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1. Statement of results

A spherical variety is a normal variety defined over a field with a split reductive
group action with a dense open orbit isomorphic to a Borel subgroup. Flag varieties,
Schubert varieties and toric varieties are examples of spherical varieties. In this paper
we will study the K’-groups of varieties belonging to a certain category including
spherical varieties. Our main results are descriptions of K’-groups and their coniveau
filtrations of such varieties by means of their equivariant K’-groups. For a smooth
toric variety, they are obtained by Morelli [4, Prop. 4]. Before we state our main
results explicitly, we fix some notations.

Let B be a split connected solvable group defined over a field k. Then B is
isomorphic to a product of an affine space and a torus as a variety over k. In this
paper we are concerned with a B-variety X with finitely many B-orbits. All B-orbits
of X are indexed by a finite set A. For o € A, we denote by O(o) the corresponding
B-orbit of X. Let M = Hom(B, G,,) be the character group of B. Any orbit O(c)
is isomorphic to a quotient scheme of B by a subgroup B,. Hence O(o) is also
isomorphic to a product of an affine space and a torus. Let M° = Hom(B,,G,,),
then M? becomes a quotient module of M.

Here we introduce K-theory. We denote by K[(X) the i-th K-group of the
category of coherent sheaves on X and by K(X, B) the i-th K-group of the category
of B-equivariant coherent sheaves on X. Moreover we denote by K;(X) the i-th K-
group of the category of locally free sheaves on X and by K (X, B) the i-th K-group
of the category of B-equivariant locally free sheaves on X.

In [6] R. Thomason showed that these two equivariant K-groups are isomorphic
when X is smooth over k. The equivariant K-group of the base field Ky(k, B) is
isomorphic to the Grothendieck group of the category of k-representations of B.
Hence we have Ky(k, B) ~ Z[M]. From this fact we can say that the equivariant K-
group K. (X, B) admits a Z[M]-module structure. For a Z[M]-module R, we denote
by Ir the submodule of R generated by {rm — r;r € R,m € M}. The quotient
module R/Ig is called the group of coinvariants of R and denoted by Ry.

We need an additional assumption on the characteristic of k. When B is not
a torus, we assume chark = 0. It is needed for varieties which we treat to admit a
resolution of singularities.
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The main result of the present paper is the following:

Theorem 1.1. Let X be a B-variety with finitely many orbits. Then the natural
homomorphism

Ko(X,B)m — Ky(X)
is bijective.

This theorem was proved by Morelli when X is a smooth toric variety. His
proof relies on the ring structure of Ky(X) and a relation between K-groups and
Chow rings. So we cannot apply his method. Instead we will use K;-group of X
and group homology of M.

We assume that X is a toric variety, namely B is a split torus and X is normal.
Then X is constructed by a fan and many geometrical informations about X are
expressed by the combinatorial data of the fan. But its K-group K{(X) cannot be
determined by the combinatorial data by the same reason as in the case of rational
homology [3]. On the other hand, the equivariant K-group K{(X,B) is a free
abelian group generated by the structure sheaf of B-invariant closed subschemes
and their twists by characters of B. Hence it is determined only by orbits of X as an
abelian group. But as seen in the proof of the theorem, the Z[M]-module structure
of K{(X, B) is very complicated and Theorem 1.1 says that it cannot be determined
by the combinatorial data of the fan.

Next we consider the coniveau filtration F of K{(X). This is defined as

FPEYX)=Im( €@ Ki(Y) = Ki(X)).

YCX.
codim > p

We note that the filtration F' is associated with Brown Gersten spectral sequence
[5].

Given a nonnegative integer ¢, the union of all B-orbits whose codimensions are
greater than i is a closed subscheme of X. It is denoted by X*. We set Y = X%\ X1,
which is an open subscheme of X*?. Y becomes a disjoint union of all B-orbits of
codimensions ¢. Let n be the dimension of X, then we have the sequence of closed
subschemes of X:

p=X""lcxrcx"lc...cx’=X.

We put EP9(X) = K’ (Y?) and the morphism d : EP?(X) — EPYL9(X) is
defined by

K., (Y?)— K. XP) - K. Y,

p-q—l( p—q—l(
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where the left arrow is the connecting homomorphism of the localization exact
sequence and the right arrow is the restriction of the open immersion Y?+1 — X7+l
Then (E"?(X),d) becomes a complex.

