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Abstract

The scaled-up particle model, which is also commonly known as the coarse

grain model or discrete parcel model, is frequently used to reduce the compu-

tational cost in Discrete Element Method (DEM). In the direct force scaling

approach, the forces acting on original particles are first estimated and then

directly scaled to apply to scaled-up particles. It is therefore crucial to appro-

priately evaluate the variables of the original particles, e.g. overlap and sep-

aration distance, from the scaled-up particles particularly when estimating

complex interparticle forces. The present work proposes the use of geometric

similarity for the evaluation of the original particle overlap and separation

distance. It is demonstrated that the proposed method can provide an al-

most identical stress-strain curve between the original and scaled-up particles

during uniaxial compression of a packed particle bed, whilst the conventional

method in the literature gives significant overestimation of the stress. In ad-

dition, the scaled-up particles can reasonably replicate the original velocity
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distributions of cohesive particles with both liquid bridge and JKR surface

adhesion forces in a dynamic flow system (vertical mixer). The simulation

results suggest that the method proposed can be applied to any type of in-

terparticle forces. A scaling of time step limit is also derived theoretically

and discussed.

Keywords: DEM, Scaled-up particle model, Interparticle force, Geometric

similarity, Calculation speed-up

1. Introduction

Powder handling processes can play a critical role in various industries.

Particularly in the pharmaceutical industry, the size of primary particles

is usually small and the particle level interactions can have a considerable

impact on the macroscopic or bulk powder flow which can determine the

quality of the final products. However, measuring particle interactions and

internal behaviour of particles by experiment is challenging, and computer

simulations can be a powerful alternative to gain more insight into these

processes.

Discrete Element Method (DEM), which was first developed by Cundall

and Strack [1] for soil mechanics, has been widely used to simulate powder

flows. One of the most significant advantages of DEM over other simulation

methods is its ability to directly consider the particle interactions. Previ-

ously, DEM was mostly used to simulate relatively coarse particles where

only contact force [1, 2] and body (external) force [3, 4] are dominant due
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to its simplicity, and proven to provide comparable results to experimen-

tal data [5, 6]. Recently, an increasing number of researchers are trying to

incorporate more complex interparticle forces into DEM, such as capillary

force [7, 8, 9, 10], viscous force [11, 12, 13, 14, 15], surface adhesion force

[16, 17, 18, 19, 20], and electrostatic force [21, 22]. These attraction forces

can cause agglomerates, lumps and/or wall make-ups, that are not observed

with free-flowing particles.

One of the most significant problems of DEM is the extremely high com-

putational cost to track the movement of a large number of particles. In

general, far more than billions of particles can exist in industrial-scale equip-

ment. Despite the rapid advancement of computational power over the past

decades, it is still difficult or practically impossible to finish such large-scale

simulation within an acceptable period of time. Therefore, various strate-

gies have been applied to speed-up DEM simulation, such as GPU comput-

ing [23, 24, 25], domain decomposition [26, 27], reduced particle stiffness

[28, 29, 30, 31, 32], and scaled-up particle model [33, 34, 35, 36, 37, 38].

Among them, the scaled-up particle model has been an increasingly popular

approach where particle size is artificially increased to reduce the total num-

ber of particles in a system. It is also known as the coarse grain model or

discrete parcel model. Although the term “coarse grain model” may be more

common in this field [39, 40, 41, 42, 43], the same term is sometimes used to

indicate the volume-averaging of discrete particle quantities in a continuous

field in CFD–DEM coupling [44, 45]. In order to avoid the confusion, the
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term “scaled-up particle model” is used in this paper. A good review for the

current scaled-up particle models is provided by Di Renzo et al. [46].

In the scaled-up particle model, it is important to properly scale the

forces acting on the scaled-up particles so that they represent the behaviour

of original particles. Several models have been proposed in the literature, and

Chan and Washino [37] classified them into two types: parameter scaling and

direct force scaling. The parameter scaling adjusts the physical properties

or DEM parameters to achieve kinematic similarity to the original particle

system [34, 36]. This approach is fairly simple and does not require any

additional coding for implementation. However, the scaling criterion of each

parameter depends on the force models used and can be difficult or even

impossible to determine for complex forms of forces. In the direct force

scaling, the forces acting on original particles are first estimated using the

original particle properties (e.g. particle stiffness and friction coefficient) and

variables (e.g. particle overlap, separation distance and relative velocity), and

then directly scaled to apply to scaled-up particles. This approach seems to

be more versatile and easier to find generic scaling criteria.

In the direct force scaling, considering that l is the scale factor (i.e.,

the size ratio of the scaled-up to original particles), the pioneering work of

Sakai and Koshizuka [33] proposed l3 scaling for contact force, fluid force and

gravitational force, i.e. the forces for the scaled-up particle are l3 times larger

than those estimated for the original particle. Sakai et al. [35] later employed

l2 scaling for cohesion force by maintaining the potential energy between the
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original and scaled-up particles, whilst the l3 scaling is still used for the other

forces. Chan and Washino [37] proposed l2 scaling for any interparticle force

(e.g. contact force and liquid bridge force) and l3 scaling for any body force

(e.g. fluid force in the CFD–DEM framework and gravitational force) using

the continuum assumption of a fully packed particles. More recently, it is

theoretically proven that the same scaling is applicable to arbitrary flows by

Washino et al. [38], which can provide promising results for complex systems

such as gas-liquid-solid three-phase flows.

