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Introduction

Le but de cet article est de combler certaines lacunes concernant les semi-
martingales 4 valeurs dans des espaces vectoriels E ou des variétés V, I'accent
principal étant mis sur les martingales conformes.

Au §1, on introduit des classes essentielles de processus continus (le mot
“local” étant en général sous-entendu): martingales, martingales conformes,
processus 2 variation finie, sous-martingales; on les connait sur R, xQ, il sagit
de les étudier sur un ouvert 4 de R, X Q. On donne leurs principales propriétés
(et les piéges possibles !). Au §2, la liaison est faite avec les semi-martingales
formelles.

Le §3 étudie spécialement des V-martingales conformes sur 4, V étant
une variété complexe. Meéme la définition est délicate, car, si ¥ n’est pas de
Stein, il n’y a pas assez ou pas du tout de fonctions holomorphes globales. On
donne les propriétés essentielles et les théorémes de stabilité, en arrivant chaque
fois & contourner I’absence de fonctions holomorphes.

Le §4 donne le théoréme qui a servi de point de départ a tout I’article,
a loccasion de fructueuses discussions 4 I’Université de Kyoto, notamment
entre S. Watanabe, M. Fukushima et moi. Ce théoréme (4.6) exprime en
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gros que, si M est une martingale conforme et @ une fonction plurisous-har-
monique telle que @(M) soit continue, @(M) est une sous-martingale locale
continue. Mon travail antérieur, Schwartz [1], n’avait donné 2 ce sujet que
des résultats partiels, faute d’une manipulation suffisante des passages du local
au global; cette lacune est comblée ici. Il reste toutefois une lacune fonda-
mentale. On peut raisonnablement supposer que, si M est une martingale
conforme, et @ une fonction plurisous-harmonique, seulement semi-continue
supérieurement, @(M) est toujours continue. M. Fukushima a, sur ce sujet,
des résultats partiels, mais la conjecture générale subsiste.

Au §5, sont étudiés les espaces tangents aux variétés complexes. Dans
Schwartz [1] ont été étudiés les espaces 1-tangents. Dans Schwartz [2], espace
2-tangent a joué un role essentiel, mais je ne suis pas revenu sur les martingales
conformes, donc la structure de T%V) pour V complexe n’a pas été étudiée;
elle est ici en détail. On a des décompositions en sommes directes: T"+iT"=
TP T, T*+iT*=T>°PT**P T, faisant intervenir I'analogue du bidegré,
bien connu pour les formes différentielles. Alors T"° est un sous-espace de
T*° et le quotient T%°/T*° est isomorphe & TH°OT"°; résultat analogue pour
(0, 2); mais T™! est isomorphe, sans passage au quotient, 3 7°QT". Ilya
14 une grande richesse de structures, qui vont jouer leur role en géométrie dif-
férentielle des martingales conformes.

Le §6 étudie justement cette géométrie. Si X est une V-semi-martingale

sur 4, on adX, dX*, dX, —;— d[X, X], qui gardent leur sens en oubliant la struc-

ture complexe, mais elles se décomposent suivant les sommes directes du §5:
dX=dX*°4-dX**+4dX", dX'=(dX°)°+(dX°)™, etc. D’ou le théoréme
fondamental de caractérisation des martingales conformes, (6.4): M, V-semi-
martingale sur 4, est une martingale conforme, ssi dM*° est une différentielle
de martingale conforme 2 valeurs dans 7"°. Un exemple d’application, moins
facile 4 démontrer autrement: 'ensemble des V-martingales conformes sur
R, X Q est fermé dans Iespace des V-semi-martingales.

Le §7 étudie un probléme qui a fait de grands progrés les derniéres an-
nées. Soit X une semi-martingale sur [\S, T'[, ou S et T sont des temps d’arrét,
S<T; quand se prolonge-t-elle en une semi-martingale sur [S, 7T]? Une
condition nécessaire est que X,_ existe sur {7>S}; on dit alors que X con-
verge en T. C’est suffisant si X est une martingale a valeurs vectorielles, pro-
position (7.4) (bien connue); ce n’est évidemment plus vrai si X est un pro-
cessus 2 variation localement finie. Nous introduisons les semi-martingales de
Zheng, pour lesquelles la composante a variation finie de X est contrdlée par
le crochet de la composante martingale; elles ont été introduites (sans cette
dénomination!) dans un article récent de Zheng. Alors une semi-martingale
de Zheng qui converge est prolongeable, c’est le théoréme de Zheng, (7.6).
Il y a diverses variations autour de réciproques partielles, dont une de Darling
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(7.7), et d’autres que nous indiquons (7.8). Les études de Darling et Zheng
étaient issues de la notion de martingale relative 4 une connexion. On y re-
vient, et comme une martingale relative 4 une connexion est une semi-martin-
gale de Zheng, tout résulte des propriétés précédentes. Cette partie n’apporte
que des perfectionnements secondaires & des résultats récents mais connus.
Mais il se trouve qu’une V-martingale conforme sur [S, T'[, V variété com-
plexe, a aussi la propriété que, si elle converge, elle est prolongeable; mais
contrairement au cas (7.4) des martingales vectorielles, c’est bien plus difficile 2
démontrer. Or il se trouve qu’on peut relier ce résultat a ceux qui précedent.
D’abord une martingale conforme est de Zheng, ce qui liquide cette question
directement, 2 condition d’utiliser la caractétisation (6.4) du §6. Mais il y
a plus. Parmi les connexions sur ¥, il y en a de particuliéres, qui sont liées
a la structure complexe. Mais, proposition (7.11), les martingales conformes
sont exactement celles qui sont des martingales pour toutes les connexions
compatibles avec la structure complexe. Par contre une connexion qui rend
martingales toutes les martingales conformes n’est pas nécessairement com-
patible avec la structure complexe, mais on peut exactement caractériser les
connexions ayant cette propriété, proposition (7.13).

1. Divers processus sur un ouvert de R, X Q

(1.1) (Q, 0, 9=(4:)ieg,, P) auront la signification et les propriétés habituelles
pour les processus. A désignera un ouvert de R,XQ (pour P-presque tout
o, Aw)={t; (t, w)EA4} est ouvert). Sauf mention expresse du contraire, et
sauf au §4, on sous-entendra le mot “continu” quand on parlera de processus
a variation finie ou croissant, et de semi-martingales conformes®, et les mots
“locale continue” quand on parlera de martingale, martingale conforme, sur-
martingale ou sous-martingale. A partir du §2, semi-martingale voudra dire
semi-martingale continue. Dans ce §1, les processus seront i valeurs dans
des espaces vectoriels de dimension finie sur R ou C, ou dans R, de maniére
évidente suivant les cas.

(1.2) S M sera I'ensemble des semi-martingales sur R, X Q (des semi-mart-
ingales continues & partir du §2); A sera 'ensemble des semi-martingales (resp.
des semi-martingales continues, ou des martingales, ou des martingales con-
formes, ou des processus a variation finie ou croissants, ou des sous- ou sur-

martingales) sur R, X Q. A est fermé dans I'espace S H des semi-martingales®.

(1) X est une semi-martingale conforme si sa composante martingale locale continue X°
est conforme. Pour tout ce qui concerne les martingales conformes, et les propriétés des

processus sur des ouverts 4 de R. XQ, les notations sont celle de Schwartz [1] et [2].

(2) La topologie de S H est celle d’Emery. Voir Emery [1], et Schwartz [2], (3.7) page
443. Cette fermeture est évidente pour les semi-martingales continues ou pour les processus
croissants, et, dans les autres cas, elle résulte de ce que X—X°, X—X, X—[X, X] sont
continues, Schwartz [2], (3.10) page 446.



80 L. ScuwarTz

On dira qu’'une fonction X sur un ouvert 4 de R,XQ est élément de
A(A), si X est optionnelle sur 4 (i.e. est mesurable pour la tribu induite sur
A par la tribu optionnelle de R, X Q; cela revient & dire que X est restriction
d’un processus optionnel X sur R, X Q), et existe une suite (4,),ey d’ouverts,
&JA,,:A, telle que, pour tout n, X soit équivalente sur 4, & un processus X,E

A XTX" (i.e. X—X, est localement constant sur 4,)®*). On peut sans
n

inconvénient supposer A et les A, optionnels (Soit en effet 4; le plus grand
ouvert d’équivalence de X et de X,,; il est optionnel® et DA4,; alors A'=UA4;

est optionnel et DA; si X’ est la restriction de X 4 4’, X'=X sur 4, et X’
f;'X,,), ce que nous ferons désormais.

Si XeJA(4), on dira qu’il est une semi-martingale sur 4 (resp. une semi-
martingale continue sur 4, une martingale sur 4, etc--+); cependant si A est
I’ensemble des processus 2 variation finie, nous dirons (pour A+R,.xQ) que
XeJ(A) est localement 4 variation finie sur 4 (voir (1.6)).

Trivialement, si A= L“)A,,, et si X est une fonction optionnelle sur 4, telle

que X&JA(A4,) pour tout n, X A(A). Si X est optionnel sur A4, équivalent
a un processus de A(4), X A(4).

(1.3) Deans le cas ou A est ’ensemble S H des semi-martingales, on peut méme
trouver les 4, tels que pour tout n, X=X, sur 4,. En effet, partons de X

TX"’ X=X,+C,, C"TO' Pour sEé+, S, temps de sortie>s de 4,, C, 15,59

est une variable aléatoire I,-mesurable, donc 1f ywixa (lis,>9(Ca)s)=Cn,s
processus nul dans [0, s[ et constant I,-mesurable dans [s, 4 oo], est une semi-
martingale; sur [s, S,[° (intérieur de [s, S,[)=4}, X=X,+C!, semi-
martingale, et A= U4

Mais, méme si X, est une semi-martingale continue, C}, a un saut en s,
X,+C; ;s n'est pas une semi-martingale continue. Pour tous les ./ sauf I'en-
semble S des semi-martingales, je ne pense pas qu’on puisse, dans la défini-
tion de A(4), remplacer XTX” par X=X, sur 4,.