Let R?(X) be the Gersten complex of X, that is, RP9(X)=®,c x» K_p—q(k(z))
where X () is the set of all points of X whose Zariski closures are of codimension
p and k(z) is the residue field of . We obtain a canonical morphism of complexes
E"1(X) — R(X).

Proposition 1.2.  The morphism
E9(X) — R(X)
is a quasi-isomorphism.
Since HP(R>~P(X)) is isomorphic to the Chow group of X of codimension p
by [5, Prop. 5.14] or by [2, Cor. 7.20], this proposition gives us the representation
of the Chow group of X by generators and relations, which is the same result as

the one obtained by Fulton et. al. [1] and by Totaro [7].
By the above proposition we have an isomorphism

FPK(X) = Im(Ko(X?) — Ko(X))

and together with Theorem 1.1 we can describe the coniveau filtration by the
equivariant K’-group.

Corollary 1.3.  We define a decreasing filtration F§, on K{(X,B)y by
FRKy(X, B)m = Im(Ko(XP, B)m — Ko(X, B)m).
Then for a nonnegative integer p, we have an isomorphism

FEKY(X, B)u ~ FPE)(X).

2. Proof of Theorem 1.1

We will prove that
Ko(XP, B)m — Ko(XP)
is bijective by descending induction on p. Given a Z[M]-module R, let

Hy(M; R) = Tor*™)(z, R)
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be the i-th homology of M with coefficient R. The 0-th homology is isomorphic
to the group of coinvariants Rys;. The homology is calculated by a Z[M]-projective
resolution of Z. By choosing a basis of M we can construct a Z[M]-free resolution
of Z. Namely for a basis (m1,---,m,) of M we set P, = Z[M] ® A?M and define
0y : Pgy1 — Py by

Og(r ® my, A Amg )
q+1 .

= Z(—l)“’lr([mij] —O)@mi, Ao Amy,_ Am A Ay
Jj=1

Then

o= q+1ﬁPq—>---—>P0—>Z——>O
becomes a Z[M]-free resolution of Z. Hence we have

If the action of M on R is trivial, then the differentials in R ®z[ P. are all zero.
In Particular, it holds that

Hy(M;Z) ~ NM.
Since O(o) ~ B/B,, by [6] we have

K.(Y?,B)= P K.(0(0),B)
codimO(o)=p
& K.B/B,,B)

codimO(o)=p

@D K.kB,)

codimO(o)=p

~K.k)®( @ zM).

codimO(o)=p

i

1R

In other words, K. (Y?, B) is isomorphic to K. (k) ® K4(Y?, B) as a K.(k)-module.
Since the boundary homomorphism of the localization exact sequence

K;(vaB) - Ki—l(Xp-H’B)

preserves the K, (k)-module structure, it becomes zero.
Hence we have a short exact sequence of Z[M]-modules

0 — K})(XP+! B) — K}(XP, B) — K}(Y?,B) — 0.
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So we have
Ky (X, B)~D Ky (Y”, B)
p
~ P z[m°)
gEA

as an abelian group. Hence we can say that K (X, B) is determined only by orbits
of X. The above short exact sequence induces the long exact sequence

HI(M’K(I)(YP,B)) - K(I)(Xp+laB)M
— K{(XP,B)m — Ky(Y?,B)p — O.

We set M, = Ker(M — M?).
Lemma 2.1.
Hi(M;K{(Y?,B))~ P M.
codimO(o)=p
Proof. Since

K(Y",B)~ P  z[M°),

codimO(o)=p

we have only to prove Hy(M;Z[M°]) ~ M,. Since M° ~ M/M,, the Z[M]-module
Z[M?°] is isomorphic to the induced module of the Z[M,|-module Z. Hence we have

Hy(M;Z[M°)]) ~ H\(M;Ind} Z)
~ H1(M,;Z)
~ M,,

which completes the proof. l

Lemma 2.2. Given an integer 0 < p < r, there exists an exact sequence

B M LENXP) - Ky(XP) - Ky(Y?) 0.
codimO(o)=p

Proof. By localization exact sequence of K’-theory we have

K{(YP) = Ko(XP) — Ko(XP) — Ko(Y?) — 0.
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By [5], we have the following isomorphism:

KiY?)= P Ki(0(0))

codimO(o)=p

~ P (Ki(k) o (M)

codimO(o)=p

Since the maps in the localization exact sequence preserves the K, (k)-module struc-
tures, the images of components K;(k) by K;(Y?) — K}(XP*!) are all zero.
This completes the proof. ]

Lemma 2.3. The diagram

S M

codimO(o)=p

Ko(XPt)

Hy(M; Ko(Y?, B)) — Ko(XP*1, B)m

commutes, where the left vertical arrow is the isomorphism proved in Lemma 2.1.

