e,} satisfying (Y & U)e,, = 0, so that Y & U is included
in the case t < n — 4. By the injectivity of q in the case ¢ < n — 3, we conclude that
PaU € Q,2(Ay; e,) is uniquely determined in this case.

e Suppose that there is exactly one idempotent e; in {e4,es,...,e,} outside of the
support of U. This is equivalent to saying that there are exactly two idempotents of
e, eq, e3 outside of the support of U.

If Uey # 0,Ues = 0,Ue3 = 0, then U = S} &V, where V is a support 7-tilting
Ayyn-module with support-rank n — 4. We observe that (U, P, ® P3) is an almost
complete support 7-tilting pair, so that it has two completions and one of which
is (U, P, @ P; ® P;). Since Ue; # 0 for any ¢ # j > 4, (U, P, @ P; & P;) cannot

be a support 7-tilting pair and then, the other completion must be of the form
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(U®Y, Po® P;). In particular, Yes = Yes = 0 holds. Since Y is indecomposable and
cannot be S, Ye; = 0 also holds. Note that the support-rank of Y U is the support-
rank of U plus 1, we must have Ye; # 0. Then, Y & V' is a 7-tilting Ay ,-module.
Since V' is support-rank n — 4, it cannot have [4, n] as a direct summand. By Lemma
A.2.1} Y = [4,n] is unique and Y & U € Q,—2(An; e,). Moreover, q(Y & U) = U.

If Uey =0,Uey # 0,Ues = 0, similar to the above case, we can find a Y satisfying
Ye; = Yes = 0 such that Y @ U € @Q,_2(A,;e,) maps to U. Then, U can be
considered as a support 7-tilting A,,_s-module with support-rank n — 3 as well as
Y @ U can be considered as a 7-tilting A,,_s-module. By Lemma[A.2.1] Y is unique
and it must be Xj.

If Uey = 0,Uey = 0,Ues # 0, similar to above, Xo @ U € @Q,,_o(Ay; e,) maps to U
and X, is uniquely determined by Lemma [A.2.1]

e Suppose that e, es, e3 are outside of the support of U. Then, U is actually a 7-tilting
Apsn-module and [4,n] must be an indecomposable (projective) direct summand
of U following Lemma [A.2.1] Then, Hom,, (X;,7U) = 0 for i = 1,2 implies that
X10U, Xo®U € Qn_2(A,; e,) and both of them are mapped to U.

We show that X; and X, are the only possible cases. Assume that Y & U €
Qn—2(Ay; e,) maps to U. Then, only one of Yey, Yes, Yes is not zero. If Ye; # 0,
Y must be S; since Y is indecomposable and Ye, = Yes = 0. However, this
contradicts with the fact Ye, # 0 deduced by q(Y & U) = U. Thus, we have either
Yer =Ye; =0,Ye3 #0,Ye, #0or Ye; = Yes =0, Yey #£ 0, Ye, # 0, so that
Y =X, or Xs.

Now, we found that the map q: Q,_2(Ay;e,) = @Qn_3(A,) is indeed a surjection. If
one wants to use this surjection to count the number of modules in Q,_2(A,;e,), one
should note that both X; & U and X5 & U are mapped to U whenever U is a 7-tilting
Ay n-module, and it is the only part that needs to be double calculated. These are exactly
the a,—3(Aun)) = an-3(An_3) pairs of modules in Q,_2(Ap;e,). Therefore, the number of
modules in Q,_2(Ay;e,) 1S an_3(An) + an_3(A,_3). O

We define A} := Ay and Al := KQ/ < a3 > for any n > 3, where

3 n—1—-sn.

Q: 122
Proposition A.2.5. Let n > 4, we have

(1) as(Al) = as(AL ) +as_1(AL) forany 1 < s <n—2.
n—1

(2) an-1(Ay) = an1(Ay 1) + @1 (An) + apa(Ans) + Z;)) ai—1 (A1) - an—i(An_y).
(3) an(A}z) = an-1(An-1) + ana(Ay ).
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Proof. (1) The proof is similar to the proof of Proposition . We omit the details.

