

Title	On the K-groups of spherical varieties
Author(s)	Takeda, Yuichiro
Citation	Osaka Journal of Mathematics. 1998, 35(1), p. 73–81
Version Type	VoR
URL	https://doi.org/10.18910/8821
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Takeda, Y.
Osaka J. Math.
35 (1998), 73–81

ON THE K -GROUPS OF SPHERICAL VARIETIES

YUICHIRO TAKEDA

(Received November 27, 1996)

1. Statement of results

A spherical variety is a normal variety defined over a field with a split reductive group action with a dense open orbit isomorphic to a Borel subgroup. Flag varieties, Schubert varieties and toric varieties are examples of spherical varieties. In this paper we will study the K' -groups of varieties belonging to a certain category including spherical varieties. Our main results are descriptions of K' -groups and their coniveau filtrations of such varieties by means of their equivariant K' -groups. For a smooth toric variety, they are obtained by Morelli [4, Prop. 4]. Before we state our main results explicitly, we fix some notations.

Let B be a split connected solvable group defined over a field k . Then B is isomorphic to a product of an affine space and a torus as a variety over k . In this paper we are concerned with a B -variety X with finitely many B -orbits. All B -orbits of X are indexed by a finite set Δ . For $\sigma \in \Delta$, we denote by $\mathcal{O}(\sigma)$ the corresponding B -orbit of X . Let $M = \text{Hom}(B, \mathbb{G}_m)$ be the character group of B . Any orbit $\mathcal{O}(\sigma)$ is isomorphic to a quotient scheme of B by a subgroup B_σ . Hence $\mathcal{O}(\sigma)$ is also isomorphic to a product of an affine space and a torus. Let $M^\sigma = \text{Hom}(B_\sigma, \mathbb{G}_m)$, then M^σ becomes a quotient module of M .

Here we introduce K -theory. We denote by $K'_i(X)$ the i -th K -group of the category of coherent sheaves on X and by $K'_i(X, B)$ the i -th K -group of the category of B -equivariant coherent sheaves on X . Moreover we denote by $K_i(X)$ the i -th K -group of the category of locally free sheaves on X and by $K_i(X, B)$ the i -th K -group of the category of B -equivariant locally free sheaves on X .

In [6] R. Thomason showed that these two equivariant K -groups are isomorphic when X is smooth over k . The equivariant K -group of the base field $K_0(k, B)$ is isomorphic to the Grothendieck group of the category of k -representations of B . Hence we have $K_0(k, B) \simeq \mathbb{Z}[M]$. From this fact we can say that the equivariant K -group $K'_*(X, B)$ admits a $\mathbb{Z}[M]$ -module structure. For a $\mathbb{Z}[M]$ -module R , we denote by I_R the submodule of R generated by $\{rm - r; r \in R, m \in M\}$. The quotient module R/I_R is called the group of coinvariants of R and denoted by R_M .

We need an additional assumption on the characteristic of k . When B is not a torus, we assume $\text{char}k = 0$. It is needed for varieties which we treat to admit a resolution of singularities.

The main result of the present paper is the following:

Theorem 1.1. *Let X be a B -variety with finitely many orbits. Then the natural homomorphism*

$$K'_0(X, B)_M \rightarrow K'_0(X)$$

is bijective.

This theorem was proved by Morelli when X is a smooth toric variety. His proof relies on the ring structure of $K_0(X)$ and a relation between K -groups and Chow rings. So we cannot apply his method. Instead we will use K_1 -group of X and group homology of M .

We assume that X is a toric variety, namely B is a split torus and X is normal. Then X is constructed by a fan and many geometrical informations about X are expressed by the combinatorial data of the fan. But its K -group $K'_0(X)$ cannot be determined by the combinatorial data by the same reason as in the case of rational homology [3]. On the other hand, the equivariant K -group $K'_0(X, B)$ is a free abelian group generated by the structure sheaf of B -invariant closed subschemes and their twists by characters of B . Hence it is determined only by orbits of X as an abelian group. But as seen in the proof of the theorem, the $\mathbb{Z}[M]$ -module structure of $K'_0(X, B)$ is very complicated and Theorem 1.1 says that it cannot be determined by the combinatorial data of the fan.

