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Abstract

Background: Cardiac four-dimensional computed tomography (4D-CT) imag-

ing is a standard approach used to visualize the left atrium (LA) deformation

for clinical diagnosis. However, quantitative evaluation of the LA deformation

from 4D-CT images is still a challenging task. We assess the performance of

LA displacement-field estimation from 4D-CT images using the coherent point

drift (CPD) algorithm, which is a robust point set alignment method based on

the expectation–maximization (EM) algorithm.

Methods: Subject-specific LA surfaces at 20 phases/cardiac cycle were recon-

structed from 4D-CT images and expressed as sets of triangle elements. The LA

surface at the phase which maximizes the LA surface area was assigned as the

control LA surface and those at the other 19 phases were assigned as observed

LA surfaces. The LA displacement-field was estimated by solving the alignment

between the control and observation LA surfaces using CPD.

Results: Global correspondences between the estimated and observed LA sur-

faces were successfully confirmed by quantitative evaluations using the Dice

similarity coefficient (DSC) and areal errors in all phases. Surface distances be-
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tween the estimated and observed LA surfaces ranged within 2 mm, except at

the left atrial appendage and boundaries, where incomplete data such as miss-

ing or false detections were included in the observed LA surface. We confirmed

that the estimated LA surface displacement and its spatial distribution were

anisotropic, which is consistent with existing clinical observations.

Conclusion: These results highlight that the LA displacement field estimated

by the CPD robustly tracks global LA surface deformation observed in 4D-CT

images.

Keywords: Left atrium, Four-dimensional computed tomography (4D-CT),

Displacement-field estimation, Coherent point drift (CPD), Point set alignment

1. Introduction

The left atrium (LA) is a left-upper heart chamber and transports the oxy-

genated blood from the pulmonary veins (PVs) to the left ventricle (LV) through

the mitral valve (MV). It is widely known that the LA actively functions to mod-

ulate LV filling [1] whereas LA pathologic modeling such as LA enlargement,

dysfunction and atrial fibrillation are known risk markers that induce thrombus

formation in the LA, which is associated with thromboembolic stroke ([2], [3],

[4]). Therefore, the assessment of subject-specific LA size and deformation has

attracted much interest as a way of understanding LA performance and the risk

of ischemic stroke.

Electrocardiogram-gated cardiac computed tomography (CT) is one of the

most standard noninvasive methods for visualizing three-dimensional LA shape

and its deformation. Cardiac CT scanning over several cardiac cycles using

a high temporal resolution multi-detector CT system yields the cardiovascular

shape as volumetric image data at various cardiac phase points by synchronizing

with the electrocardiogram [5]. This four-dimensional CT (4D-CT) image data

allows us to visualize spatiotemporal changes in the LA surface shape. However,

because the LA shape is implicitly represented as image data and there are no

material points for explicitly tracking the motion, kinematically exact LA wall
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deformation cannot be identified directly from 4D-CT images.

Cardiac motion estimation by the medical imaging anlysis based on non-

rigid image registration approach has been applied widely for assessment of car-

diac function from medical image, such as 4D-CT, magnetic resonance imaging

(MRI), and echocardiography, c.f., [6, 7, 8]. In particular, LV function strongly

associates with the risk of cardiovascular diseases, and then LV function assess-

ment has been much attracted. Several techniques for assessment of LV function,

such as the LV spatio-temporal motion [9] and LV strain [10], were developed

based on medical image registration analysis. While, LA function has been paid

less attentions, and the LA image registration analyses have been reported in

limited cases [11, 12]. LA myocardial wall is relatively thin, which makes imag-

ing analysis of LA motion difficult. Moreover, complexities of the LA shapes

and subject-specific differences, especially in the left atrial appendage (LAA)

[13], makes even the LA segmentation from medical images difficult. Although

several recent existing studies attempted to develop automatic LA segmentation

from medical images [14, 15], three-dimensional LA motion estimation by the

image registration is challenging so far.