(2) Let T € Q,_1(Al). There exists exactly one idempotent e; such that Te; = 0. If
i = 1, T becomes a 7-tilting A,,_;-module. If i = 2, we can divide T into a direct sum
Ty & T5 such that T; is the unique 7-tilting A -module and 75 is a 7-tilting A,,_s-module.
If 3 <i<n-—1, wecan divide T into a direct sum T} & T, such that T} is a 7-tilting
Al -module and Ty is a 7-tilting A,_;-module. If i = n, T is a 7-tilting Al _,-module.
Hence, we get the formula.

(3) Let T € Q,(AL). Similar to the proof of Lemma [A.2.1] we find that T always
contains } as a direct summand. If 7' = 1@ U with Ue; = 0, U becomes a 7-tilting
A, _j-module. If T =1® U with Ue; # 0, one may check that U = 1@V with Ve; = 0.
Since 7(1) = Sy and U is 7-rigid, we have Ves = 0. Thus, V' is a 7-tilting A,,_s-module. [J

2n
n

By combining the above proposition and a,(A,,) = — (

=5 ), we have

Corollary A.2.6. a,(AL) = 2 (*" %) + L (>")) is the sequence A005807 in [SI].

n—1 n—1\n—-2

Let D,, be the path algebra presented by

We recall a,(D,) = 22=2(*"?) from [ONFR].

2n—2 \ n—2

Proposition A.2.7. For any n > 5, we have
n—1
an-1(Ay) = ap_1(Ap_1) + an1(Dp1) + 2401 (AL )+ > ai 1 (A1) - ani(Any).
i—4

Proof. Let T € Q,—1(A,,). There is exactly one idempotent e; such that Te; = 0. If i = 1,
T becomes a 7-tilting D,,_1-module. If i =2 or 3, then fv =0 or au = 0, and T" becomes
a 7-tilting A}l_l—module. If 4 <i<n-—1, we can divide T into a direct sum 17 ¢ 15
such that 77 is a 7-tilting A;_;-module and T5 is a 7-tilting A,,_;-module. If i =n, T is a

T-tilting A,,_1-module. Hence, we deduce the formula. n

Proposition A.2.8. For any n > 4, we have

an(An) = an_l(An) - an—3<An—3)-

Proof. Let P; be the indecomposable projective A,-module at vertex i. We explain the
relation between @, (A,,) and @,_1(A,) as follows.

(1) We show that a 7-tilting A,-module either has P; as a direct summand or is of form
1@ 3@ 5@V with V to be a 7-tilting Ay n-module. By the poset structure on s7-tilt A,
any 7-tilting A,-module M % A,, satisfies M < pup, (Ay,) for some 1 <7 < n. Since pp, (A,,)
is not 7-tilting and all yij, (A,,) with ¢ > 2 have P, as a direct summand, if M does not
have P; as a direct summand, then there must exist a 7-tilting A,,-module T := P, ® U
such that M < up (T). Immediately, we have
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Case (a). If T'= P, © U with Ue; = 0, then up (T') = U by Definition-Theorem m
and U € Q,—1(A,) by Proposition [2.3.8]

Suppose that Ue; # 0. We remark that U does not have S as a direct summand since
Homy, (P, 751) # 0. We define

with 4 < a <n — 1. Then, U has at least one of 3, §, ,', and M, as a direct summand,
because these modules are 7-rigid and Ue; # 0. In particular, it is worth mentioning
that the unique non-zero morphism f : Py — X for any X € {3,1,,', M,}, is actually the

projective cover of X and coker f = 0.

(al) If U = ;@ V with Ve, = 0, we have up (T) = U by substituting coker f = 0
into Definition-Theorem and hence, U € @,_1(A,). Since 7(3) = S3, we have
S3 & top V so that Vez = 0. This implies that Ues = 0 and Ue; # 0 for any i # 3.

(a2) If U = 3@ V with Ve; = 0, we also have up (T) = U and U € Q,-1(A,). Since
7(3) = Sz, we have Uey = 0 and Ue; # 0 for any i # 2.

(a3) If U has exactly one of ,'; and M, as a direct summand, we have up, (T') = U by
substituting coker f = 0 into Definition-Theorem and hence, U € Q,_1(A,).
This implies that Ue; = 0 for exactly one ¢ with 4 <7 < n.

