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1. Introduction

The class of univalent linear operators is unstable under the operations closure, in-

verse and adjoint. This is not the case if we consider the more general class of multi-

valued linear operators.

On the other hand, Favini and Yagi [7] and Yagi [15] have proved existence and

uniqueness theorems of the strict solutions of degenerate evolution equations by means

of this class of operators.

For these reasons, it is interesting to extend some results of functional calculus

to the multivalued linear case as well as obtaining a theory of fractional powers for

multivalued linear operators.

This problem has already been studied by Alaarabiou [1, 2]. He extended the

well-known Hirsch functional calculus (see [8, 9]) to the set M. of multivalued non-

negative linear operators in a Banach space. His main idea was to endow Λ4 with an

appropriate topology so that if / e T+ (that is, f(l/z) is a Stieltjes transform of a

non-negative Radon measure), then / : Λ4 —>• Λ4 is continuous.

The basic properties of a functional calculus were proved in [1] by the above

mentioned continuity. Nevertheless, this kind of reasoning does not allow us to ob-

tain two fundamental properties: the product formula and the spectral mapping theo-

rem. Moreover, this functional calculus does not generate interesting operators such as

the fractional powers of complex exponent, or the semigroup generated by the frac-

tional powers either, because the functions za, 0 < Reα < 1, and e~tza, 0 < a < 1/2

and t > 0, do not belong to the class T+.

Sections 3 and 4 of this paper are devoted to improving a functional calculus valid

for a wider class of functions T which contains the earlier mentioned functions. This

process is not trivial because we have neither f(Λ4) C Λ4 nor continuity of / . So

we have developed an original method to obtain the main properties of a functional

calculus.

First of all, in Theorem 3.2 we study the inverse operator of /(A). Then, in

Proposition 3.5, we relate /(A) and / (A + ε) for ε > 0. These results enable us to
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extend the functional calculus on C(X) Π Λ4 to Λ4.

Afterwards, in Theorem 3.10 we show a result that will be essential from now on:

for a subclass of functions that includes the fractional powers, /(A) is given by

(1.1) /(A) = (1 + A)/(AD)(1 + ADyx,

where Aβ denotes the restriction of A to the Banach space D(A). By means of (1.1)

we prove the product formula, the stability under composition and the spectral map-

ping theorem.

In the third part of [1], Alaarabiou constructed a theory of fractional powers valid

for exponents a, 0 < a < 1, that verifies the following fundamental properties:

a) (A-ιr = (Aarι.
(ii) (A?)01 = Aβa for 0< β < 1.

(iii) AaAβ = Aa+β for α, β > 0 with a + β<\.

(iv) A = Γiminfα_+i Aa.

Nevertheless, the following basic ones remain unanswered:

( v ) σ ( A a ) = {za : z e σ ( A ) } .

(vi) If A is w-sectorial and 0 < βw < π, then Aβ e M and (Aβ)a = Aβa.

(vii) ( A T = (Aα)*.

In section 5 we give a new definition of fractional powers Aα, Reα > 0, based

on formula (1.1). By applying our functional calculus to the function za, 0 < Reα <

1, and by means of the theory of fractional powers of densely defined operators (see

[5, 10]), we get the properties (i) to (vii). Finally, we extend this theory to exponents

a e C, Reα < 0.

2. Multivalued linear operators and Stieltjes transforms.

Throughout this paper (X, || ||) will be a complex Banach space.

DEFINITION 2.1. A linear subspace A of X x X is said to be a multivalued linear

operator in X. From now on, we use the following notation about A:

D(A) = {u e X : 3υ e X such that (M, V) e A},

Au = {v e X : (M, υ) e A}, u e D(A),

R(A) = {v e Au : u e D(A)} and ker A = {u e D(A) : 0 e Au}.

When A0 = {0}, we say that A is a univalent linear operator.

By £(X) we denote the Banach algebra of bounded univalent linear operators de-

fined on all X.

If A and B denote multivalued linear operators and a e C, we can also consider

the multivalued operators:
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A + B = {(u, v + w) e X x X : (M, υ) e A, (w, tu) e B),

AB = {(w, υ) e X x X :3w e X such that (w, w) e B and (w, υ) G A},

and

aA = {(w, α u ) e X x X : (u,υ) e A}.

In short, the operator {(u, au) e X x X : u e X} will be denoted by a.

Moreover, we can always consider the inverse of A

A"1 = {(M, υ) G X x X : (v, u) e A},

and the adjoint of A

A* = {(M*, υ*) G X* x X* : <υ*, w) = (M*, U), V(M, υ) G A}.

Note that A"1 is univalent if and only if A is one-to-one, and, by the Hahn-Banach

theorem, A* is univalent if and only if D(A) = X.

By p(A) we denote the resolvent set of A, that is,

p(A) = {z G C : (z - A)"1 G £(X)},

and by σ(A) = C \ p(A) the spectrum of A. As in the univalent case, p(A) is open,

the resolvent (z — A)~ι is a holomorphic function from p(A) to £(X) and the resolvent

identity

(2.1) (z - A)"1 - (y - A)"1 =(y- z)(z - A)~\y - A)"1, Vz, y G p(A),

holds (see [7, Theorem 2.6]).

DEFINITION 2.2. Given &> G]0, π ] , we say that a multivalued linear operator A is

ω-sectorial if

σ(A) c 5ω := {z e C : | argz| < ω] U {0},

and there is a constant K > 0 such that

(2.2) i i ^ - A Γ 1 ! ! < AT, V z G C \ 5 ω .

If ω = 7Γ, we say that A is non-negative. We denote by Λ4(X) (Λ4 for short) the

set of non-negative multivalued linear operators in X.