In the scaled-up particle model, the original particles are not explicitly

simulated but represented by scaled-up particles. Therefore, particularly in

the direct force scaling, it is important to properly evaluate the original parti-

cle variables related to the force estimation, such as the translational velocity,

angular velocity, particle overlap and separation distance, from the corre-

sponding scaled-up particle variables. Sakai and Koshizuka [33] suggested

to use the same translational velocity between the original and scaled-up

particles, whilst the angular velocity of the original particle is taken to be

l times larger than that of the scaled-up particle. These relationships are

based on the conservation of the total kinetic energies in both the original

and scaled-up particle systems. On the other hand, they assumed that the

overlap of the original particle is the same as that of the scaled-up particle

when estimating the contact force, which is not as well-grounded in theory.

The same assumption is employed by Chan and Washino [37] for the sep-

aration distance to estimate the liquid bridge forces. However, to the best
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of the authors’ knowledge, the validity of these assumptions is not properly

discussed in the literature.

The present study attempts to obtain a deeper understanding of the di-

rect force scaling approach in the scaled-up particle model. Particularly, it

focuses on the evaluation of original particle variables and we propose to use

geometric similarity for both particle overlap and separation distance, i.e.

they are scaled by the scale factor l to ensure the same amount of mass to be

accommodated in a fixed space. Simulations of contact dominant uniaxial

compression of a packed particle bed as well as wet and cohesive particle

flows in a vertical mixer are presented to discuss the validity of the proposed

method.

2. Discrete Element Method

2.1. Governing equations

Equations of translational and rotational motion of Particle i interacting

with adjacent Particle j are given by Equations (1) and (2):

miv̇i =
∑
j

FIij + FBi (1)

Iiω̇i =
∑
j

MIij (2)

where m is the particle mass, v is the translational velocity, I is the moment

of inertia, ω is the angular velocity, F is the force and M is the torque
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acting on the particle. The forces acting on the particles can be generically

represented by interparticle force, FI , and body force, FB. The interparticle

force may consist of contact force, FC , and attraction force, FA, as:

FI = FC + FA (3)

The attraction force can be capillary, viscous, surface adhesion and electro-

static forces. The body force typically includes gravitational force and fluid

force in the CFD–DEM framework. MI is the torque due to the interparticle

force and defined as:

MI = rn× FI (4)

where r is the particle radius and n is the unit normal vector.

The force models used for the validation study in this work are briefly

explained below. However, it is important to stress that the scaled-up particle

model discussed in Section 3 is not limited to them and applicable to any

force model in principle.

2.2. Contact force

The contact forces in the normal and tangential directions are given by:

FCn = −
(
4E∗

3r∗
a3 + ηnvrel · n

)
n (5)

FCt = −min(8G∗
√

r∗δnδt + ηtvs, µsFN)t (6)
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where a is the contact radius, δ is the particle overlap (i.e. particle defor-

mation), η is the damping coefficient, vrel is the relative velocity, vs is the

magnitude of the relative tangential velocity at the contact surface, µs is the

sliding friction coefficient, FN is the normal load during sliding and t is the

unit tangent vector. The subscripts n and t indicate the quantities for the

normal and tangential directions, respectively. r∗, E∗ and G∗ are defined as:

1

r∗
=

1

ri
+

1

rj
(7)

1

E∗ =
1− ν2

i

Ei

+
1− ν2

j

Ej

(8)

1

G∗ =
2(2− νi)(1 + νi)

Ei

+
2(2− νj)(1 + νj)

Ej

(9)

where E is the Young’s modulus and ν is the Poisson’s ratio. In the Hertzian

theory, the contact radius a is calculated as:

a =
√
r∗δn (10)

In the JKR theory, a is given as the solution of the following equation [47]:

a4 − 2r∗δna
2 − 4πγr∗2

E∗ a+ r∗2δ2n = 0 (11)
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where γ is the surface energy of the particle. The damping coefficients in the

normal and tangential directions are given as [2]:

ηn = −2

√
5

3
β(m∗E∗)1/2r∗1/4δ1/4n (12)

ηt = −4

√
5

3
β(m∗G∗)1/2r∗1/4δ1/4n (13)

1

m∗ =
1

mi

+
1

mj

(14)

where β is a function of the coefficient of restitution, e, and defined as:

β =
ln(e)√

ln2(e) + π2

(15)

FN is given by the magnitude of the normal contact force when the Hertzian

theory is used. In the JKR theory, it is given by the effective normal force

as [48, 49]:

FN =

∣∣∣∣∣4
(

a

a0

)3

−
(

a

a0

)3/2

+ 2

∣∣∣∣∣Fpo (16)

where Fpo is the pull-off force and a0 is the contact radius at the equilibrium

condition, which are defined as:

Fpo = 3πγr∗ (17)

a0 =

(
9πγr∗2

E∗

)1/3

(18)
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2.3. Attraction force

Various models for attraction force, FA, have been proposed and applied

in DEM such as capillary force [7, 8, 9, 10], viscous force [11, 12, 13, 14, 15],

surface adhesion force [16, 17, 18, 19, 20], and electrostatic force [21, 22].

The capillary force and JKR surface adhesion force are used in this work,

which are summarised below.

2.3.1. Capillary force model

When a small amount of liquid is dispersed in particles, liquid bridges

may be formed which creates capillary forces between the particles. The

liquid bridges are typically assumed to be symmetrical and pendular in shape.

