<table>
<thead>
<tr>
<th>Title</th>
<th>On the K-groups of spherical varieties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takeda, Yuichiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 35(1) P.73-P.81</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8821</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/8821</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
1. Statement of results

A spherical variety is a normal variety defined over a field with a split reductive group action with a dense open orbit isomorphic to a Borel subgroup. Flag varieties, Schubert varieties and toric varieties are examples of spherical varieties. In this paper we will study the K'-groups of varieties belonging to a certain category including spherical varieties. Our main results are descriptions of K'-groups and their coniveau filtrations of such varieties by means of their equivariant K'-groups. For a smooth toric variety, they are obtained by Morelli [4, Prop. 4]. Before we state our main results explicitly, we fix some notations.

Let B be a split connected solvable group defined over a field k. Then B is isomorphic to a product of an affine space and a torus as a variety over k. In this paper we are concerned with a B-variety X with finitely many B-orbits. All B-orbits of X are indexed by a finite set Δ. For $\sigma \in \Delta$, we denote by $O(\sigma)$ the corresponding B-orbit of X. Let $M = \text{Hom}(B, \mathbb{G}_m)$ be the character group of B. Any orbit $O(\sigma)$ is isomorphic to a quotient scheme of B by a subgroup B_σ. Hence $O(\sigma)$ is also isomorphic to a product of an affine space and a torus. Let $M^\sigma = \text{Hom}(B_\sigma, \mathbb{G}_m)$, then M^σ becomes a quotient module of M.

Here we introduce K-theory. We denote by $K_i^e(X)$ the i-th K-group of the category of coherent sheaves on X and by $K_i^e(X, B)$ the i-th K-group of the category of B-equivariant coherent sheaves on X. Moreover we denote by $K_i(X)$ the i-th K-group of the category of locally free sheaves on X and by $K_i(X, B)$ the i-th K-group of the category of B-equivariant locally free sheaves on X.

In [6] R. Thomason showed that these two equivariant K-groups are isomorphic when X is smooth over k. The equivariant K-group of the base field $K_0(k, B)$ is isomorphic to the Grothendieck group of the category of k-representations of B. Hence we have $K_0(k, B) \simeq \mathbb{Z}[M]$. From this fact we can say that the equivariant K-group $K_i^e(X, B)$ admits a $\mathbb{Z}[M]$-module structure. For a $\mathbb{Z}[M]$-module R, we denote by I_R the submodule of R generated by $\{ rm - r; r \in R, m \in M \}$. The quotient module R/I_R is called the group of coinvariants of R and denoted by R_M.

We need an additional assumption on the characteristic of k. When B is not a torus, we assume $\text{char} k = 0$. It is needed for varieties which we treat to admit a resolution of singularities.
The main result of the present paper is the following:

Theorem 1.1. Let X be a B-variety with finitely many orbits. Then the natural homomorphism

$$K'_0(X, B)_M \rightarrow K'_0(X)$$

is bijective.

This theorem was proved by Morelli when X is a smooth toric variety. His proof relies on the ring structure of $K_0(X)$ and a relation between K-groups and Chow rings. So we cannot apply his method. Instead we will use K-group of X and group homology of M.

We assume that X is a toric variety, namely B is a split torus and X is normal. Then X is constructed by a fan and many geometrical informations about X are expressed by the combinatorial data of the fan. But its K-group $K'_0(X)$ cannot be determined by the combinatorial data by the same reason as in the case of rational homology [3]. On the other hand, the equivariant K-group $K'_0(X, B)$ is a free abelian group generated by the structure sheaf of B-invariant closed subschemes and their twists by characters of B. Hence it is determined only by orbits of X as an abelian group. But as seen in the proof of the theorem, the $\mathbb{Z}[M]$-module structure of $K'_0(X, B)$ is very complicated and Theorem 1.1 says that it cannot be determined by the combinatorial data of the fan.