Next we consider the coniveau filtration F of $K'_0(X)$. This is defined as

$$F^p K'_0(X) = \text{Im} \left(\bigoplus_{\substack{Y \subset X \\ \text{codim } \geq p}} K'_0(Y) \rightarrow K'_0(X) \right).$$

We note that the filtration F is associated with Brown Gersten spectral sequence [5].

Given a nonnegative integer i , the union of all B -orbits whose codimensions are greater than i is a closed subscheme of X . It is denoted by X^i . We set $Y^i = X^i \setminus X^{i+1}$, which is an open subscheme of X^i . Y^i becomes a disjoint union of all B -orbits of codimensions i . Let n be the dimension of X , then we have the sequence of closed subschemes of X :

$$\phi = X^{n+1} \subset X^n \subset X^{n-1} \subset \cdots \subset X^0 = X.$$

We put $E^{p,q}(X) = K'_{-p-q}(Y^p)$ and the morphism $d : E^{p,q}(X) \rightarrow E^{p+1,q}(X)$ is defined by

$$K'_{-p-q}(Y^p) \rightarrow K'_{-p-q-1}(X^{p+1}) \rightarrow K'_{-p-q-1}(Y^{p+1}),$$

where the left arrow is the connecting homomorphism of the localization exact sequence and the right arrow is the restriction of the open immersion $Y^{p+1} \hookrightarrow X^{p+1}$. Then $(E^{\cdot, q}(X), d)$ becomes a complex.

Let $R^{\cdot, q}(X)$ be the Gersten complex of X , that is, $R^{p, q}(X) = \bigoplus_{x \in X^{(p)}} K_{-p-q}(k(x))$ where $X^{(p)}$ is the set of all points of X whose Zariski closures are of codimension p and $k(x)$ is the residue field of x . We obtain a canonical morphism of complexes $E^{\cdot, q}(X) \rightarrow R^{\cdot, q}(X)$.

Proposition 1.2. *The morphism*

$$E^{\cdot, q}(X) \rightarrow R^{\cdot, q}(X)$$

is a quasi-isomorphism.

Since $H^p(R^{\cdot, -p}(X))$ is isomorphic to the Chow group of X of codimension p by [5, Prop. 5.14] or by [2, Cor. 7.20], this proposition gives us the representation of the Chow group of X by generators and relations, which is the same result as the one obtained by Fulton et. al. [1] and by Totaro [7].

By the above proposition we have an isomorphism

$$F^p K'_0(X) = \text{Im}(K'_0(X^p) \rightarrow K'_0(X))$$

and together with Theorem 1.1 we can describe the coniveau filtration by the equivariant K' -group.

Corollary 1.3. *We define a decreasing filtration F_B^p on $K'_0(X, B)_M$ by*

$$F_B^p K'_0(X, B)_M = \text{Im}(K'_0(X^p, B)_M \rightarrow K'_0(X, B)_M).$$

Then for a nonnegative integer p , we have an isomorphism

$$F_B^p K'_0(X, B)_M \simeq F^p K'_0(X).$$

2. Proof of Theorem 1.1

We will prove that

$$K'_0(X^p, B)_M \rightarrow K'_0(X^p)$$

is bijective by descending induction on p . Given a $\mathbb{Z}[M]$ -module R , let