There are two approaches for modelling capillary force: the Laplace and

energetic approaches [10], and many models are available in the literature

[7, 8, 9, 10, 50]. The Rabinovich-Lambert model [9, 10] is used in the present

work, which is given as:

Fcap = Ccapn (19)

Ccap =
4πr∗σ cos θ

1 + 1/(
√

1 + Vliq/πr∗S2 − 1)
(20)

where Vliq is the liquid bridge volume, σ is the surface tension, θ is the

contact angle and S is the separation distance. A lower cut-off value of

the separation distance, Smin, is employed to avoid S from being excessively

small or negative during particle contact. The upper cut-off value is given
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by the following rupture distance [51]:

Srup = (1 + 0.5θ)V
1/3
liq (21)

A liquid bridge is formed when the surfaces of two approaching particles

come into contact, and then breaks when the separation distance reaches the

rupture distance. Note that the pendular liquid bridge model used is only

valid when the liquid to solid volume ratio is small. Therefore, it can be

assumed that the thickness of the liquid film on the particle surface is much

smaller than the size of particles and ignored in the approaching stage.

2.3.2. JKR surface adhesion force model

Many models have been proposed to explain the surface adhesion force

[16, 17, 18] which commonly make use of the surface energy. One of the most

frequently used models in DEM is based on the JKR theory [16, 19, 20, 28,

47], which is valid when the following dimensionless Tabor parameter, λT , is

sufficiently large [52]:

λT =

(
4r∗γ2

E∗2D3
min

)1/3

(22)

whereDmin is the minimum atomic separation distance between the particles.

In the JKR theory, the normal adhesion force is calculated by:

FJKR = 4
√

πγE∗a3n (23)
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In the original JKR model, this force can be exerted until the contact breaks

during the separation process with negative overlap. A simplified model used

in many studies [53, 47, 28] is employed in this work where the contact is

assumed to be broken as soon as the normal overlap becomes negative.

3. Scaled-up particle model

In the scaled-up particle model, the size of particles used in simulation is

artificially increased while keeping the system size so that the computational

cost is reduced. Hereafter, the system with original particle size is called

“original system” whereas that with increased particle size is called “scaled-

up system”. The latter should not be confused with the scale-up of a system

itself (often seen in an industrial process) which increases the system size

while keeping the particle size. l is defined as a scale factor, i.e. the size ratio

of the scaled-up to original particles:

l = dS/dO (24)

where d is the particle diameter and the subscripts O and S indicate the

original and scaled-up systems, respectively.

3.1. Scale power index

In the direct force scaling approach, the force and torque applied on the

scaled-up particle are lm times larger than those of the original particle where

m is called the scale power index. Several scale power indices have already
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been proposed in the literature. Sakai and Koshizuka [33] proposed m = 3

for the contact, fluid and gravitational forces to keep the same equations of

motion between the original and scaled-up systems in the particle level. In

other words, the same scale power index is applied to both interparticle and

body forces:

FIS = l3FIO (25)

FBS = l3FBO (26)

m = 4 is assigned to the contact torque in their formulation as:

MIS = rSn× FIS = lrOn× l3FIO = l4MIO (27)

Sakai et al. [35] inherited the same indices except that m = 2 is used for

the van der Waals force to maintain the same potential energy. Their scale

power indices are summarised in Table 1.

[Table 1 about here.]

Chan and Washino [37] proposed more generic indices, i.e. m = 2 for any

interparticle force and m = 3 for any body force as:

FIS = l2FIO (28)

FBS = l3FBO (29)

These relationships are derived from the continuum assumption of fully
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packed particles where the forces acting on control volumes are kept the

same between the original and scaled-up systems. It is theoretically proven

by Washino et al. [38] that the same indices can be applied to more gener-

alised particle flows. Using the same concept, m = 2 should be applied to

any interparticle torque as:

MIS = l2MIO (30)

Their scale power indices are summarised in Table 2.

[Table 2 about here.]

3.2. Evaluation of original particle variables

In scaled-up particle simulation, original particles are not explicitly used

but represented by scaled-up particles. Therefore, it is crucial to accurately

evaluate the original particle variables from those of the scaled-up particle to

estimate the forces acting on the original particles. These variables include

the particle translational velocity, angular velocity, particle overlap and sep-

aration distance. Sakai and Koshizuka [33] suggested that the translational

velocity of the original particle should be the same as that of the scaled-up

particle from the translational kinetic energy point of view:

vO = vS (31)

14



It is also proven that the same translational velocity maintains the convective

momentum flux across the faces of control volumes by Washino et al. [38].

The angular velocity is scaled by l to keep the same rotational kinetic energy

between the original and scaled-up systems:

ωO = lωS (32)

These relationships for velocities have a solid theoretical basis and seem to

be reasonable. In contrast, the evaluation methods of particle overlap and

separation distance are not well-grounded. Sakai and Koshizuka [33] assumed

that the overlap of the original particle is the same as that of the scaled-up

particle, and Chan and Washino [37] employed the same idea for separation

distance, that is:

δO = δS (33)

SO = SS (34)

It is suggested in this work that the overlap and separation distance should

be calculated using geometric similarity:

δO = δS/l (35)

SO = SS/l (36)
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The key of the scaled-up particle model proposed is to keeping the same flows

in the control volume level between the original and scaled-up systems. In the

continuum assumption, any quantities in the control volumes are expected to

be homogeneous. Assuming the homogeneous structure of particles in Figure

1, Equations (35) and (36) are required to accommodate the same mass in

the control volume, i.e. mOn
3 = mSn

3/l3, where n is the number of particles

aligned in one dimension. The relationships of the variables between the

original and scaled-up particles are summarised in Table 3.

Additionally, for wet particle cases, the liquid bridge volume for the orig-

inal particle is evaluated as [37]:

VliqO = VliqS/l
3 (37)

The rupture distance, Srup, is calculated using VliqO, and the liquid bridge

ruptures when the separation distance given by Equation (36) is larger than

Srup. Similarly, the minimum separation distance, Smin, should be deter-

mined based on the asperity of the original particle surface, and when the

separation distance given by Equation (36) is smaller than Smin, the mini-

mum separation distance is used to calculate the capillary force.