To tackle in this issue, LA motion estimation based on LA surface regis-

tration extracted from image data seems to be a better alternative rather than

direct image registration. One of the main concepts used to estimate the dis-

placement field from image data is to describe this problem as the alignment

problem of two point sets (point set registration), which are extracted from the

outline surface of target object in image data at different time phase points,

c.f., [16, 17, 18, 19]. The coherent point drift (CPD) algorithm is one effective

methods that follows this concept, which was originally proposed in [18]. In the

CPD algorithm, two point sets are aligned by solving a probability density es-

timation problem based on the expectation–maximization (EM) algorithm, i.e.,

by fitting the Gaussian mixture model (GMM) centroids representing a point set

(the control point set) and another point set (the observation point set), with

regularizing the displacement-field to maintain motion coherence. This design

allows us to apply the alignment of two point sets that are not in one-to-one
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correspondence, and thus provides robustness to data incompleteness such as

noise, outliers, and missing points.

Given these practically useful properties of CPD, a few existing studies have

attempted to apply CPD to LA displacement-field estimation [20, 21, 22]. In

our previous study, we used CPD to estimate subject-specific LA displacement

fields over a cardiac cycle from 4D-CT images and proposed to use this LA dis-

placement field as a moving-wall boundary condition in computational LA blood

flow analysis [22]. Computational approaches to blood flow analysis in the LA

in individual patients has attracted attention in last half decade for assessing

the risk of thrombus formation associated with ischemic stroke [22, 23, 24, 25].

Thus, a technique such as CPD for estimating a subject-specific LA displacement

field from 4D-CT images is desirable, not only for evaluating the LA function,

but also for analyzing the internal blood flow characteristics while consider-

ing subject-specific LA deformation characteristics. However, evaluation of the

performance of the LA displacement field estimation by CPD has not been suf-

ficient because of a shortage of clinical datasets and quantitative assessments.

Thus, the consistency between the estimated results of the LA displacement

field obtained by CPD and original LA surfaces extracted from 4D-CT images

is unclear. In addition, CPD involves hyperparameters in its formulation, but

their influence on the estimation results has not yet been sufficiently examined.

Here, we assess the performance of CPD-based LA displacement-field esti-

mation taking into account the appropriate setting of hyperparameters. Section

2 introduces an outline of the CPD formulation for general readers and describes

the workflow of CPD-based LA displacement-field estimation from 4D-CT im-

ages. Section 3 shows the results of CPD parameter adjustment and Section

4 assesses the performance of LA displacement-field estimation over the whole

cardiac phase through numerical examples using data from three subjects. Con-

clusions are presented in Section 5.
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2. Methods

2.1. Outline of coherent point drift (CPD)

The CPD method proposed in [18] solves the alignment between control

point set X = {xa ∈ R3|a = 1...N} and observation point set Y = {yb ∈ R3|b =

1...M} to find the optimal displacement vector of control point set u ∈ RN×3 .

For this purpose, CPD assigns the GMM to X and fits this GMM to Y using

the EM algorithm.

First, a Gaussian distribution with equal isotropic covariances σ2 is assigned

to each control point with displacement, and thus a probability density function

with respect to an observation point p(yb|a) is given by

p(yb|a) =
1

(2πσ2)
3
2

exp

[
−‖yb − (xa + ua)‖2

2σ2

]
. (1)

Next, probability density function p(yb) of the GMM can be described as the

summation form with respect to all control points as

p(yb) =

N∑
a=1

P (a)p(yb|a), (2)

where P (a) is the membership probability and assumed to be a constant (=1/N).

To account for noise, outliers, and missing points, Equation 2 is modified by

adding the uniform distribution 1/M , given by

p(yb) = w
1

M
+ (1− w)

N∑
a=1

1

N
p(yb|a), (3)

where w ∈ [0, 1] is a weighting factor. Following Equation 3, the negative log-

likelihood function E(u, σ2) can be finally described as

E(u, σ2) = − log

M∏
b=1

p(yb)

= −
M∑
b=1

log p(yb).

(4)

The optimal displacement vector u and covariance σ2 are obtained by minimiz-

ing E using variational calculus. To avoid overfitting due to ill-posed conditions,
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this problem is described as a minimization problem considering L2 (Tikhnov)

regulation such that

minimize
u∈RN×3,σ2∈[0,∞)

f(u, σ2) = E(u, σ2) +
1

2
λ‖u‖2, (5)

where λ is a regularization parameter. This minimization problem can be solved

by the EM algorithm.

