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Mixing Up Property of Brownian Motion.
By Hirotada AnzAI.

1. Let X be the space of Brownian motions. Any element a of
X is to be considered here as a set function defined for intervals on
the infinite line. We denote the value of x for the interval (a,b) by
2(b)—x(a), but it is to be noticed that x(a) or x(b) alone has no mea-
ning in our case. Let ¢,(— < t< ») be the flow of translations
on X defined by ¢,2(e,b)=2(a+1t,b+1t), that is, x'= @,a means that
2’'b)—a'(@)=ab+t)—x(a+t). It is well known that ¢, is strongly
mixing. ¥

THEOREM 1. Let X be the space of Brownian motions as set func-
tions and let ¢, be the flow of translations on X above defined. Then
for any measurable ergodic flow ¢, on a measure space Y, the skew
product flow T,, which is defined in the following way on the direcl
product measure space Q of X and Y, is strongly mixing.

Ty (2, 9) = (¢ @, Yrocey-aro, ¥), Where (@,9)€EQ=XXY.
At first, it is easily verified that for any fixed ¢, T, is a measure

preserving transformation on Q, from the fact that for any null set
N in the usual Lebesgue measure space of the infinite line, the set

{v|2(®—2(0)eN} is a null set in X.» And further we may show in
the same way that T, is a measurable flow on Q from the fact that the
(t, x)-set {(t, @)z (H)—x (0)e N} is a set of (t,)-measure zero.» In
order to prove that T, is strongly mixing, it is sufficient to show that

® 1m0 o) 900 0,0) dway

={[r@ f.0) azay | 9@) 9.0 davity

holds for any f(x), g(x)€ L*X) and f,(»), 9,(%) € L*(Y).

Let EF, be the spectral resolution of the one-parameter group of
unitary transformations of L*(Y), which corresponds to the flow «», on
Y, and put v(\) = (¥,f,, 9,). Then the left hand side of (1) is equal to

1) E. HOPF, Ergodentheorie, Berlin, 1937, p. 59 316. Masstheorie im Raum der addi-
tiven Mengenfunktionen. Das Spektrum der Translationen.
2) See (7) of 2 of this note.
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@) 10 ) 9(&) {§ F,hucer-o0s 1) 9:0) A}

— oo

flp, ) g(2) S exp (z(a(t) 2(0)) 7&) dv(x)} dx

—

tim |

— tim | 6z, ) gta) {Sexp (ia(t)—2(O)\) d(E, 1,, g.)} d=
tim |
im

flp, ) g(2) {g exp ( i(x(t)—2(0)) 7\) du(x)} dx

+ S {v(+0)—v(—0)} 16131“ Sf((p, x) g(x) du,
where
3 u(>0=§vm_ {o(+0)—v(—0)} if 220

v(\) if A <0.
Since the ergodicity of +, implies

@ w+0)—v(—=0)= [ 1) dv | 9. 2w,
and since the strong mixing property of ¢, implies
®  lim [fp @) 9@ dw = | 1@) dz | g(@)
so in order to prove (1) it suffices to prove that
©  lim s fpe) 9(@) {{ exp (iCatt)—aO) 1) du()} de

= lim X {S 1. ) g(@) exp (i(@(t)—O))) da} du(n) =0

— 00

holds for any f(x), g(x)e L*(X). We may restrict ourselves to the case
in which f(z) and g(z) are functions of the following form :

@ fw=exp {i ) o (a(@)=s(a.) ]
a, < a, <‘ a4y =0a,,, ... < a,

g(a) = exp {‘,Z 7y (2(0,)—2(b,-,))}
by < by < oo < by = 0Dy, ... < by
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where o, (1< k'<m) and 7,(1 <j < m) are arbitrary real numbers.
This is because linear combinations of such functions are dense in
L*(X). Further it is sufficient to show that

® 1im | 7, #) (&) exp {i{a(t)—2(0))1} dw =0

holds for any A ==0. This is .because »(\) is continuous at A =0 and
the integral in (8), namely the integrand in (6) is uniformly bounded
in t. Let ¢ be greater than b,,—a,, then the integral in (8) is equal to

9) de “ exp {io(@(a,+t)—a(a._,+1))}

=P+1

X f[exp {i(a‘k + )»)(a:(oz,-c +t)—z(a,_,+1t) )}

k=1

x exp {iM(@(a,+ 1) —(bm) j}

x || exp {ir;+1)x,0)—2(b,-))}

J=q+1

X Jﬁ exp {i-rj(x(b,)—x(b,_,))}

=T [ az exp {ioata+t)—a(a,,+t)}

X ﬁ S dx exp {i(o-k + x)(x(a,,, +t)—a(a,_,+ t))}
X S dx exp' {ix(x(ao +t)—a(b,) )}

X ][ Sdm exp {i(r,+)n)((x(b,)—x(b,_,))}

J=a+1

q

x | { @2 exp {ir () —av, )}

J=1

n.