[Figure 1 about here.]

[Table 3 about here.]
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3.3. Scaling of time step

In this section, a head-on collison of two particles is considered to discuss

the scaling of the stable time step. When two original particles are in contact,

the equation of motion can be writtern using the Hertzian contact theory as:

m∗
O

dvrO
dt

= −4

3
E∗r

∗1/2
O δ

3/2
O (38)

where vr is the relative velocity and δ is the normal overlap. Since the time

step in DEM is usually determined based on the contact force alone in the

literature [3, 6], any cohesion force is ignored here for simplicity. Employing

the l2 scaling law and geometric similarity explained above, the equation of

motion for two colliding scaled-up particles is given as:

m∗
S

dvrS
dt

= −l2
4

3
E∗r

∗1/2
O

(
δS
l

)3/2

(39)

Rearranging Equation (39) gives:

m∗
S

dvrS
dt

= −4

3
E∗r

∗1/2
S δ

3/2
S (40)

Since Equations (38) and (40) are written in the same form, the same ex-

pression for the time step can be used. Typically, with the Hertzian theory,

the time step is given by the Rayleigh time [6], that is proportional to the

particle size:

∆t ∼ πr

0.8766 + 0.163ν

√
2ρ(1 + ν)

E
(41)
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Therefore, the time step for the scaled-up particle can be l times larger than

that of the original particle.

4. Results and discussion

Several simulations are performed to discuss the validity of the scale power

index and the evaluation of original particle variables explained in Section 3.

In each system presented in this section, three different methods for scaled-up

particles are tested as summarised in Table 4. Following Chan and Washino

[37], different scale power indices are used for interparticle and body forces.

Method 1 uses m = 2 for both interparticle forces and torques in conjunction

with the geometric similarity to evaluate the particle overlap and separation

distance, while m = 3 is used for body force. This is the method suggested

in the present work. Method 2 uses the same scale power indices as Method

1 but the original particle overlap and separation distance are assumed to be

the same as those of the scaled-up particle (i.e. the conventional method).

Method 3 uses m = 3 for both interparticle and body forces (similar to Sakai

and Koshizuka’s model) as well as the corresponding torques with geometric

similarity for the evaluation of the original variables.

[Table 4 about here.]

4.1. Uniaxial compression of packed particle bed

The first validation test is uniaxial compression of packed particles as

shown in Figure 2. The original particle properties used are listed in Table 5.
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The original particle diameter is 0.5 mm and density is 2500 kg/m3. Particles

with diameters of 1 and 2 mm are employed as scaled-up particles, i.e. the

scale factors of 2 and 4, respectively.

[Figure 2 about here.]

[Table 5 about here.]

The initial particle beds are prepared using the following steps. Particles

with small sliding friction (µs = 0.01) are randomly generated and allowed

to fall into the simulation domain with dimensions of 14× 14× 200 mm3 by

gravity. A plane wall is placed at the bottom and periodic boundaries are

used in the lateral directions. The low friction particles are used to make

the initial particle beds compact. Then the particles above 100 mm from the

bottom are removed and an upper wall is placed at the bed surface.

During the compression process, the sliding friction coefficient is reset to

0.3. The upper wall is moved downwards with a constant speed of 5 mm/s

while the bottom wall is fixed in space. The bed is compressed until the

upper wall moves 10 mm, i.e. strain of 0.1. The stress on the upper wall is

monitored during the compression. No attraction force is considered and the

contact force is calculated using the Hertzian theory. Although gravitational

force is exerted on the particles, it only has a negligible impact on the stress

obtained.

Figure 3 shows the stress-strain relationship obtained from the simula-

tions. It can be seen in Figure 3(a) that the results of the original and
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scaled-up particles with Method 1 almost fall into the same curve. On the

other hand, in Figure 3(b) and (c), the scaled-up particles significantly over-

estimate the compression stress, and this tendency is more pronounced as the

scale factor increases. It is concluded from these simulations that the l2 scal-

ing with the geometric similarity for particle overlap is the most appropriate

method for a contact force dominant system.

[Figure 3 about here.]

4.2. Particle flow in a vertical mixer

The second validation test is a dynamic system of particle flow in a vertical

mixer where attraction forces are exerted on the particles. The mixer used is a

scaled-down version of the 10L Roto Junior high shear granulator (Zanchetta

Lucca). The inner diameter of the mixer is 84 mm and a 3-bladed impeller

shown in Figure 4 is mounted at the bottom. The common properties of

the original particles used in all cases are listed in Table 6. The original

particle diameter is 0.5 mm, density is 1000 kg/m3, and the total mass is

0.0458 kg as used by Chan and Washino [37]. The impeller rotates with

300 rpm until the flow reaches steady state. Particles with diameters of 1

and 2 mm are employed as scaled-up particles, i.e. scale factors of 2 and 4,

respectively. Although it is possible to further increase the particle size, the

mixer to particle diameter ratio, D/d, should not be too small in order to

minimise boundary effects [54, 55]. The range of D/d in this study is from

42 to 168 which is in accordance with the recommendation of D/d ≥ 40 in
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the literature [54, 55]. More results and discussions about the D/d ratio can

be found in Appendix.

[Figure 4 about here.]

[Table 6 about here.]

Two sets of simulations are carried out and presented in Sections 4.2.1

and 4.2.2, respectively, with different combinations of contact and attraction

force models. The first is the Hertzian contact with the capillary force model

explained in Section 2.3.1, and the second is the JKR adhesive contact model

explained in Section 2.3.2. The attraction forces between the particles and

mixer walls are deactivated so that the particles do not adhere to the casing

wall and impeller, which may reduce the amount of bulk moving particles

available for velocity analyses.