(a4) If U has two of 3, 3, ,'; and M, as direct summands and one of the direct summands
is ,'s or My, we also have pp (1) = U since there exist epimorphisms from ,', or M,
tod and 1. Then, U € Q,_1(A,). Since we can make sure that Uey # 0 and Ueg # 0,
we have Ue; = 0 for exactly one ¢ with 4 < i < n.

(ab) If U has more than two of 3, 4, ,'; and M, as direct summands, it must have ,!,
or M, as a direct summand. Then, similar to the above, we have up (7') = U and
U € @Q,-1(A,). This also implies that Ue; = 0 for exactly one 7 with 4 < i < n.

Then, it remains to consider

Case (b). T =P didi®V with Ve; = 0, then Vey = Veg = 0, so that V
becomes a 7-tilting Ay ,-module. In fact, if Ve, # 0, it implies Sy C top V so that
Homy, (V,S3) # 0. Then, 7(3) = Sy implies that Vs must be zero. Similarly, 7(3) = S3
makes Ve to be zero. Then, we have yp (1) = 1@ 3@ 3 V by simple observation.

Now, we can claim that if a 7-tilting A,-module M does not have P; as a direct
summand, M <T":=1® 5@ &V with a 7-tilting Ay ,-module V. Then, we observe
that the left mutations of 7" with respect to 4 and i are not 7-tilting, and the left mutation
of T" with respect to one of direct summands of V' is equivalent to that of a 7-tilting
Apn-module V. Therefore, 1 ® 4 @ § must remain in M as a direct summand.

Finally, we conclude that if a 7-tilting A,-module M does not have P; as a direct
summand, it is of form 1 @ 1 @& L& V with a 7-tilting Ay ,-module V. Moreover, if a
7-tilting A,,-module T" has P; as a direct summand, then T/P; € Q,,_1(A,,) if and only if
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T # P @®leleV with a 7-tilting Ay ,-module V. (This implies that 7'/ Py is not always
included in @,-1(A;). This is also the reason why we distinguish the following set S.)
(2) We may construct a map q from @Q,,_1(A,) to Q,(A,) \ S, where

S = {Pl @ldldV |V isa r-tilting A[47n]-module}.

Let U € Q,_1(A,), it is obvious that U does not have P; as a direct summand since P;
is sincere. We first consider the case that U has ) as a direct summand. Since 7(1) = ,'5,

we know that U does not have one of 1., M,, the indecomposable module N, with

23
top Ny = S5 and the indecomposable module N3 with top N3 = S3 as a direct summand.

Since U € @Q,,—1(A,), there exists exactly one idempotent e; with i # 1 satisfying Ue; = 0.

(i) If i = 2, the only possible direct summand Y of U satisfying Yes # 0 is  and the
remaining direct summands give a 7-tilting Ay ,-module V, so that U =1® 3@ V.
In this subcase, q is defined by mapping U to 1@ 1@ 1@ V. To observe that the latter
one is included in @,(A,) \ S, we have Homy, (3 ® U, 7(3® U)) = 0 since 7(}) = 3

and 7(3) = 2. Moreover, it is easy to check that q in this subcase is a bijection.

Ifi=3U=1®3®V with a 7-tilting A ,-module V. Similarly, q is defined by
mapping U to 1@ 1@ i@V € Q,(A,) \' S, and q in this subcase is also a bijection.

Note that the number of U in the cases of i = 2,3 is 2a,,—3(Ajn)) = 2an-3(As_3).
(ii) If i > 4, the conditions Uey # 0 and Uez # 0 must imply that U = 1@ 1@ 1@ Z with
Zey=Zey=Zeg=0and Z € Qn_4(N\ju)). We may regard Z as a support 7-tilting
A,,_s-module with support-rank n — 4. By Lemma[A.2.1] Z is the left mutation of
7-tilting Ay ,-module V := P& Z with P = [4,n]. Then, 1@ iV € Qn(A,)\ S
is obvious. In this subcase, q is defined by mapping U to 1® @ 1@ V and it is a

bijection. Besides, the number of U in this subcase is a,—4(Ajyn)) = an-a(An_3).