The key idea of the CPD algorithm is to model u as a Gaussian kernel

function to produce a coherent motion of the point set, such that

up =

N∑
q=1

Gpqwq, (6)

where w ∈ RN×3 is the base function assigned to each control point and G ∈

RN×N is a kernel matrix with elements

Gpq = exp

(
−‖xp − xq‖

2β2

2
)
, (7)

where β is a parameter to determine the span of influence and indices p and q

indicate nodes in X.

Gaussian kernel matrix G is a symmetric and positive-define but dense ma-

trix, and thus appropriate compression of G may be necessary to save compu-

tational memory so that CPD can be used in practice. In the original paper

[18], this issue was addressed using low-rank approximation of G as

G ≈ Ĝ

= QΛQT ,
(8)

where Ĝ is the low-rank approximation of the G, Λ ∈ RK×K is a diagonal

matrix with the K(≤ N) largest magnitude eigenvalues and matrix Q ∈ RN×K

is a set of the corresponding eigenvectors. Because it is commonly known that

the spectrum of eigenvalues of G decays quickly, c.f., [26], this technique can

sufficiently reduce the computational cost (K � N).

2.2. LA displacement-field estimation from 4D-CT images

Figure 1 summarizes the workflow for estimating the LA displacement field

from 4D-CT images using CPD, following our previous study [22]. The present
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study uses cardiac 4D-CT images of three subjects without a prior history of

cardiac disease (subjects 1,2, and 3). The protocol was approved by the Insti-

tutional Review Board of Jichi Medical University.

Figure 1: Workflow of coherent point drift (CPD)-based displacement-field estimation of the

left atrium (LA) from 4D-CT images. LA surfaces were reconstructed for a total of 20 phases

as sets of triangle elements, and element nodes are used as point sets in the CPD-based

displacement-field estimation. The LA surface and its nodes at the phase maximizes the LA

surface area was assigned as control LA surface and control point set X and the LA surfaces

and these nodes at the other 19 phases were assigned as observed LA surfaces and observation

point sets Yt, t=1,...,19. The LA displacement field was estimated by solving Equation 5 at

each phase.

The CT images were acquired during normal sinus rhythm using a 128-

slice multi-detector CT scanner (SOMATOM Definition Flash, SIEMENS, Inc.,

Berlin, Germany). The LA outline surfaces were reconstructed for a total of 20

phases (0% RR, 5% RR...95% RR) during the cardiac cycle, where RR indicates

the interval of the R waves, and 0% RR indicates the electrocardiographic ven-

tricular end-diastole. The reconstructed image matrix size was 512×512×240

for subject 1, 512×512×209 for subject 2, and 512×512×310 for subject 3. The
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in-plane pixel size was 0.39×0.39 mm2 in subject 1, 0.41×0.41 mm2 in subject

2, and 0.52×0.52 mm2 in subject 3. The through-plane slice thicknesses and

slice increments were 1.0 mm for all subjects.

The LA shapes were segmented from images at all phases and LA surfaces

were reconstructed by a set of linear triangle elements using the Mimics Medical

cardiovascular segmentation tool (Version 21.0.0.406; Materialise, Inc., Yoko-

hama, Japan). The distal part of the PVs beyond the first bifurcation and

the MV were removed using MeshMixer (Version 3.5.474; Autodesk, Inc., San

Rafael, CA). Figure 2 shows the LA shapes of all subjects with maximum LA

surface area during cardiac phase (top) and the LA surface area normalized by

it at 0% RR (bottom), which shows the extents of LA areal changes ranged

from 20-50% in these subjects.

The LA surface and its nodes at the phase when the LA size was largest (65%

RR in subject 1, 30% RR in subject 2, and 65% RR in subject 3) were assigned

as the control LA surface and control point set X because the LA surface shape

is relatively clear in whole phases. Those at the other 19 phases were used as

the observed LA surface and observation point sets Yt, t=1,...,19.. Numbers of

the control point set are 19,883 in subject 1, 21,294 in subject 2, and 21,826 in

subject 3. As well, those of observation point sets are 19,215±1,561 in subject

1, 21259±1,215 in subject 2, and 20,673±1,153 in subject 3 (Ave.±S.D.).