Next we consider the coniveau filtration F of $K'_0(X)$. This is defined as

$$F^pK'_0(X) = \text{Im}(\bigoplus_{Y \subset X \text{ codim } \geq p} K'_0(Y) \rightarrow K'_0(X)).$$

We note that the filtration F is associated with Brown Gersten spectral sequence [5].

Given a nonnegative integer i, the union of all B-orbits whose codimensions are greater than i is a closed subscheme of X. It is denoted by X^i. We set $Y^i = X^i \setminus X^{i+1}$, which is an open subscheme of X^i. Y^i becomes a disjoint union of all B-orbits of codimensions i. Let n be the dimension of X, then we have the sequence of closed subschemes of X:

$$\phi = X^{n+1} \subset X^n \subset X^{n-1} \subset \cdots \subset X^0 = X.$$

We put $E^{p,q}(X) = K'_{p-q}(Y^p)$ and the morphism $d : E^{p,q}(X) \rightarrow E^{p+1,q}(X)$ is defined by

$$K'_{p-q}(Y^p) \rightarrow K'_{p-q-1}(X^{p+1}) \rightarrow K'_{p-q-1}(Y^{p+1}),$$
where the left arrow is the connecting homomorphism of the localization exact sequence and the right arrow is the restriction of the open immersion $Y^{p+1} \hookrightarrow X^{p+1}$. Then $(E^{\cdot,q}(X), d)$ becomes a complex.

Let $R^{\cdot,q}(X)$ be the Gersten complex of X, that is, $R^{p,q}(X) = \oplus_{x \in X^{(p)}} K_{p-q}(k(x))$ where $X^{(p)}$ is the set of all points of X whose Zariski closures are of codimension p and $k(x)$ is the residue field of x. We obtain a canonical morphism of complexes $E^{\cdot,q}(X) \to R^{\cdot,q}(X)$.

Proposition 1.2. The morphism

$$E^{\cdot,q}(X) \to R^{\cdot,q}(X)$$

is a quasi-isomorphism.

Since $H^p(R^{\cdot,-p}(X))$ is isomorphic to the Chow group of X of codimension p by [5, Prop. 5.14] or by [2, Cor. 7.20], this proposition gives us the representation of the Chow group of X by generators and relations, which is the same result as the one obtained by Fulton et. al. [1] and by Totaro [7].

By the above proposition we have an isomorphism

$$F^pK^0_0(X) = \text{Im}(K^0_0(X^p) \to K^0_0(X))$$

and together with Theorem 1.1 we can describe the coniveau filtration by the equivariant K'-group.

Corollary 1.3. We define a decreasing filtration F^p_B on $K^0_0(X,B)_M$ by

$$F^p_B K^0_0(X,B)_M = \text{Im}(K^0_0(X^p,B)_M \to K^0_0(X,B)_M).$$

Then for a nonnegative integer p, we have an isomorphism

$$F^p_B K^0_0(X,B)_M \simeq F^p K^0_0(X).$$

2. **Proof of Theorem 1.1**

We will prove that

$$K^0_0(X^p,B)_M \to K^0_0(X^p)$$

is bijective by descending induction on p. Given a $\mathbb{Z}[M]$-module R, let

$$H_i(M; R) = \text{Tor}^\mathbb{Z}[M]_i(\mathbb{Z}, R)$$
be the i-th homology of M with coefficient R. The 0-th homology is isomorphic to the group of coinvariants R_M. The homology is calculated by a $\mathbb{Z}[M]$-projective resolution of \mathbb{Z}. By choosing a basis of M we can construct a $\mathbb{Z}[M]$-free resolution of \mathbb{Z}. Namely for a basis (m_1, \cdots, m_n) of M we set $P_q = \mathbb{Z}[M] \otimes \wedge^q M$ and define $\partial_q : P_{q+1} \to P_q$ by

$$
\partial_q(r \otimes m_{i_1} \wedge \cdots \wedge m_{i_{q+1}})
= \sum_{j=1}^{q+1} (-1)^{j+1} r([m_{i_j}] - [0]) \otimes m_{i_1} \wedge \cdots \wedge m_{i_{j-1}} \wedge m_{i_{j+1}} \wedge \cdots \wedge m_{i_{q+1}}.
$$