Similar to the situation in Proposition the map q defined in the case where U has
51 as a direct summand is no longer a bijection, but a surjection. If we count the number
of modules in @, (A,,) \ S in this case, there should be a,_3(A,—3) + a,_4(A,_3) overlaps.

Next, we consider U € Q,,_1(A,) such that Ue; # 0 and U does not have Sy as a direct

summand. There also exists exactly one idempotent e; with ¢ # 1 satisfying Ue; = 0.

(iii) If ¢ = 2, the only possible direct summand Y of U satisfying Ye; # 0 is i so that
U=13V with Ve, =0. Then, P, & U € Q,(A,) \ S is obvious and this is the only
one possible case. In fact, by the analysis in (1) before, a completion of }® V to a
7-tilting A,-module which does not belong to S is either of form P, @ {® W with
We, = Wey =0or of formi@®i®d1d W with We; = Wey = Weg = 0, but the
latter one is excluded if we restrict Ve; = 0. Therefore, q in this subcase is defined

by mapping U to P; @ U and it is a bijection to the case (a2).

Similarly, if i = 3, we have U = 1@V with Ve; =0 and P U € Q,(A,)\S. Hence,
q is also defined by mapping U to P; @ U and it is a bijection to the case (al).
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(iv) Suppose i > 4. Then, U has at least one of 3, 3, ,', and M, as a direct summand.

e If U has exactly one of { and } as a direct summand, say, U = @V with Ve; = 0,
Ues # 0 implies S3 C top V. Then, 7(3) = S5 indicates Homy, (V,7(3)) # 0,
contradicting with the assumption that U is a 7-rigid module. Also, one can
get a contradiction for U =1 @ V with Ve; = 0.

o If 1 @} is a direct summand of U such that U =1@ 1@ V with Ve, =0, then
Vey = Ves = 0 by the similar analysis with Case (b) in (1). This implies
that V' is a support 7-tilting Ay ,-module with support-rank n — 4. However,
[Ul=2+n—4=n—-2<n—1, contradicting with U € Q,_1(A,).

e Otherwise, U must have one of ,!, and M, as a direct summand, so that
PoU e Q,(A,)\S is well-defined by the analysis in (1). In this subcase, ¢ is
defined by mapping U to P, @ U and it is a bijection to (a3), (a4) and (a5).

We conclude that the map q in this case is a bijection.

Lastly, it suffices to consider the following case.

(v) IfUe; =0, PLBU € Qn(A,)\S is well-defined. In fact, it follows from Homy, (P, 7U) =
0. Thus, g in this case is also defined by mapping U to P, & U and it is a bijection.
This corresponds to the Case (a) in (1).

Now, we have found that q : Q,—1(A,) = Qn(A,) \ S is a surjection, which is similar
to the situation in Proposition In particular, the reason why q is not an injection is
explained in cases (i) and (ii). Then, the number of modules in @,(A;) \ S is

an—l(An) - # {1 @il’)@ 14 | Ve Qn—3(A[4,n]>} - #{1 @%@é@ Z | Z e Q?’L—4(A[4,n])}‘

On the other hand, the number of modules in S is a,—3(Auy)) = @n-3(An—3). Hence,

we conclude that
an(An) =#(Qn(An) \ S) + #S
=a,1(Ap) — an_3(An_3) — an_a(An_3) + a,_3(A,_3).
Note that a,_4(A,_3) = an_3(A,_3) by Lemma[A.2.1] Then, the statement follows. [J

A.3 Supporting materials of Example [2.3.10

We recall the indecomposable projective A-modules P; as follows,

3
P, = 2

Do

_ _ 4 __ 4
7P2_ 7P3_ 7P4_3~

WHWN
N

Then, we construct three indecomposable A-modules to describe some basic 7-tilting
modules. We first consider the 7-tilting A-module P, ® P, ® P; ® P, and take an exact

sequence with a minimal left add(P, ® P» & Py)-approximation m; of Ps:
P, =5 P @ Py ® P, —» coker m; — 0.
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We define M := coker m; and P, @ P, & M; & P, is again a 7-tilting A-module. Then, we

take an exact sequence with a minimal left add(P, & M; @ P,)-approximation o of Py:
P 2)P2G31\41 —>coker7r2—>0

3, 3 3
and define M, := coker m,. Last, we consider the 7-tilting A-module é @é ‘o : @% ? (one
2
may check this by Definition [2.1.1)) and define Mj := coker 73 as the cokernel of 73, where

3 3
73 is the minimal left add(é ‘ol @é ?)-approximation with the following exact sequence:
2

3, .3
1 73 174 172
3 — 3 @3 — coker 13 — 0.