Before CPD, the centers of both X and Yt were set to the origin of the

Cartesian coordinate systems and their variations were normalized to one. In

the computation, we calculated theK largest eigenvalues with the corresponding

eigenvectors to obtain the low-rank approximation of G in Equation 8 by the

implicitly restarted Arnoldi method implemented in the ARPACK-ng library

[27]. Note that outliers were almost eliminated in the LA surface reconstruc-

tion process, and thus we assumed these effects were negligible and fixed their

weight factor to w=0.1. The computation time needed for a displacement-field

estimation by CPD was approximately 10 minutes under parallelization with 12

openMP cores using Intel Xeon E5-2650 (2.20 GHz) processors.
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Figure 2: LA shapes with maximum surface area during cardiac phase (top) and time courses

of the surface area normalized by the shapes at 0% RR (bottom).

9



2.3. Evaluations

Effects of hyperparameters β and λ in the CPD formulation and K in the

low-rank approximation of G on the estimation results were examined via a

preliminary computation, as described in Section 3. The global correspondence

between the estimated and observed LA shapes was evaluated by the Dice simi-

larity coefficient (DSC), areal error, and Hausdorff distance. Volume overlapping

between estimated and observed LA shapes are assessed using the DSC which is

frequently used for imaging processing. To calculate the DSC from LA surfaces,

both estimated and observed LA surfaces are converted to three-dimensional

image data. These LA surfaces are projected into Cartesian-grid with the voxel

size of 0.25 mm using volume fraction (VOF) φ (0 ≤ φ ≤ 1) (Fig. 3). The VOF

function was calculated by using open-source software V-SDFlib [28]. Assum-

ing that the LA volume consists of the voxel whose VOF is larger than 0.5 and

voxels consisting of estimated and observed LA volumes are expressed as the

voxel set A and B, respectively. The DSC are defined as

DSC(A,B) =
2|A ∩B|
|A|+ |B|

. (9)

The areal error between estimated and observed LA surfaces is calculated by

areal error =
AtX
AtY
− 1, (10)

where AtX and AtY are the total surface areas of the estimated and observed LA

shapes at phase t, respectively.

In Section 4, in addition to the evaluation of global correspondence, the

extent of local correspondences between the estimated and observed LA shapes

were assessed by the distances between the estimated and observed LA surface

in each cardiac phase point. To calculate the minimum distance between a

node of the estimated LA surface xc and a triangle element of the observed LA

surface, a point on triangle element xp is represented by the following linear

interpolation:

xp = (1− sp − tp)xp0 + spxp1 + tpxp2, (11)
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Figure 3: Flowchart to construct LA volume data in three-dimensional image format. The LA

surface shape (a) is projected to the Cartesian grid (b) using volume fraction (VOF) function

φ, shown in (c). LA volume is defined as a set of voxels whose VOF is larger than 0.5 (d).

where xp0, xp1, and xp2 are the element nodes, sp and tp are parameters (sp, tp ≥

0, sp + tp ≤ 1). The minimum distance between xc and xp is obtained by

minimizing ‖xp − xc‖ with respect to sp and tp.

Finally, we considered the characteristics of the estimated LA surface defor-

mation by assessing the displacement magnitude and its normal (out-of-plane)

and tangential (in-plane) components for the estimated LA surface during a

cardiac cycle. The magnitudes of the normal and tangential displacement of

node a are respectively defined as ‖ua · n‖ and ‖ua − ua · n‖, where n is the

unit normal vector of the LA surface.

3. Parameter adjustment

Here, we assess the influences of the hyperparameters and low-rank approx-

imation introduced in Section 2.1 on the CPD-based LA displacement-field es-

timation results. In this assessment, we calculate the displacement-field estima-

tion from control phase to 0% RR in each subject, which is the phase when the

LA size is minimum in a cardiac cycle.
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3.1. Influences of the degree of low-rank approximation

The influence of K in the low-rank approximation of G on the estimation

results is visualized by plotting the negative log-likelihood E over the iteration

process. Figure 4 shows the profiles of E for 100 iteration steps using various

Ĝ with different β(=0.5, 1, 2 and 4) and K in subject 1, as a representative.

When β=2 for example, E monotonically decays to the same value regardless of

K in the initial stage of the iteration process, whereas increases of E occurred

during the iteration when K was lower than 50. This occurs at an earlier

stage of the iteration process when lower values of K are used. Although these

tendencies were found in the other cases using different β, the minimum value of

K that maintains a monotonic decay of E depends on β. Because the monotonic

decay of E is mathematically guaranteed in the EM algorithm, these results

indicate that the use of Ĝ with values of K that are too small invalidates the

mathematical properties of the EM algorithm, which may output inappropriate

solutions. Because the minimum acceptable K depends on β, an appropriate

K should be selected for each β in each specific problem. In following sections,

we confirm that the E monotonically decays during the iteration process when

using Ĝ in each subject.