$$H_i(M; R) = \text{Tor}_i^{\mathbb{Z}[M]}(\mathbb{Z}, R)$$

be the i -th homology of M with coefficient R . The 0-th homology is isomorphic to the group of coinvariants R_M . The homology is calculated by a $\mathbb{Z}[M]$ -projective resolution of \mathbb{Z} . By choosing a basis of M we can construct a $\mathbb{Z}[M]$ -free resolution of \mathbb{Z} . Namely for a basis (m_1, \dots, m_a) of M we set $P_q = \mathbb{Z}[M] \otimes \wedge^q M$ and define $\partial_q : P_{q+1} \rightarrow P_q$ by

$$\begin{aligned} \partial_q(r \otimes m_{i_1} \wedge \dots \wedge m_{i_{q+1}}) \\ = \sum_{j=1}^{q+1} (-1)^{j+1} r([m_{i_j}] - [0]) \otimes m_{i_1} \wedge \dots \wedge m_{i_{j-1}} \wedge m_{i_{j+1}} \wedge \dots \wedge m_{i_{q+1}}. \end{aligned}$$

Then

$$\dots \rightarrow P_{q+1} \xrightarrow{\partial_q} P_q \rightarrow \dots \rightarrow P_0 \rightarrow \mathbb{Z} \rightarrow 0$$

becomes a $\mathbb{Z}[M]$ -free resolution of \mathbb{Z} . Hence we have

$$H_q(M; R) \simeq H_q(R \otimes_{\mathbb{Z}[M]} P).$$

If the action of M on R is trivial, then the differentials in $R \otimes_{\mathbb{Z}[M]} P$ are all zero. In Particular, it holds that

$$H_q(M; \mathbb{Z}) \simeq \wedge^q M.$$

Since $\mathcal{O}(\sigma) \simeq B/B_\sigma$, by [6] we have

$$\begin{aligned} K'_*(Y^p, B) &= \bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} K'_*(\mathcal{O}(\sigma), B) \\ &\simeq \bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} K'_*(B/B_\sigma, B) \\ &\simeq \bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} K'_*(k, B_\sigma) \\ &\simeq K_*(k) \otimes \left(\bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} \mathbb{Z}[M^\sigma] \right). \end{aligned}$$

In other words, $K'_*(Y^p, B)$ is isomorphic to $K_*(k) \otimes K'_0(Y^p, B)$ as a $K_*(k)$ -module. Since the boundary homomorphism of the localization exact sequence

$$K'_*(Y^p, B) \rightarrow K'_{*-1}(X^{p+1}, B)$$

preserves the $K_*(k)$ -module structure, it becomes zero.

Hence we have a short exact sequence of $\mathbb{Z}[M]$ -modules

$$0 \rightarrow K'_0(X^{p+1}, B) \rightarrow K'_0(X^p, B) \rightarrow K'_0(Y^p, B) \rightarrow 0.$$

So we have

$$\begin{aligned} K'_0(X, B) &\simeq \bigoplus_p K'_0(Y^p, B) \\ &\simeq \bigoplus_{\sigma \in \Delta} \mathbb{Z}[M^\sigma] \end{aligned}$$

as an abelian group. Hence we can say that $K'_0(X, B)$ is determined only by orbits of X . The above short exact sequence induces the long exact sequence

$$\begin{aligned} H_1(M; K'_0(Y^p, B)) &\rightarrow K'_0(X^{p+1}, B)_M \\ &\rightarrow K'_0(X^p, B)_M \rightarrow K'_0(Y^p, B)_M \rightarrow 0. \end{aligned}$$

We set $M_\sigma = \text{Ker}(M \rightarrow M^\sigma)$.

