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Introduction

Le but de cet article est de combler certaines lacunes concernant les semi-
martingales a valeurs dans des espaces vectoriels E ou des varietes V, Γaccent
principal etant mis sur les martingales conformes.

Au §1, on introduit des classes essentielles de processus continus (le mot
"local" etant en general sous-entendu): martingales, martingales conformes,
processus a variation finie, sous-martingales; on les connait sur Λ+XΩ, il s'agit
de les etudier sur un ouvert A de R+ X Ω. On donne leurs principales proprietes
(et les pieges possibles !). Au §2, la liaison est faite avec les semi-martingales
formelles.

Le §3 etudie specialement des F-martingales conformes sur A> V etant
une variete complexe. Meme la definition est delicate, car, si V n'est pas de
Stein, il n'y a pas assez ou pas du tout de fonctions holomorphes globales. On
donne les proprietes essentielles et les theoremes de stabilite, en arrivant chaque
fois a contourner Γabsence de functions holomorphes.

Le §4 donne le theoreme qui a servi de point de depart a tout Γarticle,
a Γoccasion de fructueuses discussions a ΓUniversite de Kyoto, notamment
entre S. Watanabe, M. Fukushima et moi. Ce theoreme (4.6) exprime en
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gros que, si M est une martingale conforme et φ une fonction plurisous-har-
monique telle que φ(M) soit continue, φ(M) est une sous-martingale locale
continue. Mon travail anterieur, Schwartz [1], n'avait donne a ce sujet que
des resultats partiels, faute d'une manipulation suffisante des passages du local
au global; cette lacune est comblee ici. II reste toutefois une lacune fonda-
mentale. On peut raisonnablement supposer que, si M est une martingale
conforme, et φ une fonction plurisous-harmonique, seulement semi-continue
superieurement, φ{M) est toujours continue. M. Fukushima a, sur ce sujet,
des resultats partiels, mais la conjecture generate subsiste.

Au §5, sont etudies les espaces tangents aux varietes complexes. Dans
Schwartz [1] ont ete etudies les espaces 1-tangents. Dans Schwartz [2], Γespace
2-tangent a joue un role essentiel, mais je ne suis pas revenu sur les martingales
conformes, done la structure de T\V) pour V complexe n'a pas ete etudiee;
elle Test ici en detail. On a des decompositions en sommes directes: T1-\-iT1=
T^φT0'1, T2+iT2=T2'0®T°'2φTh\ faisant intervenir l'analogue du bidegre,
bien connu pour les formes differentielles. Alors T1*0 est un sous-espace de
Γ2'0, et le quotient T2'°ITU0 est isomorphe a T^OΓ 1 ' 0 ; resultat analogue pour
(0, 2); mais T1'1 est isomorphe, sans passage au quotient, a Th0®T0Λ. II y a
la une grande richesse de structures, qui vont jouer leur role en geometrie dif-
ferentielle des martingales conformes.

Le §6 etudie justement cette geometrie. Si X est une F-semi-martingale

sur A, on a dX, dX\ dXy — d[X, X], qui gardent leur sens en oubliant la struc-

ture complexe, mais elles se decomposent suivant les sommes directes du §5:

dX=dX*'*+dX* 2+dJP-\ dXc=(dXc)h°+(dXc)°'\ etc. DJoύ le theoreme

fundamental de caracterisation des martingales conformes, (6.4): M, F-semi-

martingale sur A, est une martingale conforme, ssi dM2'0 est une differentielle

de martingale conforme a valeurs dans Γ1>0. Un exemple d'application, moins

facile a demontrer autrement: Γensemble des F"-martingales conformes sur

R+ X Ω est ferme dans Γespace des F"-semi-martingales.
Le §7 etudie un probleme qui a fait de grands progres les dernieres an-

nees. Soit X une semi-martingale sur [S, Γ[, oύ 5 et T sont des temps d'arret,
5 < Γ ; quand se prolonge-t-elle en une semi-martingale sur [S, Γ]? Une
condition necessaire est que Xτ_ existe sur {T>S} on dit alors que X con-
verge en T. C'est suffisant si X est une martingale a valeurs vectorielles, pro-
position (7.4) (bien connue); ce n'est evidemment plus vrai si X est un pro-
cessus a variation localement finie. Nous introduisons les semi-martingales de
Zheng, pour lesquelles la composante a variation finie de X est contrόlee par
le crochet de la composante martingale; elles ont ete introduites (sans cette
denomination!) dans un article recent de Zheng. Alors une semi-martingale
de Zheng qui converge est prolongeable, c'est le theoreme de Zheng, (7.6).
II y a diverses variations autour de reciproques partielles, dont une de Darling
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(7.7), et d'autres que nous indiquons (7.8). Les etudes de Darling et Zheng
etaient issues de la notion de martingale relative a υne connexion. On y re-
vient, et comme une martingale relative a une connexion est une semi-martin-
gale de Zheng, tout resulte des proprietes precedentes. Cette partie n'apporte
que des perfectionnements secondaires a des resultats recents mais connus.
Mais il se trouve qu'une F-martingale conforme sur [S> T"[, V variete com-
plexe, a aussi la propriete que, si elle converge, elle est prolongeable mais
contrairement au cas (7.4) des martingales vectorielles, c'est bien plus difficile a
demontrer. Or il se trouve qu'on peut relier ce resultat a ceux qui precedent.
D'abord une martingale conforme est de Zheng, ce qui liquide cette question
directement, a condition d'utiliser la caracteiisation (6.4) du §6. Mais il y
a plus. Parmi les connexions sur F, il y en a de particulieres, qui sont liees
a la structure complexe. Mais, proposition (7.11), les martingales conformes
sont exactement celles qui sont des martingales pour toutes les connexions
compatibles avec la structure complexe. Par contre une connexion qui rend
martingales toutes les martingales conformes n'est pas necessairement com-
patible avec la structure complexe, mais on peut exactement caracteriser les
connexions ayant cette propriete, proposition (7.13).

1. Divers processus sur un ouvert de R+ X Ω

(1.1) (Ω, Oy 3=(3t)tς:jt+, P) auront la signification et les proprietes habituelles
pour les processus. A designera un ouvert de R+ X Ω (pour P-presque tout
ω, A(ω)={t; (/, ω)^A} est ouvert). Sauf mention expresse du contraire, et
sauf au §4, on sous-entendra le mot "continu" quand on parlera de processus
a variation finie ou croissant, et de semi-martingales conformes(1), et les mots
*'locale continue" quand on parlera de martingale, martingale conforme, sur-
martingale ou sous-martingale. A partir du §2, semi-martingale voudra dire
semi-martingale continue. Dans ce §1, les processus seront a valeurs dans
des espaces vectoriels de dimension finie sur R ou C, ou dans R, de maniere
evidente suivant les cas.

(1.2) SJM sera Γensemble des semi-martingales sur J? + xΩ (des semi-mart-
ingales continues a partir du §2); Jl sera Γensemble des semi-martingales (resp.
des semi-martingales continues, ou des martingales, ou des martingales con-
formes, ou des processus a variation finie ou croissants, ou des sous- ou sur-
martingales) sur R+ X Ω. Jl est ferme dans Γespace S<5H des semi-martingales(2).

(1) X est une semi-martingale conforme si sa composante martingale locale continue Xc

est conforme. Pour tout ce qui concerne les martingales conformes, et les proprietes des

processus sur des ouverts A de R+ XΩ, les notations sont celle de Schwartz [1] et [2].
(2) La topologie de S3ί est celle dΈmery. Voir Emery [1], et Schwartz [2], (3.7) page
443. Cette fermeture est evidente pour les semi-martingales continues ou pour les processus
croissants, et, dans les autres cas, elle resulte de ce que X-*>XC, X-*Xf X-*[X, X] sont
continues, Schwartz [2], (3.10) page 446.
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On dira qu'une fonction X sur un ouvert A de Λ+xΩ est element de

<JL(A), si X est optionnelle sur A (i.e. est mesurable pour la tribu induite sur

A par la tribu optionnelle de Λ+XΩ; cela revient a dire que X est restriction

d'un processus optionnel X sur J R + X Ω ) , et existe une suite (An)n^N d'ouverts,

l)An=A, telle que, pour tout n, X soit equivalente sur An a un processus Xn^.

<A\ X~Xn (i.e. X— Xn est localement constant sur ^4M)(2bis). On peut sans

inconvenient supposer A et les An optionnels (Soit en effet A'n le plus grand
ouvert d'equivalence de X et de Xn\ il est optionnel(3) et ZDAn; alors A'=l)A'n

est optionnel et Ί)A\ si X' est la restriction d e l a A\ X'=X sur A, et X'
~ X n ) , ££ ##£ nous ferons dέsormais.

Si XGc^?(i4), on dira qu'il est une semi-martingale sur A (resp. une semi-
martingale continue sur A, une martingale sur A, etc ); cependant si Jl est
Γensemble des processus a variation ίinie, nous dirons (pour AφR+XΩ) que
X^Jl(A) est localement a variation ίinie sur A (voir (1.6)).

Trivialement, si A= ΌAny et si X est une fonction optionnelle sur Ay telle

que X^<Jl(An) pour tout n, Z G j ( i ί ) . Si X est optionnel sur A, equivalent
a un processus de <A(A)y X^<_A(A).

(1.3) Dans le cas oύ <_̂? est Γensemble S3ί des semi-martingales, on peut meme

trouver les An tels que pour tout n, X=Xn sur An. En effet, partons de X

~Xn, X=Xn+Cny C r t~0. Pour 5GQ+, *SΛ temps de sortie^s de Any Cn l{Sn>s)

est une variable aleatoire 3s-mesurable, done l[S)+oo]χΩ (l{sM>s)(C«)s):=Cίt5,
processus nul dans [0, s[ et constant 3s-mesurable dans [s, +°o], est une semi-
martingale; sur [ί, Sn[° (interieur de [s, Sn[)=A'Sttt, X=Xn+C/

Stfty semi-
martingale, et A= UA's „.

Mais, meme si Xn est une semi-martingale continue, Ci>w a un saut en s,
Xn-\-C'ntS n'est pas une semi-martingale continue. Pour tous les Jl sauf Γen-
semble S<3ί des semi-martingales, je ne pense pas qu'on puisse, dans la defini-
tion de <A{A)> remplacer X~Xn par X=Xn sur An.

X est une semi-martingale continue sur A, ssi e'est une semi-martingale
sur Ay continue sur A. En effet, si X~Xm et X continue sur Any Xn aussi;

(2bis) La dέfinition d'une semi-martingale sur A est due a P.A. Meyer [2]. Ces semi-
martingales sur des ouverts sont έtudiees systematiquement dans Schwartz [2], §6.
(3) Voir Schwartz [1], theoreme III, page 21. La demonstration donnee la est trop
compliquέe; simplement, si *S = InfO^^; ^/~^»,/Φ^5—-^«,ί}> ί ε Q + , et si [s, S[° est
l'intέrieur de [ί, S[> ctt ouvert est la reunion des [s, S[°. Les temps d'arrέts, tels que <S,
seront toujours a valeurs dans [0, +oo]; si ,S= + oo, [s, S[°=]sf +©o] pour sΦO, [0, +©o]
pour ί = 0 . Voir Schwartz [2], §3, page 437 (25).



COMPLEMENTS SUF LES MARTINGALES CONFORMES 81

alors X^γ (1[S,+OO]XQ l{sΛ>s}) {Xnn"—Xn)i semi-martingale comme produit de

deux semi-martingales, continue sur Λ+XΩ, done X est une semi-martingale
continue sur A.

(1.4) Si Z e J ( i 4 ) , X est equivalent, sur Am a un element de Jί. II n'est en
general pas vrai que X soit equivalent, sur A lui-meme, a un element de Jl.
Par exemple, si A=[0, + °o[xΩ, une semi-martingale X sur A ne peut etre
equivalente sur A a une semi-martingale sur Λ + χ Ω , que si X^- existe. Par
contre, X est bien equivalent sur A lui-meme a un element de Jί s'il est equiva-
lent sur A a une semi-martingale X' sur R+XΩ, dans les cas Jί=ensemble
des semi-martingales, ou des martingales, ou des martingales conformes, ou
des semi-martingales conformes (X' est equivalent a une martingale ssi 5LC>—Ό,
a une martingale conforme ssi J?c<—Ό, \X\ X']~0f a une semi-martingale con-
forme ssi [X'y X']~0; et ceci passe aux reunions denombrables, des An a A^).
Cette hypothese X~Xr semi-martingale sur R+xΩ, n'est pas suffisante pour

obtenir le meme resultat, pour les autres ensembles Jl(5).

(1.5) Par contre, dans tous les cas, si X est equivalent sur A a une semi-mar-
tingale continue X' sur Λ+Xίl, et X^<_Ά(A), il est equivalent sur A lui-meme
a un processus de Jί. En outre, on peut exprimer ceci en termes d'integrales
stochastiques; pour X optionnel sur A: \A X' ^Jί=^X est equivalent sur
i a u n processus de JL (a savoir lA X')==>X^Jl(A)=ΦlA X'^Jί (car X'~

An

L\ done lAn*X'=lAn Xn&jμ6\ d'oύ Γon passe a lA X'^Jl parce que

(4) Voir Schwartz [1], thέoreme III, page 21, ou corollaire (3.5), page 22; thέoreme 4,
page 32; proposition (4.6) page 37.
(5) Un contre-exemple a έtέ donne par Strieker [1], valable pour tous les cas a la
fois. Soit (Tn)n=lt2, . une suite strictement croissante de temps d'arret, inaccessibles sauf

Tj=0, et C le processus egal a — dans [Tn> TΛ+1[. Soit Msa martingale compensέe. Comme

Σ ~Ύ < + °°» M a une limite a Γinfini, qu'on peut appeler M^; e'est une martingale sur R+ X

Ω, de carrέ integrable (voir P.A. Meyer [1]). Soit A= U]TΛ, TΛ+1[. Le processus croissant

previsible C associe a C est nέcessairement continu puisque les Tn sont inaccessibles, et e'est
M qui porte toutes les discontinuites de C. Alors M est, sur A> un processus decroissant
continu puisqu'elle est έquivalente, et meme egale, sur chaque ]Trt, TΛ + 1[, a un processus dέc-

roissant continu sur R+ X Ω, a savoir 1 + — -\ \- + (C')Tft+1 M est done aussi localement
z n

a variation finie, continue, surmartingale continue, semi-martingale continue sur A. Mais
M n'est pas equivalente sur A a un processus continu X sur jR+XΩ. Sinon aurait X=M—cn

dans]TΛ, TΛ + 1[; alors XTn + 1=MTn + 1—cn+u XCTn + 1 )-=Marn + 1 )-—cn, et la continuitέ de X
donnerait —^rr = ΔMTn + 1—cn+1— cny d'oύ cn+1=c1-\-—-\ f- — or X et M doivent avoir

une limite a Γinfini, ce qui est ici impossible.
(6) Pour Z semi-martingale continue, An optionnel, Z^^0<^\jLn*Z=0i voir Schwartz fl],
proposition (3.7) et corollaire (3.8), page 25. An
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Jl est ferine dans Γespace S3ί des semi-martingales). Si X est une semi-

martingale continue sur R+ X Ω, arretee en Γ, independante du temps dans [0, S]9

S et T temps d'arret, 5 < Γ , et si X e e i ] S , T[, alors Z G c J . En effet, nous

venons de voir que X ~ Y^Jl, mais alors X Yτ— Ys, done X=X0+ Yτ—

En d'autres termes, si J G J ! ] 5 , T[ est prolongeable en une semi-

martingale continue X' sur Λ + χ Ω , alors X'Γ—X' s a les proprietes ci-dessus

d o n c e ^ , c.a.d. X est prolongeable en une semi-martingale ^<Λ si S=0, a

savoir X'τ> et autrement equivalente sur ]5, Γ[ a une semi-martingale continue

sur R+ X Ω, element de <JI, a savoir X'τ—X's.