Then

$$
\cdots \to P_{q+1} \xrightarrow{\partial_q} P_q \to \cdots \to P_0 \to \mathbb{Z} \to 0
$$

becomes a $\mathbb{Z}[M]$-free resolution of \mathbb{Z}. Hence we have

$$
H_q(M; R) \simeq H_q(R \otimes_{\mathbb{Z}[M]} P).
$$

If the action of M on R is trivial, then the differentials in $R \otimes_{\mathbb{Z}[M]} P$ are all zero. In particular, it holds that

$$
H_q(M; \mathbb{Z}) \simeq \wedge^q M.
$$

Since $O(\sigma) \simeq B/B_\sigma$, by [6] we have

$$
K'_*(Y^p, B) = \bigoplus_{\text{codim} O(\sigma) = p} K'_*(O(\sigma), B)
\simeq \bigoplus_{\text{codim} O(\sigma) = p} K'_*(B/B_\sigma, B)
\simeq \bigoplus_{\text{codim} O(\sigma) = p} K'_*(k, B_\sigma)
\simeq K_*(k) \otimes (\bigoplus_{\text{codim} O(\sigma) = p} \mathbb{Z}[M^\sigma]).
$$

In other words, $K'_*(Y^p, B)$ is isomorphic to $K_*(k) \otimes K'_0(Y^p, B)$ as a $K_*(k)$-module. Since the boundary homomorphism of the localization exact sequence

$$
K'_*(Y^p, B) \to K'_{*-1}(X^{p+1}, B)
$$

preserves the $K_*(k)$-module structure, it becomes zero.

Hence we have a short exact sequence of $\mathbb{Z}[M]$-modules

$$
0 \to K'_0(X^{p+1}, B) \to K'_0(X^p, B) \to K'_0(Y^p, B) \to 0.
$$
So we have

\[K'_0(X, B) \cong \bigoplus_{p} K'_0(Y^p, B) \cong \bigoplus_{\sigma \in \Delta} \mathbb{Z}[M^\sigma] \]

as an abelian group. Hence we can say that \(K'_0(X, B) \) is determined only by orbits of \(X \). The above short exact sequence induces the long exact sequence

\[H_1(M; K'_0(Y^p, B)) \to K'_0(X^{p+1}, B)_M \to K'_0(X^p, B)_M \to K'_0(Y^p, B)_M \to 0. \]

We set \(M_\sigma = \text{Ker}(M \to M^\sigma) \).

Lemma 2.1.

\[H_1(M; K'_0(Y^p, B)) \cong \bigoplus_{\text{codim}(\sigma) = p} M_\sigma. \]

Proof. Since

\[\text{codim}(\sigma) = p \]

we have only to prove \(H_1(M; \mathbb{Z}[M^\sigma]) \cong M_\sigma \). Since \(M^\sigma \cong M/M_\sigma \), the \(\mathbb{Z}[M^\sigma] \)-module \(\mathbb{Z}[M^\sigma] \) is isomorphic to the induced module of the \(\mathbb{Z}[M_\sigma] \)-module \(\mathbb{Z} \). Hence we have

\[H_1(M; \mathbb{Z}[M^\sigma]) \cong H_1(M; \text{Ind}_{M_\sigma}^M \mathbb{Z}) \cong H_1(M_\sigma; \mathbb{Z}) \cong M_\sigma, \]

which completes the proof. \(\square \)

Lemma 2.2. Given an integer \(0 \leq p \leq r \), there exists an exact sequence

\[\bigoplus_{\text{codim}(\sigma) = p} M_\sigma \to K'_0(X^{p+1}) \to K'_0(X^p) \to K'_0(Y^p) \to 0. \]