REMARK 2.1. By (2.1) it is not hard to show that the condition (2.2) is equivalent

to that

M(θ) = supλlKλe1'* - A)"11| < oo, for ω < \θ\ < π.
λ>0

Moreover, if A is ω-sectorial, then A" 1 and A* also are.
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We associate to A e M the family of bounded operators

Aλ = -(1 - 7λ

Λ), Vλ > 0,

usually called Yosida's regularization of A, where Jχ = (1 + λA)"1, and the constant

M{A) = sup λ > 0 | |7λ

Λ | | < oo. Note that if A = {0} x X, then M(A) = 0. Otherwise

M(A) > 1. It is easy to check that

AJ^u = Aλu + AO, Vw G X, and Aλu = J^Au, Vu e D(A).

By (2.1), {Aλ}λ>0 is a resolvent family.

EXAMPLE 2.1. We can obtain multivalued operators by considering the inverse of

a univalent non-negative linear operator which is not one-to-one. For example, let us

consider the Banach space L°°(]0, +oo[;C). The integral operator X given by:

D(X)= | / G L ° ° : Γ f(s)dseL0G

If = \- f f{s)ds + K : K e cl, V/ e

belongs to M(L°°) with

/»σo

Ux8)M = λ I (1 - g O ) ) ^ 5 - ^ J j , Vx > 0 and Vg G L°°.

It is evident that — X is the inverse of the derivative operator.

EXAMPLE 2.2. Let Ω c M " be an open set with a smooth boundary 3Ω, and X =

(L2(Ω))rt = I σ Θ I v , where

Xσ = {w € (C£°(Ω))« : divw = 0 in Ω} and Xv = {Wp : p e Hι(Ω)}.

In [7, Example 6.2], in order to formulate the Stokes equation in multivalued form,

the multivalued linear operator

ί D(A) = (H2(Ω))n Π (H^(Q))n Π Xσ

I Au = —Au + XV

was introduced. It is proved that A e M(X). Note that A is not one-to-one.

DEFINITION 2.3. Let {Ai}ieχ be a net of multivalued linear operators in X. As in

[1], we call liminfχA/ to the multivalued linear operator in X given by

liminf A, = {(«, v) e X x X : 3{(w,-, ty)}/ez convergent to (w, υ)

in I x I , where («;, υ;) e A/, Vi G J}.
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REMARK 2.2. Note that, if A; e C(X), V/ e T, and limsupj ||A;|| < +σo, then

liminfjA/ is a univalent linear operator.

In the following proposition we have collected the main properties of operators

in the class M.. The proof can be found in [2, Proposition 1.1]. However, we give a

constructive proof of (iii) that will be very useful in next section.

Proposition 2.1. Let A e M. The following assertions hold:

(i) A is closed.

(ii) // λ > 0, then Aλ e C(X) Π M with

^ λ = ^ T λ ( λ + μ ^ Λ + λ ) ' V μ > 0 '

and M(Aχ) < max{M(A), 1}. Moreover,

(Λ λ)μ = Aλ+μ, V/x > 0.

(iii) A = liminfλ^o^λ
(iv) D(A) = (M

(2.3) A0ΠD(A) = {0}.

(v) The univalent linear operator A/> = A Π (D(A) X Z)(A)) is non-negative and

densely defined on the Banach space D(A).

(vi) If X is reflexive, then X = A0 θ D(A).

Proof, (iii) First of all,

lim J*λu = J*u, Vμ > 0 and Wu e X,
A— ϊΌ

since

\\J£X» ~ fall < λ(M(A) + l)||Λμiι|| + ||7λ

A

+μW - 7 > | | .

Let (u, v) e A. We have

lim (J,Aλ(u + υ), Aλjf
λ(u + υ)) = (w, υ),

and therefore (w, f) e liminfλ_+0^λ Let us now suppose that (w, v) e

that is, there is a net {wλ}λ>o that satisfies

lim(wλ, Aλuλ) = (M, υ).
λO
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It is easily seen that

lim 7,Λ λ(l + Aλ)uχ = J,A(u + υ),

and then u = Jf(u + v). Therefore («, υ) e A. D

REMARK 2.3. From (2.3) it follows that if A e M is a densely defined operator,

then A is univalent, and if A has dense range, then A is one-to-one. Moreover, from

(vi) of the previous theorem it is deduced that in reflexive Banach spaces the converses

are also true.

In the following definition we introduce the class of functions we shall use to con-

struct our functional calculus. We will denote by R+ = [0, +oo[ and by R_ =] - oo, 0].

DEFINITION 2.4. Let μ be a complex Radon measure on R+ satisfying that there

is zo € C \ R_ such that

(2.4) / _L_rf | M | ( f )<oo,ί —
JR+ ko + *l

where |μ| denotes the total variation of μ. Let a e C be a complex number. We call

Stieltjes transform of the measure μ with value a at infinity the function / : C\R_ —>

C given by:

f(z) = a+ f — dμ(t).
JR+ Z + t

Condition (2.4) states that / is well-defined. Moreover, / is holomorphic in C \

The Stieltjes transforms are determined by the measure μ and its value a at +oo.

For this reason, we will use the notation f(z) = (a, μ)(z). By S we denote the set of

Stieltjes transforms and by S+ the subset of S of the functions f(z) = (a, μ)(z) with

value a > 0 and measure μ > 0. Finally,

-d\μ\(t) < oo | .
]0,oo[ * J

In [13, Theorem 1.2] the following result is proved:

Theorem 2.2. Let f e S+. The functions fλ(z) = f(z)/(l + λf(z)), λ > 0, and

f(z) = l//(l/z), if f does not vanish, belong to S+.