3.2. Influences of the hyperparameters

We assessed the effects of β and λ on the areal error between the estimated

and observed LA surfaces using various values for β and λ (β=0.5, 1, 2, and 4;

λ=0.5, 2, 10, 50, and 100).

In the representative case of subject 1 with β=0.5 and λ=2, unrealistic

surface intersections of the LA surface were found in the estimation results

because of overfitting (Fig. 5(top)). Because β controls the extent of smoothness

of the Gaussian kernel (Equation 7) and λ controls the extent of regularization,

small values of β and λ may capture local LA deformation but have a higher risk

of overfitting. On the contrary, high values of β and λ may overconstrain the LA

deformation. Figure 5 (bottom) shows the displacement of the LA surface of the

subject 1 for β=2 and λ=2, 10, and 100 as an example. Although the spatial
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Figure 4: Profiles of negative log-likelihood E during iterations calculated using a low-rank

approximation of Gaussian kernel function G with β=0.5 (top-left), 1 (top-right), 2 (bottom-

left), and 4 (bottom-right) and the K largest eigenvalues used for the low-rank approximation

of G in cases of subject 1, as representatives.
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distributions of the displacement show similar tendencies, these magnitudes

decrease as λ increases.

Figure 5: Representative estimated LA shapes of subject 1 for (β, λ)=(0.5, 2) and (2, 10)

(top) and spatial distribution of the areal deformation ratio at 0% RR for (β, λ)=(2, 2), (2,

10), and (2, 100) (bottom).

Influences of the hyperparameters β and λ in the CPD algorithm on the LA

displacement-field estimation was assessed by using the DSC. Figure 6 shows

values of DSC calculated from estimated results using various values for β and

λ in each subject and their average. Note that several cases, in which the VOF

function cannot be computed because of surface intersections, are not shown.

In all cases in which the VOF can be calculated, DSC was larger than 0.85 and

these ranges was less than 0.08. These results indicate that internal volume

shapes of the estimated and observed LA surfaces successfully overlap in cases

that the DSC can be calculated. In cases of β=0.5 and 1, surface intersections

were occurred and the DSC cannot be calculated in almost cases. In cases β

= 2, the DSC can be calculated in mot of cases and these values were nearly

constant regardless of λ. In cases of β=4, the DSC can be calculated in all cases

whereas its values decreased with increasing λ.

As well, influences of the hyperparameters on the areal error are shown

in Fig. 7 in each subject and these average. The areal error decreases with

increasing λ regardless of β in all subject. For β=0.5 and 1, the areal errors
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Figure 6: Effects of β and λ on the Dice similarity coefficient (DSC) between the estimated

and observed LA surfaces in subject 1 (top-left), subject 2 (top-right), subject 3 (bottom-left),

and average (bottom-right). Cases in which the VOF function cannot be computed because

of surface intersections are not shown.
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were relatively high (¿10%) when small λ is set and monotonically decreased as λ

increased. For β=2 and 4, decrease degree of areal errors becomes moderate and

ranged in ±5%, while these values becomes negative when β=4 in all subject.

Figure 7: Effects of β and λ on the areal error between the estimated and observed LA

surfaces in subject 1 (top-left), subject 2 (top-right), subject 3 (bottom-left), and average

(bottom-right).

Following above results, we fixed β=2 in all subject for calculation stability

and correspondences in terms of the DSC evaluation. We also selected the value

of λ that minimized the magnitude of areal errors from the above parameter set

(λ=10 in subject 1 and 100 in subject 2 and 3).

4. Results and discussion

4.1. Displacement-field estimation

This section reports the results for LA displacement-field estimations in three

subjects, which were conducted at 20 cardiac phase points. The parameters β,

λ, and K were adjusted by the procedures in Section 3.

The global correspondence of the LA surfaces of the estimated and observed

LA shapes was confirmed by the DSC and areal error over whole cardiac cycle
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(Fig. 8). Values of the DSC were higher than 0.92 and the areal ratio were less

than ±5% including outliers, in all subjects. These results show that the LA

shapes estimated by CPD globally fit well to the observed LA shapes.