Lemma 2.1.

$$H_1(M; K'_0(Y^p, B)) \simeq \bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} M_\sigma.$$

Proof. Since

$$K'_0(Y^p, B) \simeq \bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} \mathbb{Z}[M^\sigma],$$

we have only to prove $H_1(M; \mathbb{Z}[M^\sigma]) \simeq M_\sigma$. Since $M^\sigma \simeq M/M_\sigma$, the $\mathbb{Z}[M]$ -module $\mathbb{Z}[M^\sigma]$ is isomorphic to the induced module of the $\mathbb{Z}[M_\sigma]$ -module \mathbb{Z} . Hence we have

$$\begin{aligned} H_1(M; \mathbb{Z}[M^\sigma]) &\simeq H_1(M; \text{Ind}_{M_\sigma}^M \mathbb{Z}) \\ &\simeq H_1(M_\sigma; \mathbb{Z}) \\ &\simeq M_\sigma, \end{aligned}$$

which completes the proof. \square

Lemma 2.2. *Given an integer $0 \leq p \leq r$, there exists an exact sequence*

$$\bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} M_\sigma \xrightarrow{\partial} K'_0(X^{p+1}) \rightarrow K'_0(X^p) \rightarrow K'_0(Y^p) \rightarrow 0.$$

Proof. By localization exact sequence of K' -theory we have

$$K'_1(Y^p) \rightarrow K'_0(X^{p+1}) \rightarrow K'_0(X^p) \rightarrow K'_0(Y^p) \rightarrow 0.$$

By [5], we have the following isomorphism:

$$\begin{aligned} K'_1(Y^p) &= \bigoplus_{\text{codim } \mathcal{O}(\sigma)=p} K'_1(\mathcal{O}(\sigma)) \\ &\simeq \bigoplus_{\text{codim } \mathcal{O}(\sigma)=p} (K_1(k) \oplus (M_\sigma)). \end{aligned}$$

Since the maps in the localization exact sequence preserves the $K_*(k)$ -module structures, the images of components $K_1(k)$ by $K'_1(Y^p) \rightarrow K'_0(X^{p+1})$ are all zero. This completes the proof. \square

Lemma 2.3. *The diagram*

$$\begin{array}{ccc} \bigoplus_{\text{codim } \mathcal{O}(\sigma)=p} M_\sigma & \xrightarrow{\partial} & K'_0(X^{p+1}) \\ \uparrow & & \uparrow \\ H_1(M; K'_0(Y^p, B)) & \longrightarrow & K'_0(X^{p+1}, B)_M \end{array}$$

commutes, where the left vertical arrow is the isomorphism proved in Lemma 2.1.

Proof. We choose an element $m \in M_\sigma \simeq H_1(M, K'_0(\mathcal{O}(\sigma), B))$ for $\sigma \in \Delta$ and consider the image of m by the above diagram. But the support of the image is contained in the closure of $\mathcal{O}(\sigma)$ in X . So we may assume that $\mathcal{O}(\sigma)$ is the only dense open orbit. In other words, we have only to prove the result when $p=0$ and X is irreducible.

Let $\pi : \tilde{X} \rightarrow X$ be a B -equivariant birational morphism such that \tilde{X} is a smooth variety. The morphism π exists by virtue of the existence of equivariant resolution of singularities. Then horizontal arrows in the above diagram factor through K' -groups of \tilde{X} , namely,

$$\begin{array}{ccccc} M_\sigma & \xrightarrow{\partial} & K'_0(\tilde{X}^1) & \xrightarrow{\pi_*} & K'_0(X^1) \\ \uparrow & & \uparrow & & \uparrow \\ H_1(M, K'_0(\mathcal{O}(\sigma), B)) & \xrightarrow{\partial} & K'_0(\tilde{X}^1, B)_M & \xrightarrow{\pi_*} & K'_0(X^1, B)_M \end{array}$$

Since the right diagram commutes, we have only to prove that the left diagram commutes. Hence we may assume that X is a smooth variety.