(1.6). Soit X optionnel continu sur A, Alors: Z G J ( 4 ) , <Jl ensemble des

processus a variation finie (resp. croissants) <=>X est, au sens usuel sur Ay

localement a variation finie (resp. localement croissant). (Rappelons que cela

n'entraϊne pas qu'il soit equivalent sur i a u n processus a variation finie ou

croissant sur R+ X Ω, voir Note(5)). En efFet, =Φ est evident, montrons <§=. Soit

ί £ Q + , Sn=lτί£{t^s; t&A, ou variation de X dans [S9 t]>n}. C'est un

temps d'arret. Mais XSn_ existe sur {Sn>s}, car la variation de X dans [s, Sn[

est<w. Done l{Sn>s}(XSn~— Xs) est un processus a variation finie (resp. crois-

sant) dans R+ X Ω, equivalent a X sur [s, Sn[°, et U [s, Sn[°=A.
Nn<=N

(1.7) Si A=R+XΩ, Jί{A)=JL. Cela resulte de Schwartz [1], proposition

(2.4) page 10 et (1.3) ci-dessus, pour les semi-martingales, et, pour les autres

Jl, de (1.4) et (1.5).

(1.8) Rappelons aussi que, si Γon supprime la continuite pour les processus

(autres que les semi-martingales generates) de type Jly il n'y a plus de bonne

notion: on peut avoir A=R+xΩ=A1\JA2i Ax et A2 optionnels, X semi-

martingale bornee sur R+ X Ω, restriction sur A1 et sur A2 de martingales bor-

nees, mais non martingale sur i2+xΩ ( 7 ). A priori, on ne peut rien avoir de

bon pour les surmartίngales et sous-martingales discontinues.

2. Semi-martingales formelles

Nous renvoyons a Schwartz [2] toutes les semi-martingales, vraies ou for-

melles, seront implicitement supposees continues dans ce paragraphe et les suivants,

sauf le §4.

(2.1) Une semi-martingale formelle sur A (ouvert optionnel) voudra dire in-

differemment une classe d'equivalence sur A de semi-martingales formelles

(7) Voir Schwartz [1], contre-exemple (3.6), page 23. Dans cet exemple, A(a) et A(0)
ne sont pas optionnels; mais on aurait pu les prendre opάonnels, avec

Λ(«)=£(0, β), (0, β), (+oc, a)}, A{β)=l<fi, a), (0, β), (+«», β)}.
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sur Λ + χί2, ou υne semi-martingale formelle sur Λ + xΩ, portee par A. On
sait qu'alors route semi-martingale vraie sur A (au sens du §1) definit d'une
maniere unique, une semi-martingale formelle sur A [Schwartz [2], proposi-
tion (6.7), page 471 (59)]. On sait aussi qu'il existe une integrate stochastique
d'une fonction optionnelle sur A par rapport a une semi-martingale formelle
sur Ay et que c'est encore une semi-martingale formelle sur A.

On dira qu'une semi-martingale formelle X sur J? + xΩ est element de
<JL3y si elle s'ecrit γ Z, γ > 0 optionnelle, Z^Jί. Alors toute integrate stochas-
tique par rapport a X d'une fonction optionnelle > 0 est encore dans <JIΞF. <JL3i
est ferme dans Γespace des semi-martingales formelles. On dira qu'une semi-
martingale formelle X sur A (en particulier une semi-martingale sur A) est
element de <JIEF(A)> s'il existe une suite (An)neN de reunion A, telle que X soit,
dans chaque APJ equivalente k un element Xn de <Jl3ί.

(2.2) Mais on a alors les relations evidentes:
est equivalent sur Akun element de J Ϊ ^ I G J Ϊ ^ I ^ I

La demonstration est la meme qua (1.5); cela provient de ce que, dansla
definition de semi-martingale formelle sur A, intervient la possibilite de la
representer comme semi-martingale formelle (toujours, sous-entendu: continue)
sur Λ + χ Ω . En outre, c'est equivalent a: X=y Z> y optionnelle>0 sur-4,
Jl(A). (Si Z G J ( . 4 ) , y>0 optionnelle, Z~Zn<EjL, done y-Z

•An An

done fγ*Z^<Jl3(A). Inversement, soit X^<J13!(A) alors X est equivalente sur
A kun element de Jβί, y Z, Z^Jl, done a fortiori Z^JL{A)).

(2.3) Jl(A)=S3ί(A) fl JIEF(A)=S JH(A) n J13. Rέsulte de (2.2).

EXEMPLE. X est une martingale conforme sur A, ssi elle est une semi-
martingale sur A9 et equivalente sur A a une martingale conforme formelle
sur R+ x Ω.

(2.4) Rappelons que, si X est une semi-martingale formelle sur A, X—Xc-\-Jty

et que [Xy X] est un processus a variation ίinie formel sur A; X\ Xy [X9 X]
sont seulement formels, meme si X est une semi-martingale vraie sur
SJH{A). Rappelons d'autre part qu'on a la formule d'lto: si
et Φ de classe C2:

Φ(X)~Φ'(X).X+±-Φ"(X)-[Xy X] ,w

(8) II vaudrait mieux ecrire Φ(X)eau lieu de ~~, puisque le second membre est une classe
A

de processus formels, Φ(-X) un processus element de cette classe. On fait le meme abus ici
que quand on ecrit, en analyse, / e ZΛ quand / est une fonction, alors que L* est un espace
de classe de functions.



84 L. SCHWARTZ

oύ le membre de gauche est une semi-martingale sur A> les membres de droite
sont seulement des processus formels (y compris [X, X]). Voici un tableau
resume des proprietes precedentes, par exemple si <Jl est Γensemble des mar-
tingales conformes. X est suppose etre un processus optionnel sur A. La
notion que nous retiendrons est la plus faible, celle d'en bas.

X est restriction a A

d'une martingale conforme sur R+ X Ω.

3(An)neN> A— U An, X est equivalent sur

X est restriction a An

 A* u n e ™«ingale

d'une martingale conforme conforme sur R+ X Ω.

sur Λ

lA X est une martingale conforme formelle

sur A; X est equivalent sur A a une martingale

conforme formelle sur R+ χ Ω ; 3(An)nζΞN, A= U Anf

X est equivalent sur An a une martingale conforme

sur R+χ£l\ X est une martingale conforme sur A.

3. Martingales conformes sur des variέtέs complexes

(3.1) Rappelons que si M est, sur A> une martingale conforme a valeurs dans
un ouvert U d'un espace vectoriel complexe E et Φ une fonction holomorphe
(ou antiholomorphe) de U dans un espace vectoriel F> Φ(M) est, sur A> une
martingale conforme a valeurs dans F; cela resulte de la formule d'lto, qui,
pour Φ holomorphe et [M, M]c=0 sur A, s'ecrit Φ(M)'χΦ\M) M.

Proposition 3.2. Soient A un ouvert de R+ X Ω, M une fonction optionnelle

sur Ay a valeur dans une variέtέ analytique complexe F, de dimension complexe N.

Les deux propήetέs suivantes sont equivalentes:

(3.2.A) Pour tout ouvert V de V} et toute fonction complexe <p holomorphe sur

V, <p(M) est, sur M~\V')y une martingale conforme.

(3.2.B) Pour tout ouvert V de V, et tout fonction complexe <p, C2 (au sens reel)

sur V et holomorphe sur V, φ(M) est, sur M~\V')9 une martingale conforme.

Demonstration. Montrons que B=¥>A. Soit φ holomorphe sur V. Soit
{Vn)n<ΞN u ne suite d'ouverts de V, Vf

nClV\ de reunion V. II existe φny

C2 sur F, egale a φ sur V'n. D'apres B, <p(M)=φn(M) est, sur M-\V'n),
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une martingale conforme; done φ{M) est sur M~\V) une martingale con-
forme. •

DέFiNiTiON 3.3 On dit que M est, sur A, une F-martingale conforme,
si elle verifie (3.2), A) ou B). On peut remplacer φ holomorphe par φ anti-
holomorphe. Bien evidemment M est alors une semi-martingale sur A. (Si
V est de Stein, il est plongeable comme sous-variete C-analytique fermee d'un
espace vectoriel E\ en prenant pour φ les coordonnees suivant une base, on
voit que M est, sur M~\Vf), une semi-martingale. II existe une suite de V
de reunion A, done M est semi-martingale sur A. On aurait evidemment
pu aussi le mettre dans les hypotheses !). Remarquons que les hypotheses de
(3.2) n'entrainent pas que φ(M) soit, sur A, equivalente a une martingale con-
forme sur Λ + χ Ω (voir (1.4)). Mais e'est vrai, dans Γhypothese (3.2.B), si M
est restriction a A d'une semi-martingale sur JR+χΩ; car alors φ(M) est re-
striction k M~\V) d'une semi-martingale et on applique (1.4). L'hypothese
(3.2.A) reste insuffisante pour obtenir la meme conclusion, car φ(M) n'est plus
restriction d'une semi-martingale sur Λ + χ Ω . Ce qui precede montre que,
si M est restriction a A d'une F-semi-martingale sur J? + χΩ, la definition
(3.2.A ou B) est celle que nous avions donne pour Γequivalence de M sur A
a une martingale conforme, dans Schwartz [1], definition (5.1) page 38. C
etait la d'ailleurs, une definition quelque peu defectueuse, car il y avait equiva-
lence pour φ(M)y non pour M. Mais ici, une telle hypothese n'est pas faite sur
M. Si A=R+χΩy la definition (3.3) ci-dessus est bien celle que nous avions
donnee a Schwartz [1], (5.1), d'une F-martingale conforme sur Λ + χ Ω , voir
ci-dessus (1.7).

(3.3.1) Soit M une F-semi-martingale (continue) sur Λ + x Ω , arretee en T,
constante dans [0, S], S, T, temps d'arret, 5 < T. Si M est, sur ]S, T[y une
martingale conforme, elle Test sur Λ + χ Ω . En eίfet, prenons la definition
(3.2.B). Soit <p> C2 sur Vy holomorphe sur un ouvert V. On sait que φ(M)>
semi-martingale sur Λ + x Ω , martingale conforme sur M~\V')Γ\]S, T[y est
equivalente sur cet ouvert a une martingale conforme Mφ sur J B + X Ω , par (1.5).
Mais, si T(ω)>0 ou 5(ω)= + °o ou + ° ° , M(ω) est constante, done ψ(M)
est aussi equivalente, sur R+X {T=0 ou 5 = + °° ou +°°}> a une martingale
conforme. Si Γ(ω)>0 et S(ω)< + °°, et si M(T(ω), ύ ) ) $ Γ et M(S(ω), ω)φ
V\ comme M'\Vf)=(M^(Vf)n]Sf T\)\J(M-ι(V)Digraphs de ΓU graphe
de S))y ces deux ouverts coincident au-dessus de ω, et <p(M(ω))~Mφ(ω) sur
(M-\V)) (ω). Si enfin Γ(ω)>0, S(ω)< + oo et M(T(ω), ω)e V (resp.
M(S(ω), ω ) e F ) , on a aussi Λf([Γ(ω)-£(ω), T(ω)]> ω ) e Γ (resp.
M([S(ω), S(ω)+ε(ω)]> ω)^V) pour un £(ω)>0 convenable; par continuite,
φ(M(ω))~Mφ(ω) sur (M~\Vf)) (ω). Finalement φ(M)~Mφ sur M'\V')9 done
φ{M) est une martingale conforme sur M~\V')y et M sur Λ + XΩ. Π
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En d'autres termes, si M est une martingale conforme sur ]Sy T[y pro-

longeable en une semi-martingale (continue) M' sur i? + xΩ, constante dans

]0, S[y elle est aussi prolongeable en une martingale conforme M'τ sur R+ X Ω.

Si A— U Any et si My processus optionnel sur A a valeurs dans Vy est, dans

chaque ^4Λ, une martingale conforme, il Test dans A. Si M est une semi-mar-

tingale sur A, on peut, dans (3.2.A ou B), remplacer: <p(M) est, sur M~\V')y

une martingale conforme, par: φ(M) est, sur M~\V')y equivalente a une mar-

tingale conforme formelle sur R+ x Ω.

Proposition 3.4 A) Si M est une V-martingale conforme sur A et si Φ

est une fonction holomorphe {ou antίholomorphe) a valeurs dans une variέte com-

plexe W, Φ(M) est, sur A, une W-martingale conforme,

B) Si V est de Stein, M optionnelle sur A est une V-martingale conforme

ssi, pour toute φ complexe holomorphe (ou antίholomorphe) sur V, φ{M) est une

martingale conforme sur A, Si V est quelconque, et si (Vn)neN est un recouvrement

de V par des ouverts de Stein, M optionnelle sur A a valeur dans V est une V-

martingale conforme ssi, pour toute φn complexe holomorphe sur Vny φn(M) est,

sur M~\Vn), une martingale conforme,

C) Si W est une sous-vaήέtέ (non nέcessaίrement fermee) de V, si M esi,

sur A, une V-martingale conforme a valeurs dans W, elle est une W-martingale

conforme.

Demonstration. A) est evident.

B) Soit V de Stein. Si M est une F-martingale conforme, elle a la propriete

indiquee. Inversement, supposons cette propriete verifiee. Comme V est

de Stein, elle est plongeable comme sous-variete fermee dans un espace vec-

toriel complexe E. En appliquant les hypotheses aux fonctions coordonnees

et a leurs sommes (ou leurs produits), on voit que M est une Z?-martingale

conforme sur A. Soit (Uί)neN une base de la topologie de E> formee d'ouverts

de Stein (par exemple des boules); les V^UήΓiV forment une base de la

topologie de V. Soit V un ouvert de V, φ une fonction complexe holomorphe

sur V'\ comme Vf

n est une sous-variete complexe de Όf

n de Stein, si V'nClV'>

φ est prolongeable en <pny holomorphe sur [/£. En appliquant Ito (3.1), φn(M)

est une martingale conforme sur X~\Vή), done φ(M) aussi; comme V est

reunion de ceux des V'n qu'il contient, φ(M) est, sur M~\V')> une martingale

conforme. Done M est une F-martingale conforme sur A. Soit maintenant

V quelconque, V= U Vny Vn de Srein. Ce qu'on vient de voir prouve que

M est, sur M~\Vn)> une F^-martingale conforme, done une F-martingale con-

forme, done aussi sur A.