X est une semi-martingale continue sur A, ssi c’est une semi-martingale
sur A, continue sur 4. En effet, si X~X,, et X continue sur 4,, X, aussi;
4n

(2bis) La définition d’une semi-martingale sur 4 est die 2 P.A. Meyer [2]. Ces semi-
martingales sur des ouverts sont étudiées systématiquement dans Schwartz [2], §6.

(3) Voir Schwartz [1], théoréme III, page 21. La démonstration donnée la est trop
compliquée; simplement, si S=Inf{t>s; X;—X, +X,—X,,.}, SEQ+, et si [s, S[° est
Pintérieur de [s, S[, cet ouvert est la réunion des [s, S[°. Les temps d’arréts, tels que S,
seront toujours 2 valeurs dans [0, Foo]; si S=Foo, [s, S[°=]s, + o] pour s+0, [0, + o]
pour s=0. Voir Schwartz [2], §3, page 437 (25).
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alors X~ s (1gs,+1x0 Lis,>9) (X727~ —X7}), semi-martingale comme produit de
deux seml-martlngales continue sur R, X, donc X est une semi-martingale

continue sur A4.

(14) Si XeJA(A4), X est équivalent, sur 4,, 4 un élément de A. Il n’est en
général pas vrai que X soit équivalent, sur 4 lui-méme, & un élément de A.
Par exemple, si A=[0, +oo[X ), une semi-martingale X sur 4 ne peut étre
équivalente sur 4 4 une semi-martingale sur R, X Q, que si X(.)_ existe. Par
contre, X est bien équivalent sur 4 lui-méme 2 un élément de A s’il est équiva-
lent sur 4 4 une semi-martingale X’ sur R, X, dans les cas J=ensemble
des semi-martingales, ou des martingales, ou des martingales conformes, ou
des semi-martingales conformes (X’ est équivalent & une martingale ssi X°~0,
3 une martingale conforme ssi X*~0, [X’, X "]~0, 4 une semi-martingale con-
forme ssi [X’, X"]~0, et ceci passe aux réunions dénombrables, des 4, 4 A®).
Cette hypothese XTX " semi-martingale sur B, X n’est pas suffisante pour

obtenir le méme résultat, pour les autres ensembles A4®.

(1.5) Par contre, dans tous les cas, si X est équivalent sur 4 4 une semi-mar-
tingale continue X' sur R, xQ, et X&A(A), il est équivalent sur 4 lui-méme
a un processus de 4. En outre, on peut exprimer ceci en termes d’intégrales
stochastiques; pour X optionnel sur 4: 1,-X'€ =X est équivalent sur
A a un processus de A (4 savoir 1,-X")=>Xe A(4)=>1,-X'€ (car X’r:f

"

X,€J; donc 1, -X'=1, - X, A®, d’ol I'on passe & 1,-X'EA parce que

(4) Voir Schwartz [1], théoréme III, page 21, ou corollaire (3.5), page 22; théoréme 4,
page 32; proposition (4.6) page 37.

(5) Un contre-exemple a été donné par Stricker [1], valable pour tous les cas a la
fois. Soit (T,)y=1,2,-- une suite strictement croissante de temps d’arrét, inaccessibles sauf

T,=0, et C le processus égal a -;—dans [Ty, Ty+i[. Soit M sa martingale compensée. Comme

21—32— < + o0, M a une limite 3 I'infini, qu’on peut appeler M.,; c’est une martingale sur R X

Q, de carré intégrable (voir P.A. Meyer [1]). Soit A=U]T,, T,+i[. Le processus croissant

prévisible C”’ associé a C est nécessairement continu puisque les T, sont inaccessibles, et c’est
M qui porte toutes les discontinuités de C. Alors M est, sur 4, un processus décroissant
continu puisqu’elle est équivalente, et méme égale, sur chaque 17, T,+1[, 2 un processus déc-

. . — . 1 1 , .
roissant continu sur R, X Q, & savoir 14 ?+ I ;—(C YT#+1; M est donc aussi localement

4 variation finie, coniinue, surmartingale continue, semi-martingale continue sur 4. Mais

M n’est pas équivalente sur A 4 un processus continu X sur R+ X Q. Sinon aurait X=M—c,

dans ]T,, Ty+i[; alors Xp, , ,=Mp, , ,—Cp+1, Xer,, - =Mz, p-—Cn €t la continuité de X
.1 1 . .

donnerait —n-l-—1=AMT"“=C"+1 Cyy d’0u C,,+1—€1+ e b—— a1 ; or X et M doivent avoir

une limite a4 Pinfini, ce qui est ici impossible.

(6) Pour Z semi-martingale continue, A4, optionnel, Z~0¢:1 4,°Z=0, voir Schwartz [1],

proposition (3.7) et corollaire (3.8), page 25.
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A est fermé dans I'espace SH des semi-martingales). Si X est une semi-
martingale continue sur R, X Q, arrétée en 7, indépendante du temps dans [0, S],
S et T temps d’arrét, ST, et si X&AS, T, alors X A. En effet, nous
venons de voir que X —~ Y&, mais alors X ~ Y7— Y%, donc X=X+ Y7—

18,TL Aoxa

YS€A. En d’autres termes, si X&J]S, T[ est prolongeable en une semi-
martingale continue X’ sur R, X, alors X'7—X'S a les propriétés ci-dessus
doncedd, ca.d. X est prolongeable en une semi-martingale €4 si S=0, &
savoir X'7, et autrement équivalente sur ]S, T[ & une semi-martingale continue
sur R, X Q, élément de 4, 4 savoir X'T—X'S.

(1.6). Soit X optionnel continu sur 4. Alors: X& A(4), A ensemble des
processus & variation finie (resp. croissants)<X est, au sens usuel sur 4,
localement a variation finie (resp. localement croissant). (Rappelons que cela
n’entraine pas qu'il soit équivalent sur 4 & un processus a variation finie ou
croissant sur R, X Q, voir Note®). En effet, = est évident, montrons <. Soit
s€Q,, S,=Inf{t>s; t A4, ou variation de X dans [S, t]>n}. Clest un
temps d’arrét. Mais X, _ existe sur {S,>s}, car la variation de X dans [s, S,[
est<n. Donc 15,5, (X%~ —X") est un processus a variation finie (resp. crois-

sant) dans R, X Q, équivalent & X sur [5, S,[>, et U [s, S,[*=A4.
nenN

— seq,
(1.7) Si A=R,xQ, A(A)=A. Cela résulte de Schwartz [1], proposition
(2.4) page 10 et (1.3) ci-dessus, pour les semi-martingales, et, pour les autres
A, de (1.4) et (1.5).

(1.8) Rappelons aussi que, si I'on supprime la continuité pour les processus
(autres que les semi-martingales générales) de type A, il n’y a plus de bonne
notion: on peut avoir A=R,XQ=A,UA, A, et A, optionnels, X semi-
martingale bornée sur R, X Q, restriction sur 4, et sur 4, de martingales bor-
nées, mais non martingale sur R, XQ®. A priori, on ne peut rien avoir de
bon pour les surmartingales et sous-martingales discontinues.

2. Semi-martingales formelles

Nous renvoyons a Schwartz [2]; toutes les semi-martingales, vraies ou for-
melles, seront implicitement supposées continues dans ce paragraphe et les suivants,

sauf le §4.

(2.1) Une semi-martingale formelle sur 4 (ouvert optionnel) voudra dire in-
différemment une classe d’équivalence sur A de semi-martingales formelles

(7) Voir Schwartz [1], contre-exemple (3.6), page 23. Dans cet exemple, A(a) et A(B)
ne sont pas optionnels; mais on aurait pu les prendre op.ionnels, avec

A(@)={(0, @), (0, §), (40, O}, A(B)={(0, @), (0, §), (+<, A)}.
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sur R, X, ou une semi-martingale formelle sur R, X, portée par 4. On
sait qu’alors toute semi-martingale vraie sur 4 (au sens du §1) définit d’une
maniére unique, une semi-martingale formelle sur 4 [Schwartz [2], proposi-
tion (6.7), page 471 (59)]. On sait aussi qu’il existe une intégrale stochastique
d’une fonction optionnelle sur 4 par rapport & une semi-martingale formelle
sur 4, et que C’est encore une semi-martingale formelle sur 4.

On dira qu’une semi-martingale formelle X sur R, X est élément de
AZ, si elle s’écrit y+Z, v>0 optionnelle, Z& . Alors toute intégrale stochas-
tique par rapport 4 X d’une fonction optionnelle >0 est encore dans AF. AF
est fermé dans I'espace des semi-martingales formelles. On dira qu’une semi-
martingale formelle X sur 4 (en particulier une semi-martingale sur A) est
élément de AF(A4), s'il existe une suite (4,),en de réunion 4, telle que X soit,
dans chaque A4,, équivalente & un élément X, de A

(2.2) Mais on a alors les relations évidentes:

1, XeAF=X est équivalent sur 4 3 un élément de AF=>XE AF(A)=>1,-X
€JAF. La démonstration est la méme qua (1.5); cela provient de ce que, dansla
définition de semi-martingale formelle sur A4, intervient la possibilité de la
représenter comme semi-martingale formelle (toujours, sous-entendu: continue)
sur R, X Q. En outre, c’est équivalent 4: X=v-Z, v optionnelle>0sur 4, Z&
AA). (Si Ze(A), v>0 optionnelle, ZTZ,,EJ, donc -’y-ZAr\J'y-Z,,EJEF,
donc y-Ze AF(A). Inversement, soit X € AL (4);alors X est équivalente sur
A a un élement de AL, yv-Z, Z& A, donc a fortiori ZeJA(4)).