REMARK 2.4. By monotone convergence, fλ e So, too.
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Now, we introduce the following classes of functions:

T={f: f(l/z) e <S}, T+ = {/ : f(l/z) e <S+},

T={feT:feT} and % = {/ e f : /(0) = 0}.

It is not hard to see that So C T and that T + c T 0 U 4

From Theorem 2.2 we have 7^ \ {0} C f, but, in general, it is not true that if

f e T does not vanish, then / e T. In fact, the function f(z) = 1/(1 + z) e T and

7(z) ^ T since /(0) does not exist.

The product of two functions of T does not belong, in general, to T. For exam-

ple, z £ T+ but z2 £ T (see the remark next to [13, Lemma 2.1]).

As in [8, Theorem 3.3] the following result holds:

Theorem 2.3. If f eT (%) and g e T+, then (/ o g) e T {%).

EXAMPLE 2.3. Let f(z) be an absolutely concave function (also named non-

negative operator monotone function in the literature). That is, / is continuous and

non-negative on ]0, σo[, limz^o+ f(z) < oo and / has an analytic continuation into the

upper half-plane Im z > 0 such that Im f(z) > 0. By the Nevanlinna integral represen-

tation for functions preserving the upper half-plane (see [6, Theorem. I, p. 20] or [14,

p. 84]), it is not hard to check that f e T+. The converse is also true.

Consequently, za, 0 < a < 1, ln(l + z) and yfz arc tan (β^/z), β > 0, belong to

T+ Π To. We can also prove this fact by means of the integral representations:

ln(l+z)

'a = / 1 adt,
π Jo l+tz

ίl * ,= / dt,
Jo 1+ίz
ίβ z 1

= / τ^dt.
Jo l+tz 2^z

The first one is due to Cauchy's integral formula. It is also true for a e C, 0 < Reα <

1. Therefore, we have that za e % for 0 < Reα < 1.

EXAMPLE 2.4. Let / : C \ E_ -+ C be holomoφhic such that f(ez) have an

analytic continuation to | Imz| < π + <5 for some δ > 0. We will say that / belongs to

the class To if

lim f(z) exists and lim f(z)/z = 0.
z ^ 0 |z|->oo

We will say that / belongs to the class T\ if

lim zf(z) = 0 and lim f(z) exists.
0 | | o o
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Let / G f o U J i For all λ > 0 there exist the limits

0i(λ)= lim f(z) and φ2(λ) = lim f(z).

Imz>0 Imz<0

We will write φ(λ) = (φx(λ) - φ2(λ))/(2πί). We define the classes

7ίo = [feJro:λ.~ιΦ\]θΛ]eLιQO,l]) and λ~2φ e LιQl, oo[)},

Hx = {/ e T\ : λ~ιφ € ZΛJO, OO[)} .

We have HocT and Ήi C <S0 (see [12, Proposition 2.1]).

By this result, it is a simple matter to show that za e %, 0 < Rear < 1, and that

e-vza £ gQ^ Q < a < j^2 and ι> e S(π/2)-aπ- Nevertheless, the reader can directly prove

that

7Γ Jo Z + t

by Cauchy's integral formula.

Note that (z + ε)a e T and (z + ε ) " α e 5o, but these functions do not belong to

Tίo^Hi because (ez+ε)a and (ez + ε)~a have not an analytic continuation to | Imz | <

π + δ for any δ > 0.

3. Construction of the functional calculus.

In the sequel, A e M. If we write / e T we understand that f(z) = (a, μ)(l/z),

and if moreover f eT9 then f(z) = (a, μ)(l/z).

Following [13], we associate to / e T and A e C(X) Π M the operator

(3.1) /(A) = fl+ ί Atdμ(t),= a+ Ati
JR+

understanding that the integral, convergent in C(X), takes the value A for t = 0. From

[13] it follows:

(i) If / e Ί and 0 e p(A), then /(A)" 1 = /(A" 1 ).

(ii) If g e T and h = f g e T, then h(A) = f(A) g(A).

(iii) If g e T+, then f(g(A)) = (f o g)(A).

(iv) σ(/(Λ)) = {/(z) : z e σ(A)}.

The reader can easily check that /(A) = liminf^^o f(Aχ). So the following defi-

nition makes sense.

DEFINITION 3.1. For / e T and A e Ai we define the multivalued linear operator

/(A) by

/(A) = liminf /(A λ) = a+ At dμ(t) + liminf / Aλ+/

λ*° J λ ° Λ
= a+ At dμ(t) + liminf /

J]l,oo[ λ^° Λθ,l]



FUNCTIONAL CALCULUS AND FRACTIONAL POWERS 559

REMARK 3.1. In [1] the functional calculus is constructed by applying the Dunford

Riesz functional calculus to the functions of T+ and to the operators Aλ + λ, and dealt

the general case by means of the definition /(A) = liminf^o /(A λ + λ). It is not hard

to see that this concept agrees with the above definition. In [13] the previous proper-

ties (i) to (iii) were proved without techniques of Banach algebras. So, this standpoint

will allow us to extend our functional calculus to any sequentially complete locally

convex space.

REMARK 3.2. If f(z) = (a, μ)(z) e So, then

/(A) = a + f (t + A)"1 dμ(t) e C(X),

as is easy to check. Moreover, if {A/}ίGχ is a net in M satisfying

A = liminfA/ and lim sup M(A;) < σo,
1 x

then /(A) = liminfx/CA/). This "continuity" property remains valid in T+.

The following operators will be very useful in the sequel.