C) W est localement compacte, done fermee dans un ouvert U de V. Soit

(Un)nGN un recouvrement de U par des ouverts de Stein, Wn=Wf] Un} ouverts
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de Stein de W. Si <pn est une fonction holomorphe sur Wn, elle est prolongeable
en fonction holomorphe sur Un, ouvert de V, done φn(M) est, sur M~\Wn),
une martingale conforme; B) prouve que M est une W-martingale conforme
sur A. •

REMARQUE 3.5 Pour V— I) Vny Vn de Stein, la propriete indiquee a la
n(=N

fin de B) exprime aussi, comme nous Γavons indique, que M est, sur M~\Vn),
une Fn-martingale conforme; ou, compte tenu de C), si Vn (de Stein) est plongee
dans un espace vectoriel En, une £"M-martingale conforme. Soit (Vn)nEiN un
recouvrement de V par des ouverts de Stein relativement compacts (par ex-
emple isomorphes a des boules de CN) on peut les plonger comme sous-varietes
fermees de C2N+1. Soit {V'n)nGN un recouvrement subordonne, Vf

ndVny de
sorte que V'n devient sous-variete (certainement non fermee) relativement
compacte de C2N+1. Soit {V'k')keN un recouvrement plus fin, verifiant la prop-
riete de Lebesgue: tout point de V est recouvert par au plus 2ΛΓ+1 d'entre
eux. Les V" peuvent etre plonges comme sous-varietes (non fermees) de
C2N+1, relativement compactes, done on peut faire en sorte que leurs images
soient d'adherences disjointes. On sait qu'alors (voir Schwartz [3], note (4)
page (14)), N est reunion finie (J //, les // disjoints, oύ les V",

1 1 2 2jy + l= 1,2, » ,

sont disjoints dans V. Alors Wt= U V'/ est un ouvert de Stein (non connexe)

de Vy plonge dans C2N+1> et V= U Wh Alors M est une F-martingale

conforme sur A ssi elle est, sur chaque M~\WΊ), une W^-martingale conforme,
ou une C2JV+1-martingale conforme; ceci n'exige que la verification du fait que
φ(M) est, sur M~\Wι), une martingale conforme complexe pour φ fonction
coordonnee sur C2N+1 ou somme (ou produit) de deux functions coordonnees.
II existe done un nombre fini de couples (V> φ), V ouvert de V, φ fonction
holomorphe sur V'y pour lesquels la realisation de la propriete (3.2.A) suffit
a entraίner que M soit sur A une F-martingale conforme.

(3.6) Comme k (1.2), si M est une F'-martingale conforme sur A, restriction
d'un processus M sur Λ + χ Ω , a valeurs dans V, il existe un ouvert optionnel
A'~DA sur lequel M est encore une martingale conforme; on peut done tou-
jours supposer A optionnel, ce que nous ferons desormais. (Soit en eίfet (Vn)n(ΞN

un recouvrement de V par des ouverts de Stein, Vn plongee dans un espace
vectoriel En. Soit Mn le processus optionnel sur Λ + x Ω a valeurs dans Vn>

egal a M dans Γinterieur (optionnel) (M'\VΛ))° de M~\Vn)y a 0 ailleurs. Alors
Mn est une ̂ -martingale conforme sur un ouvert optionnel Af

n contenant
M-\Vn)y par (1.2); on peut supposer que A'n(Z(M-\Vn))°y done M=^Mn est
une i?n-martingale conforme, done Vn- ou V- martingale conforme, sur A'n.
Done M sera une F-martingale conforme sur Γouvert optionnel A'= \jA'ttIDA.
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4. Fonctions plurisous-harmoniques de martingales conformes

(4.1) Une fonction φ reelle sur un ouvert de CN est dite plurisous-harmonique
si — oo<£><-[-oo, si φ est semi-continue superieurement (done localement
bornee superieurement), et si la matrice (9Λ 9^ φ)a,β est hermitienne^O (a valeurs
mesures). C'est invariant par applications biholomorphes et de caractere
local, d'oύ la notion de fonction plurisous-harmonique sur une variete com-
plexe V de dimension complexe N. Dans ce paragraphe, les notions etudiees
sont fines, et il n'est plus possible d'omettre les mots "continue" ou "locale
continue" quand on parlera de martingale ou sous martingale, comme on Γa
fait aux paragraphes precedents. Toutefois martingale conforme continuera
& signifier martingale locale continue conforme.

(4.2) Le but de ce paragraphe est d'etudier φ{M)> ou φ est une fonction pluri-
sous-harmonique sur V, et M une F-martingale conforme sur A ouvert de
JS+xΓ2. Nous avons donne deux proprietes dans Schwartz [1], qu'on va
elargir ici:

Proposition 4.3 (Voir Schwartz [1], theoreme VIII, page 44).
Si φ est C2 plurisous-harmonique, φ{M) est, sur A, une sous-martingale locale con-

tinue.

Demonstration. Par Ito, si V est un ouvert de CN:
<p(M)~dφ(M)*M+ΰφ(M) M+dϋ φ(M) [M, $t\, compte tenu de ce que

[M, M]c~[-M, M]C~Q (ce sont des processus formels). Les deux premiers

termes sont des martingales continues formelles, le dernier un processus croissant
continu formel, done φ(M) est une sous-martingale continue formelle; comme
e'est aussi une semi-martingale sur A, e'est une sous-martingale locale continue
sur A, au sens de la definition (1.2), d'apres (2.3). Si maintenant V est quel-
conque, elle a un recouvrement (Vn)neNy ou les Vn sont isomorphes a des ou-
verts de CN; alors φ(M) est, sur chaque M" 1^,,), une sous-martingale locale
continue, done encore sur A (1.1) •

Proposition 4.4 (Voir Schwartz [1], theoreme VIII bis, page 48).
Si A—R+ X Ω, et si V est un ouvert de CN> φ{M) est localement une sous-martingale

(cadlag) gέneralisee.

Demonstration. Rappelons que/. fonction reelle sur Λ + χ Ω , est dite sous-
martingale generalisee, si — oo</<-foo, s i / + = ( / V θ ) est integrable, si / est
cadlag, et si, pour s<£, E(ftβs)>fs. Cela revient a dire que, Vk^NJW(-k)
est une sous-martingale. Elle est localement sous-martingale generalisee s'il
existe une suite croissante Tn\\ + oo de temps d'arret, telle que chaque fτ»
l[τΛ>o} soit une sous-martingale generalisee. On sait que la limite d'une suite
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decroissante de sous-martingales generalisees en est encore une. Soit (Kn)n(ΞN

une suite de compacts de V, epuisant V. Soit Tn le temps de sortie de M de
Kn\ Γnff + oo. Pour tout ny il existe une suite (φk)kGN decroissante de functions
C2 plurisous-harmoniques sur un voisinage de Kn, de limite φ sur Kn (ce sont
des regularisees convenables de <p). Chaque {φk{M))Tn l{Γn>0} est alors une sous-
martingale locale continue sur J? + xΩ; elle est bornee, done sous-martingale
continue. Alors (φ(M))Tn l{Tn>0) est une sous-martingale generalisee (cadlag,
pas necessairement continue); done φ(M) est localement une sous-martingale
generalisee. •

COMMENTAIRES 4.5 Pour la premiere proposition, nous n'avions pas pu
remplacer Γhypothese φ C2 par φ continue; cela provenait d'une manipulation
encore insuffisamment maltrisee du passage du local au global, pour les A de
R+ X Ω. Nous allons justement reparer cette insuffisance, e'est le but essen-
tiel de ce paragraphe. Pour la deuxieme proposition, nous ne pouvons pas
eviter de supposer V ouvert de CN il n'y a en effet pas lieu de penser que toute
fonction plurisous-harmonique sur une variete complexe V soit, sur tout com-
pact, limite d'une suite decroissante de fonction C2 plurisous-harmoniques;
et on ne peut pas localier et globaliser pour des sous-martingales locales discon-
tinues, voir (1.8). Par ailleurs, on peut raisonnablement faire la conjecture
suivante: si M est une martingale conforme, et ψ plurisous-harmonique (meme
discontinue), φ(M) est P p.s. continue (a valeurs dans [— oo, +<*>[) (de meme
que, si B est le mouvement brownien dans un espace euclidien, et φ sous-har-
monique pour le Δ, laplacien usuel, φ(B) est p.s. continue). J'en ai discute a
Kyoto avec M. Fukushima, qui a, sur ce point, des resultats partiels; il n'existe
cependant encore ni resultat general ni contre-exemple. On voit en tout cas
Γinteret du theoreme suivant, qui suppose φ non necessairement continue,
mais φ{M) continue.

Propoistion 4.6 (Theoreme). Soient M une V-martίngale conforme sur A9

φ une fonction plurisous-harmonique sur V, partout finie et localement bornee,
telle que <p(M) soit continue, et que, pour P-presque tout ω, et tout [α, β[ de A(ω)
tel que M(/3_, ω) existe, {φ{M)) (/3_, ω) existe aussi et soit έgal a <p(M(β_> ω)).
Ces conditions sont vέrifiees si φ est partout finie et continue, et la derniere rέsulte
toujours des autres si A=R+xΩ. Alors φ{M) esty sur A, une sous-martingale
locale continue (au sens de (1.2)).

Demonstration. Supposons d'abord que V soit un ouvert de CN, et que

M soit equivalente sur A a une martingale conforme Mr sur Λ + χ Ω . Soit
V un ouvert relativement compact de V, et posons A'=M~\V'). Alors φ
est limite dans V' d'une suite decroissante (φk)ke^ de fonctions C2 plurisous-
harmoniques sur un meme voisinage de V'. Soit S le temps de sortie>s de A\

Par Ito, <pk(M) est equivalente sur [s, *5[° a:
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(4.7) Qφk{M) l^rM'+Bφ^M) lUιSrM'+BΨk(M) lu,sί [M', M'].

Mais ces expressions sont des integrates stochastiques de processus optionnels
bornes par rapport a des processus vrais sur B + x Ω , done (4.7) est une sous-
martingale locale continue Lk> que nous ne considererons provisoirement que
sur [s, +oo]χΩ, Mais M's_ existe dansC^, done aussi M s_ mais dans V'dV>
done, φk etant continue sur un voisinage de V\ <Pk(Ms_)=(<pk(M))s_ sur {*S>ί},
et aussi <p(Ms__)=(φ(M))s_ d'apres Γhypothese faite sur φ{M). Mais φk{M)
est bornee dans [s, S[, done Lk—LktS aussi, dans [Sy + oo]χΩ (Lk est con-
tinue, Lk-=Lk pour S>s); e'est done une sous-martingale continue vraie.
Elle vaut aussi (<Pk(M))s-l{S>s)—φk(Ms) 1{S>S}, et comme le deuxieme terme est
borne, {<pk{M))s- \{S>S) est une sous-martingale vraie continue sur [s, + o o ] χ β .
Faisons tendre k vers +oo, en considerant toujours [s, + oo]χΩ; ψk(M) tend
en decroissant vers φ{M) dans [s, S[; mais (φk(M))s_=φk(Ms_)y M S _ G F ' , tend
vers φ(Ms_)=(φ(M))s_ pour S>s. Done (<p(M))s- ί{s>s) est, sur [s, + o o ] χ Ω ,
une sous-martingale generalisee cadlag; elle est continue, bornee parce que
φ est localement bornee et V compact, done elle est aussi une sous-martin-
gale continue vraie. Mais alors <p(M) est equivalente dans [ί, S [ a une sous-
martingale continue vraie sur Λ + x Ω , a savoir ((<p(M))s- — (<p(M))s) 1 [S>s). Com-
me A'= U [s, SI*, φ(M) est sur A' une sous-martingale locale continue, au

sens de (1.2); done aussi sur A, en prenant une suite de V epuisant V. Pas-
sons a la situation generale. Soit (Vn)neN un atlas de V, Φn un isomorphisme
de Vn sur un ouvert Un de CN, de sorte que ^ o φ j 1 est une fonction plurisous-
harmonique sur Un; puis une suite (Anttn)meN d'ouverts de A, de reunion An=
M~\Vtt)> telle que Φn(M), C^-martingale conforme sur An, soit equivalente

sur An>m a une martingale conforme sur β + χ Ω . D'apres ce qu'on vient de
voir avant, φ{M)={φoφ~ι) (Φrt (M)) est une sous-martingale locale continue
sur Anttn\ done aussi sur U An%m=An et sur U An=A Π

(4.8) Si on garde les memes hypotheses que ci-dessus, sans cependant sup-
poser φ localement bornee ni-meme > — 00, on pourra seulement conclure que,
Vk&N, (φV(—k)) (M)=<p(M)V(—k) est une sous-martingale locale continue.
II ne semble pas qu'on puisse en deduire une conclusion sur φ(M) elle-meme.

Mais on le peut si A=R+xΩ. Car alors, φ(M)V(—k) etant une sous-martin-
gale locale continue, si Γon pose T n=Inf {t; φ(M)>n}y les Tn sont des temps
d'arret, Γ ^ t ί + ^ j e t (φ{M)\/(—k))Tn

 1{ΓΛ>O}, bornee, est une sous-martingale
continue vraie. Done (<p(M))Tn l{Γn>0} est une sous-martingale generalisee
continue, done φ{M) est une sous-martingale generalisee continue locale sur

Λ+XΩ. Ce cas bien sur se produira souvent; qu'il soit vrai ou non que φ{M)
est toujours continue, elle peut prendre la valeur —00 si φ peut la prendre:
M peut prendre toutes ses valeurs dans Γensemble pluripolaire {φ= — 00}
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(par exemple si M est constante!).

5. Les espaces 1-tangents et 2-tangents d'un variete complexe

Les espaces 1-tangents ont ete etudies dans Schwartz [1] §7; les espaces
2-tangents ne nous ont ete necessaires que plus tard, dans Schwartz [3], et
la nous n'avons pas regarde le cas des varietes complexes et des martingales
conformes; il est temps de reparer cette omission.

(5.1) V etant une variete C2 reelle, nous pourrons complexifier ses espaces
tangents T\V; υ), T2{V; v) en T\V; v)+i T\V) Ό), T2(V; v)+i T2(V; v)9

avec evidemment {T2(V; v)+i T\V; v))l(T\V; v)+i T\V; v))^(T\V; v)
+i T\V; v))Q(T\V; v)+i T\V; v))y © etant le produit tensoriel relatif k
cette structure complexe, Q=Qc Nous n'avons complexifie que les espaces
cotangents dans Schwartz [1], non les espaces tangents, parce qu'alors nous
definissions, pour une F-semi-martingale X, les differentielles dXc par dualite;
depuis que nous les avons definis comme diίferentielles a valeurs dans des fib-
res, par des ®OPt> dans Schwartz [4], les espaces tangents prennent un nouveau
role, et nous les complexifions ici CΊinέaire voudra toujσurs dire linέaire pour
cette structure complexe. Soit maintenant V analytique complexe, de dimen-
sion complexe N, reelle 2N. Elle devra pouvoir etre consideree aussi comme
reelle, done Γ1, T2> dX> ••• seront les memes que si la variete έtait rέelle; onpourra

introduire des objets supplementaires, avec des notations nouvelles, mats pas detruire

les anciens.

(5.2) Rappelons que, si Cj(resp. C*+*CJ)> est Γespace vectoriel des germes en
v de fonctions reelles (resp. complexes) au voisinage de v^V, Tk(V;v) (resp.
T\V\ v)+iTk(V; v)) est Γespace des formes i?-lineaires (resp. C-lineaires) sur
C\ (resp. Cv + Cit)y qui annulent les fonctions dont les derivees d'ordre 1, •••,
ky en v sont nulles; T\V; v) est de dimension reelle 2Ny T\V; v)+iT\V; v)
de dimension complexe 2N. On appellera alors JK9 Γespace vectoriel des germes
en v de fonctions holomorphes au voisinage de v, et T^(Vm

y v) Γespace vectoriel
des formes C-lineaires sur Sίυy annulant les fonctions dont les derivees d'ordre
1, •••, k en v sont nulles. Manifestement T^(V; v) est le quotient de Tk(V; v)
+ i T\V\ v) par le sous-espace Jlk{V\ v) des elements annulant les fonctions
holomorphes en v; T^(V; v) est de dimension complexe N, done ΐJ2\V; v) aussi.