We first consider the image of m by the bottom horizontal map. We choose a basis (m_1, \dots, m_a) of M such that $m = \sum s_i m_i$ for $s_i \in \mathbb{Z}$. Then we obtain a $\mathbb{Z}[M]$ -free resolution of \mathbb{Z} as mentioned above and represent $m \in M_\sigma \simeq H_1(M, K'_0(Y^0, B))$ by a chain in the complex $\mathbb{Z}[M^\sigma] \otimes P$. The chain corresponding to m by the isomorphism in Lemma 2.1 becomes $[0] \otimes m \in \mathbb{Z}[M^\sigma] \otimes M$. The bottom horizontal

map is the connecting homomorphism and its image is $\Sigma s_i[\mathcal{O}_X]([0] - [m_i])$. Since its support is in X^1 , we can regard it as an element of $K'_0(X^1, B)_M$.

We regard m_i as a rational function on X and let $D_{i,0}$ and $D_{i,\infty}$ be the divisors of zeros and poles of m_i respectively. Then in the same way as in [4, Prop. 4] it holds that

$$[\mathcal{O}_X]([0] - [m_i]) = [\mathcal{O}_{D_{i,0}}] - [\mathcal{O}_{D_{i,\infty}}][m_i]$$

in $K'_0(X^1, B)$. Hence the image of $\Sigma s_i[\mathcal{O}_X]([0] - [m_i])$ by the right vertical arrow is

$$\sum s_i([\mathcal{O}_{D_{i,0}}] - [\mathcal{O}_{D_{i,\infty}}]) = \partial(m). \quad \square$$

We have the following isomorphisms for Y^p

$$\begin{aligned} K'_0(Y^p, B)_M &\simeq \bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} \mathbb{Z}[M^\sigma]_M \\ &\simeq \bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} \mathbb{Z} \\ &\simeq K'_0(Y^p). \end{aligned}$$

Then the theorem follows from the five lemma for the diagram

$$\begin{array}{ccccccccccc} \bigoplus_{\text{codim } \mathcal{O}(\sigma) = p} M_\sigma & \xrightarrow{\partial} & K'_0(X^{p+1}) & \longrightarrow & K'_0(X^p) & \longrightarrow & K'_0(Y^p) & \longrightarrow & 0 \\ \uparrow & & \uparrow & & \uparrow & & \uparrow & & \\ H_1(M, K'_0(Y^p, B)) & \longrightarrow & K'_0(X^{p+1}, B)_M & \longrightarrow & K'_0(X^p, B)_M & \longrightarrow & K'_0(Y^p, B)_M & \longrightarrow & 0 \end{array}$$

and descending induction on p .

3. Proof of Proposition 1.2

For an inclusion $X^{i+1} \hookrightarrow X^i$, we have a short exact sequence of Gersten complexes

$$0 \rightarrow R^{\cdot, q+1}(X^{i+1})[-1] \rightarrow R^{\cdot, q}(X^i) \rightarrow R^{\cdot, q}(Y^i) \rightarrow 0,$$

where $[-1]$ means the degree shift. Since $Y^i = \coprod_{\text{codim } \mathcal{O}(\sigma) = i} \mathcal{O}(\sigma)$ and $\mathcal{O}(\sigma)$ is isomorphic to a product of an affine space and a torus, we have

$$H^p(R^{\cdot, q}(Y^i)) \simeq \begin{cases} \bigoplus_{\text{codim } \mathcal{O}(\sigma) = i} K_{-q}(\mathcal{O}(\sigma)) & \text{if } p = 0 \\ 0 & \text{if } p \neq 0. \end{cases}$$

Hence we have an isomorphism

$$H^{p-1}(R^{\cdot, q+1}(X^{i+1})) \simeq H^p(R^{\cdot, q}(X^i))$$

if $p \geq 2$ and an exact sequence

$$\begin{aligned} 0 \rightarrow H^0(R^{\cdot, q}(X^i)) &\rightarrow H^0(R^{\cdot, q}(Y^i)) \\ &\rightarrow H^0(R^{\cdot, q+1}(X^{i+1})) \rightarrow H^1(R^{\cdot, q}(X^i)) \rightarrow 0. \end{aligned}$$