(2.3) AA)=SMAYNAF(A)=SMA)NAF. Résulte de (2.2).

ExemMPLE. X est une martingale conforme sur A4, ssi elle est une semi-
martingale sur 4, et équivalente sur 4 4 une martingale conforme formelle

sur I_i'+ X Q.

(24) Rappelons que, si X est une semi-martingale formelle sur 4, X: =X+X,
et que [X, X] est un processus 2 variation finie formel sur 4; X*, X, [X, X]
sont seulement formels, méme si X est une semi-martingale vraie sur 4, X&
SM(A). Rappelons d’autre part qu’on a la formule d’Ito: si XeSMH(4),
et @ de classe C?:

B(X) P (X)- X4 (X)X, X],

(8) Il vaudrait mieux écrire ®(X)Eau lieu de ~, puisque le second membre est une classe
de processus formels, ®(X) un processus élément de cette classe. On fait le méme abus ici
que quand on écrit, en analyse, f € L?, quand f est une fonction, alors que L? est un espace
de classe de fonctions.
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ou le membre de gauche est une semi-martingale sur 4, les membres de droite
sont seulement des processus formels (y compris [X, X]). Voici un tableau
résumé des propriétés précédentes, par exemple si I est 'ensemble des mar-
tingales conformes. X est supposé étre un processus optionnel sur 4. La
notion que nous retiendrons est la plus faible, celle d’en bas.

X est restriction a 4
d’une martingale conforme sur R, X Q.

\

IA(4,)nem A= UNA,,, X est équivalent sur

X est restriction 4 4, 4 2 une martingale

d’une martingale conforme
sur R+ X 8.

conforme sur R, X Q.

1,-X est une martingale conforme formelle
sur A; X est équivalent sur 4 4 une martingale

conforme formelle sur R, X Q; 3(4,),en, A= UA4,,

X est équivalent sur 4, a une martingale conforme
sur R, X Q; X est une martingale conforme sur 4.

3. Martingales conformes sur des variétés complexes

(3.1) Rappelons que si M est, sur 4, une martingale conforme 4 valeurs dans
un ouvert U d’un espace vectoriel complexe E et @ une fonction holomorphe
(ou antiholomorphe) de U dans un espace vectoriel F, ®(M) est, sur A, une

martingale conforme & valeurs dans F; cela résulte de la formule d’Ito, qui,
pour & holomorphe et [M, M],=0 sur 4, s’écrit D(M)7zD'(M)-M.

Proposition 3.2. Soient A un ouvert de R, X Q, M une fonction optionnelle
sur A, & valeur dans une variété analytique complexe V, de dimension complexe N.
Les deux propriétés suivantes sont équivalentes:
(3.2.A) Pour tout ouvert V' de V, et toute fonction complexe @ holomorphe sur
V', (M) est, sur M~Y(V"), une martingale conforme.
(3.2.B) Pour tout ouvert V' de V, et tout fonction complexe @, C* (au sens réel)
sur V et holomorphe sur V', p(M) est, sur M~Y(V"), une martingale conforme.

Démonstration. Montrons que B=>4. Soit @ holomorphe sur V’. Soit
(Vi)sen une suite d’ouverts de ¥V, V,CV’, de réunion V’. 1l existe o,,
C? sur V, égale 4 @ sur V). D’aprés B, o(M)=¢,(M) est, sur M~¥(V3),
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une martingale conforme; donc @(M) est sur M~}(V’') une martingale con-
forme. [

DtriNiTION 3.3 On dit que M est, sur A, une V-martingale conforme,
si elle vérifie (3.2), A) ou B). On peut remplacer @ holomorphe par @ anti-
holomorphe. Bien évidemment M est alors une semi-martingale sur 4. (Si
V' est de Stein, il est plongeable comme sous-variété C-analytique fermée d’un
espace vectoriel E; en prenant pour ¢ les coordonnées suivant une base, on
voit que M est, sur M~ (V’), une semi-martingale. Il existe une suite de V"’
de réunion 4, donc M est semi-martingale sur 4. On aurait évidemment
pu aussi le mettre dans les hypothéses !). Remarquons que les hypothéses de
(3.2) n’entrainent pas que @(M) soit, sur A4, équivalente 2 une martingale con-
forme sur R*xQ (voir (1.4)). Mais c’est vrai, dans hypothése (3.2.B), si M
est restriction 3 4 d’une semi-martingale sur R, XQ; car alors p(M) est re-
striction & M~Y(V"’) d’une semi-martingale et on applique (1.4). L’hypothése
(3.2.A) reste insuffisante pour obtenir la méme conclusion, car @(M) n’est plus
restriction d’une semi-martingale sur B, xQ. Ce qui précéde montre que,
si M est restriction 3 A d’une V-semi-martingale sur R, X, la définition
(3.2.A ou B) est celle que nous avions donné pour 1’équivalence de M sur 4
4 une martingale conforme, dans Schwartz [1], définition (5.1) page 38. C’
était la d’ailleurs, une définition quelque peu défectueuse, car il y avait équiva-
lence pour (M), non pour M. Mais ici, une telle hypothése n’est pas faite sur
M. Si A=R,xQ, la définition (3.3) ci-dessus est bien celle que nous avions
donnée & Schwartz [1], (5.1), d’une V-martingale conforme sur R, X, voir
ci-dessus (1.7).

(3.3.1) Soit M une V-semi-martingale (continue) sur R, X, arrétée en T,
constante dans [0, S], S, 7, temps d’arrét, S<7T. Si M est, sur ]S, T[, une
martingale conforme, elle l'est sur R.xQ. En effet, prenons la définition
(3.2.B). Soit @, C? sur V, holomorphe sur un ouvert V’. On sait que p(M),
semi-martingale sur R, X, martingale conforme sur M-YV’)N]S, T[, est
équivalente sur cet ouvert & une martingale conforme M, sur R, X, par (1.5).
Mais, si T(w)>0 ou S(w)=-Foc ou +oo, M(w) est constante, donc ¢@(M)
est aussi équivalente, sur B, X {T'=0 ou S=Fo0 ou + oo}, & une martingale
conforme. Si T(w)>0 et S(w)<+oo, et si M(T(0), w)&E V' et M(S(w), )&
V', comme MYV )=(M(V')N]S, T[)U (M Y(V')N(graphe de TU graphe
de S)), ces deux ouverts coincident au-dessus de w, et @(M(w))~My(w) sur
(MY(V")) (w). Sienfin T(w)>0, S(w)<+oo et M(T(w), ) EV" (resp.
M(S(w), w)EV"), on a aussi M([T(0)—&(w), T(w)], o) EV” (resp.

M([S(w), S(w)+&)], w)EV’) pour un &w)>0 convenable; par continuité,
@(M(w))~My(w) sur (MY(V")) (w). Finalement @(M)~M, sur M~}(V"), donc
@(M) est une martingale conforme sur M~X(V"), et M sur R, xQ. [



86 L. ScuwARTZ

En d’autres termes, si M est une martingale conforme sur ]S, T[, pro-
longeable en une semi-martingale (continue) M’ sur R, X}, constante dans
10, S[, elle est aussi prolongeable en une martingale conforme M'? sur R, X Q.
Si A= L”JA,,, et si M, processus optionnel sur 4 a valeurs dans V, est, dans

chaque 4,, une martingale conforme, il ’est dans 4. Si M est une semi-mar-
tingale sur 4, on peut, dans (3.2.A ou B), remplacer: @(M) est, sur M~}(V"),
une martingale conforme, par: @(M) est, sur M~YV"), équivalente 4 une mar-
tingale conforme formelle sur R, x Q.

Proposition 3.4 A) Si M est une V-martingale conforme sur A et si O
est une fonction holomorphe (ou antiholomorphe) a valeurs dans une variété com-
plexe W, ®(M) est, sur A, une W-martingale conforme.

B) Si V est de Stein, M optionnelle sur A est une V-martingale conforme
ssi, pour toute @ complexe holomorphe (ou antiholomorphe) sur V, p(M) est une
martingale conforme sur A. Si V est quelconque, et si (V,),en est un recouvrement
de V' par des ouverts de Stein, M optionnelle sur A a valeur dans V est une V-
martingale conforme ssi, pour toute @, complexe holomorphe sur V,, @,(M) est,
sur M~Y(V,), une martingale conforme.

C) Si W est une sous-variété (non nécessairement fermée) de V, si M est,
sur A, une V-martingale conforme & valeurs dans W, elle est une W-martingale
conforme.

Démonstration. A) est évident.
B) Soit ¥ de Stein. Si M est une V-martingale conforme, elle a la propriété
indiquée. Inversement, supposons cette propiiété vérifiée. Comme ¥V est
de Stein, elle est plongeable comme sous-variété fermée dans un espace vec-
toriel complexe E. En appliquant les hypotheéses aux fonctions coordonnées
et 4 leurs sommes (ou leurs produits), on voit que M est une E-martingale
conforme sur 4. Soit (U;),en une base de la topologie de E, formée d’ouverts
de Stein (par exemple des boules); les V;=U,NV forment une base de la
topologie de V. Soit ¥V’ un ouvert de V, @ une fonction complexe holomorphe
sur V’; comme V7 est une sous-variété complexe de U de Stein, si V,C 1V,
@ est prolongeable en @,, holomorphe sur U;. En appliquant Ito (3.1), ¢,(M)
est une martingale conforme sur X~Y(V7}), donc @(M) aussi; comme V' est
réunion de ceux des V7, qu’il contient, @(M) est, sur M~}(V"), une martingale
conforme. Donc M est une V-martingale conforme sur 4. Soit maintenant
V quelconque, V= U Vi V, de Srein. Ce qu'on vient de voir prouve que

M est, sur M~Y(V,), une V,-martingale conforme, donc une V-martingale con-
forme, donc aussi sur 4.