Considerons une carte holomorphe de V sur un ouvert U d'un espace
vectoriel complexe E\ au lieu d'appeler i le multiplicateur habituel de E, nous
Γappellerons /, operateur Λ-lineaire de carre — 1 ; il se prolonge a E-\-iE,
complexifie de E, en un operateur C-lineaires /, de carre — 1. Si (ek)k=lt2t...tN

est une /-base de E9 et si fk=I eky (ekί fk)k=i,2,»,N e s t u n e -K-base de E> done
une C-base de E-\-iE. Si les (#*), k= 1, 2, •••, N, sont les fonctions coordon-
nees (complexes) relativement a la /-base de E, zk=xk-{'iyk9 et les xk, yky k=
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1, 2, •••, N sont les fonctions coordonnees pour la Λ-base de E, se prolongeant

en fonctions coordonnees pour la C-base de E-\-iE, on peut poser ek=-^—y fk=
OX

-^-, et il est habituel de poser JL=J_ (J__; JL\ JL^JL ΛJL+*_1_\
9/ F 8s* 2 W dyk) dzk 2 W 8//
Alors T\V) s'identifie a UxE, done la carte munit T\V; v) d'une /-structure
complexe, et T\V) d'une structure de produit de varietes complexes. Un
changement de cartes (U, E)-*(W, F) holomorphe se traduit par (x> £)ι->(Φ(#),
Φ'(x) ξ)y Φ holomorphe, Φ' holomorphe de U a valeurs dans J^ι{Ej\ Fj). Ceci
montre que Γoperateur / est intrinseque, se transporte & T\V; v), et lui donne
une structure complexe T)(V\ v)> I operateur JS-lineaire de carre —1, done
C-lineaire de carre - 1 sur T\V; v)+i T\V; v\ et que T){V) est un fibre C-
analytique. Par contre, si on munit T\V; v)+iT\V; v) de sa C-structure,
T\V)+iT\V) n'est qu'un fibre Λ-analytique. Bien que Tι

M soit un quotient
de Tι-\-ίTι, il existe un jR-isomorphisme canonique entre T1 et Tι

M\ a tout
ξ^^T^V; v), on fait correspondre Γunique element ξ—pζji de T\V; v) qui
prend la meme valeur sur les fonctions holomorphes (i.e. ξ a pour image ξM

dans le quotient T^V; v)=(T\V; v)+iT1(V; v))im\V; v)). Si ^ = ^ ,

qui est justement | ( J j _ ί J . ) , ξ^; si ξj^iJL, S=±=l£l done

p i—I py I est le transforme de i par ρy ce qui montre & nouveau qu'il est in-
trinseque, et p est un isomorphisme complexe de T^(V; v) muni de sa C-struc-
ture, sur T\{V\ v) muni de sa /-structure. Done la carte sur U envoie aussi
Tjt sur UxEjy et les changements de carte sont les memes; Tι

M{V) est, comme
), un fibre holomorphe.

(5.3) On definit maintenant deux sous-espaces Tι'\V\ v) et T°>\V; v) de
T\V; v)-\-iT\V\ v). II y a plusieurs definitions et proprietes qui se voient
aussitόt par des cartes. D'abord Tlt0(V; v) est le sous-espace propre {/=/}
de / pour la valeur propre /, T°*\V; v) pour la valeur propre —i; ils sont
conjugues pour la conjugaison habituelle du complexifie T\V\ v)-\-iT\V\ v),
et de dimension complexe ΛΓ, et T\V; v)-\-iΊ\V\ v) est leur somme directe.
Le projecteur de T\V; v)+iT\V; Ό), d'image Tι-\V\ v\ de noyau Γ0'^^; v\

est ί—ίζ /l=?ί=ίl=?/^=:i+^.Y le projecteur sur T°'ι(V; v) de noyau

T*(V\ v) est l ± ? ί Une base de Tl-\V\ v) (resp. T°'\V; v)) dans une carte
Li

est formee des — - ίresp. — — \ k=l> 2, •••, ΛΓ. Ensuite Tlt0(V; v) est le sous-
όz \ oz J

espace de T\V; v)-\-i T\V; v) forme des formes lineaires sur CJ, qui annulent
les fonctions anti-holomorphes: ξ^T\V; v)+iT\V; v) est dans Γ1'0 (V; v)> ssi,

υ, ξ(φ)=0; de meme T°'\V; v) est Γensemble des elements de T\V; v)
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ή qui annulent les fonctions holomorphes. II se trouve (mais 1'equiv-
alence de ces definitions ne sera plus vraie pour les 21*, k^2) que Th0(V; v) et
aussi Γensemble des ξ qui "commutent" avec la multiplication par les fonctions
anti-holomorphes: si /eCj+*Cί> <p^J{v, ζ{φf)=φ{v) ?(/); et la propriete
analogue pour Γ0'1. Done T>ι=m\ et par suite Γ1 °=<2 n +iΓ 1 )/ r 1 = ( Γ 1 +
/711)/371= T\ (isomorphisme C-lineaire). La correspondance entre Tlt0 et T\ est
forcement la meme: si ξΛGT^(V; v\ σ ξJί=ξU0 est l'unique element de TU0(V;
v) qui a meme valeur sur les fonctions bolomorphes, ou ξ^ est Γimage de ξltΌ

dans le quotient Tι

M(V\ v)=(T\V; v)+iT°(V; v))/Jl\V; v). Cela montre que
Th0(V) est un fibre holomorphe (mais pas T0'\V), ni, encore une fois, T\V)+
iT\V)). Enfin cela etablit un isomorphisme entre Th0(V; v) et T\(V; v) pour
la C-structure du premier et la /-structure du deuxieme; a ξlt0 correspond ξ==
p σ"1 ξ1*0, prenant les memes valeurs sur les fonctions holomorphes. Dans une

carte sur UaE, si ξ=—Γ, ξι*°—-9—=—(——i ) = _ n J Γisomor-
3ΛT 3 ^ 2 \dxk dyk J 2 dxk

phisme Tj-^T1'0 est ——, qui vaut 1 sur T1'0 et 0 sur Γ0'1, done envoie T\ dans

Γ1'0, et son inverse est Lf—>L-|-Z.

(5.4) Les choses deviennent plus compliquees avec les espaces 2-tangents,
a cause de Γarrivee d'un nouveau partenaire, T1*1. Tout d'abord, alors que
T\V\ v) admet une structure /-complexe, T2(V; v) n'en admet pas de naturelle,

et meme pas du tout si iVest impair, car sa dimension (reelle) est 2N-\-—^ JL-1

=2N2+3N, impair pour N impair; bien sur Γ2(F"; v)+iT2(V; v) est de di-
mension C-complexe 2N2+3N. L'espace Tj^(V; v) a deja ete defini; lui,
il est C-complexe; dans une carte sur U ouvert de E, il s'ecrit EI®(EIQIEI)>

de dimension 7-complex e ΛΓ+—^—IE_1>= i t . Une base est formee, en

posant dk=—Γ, dk=—Γ> des 3Λ, 3. 3, ( i < ; ) , et tout operateur diίferentiel

holomorphe d'ordre 2 sans terme constant s'ecrit

•*• 1 *

k = l 2 i»J=l * P

(Au contraire, 7^(7; v) est E(B(EQE), et 2?/Θ7 Eτ est un quotient de EQE,
nous le reverrons a (5.5)). La formule de transition pour un changement de
carte Φ: UczE-^WciF est celle que nous connaissons (voir Schwartz [3],
(1.13), page 10)

, (Φ\x) Φ"(x) \ ,
(xyL) (Φ(x), L ) ,

qui fait de T%(V) un fibre holomorphe.
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(5.5) On definira des sous-espaces essentiels. L'espace T2\V\ v) est celui
des elements L de T\V; v)+ίT2(V; v) qui commutent avec la multiplication
par les fonctions anti-holomorphes, L(φf)=φ(v) L(f) pour <p^Jίv,f^Cl-\-iCl;
dans une carte, sa base est celle des dky 3t 3 ; , iyjy k— 1, 2, •••, Ny et i^j; sa di-

mension C-complexe est — . Puis T0>2(V; v) est Γespace des elements

qui commutent avec la multiplication par les fonctions holomorphes, T0t2= T2'0

dans le complexifie T2-\-iT2

y sa base est formee des dky 9t 5y. Et enfin
T1Λ(V; v) est Γespace des L qui annulent les fonctions holomorphes et les fonctions
anti-holomorphes, L(φ)=L(φ)=0 pour φ^Mυ\ sa base est formee des 9, 9y,
/, 7=1, 2, •••, Ny il est de dimension C-complexe N2. Alors T2-\-iT2 est la

somme directe T2>«®Γ-2®Tι>\ et 2 J V 2 + 3 A T ^ A ^ + 3 i V + i V 2 + 3 i V + i V 2 . L'ens-

emble des elements qui annulent les fonctions antiholomorphes est Γ2 ° 0
T u , Γensemble de ceux qui annulent les fonctions holomorphes est J12= Γ2'°0
Tι\ done T2

M={T2+ίT2)im2~T2>\ ce qu'ont deja montre les bases. Done
T2'°(V) est un fibre holomorphe, pas les autres. II apparaίtra naturel d'appeler
/ Γoperateur / sur T9-0, —i sur Γ° 2, 0 sur Γ u ; il est C-lineaire sur T2+iT2

>

mais pas de carre — 1 . Alors les 3 espaces sont ses sous-espaces propres pour
les valeurs propres ί, — /, 0. Si on appelle partie reelle d'un sous-espace d'un
espace complexifie Γensemble de ses elements reels, T2 est somme directe
5£e(Γ2'0+ T°'2)®3le T1-1. Le second est annule par /, le premier admet / comme
operateur J?-lineaire de carre — 1 , e'est lui qui a une /-structure (son com-
plexifie est T2f0(BT0t2

f et ces deux sous-espaces sont ses sous-espaces propres
{/=;} et {/=-*}) et non T2. Et T\y T2>° sont aussi isomorphes a 3le(T2>0®

T°'% Γisomorphisme ifo?(Γ2'0ΘΓ0 2)->T2 ° etant encore —— (il est Γidentite

sur Γ2'0, nul sur T°'\ done envoie bien Γ2 '°0Γ0 '2 sur Γ2'0); Γisomorphisme
inverse est L\—>L-\-L; il envoie la /-structure du premier sur la /-structure
du deuxieme, qui est sa C-structure. Ensuite f ° c T2>° et T^IT^—T^ΘT1'0,

Γo,i c Γo,2 e t ro.2/Γo.i~yo.i0Γo.i> e t f ^ j n . o g y o , i ( s a n s p a s s a g e a u quotient),

Θ=ΘC, ® = ®c> en convenant d'identifier T^QT1-0 avec Γ 1 ' 0 ® Γ M par
symetrie. (Schwartz [3], page 6.) Demontrons seulement la derniere affirmation.
Soient ξvy -ηΌ^Tι \V\ v); prolongeons-les en operateurs diίferentiels holomorphes
ζy η de degre 1, au voisinage de v. Alors ζoη est un operateur difFerentiel
d'ordre 2. Sa trace (ζ°v)ΰ ne depend que de ξvy ηυy et annule les fonctions
holomorphes et les fonctions antiholomorphes, done est dans Tι>\V\ v). Done
on definit ainsi une application bilineaire de Th\V\ v)xT0'\V\ v) dans
Tι'\V\ v)y ou lineaire de Th0(V; v)®T°'\V; v)dans Th\V; v)y qu'une carte montre
etre bijective. Sur une carte, T2(V; v)+ίT2(V; v^E^φE^ΦiE^ΘE1'0)®
(E^ΘE^^E^^E0-1). On a toujours les memes changements de cartes pour
T2+iT2; Φ'(x) envoie Euo sur Fuo

y E0-1 sur .F0-1 (parce qu'il commute avec i
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et /, done avec ~~ι et *~y ); Φ"{x), qui est a la fois C-bilineaire et /-bilineaire,

envoie Eι*χEι* dans Fι>\ E° ιxE°-1 dans ί10'1, et Eι>«χE°'\ E^xE1-0 sur 0;
Φ'(*)ΘΦ'(*) ( Θ = Θ C ) envoie WOE1-0 sur F^ΘF1'0, E^ΘE0'1 sur F^QF0'1;
et Φ'(*)®Φ'(*) envoie E^QE0'1 sur Fh0®F°'\ Enfin Γ ^ c Γ 2 , , et T\\T\^
Tι

MOTι

M(Q>=(z)c). Signalons qu'il y a un certain danger k identifier sans pre-
caution Tι>°®T°'ι^Tι>ι<zT2+ίT2 avec Γ ^ Ϊ ^ C ^ + i T ^ Θ ^ + i T 1 ) , parce
que T2+iT2 et (Γ1+i21 1)Θ(Γ1+iΓ1) ne sont pas le meme espace. Sur une
carte UdE non holomorphe, Thl n'est pas dans (E+iE)Q(E+iE), il a aussi
une composante sur E+tE; son image dans le quotient est dans (E-\-iE)Q(E-{-
ιE). II y a bijection, par la projection π, de T1*1 sur son image; si on appelle
π1'1 Γapplication π de T1Λ sur son image, (TΓ1'1)"1 sera la bijection reciproque,
Λ-analytique, de T^QT^cziT'+iT^QiT'+iT1) sur T^aF+iT2 (et de
&e(T1>0®T0>1)c:T1GT1 sur 3fe Γ1-1).

II y a un operateur / sur T2+iT2, conservant Tι+ίTι, done sur (T2+iT2)/
(T'+iT^T'+iT^ΘίT'+iT1); e'est i sur T^ΘT1'0, -i sur T^QT0'1, 0 sur
Γ1'0® Γ0'1. Done ^(Γ 1- 0©! 1 1- 0)®(ϊ 1 0- 1©! 1 0 ' 1)) est muni d'une /-structure, I2=

— 1, alors que TιQTι ne Test pas; ~ι est une bijection de cet espace sur

1 ^car 1 = ^ est 1 sur Γ1 '0©^1 '0, 0 sur T0ΛΘT°'\ done envoie bien

Sle(- ) sur T^OΓ 1 ' 0, et il est bijectif, d'inverse Lf-*L+Z, amenant la /-structure
du premier sur la /-structure du deuxieme, qui est aussi sa C-structure.
L'operateur / opere sur ̂ (Γ 2 * 0 ©? 1 0 ' 2 ), et sur son sous-espace T\ done sur le
quotient 5l^2 l ί 0 ®Γ 0 2)/ϊ1 1=5iβ((Γ1 0Θ711 0)®(T0 1©ΓD 1)).

(5.6) En posant, pour simplifier, T\V; v)—E> etudions plus profondement

Γapplication canonique q: E QR E-*E QrE. Le premier espace est de dimen-

sion reelle o = 2 ^ + ^ , le deuxieme de dimension /-complexe

N(N+1)j done reelle N(N+1)=N2+N. La difference est ΛΓ2, done le noyau
Δι

est de dimension N2. II est plus commode de tous les complexifier, on trouvera
alors comme dimensions C-complexes ce que nous venons de trouver comme
dimensions reelles; on les ecrira (E+iE)Q(E+iE) (oύ Q=ΘC)=(EQE)+
i(EΘE), et (E+iE)Θr(E+iE) (oύ ΘI=ΘCtI)=(EΘIE)+t(EΘIE). Mais (E+
iE)Θ(E+iE) - (S1-0®^0 '1)©^1-0®^0-1) = (έ1-0©^1-0)® (fi0-1©^0-1) 0 (S1-0®^0-1).
On a une decomposition analogue avec ©/, ®7. Le noyau Λ de q est le sous-
espace engendre par les / ξ(Dη—ξOIηy ξy η&E-\-iE; mais il est somme directe
des noyauxΛ2'0, Λ0'2, A1-1 de cf °: E1-°QE1-0^>Eι'0ΘIE

1-0, <f'2: E°-1QE0'ι-»E°-1ΘI

E°-\ ^'ι: Eι'0®E°'1^Eι'ϋ®IE
0'\ et q=f-*®tf*@tf-1. Mais Λ2 °=Λ°'2={0},

2̂,o e t ô,2 s o u s pidentite parce que / est le scalaire i dans Elf0, —i dans Z?M; et
0'1, q1'1 est nul, et E1-0 ΘiE°'ι={0} parce que I ξ®η-ξ®I η=2i
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(ξ®v) pour £, ηEΞE1-0. Done ? est l'identίte de
sur E1 Θτ E\ mil sur Sίe(Eι>0®E0Λ). La dimension de Λ est bien N2, celle de
Eι>ι=Eι>«®E«>\ Nous avons trouve un operateur / sur ( E ^ O J ^ Θ ^ Θ J E 0 - 1 ) ,

nous en avons un aussi sur {EI

J

riEI)QI{EI

J\-iEI), e'est le meme par la bijection
(f'°(Bq0t2, qui est ainsi C-lineaire et /-lineaire.