4.2.1. Wet particles with capillary force

The particles are assumed to be uniformly wet with liquid. The liquid

to solid volume ratio is 0.05 and does not change with time. 8.3 % of the

liquid on the particle surface is used for the formation of the bridge between

each particle pair so that the entire liquid is used in the case of maximum

packing, i.e.:

Vliq = 0.083× 0.05× (Vpi + Vpj) (42)

where Vp is the particle volume. Four different values of surface tension

coefficient are tested, i.e. 0.05, 0.1, 0.2 and 0.4 N/m. The contact angle
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is set to 0 deg and viscous force is not taken into account. The minimum

separation distance used is 1 µm.

Figure 5 shows snapshots of the original particle flow with different values

of surface tension. It is a typical flow of cohesive particles that particles are

bonded together and form lumps. The size of the lumps increases as the

surface tension increases. Especially with σ = 0.4 N/m, the entire particles

are lumped together. The overall particle velocity increases as the surface

tension increases. This is because the relative velocity of the large lumps to

the impeller is smaller than that of the small lumps.

[Figure 5 about here.]

Figures 6 and 7 show snapshots of the scaled-up particle flow using

Method 1 with scale factors of 2 and 4, respectively. Although the bound-

aries of the lumps become less clear as the scale factor increases (especially

with σ = 0.1 and 0.2 N/m), the overall flow structure and velocity field of

the original particles are well captured. Figures 8 and 9 show snapshots of

the scaled-up particles using Method 2 with scale factors of 2 and 4, respec-

tively. The overall flow structure is similar to that of the original particles

to a certain extent. However, the boundaries of the lumps are even less clear

compared to Method 1. In addition, comparing with Figure 5, the powder

velocity in Figures 8 and 9 is smaller. It indicates that Method 2 cannot

provide sufficiently large capillary force. Figures 10 and 11 show particle

snapshots using Method 3 with scale factors of 2 and 4, respectively. It can
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be clearly seen that the particles become more cohesive than the original

particles, which indicates that Method 3 largely overestimates the capillary

force.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

Figures 12, 13 and 14 show the probability density distribution of the

particle velocity magnitude at steady state with Methods 1, 2 and 3, respec-

tively. The distribution without attraction force (i.e. σ = 0 N/m) is also

included to indicate that the capillary force has a large impact on the par-

ticle velocity even with the smallest surface tension coefficient tested. First,

we discuss the change of the original particle results with different surface

tension values. When σ = 0.05 N/m, the distribution of the original particle

velocity is narrow with a large peak value at around 0.75 m/s. The dis-

tribution becomes broader as the surface tension coefficient increases while

the peak velocity is shifted rightward. When σ = 0.4 N/m, the probability

increases linearly with the particle velocity, which indicates that almost the

23



entire particles move together with the impeller since a large lump is formed

as can be seen in Figure 5(d).

Now, we compare the results of the original and scaled-up particles. In

Figure 12, it can be seen that the scaled-up particles can reasonably repro-

duce the original particle velocity distribution. However, a slight discrepancy

is observed when σ = 0.1 and 0.2 N/m due to the formation of the medium

size lumps of the original particles, which cannot be “resolved” with the

large scaled-up particles. In Figure 13, the peak velocities of the scaled-up

particles are shifted leftwards from those of the original particles. This is

because the capillary force is underestimated with the conventional evalua-

tion of the separation distance. Finally, in Figure 14, the results obtained

from the scaled-up particles are significantly different from the original par-

ticle results and the peak velocities are shifted rightwards. This is because

the capillary force is largely overestimated with the l3 scaling. In Figure

14(d), one may find the velocity distributions similar between the original

and scaled-up systems. However, this is simply because all the particles form

a single lump due to the strong capillary force above which the velocity dis-

tribution does not change any more. Note that the results of the scaled-up

particles in Figure 14(c) and (d) are almost the same. It is concluded from

these simulations that the l2 scaling with geometric similarity is the most

appropriate method to replicate the original particle behaviour in a capillary

force dominant system.

[Figure 12 about here.]
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[Figure 13 about here.]

[Figure 14 about here.]

The influence of the liquid content is crucial in many wet particle han-

dling processes. For further validating the scaled-up particle model proposed,

simulations with liquid to solid volume ratio of 0.005 are also performed. The

surface tension used is σ = 0.05 N/m and the other conditions are exactly

the same as the simulations above. Figure 15 shows the probability density

distribution of the particle velocity of the original and scaled-up (l = 4) sys-

tems. The peak velocity is shifted leftward by decreasing the liquid volume

since the both capillary force and rupture distance become small. It can be

seen that the proposed model can well capture the sensitivity of the original

particle velocity to the liquid volume.

[Figure 15 about here.]

4.2.2. Particles with JKR adhesion force

It is considered that the surface adhesion force calculated from the sim-

plified JKR model is exerted on the particles. Four different values of surface

energy are tested, i.e. 0.1, 0.2, 0.4 and 0.8 J/m2. Since the original particle

size is relatively large (0.5 mm), artificially large surface energy values are

used so that noticeable impacts on the particle velocity can be seen. Note

that the purpose of these tests is to discuss the validity of the scaled-up

particle model.
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Figures 16, 17 and 18 show the probability density distribution of the

particle velocity magnitude at steady state with Methods 1, 2 and 3, respec-

tively. Similar to the capillary force cases discussed in Section 4.2.1, it can

be seen that Method 1 provides the best prediction of the original particle

velocity whilst Methods 2 and 3 give much larger differences. This proves

that the l2 scaling with the geometric similarity for particle overlap is valid

for a system where surface adhesion force is dominant. The results presented

in Sections 4.1, 4.2.1 and 4.2.2 implies that the proposed method is versatile

and universally applicable for any type of interparticle force.