C) W est localement compacte, donc fermée dans un ouvert U de V. Soit
(U,)sen un recouvrement de U par des ouverts de Stein, W,=W N U,, ouverts
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de Stein de W. Si ¢, est une fonction holomorphe sur W, elle est prolongeable
en fonction holomorphe sur U,, ouvert de V, donc ¢,(M) est, sur M~Y(W,),
une martingale conforme: B) prouve que M est une W-martingale conforme
sur 4. [

REMARQUE 3.5 Pour V= U V,, V, de Stein, la propriété indiquée i la

nenN
fin de B) exprime aussi, comme nous 'avons indiqué, que M est, sur M~Y(V,),

une V,-martingale conforme; ou, compte tenu de C), si V,, (de Stein) est plongée
dans un espace vectoriel E,, une E,-martingale conforme. Soit (V,),eny un
recouvrement de -V par des ouverts de Stein relativement compacts (par ex-
emple isomorphes & des boules de C*); on peut les plonger comme sous-variétés
fermées de C?M*'. Soit (V}),ex un recouvrement subordonné, V,CV,, de
sorte que V7, devient sous-variété (certainement non fermée) relativement
compacte de C***'.  Soit (V}’),en un recouvrement plus fin, vérifiant la prop-
riété de Lebesgue: tout point de V est recouvert par au plus 2N+1 d’entre
eux. Les V}’ peuvent étre plongés comme sous-variétés (non fermées) de
C?N*1) relativement compactes, donc on peut faire en sorte que leurs images
soient d’adhérences disjointes. On sait qu’alors (voir Schwartz [3], note (4)
page (14)), N est réunion finie U - Ji les J, disjoints, ou les Vi/, k€],

1=1,2,7,2

sont disjoints dans V. Alors W,= U ¥V}’ est un ouvert de Stein (non connexe)
key
I3

de V, plongé dans C?*¥*', et V= U W,. Alors M est une V-martingale

I1=1,+,2N+1

conforme sur A ssi elle est, sur chaque M~ (W,), une W;-martingale conforme,
ou une C?*V*!-martingale conforme; ceci n’exige que la vérification du fait que
@(M) est, sur M~ (W),), une martingale conforme complexe pour @ fonction
coordonnée sur C*¥*! ou somme (ou produit) de deux fonctions coordonnées.
Il existe donc un nombre fini de couples (V’, @), V' ouvert de V, @ fonction
holomorphe sur V’, pour lesquels la réalisation de la propriété (3.2.A) suffit
a entrainer que M soit sur 4 une V-martingale conforme.

(3.6) Comme a (1.2), si M est une V-martingale conforme sur A4, restriction
d’un processus M sur R*x Q, 4 valeurs dans V, il existe un ouvert optionnel
A'DA sur lequel M est encore une martingale conforme; on peut donc tou-
jours supposer A optionnel, ce que nous ferons désormais. (Scit en effet (V,),en
un recouvrement de ¥ par des ouverts de Stein, V, plongée dans un espace
vectoriel E,. Soit M, le processus optionnel sur R, xQ i valeurs dans V,,
égal & M dans l'intérieur (optionnel) (M~Y(V,))" de M~¥(V,), 2 0 ailleurs. Alors
M, est une E,-martingale conforme sur un ouvert optionnel A contenant
M~XV,), par (1.2); on peut supposer que A,C (MY V,))y, donc M=M, est
une E,-martingale conforme, donc V,- ou V- martingale conforme, sur 4.
Donc M sera une V-martingale conforme sur I'ouvert optionnel A'=U4;D4.
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4. Fonctions plurisous-harmoniques de martingales conformes

(4.1) Une fonction @ réelle sur un ouvert de C¥ est dite plurisous-harmonique
si —ooLp<<+oo, si @ est semi-continue supérieurement (donc localement
bornée supérieurement), et si la matrice (8, 05 ®)a,s €st hermitienne> 0 (& valeurs
mesures). C’est invariant par applications biholomorphes et de caractére
local, d’ou la notion de fonction plurisous-harmonique sur une variété com-
plexe V' de dimension complexe N. Dans ce paragraphe, les notions étudiées
sont fines, et il n’est plus possible d’omettre les mots ‘“continue” ou “locale
continue” quand on parlera de martingale ou sous martingale, comme on !'a
fait aux paragraphes précédents. Toutefois martingale conforme continuera
a signifier martingale locale continue conforme.

(4.2) Le but de ce paragraphe est d’étudier ¢(M), ou @ est une fonction pluri-
sous-harmonique sur V, et M une V-martingale conforme sur 4 ouvert de
R.xQ. Nous avons donné deux propriétés dans Schwartz [1], quon va
élargir ici:

Proposition 4.3 (Voir Schwartz [1], théoréme VIII, page 44).
Si @ est C* plurisous-harmonique, p(M) est, sur A, une sous-martingale locale con-
tinue.

Démonstration. Par Ito, si I est un ouvert de C¥:

cp(M)TGgD(M)-M—I- Op(M)-M+08 @(M)-[M, M], compte tenu de ce que
[M, M]Crr[ll—l, M]cTO (ce sont des processus formels). Les deux premiers

termes sont des martingales continues formelles, le dernier un processus croissant
continu formel, donc @(M) est une sous-martingale continue formelle; comme
c’est aussi une semi-martingale sur 4, c’est une sous-martingale locale continue
sur 4, au sens de la définition (1.2), d’aprés (2.3). Si maintenant V est quel-
conque, elle @ un recouvrement (V,),cn, ou les V, sont isomorphes 2 des ou-
verts de C¥; alors (M) est, sur chaque M~Y(V,), une sous-martingale locale
continue, donc encore sur 4 (1.1) [

Proposition 4.4 (Voir Schwartz [1], théoréme VIII bis, page 43).

Si A=R, X Q, et si V est un ouvert de C¥, p(M) est localement une sous-martingale
(cadlag) généralisée.

Démonstration. Rappelons que f, fonction réelle sur R, X Q, est dite sous-
martingale généralisée, si — oo < f<<4oo, si f*=(fV0) est intégrable, si f est
cadlag, et si, pour s<t, E(f,/9,)>f.. Celarevient & dire que, FREN, f\V (—Fk)
est une sous-martingale. Elle est localement sous-martingale généralisée s’il
existe une suite croissante 7,11-+oo de temps d’arrét, telle que chaque f7»
1z >¢ soit une sous-martingale généralisée. On sait que la limite d’une suite
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décroissante de sous-martingales généralisées en est encore une. Soit (K,),en
une suite de compacts de V, épuisant V. Soit T, le temps de sortie de M de
K,; T,}1=Foo. Pour tout n, il existe une suite (@;),enx décroissante de fonctions
C? plurisous-harmoniques sur un voisinage de K,, de limite @ sur K, (ce sont
des régularisées convenables de @). Chaque (@y(M))™ 1(7,>q est alors une sous-
martingale locale continue sur R, xQ; elle est bornée, donc sous-martingale
continue. Alors (@(M))™ 1(7, >y est une sous-martingale généralisée (cadlag,
pas nécessairement continue); donc @(M) est localement une sous-martingale
généralisée. [

CoMMENTAIRES 4.5 Pour la premiére proposition, nous n’avions pas pu
remplacer ’hypothése @ C? par @ continue; cela provenait d’une manipulation
encore insuffisamment maitrisée du passage du local au global, pour les 4 de
R.x Q. Nous allons justement réparer cette insuffisance, c’est le but essen-
tiel de ce paragraphe. Pour la deuxi¢éme proposition, nous ne pouvons pas
éviter de supposer V ouvert de C¥; il n’y a en effet pas lieu de penser que toute
fonction plurisous-harmonique sur une variété complexe V soit, sur tout com-
pact, limite d’une suite décroissante de fonction C? plurisous-harmoniques;
et on ne peut pas localier et globaliser pour des sous-martingales locales discon-
tinues, voir (1.8). Par ailleurs, on peut raisonnablement faire la conjecture
suivante: si M est une martingale conforme, et @ plurisous-harmonique (méme
discontinue), @(M) est P p.s. continue (4 valeurs dans [— oo, +oo[) (de méme
que, si B est le mouvement brownien dans un espace euclidien, et ¢ sous-har-
monique pour le A, laplacien usuel, @(B) est p.s. continue). J’en ai discuté a
Kyoto avec M. Fukushima, qui a, sur ce point, des résultats partiels; il n’existe
cependant encore ni résultat général ni contre-exemple. On voit en tout cas
Pintérét du théoréme suivant, qui suppose @ non nécessairement continue,
mais @(M) continue.

Propoistion 4.6 (Théoreme). Soient M une V-martingale conforme sur A,
@ une fonction plurisous-harmonique sur V, partout finie et localement bornée,
telle que (M) soit continue, et que, pour P-presque tout w, et tout [a, B[ de A(w)
tel que M(B., ) existe, (p(M)) (B-, w) existe aussi et soit égal a p(M(B-, w)).
Ces conditions sont vérifiées si @ est partout finie et continue, et la derniére résulte
toujours des autres si A=R,x Q. Alors @(M) est, sur A, une sous-martingale
locale continue (au sens de (1.2)).

Démonstration. Supposons d’abord que V' soit un ouvert de C¥, et que
M soit équivalente sur 4 & une martingale conforme M’ sur R, X Q. Soit
V* un ouvert relativement compact de V, et posons A'=M"(V"). Alors ¢
est limite dans ¥* d’une suite décroissante (@;);en de fonctions C? plurisous-
harmoniques sur un méme voisinage de V*. Soit S le temps de sortie>s de A",
s€Q. Par Ito, (M) est équivalente sur [s, S [a:
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(47)  89y(M) g, 5+ M’ +3py(M) 1t, 51+ M'+-B8py(M) 1g, 51+ [M', M'].