Hence for $p \geq 1$ we have

$$\begin{aligned} H^p(R^{\cdot, q}(X)) &= H^p(R^{\cdot, q}(X^0)) \\ &\simeq H^{p-1}(R^{\cdot, q+1}(X^1)) \\ &\simeq \vdots \\ &\simeq H^1(R^{\cdot, p+q-1}(X^{p-1})). \end{aligned}$$

We consider the diagram

$$\begin{array}{ccccccc} & & H^0(R^{\cdot, p+q-1}(Y^{p-1})) & & & & 0 \\ & \downarrow & & & & \downarrow & \\ 0 & \longrightarrow & H^0(R^{\cdot, p+q}(X^p)) & \longrightarrow & H^0(R^{\cdot, p+q}(Y^p)) & \longrightarrow & H^0(R^{\cdot, p+q+1}(X^{p+1})) \\ & \downarrow & & & & \downarrow & \\ & & H^0(R^{\cdot, p+q-1}(X^{p-1})) & & & & H^0(R^{\cdot, p+q+1}(Y^{p+1})). \\ & \downarrow & & & & & \\ & & 0 & & & & \end{array}$$

Then this yields

$$\begin{aligned} H^1(R^{\cdot, p+q-1}(X^{p-1})) &\simeq \frac{\text{Ker}(H^0(R^{\cdot, p+q}(Y^p)) \rightarrow H^0(R^{\cdot, p+q+1}(Y^{p+1})))}{\text{Im}(H^0(R^{\cdot, p+q-1}(Y^{p-1})) \rightarrow H^0(R^{\cdot, p+q}(Y^p)))} \\ &\simeq \frac{\text{Ker}(K_{-p-q}(Y^p) \rightarrow K_{-p-q-1}(Y^{p+1}))}{\text{Im}(K_{-p-q+1}(Y^{p-1}) \rightarrow K_{-p-q}(Y^p))}. \end{aligned}$$

Hence we have

$$\begin{aligned} H^p(R^{\cdot, q}(X)) &\simeq \frac{\text{Ker}(K_{-p-q}(Y^p) \rightarrow K_{-p-q-1}(Y^{p+1}))}{\text{Im}(K_{-p-q+1}(Y^{p-1}) \rightarrow K_{-p-q}(Y^p))} \\ &\simeq H^p(E^{\cdot, q}(X)), \end{aligned}$$

which holds when $p = 0$ if we put $Y^{-1} = \phi$.

References

- [1] W. Fulton, R. MacPherson, F. Sottile and B. Sturmfels: *Intersection theory on spherical varieties*, J. Alg. Geom. **4** (1995), 181–193.
- [2] H. Gillet: *Riemann-Roch theorems for higher algebraic K-theory*, Adv. Math. **40** (1981), 203–289.
- [3] M. McConnell: *The rational homology of toric varieties is not a combinatorial invariant*, Proc. Amer. Math. Soc. **105** (1989), 986–991.
- [4] R. Morelli: *The K-theory of a toric variety*, Adv. in Math. **100** (1993), 154–182.
- [5] D. Quillen: *Higher algebraic K-theory I*, In: H. Bass (ed.): Algebraic K-theory I—Higher K-theories (Lect. Note Math. **341**) Berlin Heidelberg New York: Springer 1973, 85–147.
- [6] R.W. Thomason: *Algebraic K-theory of group scheme actions*, In: W. Browder (ed.): Algebraic topology and algebraic K-theory (Ann. Math. Stud. **113**) Princeton: Princeton University Press 1987, 539–563.
- [7] B. Totaro: *Chow groups, Chow cohomology, and linear varieties*, to appear in J. Alg. Geom.

Department of Mathematics
 Faculty of Science
 Tokyo Metropolitan University
 Minami-osawa 1-1
 Hachioji-shi, Tokyo 192-0364, Japan
 e-mail: takeda@math.metro-u.ac.jp