[Figure 16 about here.]

[Figure 17 about here.]

[Figure 18 about here.]

4.3. Particles in a periodic box

Simulations of particles in a periodic box are conducted to verify the linear

scaling of time step presented in Section 3.3. The properties of the original

particles used are shown in Table 7. Cohesionless particles with diameter of

0.5 mm are randomly generated in a cubic domain with an edge length of

20 mm. Periodic boundary conditions are applied in all dimensions. The

direction of the initial velocity of all particles is random and the magnitude

is fixed to 1 m/s. The restitution coefficient is 1 and the sliding friction
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coefficient is 0 so that there is no energy dissipation by the particle collisions.

Particles of 1 and 2 mm in diameter are employed as the scaled-up particles

using Method 1 in Table 4. In the scaled-up particle cases, the domain size

is increased proportionally to the scale factor so that the same number of

particles are accommodated in the simulation domain with the same packing

fraction. The simulations are performed with different ∆t to find the stable

time step limit.

Figure 19 shows the temporal change of the total kinetic energy in the

original particle case with ∆t = 0.2, 0.5, 0.8 and 1 µs. Theoretically, although

the total kinetic energy can fluctuate around a fixed value since a part of it is

continuously converted to the potential energy of the spring between particles

and vice versa, the energy of the perfectly elastic and frictionless particles

never increases nor decreases with time. However, it can be seen that the

total kinetic energy unphysically increases with time when ∆t = 0.8 and 1

µs. This indicates that they are larger than the critical time step to resolve

the collision event.

Figure 20 shows the increase rate of the total kinetic energy as a function

of ∆t in the original and scaled-up systems. In the original system, the energy

increase rate becomes positive (i.e. unstable) when the time step is larger

than approximately 0.6 µs. In the 1 and 2 mm particle cases, the critical

time steps are approximately 1.2 and 2.4 µs, respectively, which are linear to

the scale factor as discussed in Section 3.3.

[Table 7 about here.]
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[Figure 19 about here.]

[Figure 20 about here.]

5. Conclusions

In the present work, a scaled-up particle model based on the direct force

scaling is proposed to reduce the computational cost in DEM simulation.

The particle overlap and separation distance of original particles are eval-

uated from the corresponding scaled-up particle variables using geometric

similarity, which is different from the conventional method in the literature.

The translational and rotational velocities are determined in such a way that

the same kinetic energies can be achieved between the original and scaled-

up particles as suggested by Sakai and Koshizuka [33]. Following Chan and

Washino’s [37] work, l2 scaling is employed for any interparticle force and

l3 scaling for any body (external) force. Several validation simulations are

carried out with Hertzian contact force, capillary force and JKR surface ad-

hesion force.

It is shown that the proposed method can provide an almost identical

stress-strain curve with that of the original system during the uniaxial com-

pression of a packed particle bed, where particle contact forces are dominant.

The same method can also reasonably reproduce the overall flow structure

and velocity distributions of the original particles in a dynamic system (ver-

tical mixer), where capillary and JKR surface adhesion forces are dominant.

Slight discrepancies are observed when the attraction forces are relatively
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large, which may be because of the formation of medium size lumps which

cannot be resolved with large scaled-up particles. The method proposed can

be applied to any type of interparticle force in principle, and it is proven by

the simulation results presented. The linear correlation of the stable time

step limit to the scale factor is theoretically derived in this work and demon-

strated by the simulations of the perfectly elastic and frictionless particles.
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Appendix

In general, for the particles flow in a mixer, it is recommended to use

D/d > 40 to avoid the boundary effects [54, 55]. This may limit the se-

lection of the scale factor: employing an excessively large scale factor may

cause insufficient “resolution” to capture the original overall flows. In this

appendix, several simulations are presented to discuss the valid range of the

scale factor. The original simulation conditions are exactly the same as those

used in Section 4.2.1 with σ = 0.05 N/m, and scaled-up particle diameters of

1, 2, 4 and 8 mm are employed, i.e. D/d = 84, 42, 21 and 10.5, respectively,

using Method 1 in Table 4. Figure 21 shows the probability distribution of
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the particles velocity obtained. It is clear that the peak velocities with 1 and

2 mm particles are almost the same and agree well with that of the original

particle. However, the peak velocity is shifted leftward and the distribution

becomes broader as the scale factor is further increased. From these results,

it can be concluded that D/d > 40 is required to obtain consistent results

without the boundary effects.

[Figure 21 about here.]
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ert, T. Pöschel, Attractive particle interaction forces and pack-

ing density of fine glass powders, Scientific Reports 4 (2014) 1–7.

doi:10.1038/srep06227.

[48] C. Thornton, Interparticle sliding in the presence of adhesion, Journal

of Physics D: Applied Physics 24 (1991) 1942–1946. doi:10.1088/0022-

3727/24/11/007.

[49] J. S. Marshall, Discrete-element modeling of particulate aerosol

flows, Journal of Computational Physics 228 (2009) 1541–1561.

doi:10.1016/j.jcp.2008.10.035.

38



[50] C. D. Willett, M. J. Adams, S. A. Johnson, J. P. Seville, Capillary

bridges between two spherical bodies, Langmuir 16 (2000) 9396–9405.

doi:10.1021/la000657y.

[51] G. Lian, C. Thornton, M. J. Adams, A theoretical study of the liquid

bridge forces between two rigid spherical bodies, Journal of Colloid And

Interface Science 161 (1993) 138–147. doi:10.1006/jcis.1993.1452.