Proof. We choose an element m € M, ~ H;(M,Ky(O(o),B)) for ¢ € A
and consider the image of m by the above diagram. But the support of the image
is contained in the closure of O(c) in X. So we may assume that O(o) is the only
dense open orbit. In other words, we have only to prove the result when p =0 and
X is irreducible.

Let 7 : X — X be a B-equivariant birational morphism such that X is a smooth
variety. The morphism 7 exists by virtue of the existence of equivariant resolution of
singularities. Then horizontal arrows in the above diagram factor through K’-groups
of X , namely,

Ma _L, K(l)(Xl) A, Ké(Xl)

Hy (M, K)(O(c), B)) K4(XY, B)y —=— Ky(X", B)u

Since the right diagram commutes, we have only to prove that the left diagram
commutes. Hence we may assume that X is a smooth variety.

We first consider the image of m by the bottom horizontal map. We choose a ba-
sis (my, - -+, mq) of M such that m = 3s;m; for s; € Z. Then we obtain a Z[M]-free
resolution of Z as mentioned above and represent m € M, ~ H;(M; K{(Y°, B))
by a chain in the complex Z[M?°] ® P.. The chain corresponding to m by the iso-
morphism in Lemma 2.1 becomes [0] ® m € Z[M?] ® M. The bottom horizontal
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map is the connecting homomorphism and its image is ¥s;[{Ox]([0] — [m;]). Since
its support is in X', we can regard it as an element of K{(X!, B)uy.

We regard m; as a rational function on X and let D; ¢ and D; o, be the divisors
of zeros and poles of m; respectively. Then in the same way as in [4, Prop. 4] it
holds that

[OX]([O] - [ml]) = [ODi,O] - [ODzoo][m'L]

in K)(X?!, B). Hence the image of Xs;[Ox]([0] — [m;]) by the right vertical arrow
is

Y sil[0p,,] =[O, ..]) = 8(m). O

We have the following isomorphisms for Y?

K", By~ P zMy

codimO(o)=p

~ @ Z
codimO(o)=p
~ K{(Y?P).
Then the theorem follows from the five lemma for the diagram

9
P M, — Ki(XxPFY) — K{(XP) — Kj(¥YP) —*0

]

Hy(M, Ky(YP,B)) ™~ Ko(XPH,B)y =  Ko(XP,B)y — > Ko(YP,B)y —— >0

codimO(o) = p

and descending induction on p.

3. Proof of Proposition 1.2

For an inclusion X! < X? we have a short exact sequence of Gersten
complexes

0— RHY(X[-1] - R"Y(X*) - R(Y?) — 0,
where [—1] means the degree shift. Since Y* = [Hcodimo(o)=: O(o) and O(o) is
isomorphic to a product of an affine space and a torus, we have
| P K (0@©) ifp=0
HP(R"q(Yl)) ~ ¢ codimO(c)=i
0 if p+#0.
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Hence we have an isomorphism
HP"Y(RFH(X™)) = HP(R(X"))
if p > 2 and an exact sequence
0 — HO(R(X') — HO(R(YY))
— HO(RTH (X)) - HY (R(XY)) — 0.
Hence for p > 1 we have
HP(R(X)) = HP(R"7(X"))

~ BPTY(RT (X))

~

~ H'(RPHa-L(XP1)).

We consider the diagram

HO(R-P+a=1(yPr-1)) 0

|

0o— HO(R-,p+q(Xp)) —_— HO(R~,p+q(Yp)) —_— HO(R~,p+q+1(Xp+1))

|

HO(R7+73 (X771)) HO(RPHH(Y7H)),

Then this yields

Ker(HO(R‘vPW(YP)) — HO(R'»P+‘1+1(YP+1)))
= Tm(HO(R»Ha-1(YP1)) - HO(RP+(YP)))
_Ker(K_, 4(Y?) = K_p_g1(YPH))

T Im(K_ g1 (YP71) = K o(YP))

HY(RP9- (X))

Hence we have

Ker(K_p—q(Y?) = K_p—q-1(Y?*'))
Im(K_p_q41(YP™1) = K_p,_o(YP))
~ HP(E (X)),

HP(R(X)) ~

which holds when p = 0 if we put Y ! = ¢.
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