Proof. By localization exact sequence of \(K' \)-theory we have

\[K'_1(Y^p) \to K'_0(X^{p+1}) \to K'_0(X^p) \to K'_0(Y^p) \to 0. \]
By [5], we have the following isomorphism:

\[
K_1'(Y^p) = \bigoplus_{\text{codim} \mathcal{O}(\sigma) = p} K_1'(\mathcal{O}(\sigma)) \cong \bigoplus_{\text{codim} \mathcal{O}(\sigma) = p} (K_1(k) \oplus (M_\sigma)).
\]

Since the maps in the localization exact sequence preserves the \(K_*(k^*)\)-module structures, the images of components \(K_1(k)\) by \(K_1'(Y^p) \to K_0'(X^{p+1})\) are all zero. This completes the proof.

\[\square\]

Lemma 2.3. The diagram

\[
\begin{array}{ccc}
\bigoplus_{\text{codim} \mathcal{O}(\sigma) = p} M_\sigma & \xrightarrow{\partial} & K_0'(X^{p+1}) \\
\uparrow & & \uparrow \\
H_1(M; K_0'(Y^p, B)) & \longrightarrow & K_0'(X^{p+1}, B)_M
\end{array}
\]

commutes, where the left vertical arrow is the isomorphism proved in Lemma 2.1.

Proof. We choose an element \(m \in M_\sigma \cong H_1(M, K_0'(\mathcal{O}(\sigma), B))\) for \(\sigma \in \Delta\) and consider the image of \(m\) by the above diagram. But the support of the image is contained in the closure of \(\mathcal{O}(\sigma)\) in \(X\). So we may assume that \(\mathcal{O}(\sigma)\) is the only dense open orbit. In other words, we have only to prove the result when \(p = 0\) and \(X\) is irreducible.

Let \(\pi : \tilde{X} \to X\) be a \(B\)-equivariant birational morphism such that \(\tilde{X}\) is a smooth variety. The morphism \(\pi\) exists by virtue of the existence of equivariant resolution of singularities. Then horizontal arrows in the above diagram factor through \(K'\)-groups of \(\tilde{X}\), namely,

\[
\begin{array}{ccc}
M_\sigma & \xrightarrow{\partial} & K_0'(\tilde{X}^1) \\
H_1(M, K_0'(\mathcal{O}(\sigma), B)) & \longrightarrow & K_0'(\tilde{X}^1, B)_M
\end{array}
\]

Since the right diagram commutes, we have only to prove that the left diagram commutes. Hence we may assume that \(X\) is a smooth variety.

We first consider the image of \(m\) by the bottom horizontal map. We choose a basis \((m_1, \ldots, m_\alpha)\) of \(M\) such that \(m = \Sigma s_i m_i\) for \(s_i \in \mathbb{Z}\). Then we obtain a \(\mathbb{Z}[M]\)-free resolution of \(\mathbb{Z}\) as mentioned above and represent \(m \in M_\sigma \cong H_1(M; K_0'(Y^0, B))\) by a chain in the complex \(\mathbb{Z}[M^\sigma] \otimes P\). The chain corresponding to \(m\) by the isomorphism in Lemma 2.1 becomes \([0] \otimes m \in \mathbb{Z}[M^\sigma] \otimes M\). The bottom horizontal
map is the connecting homomorphism and its image is $\sum s_i[O_X](0 - [m_i])$. Since its support is in X^1, we can regard it as an element of $K'_0(X^1, B)_M$.

We regard m_i as a rational function on X and let $D_{i,0}$ and $D_{i,\infty}$ be the divisors of zeros and poles of m_i respectively. Then in the same way as in [4, Prop. 4] it holds that

$$[O_X](0 - [m_i]) = [O_{D_{i,0}}] - [O_{D_{i,\infty}}][m_i]$$

in $K'_0(X^1, B)$. Hence the image of $\sum s_i[O_X](0 - [m_i])$ by the right vertical arrow is

$$\sum s_i([O_{D_{i,0}}] - [O_{D_{i,\infty}}]) = \partial(m).$$

We have the following isomorphisms for Y^p

$$K'_0(Y^p, B)_M \simeq \bigoplus_{\text{codim} O(\sigma) = p} \mathbb{Z}[M^p]_M$$

$$\simeq \bigoplus_{\text{codim} O(\sigma) = p} \mathbb{Z} \simeq K'_0(Y^p).$$

Then the theorem follows from the five lemma for the diagram

$$\bigoplus_{\text{codim} O(\sigma) = p} M_\sigma \xrightarrow{\partial} K'_0(X^{p+1}) \rightarrow K'_0(X^p) \rightarrow K'_0(Y^p) \rightarrow 0$$

and descending induction on p.