Given f e T and A e M we define the multivalued linear operator Wf(A) by

D(Wf(A)) = D(A) and

Wf(A)u =au+ I Atu dμ(t) + μ({0}) Aw, Vw e D(A).
J]0,oo[

If S, T e C(X) are given by

S = a+ ί At dμ(t) and T = f Jt

A dμ(t),
J]\,ΌO[ J[0,l]

then, the multivalued linear operator S + AΓ is closed and extends to Wf(A).

Proposition 3.1. Let f e T. The following assertions hold:

(i) /(A)0 c AO.

(ii) If z e p(A), then

f(A)(z - ATλu = (z - A)-χf{A)u

(iii) Wf(A) c /(A) c (1 + A)Wf(A)(l + A)"1.

Proof, (i) Let v e /(A)0. There is a net {wλ}λ>0 in X such that

lim(uλ, [ (Aλ)tuλdμ(t))=(0,v).
λ-+o V JR+ )
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Since

JR+

JA(Aλ)tuλdμ(t) < M(A)(M(A)+

ί -d\μ\(t)],
•/]l,oo[ t J

then, by letting λ -> 0, JAv- 0, that is, v e A0.

(ii) Given (u,v)e /(A), there is {uλ}λ>0 in X such that

lim(wλ,/(Aλ)wλ) = (M, υ).

Since f(Aχ) and (z — A)"1 commute, then

((z - A)- ]

W, (z - AΓιv) € liminf/(Aλ) = /(A).

(iii) Let (w, w) e Wf(A) and (M, v) e A such that

w = au+ / Jt

Avdμ(t)
J]0,oo[

In part (iii) of Proposition 2.1 we have proved that

\im(jfλ(u + v), Aλ+ι(u + υ)) = (u, v).
A—>0

By dominated convergence

lim f Aλ+tJι

Aλ(u + v)dμ(t)= [ Jt

Avdμ{t),

and therefore

lim f Aλ+tJι

Aλ(u + v)dμ(t)= [ Jt

II, ί Jt

Avdμ(t) + μ({0})v) € liminf ί Λλ+/

, ./]0,l] / λ " > 0 */[0,l]

Consequently, (u, w) e /(A).

Finally, the second inclusion follows from the previous one and part (ii). D

REMARK 3.3. Note that if μ({0}) f 0, then A0 = /(A)0, and that if /(0) = 0,

then R(f(A)) c /?(A).

Theorem 3.2. If f ef, then

/(A)"1 = /(A"1).
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Proof. If λ > 0, then Aλ + λ e £(X) Π M and 0 e ρ(Aλ + λ). Hence

561

Since lim inf^o f(Aλ + λ)~ι = f(A)~\ the proof is completed by showing that

liminf f((Aλ + λ Γ 1 ) = /(A" 1 ), V/ e T.
^0

For t > 0 we have

((Λλ + λ)" 1 ), =

and then, formula (2.1) yields

l - - ί - A λ + 1 / ( f + λ )

((Aλ + λΓ})t-(A-
+ λj

A λ + 1 / ( ί +
λ)

Therefore

L
• λ )

d\μ\(t),

where, by dominated convergence, the last integral converges to zero as λ -> 0. From

this, it is concluded that

lirrunf/((Aλ + λ)" 1) = lirrnnf /((A" 1),) = /(A" 1 ) . D

Corollary 3.3. // / e T, then:

(i) ker/(A) c kerA. Moreover, if limz^o, z>oz/f(z) ^ 0, then the identity

ker /(A) = ker A holds.

(ii) R(A) c

Proof. The proof easily follows by applying Proposition 3.1 to / and A" 1, and

by Theorem 3.2. D

Corollary 3.4. If f e To, then D(f(A)) c D(A).

Proof. By Theorem 3.2 we know that D(f(A)) = R(f(A~x)), and as /(0) = 0,

then R(f(A~1)) c D(A). This completes the proof. D
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Proposition 3.5. Let f eT with μ({0}) = 0, or let f e f. For all ε > 0 there

exists an operator Fε e C(X) such that

and l inwo | | F e | | = 0. Moreover,

i = lim inf/(A

Proof. Let ε,λ be two positive real numbers, and let us consider the bounded

operator

M = I ((A
«/]0,l]

= i ] 0 , 1 ] TTε(λ + ί )" ' λ + ' > ' ( λ + i

ε)λ+t-Aλ+t)dμ(t)

ε Δ Δ

It is clear that

Sε := lim inf Sλ,ε = f —^— Jt

A Jt

A

(l+εt) dμ(t) e C(X).
λ^° J]θ,\] 1 + ^ ^

So, to prove the first assertion it is sufficient to show that

(3.2) lim inf / (A + ε)λ+t dμ(t) = ε μ({0}) + Sε + lim inf / Aλ+t dμ(t).
λ -* 0 J[0,l] λ~> 0 J[0,l]

Obviously this is the case if μ({0}) = 0. Otherwise, we have f e %, and therefore, by

Corollary 3.4, D(f(A + ε)), D(f(A)) c D(A). Moreover, for every net {wλ}λ>0 such

that l im λ ^ 0 uλ = u e D(A), we have

Λ( Λ\2 | | . , , , | | , \Λ( Λ\ II ,
Jλ/(\+€λ)

- W 1 < M(A)2\\uλ-u\\^M(A)\\Jλ

A

/il+€λ)u-u\

u - u

and so

This enables us to obtain (3.2).

On account of the above, we have f(A + ε) = /(A) + F ε where

FF =
/[0,oo[

Obviously, l i m ^ 0 | | F ε | | = 0 .

Now, the last assertion follows from the definition of /(A). D
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Corollary 3.6. If f ef, then

/(A*) = /(A)*.