Mais ces expressions sont des intégrales stochastiques de processus optionnels
bornés par rapport 4 des processus vrais sur R, X, donc (4.7) est une sous-
martingale locale continue L,, que nous ne considérerons provisoirement que
sur [s, +o0] X Q. Mais M’%_ existe dans C¥, donc aussi Ms_ mais dans V" CV,
donc, @, étant continue sur un voisinage de V*, @y(Ms_)=(@y(M))s_ sur {S>s},
et aussi @(Ms_)=(@(M))s_ d’aprés ’hypothése faite sur @(M). Mais @y (M)
est bornée dans [s, S[, donc L{—L,, aussi, dans [S, +o0]xQ (L; est con-
tinue, L{-=Lj; pour S>s); c’est donc une sous-martingale continue vraie.
Elle vaut aussi (p(M))5-1(s>9—Pi(M,) 1(s>4, €t comme le deuxiéme terme est
borné, (@,(M))5- 1(s>, est une sous-martingale vraie continue sur [s, 4 o0] X Q.
Faisons tendre %k vers +oo, en considérant toujours [s, 4 o0] X Q; @(M) tend
en décroissant vers @(M) dans [s, S[; mais (py(M))s_=@(Ms_), Ms_€V’, tend
vers p(Ms_)=(¢(M))s.. pour S>s. Donc (p(M))- Lissy est, sur [s, +o0] X Q,
une sous-martingale généralisée cadlag; elle est continue, bornée parce que
@ est localement bornée et V' compact, donc elle est aussi une sous-martin-
gale continue vraie. Mais alors @(M) est équivalente dans [s, S[° 2 une sous-

martingale continue vraie sur R, X , 2 savoir ((p(M))S- —(@(M))%)1(s>9. Com-
me A= U [s, S[°, @(M) est sur A* une sous-martingale locale continue, au
seq

sens de (1.25; donc aussi sur 4, en prenant une suite de V' épuisant V. Pas-
sons 2 la situation générale. Soit (V,),en un atlas de V, @, un isomorphisme
de V, sur un ouvert U, de C¥, de sorte que po®;" est une fonction plurisous-
harmonique sur U,; puis une suite (4, ,)mey d’ouverts de 4, de réunion 4,=
M~Y(V,), telle que ®,(M), C¥-martingale conforme sur A4,, soit équivalente

sur 4,, 2 une martingale conforme sur R, X . D’aprés ce qu'on vient de
voir avant, @(M)=(po®;"') (D,+(M)) est une sous-martingale locale continue
sur 4, ,; donc aussi sur U 4, ,=A4,etsur U 4,=A4 O
meN neN

(4.8) Si on garde les mémes hypothéses que ci-dessus, sans cependant sup-
poser @ localement bornée ni-méme >— oo, on pourra seulement conclure que,
VREN, (pV(—Fk)) (M)=p(M)V (—Fk) est une sous-martingale locale continue.
Il ne semble pas qu’'on puisse en déduire une conclusion sur @(M) elle-méme.

Mais on le peut si A=R, X Q. Car alors, (M)V (—k) étant une sous-martin-
gale locale continue, si I'on pose T,=Inf {¢; p(M)>n}, les T, sont des temps
d’arrét, T,1f+oo, et (@(M)V (—k))™ 1(7,5>9, bornée, est une sous-martingale
continue vraie. Donc (@(M))™" 1 >q est une sous-martingale généralisée
continue, donc @(M) est une sous-martingale généralisée continue locale sur
R, xQ. Ce cas bien sir se produira souvent; qu’il soit vrai ou non que (M)
est toujours continue, elle peut prendre la valeur —oo si @ peut la prendre:
M peut prendre toutes ses valeurs dans I’ensemble pluripolaire {p=—occ}
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(par exemple si M est constante!).

5. Les espaces l-tangents et 2-tangents d’un variété complexe

Les espaces 1-tangents ont été étudiés dans Schwartz [1] §7; les espaces
2-tangents ne nous ont été nécessaires que plus tard, dans Schwartz [3], et
IA nous n’avons pas regardé le cas des variétés complexes et des martingales
conformes; il est temps de réparer cette omission.

(5.1) V étant une variété C? réelle, nous pourrons complexifier ses espaces
tangents TXV; v), TV; v) en TY(V; v)+i TYV; v), TAV; v)+i TYV; v),
avec évidemment (T4V; v)+i TV; o)[(TYV; v)+i TYV; 0))=(TY(V; v)
+i TY(V; 0))O(THV; v)+i TY(V; v)), O étant le produit tensoriel relatif a
cette structure complexe, ()=()¢. Nous n’avons complexifié que les espaces
cotangents dans Schwartz [1], non les espaces tangents, parce qu’alors nous
définissions, pour une V-semi-martingale X, les différentielles dX° par dualité;
depuis que nous les avons définis comme différentielles & valeurs dans des fib-
rés, par des Qopy, dans Schwartz [4], les espaces tangents prennent un nouveau
role, et nous les complexifions ici; C-linéaire voudra toujours dire linéaire pour
cette structure complexe. Soit maintenant V' analytique complexe, de dimen-
sion complexe N, réelle 2N. Elle devra pouvoir étre considérée aussi comme
réelle, donc T%, T? dX, --- seront les memes que si la variété était réelle; on pourra
introduire des objets supplémentaires, avec des notations nouvelles, mais pas détruire
les anciens.

(5.2) Rappelons que, si Cj(resp. C;+iC3), est I’espace vectoriel des germes en
v de fonctions réelles (resp. complexes) au voisinage de vV, THV; v) (resp.
THV; v)+iT*V; v)) est 'espace des formes R-linéaires (resp. C-linéaires) sur
C* (resp. Ct+Ci¥), qui annulent les fonctions dont les dérivées d’ordre 1, ---,
k, en v sont nulles; T%(V; v) est de dimension réelle 2N, TY(V; v)+iTYV; v)
de dimension complexe 2N. On appellera alors 4, ’espace vectoriel des germes
en v de fonctions holomorphes au voisinage de v, et T%(V'; v) ’espace vectoriel
des formes C-linéaires sur 4, annulant les fonctions dont les dérivées d’ordre
1, ---, k en v sont nulles. Manifestement 7%(V; v) est le quotient de T*(V; v)
+i THV; v) par le sous-espace JI*(V'; v) des éléments annulant les fonctions
holomorphes en v; T4(V'; v) est de dimension complexe N, donc JI}(V'; v) aussi.

Considérons une carte holomorphe de ¥ sur un ouvert U d’un espace
vectoriel complexe E; au lieu d’appeler 7 le multiplicateur habituel de E, nous
I'appellerons I, opérateur R-linéaire de carré —1; il se prolonge a E+-iE,
complexifié de E, en un opérateur C-linéaires I, de carré —1. Si (€,)p=1,2,.-.n
est une I-base de E, et si f,=1I ¢, (e, fi)r=1,2..n €st une R-base de E, donc
une C-base de E4iE. Si les (2;), k=1, 2, ---, N, sont les fonctions coordon-
nées (complexes) relativement & la I-base de E, zy=ux,1iy,, et les &, y,, k=
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1,2, .-+, N sont les fonctions coordonnées pour la R-base de E, se prolongeant

en fonctions coordonnées pour la C-base de E+4iE, on peut poser e,,=i, fi=

) 8 _1(8 .8 0 1
6y"’ et il est habituel de poser — » = <67_l W)’ 5-5—;—— (67+ _)

Alors TY(V) s’identifie & UXE, donc la carte munit T%(V'; v) d’'une I-structure
complexe, et TV) d’une structure de produit de variétés complexes. Un
changement de cartes (U, E)—(W, F) holomorphe se traduit par (x, &)—(D(x),
®'(x) £), ® holomorphe, @’ holomorphe de U a valeurs dans £, (E;; F;). Ceci
montre que l'opérateur I est intrinséque, se transporte 2 T V; v), et lui donne
une structure complexe THV; v), I opérateur R-linéaire de carré —1, donc
C-linéaire de carré —1 sur TY(V; v)+i TY(V; v), et que T(V) est un ﬁbre C-
analytique. Par contre, si on munit T%V; v)+iTY(V; v) de sa C-structure,
TY(V)+:iT'(V) n’est qu'un fibré R-analytique. Bien que T, soit un quotient
de T'+44T%, il existe un R-isomorphisme canonique entre T" et Tg: a tout
£,Ty(V; v), on fait correspondre I'unique élément E=p&, de TYV; v) qui
prend la méme valeur sur les fonctions holomorphes (i.e. £ a pour image E %

dans le quotient Ty (V; v)=(TY(V; v)-+iT*(V; v))/fﬂ‘(V '0)) Si &=
-1 ; donc

. 1/(8 .28 o . _
qui est justement > (67—1 ayT), E—a—xf =iy k, E= 5 k Y
p+i=1I-p, I est le transformé de 7 par p, ce qui montre 2 nouveau qu’il est in-
trinséque, et p est un isomorphisme complexe de T%(V; v) muni de sa C-struc-
ture, sur THV'; v) muni de sa I-structure. Donc la carte sur U envoie aussi
T, sur UXE}, et les changements de carte sont les mémes; T'4(V) est, comme
THV), un fibré holomorphe.

a?