6. Nouvelles proprietes des martingales conformes

(6.1) Soient V une variete complexe, X une F-semi-martingale sur A> ouvert
— ^ 1

optionnel de R+ X Ω. Les notations dX, dX> dX\ — d[X, X]> suivant le principe
general indique k (5.1), devront garder leur signification ancienne, V etant
consideree comme variete reelle; on pent introduίre de nouveaux objets, avec

de nouvelles notations, mats on ne doit pas detruire les anciennesS9) Les differ-

entielles precedentes ont des composantes sur les sous-espaces definis au para-
graphe 5. D'abord

(6.1.1) dX=dX2'°+dX°'2+dXι'\ M ' ' ε Γ ^ ( Γ ) ; dX est reelle, done dX°'2=
dX2'0 (complexe conjuguee), et dX2'°+dX2'°^3le(T2'0®T0'2)9 dX1'1 est reellee
SίeTι'\ Ensuite

(o.l.Δ) dΛ. —(dΛ. ) -\-\dΛ. ) ' f et

(9) Voir la dέfinition de dXy Schwartz [3], proposition (2.7) page 16, ou de prέfέrence
Schwartz [4], (2.10); dXc a Schwartz [3], proposition (2.11), page 20, ou Schwartz
[4], (2.12); dX a Schwartz [3], (2.13quarto), page 21, ou Schwartz [4], (2.12); dX=dXc

+dX; Y d[Xf X] a Schwartz [3], (2.14) page 22, ou Schwartz [4], (2.12); y d[Xf X] =

πdX=πdXf image dans le quotient T 1 ©! 1 1 de T2. En ce qui concerne la distinction entre les
objets relatifs a V complexe ou seulement munie de sa structure rέelle, on peut έtre tres rig-
oureux pour une variete genέrale, mais e'est plus difficile si V est un espace vectoriel E muni
d'une structure complexe, et parfois les choses s'embrouiίlent! On conviendra ceci: si E
est /?-vectoriel (resp. C-vectoriel avec multiplication par I'GC; exemple, E=Cir), [X, X]
est le crochet ree leEQR E (resp. le crochet complexesEQgE) si E est R- (resp. C-)ventoriel,
muni en outre d'un operateur R- (resp. C-)lineaire / de carre —1, [X> X] est a valeurs dans
£ © # , © = © B (resp. Q0)y [X, X]i est a valeurs dans Eτ © Γ EIf © j ==©«,/ (resp. Qoj)- Par
exemple, a (6.1.4), d[Xy X I ^ G T 1 * 0 © T1.0, ©=©<?; a (6.2.1), d[X, X | Λ e T ^ © T ^ , © =
Qo\ a (6.3), GA est C-vectoriel, d[X, X]^GΛQGΛ> G=Θo- Dans (7.4) pour E complexe
et M martingale conforme, nous avons specifie que Γensemble •[ } de Γenonce etait relatif
au crochet rέel, a valeurs dans E QR E, meis qu'on reconnaissait la martingale conforme d'apres
[Mt M] =0, pour le crochet complexe, a valeurs dans EQo E. Mέme si E=Cy ou en principe
(le multiplicateur est i) [M, M] est le crochet complexe a valeurs dans CQC=C, on pourra

2 x 3
toujours specifier [Λf, M]o&Ct [M, M]R^C QR C, de dimension recjle —r— = 3. Dans len-

once (7.4), on voit aisέment qir , si Γon veut conserver seulement les structures complexes,
[My M]o est a valeurs dans E ®cr E (E antiespace de 2?)> et que £[M, M]R est a variation finie
jusqu'en T}={[Mf M~\σ est a variation finie jusqu'en T}, alors que la martingale conforme
se reconnait par [M, ik/]cr=O.
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(6.1.3) dX^dX^+dX^+dX1-1

(6.1.4) -1 d[X, X\=l. d[X, X] 2 ° + i - d[X, XfΛ+^- d[X, Xf \ avec i - d[X,

XY oeT' OQT1-0, — d[X, Xf 2=-I d[X, Xf-°, et — d[X, ί ] u ε f
ίL ΔJ Δd

(identifie a T0-1® Γ1-0) reelle, d o n c e ^ Γ 1 - 0 ® ? ^ 1 ) , — </[X, Z] 2 ' °=—

+
En outre, (dXcy-0=(dX2-oy, (dXJ^idX0-2)', et alors (dX^^O, dX1-1 est

une differentielle de processus a variation finie=rfX1 1. Comme ensuite
— <ί[ΛΓ, X]=π dX=π dX, π projection de T2 sur Γ'ΘΓ1, λ d[X, Xf °=π dXz \

— d[X, XfΛ=π dX" 2, — d[X, XfΛ=π dXh\ done, d'apres la fin de (5.5), dX1-1

2 _ 1 .
=(ΛΓ1>1) ' — d[X, X]1'1, ce qui montre a nouveau qu'il est differentielle de processus

a variation finie. Comme on le voit, toute Γinformation est contenue dans dXz °,

y 0, dX2 \ -1 d[X, Xf °; dX2-0 permet de retrouver dX par

(6.2) dX=2 &e dX^+iπ1-1)-1 d[(X2 °)c,

Recrivons tout dans une carte sur un ouvert U d'un espace vectoriel I-com-
plexe E:

(6.2.1) dX=dXl-°+dX°'\ — d[X, X]=— d[Xι \ Z 1 ° ]+— d[X° \
d[Xlfi, X*'1]. Alors 2 2 2

I dX \ I dXι °

/ o
dX1'1 = I

y — \d[Xh0, X0Λ]

(6.2.2) Cela revient d'ailleurs a proίiter de la structure complexe pour ne
considerer qu'elle, et a utiliser Γ ^ , T2

My T^OT^, isomorphes aux precedents,
et dont les cartes sont sur EIy EJφ(EIQI £*/), EJQEJ] cela permet de definir

^ 1directement les difFerentielles dX^ dX0^ dXM^ —d[X, X]jι, par la methode

des differentielles a valeurs dans des fibres optionnels, en utilisant les change-
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ments de cartes de (5.4) comme dans Schwartz [4], Bien qu'on effectue, dans
ces deux derniers cas, des passages aux quotients, ces expressions donnent
toute Γinformation: dX2t0 ou dXjζ permettent de retrouver dX.

(6.3) Soit dM une differentielle de martingale a valeurs dans un fibre option-

nel GA, a fibre vectorielle complexe. Alors —d[M, M] est une differentielle

de processus a variation finie, a valeurs dans le fibre GA Qc GA. On dira que

dM est une differentielle de martingale conforme si — d[M, M]=0. Si /, ]'

eθpt(^; Gi),JΘJ'εΞθpt(A; Gί Qc Gf), et((/Θ/')lyd[M, M])=d[J.My

J'.M], differentielle de processus a variation finie complexe. Alors dM est
une differentielle de martingale conforme, ssi, Y J^Opt(A; Gjf), (J\dM) est
une differentielle de martingale conforme complexe. On sait que ^MeOpt
(A; GA) ®oPt JM(A), (Schwartz [4], proposition (2.3), et qu'elle s'ecrit dM=

Σj gk dM\ gk<Ξθpt(A', GA), dMk^3ί(A), avec (gk)k=ι^,m Opt-base de

GA\ {g*%=i,2, ,m Opt-base duale de Opt(A; G% dMk={g*k\dM). Ceci ex-
prime, comme toujours, qu'en fait dM^Opt(A; GA) ®O Pt <3M'(A)y oύ 31'{A)
est un sous-Opt(^4)-module de rang fini de <3tt{A). Alors dM est une differ-
entielle de martingale conforme ssi dM^Opt(A; GA) ® O p t JM\A)y oύ 3i\A)
est un Opt(^4)-module de differentielles de martingales conformes (rappelons
que les martingales conformes ne forment pas un espace vectoriel, elles ne
sont pas stables par addition).

Proposition 6.4 (Theoreme). Soit M une V-semi-martingale sur A. Les
proprietes suivantes sont equiυalentes:

1) M est une martingale conforme \

2) dM2'0 (ou dM0'2) est une differentielle de martingale, c.ά d. dM2'0^ (ou

dM°'2=0), oudMeϊT1'1, oudM=(π1Λ)~ι d\M2>\ M0 '2];

2bis) dΛP'OeΞT1'0 (ou dM^tEΞT0'1), et c'est une differentielle de martingale

conforme; alors d[M2'\ M2'°]=d[M0'2, M° 2 ]=0, done — d[M, M]EΞ

3ίe{Tι'0®T0Λ) et=d[M2-\ M2 7 0].

3) dAP^+dM0'2 (=2 Άe dM2'0) est une differentielle de martingale (reelle);

3bis) dM2'°+dM°'2=2 3JedM2'°^T\ et c'est une differentielle de martingale

reelle (qui est done dMc).

Demonstration. Comme 2bis=#>2, nous montrerons que 2=#>2bis et que
1<̂ >2; le passage a 3 et 3bis est evident. Supposons 2; alors dM2'°=(dM2'°)c

=(έ/Mc)1 ° e Γ 1 0, et alors son image dans le quotient T2'°jTι'° est nulle,
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— d[M2>0> M2'°]=0y done 2bis. Regardons une carte holomorphe sur un ouvert

d'un espace vectoriel /-complexe E. Dire que M est une martingale con-
forme, e'est dire, dans cette carte, que dM, composante de dM sur E ou E-\-iE,
est une differentielle de martingale /-conforme; comme dMlf0 et dM0'1, ses
composantes sur E1'0 et Eo>1, sont z-conjuguees, e'est dire que dM1>0 est
une differentielle de martingale conforme; ou que dM1>0 est une differentielle

de martingale et — d[Mh0, Λ/1 °]=0; mais, lu dans cette carte, dM2>°=
2

1 jrn/ri o Ά/rι on > c e ^ a equivaut done a dire que dM2'0 est une differentielle de
\~2 ' ' ' '
martingale. Π

(6.5) De la decomposition en somme directe des Tk-\-iTk on deduit celle des
T**-f-/7 **. Le dual de chacun des sous-espaces est Γorthogonal de la somme
des autres. Alors de (6.4) on deduit aussitόt:

Proposition 6.5 Soit M une V-semi-martingale sur A, Les propήetέs

suivantes seront έquivalentes:

1) M est une martingale conforme•;

2) Pour tout /eθpt(^4; M\ Γ2'°*(F)), (J\dM) est une differentielle de martin-
gale)

2bis) Pour J(Ξθpt(A; M; Γ2'0*(F)), (J\dM) ne depend que de Γimage de J
dans le quotient Opt(^4; M; Th0*(V)), et e'est une differentielle de martingale
conforme.

3), 3bis) Pour J^Opt(A\ M; 3le(T2'°*(V)+T0'2*(V)), (J\dM) est une differ-
entielle de martingale, ou elle ne depend que de Γimage de J dans Opt(^4; M; Γ1*
(V))9 et elle est une differentielle de martingale. On pent se borner a supposer
J de la forme ω(M), ω champ de (2, O)-vecteurs continu ά support compact; alors,

si A=R+ X Ω, Γintέgrale stochastίque ω(M) M est une martingale conforme.

REMARQUES 6.6 Enfin, voila des definitions directes des martingales con-
formes, sans passer par les fonctions holomorphes φ sur des ouverts! C'est
ce que je n'avais pas pu trouver dans Schwartz [1]. Voir remarque page 92,
qui enonce un theoreme faux, dont Γerratum a ete distribue ulterieurement. Une
integrale de Stratonovitch par rapport a une martingale n'est pas une martin-
gale! Remarquons qu'on peut prendre J a support compact, alors qu'on ne
pourrait pas prendre J=D2φ(M)> φ holomorphe a support compact!

(6.7) Au lieu de raisonner sur Γ1'0, Γ2'0, on pourrait prendre T\, T2

M, et
T^IT^—T^QT^. Alors M est une martingale conforme ssi dM est une

differentielle de martingale, dM=0, ou ssi elle est dans T\, et est une differ-



100 L. SCHWARTZ

entielle de martingale conforme, — d[M, M]s=0. Les varietes reelles nous ont

habitues a ce que dX ne puisse prendre ses valeurs dans T1 que si X est a varia-
tion finie. Et ici nous trouvons des martingales conformes M, pour lesquelles
dM2t0 ou dMM est a valeurs dans Γ1'0 ou Tι

M\ Cela vient de ce qu'il y a eu
passage au quotient. Par exemple, T% est le quotient (T2+iT2)jJl2, m2=T0'2

©Γ 1 ' 1 ; dire que dMM^T\ veut simplement dire que
+ Γ U = T 1 ' ° 0 Γ ' 2 Θ Ϊ 1 U , ce qui n'a plus rien d'extraordinaire! Par con-
jugaison, cela veut dire que dM^T1Jr3le Γ1*1, ce qui est bien le cas, puisque

dM=dMc+dMul.

(6.8) On peut donner des enonces analogues exprimant que X est une semi-
martingale conforme. Dans (6.4), 2) deviendra: dX2f0 est une differentielle
de semi-martingale conforme (sa composante martingale est conforme), 2bis)
deviendra: dX2>0 est a valeurs dans Γ1'0 et est une differentielle de semi-mar-
tingale conforme, etc....

Corollaire 6.8. Dans Γespace S<3tt{V) des V-semi-martingales sur Λ + x Ω ,
Γensemble des martingales conformes estferme.

Demonstration. On pourrait le faire directement avec la definition des
martingales conformes, mais c'est nettement plus simple a partir de (6.5). Com-
me S<3M(V) (A=R+XΩ est omis) est metrisable, on peut prendre une suite
(Mn)nGN de martingales conformes, convergeant vers une semi-martingale M.
Quitte a extraire une suite partielle, Mn converge vers M, pour presque tout ω,
uniformement en t (chaque trajectoire est compacte, la convergence uniforme
a un sens par des cartes). Alors, si ω est un champ de vecteurs (2, 0)-cotan-
gents, continu a support compact, ω(Mn) converge vers ω(M), pour presque
tout ω, uniformement en t. Comme ensuite Mn converge vers M dans SJM(V),
ω(M)n Mn converge vers m(M) M dans <5c5K(scalaire !); les ω(Mn) Mn sont
des martingales conformes, sous-ensemble (non sous-espace vectoriel !) ferme
de SJM, done w(M) M est une martingale conforme(10) (On ne pourrait pas

(10) Pour la topologk de S<3ί, voir note (2), page 79. La topologie de S3ί etant definie
pour les semi-martingaJes nulles en 0, si X est quelconque, on dira que X converge vers 0
si Xo et X—XQ convergent vers 0. Pour les semi-martingales sur une variete V, on dira
que X converge vers 0 si, pour toute φ reelle C 2 sur V, ψ(X) converge vers 0; cela revient a
plonger V dans un espace vectoriel (reel) E, et a considerer les F-semi-martingales comme
des E-semi-martingales. Dans la suite de la demonstration, peut-£tre faut-il preciser pourquoi
<B(Mn) Mn converge vers ω(M)'M dans SJM. II existe un relevement lineaire continu p de
T*2(F), fibrέ sur F, dans le fibre trivial dont il est un quotient, Vx(E*@(E*QE*))t et de
mέme dans les complexifies correspondants. Alors, ϊΰ(M) M=p<ΰ(M)'M, M etant consideree

/ M \
comme a valeurs dans E®(EQE)y M= I \ . La convergence έnoncέe est alors un

y— [M, M] J
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prendre des ω de la forme D2 <p, car φ devrait etre holomorphe pour que φ soit
a valeurs dans T2'0, et il n'y a pas en general assez de fonctions holomorphes
si V n'est pas de Stein ! et jamais de fonctions holomorphes a support com-
pact !). •

7. Prolongements de semi-martingales au-dela d'un temps d'arret

Sauf mention expresse du contraire, et sauf a (7.1), (7.1.1), (7.1.2), toutes
les semi-martingales seront supposees continues.