— " exp {-—% akﬁ(a,c——a,,c_,)} ﬁlexp {-—~—%~ (op+A) (ak—ak.,.)}

k=p+1

m

xexp {— N (0 + t=bu)} || exp {4 () + A B,—b,)

J=a+1

q
< exw {=5 7 0,=0s0}
11
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which tends to zero as t— o. The proof of the theorem is completed.

This is the phenomenon which cannot be observed in the direct
product flow S, of ¢, and , on Q, where the direct product flow S,
means S; (%, y) = (o, , ¥, y). It is true that S, is ergodic when +, is
ergodic, since ¢, has no point spectrum except the trivial eigen-fre-
quency zero. But, in this case, if +», has an eigen-frequency A, ) is
again an eigen-frequency for S,. Generally speaking, any spectral
measure which is a convolution of spectral measures of @, and
appears in the spectrum of S,.

COROLLARY. Let +, be any ergodic flow on a measure space Y.
Let E be the space of Browmnian motions £ (t) starting from the origin
0 at the instant t=0: £(0)=0. [Here we consider £ (t) as a wusual
point function and not as a set function.)

Then for any f(y)e L(Y), for almost all £ € B, there exists a null
set N in Y, which depends on f and &, such that

4

tim — | 0, ) 2t = | 1) dy

4500
[}

holds for any y ¢ N.

This is an immediate consequence of the ergodicity of the skew
product flow T,. This may be considered as an example of the random
ergodic theorems of S. ULAM and J. V. NEUMANN ® in continuous para-
meter cases, where the ergodic limit is independent both of the con-
tinuous path £ () (corresponding to the infinite sequences in their
theorem) and of the space point .

2. In this section we are going to show that for some flows,
contrary to the case of 1, essentially skew product compositions are
impossible, that is, every sk2w product flow is equivalent with a direct
product flow.

We begin with general definitions. Let (£,, WM»,, u,) and (E., Ms.,
u.) be measure spaces, Mns, x M»s, means the least Borel field of the
sets of the product space E, x E., which contains the sets of the form
A, x A., where A, € Ms,, A€ Mu,, and Ma, @ My, means the comple-
tion of Wtw, xMu. with respect to the direct product measure s, X .
defined on Wtws, xMWs.,. Denote by (R, M, m) the usual Lebesgue mea- -
sure space of the set of all real numbers, and by Bx the family of

~usual Borel sets on E. By Borel-measurable flow , (— co< t < o) on

3) S. M. ULaM and J. v. NEUMANN, 165. Random ergodic theorems, Bull. A. M. S.
Vol. 51, No. 9, 1945, p. 660.
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a measure space (E,M,, x), we understand a measurable flow on E,
such that {(¢,p)|y.p€ A} €B,xM, for AeM,, where pck, while
simply a measurable flow +», means that
{t.D)|ypeA}eB, @ My=M, ® My, for AcM,.
Let (Q,Mo,\) be the completed product measure space of the
given measure spaces (X, M,, p) and (Y, M, »).
(Q, Mo, \) = (X, My, ) Q@ (¥, My, v).

Suppose there are given measurable flows ¢, and v, respectively on X
and Y. We consider a real-valued function «(t, ) defined on R XX,

which satisfies the following conditions, and such a function is called
an a-function.

@y For every te R, a(t,«) is a measurable function on X.

) a(t,x) is as a function of two variables ¢ and 2, M, @ WM ,-
measurable.

3 For every s and ¢t of R

a2 +alt,p,x)=a(s+t,x).

By making use of an a-function «(t,), we define one-to-one transfor-
mations 7, on Q by

T, (@, 9) = (9% Vot ¥)y —00<t< 00,

By the condition (3), T, is a one-parameter group :
T: +t = Tan .

In order that T, be a measurable flow, it is necessary and sufficient
that « (¢, x) satisfies the following conditions, and then T, is called a
skew product flow with the a-function «(t,2):
(4) {@,9) | Yoy € Bje M, @ M,, for any fixed te R, and BeM,.
(5) {6, 2, 9) | ¥uriiay ¥ € B} € My @ My @ M, for B,

It is still an open question to the author whether the conditions (4)
and (5) are consequences of the conditions (1), (2), and (3) or not. But,
for instance, in each of the following cases, it is easily verified that
the conditions (4), (5) are satisfied :

(6) Y, is a Borel-measurable flow on Y.
@ ufela(t,x)eN}=0, for Ne®B, such that m(N)=0, for
every fixed te R.
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8 -« (t, x) takes only countably many values.

Let B(®) be a real-valued measurable function on X. Then
V(%,y) = (%, ¥4, %) iS a measure preserving transformation on Q, if
and only if

© {@, 9 Vpwr v € B € M, @ My, for BeM,.

The conditiion (9) is satisfied, for instance, in each of the following
cases :
(6) +, is a Borel-measurable flow on Y.

(7 p{x|B@)eN}=0 for NeBr such that m (N)=0.