Figure 8: Box plots of Dice similarity coefficient (DSC) and areal error between the estimated

and observed LA surfaces at all phase points.

Figure 9 shows representative snapshots of the observed and estimated LA

shapes with distances from observation over a cardiac cycle. The whole time

courses of these LA shapes over a cardiac cycle are shown in the supplementary

movies S1, S2, and S3, for subject 1, 2 and 3, respectively. In all subjects,

unrealistic intersections are not found at all phase points. Surface distances

are locally high in the boundary domains of the PVs and mitral annulus (MA;

junction between the LA and LV) in whole cardiac phase and the LAA, especially

at the LA systole phases (e.g., Fig. 9 (bottom-center)). Because boundaries at

the PVs and MA cannot be defined explicitly in CT images and CT resolution

is still insufficient to capture the LAA structure, especially at the LA systole

phase, these regions in the observed LA shapes may be incomplete, i.e., with

missing or false detections. In the estimated results, the displacement field of

these regions was interpolated based on surrounding point displacements, and

then locally and temporally high surface distances may be caused in estimation

results.

A quantitative assessment of the surface distances between the observed

and estimated LA surfaces was carried out for each subject. Figure 10 shows

the distributions of surface distances in each cardiac phase without the outliers
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Figure 9: Representative snapshots of observed LA shapes and estimated LA shapes with

surface distances from the observation in subjects 1 (left), 2 (center), and 3 (right) at phases

0% RR, 20% RR, 40% RR, 60% RR, and 80% RR.

found in the boundary domains and LAA, as shown in Fig. 9. In subject 1,

distances mainly range from 0 mm to 1.5 mm and these medians are less than

0.5 mm in all phases. In subjects 2, distances range from 0 mm to 2 mm and

medians are less than 0.5 mm in all phases except for phase 95% RR, at which

the median is approximately 0.6 mm. These tendencies are also found in subject

3. Because the slice thickness of the CT images of all subjects was 1 mm, we

believe that the surface distance observed are acceptable for tracking the LA

shape from the 4D-CT images with current spatial resolutions.

Finally, we considered deformation characteristics of the LA surface based

on the LA displacement field estimated using CPD. Figure 11 shows spatial

distributions of the displacement magnitude of the LA surface and its normal

and tangential components at phase 0% RR which is the maximum contraction

phase in each subject. The displacement magnitude is highest at the LAA

region, whereas the displacement of the superior-posterior side of the LA among

the PVs (i.e., the atrial roof) is relatively lower than that of other sides in
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Figure 10: Box plots of the distances between the estimated and observed LA shapes at all

phase points. Note that outliers are not included in these plots.

all subjects. These relatively lower displacements are also found in in vivo

measurements in [29] by speckle tracking echocardiography.

The magnitudes of the normal and tangential components of the displace-

ment are comparable, but their spatial distributions show different characteris-

tics (Figure 11 (middle and bottom)). Normal displacement is relatively high on

the superior-anterior side of the LA in all subjects, whereas tangential displace-

ment is relatively high on the LAA and inferior side of the LA. It is commonly

known that the atrial roof is nearly fixed in the cardiac phase, but the MA

cyclically moves along the LV longitudinal axis while maintaining its circular

shape in a cardiac cycle [30]. Thus, passive LA deformation associated with the

MA motion may cause relatively larger tangential displacement in the inferior

side of the LA. These findings suggest that estimated global LA deformation

is qualitatively consistent with common clinical knowledge and highlights the

necessity of using a spatial displacement-field estimation approach to express

subject-specific LA deformation, which includes local anisotropic properties.
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Figure 11: Spatial distributions of the displacement magnitude (top) and its normal (middle)

and tangential (bottom) components against the left atrial (LA) surface in the estimation

results at the maximum contraction phase in each subject: posterior (left) and anterior (right)

views.