(7.1) Tout ce que nous avons fait pour un ouvert A de R+XΩ peut etre refait
aussi bien pour un ouvert relatif A de [Sy T]> intervalle stochastique. Nous

prendrons toujours AdR+xΩ, done T̂ Ξ + oo ou T ^ + oo reviennent au

meme. Nous dirons que Z E J ( J ) si X est restriction a A d'un processus op-

tionnel X sur R+ X Ω, et s'il existe une suite (An)nfΞN d'ouverts relatifs de [S9 T]

tels que, pour tout n, Z ^ Z Λ e J ( ^ + x Ω ) . Nous demandons au lecteur d'
•A-n

admettre que tous les enonces sont valables. (Nous Γavons d'ailleurs fait
dans Schwartz [3], (6.1) page 86, pour les semi-martingales.) Pour le §1,
les hypotheses Xr^X\ semi-martingale (1.4) ou semi-martingale continue

(1.5) subsisteront sous cette forme. Ce sont ici les extremites *5(ω), T(ω),
qui donnent les petits ennuis techniques que donnaient 0, + ω dans le cas de

R+ X Ω. Signalons, en vrac, quelques proprietes faciles:

(7.1.1) Soit A'Z)A Γouvert de [5, +oo] obtenu comme suit: si T(ω)^A(ω),
on pose ^4/(ω)=^l(ω)U [Γ(ω), +°°] , sinon A'(ω)=A(ω). On peut faire de
meme pour les An intervenant dans la definition, remplacer X et Xn par Xτ,
Xn. Alors X^:Jl{A) ssi Xτ^Jl(Af), ce qui permet toujours de remplacer
[Sy T] par [Sy -f-°°] On ne peut pas remplacer S par 0 de la meme maniere,
les processus obtenus ne seraient plus optionnels. Mais, dans le cas de pro-
cessus a valeurs vectorielles, on peut encore remplacer A par A" ouvert de
[0, T] de la meme maniere, a condition de remplacer Xy Xn par X— Xs, Xn—
X*\ X^Jί(A) ssi X—Xs<E.Jl(A") (rien de tel dans le cas d'une variete V).
Finalement, en prenant A'\JA", ouvert de Λ+xΩ, X^Jί(A) ssi Xτ—Xs&
Jl(A' U A"\ A'ΌA" ouvert de R+ x Ω.

thέoreme dΈmery, Emery [1], qui s'enonce comme suit: si (Hn)n(Ξjr est une suite de pro-
cessus continus qui converge vers un processus H continu, pour presque tout ω uniforme-
ment en ί, et (Zn)wejv une suite de semi-martingales qui converge vers une semi-martingale Z
dans SJM, les integrates stochastiques Hn Zn convergent vers H Z dans SSί. En efϊet, par
la mέthode de localisation dΈmery on se ramene (en prenant des suites partielles) a une suite

Hn convergeant vers H dans Sp, Zn vers Z dans JC9, done Hn Zn vers H Z dans Mr> — + — = — .
p q r



102 L. SCHWARTZ

(7.1.2) X est une semi-martingale sur [S, T] ssi elle est restriction d'une semi-

martingale X' sur R+χ£l (Schwartz [1], Proposition (2.4), page 10); elle est

semi-martingale continue sur [S, T], dans le cas vectoriel, ssi elle est equivalente

a une semi-martingale continue X'T~X'S sur Λ + x Ω , et alors (1.5) montre

que X<=JL[S, Γ ] ^ Z Γ - Z S G J ( J K + X Ω ) .

(7.1.3) Si X est une semi-martingale vectorielle (a partir de maintenant, toutes
les semi-martingales seront de nouveau supposees continues) sur [S, T]9

Jl(A) ssi Z G j ( i n ] S , T[), ^ Π ] S , Γ[ ouvert d e Λ + x ί ] (car, si

Γ\]S, T[), etant equivalente sur A a une semi-martingale sur Λ+XΩ, elle est

equivalente sur Af]]S, T[ a un element de <JL par (1.5), mais alors, par con-

tinuite, elle Test aussi sur A. Ceci subsiste pour des martingales conformes

a valeurs dans une variete complexe, en raisonnant sur φ(M) et A Π M~\V).

(7.2) Le probleme que nous etudierons dans ce paragraphe est le suivant:
X est une semi-martingale (continue) a valeurs dans une variete F, sur [*S, Γ[,
7X4-oo; quand est-elle prolongeable a [S, Γ]? Le meme probleme se pose
pour ]S, T], nous ne le regarderons pas ici. Un theoreme de Meyer Strieker
(Meyer-Strieker [1]) dit qu'il existe une suite (Tn)nGN croissante de temps
d'arret, Tn/T9 stationnairement sur {7\=-{-oo}, telle que X soit restriction a
[S> Tn[ d'une semi-martingale Xn sur [5, + ° ° ] ; nous la supposerons arretee
en Tn, ce qui la rend unique. En particulier XTn- existe sur {Tn>S}. Dans

le cas vectoriel, X\ X, — [X, X], H.X, qui ne sont definis a priori que comme

processus formels, vont exister comme vrais processus sur [S, T[> grace aux
Xn sur [AS, Tn[; ils ne sont bien entendus definis qu'ades ensembles P-negli-
geables pros; on prendra J£S=XS, X%=0 done, en la prolongeant par 0 dans
[0, 5], definie sur [0, Γ[, [X, X]s=XsQXSy et H.X nulle en 5, done, pro-
longee par 0 dans [0, S]> definie dans [0, T[9 pour H a trajectoires H(ω) bor-
nees sur tout compact des [S(ω), T(ω)[. Pour simplifier, nous ecrirons aussi
Xτ» au lieu de Xn=XΪ», XTn=XTn_=(Xn)Tn sur {Tn>S}. Ou encore, X sera
automatiquement prolongee par Xτ sur [5, T'[, T' = -{-oo sur {3 n tel que Tn=
Γ}, T ailleurs, et elle y sera une semi-martingale, puisqu'elle coincide avec
Xn sur [0, Γn[, Γ ; = - + ^ sur {Tn=T}, et Tn ailleurs, et que [S, T'[= U

n(=N

[S, Tn[. Dans le cas vectoriel, il en sera de meme de X\ X, [X> X]y H.X;
si I G J [ S , T[9 alors I G J [ S , T'[9 puisque XueJl[S9 Tn[ et meme JL[S, +° ° ]
par (1.5). Ceci subsiste pour les martingales conformes sur les varietes com-
plexes, par (3.3.1).

(7.3) On dira que X(ω) converge si X(ty ω) a une limite pour t<T(ω) ten-
dant vers T(ω). On dira que X(ω) converge parfaitement, dans le cas vec-
toriel, si X(ω), Xc(ω), convergent, et si X(ω)s [X9 X] (ω) sont a variation finie
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jusqu'en T(ω) (done convergent). L'ensemble {X converge parfaitement} est
defini a un ensemble P-negligeable pres.
Le cas vectoriel le plus anciennement connu est celui des martingales.

Proposition 7.4 Soit M une martingale a valeurs dans un espace vectoriel

E. Les 3 ensembles suivants coincident P-ps.:

{1} = i[My M] est a variation finίe jusqu3en T}

{2} = {M converge}

{3} = {La trajectoire de M est relativement compacted.

Alors M se prolonge en une martingale M' sur [5, T"[, oil 7 " = + oo sur ces 3 en-

sembles et T aίlleurs, et ce prolongement est unique si on lui impose d'etre arrete

en Ty c
3est Mτ. Si E est complexe (auquel cas {1} est relatif au crochet de la struc-

ture rέelle), et si M est une martingale conforme pour la structure complexe, M'

Vest aussi.

Demonstration. En remplaςant M par M—Ms, on se ramene a 5 = 0 .
Le cas complexe est evident car M est conforme ssi [M> M] (crochet complexe
cette fois)=0, done aussi \M\ M']—0 (voir note (9) page 96). La demon-
stration est bien connue pour T = + °°; (voir Lenglart [1]; pour d'autres
problemes analogues, voir Sharpe [1]), mais, bien qu'elle soit la meme, elle
ne semble figurer nulle part pour T arbitraire. On utilise les Tn de Meyer-
Strieker; les Mn=MTfl sont des martingales, par (1.5). Si les Mk sont les

coordonnees de M dans E, [M\ Mk] est croissante, et \d[M\ MJ']\ < — (d[M\

', Mj]), done {1} est aussi {[M, M] converge} en outre, ceci permet
de nous ramener au cas reel. Dans le cas reel, on peut definir [M, M] et M*,

Mf=sup \MS\9 sur R+xfί, a valeurs< + °° Alors {1} est aussi {[M, M]τ

< + °°}> et {3} est { M ί < + oo}. On a les equivalences {1}=Ω P.p.s.<^>Les
[Mm Mn]oo sont bornees dans L°(Ω, O, P)<^>Les (Mn)* sont bornees dans L°
(Ω, Θ, P) (Schwartz [2], topologie de ^ (3.8bis) page 445 (33), (3.9bis) page
446 (34)) «=> {3} = Ω Pp.s. Done, si {1} ou {3} porte P> les deux portent P. Mais
alors, pour n^m, [Mn-Mm, Mn-Mm]=[Mny M^—{Mm, Mm] convergent vers
0 P— p.s. pour ft->+o°, done (Mn)neΞN est une suite de Cauchy dans Γespace
complet c_5K des martingales sur R+xΩ, done a une limite; done {2}=Ω
P p.s., et cette limite ne peut-etre que Mτ. Mais {2} C {3}, done, si Γun des

3 ensembles porte P, les 3 portent P, et Mτ est une martingale sur ϊϊ+xΩ.
Passons au cas general. Soit Rk=lnί{ί<Γ; [M, M]t>k} (avec Rk=T si

cet ensemble est vide). Alors Rk/T, et stationnairement exactement sur
{1} = {[M, M ] Γ < + oo}. La martingale MR* est definie sur Λ + χ Ω d'apres
ce qui precede; done (MRή$<-j- oo P p.s., et MRk converge en TP p.s. D'apres
la stationnarite ci-dessus, {1} C {3} et {l}c{2} P p.s. Puis, soit Sk=Inf

; Mf>k}; Sk/Ty stationnairement exactement sur {3}
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Le meme raisonnement montre alors que {3}c{l} et {3}c{2} P-p.s. comme
trivialement {2} C {3}, les 3 ensembles coincident. Appelons-les { }.

Enfin M prolongee en Mr est MR*, martingale sur R+ x Ω, sur [0, T[ U (R+
X {Rk= T}); done M est une martingale sur [0, Γ[U {R+ X { }} =[0, T'[. D

Corollaire 7.4.1 1) Si M est une martingale vectorielle, elle converge

parfaitement la ou elle converge]

2) La convergence parfaite est stable par les applications C2, done pent se definir

sur une variέte V, et elle subsiste lorsqu'on remplace P par une probabilite equiva-

lente. Si T " = + oo sur {X converge parfaitement}, =T ailleurs, X se prolonge

en semi-martingale X1 sur [S, T"[, X'=XT. Dans le cas vectoriel, si X^Jl[S, T[,

alors X' e Jl[S, T[. (Voir un petit article d'Έmery, just avant Meyer [3].)

Demonstration. 1) est (7.4). 2) resυlte dΊto: si Φ est une application

C2 de E dans F vectoriels, sur {X converge parfaitement}, Φ(X)~Φ\X)

X est a variation finie, Φ"{X) — [X, X] aussi, Φ'(X)QΦ'(X) — [Xy X] aussi,

done, par (7.4), Φ(X)C=Φ'(X) XC converge. Sur une variete V> on dira que X
converge parfaitement en T, si e'est vrai pour un plongement de V comme sous-
variete fermee d'un vectoriel, et e'est alors independant du plongement; {X
converge parfaitement} = Γl \ψ{X) converge parfaitement} (Γl^P-essentielle).

<P(=C2

La possibilite de prolongement en semi-martingale sur [S> T'[ resulte de ce
que e'est vrai, dans un plongement, pour Xc par (7.4) et X trivialement. Le
prolongement par Xτ' est P-essentiellement le plus grand prolongement en
semi-martingale arretee, done il subsiste si on remplace P par une probabilite
equivalents Si Z G J [ 5 , Γ[, dans le cas vectoriel, Γetude de X\ X, [X, X],
montre que X^.JL[S, T'[.

REMARQUE. 1) Par contre, (7.4) ne subsiste pas du tout tel quel pour les
martingales conformes sur les varietes complexes, et il n'est nullement evident
qu'une martingale conforme converge parfaitement la ou elle converge. Ce
sera l'objet de (7.12) et (7.14).
2) La convergence parfaite de X en T est done la condition necessaire et suf-
fisante pour que X se prolonge en semi-martingale dans [S, Γ], et on aurait
pu prendre cela comme definition.

(7.5) Nous voulons etendre cela a d'autres processus que les martingales.
L'approfondissement a ete du a un theoreme de Darling et a une reciproque
de Zheng,(11). Comme les conditions generates ont ete explicitees par Zheng,

(11) Darling et Zheng ont expose ces resultats (et d'autres plus fins) dans plusieurs articles.
On trouvera un expose en style "strasbourgeois" dans P.A. Meyer [3], et d'autres articles
traitent du m&ne sujet dans le mέme Seminaire.



COMPLEMENTS SUR LES MARΊ INGALEL CONFORMES 105

nous proposons de donner son nom aux semi-martingales ayant les proprietes

voulues. Soit X une F-semi-martingale sur A CLR+ X Ω. On sait que — d[X,

X\=π{X)dX, done — d[X> X] est de base dX. On peut done definir

\d\\X,X\\ . , . ~
^ comme une function^ 0 definie dX-p.ρ.=dX-p.p.> des qu'on

\&\
a defini des normes | | continues sur les fibres de T\V) et de T\V)QT\V).
On peut definir une infinite de telles normes, euclidiennes si on le desire, par
des cartes, mais elles sont toutes equivalentes sur tout compact de V. Pre-

cisons. La difϊerentielle de processus a variation finie dX, a valeurs dans T\V)

le long de X> est dominee par la differentielle de processus croissant \dX\ >0,

done dX=f \dX\,f section optionnelle de T\V) le long de X, \ f \ = 1, dX p.p.

de meme — d[X, X]=π(X) dX=π(X)f\dX\> d'oύ - i \d[X, X]\ = \π(X)f\

_ \\d{x,x\\
I dX I, et — = I π(X)f \, defini dX-p.p. ou dX-p.p. II en resulte que

\dX\
dX et — d[Xy X] seront equivalentes ssi | π(X)f \ > 0 dX-p.p. On pourra alors

1 \d3L\
parler de son inverse = ' ' =p*,0<p # < + °° definidX-p.p. =

'*W/l \\d[x,x}\
dX-p.p.=d-^[X,X]p.p. Z

(7.5.1) On dira alors que X> F-semi-martingale sur A ouvert de β + x Ω ,
/^/ 1

est une semi-martingale de Zheng, si dX et — d[Xy X] sont equivalentes, et si

p* est borne "sur tout compact de V", i.e. sur tout X~\K), K compact de V.