8 Bx) takes only countably many values.

If for two a-functions «(t,«) and ¥(¢, x) fulfilling (4), (5), there exists
a measurable B(#) satisfying (9), such that «(t, a)—v(t, ) = Blp, )—
B (%), then between the corresponding skew product flows T, and S,,
there exists the following relation :
T,=VS,V, where T. (x,y) = (@ T, Yyt 0 ¥) »
- Sy, ¥) = (9%, Yrrce, o y):. V(, ) = (@, Yaa) ¥)-

In this case, «a(t,«) and 7(t, ), T, and S,, are called equivalent to
each other. And if o(t,x)=0, that is, if S,(z,y)=(p2,y), a(t,x)
(= Blp, x)—Bx)) is called a trivial a-function and T, is called a trivial
flow. '

THEOREM 2. Let X be the infinite line, and let ¢, be the trans-
lation by ton X: p,x =1t + x. Then for any a-function «(t,x), there
exists a measurable function B(x) on X such that a(t, )= By, x)—
B(x). |This is the only case in this note in which the .total measure

of the space is not finite.]
ProOF: Put 2 =0 in the condition (3), then we get

(10) a(t, 8) = a(s+t, 0)—a(s, 0).

Considering s€ R as an element of X, we may regard 3(s) = «a(s, 0) as
a function defined on X. If we replace s in (10) by z, we get

(1) ait, x) = Bt +x)—p) = Blp, x)—B).

By applying Fubini’s theorem, the condition (2) implies the exis-
tence of an x,€ X, such that «(t,x,) is a measurable function of .
Hence Bt +,)—BX&,) is a measurable function of ¢. By replacing again

the variable ¢t by x, we may conclude the measurability of S(w).
THEOREM 3. Let X be the circle of unit length, and let ¢, be the
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rotation of X by the angle 2zt. Then for any a-function a(t,),
there ewists a constant ¢ and o measurable function B(x) on X such .
that a(t, x)—ct = Blp, v)— Bx).

ProoF: X is R (mod 1). Hence from the equality (10), a(s+t, 0)
—a(s,0) is a periodic function of s with the period 1;

(12) a(s+t,0)—a(s, 0) = a(s+t+1, 0)—a(s+1, 0).
azn a(s+t+1,0)—a(s+t,0) = als+1, 0)—a(s, 0).
(121 shows that a(s+1,0)—a(s,0) is a constant c.

Put v(s) = afs,0) for 0 < s <1, then for 0 < s < 1,
a(s+1,0)=c+v(s), a(s+2,0)=2c+v(s), ... .

Therefore we get for —co < s< oo,

(13) a(s, 0) = c[s]+v({s}),

where [s] is the integral part of s, and {s} = s—|s].

a3n a(s,0)=63+fy(§s})—c §si.

Putting B({s}) = v({s})—c {s}, from (10) and (13') we get

(14) a(t, s) = ct+ (4 8+t§)—6(58§)-

Considering s as an element of X, replace it by «, then we get
a(t, ) = ct+ B(p, x)— L&) .

The same argument as in the proof of Theorem 2 assures the mea-
surability of B(x).

A skew product flow T, of the rotations ¢, on the circle X and of
a Borel-measurable flow +, on a space Y is always equivalent with a

direct product flow S, ;
S, (@, y) = (p, &, ¥e; y¥), Where ¢ is a constant.

It was shown by S. KakuranI that if ¢, is an ergodic flow with
pure point spectrum on a measure space X, the statement of Theorem
3 is valid under the following supplementary conditions (15) and (22):

5) Sl alt, »)|* de < oo for every —oo< t< oco.

Since ¢, is an ergodic flow with pure point spectrum, we may expand
a(t, ), as a function of L*(X), by the system of characteristic functions
0,x), p=0,1,2,..., where 6,(p, &) =exp (ir,t)0,(x), [N;=0, 6,(x)=1.]

and S 16,(2)]* do = 1.
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oo

(16) alt, ®) =), 6,(t) 6,()

=0
where

a7y Nla®]2 < oo.

From (3) and (16), and from the fact that 6,(p, 2) = exp (ix,s) 6,(x),

(18) Y a,(5) 0,(&) + ), @,(t) €XD (X,8) 0,(@) = ) a,(s+1) 0,(x).
p »
By comparing the coefficients of the functions 6,(x), we get
(19 a,(s) +exp (iX,8) a,(t) = a,(s+1). p=0,1,2,....
It is easily seen that the measurable solutions of (19) are
20) a,(t) = c,(exp (ir,t)—1), where ¢, is a constant, p =|- 0,
(21) a, () = ct, where ¢ is a constant.
If

(22) N lep]r <l oo
p=1
holds, then
(23) B@) =), ¢,0,()
p=1

is a function belonging to L*(X).
From (20), (21) and (16), we have

a(t, x) = ct+ By, )— L) .

(Received December 16, 1949)