(5.3) On définit maintenant deux sous-espaces TV(V; v) et T%(V; v) de
T\V; v)+iTY(V; v). Il y a plusieurs définitions et propriétés qui se voient
aussitdt par des cartes. D’abord T%%(V; v) est le sous-espace propre {I=i}
de I pour la valeur propre 7, T%(V; v) pour la valeur propre —i; ils sont
conjugués pour la conjugaison habituelle du complexifié TYV; v)4+iTY(V; v),
et de dimension complexe N, et TYV; v)+iI'(V; v) est leur somme directe.
Le projecteur de TYV'; v)+iTYV; v), d’image T“°(V; v), de noyau T%(V; v),
1—i1 1—dI .l—iI( i1
t I = =
A T A 2
TY(V; v) est H;I‘ Une base de T%%(V; v) (resp. T%Y(V; v)) dans une carte

), le projecteur sur T%(V; v) de noyau

est formée des 52— (resp 8az”) k=1, 2, ---, N. Ensuite T%Y(V; v) est le sous-

espace de T(V'; v)+i TYV'; v) formé des formes linéaires sur Cj, qui annulent
les fonctions anti-holomorphes: £ TY(V'; v)+iTY(V'; v) est dans T (V; v), ssi,
Voe4, §($)=0; de méme T%(V; v) est 'ensemble des éléments de T(V; )
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+iT%V; v) qui annulent les fonctions holomorphes. Il se trouve (mais I’équiv-
alence de ces définitions ne sera plus vraie pour les T%, k>2) que T"(V; v) et
aussi ’ensemble des £ qui “commutent” avec la multiplication par les fonctions
anti-holomorphes: si feC;+iC;, peH,, E(Pf)=P(v) &E(f); et la propriété
analogue pour 7%. Donc T*'=JI!, et par suite T%°=(T"+iT")/T*'=(T"+
T IN'=TY, (1somorph1sme C-linéaire). La correspondance entre 7% et Ty, est
forcément la méme: si £, T (V; v), o £E4=E"0 est 'unique élément de T"%V;
v) qui 2 méme valeur sur les fonctions holomorphes, ou &, est I'image de &“°
dans le quotient Ty (V'; v)=(T%(V; v)+iT°(V; v))/T1Y(V; v). Cela montre que
T“(V) est un fibré holomorphe (mais pas 7% V), ni, encore une fois, T*(V)+
iTY(V)). Enfin cela établit un isomorphisme entre T"%(V; v) et T}(V'; v) pour
la C-structure du premier et la I-structure du deuxiéme; a £"° correspond &=
po 1 EYY, prenant les mémes valeurs sur les fonctions holomorphes. Dans une

—i 1,0__ 3 1 i_i :1—”_6_
carte sur UCE, si &= Py & az" <6x" o ) 7 o
1

_211, qui vaut 1 sur 7" et 0 sur 7!, donc envoie T'; dans

I’isomor-

phisme T'}—T"° est

T*° et son inverse est L—L--L.

(5.4) Les choses deviennent plus compliquées avec les espaces 2-tangents,
a cause de l'arrivée d’un nouveau partenaire, T%!. Tout d’abord, alors que
TYV; v) admet une structure I-complexe, 7% V'; v) n’en admet pas de naturelle,

et méme pas du tout si IV est impair, car sa dimension (réelle) est 2V- —l—w
=2N?+3N, impair pour N impair; bien sir TXV; v)+iT%V; v) est de di-
mension C-complexe 2N?+3N. L’espace T% (V; v) a déja été défini; lui,
il est C-complexe; dans une carte sur U ouvert de E, il s’écrit E;P(E;Oy Ey),
N(N;l—l) = N223N . Une base est formée, en

de dimension I-complexe N+
posant 6,,=aik, 0= 82‘ des 9, 0; 9; (1<j), et tout opérateur différentiel
2

holomorphe d’ordre 2 sans terme constant s’écrit

z 1 & o
2 bk ak_l—_ E a’ 6,‘ 6,‘, al"t = aq* .
k=1 2 ii=1

(Au contraire, T%(V; v) est EQ(EQE), et E;O; E; est un quotient de EQE,
nous le reverrons a (5.5)). La formule de transition pour un changement de
carte ®: UCE—-WCF est celle que nous connaissons (voir Schwartz [3],
(1.13), page 10)

D'(x) P"(x)

)
0 &'(x)0O;d(%)

qui fait de 7%(V) un fibré holomorphe.

(5 L) (e, (
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(5.5) On définira des sous-espaces essentiels. L’espace T%%(V; v) est celui
des éléments L de TXV; v)+iT%V; v) qui commutent avec la multiplication
par les fonctions anti-holomorphes, L(@f)=@(v) L(f) pour € H,, fECi+iC3;
dans une carte, sa base est celle des 8y, 9; 9, 7, j, k=1, 2, ---, N, et i< j; sa di-
N?*+3N

s

mension C-complexe est Puis T%¥V; v) est I’espace des éléments

qui commutent avec la multiplication par les fonctions holomorphes, T%*=T%°
dans le complexifié T?-+iT? sa base est formée des 8, 9; 9;. Et enfin
T"Y(V; v) est 'espace des L qui annulent les fonctions holomorphes et les fonctions
anti-holomorphes, L(@)=L($)=0 pour pEI,; sa base est formée des 9; 9;,
i, j=1, 2, ---, N, il est de dimension C-complexe N?. Alors T?+iT? est la
somme directe T2°P TP T, et 2N2+3N=N2_;3N+N7_;3N+N2. L’ens-
emble des éléments qui annulent les fonctions antiholomorphes est T%°@
T, Pensemble de ceux qui annulent les fonctions holomorphes est J°=T2°®
T", donc T%=(T*+iT?)|T?=T>°, ce qu'ont déja montré les bases. Donc
T%%(V) est un fibré holomorphe, pas les autres. Il apparaitra naturel d’appeler
I Popérateur 7 sur T™° —i sur T%% 0O sur T"!; il est C-linéaire sur T%+iT?,
mais pas de carré —1. Alors les 3 espaces sont ses sous-espaces propres pour
les valeurs propres z, —z, 0. Si on appelle partie réelle d’un sous-espace d’'un
espace complexifié ’ensemble de ses éléments réels, 7% est somme directe
Re(T*°4-T°%)@Re T'. Le second est annulé par I, le premier admet I comme
opérateur R-linéaire de carré —1, c’est lui qui a une I-structure (son com-
plexifié est T>°@T*? et ces deux sous-espaces sont ses sous-espaces propres
{I=i} et {I=—i}) et non T% Et T%, T*® sont aussi isomorphes & Re(T>°D

T°%)p, lisomorphisme Re(T*°@T*%)—T*° étant encore 1—i1

(il est P'identité

sur T%° nul sur 7%% donc envoie bien T%°PT"? sur T?°); l'isomorphisme
inverse est L—L+L; il envoie la I-structure du premier sur la I-structure
du deuxiéme, qui est sa C-structure. Ensuite 7"°C T?° et T2/ TX=T"OT"",
T T et T T"'=T"'OT*, et TW'==T"*QT"! (sans passage au quotient),
O=0¢, ®=Qg¢, en convenant d’identifier T™'QT™* avec T-°QT*' par
symétrie. (Schwartz [3], page 6.) Démontrons seulement la derniére affirmation.
Soient &,, n,& T"%V'; v); prolongeons-les en opérateurs différentiels holomorphes
£, » de degré 1, au voisinage de v. Alors £0% est un opérateur différentiel
d’ordre 2. Sa trace (£0%), ne dépend que de &, 7, et annule les fonctions
holomorphes et les fonctions antiholomorphes, donc est dans 7%(V'; v). Donc
on définit ainsi une application bilinéaire de T™Y(V; v)X T*Y(V; v) dans
TY(V';v),oulinéaire de T"(V'; 2)Q T*(V'; v)dans T}(V'; v), qu’une carte montre
étre bijective. Sur une carte, TXV; v)+iTHV; v)=E"DE"H(E-"OE"")P
(E*'OE* )P (E*QE™). On a toujours les mémes changements de cartes pour
T?4iT?; ®'(x) envoie E“° sur F“%, E®! sur F*' (parce qu’il commute avec 7
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et I, donc avec

1211 et 1—;11); ®"(x), qui est & la fois C-bilinéaire et I-bilinéaire,
envoie EYX E™ dans F'°, E*'x E*' dans F°!, et E"°x E*, E®*x E™ sur 0;
D'(x)O®'(x) (O=0¢) envoie EMOE sur FWOFY, E*'OE™ sur F*'OF%;
et @'(x)@P'(x) envoie E'QE"! sur F’"QF*. Enfin Ty CTj, et T5/Ty==
T,OTW(O=0O¢). Signalons qu’il y a un certain danger i identifier sans pré-
caution TYQT=T"'C T?+iT*? avec T'Q T (T +iTHO(T*+iT"), parce
que T?4iT? et (T'4+iT)O(T'+iT") ne sont pas le méme espace. Sur une
carte UCE non holomorphe, T"' n’est pas dans (E+iE)O(E+iE), il a aussi
une composante sur E47E; son image dans le quotient est dans (E4-iE)O(E+-
iE). 1l y a bijection, par la projection =, de T"! sur son image; si on appelle
z"! Papplication # de T*! sur son image, (z*!)™! sera la bijection réciproque,
R-analytique, de TH'QT*'C(T'+iTHO(T'+iT") sur T CT*+iT? (et de
Re(TH'QT*)C T'OT" sur Re T*Y).

Il y a un opérateur 7 sur T?+:iT% conservant T'+:T", donc sur (T%+iT?)/
(T 4T =(T"+iTHYO(T*+iT"); C’est i sur TYOT, —i sur T'OT", 0 sur
TYQT*. Donc Re((T*°OT)@(T*'OT*")) est muni d’une I-structure, I*=

—1, alors que T*OT" ne l’est pas; 121 ot une bijection de cet espace sur

TY°OT™, car 1_2” est 1 sur T°OT™, 0 sur T*'OT*, donc envoie bien

Re(-+) sur THOT™, et il est bijectif, d’inverse L— L+ L, amenant la I-structure
du premier sur la I-structure du deuxiéme, qui est aussi sa C-structure.
L’opérateur I opére sur Re(T*°@T*?), et sur son sous-espace 1", donc sur le

quotient g?,e( 1‘2,0@ TO,Z)/ TI: gae(( Tl,O@ TI,O) @(TO,I@ TO,I)).