Proposition 7.6 (Zheng). Soit X une semi-martingale de Zheng sur [S, T[.

Sur {X converge en T}> X converge parfaitement (7.3); X est prolongeable en

une semi-martingale X' sur [S, T"[, ou 7 v = + oo sur {X converge}, T ailleurs,

prolongement unique si on lui impose d'etre arrete en T> et X' est de Zheng.

Demonstration. On la trouvera dans Meyer [3], en remplaςant S par 0

comme ci-dessus, /z->-foo par Tn->Ty et en prenant un plongement ferme

de V dans un vectoriel E. Cette demonstration prouve seulement que X con-

verge parfaitement. Mais, toujours en raisonnant dans E, Xc se prolonge en

martingale par (7.4), X en processus a variation finie, done X en semi-martin-

gale. En outre Γinegalite f'| dXu \ < Γ pJd — d[X, X]J sur [0, Γ[, se prolonge
Js Js 2
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par continuite a [0, T'[ (p n'etant jamais qu'optionnel defini dX-p.p.). Done
X' est de Zheng.

Nous allons defϊnir une "reciproque". Sur un plongement de V dans E,
la convergence de X entraίne celle de [X, X]: mais celle-ci, sans hypothese
de convergence de X, entraίne celle de [φ(X)> <p{X)]y pour φ^Clomp (φ function

C2 sur V a support compact), par Ito: [φ(X)> φ{X)]=φ\X)Qφ\X) — [X, X],

1 2

— [X, X] k variation finie jusqu'en T et φ\X) bornee. Done, (7.6) dit que,
Zl

sur {X converge}, pour toute <p^C2

comp, [φ(X), φ{X)] converge P ps.

Premiere reciproque (Darling) 7.7. Soit X une semi-martingale de
Zheng sur [ 5 , T[. Sur Γensemble {}= (J i[φ(X), φ{X)]τ< + °°} ( Π est

^c2

comp

Γintersection P-essentielle), X converge en T P ps.y dans le compactifiέ d'Alexandroff
ψ=:VΌ {oo} deV.

Demonstration. Tout etant intrinseque, on peut plonger V comme sous-

variete de E (fermee ou non). Alors, si φ^C2

comp, φ(X)=φ(X)c+φ(X). Mais

[φ(X)c, φ{Xc)]=[φ(X), φ(X)]< + oo P p s . done, par (7.4), φ(X)c converge sur

{ }. Mais les inegalites [φ(X), φ(X)]τ< + oo ont la consequence suivante:

quel que soit/, processus 2-cotangent le long de Xy element de P*(F), borne

"a support compact", i.e. porte par un X~\K), K compact de V> J. X=J. —

[X, X] converge sur { }. (Schwartz [3], §1, page 3.) En effet, plongeons V

comme sous-variete, fermee ou non, de E vectoriel; / se releve en un processus,

que nous appellerons toujours Jy a valeurs dans E*QE*> borne a support com-

pact. Si (#*)*=i,2,... sont les fonctions coordonnees de E, J=— Σ cxitj Dx\X)Q

Dxj(X), oύ les aitj sont optionnelles, bornees a support compact sur V, et
ceci a de nouveau un sens intrinseque sur V. Mais, sur ce support compact,
les xk coincident avec des fonctions φk C2 a support compact sur V, d'oύ

J = \ Σ au DφXX)QDΨ'{X) \ [X, X]

qui converge, en vertu des hypotheses. Nous allons en deduire que, si X

est de Zheng, pour toute φ^Clomp, φ(X) converge sur { }, done φ(X)> done

(12) Pour cette formule, voir proposition (2.14) page 22 de Schwartz [3]. II y a bien

disparition d'un facteur y : UQJ' K)=UQJ>\ [X, X]=U'K> 7' X].
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X converge en T sur le compactifϊe d'Alexandroff V de V. Utilisons main-
tenant la propriete precedente de Zheng. Recrivons, comme a la page prece-

dente, dX=f\dX\, — d[X, X]=h\dX\, h=π(X)f; il existe une application

lineaire p (*, ω) de T\V; X(t, ω))QT\V; X(t, ω)) dans T\V\ X{t} ω)), telle

que p (t, ω) h(t, ω)=f(t, ω), de norme h\p(t9 ω)\=p\ty ω)= \*y* ω\\, en repre-
\h{ΐy ω)|

nant les notations de (7.5), si les normes sur les T\V\ X{ty ω)), T\V\ X(t, ω))Θ

T\V; X(t, ω)) ont ete choisies euclidiennes. Alors dX=p -~ d[X> X], dX-pp.
Done φ(X\τίι: &<p(X) X=&φ(X) P — [X> X]; et &φ(X) p est un processus

J a valeurs dans P*(F) le long de JL", borne a support compact (p:

T\ D2φ(X): Γ2->Λ), done <rfX) converge bien. •

REMARQUE. On sait quJon ne peut pas remplacer ici fi par V. II suffit
de prendre V sous-espace ouvert d'un vectoriel E, X=M martingale a valeur
dans E, Γ = temps de sortie de V. Alors, si [M, M] converge dans Ey [<p(M),
φ(M)] converge par Ito pour φ^Clomp(V); M converge dans E, done dans F,
pas dans V. DΌύ Γidee d'une deuxieme reciproque. Car (7.6) dit aussi que,
si X converge, [φ(X)y <p(X)] converge pour toute φ&C2 a support quelconque,
puisque X converge parfaitement, propriete stable par applications C2.

Deuxieme reciproque 7.8. Soit X une V-semi-martingale de Zheng

sur [S, T[. Sur { } = Π i[φ(X), <p(X)]τ< + °°} (Π P-essentielle) X converge

en T dans V elle-meme.

Demonstration. Comme dans (7.7), Vφ&C2, φ{X)c converge sur { }.
Ensuite soit / 2-cotangent le long d e l a valeurs dans P*, optionnel "borne
sur tout compact de V", i.e. sur tout X~\K), K compact de V, Plongeons
encore V dans E, mais cette fois-ci comme variete non necessairement fermee,

dans un ouvert borne de V; les xk sont bornees sur V. On a encore / = — Σ

ai%j Dxi(X)QDxj(X)t aifj bornees sur tout compact de V. Soit (Kn)nfΞN une suite
o

croissante de compacts Kn epuisant V, KncKn+1. Soit an=suρ\aitj(t, ω)\
pour X(t, ω)^Kn. II existe une fonction β C2 reelle>0 sur V, telle que β^an

sur Kn\Kn_v Alors les ai%jjβ(X) sont optionnelles, bornees en module par 1.

Et J = | Σ - ^ β{X)Dx%X)ΘDxχX)=±- Σ J ^ {D(Xiβ) (X)ΘDx'(X)

x'(X) Dβ{X)QDxi{X)). Gomme les x' sont bornees sur V,

7 = Σ Ύi Dφ'(X)QDψ'(X), <γ> bornees, φ',

Done 7 — [X, X | = Σ Ύι [ψ'(X), Ψ'(X)] converge. Ensuite on refait la fin du
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raisonnement de (7.7) utilisant la propriete de Zheng:

Vφ<=C2, φ(X){^r1 I¥φ{X)p-— [X, X], oύ Dzφ{X)p est un processus k valeurs

dans P*, optionnel, borne sur tout compact de V, done φ(X) converge sur { },
done φ(X) aussi, et X converge en T, dans V elle-meme (en prenant pour φ les
coordonnees d'un plongement ferme de V dans un vectoriel). •

On peut resumer ces resultats dans le tableau suivant:

{1} = {X converge parfaitement} C {2} =

Π ί[φ(X),φ(X)]τ< + «>} C {3} =

(7.8.1) c2

comp

{4} = {X converge} C {5} = {X converge dans V}

si X est de Zheng, {1} = {2} = {4} c {3} = {5}

si X est de Zheng et V compacte, {1} = {2} = {3} = {4} = {5} .

(7.9) Applications aux connexions.
Toutes les connexions sur une variete V seront supposees relatives au fibre
tangent T\V)y sans torsion et boreliennes localement bornees. Une telle
connexion est definie par un relevement lineaire p de T\V)QT\V) dans T2(V)y

πp=ly ou aussi bien par une projection lineaire de T2

y d'image Tι

y θ=l—pπ.
Dans une carte sur un ouvert d'un vectoriel E> p=— Γ©1, Γ application
lineaire de EQE dans Ey 1 identite de EQE. Une Γ-martingale pour cette

connexion, sur un ouvert A de Λ + x Ω ou de [Sy T]y est une semi-martingale

X telle que dX=p(X) — d[Xy X]y ou Θ(X) dX=Oy ou dX+— Y(X) d[Xy X]=

0; ρ(X), θ{X)y Y{X) sont optionnelles. (Voir par exemple Schwartz [4].)

Proposition 7.9.1. Une Y-martingale relative a une connexion est une
semi-martingale de Zheng. Si X est une Y-martingale sur [0, T[y et si T"= + oo
sur {X converge}, T ailleurs, le prolongement X' sur [0, T"[, X'=Xτ

y est une
Y-martingale.

Demonstration. \dX\ < |p(X)\ — \d[X,X]\,doneXest de Zheng. Alors,
jit

sur [0, T[> pour un plongement de V comme sous variete fermee d'un vec-
1

toriel, X<^>ρ(X) — [Xy X] sur [0, T[ donne la meme relation, par continuite,

pour X' sur [0, 7"[ (7.6) (meme si p n'est pas continue: ρ{X) est optionnel a
trajectoires bornees sur {X converge}) •

(7.9.1) Dans le cas oύ la connexion est celle de Levi-Civita, pour une structure
riemannienne sur V, T\V)QT\V) a des normes euclidiennes naturelles sur
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ses fibres, que nous noterons || | | ; son dual alors aussi, || ||*. Alors

||—d[X> X]\\ possede un sens; il definit un processus reel>0 croissant,
Δ

||—-d[X, X]\\, que nous etendrons par continuite et arret en T a JS+XΩ,
8 Δ

a valeurs < + °° Si nous reprenons les notations de (7.5),

±-d[X,X]=h\dX\, \\^d[X,X\\\=\\h\\ \dX\ .

Proposition 7.9.2. Pour toute semi-martingale sur [S, T[:

(7.9.3) φQ

C Π {[φ(X), φ(X)]τ< +00} P-p.s.

En effet, d[φ(X), φ(X)]=(Dφ(X)ΘDφ(X)) -L d[X, X]

Δ

<\\Dφ(X)ΘDφ(X)\\*\\ rfl [X, X]\\.
Si φeCξomp, \\Dφ(X)QDφ(X)\\* est borne, d'oίi la deuxieme inclusion. En-
suite, si G est un espace euclidien de produit scalaire (|), de norme || | | (ici

G=T\V; v)QT\V; v)), si AeG, la forme lineaire h' sur G: ξ^»MQ- est
de norme 1 dans <?*, et A'(A)=||A||. I | A | 1

Done — \\d[X, X]\\=h'(h)\dX\ =h'(—d[X, X]\ oύ P ' | | * = l , h' processus

2-cotangent a valeurs dans P* le long de X. Done h' est un processus / ana-
logue a ceux qui ont ete consideres dans la demonstration de (7.8), et on sait

que /• i - [X, X] converge en T sur Π 2 i[φ{X\ φ(X)]τ< + <*>} D

. . Γ 1
C'est pourquoi Darling en a deduit que, sur {\ —||^[^L", -Xlll< + °°}> X

Js 2
converge en T dans le compactifie d'Alexandroίf V, si X est de Zheng(13). On

(13) On procede souvent autrement. La forme quadratique g est une forme linέaire

(definie positive) sur T 1©^ 1- H est done possible de considέrer g(X) (— d[X, X])y

et {\T

g g(X) ( y d[X, X]) < -f oo}. Mais iJ est facile de voir que g(X) ( y d[X, X]) et | | y

d[Xy X]\\ sont equivalentes, du fait que — d[X, X]>0 dans TιQT1

i pour sa structure d'ordre

natureίle. Soit en effet (β*)*=if2f tiτ
 u n e base orthonormee de T1 (V; v). On sait qu'une base

orthogonale de Tι(V\ v)QT1(V; v) est constituee des £/©£/, /<./, et que \\eiQej\\=l si iΦj,

lkiΘβ. ll=V'2". Soit 0>O dans Γ^F; ^ © Γ K ^ ί ^), ^ = γ Σ ^ ; ' ^ i 0i.*=0'.i. Par la
1 / I ΛΓ l'3\\l2 f~N

positivitέ, ^.'>0, et |0' > |<y (β*.i+0'Ί)> done ||/9|| = ( y g ^ff/) ^ / Σ(^*'*)2. D'autre

part, g(fi*OeJ)=0 si I Φ J , ̂ © ^ 0 = 1, done ^ J
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ne peut pas remplacer V par V, parce que la premiere inclusion est stricte.
II suffit par exemple de remplacer V par un ouvert V de V, et d'appeler T'

le temps de sortie de X de V. Si Γ — \\d[X, X]\\< + oo9 a fortiori Γ

or X converge en T' sur V, done sur V'9 pas sur V elle-meme. II est vrai

que V n'est pas riemannienne complete. Mais meme si V est complete, ce

n'est pas sufBsant. Soit X une diffusion brownienne sur une variete rieman-

nienne, relative a Γoperateur differentiel de diffusion L=— Δ. L'image πL
1 1 *

sur TιQTι est — Θ = — Σ £*©**> oύ (**)*=i,2. ,tf e s t n'importe quelle base ortho-

normee sur T\ et \\πL\\ = ^^-. Done Γ— \\d[Xt X]\\= [T\\πdX\\ =
2 Jo 2 Jo

ί ||τrL(X)|| dt (rappelons que dX=L(X)dt)=J^- T). Or il peut arriver que
Jo V 2
cette diffusion ait un temps de mort Γ < + oo meme si V est riemannienne com-
plete, alors X ne converge que sur K, pas sur V. Or elle est une Γ-martingale.(14)

(7.10) Connexions complexes sur une variete complexe V.
On appellera connexion complexe ou ^-connexion, ou /-connexion, un re-
levement C-lineaire pM de T^QT^ dans T\. Cela revient aussi a dire une
projection ΘM de T\ sur T\. Sous cette forme la, il n'y a pas de rapport direct
entre connexion et connexion complexe. Mais pM definit un relέvement p2>0

de Th0QTlt0 dans Γ2'0. II y a une infinite de manieres de le prolonger en
une connexion; p0>2, relevement de T0ΛQT0>1 dans Γ0'2, est le conjugue de p2*0,
done p2'°θp° 2 sera un relevement reel de ^ ( Γ ^ Θ Γ ^ Θ ί Γ 0 - 1 © ! 1 0 ' 1 ) ) dans
^ ( Γ 2 ' ° e Γ 0 ' 2 ) , et on pourra prendre pour relevement p1*1 de Γ 1 - 0 ®^- 1 la
somme de (7Γ1'1)"1 et de n'importe quelle application lineaire autoconjuguee
β1-1 de Γ 1 ' 0 ®^ 0 ' 1 dans Tι+iT\ done reelle de ^ Γ 1 - 0 ® ! 1 0 - 1 ) dans T\ On
appellera connexion associee k p ̂  Γunique prolongement p pour lequel p1'1

=(?r l f1)"1, ou β u = 0 , done p=p2 'o0p2 ; δ0(7r1 '1)"1. Cette connexion p sera dite
la connexion associee a la connexion complexe p^, et on dira que p est une con-
nexion complexe, ou ^-connexion, ou /-connexion: une connexion quelconque
p est complexe ssi elle est Γassociee d'une pMy necessairement unique. Une

θk*k>0t d'ou Γέquivalence.
Si on avait pris g au lieu de | | | | , e'est la premiere inclusion qui aurait ete plus simple,

parce que£(-3Q est un processus 2-cotangent, a valeurs dans P* = (T1QT1)*, localement brone.
Mais e'est la deuxieme qui aurait ete plus difficile, car nous avons utilise ici une majoration
en | | | | * | | | | . _
(14) Pour dX=L(X)dtf voir Schwartz [3], proposition (13.16) page 45. Pour un mouvement
brownien a temps de mort sur une variete riemannienne complete, voir Debiart-Gaveau-

Mazet [1], Le brownien correspondant a L = ~ Δ sur une variete riemannienne est une

Γ-martingale, voir Schwartz [4], proposition (2.29).
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connexion p. donne un p.2'0, qui s'ecrit d'une maniere unique comme somme

P

2'°+a2'\ p2'0 relevement de T^QT1'0 dans Γ2 °, a2'0 application lineaire de

T^ΘT1'0 dans Γ0'1; d'oύ p Λ 2 = p ° ' 2 + α 0 ' 2 = p 7 ^ ^ + ^ ~ 0 ; puis p . 1 ' 1 ^ 1 ' 1 ) - ^
βι'\ ce qui donne p.=p+a+βy p=p2'0®p0'2@>(π1Λ)-\ α=α 2 '°θα°' 2ΘO, β=
OΦO0/31*1; p. est complexe ssi a=β=Oy ou a2'°=βhl=0. En termes de
projections, ΘM donnera Θ2>\ projection de T2'0 sur Γ1'0, θ2-°=l-p2'0 TΓ2*0; sa
connexion associee sera 0=02'°©0°'2©O, qui sera dite complexe; une connexion
θ. s'ecrit d'une maniere unique θ.=θ-aπ-βπy Θ2>°=θ2'°-a2'0 TΓ2'0, a2'0 π2'0

application lineaire de T2'0 dans T M , nulle sur Tho

y βhl π1'1 application
lineaire autoconjuguee de T1Λ dans T1+iT1.