Proof. The result easily follows if A e C(X)ΠM. Therefore,

7((1 + A T 1 ) =[/(( ! +A)"1)]*,

and taking inverses,

By Proposition 3.5 we obtain

[/(1+A)]* = [/(A) + F1]* = /(A)*+ [ -1-jfjfi dμ(t)
JR+ A + *

and

/ ( I + A*) = f(A*) + / R ^ J,A' Λ/(*i+r) dμ(t).

Thus, as the common addend belongs to £(X*), the desired relation is proved. D

Corollary 3.7. If f e %, then /(A) e C(X) if and only if A e C(X).

Proof. If A G C(X) we know that /(A) e C(X). Conversely, let us suppose that

A £ C{X). By the spectral mapping theorem for operators of £(X)Γ\Λ4 and by Theo-

rem 3.2 we have

0 = 7(0) e {f(z) : z e σ((l + A)"1)} = σ(/(l + A)"1),

and hence /(I + A) φ C{X). By Proposition 3.5 we now conclude that /(A) φ C(X).

D

Theorem 3.8. Let f e T. The following assertions hold:

(i) /(A) is closed. In particular

/(A) = liminf/(A + ε).
£—•0

(ii) If A is univalent, then

/(A) = (1 + A)Wf(A)(l + A)'1 = S + AT.

Moreover, if A is densely defined, then

/(A) = Wf(A).
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Proof, (i) By Theorem 3.2 we know that /(1 + A) has closed inverse and there-

fore it is closed. Consequently, by Proposition 3.5, /(A) is closed,

(ii) Firstly, as

W/(A)(1 + A)"1 = (1 + A)"1 [S - T] + Γ,

the second identity holds. By part (iii) of Proposition 3.1 we only need to prove that

if u G X and v = W/(A)(1 + A)~ιu e D(A\ then u e D(f(A)).

If 0 G p(A), then, being w = (1 + A)v, we have

(l + AΓ1** = f(A~ι)(l + Ayιw

1 Ml + A)~vwdβ(t).
Λo,/[0,oo[

As (1 + A)"1 commutes with /(A" 1 ), then

(3.3) (1 + A) '

and therefore w = f(A)u.

Let A G λΛ be arbitrary. By the previous case,

/(A + 1) = (2 + A)Wf(A + 1)(2 + A)"1.

Moreover, ast> G Z)(A), it is very easy to check that W/(A)(2 + A)~ιu e D(A). Now,

by Proposition 3.5

Wf(A + 1)(2 + A)-χu = W/(A)(2 + A)~ιu + Fx(2 + A)~ιu,

and, as F\ and (2 + A ) " 1 commute, we conclude that u e D(f(A + 1)) = Z)(/(A)).

To prove the second assertion, as /(A) is closed, it is sufficient to prove that S +

AT c W7(AJ. Let u e X such that Tu e D(A). As D(A) = X, then

lim 7λ

Aw = u and lim ψ f(A)Jλ

Au = lim 7λ

Λ(S + AT)u = (S + AT)u,
λ + 0 λ^O J λ^O Λ

and therefore Wf(A) is an extension of AT + S. D

REMARK 3.4. Part (ii) of previous theorem states that our functional calculus co-

incides on the class TU<So with the one given in [13] for univalent non-negative linear

operators.

Corollary 3.9. If f e To, then

f(A)D = f(AD).
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Moreover, if μ({0}) = 0, then Wf(A) is closable and

Wf(A) = f(A)D.

Proof. By Corollary 3.4 we know that D(f(A)) = D(A) and by the previous the-

orem

On the other hand, if (w, v) e f(A)D, then, as J^v = Wf(AD)J^u, we have (w, v) e
Wf(AD). This proves the first identity.

Finally, if μ({0}) = 0, then the inclusion Wf(A) c f(A)D holds. So, we have the

second assertion. D

Theorem 3.10. If f £%, then A0 = /(Λ)0 and

(3.4) /(A) = (1 + A)Wf(AD)(l + ADyx = S + AT

where T \ ~D{A) is the restriction of T to D(A).

Proof. In part (i) of Proposition 3.1 we have proved that /(A)0 c A0, V/ e T.

So, we only need to prove that if (0, v) e A, then (v, 0) e /(A)" 1 . As

lim ( Aλ+ιv, / (A-\+tAλ+ιυdβ(t)
λ -°v Λo,i]

then

(υ,0)Gliminf ί (A~ι)λ+t dμ(t)

) = (υ,0),

liminf / (
λ^° Λo,i]

and therefore, as /(0) = 0, we conclude that (v, 0) e f(A ι).

The proof of the first identity in (3.4) runs as in Theorem 3.8, part (ii), since

/(A)0 = (1 + A)Wf(AD)(l + A)~ι0 and /(A) c (1 + A)Wf(AD)(l + AD)~{. Only the

case 0 € p(A) is slightly different: if u e D(A), v = Wf(AD){\ + ADyιu e D(A) and

w e (1 + A)v, then (3.3) holds, which, by (2.3) and the fact that f{A~x)w e D(A),

implies that u = f(A~ι)w.

Finally, as Vw e D(A),

W/(AD)(1 + Az))-1^ = (1 + A)"1 [5M - Γw] + Γw,

we obtain the second identity of (3.4). D
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REMARK 3.5. If / e % we also have

f(A) = a+ [ Atdμ(t) + A[ Jt

Adμ(t) \^X), Vb > 0.
J]b,oo[ J[O,b]

Note that for this class of functions we do not have, as in the univalent case (see The-

orem 3.8), /(A) = (1 + A)VK/(A/))(1 + A)"1, since this identity implies that A is univa-

lent. Indeed, if this identity holds, then A0 c D(A), and therefore A0 = {0}. However,

if moreover μ({0}) φ 0, then /(A) = S + AT.