[52] D. Tabor, Surface forces and surface interactions, Journal of Colloid And

Interface Science 58 (1977) 2–13. doi:10.1016/0021-9797(77)90366-6.

[53] M. Pasha, C. Hare, A. Hassanpour, M. Ghadiri, Analysis of ball indenta-

tion on cohesive powder beds using distinct element modelling, Powder

Technology 233 (2013) 80–90. doi:10.1016/j.powtec.2012.08.017.

[54] J. S. Ramaker, M. A. Jelgersma, P. Vonk, N. W. F. Kossen, Scale-down

of a high-shear pelletisation process: Flow profile and growth kinetics,

International Journal of Pharmaceutics 166 (1998) 89–97.

[55] E. L. Chan, K. Washino, G. K. Reynolds, B. Gururajan, M. J. Houn-

slow, A. D. Salman, Blade-granule bed stress in a cylindrical high shear

granulator: Further characterisation using dem, Powder Technology 300

(2016) 92–106. doi:10.1016/j.powtec.2016.02.010.

39



List of Figures

1 Geometric similarity in control volume (1-dimension). . . . . . 43

2 Uniaxial compression of packed particle bed using the pro-

posed method. Periodic boundaries are used in the lateral

directions. Colour indicates the particle velocity magnitude

between 0 mm/s (blue) and 5 mm/s (red). . . . . . . . . . . . 44

3 Stress-strain relationship during uniaxial compression of packed

particle bed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Snapshot of the impeller of vertical mixer. . . . . . . . . . . . 46

5 Snapshots of the original particles in vertical mixer with cap-

illary force. Colour indicates the particle velocity magnitude

between 0 m/s (blue) and 1.4 m/s (red). . . . . . . . . . . . . 47

6 Snapshots of the scaled-up particles in vertical mixer with cap-

illary force (scale factor = 2, Method 1). Colour indicates the

particle velocity magnitude between 0 m/s (blue) and 1.4 m/s

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Snapshots of the scaled-up particles in vertical mixer with cap-

illary force (scale factor = 4, Method 1). Colour indicates the

particle velocity magnitude between 0 m/s (blue) and 1.4 m/s

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

40



8 Snapshots of the scaled-up particles in vertical mixer with cap-

illary force (scale factor = 2, Method 2). Colour indicates the

particle velocity magnitude between 0 m/s (blue) and 1.4 m/s

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9 Snapshots of the scaled-up particles in vertical mixer with cap-

illary force (scale factor = 4, Method 2). Colour indicates the

particle velocity magnitude between 0 m/s (blue) and 1.4 m/s

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10 Snapshots of the scaled-up particles in vertical mixer with cap-

illary force (scale factor = 2, Method 3). Colour indicates the

particle velocity magnitude between 0 m/s (blue) and 1.4 m/s

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11 Snapshots of the scaled-up particles in vertical mixer with cap-

illary force (scale factor = 4, Method 3). Colour indicates the

particle velocity magnitude between 0 m/s (blue) and 1.4 m/s

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

12 Probability density distribution of particle velocity magnitude

in vertical mixer with capillary force (Method 1). . . . . . . . 54

13 Probability density distribution of particle velocity magnitude

in vertical mixer with capillary force (Method 2). . . . . . . . 55

14 Probability density distribution of particle velocity magnitude

in vertical mixer with capillary force (Method 3). . . . . . . . 56

41



15 Probability density distribution of particle velocity magnitude

in vertical mixer with capillary force using different liquid to

solid volume ratios (Method 1, σ = 0.05 N/m). . . . . . . . . . 57

16 Probability density distribution of particle velocity magnitude

in vertical mixer with JKR surface adhesion force (Method 1). 58

17 Probability density distribution of particle velocity magnitude

in vertical mixer with JKR surface adhesion force (Method 2). 59

18 Probability density distribution of particle velocity magnitude

in vertical mixer with JKR surface adhesion force (Method 3). 60

19 Temporal change of total kinetic energy of original particles

in periodic box. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

20 Increase rate of total kinetic energy in periodic box as a func-

tion of time step. . . . . . . . . . . . . . . . . . . . . . . . . . 62

21 Probability density distribution of particle velocity magnitude

in vertical mixer with capillary force including the larger scale

factor results (Method 1, σ = 0.05 N/m). . . . . . . . . . . . . 63

42



Number of particles in one dimension:

Number of particles in one dimension:

Scaled-up particle system

S

・・・

O

・・・・・・・

Face of CV

1 2 3 4 5 1

1 2 3

6
Original particle system Face of CV

(a) Particle overlap

Number of particles in one dimension:

Number of particles in one dimension:

Scaled-up particle system

Original particle system

S

・・・

O

・・・・・・・
1 2 3 4 1

Face of CV

Face of CV

1 2

(b) Separation distance

Figure 1: Geometric similarity in control volume (1-dimension).