Next, by using Py, P, P3, Py, My, Ms, M3 and other explicitly described modules, we

can give a complete list of 7-tilting /’i—modules by direct computation of left mutations.

POoP,oPsd P

23469P269P3@P4

134
Pl@g EBPg@P4

PPePe MG P,

132
P1€BP2€9P3€9§

3
2346951)46913369134

234€BP269§69P4

3
234EBP2@P3@:2132

131
PlEBg O30 P,

ProP,oM o2

PoltoMaoP,

My ® P, & M, & Py

134
Pl@% GBP:J,@%

My ® P, ®3® Py

2346913269%@%

3
234EBP269§’@§2

Polltoiopr

3
Po ol

NWH—W

My ® P, ® M, @12

2oLt M o P,

My, @2 @ M, @ Py

3

3
Pol'oles’
2 2

NWH—W

GId PR

My @2 D30 Py

2
MzEsz@g@ig

Poltoios

My @2 e My @2

2
My® P, ®120 "

234 P 134 P M1 sy 132

PoLies ol

2401 4@ S @ Py

3

3
%@?@6%2

NWH—W

3 3
3 174 172
24@% @Mg@%

2
My @2 DFD 72

3

Moieie

WH—W
NWH—W

2
M2 st 234 P ?32 sy 132

2 4 14 124 12
3@3693@3

1%4 sy 134 o Sl P 132

234@134@54@1%4

3
%@y@@i

NWH—W

3
zi@§4@kﬁ@i

3
Y1@Fe M@y

2
SAGRACE R

2
5’2 fasy 234 P %32 P 132
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234 @ 82 @ 1?}4 @ 132 1%4 @ 5’2 @ Sl @ 132 1%4 @ 134 @ Sl @ 5’4 234 @ 5’2 @ 84 @ 134

3
21080 Mz 03 | S;010iel |3e%HoSeS
2

3
Myoiola?
2

3
S;@3pid3
2

A.4 Supporting materials of Lemma 5.2.3

We recall that the indecomposable projective ﬂ-modules are

Then, we construct two indecomposable ’;T—Zl—modules to describe some basic 7-tilting
modules. We first consider the 7-tilting Hs-module P, & P, & P3; & P, and take an exact

sequence with a minimal left add(P; @ P3 @ Py)-approximation m; of Py:
PQ&Pl@Pg@PLL—)COkeI’?Tl — 0.

We define M, := coker ;. Second, we consider the 7-tilting ?T[;—module 2, OP® 20 2%
(one can check this by Definition [2.1.1)) and define My, := coker 72 as the cokernel of o,

where 75 is the minimal left add(,?, ® |2, @ ,%)-approximation with the exact sequence:
P, = 32, @ % ® %, — coker mp, — 0.

Next, we can give a complete list of pairwise non-isomorphic basic 7-tilting 'ﬁ;—modules

by direct computation of left mutations, as displayed below.

PeP &P P,

324@P2@P3@P4

P169P269124@P4

P1@P2@P369123

PPeM &P Py

31D P, @ Zi o Py

324@P2@P369123

.00 M, ® P ® Py

PreM e e P

PreM@Psal}

P @i P

PePd 12469 123

P169%EBP3EB123

i@ 2@ 110 Py

34 e Pd 1% P 1’3

32469%@3369123

324@ A]\[1 ® 124@ P4

Pl fany Ml ® 124@ 123

32469 ]\4’1 ® P3 ® 123

i@§@12469p4

PojoltoPR

P169%@12469123

Po3o Pt}

%@%@%@123

4020104 ® M,

34 S M, ® 12 &) 123

i My®2e1’s

324 P ]\4’1 sy 124 o 123

Pl ® Sl fa 124@ 123

324 fany 53 sy P3 sy 123

seSieL e R
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M2@%@124@123

3PS @ Py l?