Corollary 3.11. If f e f and /(0) = 0, then

kerA = ker/(A).

4. Main properties of the functional calculus.

Theorem 4.1 (Product formula). The following assertions hold:

( i ) If f e T 0 , g e t a n d h = f g e T o , t h e n

(4.1) h(A) = /(A)g(A).

(ii) If f eT, g eS0 and h = fg e T, then

g(A)f(A) c h(A) c /(A)g(A).

(iii) If f, g eT+, do not vanish, and h = f g e T+, then (4.1) /zo/ds.

Proof, (i) Let ε be a positive real number. By the product formula for operators

of C(X) (Ί M, we have

and taking inverses

Let (u, v) e h(A) and Hε be the operator associated to h in Proposition 3.5. There is

wε e g(A + ε)u Π D(/(Λ + ε)) c £)(A) so that (wε,υ + Hεu) e f(A + ε). Again by

Proposition 3.5 it is readily verified that l im ε ^ 0 w>ε = g(A)u Π D(A), and hence

(g(A)u Π D(A), υ) e liminf/(A + ε) = /(A),
ε-^ O

so that (u,υ) e f(A)g(A). Therefore, h(A) c /(Λ)g(A) and, as h(A)0 = A0 =

/(A),g(A)0, we conclude the proof by showing that D(f(A)g(A)) c D(A(Λ)). To
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prove this, let (w, w) e g(A) and (w, v) e /(A). As

(1 + A)"1!; e /(A)(l + A)~lw = h{A){\ + A)~ιu,

then,

which, by Theorem 3.10, implies that u e D(h(A)).

(ii) It is a straightforward consequence of the product formula for operators of

the class C(X)ΠM.

(iii) By (i) and (ii), we only need to consider the case f e So and g e To. In

this case we have

f(A)g(A) c h(A) = g(A)f(A).

Moreover, as / e So, then /(A)g(A)0 = A0. So, to prove that /(A) and g(A) com-

mute we only need to show that if u e X and f(A)u e D(g(A)), then u e D(g{A)).

By Proposition 3.5

/ ( I + A)u e D(g(A)) = D(g(l + A)),

and hence, as / ( I + A) and g(l + A) commute, we have u e D(g(A)). D

REMARK 4.1. In general, the product formula (4.1) is not true. To see this it is

sufficient to consider the functions f(z) = (1 + z) e %, g(z) = 1/(1 + z) e So and

h(z) = 1 e T+. If {0} c A0, then both inclusions of part (ii) are strict.

As a consequence of (ii) we have if a e R, 0 < a < 1/2, then the family of

bounded operators {S(v)}vesiπ/2)_aπ determined by

1 C°°
S(v) = (έΓvzβ)(A) = - / e-

vsacosaπ sin(vsa sinατr)Cs + A)~xds,
π Jo

satisfies the semigroup property:

S(vι)S(v2) = S(vχ + υ 2), Vυi, v2 e S{7T/2)-a7t.

This semigroup, associated to the fractional power — Aα, will be studied in a later pa-

per.

The following result is proved in [2, Proposition 3.II] as a consequence of the sta-

bility under composition. It can also be proved by means of the product formula in So-

Corollary 4.2. If f e T+, then /(A) e M with M(/(Λ)) < M(A) and f(A)λ =

/λ(A), Vλ > 0.
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Theorem 4.3 (Stability under composition). If f e%U So and g e T+, then

= (fog)(A).

Proof. The operators f(g(A)) and (/ o g)(A) are well-defined, respectively, by

Corollary 4.2 and Theorem 2.3.

Firstly, let us suppose that / e To. We may assume that / o g e T, since if g

vanishes the result is evident. Consequently, from the bounded case it is deduced that

By Theorem 3.8, part (i), we only need to prove that

(4.2) liminf f(g(A + ε)) = f(g(A)).

Let ε be a positive real number and Gε be the operator associated to g in Proposition

3.5. Then

J[0Λ] J[0,l]

and hence, as g(A) is closed, Vw e X we have

(Jt

gW - J u dμ(t), / (1 - Jf(A))Gε Jf(A+ε)u dμ(t)) e g(A).
J[0Λ] /

[
J[0,\]

Therefore, by (3.4) we conclude that

f(g(A + ε)) = f(g(A)) + f (g(A + ε)t - g(A)t) dμ(t)
^]l,oo[

Jt

8(A)GεJf(A+ε)dμ(t).

If we denote by Tε the last two terms in the above expression, then Tε e C(X) with

W^sW <M(A)2 Γ||Gε|||μ|([0, 1])+ ί ( ί -?— dvt(s)) d\μ\(t)] ,
L J]l,oo[ \J]0,oo[ 1 + e J / J

where vt denotes the measure associated to the function gt. By dominated convergence

the last term tends to zero as ε -> 0 since

ί ^— dvt(s) < gt(l) - gt(0\ Vε < 1,
J]0,oo[ 1 + £ s

and gt(l) — gt(0) is |μ|(ί)-integrable in ]1, oo[. Thus, l im ε ^ 0 ll^εll = 0, and from this

(4.2) follows easily.
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Finally, if / e So, by continuity (see Remark 3.2), it is sufficient to take limits as

λ -> 0 in the expression

f(g(Aλ)) = (/ o £)(Aλ), Vλ > 0. D

In the following theorem we exclude the well-known case A e C(X).

Theorem 4.4 (Spectral mapping theorem). Let A e M such that A φ C{X). The

following assertions hold:

(i) If f e r 0, then

{f(s) : s e σ(A)} c σ(f(A)).

(ii) If f e So, then

σ(f(A)) = {f(s) : s G σ(A)} U {/(oo)}.