4.2. Limitations

The displacement-field estimation conducted in this study has four limita-

tions. First, the extent of local LA displacements depends on hyperparameters β

and λ, as shown in Fig. 5(bottom), but it is currently difficult to select the most

appropriate values. Because the LA shape is not explicitly represented in the CT

images, there is so far no methodology that can identify the kinematically exact

solution from the displacement-field estimation. Although we believe that the

present workflow is robust enough to estimate the global LA displacement field,

this limitation should be carefully handled in the quantitative assessment of the

LA displacement field, especially in local regions. Second, the effects of CT

artifact and segmentation errors on the accuracies of the observation LA shapes

were not considered when the CPD parameters were set. We tuned the param-

eters to fit the estimated LA shape well to the observed LA shape. However,

cardiac CT imaging is influenced by motion artifacts [31] and its spatial resolu-

tion is still too low to capture complex and dynamic LAA structure, especially

in the LA systole, and thus the observed LA surfaces contain errors originating

from the CT scanning, segmentation, and reconstruction processes. These in-

fluences on the estimated resutls in terms of distances between estimated and

observed LA surfaces are shown in Appendix. Because of this limitation, the as-
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sessment of differences in estimated LA displacement within a few voxels should

be also carefully treated. Third, this study used original CPD algorithm [18]

while several improved version of the CPD was proposed. There are so many

ideas to improve the CPD algorithm because of its outstanding performances

and high extensibility, c.f.,[32, 33, 34, 35, 36]. For examples, these modifications

achieved automatic parameter optimization for adjusting noise and outliers [33]

and the use of landmark points and prescribed structure [32, 36]. Although

these updates necessitate additional optimization routine and input informa-

tion, improved CPD may help us obtain suitable results more easily. Fourth,

the workflow employed in this study does not consider temporal interpolation

of the LA displacement field, even through 4D-CT imaging outputs sequential

volumetric data. In the present workflow, the control point set was fixed and

subsequent displacement-field estimation was independently conducted for each

phase. Overcoming this drawback may enable us to obtain spatiotemporally

reasonable LA motions from the 4D-CT images, which has good potential to

not only directly apply the estimation results to the moving wall boundary in

the CFD simulation but also improve our physiological knowledge of the LA

functions.

5. Conclusions

This study investigated the performance of CPD-based LA displacement-

field estimation using cardiac 4D-CT images with the appropriate parameter

settings. These results demonstrate that the estimated LA displacement field

successfully tracked the observed LA shapes reconstructed from 4D-CT images

with interpolated incomplete regions over a cardiac cycle. Furthermore, the

estimated LA deformation characteristics with local anisotropy were consistent

with existing clinical observations. These results highlight performances and

validities of the CPD-based workflow to estimate global LA displacement fields

consistent with the LA surface deformation extracted from 4D-CT images.This

achievement can reinforce validities of existing studies [20, 22] and help readers
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conduct the LA deformation estimation and analysis smoothly. Furthermore,

assessments of influences of each hyperparameter on LA displacement estimation

illustrated these parameter sensitivities and current limitations of the approach

conducted. Thus it may be valuable for readers who attempts to adjust hyper-

parameters for not only the LA surface displacement estimation but also their

specific problem.

Finally, a sequential LA displacement field over a cardiac cycle obtained

using this framework may be useful not only for subject-specific assessment of

the LA function but also for computational LA blood flow analysis that considers

clinically consistent LA deformation characteristics. We hope this technique will

help improve our understanding of the LA function and its internal blood flow

characteristics.
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Appendix. Haudorff distance between estimated and observed LA

surfaces

To consider how far the estimated and observed LA surfaces, we calculated

the Hausdorff distances between these point sets. The Hausdorff distance be-

tween point sets of estimated and observed LA surfaces X and Y are defined

as

Hausdorff distance (X,Y) = max
x∈X

min
y∈Y
‖x− y‖ , (12)

where x and y is the position vectors of the point involved in X and Y, respec-

tively.

Influences of the hyperparameters β and λ in the CPD algorithm on the

LA displacement-field estimation was assessed by the Hausdorff distance, as in

Section 3. Figure 12 shows the Hausdorff distances calculated from estimated

results using various values for β and λ in each subject and their average. Al-

though a few cases show relatively long distances (¿50 mm) at λ=0.5 and β=0.5

and 1 in each subject, these values have certain values ranged from 5 to 10 mm

in most cases regardless of the hyperparameters. Since the Hausdorff distance

is equivalent to the maximum values of surface distances (Fig. 9), it is thought

that the values of Hausdorff distance is determined by the incompleteness of the

observed LA surface rather than influences of hyperparameters.
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