(5.6) En posant, pour simplifier, TY(V; v)=E, étudions plus profondément
’application canonique ¢: E ©p E—E O; E. Le premier espace est de dimen-

sion réelle LMM:ZN’—I—N, le deuxitme de dimension J-complexe
N(NT_’_L), donc réelle N(N+1)=N?+N. La différence est N?, donc le noyau

est de dimension N?. Il est plus commode de tous les complexifier, on trouvera
alors comme dimensions C-complexes ce que nous venons de trouver comme
dimensions réelles; on les écrira (E+iE)O(E+iE) (ot O=0¢;)=(EOE)-
{(EQE), et (E4iE)O[(E+iE) (ot O1=0p¢,1)=(EOE)+i(EO;E). Mais (E+
zE)@(E—I—zE) — (EI’O@EO'I)Q(EI’OQBEO'I) — (El.OQEl,O)GB(Eo,l@Eo,!) ) (E1’°®E°'l).
On a une décomposition analogue avec O, @, Le noyau A de g est le sous-
espace engendré par les I EOyn—EQI 7, &, nE E+1E; mais il est somme directe
des noyaux A%?°, A% Al de ¢#°: EVOEY—E“O; EM, ¢*2: E*'OE—E*'O,
E™, gt EYQEY—-EY®, E™, et q=¢'@®¢?*®g"'. Mais A**=A%={0},
¢° et g™ sous l'identité parce que I est le scalaire 7 dans E°, —i¢ dans E%; et
AM'=E“QE", ¢! est nul, et E* O; E*'={0} parce que I EQ7—EQI 7=2i
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(E®7) pour &, »€E™. Donc q est l'identité de Re((E*OE“")P(E*'OE™Y))
sur E' Oy E', nul sur Re(E°QE"'). La dimension de A est bien N? celle de
EY'=E"QE*'. Nous avons trouvé un opérateur I sur (E"’OE"*)P(E*'OE™),
nous en avons un aussi sur (E;+iE;)O(E+iEy), c’est le méme par la bijection
¢°PD¢%%, qui est ainsi C-linéaire et I-linéaire.

6. Nouvelles propriétés des martingales conformes
(6.1) Soient ¥ une variété complexe, X une V-semi-martingale sur 4, ouvert
optionnel de R, X Q. Les notations dX, é( ,dX’, % d[X, X], suivant le principe

général indiqué a (5.1), devront garder leur signification ancienne, V' étant
considérée comme variété réelle; on peut introduire de nouveaux objets, avec
de nouvelles notations, mais on ne doit pas détruire les anciennes.® Les différ-

entielles précédentes ont des composantes sur les sous-espaces définis au para-
graphe 5. D’abord

(6.1.1) dX=dX*+dX*?+dX", DX eT"(V); dX est réelle, donc dX**=
dX*° (complexe conjuguée), et dX?°--dX*°c Re(T*°PT*?), dX* est réellee
ReT"'. Ensuite

(6.1.2) dX‘=(dX)*+(dX°)™, et (dX)*'=(dX);

(9) Voir la définition de dX, Schwartz [3], proposition (2.7) page 16, ou de préférence
Schwartz [4], (2.10); dX° a Schwartz [3], proposition (2.11), page 20, ou Schwartz
[4], (2.12); dX a Schwartz [3], (2.13quarto), page 21, ou Schwartz [4], (2.12); dX=dX°®

-I—éZ(; % d[X, X] a Schwartz [3], (2.14) page 22, ou Schwartz [4], (2.12); —;—d[X, X]=

ndX= m’i:;_(, image dans le quotient T'® T de T2. En ce qui concerne la distinction entre les
objets relatifs & V' complexe ou seulement munie de sa structure réelle, on peut étre trés rig-
oureux pour une variété générale, mais c’est plus difficile si V' est un espace vectoriel E muni
d’une structure complexe, et parfois les choses s’embrouiilent! On conviendra ceci: si E
est R-vectoriel (resp. C-vectoriel avec multiplication par i€ C; exemple, E=CY), [X, X]
est le crochet réele E (Og E (resp. le crochet complexee E(gE); si E est R- (resp. C-)ventoriel,
muni en outre d’un opérateur R- (resp. C-)linéaire I de carré —1, [X, X] est a valeurs dans
EQE, ©®=0g (resp. Og), [X, X]r est a valeurs dans Ey O Ey, Or=0Og,r (resp. Og,r). Par
exemple, 3 (6.1.4), d[X, X2 T O T, O=0g; 2 (6.2.1), d[X, X]4eT,OTY, O=
©o; 2(6.3), G4 est C-vectoriel, d[X, X]€e G4OG4, ©®=C¢. Dans (7.4) pour E complexe
et M martingale conforme, nous avons spécifié que Iensemble { } de I’énoncé était relatif
au crochet réel, a valeurs dans E (Og E, meis qu’on reconnaissait la martingale conforme d’apreés
[M, M]=0, pour le crochet complexe, & valeurs dans £ (g E. Méme si E=C, ol en principe
(le multiplicateur est 7) [M, M] est le crochet complexe 2 valeurs dans CC=C, on pourra

toujours spécifier [M, Mg C, [M, M]geC O C, de dimension récile 2x3

2 =3. Dans lén-
oncé (7.4), on voit aisément qu-, si 'on veut conserver seulement les structures complexes,
[M, M]g est a valeurs dans E ®¢ E (E antiespace de E), et que {[M, M]g est a variation finie
jusqu’en T}={[M, M]g est a variation finie jusqu’en T}, alors que la martingale conforme
se reconnait par [M, M]g=0.
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(6.1.3) &=41X2'0+1£(0'2+QZ{1'] .
(6.1.4) % d[X, X]=% d[X, X] 2'°+% d[X, X]“—{—% d[X, X, avec % d[X,
Xoe THOT™, % d[X, X]"":% a[X, XTI, et % d[X, X]"'e TR T

(identifié & T*'Q T1) réelle, donce Re(T°Q T, % d[ X, X]2'°=—;— d[(X°)°,
(XY, - d[X, X d[(X, (X, - dIX, XP= d[(X)", (X))
L dxep, ey =diaeye (X,

En outre, (dX°)"'=(dX>°), (dX°)"'=(dX"?)’, et al/or\sicﬂ( LY)*=0, dX"! est
une différentielle de processus & variation finie=dX"!. Comme ensuite

% d[X, X]|=rndX=n é/i = projection de T sur T*OT", % d[ X, XP'=ndX?°,

% d[X, X]°-2—n dxoz, i d[X, X]"'== X', donc, d’aprés la fin de (5.5), dX ™!

=(="1)"! d [X, XT*!, ce qui montre & nouveau qu’il est différentielle de processus

4 variation ﬁnie. Comme on le voit, toute I'information est contenue dans dX?°,

(dX ), cﬁ( 20, % d[X, X]*°; dX*° permet de retrouver dX par

(6.2) dX=2 Re dX**4(z") d[(X*°), (XZ)].

Récrivons tout dans une carte sur un ouvert U d’un espace vectoriel I-com-
plexe E:

62.1) dX—dx»4dx™, L gx, X]_ d[x™, X‘°]-|—1 d[X*, X°+-
d[X™, X%, Alors 2

/

X dxo
— , dX?0 = ,
= (% a[x, x1 )" = % d[X0, X
axo 0 )
dX°? = , dXM = :
—_— %_ d[XO,l’ XO,I] _ d[Xl,O’ Xo,l]

(6.2.2) Cela revient d’ailleurs & profiter de la structure complexe pour ne
considérer qu’elle, et a utiliser Ty, T3, T5OT}, isomorphes aux précédents,
et dont les cartes sont sur E;, E;P(E;Or Ey), EfOEy; cela permet de définir

directement les différentielles dX,, dX¢, d_;_( o %d [X, X]4, par la méthode

des différentielles a valeurs dans des fibrés optionnels, en utilisant les change-
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ments de cartes de (5.4) comme dans Schwartz [4]. Bien qu’on effectue, dans
ces deux derniers cas, des passages aux quotients, ces expressions donnent
toute I'information: dX?*° ou dX 4 permettent de retrouver dX.

(6.3) Soit dM une différentielle de martingale & valeurs dans un fibré option-

nel G,, a fibre vectorielle complexe. Alors %d [M, M] est une différentielle

de processus a variation finie, 4 valeurs dans le fibré G, O G,. On dira que

dM est une différentielle de martingale conforme si % d[M, M]=0. Si ], J’
€0pt(4; G¥), J © J'€0pt(d; G} O¢ G¥), et (J @]')I% d[M, M))=d[].M,

3

J'.M], différentielle de processus a variation finie complexe. Alors dM est
une différentielle de martingale conforme, ssi, V J&€Opt(4; G¥), (J|dM) est
une différentielle de martingale conforme complexe. On sait que dMe&Opt
(4; Gy) Qopt M(A), (Schwartz [4], proposition (2.3), et qu’elle s’écrit dM=
kz:'"l g dM*, g,€0pt(4; G,), dM* S H(A), avec (g,)s-1...m Opt-base de Opt(4;
Ga); (8%)k=1,2,-.m Opt-base duale de Opt(4; G¥%), dM*=(g**|dM). Ceci ex-
prime, comme toujours, qu’en fait AMEO0pt(4; G,) Rope M'(4), ou HM'(A)
est un sous-Opt(4)-module de rang fini de H(A). Alors dM est une différ-
entielle de martingale conforme ssi AIME0pt(4; G,) Qopr M'(4), o M'(A)
est un Opt(4)-module de différentielles de martingales conformes (rappelons

que les martingales conformes ne forment pas un espace vectoriel, elles ne
sont pas stables par addition).