(iii) If f e%\So, then

σ(f(A)) = {f(s) : s e σ(Λ)}.

Proof, (i) If s e σ(A) is not zero, then

/ U ) - f(s) = (z- s)h(z),

where h(z) £ So. Therefore, by Theorem 4.1, part (ii), the following inclusions hold:

h(A)(A - s) c /(A) - f(s) c (A - j)Λ(A).

If /(.y) G p(/(A)), from the first inclusion it is deduced that A — s is a one-to-one

operator, and from the second one that it is surjective. Consequently, (A—s)"1 e C(X),

which is a contradiction. So, we have f(s) € σ(/(A)).

Let us now consider the case 0 e σ(A). The proof is completed by showing that

a = /(0) G σ(/(A)). If we suppose that a e p(/(A)), then, by Remark 3.5, we have

:= A f jfdnWoft
J[O,b]

B
ho,b]

= Γl - ί At (/(A) - a)-χdμ(t)] (/(A) - a).
L J]b,oo[ J

So, by choosing b > 0 large enough, the operator B~ι e C{X). This gives 0 G

which contradicts our assumption.

(ii) This part runs as in [8, Theorem 3.1] by the Gelfand theory.
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(iii) If / e T+ \ So, then we know that /(A) e M and f(A)λ = /λ(A), Vλ > 0

(see Corollary 4.2). Moreover, by Corollary 3.7, /(A) £ C(X), and as a consequence

of this it is not hard to show that

(4.3) σ(/(A)λ) = j ^ - : s e σ(/(A))) U [ ^ ) .

On the other hand, by applying part (ii) to the function fλ we have

(4.4) σ(/ λ (A)) = {fλ(s) : s e σ(A)} U j ^ ) ,

since /(σo) = σo. Now, the proof follows from equalizing (4.3) and (4.4). D

5. Fractional powers of multivalued non-negative linear operators.

By applying the functional calculus developed in the previous sections to the func-

tion za, 0 < Reα < 1 (see Example 2.3), we can obtain a theory of fractional powers

for multivalued non negative linear operators and for this kind of exponents.

In this section we extend this theory of fractional powers to exponents with Reα
7^0.

The concept of fractional power that we introduce is based on formula (3.4),

which points out a relationship between the theory of fractional powers of non-

negative densely defined operators and the multivalued case. However, the proof of

some of the main results for the multivalued case is based on the functional calculus.

Throughout this section a e C, Reα > 0, and A e M.

DEFINITION 5.1. We define the fractional power Aa with base A and exponent a

to be the multivalued linear operator given by

REMARK 5.1. If 0 < Reα < 1, then Aa = za(A) = l iminf λ ^ 0 ^(^λ) (see Theorem

3.10), and therefore, our concept extends the one given in [1]. On the other hand, this

definition is also an extension of the well-known univalent case (see [11]).

Theorem 5.1. Aa is closed.

Proof. The proof is a straightforward consequence of the fact that [A£>]α is a

closed operator. D

Lemma 5.2. If u e D([AD]a) and there is z e C such that zu - [AD]au e D(A),

then u e D(AD).
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Proof. Let us suppose that 0 < Reα < 1. Let n e N such that β = (1 — ά)/n

satisfies Re/3 < Reα. By the additivity of fractional powers of AD (see [10, Theorem

7.1]), D([ΛD]a) c D([ADΫ). Moreover, by Corollary 3.9, we have

zu - [ADfu e D(A) c D([Aβ]D) = D([AD]β).

Therefore, [AD]au e D([AD]β) and, again by additivity, it follows that

u e D([AD]a+β) c D([AD]2β).

Reiterating this argument it is concluded that u e D([AD]a+nβ) = D(AD).

If Reα > 1 we choose β with 0 < Re/3 < 1, and reasoning as in the previous

case we find that u e D([AD]a+β) c D(AD). D

Theorem 5.3 (Additivity). //Reα? > 0, Reβ > 0, then

AaAβ = Aa+β.

Proof. It is evident that AaAβ c Aa+β. Moreover, as AaAβ0 = Λ0 = Aa+β0, it is

sufficient to show that D(Aa+β) c Z)(AαΛ^). Let u e D(Aa+β). By definition,

(1 + AD)-χu e D([AD]a+β) = D([ADf[AD]β) and

By Lemma 5.2 we have u e D(Aβ) and there is w e Aβu Π £>(A). It is easy to show

that w e D(Aa) and, consequently, u e D(AaAβ). D

Theorem 5.4. The following assertions hold:

(i) An = A(n !^A, Vn e K

(ii) (Aarι=(A-ι)a.

(iii) D(Aa) = D(A), R(Aa) = R(A), Aa0 = A0 and ker Aa = kerΛ.

(iv) IfO<β<l, then Aβ e M and (Aβ)a = Aβa (Multiplicativity).

Proof. Part (i) is trivial, (ii) is deduced from additivity and the fact that the result

is true for 0 < Reα < 1 (see Theorem 3.2). (iii) easily follows from the definition of

Aa and (ii). Regarding (iv), Corollary 4.2 assures the non-negativity of Aβ, and mul-

tiplicativity follows from additivity and Theorem 4.3. D

Proposition 5.5. The following properties hold:

f = [Aa]D, p(Aa) = p([ADf) and

(5.1) ( z - A T ' ^ l + A o X z - f A D f r ' a + A)-1, Vz e p(Aa).
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Proof. It is a simple matter to check the validity of first identity.