Dans une carte complexe sur un ouvert de Ey ρ. = — Γ . φ l , done Γ . =
Γ.2 °ΘΓ.° 2 ® Γ . U , Γ. application lineaire de (E+iE)Θ(E+iE) dans E+iE;
Γ.2 ° de E^QE1'0 dans E+iE, Γ.2 °=Γ 2 ' °θ(-α 2 ' 0 ), Γ2'0 lineaire de E^QE1-0

dans E1'0, a2f0 dans E0Λ; Γltl = —β1Λ, application lineaire autoconjuguee de
dans E+iE; done Γ.=Γ-a-β, Γ=Γ2 '°ΘΓ° 2ΘO, a=cc2>0®a°>2®0y

?1'1; Γ. est complexe, Γ.=Γ, ssi a=β=0. Si on prend une base

de E+iE formee des dky d-k=dky dk=— \—h—i —X i l y a des coefficients Γ7Λ β

2 V dx dy / _
ou ay βy γ prennent les valeurs 1, 2, •••, Ny ϊ , 2, •••, Af, Γ.(9 Λ 9 β )=Σ Γ7Λ>β 9V,

avec des relations de symetrie TΐΛtβ=T!!βtΛ> et de conjugaison Γ7δtρ=Γ7Λ>β.

Alors Γ. est complexe ssi Γ^y=0, Γfy=O, i, j , k=ly 2, •••, Ny avec les con-

sequences par symetrie et conjugaison. Si par exemple V est munie d'une

structure hermitienne, c.a d. d'une forme sesquilineaire hermitienne dont la

partie reelle donne une structure riemannienne, un calcul rapide des Y]j et

des r f j par les symboles de Riemann-Christeffel montre que sa connexion de
Levi-Civita associee est complexe, ssi la forme hermitienne est kahlerienne.
La connexion reelle p. est complexe, p.=p, a=β—Oy ssi, en tant qu'application
C-lineaire de TιQTι dans T2

y elle commute avec /, ou est /-lineaire; θ.y projection
de T2 sur Tι

y est complexe, θ. = θy aπ=βπ=Oy ssi elle commute avec /, ou est
/-lineaire; sur une carte complexe, Γ. est complexe, Γ.=Γ, a=β—Oy ssi, en
tant qu'application de EQE dans E} elle commute avec /. On peut dire aussi

R

que la connexion est complexe ssi elle conserve le champ des operateurs /
^X(Tι'y Tι)y cad . si la derivee covariante de / est nulle. Prenons en effet
une carte complexe sur un ouvert de E. En appelant V. la derivee covariante,
ecrivons que ^.zI=0y c.a d., pour tout champ de vecteurs tangents X9

(V.Z(IX) (x)=I(V.zX) (x)y Z(ΞT(V;x)=E. On a (V.*-Y) (x)=(DzX) (x)+
Γ.(x) (X(x)y Z(x))y (χr.2(ΪX)) (x)=(Dz(IX)) (x)+Γ.(x) (IX(x), Z(x))9 /(V z-X) (x)
=I(DZX) (x)+iΓ. (x) (X(x)y Z(x)). Complexifions. D'abord (DZ(IX)) (x) =
IψzX) (x) car, si X est a valeurs dans Eho

y IX=iXy DZX est a valeurs dans Eι>\
IDzX=iDzXy et de meme pour E0Λ. La derivee covariante de / sera done
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nulle ssi, pour Xy Z<=E+iEy T.(x) (IXΘZ)=I T.(x) (XΘZ). En prenant XyZ
dans Γ1'0, c'est vrai ssi a2'°(x)=0, et dans To>1 ssi a°'2(x)=0y en prenant
X e Γ 1 ' 0 , Z G Γ 1 et X(=T°'\ ZtΞTι>\ ssi β1Λ=0. Les connexions reelles sur
Vy variete reelle Cm+2

y sont les sections d'un fibre i2-affine de classe Cm sur F,
le fibre ip€ΞXR(T\V)QT\V)y T\V))\ πp=l}, le fibre vectoriel associe est
XR(T\V)QT\V); T\V)) (Tι est le noyau de π). II y a done toujours des
connexions Cm et on peut les choisir a peu pres arbitrairement sur un ouvert,

au sens suivant: si V est un ouvert de Vy V" aussi, V"cV\ et si p est une
section donnee sur V'y p" une section arbitraire sur Vy si α, 1—a est une
partition de Γunite sur Vy subordonnee au recouvrement V'y pV" y ap'+(\—cί)ρ"
est une section sur V qui coincide avec p sur V. Si V est complexe, on a
le meme resultat pour des connexions complexes, avec le fibre affine complexe
des {pM<ΞXc{Tι

M{V)OTι

M{V)\ T%(V)); pM ττ*=l}, de fibre vectoriel complexe
associe Xc{Tι

M(V)QTι

M(V)\ T^(V))9 et on a des sections C°° (au sens reel).
Ce fibre est C-analytique; si V est de Stein, il a des sections holomorphes(15).

(7.11) Connexions complexes et martingales conformes.
Soit (pMy θMy Tj{) une connexion complexe sur V, et (p, θy Γ) sa connexion

reelle associee. Si X est une F-semi-martingale, elle est une Γ-martingale,

dX=p{X) — d[Xy X]y ssi elle est une I>martingale, dX=pM(X) — d[X, X]M™
Eneffet, 2 2

dX = dX^+dX^+dX^, etpd±- [Xy X] = p2 ° — d[X, X]2'0

1)-1
 Y •

Proposition 7.12. ί7w^ semi-martingale M sur une variete complexe Vy

sur un ouvert A de R+ X Ω ou [Sy T]y est une martingale conforme ssi elle est une

martingale pour toutes les connexions borέliennes localement bornέes (ou pour toutes

les connexions C°°), compatibles avec la structure complexe, Elle est alors de Zheng.

(15) Tout fibre affine holomorphe sur une variete de Stein admet au moins une section
holomorphe. C'est connu, mais je n'ai pas de refέrance. Nous ne nous en servons pas ici.

(16) De tels faits sont rέconfortants, et meritent d'etre signales. Au contraire, pour

reconnaίtre la proprietέ de Zheng, le crochet complexe ne convient pas. II reste tou-

jours vrai qu'une inegalite \dXjζ\^.p& — | d[Xf X]&\ entraine une inegalite \dX\^.p — \ d

[X,X]\f mais la reciproque n'est pas vraie, bien sur. Prenons, par exemple, pour V—C,

la semi-martingale conforme X—~z \M> M]+M, oύ M est une martingale conforme. Elle

est de Zheng, car dX=~ d[My M]+j d[M, M]Ri done |dXjt\^d[My M], et ~ d[X, X] = J

d[M, M]R^d[Mf M] voir Note (12) page 106. Mais dXM=j- d[M, M], et y d\X, X\M =0.
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Si M est une V-martingale conforme sur [Sy T[y elle converge parfaitement la
oil elle converge, et son prolongement M'=MT sur [0, 7"[, 7"=-f-oo sur {M con-
verge},=T aίlleurs, est encore une martingale conforme.

Demonstration. Qu'une martingale conforme soit de Zheng est evident

d'emblee, puisque dMj=dMlΛ={πι>ιγι — d[M, M], — d[M, M]eΞThl. Mais
Δ Δι

nous voulons demontrer beaucoup plus. Soit M une martingale conforme.

Alors & , = 0 , et —d[M, Af]Λ=O, done dMΛ=pΛ(M) — d[M, M]Λ, elle est
Δι Δ,

une Γ^-martingale pour toute connexion complexe. Inversement, supposons
cette propriete verifiee. En choisissant deux connexions C°° (au sens reel)

complexes p'My p'J, on devra avoir (ρ'M—ρ'J) —d[My M]Ji==0. La difference

PM—PM est une action C°° arbitraire du fibre X{Tι

MQTι

M\ Tι

M). Un raisonne-
ment en coordonnees locales par une carte holomorphe (oύ les (Γf>; ) sont
C°° arbitraires) montre alors immediatement que Γegalite ci-dessus n'est pos-

sible que si —d[M, M]^=0. Mais alors dMJί=pJί —d[M, M]M donne dMM

Δ\ Δ\

= 0 . Done M est une martingale conforme. La fin resulte de (7.9.1). •
En fait il n'est pas necessaire de se borner aux connexions complexes:

Proposition 7.13. Soit p. une connexion continue. Pour que toute martin-
gale conforme sur V soit une Y-martingale pour cette connexion, il faut et il suffit
que β soit nul, ρ.=ρ-{-ay p connexion complexe.

Demonstration. 1) Soit M une martingale conforme; done dM—dM11=

(TΓ1'1)-1 — d[M, M]1'1 et — d[M, M ] = — d[M, M]1 '1. Elle sera une martingale

pour p. si (TΓ1'1)"1 — d[My M]ι>ι=p. — d[My M]1-1^1-1)'1 — d[My M]hl+
2 2 2

β — d[My M]1'1, done des que /S=0.

2) Soit inversement p. une connexion sur Vy faisant de toutes les martingales
conformes des martingales. Soient V un ouvert de Vy V" un sous-ouvert

relativement compact, Vh'cV\ et une carte holomorphe de V sur un ouvert

U' d'un espace vectoriel /-complexe E oύ V" ait pour image U"y U"

Soient Bly B2 deux mouvements browniens reels independants, x^U",

et considerons la martingale conforme M a valeurs dans E: x + β ^ + ^ 2 ^e\ s i

T est son temps de sortie de U"9 M
τ est a valeurs dans Ό" et peut done etre

transporte dans V. Posons e=e1'°+e°>1=f+fy f=
1~tI e^Tι'\ /εΓ 0 ' 1 .

Δι

Alors M s'ecrit, si de meme χ=y+y, ^yJt-^B1+iB2)f)+(y+(B1—iB2)f)y et
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Γexamen de la composante Mlt0 montre aussitόt que c'est une martingale con-

forme. Ensuite — d[M, M\=dt f®f^E1'°®E°'\ D'apres Γhypothese, Mτ

doit etre une Γ.-martingale, dMτ+T.(Mτ) — d[Mτ, Mτ]=0y ou 0=β(Mτ)

(/®/) dt, dans [0, T]. Done, P-ps. pour tout ί<Γ, Γ β{Mτ

s) (J®f) ds=0.
Jo

Comme Mτ est continue P-p.s et β continue, β(Mτ

s) ( / ® / ) = 0 P-ps. pour
tout s, et en faisant s=0, β(x) ( / ® / ) = 0 , pour tout x et tout/. Comme les
f®f engendrent Eh0®E°'\ cela donne β = 0 dans K", done dans V. D

REMARQUE 7.13.1. Si Ton appelle orthogonal d'un ensemble de con-
nexions continues Γensemble des semi-martingales qui sont des martingales
pour toutes ces connexions, et orthogonal d'un ensemble de semi-martingales
Γensemble des connexions continues qui en font des martingales, on voit que
Γorthogonal de Γensemble des connexions complexes est Γensemble des mar-
tingales conformes, et Γorthogonal de Γensemble des martingales conformes
est Γensemble des connexions a β nul.

REMARQUE 7.14. Dans tous les theoremes enonces, la partie {3} de (7.4)
a disparu. Elle ne subsiste en effet pas en dehors des martingales vectorielles.
Si par exemple nous prenons le brownien complexe sur C, si on le considere
comme martingale conforme sur [0, + o o [ χ Ω & valeurs dans la sphere de
Riemann S=CΌ {°°}, variete complexe compacte, les trajectoires sont toutes
forcement relativement compactes, mais n'ont pas de limite au temps +oo.
Cependant, si V est une variete de Stein, (7.4) subsiste integralement pour les
martingales conformes: les 3 ensembles coincident P ps. (avec la propriete de
prolongement), en appelant {1} Γensemble { Γl \φ(M), <£>(M)]< + °°} car

ψ(=C2

{1} et {3} coincident, par (7.6), (7.8), et, en plongeant V dans C2N+1 comme
sous-variete analytique fermee, Γegalite {2} = {3} est ramenee & celle de E
(7.4), M etant devenue une martingale (conforme) k valeurs dans E.

Proposition 7.14. Soit V une variete munie d'une connexion continue.
Dans Γespace topologique S3ί des semί-martinεales sur V, Γensemble des T-mar-
tingales estferme.

Demonstration. La relation

(ω(M) M)~ = —7δ{M) p{M)-[M, M],

ω champ de vecteurs 2-cotangents continu & support compact, passe en effet
& la limite des suites, comme dans (6.8) (Alors (7.12) et (7.14) peuvent aussi
redonner (6.8)). •
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Index terminologique

S3H, Jί, A, JL(A), page 79-80.

Semi-martingale formelle, JL3y JLΞE{A\ page 82-83.

F-Martingale conforme sur A, pages 85.

Fonction plurisous-harmonique, page 88.

Sous-martingale generalisee, page 88.

T\V)+iT\V), page 91.

Jίn Tk

Λ(V), m»(V)t ek,fk, ° ° pages 91-92.

azk azk

T\{V)y page 92.

Γ1'0, Γ0'1 page 24.

T2>°, Γ0'2, Γ 1 1 page 94.

EQE.EQiE, page 94.

dx2>°, dx°>2 dxι>\ (dxcy>°, (dxy>\ — d[χy xγ 0, — d[xy x]°'2y ~ d[x, x]ι-\
{πlΛY\ pages 96-97. 2 2 2

Differentielle de martingale conforme, page 98.

Processus sur υn ouvert relatif de [Sy T]y page 101.

X, X\ Z — [X, X]9 H.Xy sur [Sy T[y page 102.

X sur [Sy T[; X converge en T, converge parfaitement en Ty page 102.

Semi-martingale de Zheng, page 105.

Connexions, Γ-martingales, page 108.

Connexions complexes, page 110.
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