3. Proof of Proposition 1.2

For an inclusion $X^{i+1} \hookrightarrow X^i$, we have a short exact sequence of Gersten complexes

$$0 \rightarrow R \cdot q + 1(X^{i+1})[-1] \rightarrow R \cdot q(X^i) \rightarrow R \cdot q(Y^i) \rightarrow 0,$$

where $[-1]$ means the degree shift. Since $Y^i = \coprod_{\text{codim} O(\sigma) = i} O(\sigma)$ and $O(\sigma)$ is isomorphic to a product of an affine space and a torus, we have

$$H^p(R \cdot q(Y^i)) \simeq \begin{cases}
\bigoplus_{\text{codim} O(\sigma) = i} K_{-q}(O(\sigma)) & \text{if } p = 0 \\
0 & \text{if } p \neq 0.
\end{cases}$$
Hence we have an isomorphism
\[H^{p-1}(R'^q(X^{i+1})) \simeq H^p(R'^q(X^i)) \]
if \(p \geq 2 \) and an exact sequence
\[
0 \to H^0(R'^q(X^i)) \to H^0(R'^q(Y^i)) \\
\quad \to H^0(R'^{q+1}(X^{i+1})) \to H^1(R'^q(X^i)) \to 0.
\]
Hence for \(p \geq 1 \) we have
\[
H^p(R'^q(X)) = H^p(R'^q(X^0)) \\
\quad \simeq H^{p-1}(R'^{q+1}(X^1)) \\
\quad \simeq \ldots \\
\quad \simeq H^1(R'^{p+q-1}(X^{p-1})).
\]

We consider the diagram
\[
\begin{array}{ccc}
H^0(R'^{p+q-1}(Y^{p-1})) & \to & 0 \\
\downarrow & & \downarrow \\
0 & \to & H^0(R'^{p+q}(X^p)) \\
\downarrow & & \downarrow \\
& H^0(R'^{p+q-1}(X^{p-1})) & \to \quad H^0(R'^{p+q+1}(Y^{p+1})) \\
\downarrow & \downarrow & \\
0 & & H^0(R'^{p+q+1}(Y^{p+1})).
\end{array}
\]
Then this yields
\[
H^1(R'^{p+q-1}(X^{p-1})) \simeq \frac{\text{Ker}(H^0(R'^{p+q}(Y^p)) \to H^0(R'^{p+q+1}(Y^{p+1})))}{\text{Im}(H^0(R'^{p+q-1}(Y^{p-1}) \to H^0(R'^{p+q+1}(Y^p)))}
\]
\[
\simeq \frac{\text{Ker}(K_{-p-q}(Y^p) \to K_{-p-q-1}(Y^{p+1}))}{\text{Im}(K_{-p-q+1}(Y^{p-1}) \to K_{-p-q}(Y^p))}.
\]
Hence we have
\[
H^p(R'^q(X)) \simeq \frac{\text{Ker}(K_{-p-q}(Y^p) \to K_{-p-q-1}(Y^{p+1}))}{\text{Im}(K_{-p-q+1}(Y^{p-1}) \to K_{-p-q}(Y^p))}
\]
\[
\simeq H^p(E'^q(X)),
\]
which holds when \(p = 0 \) if we put \(Y^{-1} = \phi \).
References

Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Minami-osawa 1-1
Hachioji-shi, Tokyo 192-0364, Japan
e-mail: takeda@math.metro-u.ac.jp