20201748 M,

32469M265§@?1

34 134 14 13
2@2@2652

324 sy 84 sy 124 s 1%4

1%4 sy Sl s 124 s 123

324 s 5’3 ® 1%4 ) 123

MQ@%@%@l%

My@ioios

Se@2D2d3

S1oS, oLt

3008, @ S; 13!

S @Se el

S18 5,853

A.5 Supporting materials of Proposition [5.3.1

We recall that the indecomposable projective Ia—modules P, P, Py are

P1:

W

,PQZI 3

47P4:

N

We may look at the structures of the indecomposable projective lfC\;—module P3 and the

indecomposable injective la—module I3 in detail, that is,
3 4

VAN |

20 4 and L= L3
3 2

Py=
37

4 3

Then, we construct two indecomposable I/C:—modules to describe some basic 7-tilting
modules. We first consider the 7-tilting K4y-module P, & P, & 1234 @& P, and take an exact

sequence with a minimal left add(P; @ 1234 @ Py)-approximation m; of Py:

PQ&P1@1234@P4—>C01(€|’7T1—>0.

_ 3
We define M := coker ;. Second, we consider the 7-tilting K4;-module P; & 133 ® Lo %

1
(one can check this by Definition [2.1.1)) and define M, := coker 7y as the cokernel of 7,

3
where 7, is the minimal left add(lg3 ® % @ ,%)-approximation with the exact sequence:
1

3
P = 2, @ 2, —> coker my — 0.
4

Similarly, by using Py, P, P3, Py, My, M5 and other explicitly described modules, we
can give a complete list of pairwise non-isomorphic basic 7-tilting E—modules by direct

computation of left mutations.

3
PPeP® P 2
4

PoPRoPobR é@Pz@P?,EB& Pl@P2@1234@P4

3
4

3
S Psd Py §@P2@P3@123

2
10P® 40P )

W O N

D

=N

P1@1§34@P3@P4

ProM o2 e P,

3 .13 13 44 13 5
19240500 | P® 240,00 | RO 10RO
3 4
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PoPo % 07

3
PO P®%® %
4

5@234@ Zie P

3

2
2 4 2
3OO D%
i

313 13
463%4@2@134
3

313 5
1D %4@133@13
1

3
13 13
Po® 24P 2 @123

3 3 i

w

DN QO

34@]\/[1@1234@134

2
iehe el

PoP® 20}

3

3
P 2o L%
13 1

4
3 24 24
23469 3 D17 ® Py

2
244 2402
305D D

3
2
3 M. 2 2

s l3 13
3

4
Pl@%gzl@l;’@sl
3

P o 1§34 o 13’3 oS,

4 4
1, 0Ma2e P,
3 3

4
ProM eLles
3

2
3@%@123@%

1
5469234@1234@%

P1@534@5@%

3
3 13
PP®2d 2%
13 3 1

3 3
3 2 2
4

4
3 24 24

54 @234@ 1234@%

10210 503

S80S, ®?

2 S B
3O My D3P %
i1

3
S M, @22
4 1

4
ieielle S
3

13 13
ie 247 b S

4
Leliel e s
3

P1@%34@%@81

4
L®ialas5
3

g@@@&@&

Leid S, a5

4 4

4 1
5,050 Py
3 3

4 4
3 4 13
3,040 200
3 3

4
5,0505,:0 1
3

3 150
3 3

4
1

3,050 2 p24

K 13 5

4 1
%34@5465]369234

EHEEN K

&@@@%ﬁ

54@%34@%@31

3 3 3 3 3
3 3 3
My® 2 @30 % | Mo® 2 @503 | S30 2 &30 ,% My® 2 23
13 3 1 13 13 3 1 13 3
3 3 3
3 3 3 3 3 13
S;3@ 2 B3D2 20 2 B2l Ss® 2 @ 2 @2
13 3 3 3 13 3% 13 3 1
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