Let us now prove that p(Aa) = p([AD]a). The inclusion ρ(Aa) c p([AD]a) is

trivial. Let now z G p([A#]α). Then z — Aa is a one-to-one operator, since if (w, v) e

Aa and 0 = zu — v, then (u, v) e [A^T and therefore u = 0. To prove that z — Aa is

surjective let u e X. If

v = (z- [ADrΓ{(l + A)"1!! € D([ΛD]α),

then zι> — [Aβ]α v e D(A), and so, by Lemma 5.2, we have υ e D(Ao) The element

w = (1 + Az))ι; belongs to Z)(Aα) since

[AD]a (1 + A ) " 1 ^ = zv - (1 + A)" 1^ G D(A),

and moreover w e (z — Aa)w. Consequently, z — Aa is surjective and as it is closed,

then z € p(Aα).

Now, it is already evident that (5.1) holds. D

Corollary 5.6 (Spectral mapping theorem). If σ(A) is empty, then σ(Aa) also is.

Otherwise,

σ(Aa) = {za :ze σ(A)}.

Proof. The proof follows from Proposition 5.5 and the spectral mapping theorem

to the dense case (see [12, Theorem 3.5]) D

REMARK 5.2. Thanks to part (ii) of Theorems 4.1 and 4.4, the last Theorem can

also be proved by means of the Balakrishnan technique (see [5, Theorem 3.1]). This

proof is only valid in Banach spaces. However, the proof in [12] is based on integral

representations of the resolvent of the operator Aa. For this reason, our proof is valid

in any sequentially complete locally convex space. Through (5.1), we extend these in-

tegral representations (see [12, Theorem 3.2]) to the multivalued case in the following

Corollary.

Corollary 5.7. Let a e C such that \a\2 < Reα. The following properties hold:

(i) IfzeC\ {λaeiθa : λ > 0 and -π < θ < π], then

_ = _ s i n α , Γ - _ f ^

π Jo z2 - 2zta cos otπ + t2a ι/t
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(ii) Ifz = sa with s € (C \ R_) Π p(A), then

a

π Jn s2a - 2sata cosα7Γ + t2a

(iii) If r > 0, f/zerc

( r e - A ) = r e Jλ/r

a _ e±2ianrα)π Jo (ta - ra)(ta - e

In the next two results we study the sectorial property of fractional powers and

we extend the multiplicativity (see part (iv) of Theorem 5.4) to exponents, depending

on A, greater than unit.

Proposition 5.8. If A is ω-sectorial, ω e]0, π], and β > 0 such that βω < π,

then Aβ is βω-sectorial. In particular, Aβ e M.

Proof. By the spectral mapping theorem we have σ{Aβ) c Sβω. It remains to

prove that for βω < \θ\ < π, the operators λ(λeιθ — Λ^)"1, λ > 0, are uniformly

bounded (see Remark 2.1). For β < 1, the result follows from the integral formulas

given in Corollary 5.7. For the general case, let π b e a positive integer such that n >

β. Let z φ. Sβω and let {Zk}k=ι i*s ^-roots. The operator Aβln verifies (2.3) and from

this relation is not hard to check that

(5.2) Aβ - z =
k=\

So, we have

\\z(z - Aβyι\\ < γ\ \\Zk(zk - Aβ/nrι\ι

and, as Zk Φ Sβω/n and A^n is ^ω/n-sectorial, we conclude the proof. D

REMARK 5.3. Regarding the property (5.2), remember that the product formula is

valid for multivalued linear operators and for polynomials with coefficients in C (see

[4, Theorem 2.3]).

Theorem 5.9 (Multiplicativity). If A is ω-sectorial, ω e]0, π], and β > 0 such

that βω < π, then
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Proof. This result easily follows from the dense case (see [10, Theorem 10.6]).

D

The identity (A*)α = (Aα)*, Reα > 0, has already been proved in the densely

defined operators case (see [11, Theorem 4.2]), where the statement made sense. In

the following theorem we extend this result to the multivalued case. By Corollary 3.6,

if 0 < Reα < 1, then the mentioned property holds.

Theorem 5.10. Suppose either that A0 + D(A) = X, or ker A + R(A) = X. Then

(A*τ = (Aay.

Proof. Let n e N, n > Reα. By additivity and by the properties of adjoint oper-

ator we have

( A T = ((A*τ/ny = ((Aa/nrr c (Aay.

As (A*)°Ό = (Aα)*0, then the proof is completed by showing that D((Aa)*) c

Let us suppose that A0+Z)(A) = X. We will show that the operator (Aα)* satisfies

(2.3). Let w* G (Aα)*0 Π D((Λα)*) and {(«*, υ*)}n€N be a sequence in (Aα)* such that

oo M* = w*. As («*, w) = 0, Vw e A°Ό, then w* also vanishes on A0, and therefore

Let now w* e D((Λα)*). Due to the fact that J*Aa c A"//1 and that J ^ G

we have

jf\AaT c (A"//1)* c

Hence,

and then, there is w* G A*0 satisfying (A*)nw* + w* G D((A*)α). Since (A*)nw* =

w* + υ*, with υ* G D(A*) c Z)((A*)α) c D((Aα)*), we can state that u;* = {0}. This

gives (A*)"M* G Z)((A*)α), which implies that w* G D((A*)α), as is easy to check.

If ker A + R(A) = X holds, then A" 1 satisfies the above condition and therefore

The result now follows by taking inverses in this expression. D

REMARK 5.4. Remember that the hypothesis on operator A in this theorem is sat-

isfied if X is a reflexive Banach space (see (vi) of Proposition 2.1). Moreover, from
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the proof of the above theorem it is evident that, in general, the identity

(AT = (Aa)* Π (D(A*) x X*)

holds.

REMARK 5.5. For exponents a e C, Reα < 0, we define Aa = (A~ι)~a. From the

case Reα > 0 we easily obtain the fundamental properties for this kind of fractional

powers.
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