43



0.5 mm 1 mm 2 mm

Figure 2: Uniaxial compression of packed particle bed using the proposed method. Peri-
odic boundaries are used in the lateral directions. Colour indicates the particle velocity
magnitude between 0 mm/s (blue) and 5 mm/s (red).
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Figure 3: Stress-strain relationship during uniaxial compression of packed particle bed.
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Figure 4: Snapshot of the impeller of vertical mixer.
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(a) σ = 0.05 N/m (b) σ = 0.1 N/m

(c) σ = 0.2 N/m (d) σ = 0.4 N/m

Figure 5: Snapshots of the original particles in vertical mixer with capillary force. Colour
indicates the particle velocity magnitude between 0 m/s (blue) and 1.4 m/s (red).
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(a) σ = 0.05 N/m (b) σ = 0.1 N/m

(c) σ = 0.2 N/m (d) σ = 0.4 N/m

Figure 6: Snapshots of the scaled-up particles in vertical mixer with capillary force (scale
factor = 2, Method 1). Colour indicates the particle velocity magnitude between 0 m/s
(blue) and 1.4 m/s (red).
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(a) σ = 0.05 N/m (b) σ = 0.1 N/m

(c) σ = 0.2 N/m (d) σ = 0.4 N/m

Figure 7: Snapshots of the scaled-up particles in vertical mixer with capillary force (scale
factor = 4, Method 1). Colour indicates the particle velocity magnitude between 0 m/s
(blue) and 1.4 m/s (red).
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(a) σ = 0.05 N/m (b) σ = 0.1 N/m

(c) σ = 0.2 N/m (d) σ = 0.4 N/m

Figure 8: Snapshots of the scaled-up particles in vertical mixer with capillary force (scale
factor = 2, Method 2). Colour indicates the particle velocity magnitude between 0 m/s
(blue) and 1.4 m/s (red).
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(a) σ = 0.05 N/m (b) σ = 0.1 N/m

(c) σ = 0.2 N/m (d) σ = 0.4 N/m

Figure 9: Snapshots of the scaled-up particles in vertical mixer with capillary force (scale
factor = 4, Method 2). Colour indicates the particle velocity magnitude between 0 m/s
(blue) and 1.4 m/s (red).
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(a) σ = 0.05 N/m (b) σ = 0.1 N/m

(c) σ = 0.2 N/m (d) σ = 0.4 N/m

Figure 10: Snapshots of the scaled-up particles in vertical mixer with capillary force (scale
factor = 2, Method 3). Colour indicates the particle velocity magnitude between 0 m/s
(blue) and 1.4 m/s (red).
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(a) σ = 0.05 N/m (b) σ = 0.1 N/m

(c) σ = 0.2 N/m (d) σ = 0.4 N/m

Figure 11: Snapshots of the scaled-up particles in vertical mixer with capillary force (scale
factor = 4, Method 3). Colour indicates the particle velocity magnitude between 0 m/s
(blue) and 1.4 m/s (red).
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Figure 12: Probability density distribution of particle velocity magnitude in vertical mixer
with capillary force (Method 1).
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Figure 13: Probability density distribution of particle velocity magnitude in vertical mixer
with capillary force (Method 2).
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Figure 14: Probability density distribution of particle velocity magnitude in vertical mixer
with capillary force (Method 3).
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Figure 15: Probability density distribution of particle velocity magnitude in vertical mixer
with capillary force using different liquid to solid volume ratios (Method 1, σ = 0.05 N/m).
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Figure 16: Probability density distribution of particle velocity magnitude in vertical mixer
with JKR surface adhesion force (Method 1).
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Figure 17: Probability density distribution of particle velocity magnitude in vertical mixer
with JKR surface adhesion force (Method 2).
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Figure 18: Probability density distribution of particle velocity magnitude in vertical mixer
with JKR surface adhesion force (Method 3).
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Figure 19: Temporal change of total kinetic energy of original particles in periodic box.
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Figure 20: Increase rate of total kinetic energy in periodic box as a function of time step.
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Figure 21: Probability density distribution of particle velocity magnitude in vertical mixer
with capillary force including the larger scale factor results (Method 1, σ = 0.05 N/m).
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Table 1: Scale power indices of Sakai and Koshizuka and Sakai et al. [33, 35].

Scale power index Force / torque type Classification
4 Torque Interparticle
3 Gravity Body
3 Fluid force Body
3 Contact force Interparticle
2 van der Waals force Interparticle
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Table 2: Scale power indices of Chan and Washino and Washino et al. [37, 38].

Scale power index Force / torque type Classification
3 Gravity Body
3 Fluid force Body
2 Contact force Interparticle
2 Capillary force Interparticle
2 Viscous force Interparticle
2 Torque Interparticle
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Table 3: Relationships of the original and scaled-up variables.

Variable Previous work [33, 35, 37, 38] Present work
Translational velocity vO = vS vO = vS

Rotational velocity ωO = lωS ωO = lωS

Particle overlap δO = δS δO = δS/l
Separation distance SO = SS SO = SS/l
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Table 4: Methods used in scaled-up particle simulations.

Method 1 Method 2 Method 3
FIS = l2FIO FIS = l2FIO FIS = l3FIO

MIS = l2MIO MIS = l2MIO MIS = l3MIO

FBS = l3FBO FBS = l3FBO FBS = l3FBO

δO = δS/l δO = δS δO = δS/l
SO = SS/l SO = SS SO = SS/l
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Table 5: Original particle properties for uniaxial compression of packed particle bed.

Property Value
Particle diameter [mm] 0.5
Particle density [kg/m3] 2500
Initial bed height [mm] 100
Young’s modulus [MPa] 5
Poisson’s ratio [-] 0.3
Restitution coefficient [-] 0.9
Sliding friction coefficient [-] 0.3
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Table 6: Common properties of original particles for vertical mixer.

Property Value
Particle diameter [mm] 0.5
Particle density [kg/m3] 1000
Total mass [kg] 0.0458
Young’s modulus [MPa] 100
Poisson’s ratio [-] 0.3
Restitution coefficient [-] 0.1
Sliding friction coefficient [-] 0.3
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Table 7: Original particle properties of periodic box simulation.

Property Value
Particle diameter [mm] 0.5
Particle density [kg/m3] 1000
Number of particles [-] 36644
Young’s modulus [MPa] 100
Poisson’s ratio [-] 0.3
Restitution coefficient [-] 1
Sliding friction coefficient [-] 0
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