Proposition 6.4 (Théoréme). Soit M une V-semi-martingale sur A. Les
propriétés survantes sont équivalentes:
1) M est une martingale conforme;
2) dM*® (ou dM"?) est ume différentielle de martingale, c.a d. 5114’"’:0 (ou
dM°*=0), ou dMET*, ou dM—=(="")"" d[M?>°, M®?);
2bis) dM*°€T"° (ou dM*?&T"'), et c’est une différentielle de martingale
conforme; alors  d[M?>°, M?°|—d[M®, M°3=0, donc % d[M, M]e
Re(THQT) et=d[M>*, M?9).
3) dM*°4-dM®* (=2 QRe dM?*°) est une différentielle de martingale (réelle);
3bis) dM*'+dM**=2 Re dM*°T* et c’est une différentielle de martingale
réelle (qui est donc dM°).

Démonstration. Comme 2bis=>2, nous montrerons que 2=>2bis et que
1<2; le passage & 3 et 3bis est évident. Supposons 2; alors dM**=(dM?>°)°
=@M T"°, et alors son image dans le quotient T2%T™° est nulle,
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;— d[M?*°, M*°]=0, donc 2bis. Regardons une carte holomorphe sur un ouvert

d’un espace vectoriel I-complexe E. Dire que M est une martingale con-
forme, c’est dire, dans cette carte, que dM, composante de dM sur E ou E+-iE,
est une différentielle de martingale I-conforme; comme dM™® et dM®™, ses
composantes sur E™ et E®!, sont 7-conjuguées, c’est dire que dM™°® est
une différentielle de martingale conforme; ou que dM™° est une différentielle

de martingale et ia’ [M*°, M'°]=0; mais, lu dans cette carte, dM*’=
(dM Lo 2

1, (M0, M) ), cela équivaut donc 4 dire que dM*° est une différentielle de
2 ’

martingale. []

(6.5) De la décomposition en somme directe des T*+iT* on déduit celle des
T*4iT**. Le dual de chacun des sous-espaces est I’orthogonal de la somme
des autres. Alors de (6.4) on déduit aussitot:

Proposition 6.5 Soit M une V-semi-martingale sur A. Les propriétés
sutvantes seront équivalentes:
1) M est une martingale conforme;
2) Pour tout JeOpt(4; M; T>*(V)), (J |dM) est une différentielle de martin-
gale;
2bis) Pour JEeOpt(4; M; T>¥V)), (J|dM) ne dépend que de I'image de ]
dans le quotient Opt(A; M; T "*(V)), et c’est une différentielle de martingale
conforme.
3), 3bis) Pour JEOpt(4d; M; Re(T>*(V)+T"**(V)), (J|dM) est une différ-
entielle de martingale, ou elle ne dépend que de Vimage de J dans Opt(A; M; T**
(V)), et elle est une différenticlle de martingale. On peut se borner a supposer
J de la forme o(M), @ champ de (2, 0)-vecteurs continu a support compact; alors,

si A=R, X Q, Pintégrale stochastique w(M)-M est une martingale conforme.

RemMARQUES 6.6 Enfin, voild des définitions directes des martingales con-
formes, sans passer par les fonctions holomorphes @ sur des ouverts! C’est
ce que je n'avais pas pu trouver dans Schwartz [1]. Voir remarque page 92,
qui énonce un théoréme faux, dont Perratum a été distribué ultérieurement. Une
intégrale de Stratonovitch par rapport 4 une martingale n’est pas une martin-
gale! Remarquons qu’on peut prendre J a support compact, alors qu’on ne
poutrait pas prendre J=D?p(M), ¢ holomorphe 4 support compact!

(6.7) Au lieu de raisonner sur T%° T2° on pourrait prendre Ty, T%, et
T%|TL=TiOT.. Alors M est une martingale conforme ssi dM est une
& g avt

différentielle de martingale, dM=0, ou ssi elle est dans T}, et est une différ-
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entielle de martingale conforme, %« d[M, M]4=0. Les variétés réelles nous ont

habitués 4 ce que dX ne puisse prendre ses valeurs dans 7 que si X est & varia-
tion finie. Et ici nous trouvons des martingales conformes M, pour lesquelles
dM?° ou dM, est 4 valeurs dans T"° ou T'}! Cela vient de ce qu’il y a eu
passage au quotient. Par exemple, T est le quotient (T?+:T%)/JP%, JP=T"
@T; dire que dM,4ET) veut simplement dire que dM&(T'4iT")+T%
+TH=TYPT"*PT", ce qui n’a plus rien d’extraordinaire! Par con-
jugaison, cela veut dire que dM&T'+Re T*', ce qui est bien le cas, puisque

dM—=dM*+dM™.

(6.8) On peut donner des énoncés analogues exprimant que X est une semi-
martingale conforme. Dans (6.4), 2) deviendra: dX?° est une différentielle
de semi-martingale conforme (sa composante martingale est conforme), 2bis)
deviendra: dX*° est 4 valeurs dans T™° et est une différentielle de semi-mar-
tingale conforme, etc....

Corollaire 6.8. Dans Pespace SH(V) des V-semi-martingales sur R, X Q,
Pensemble des martingales conformes est fermé.

Démonstration. On pourrait le faire directement avec la définition des
martingales conformes, mais c’est nettement plus simple a partir de (6.5). Com-
me SH(V) (A=R,.XQ est omis) est métrisable, on peut prendre une suite
(M,),en de martingales conformes, convergeant vers une semi-martingale M.
Quitte 2 extraire une suite partielle, M, converge vers M, pour presque tout w,
uniformément en ¢ (chaque trajectoire est compacte, la convergence uniforme
a un sens par des cartes). Alors, si @ est un champ de vecteurs (2, 0)-cotan-
gents, continu a support compact, @(M,) converge vers @(M), pour presque
tout w, uniformément en 2. Comme ensuite M, converge vers M dans S H(V),
@®(M),M, converge vers w(M)-M dans S HM(scalaire !); les w(M,)-M, sont
des martingales conformes, sous-ensemble (non sous-espace vectoriel !) fermé
de SM, donc w(M)+M est une martingale conforme® (On ne pourrait pas

(10) Pour la topologic de S.H, voir note (2), page 79. La topologie de SH étant définie
pour les semi-martingales nulles en 0, si X est quelconque, on dira que X converge vers 0
si Xy et X—X, convergent vers 0. Pour les semi-martingales sur une variété V, on dira
que X converge vers 0 si, pour toute ¢ réelle C2 sur V, ¢(X) converge vers 0; cela revient a
plonger V' dans un espace vectoriel (réel) E, et a considérer les I/-semi-martingales comme
des E-semi-martingales. Dans la suite de la démonstration, peut-&tre faut-il préciser pourquoi
@(M,)+ M, converge vers @(M)+-M dans S M. Il existe un relévement linéaire continu p de
T*%(V), fibré sur V, dans le fibré trivial dont il est un quotient, V' X (E*®(E*OE™¥)), et de
méme dans les complexifiés correspondants. Alors, @(M)* M= p&(M)- M, M étant considérée
M

comme 2 valeurs dans EQ(EQE), M =< ) La convergence énoncée cst alors un

1
5 M4.M]
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prendre des @ de la forme D? @, car ¢ devrait étre holomorphe pour que ¢ soit
a valeurs dans T2° et il n’y a pas en général assez de fonctions holomorphes
si V n’est pas de Stein ! et jamais de fonctions holomorphes 4 support com-

pact ). O

7. Prolongements de semi-martingales au-dela d’un temps d’arrét

Sauf mention expresse du contraire, et sauf a (7.1), (7.1.1), (7.1.2), toutes
les semi-martingales seront supposées continues.
(7.1) Tout ce que nous avons fait pour un ouvert 4 de R, X Q peut étre refait
aussi bien pour un ouvert relatif A de [S, T'], intervalle stochastique. Nous

prendrons toujours ACR,xQ, donc T<+o ou T<Foo reviennent au
méme. Nous dirons que X& A(4) si X est restriction 2 4 d’un processus op-

tionnel X sur R, X Q, et il existe une suite (4,),ey d’ouverts relatifs de [.S, T7]
tels que, pour tout 7, X~X,E A(R,xQ). Nous demandons au lecteur d’
Ag

admettre que tous les énoncés sont valables. (Nous l'avons d’ailleurs fait
dans Schwartz [3], (6.1) page 86, pour les semi-martingales.) Pour le §l,
les hypothéses XTX ’, semi-martingale (1.4) ou semi-martingale continue

(1.5) subsisteront sous cette forme. Ce sont ici les extrémités S(w), T(w),
qui donnent les petits ennuis techniques que donnaient 0, 4+ dans le cas de

R, x Q. Signalons, en vrac, quelques propriétés faciles:

(7.1.1) Soit A'DA P'ouvert de [S, +oo] obtenu comme suit: si T(0)<E4(w),
on pose A'(w)=A(w)U[T(w), o], sinon 4A'(w)=4(w). On peut faire de
méme pour les A, intervenant dans la définition, remplacer X et X, par X7,
X;. Alors Xe (A4) ssi XTeA(A4'), ce qui permet toujours de remplacer
[S, T] par [S, +0]. On ne peut pas remplacer S par 0 de la méme manicére,
les processus obtenus ne seraient plus optionnels. Mais, dans le cas de pro-
cessus a valeurs vectorielles, on peut encore remplacer 4 par A” ouvert de
[0, T] de la méme maniére, a4 condition de remplacer X, X, par X—X5, X,—
X7, XeA(A) ssi X—XSeA(A”) (rien de tel dans le cas d’une variété 7).
Finalement, en prenant A’UA4”, ouvert de R, xQ, X e(4) ssi XT—-X5e

JA(A'UA"), A'U A" ouvert de R, x Q.

théoréme d’Emery, Emery [1], qui s’énonce comme suit: si (H,),cx est une suite de pro-
cessus continus qui converge vers un processus H continu, pour presque tout @ uniformé-
ment en ¢, et (Z,),ex une suite de semi-martingales qui converge vers une semi-martingale Z
dans SH, les intégrales stochastiques H,-Z, convergent vers H-Z dans S4{. En effet, par

la méthode de localisation d’Emery on se raméne (en prenant des suites partielles) & une suite
1 1

H, convergeant vers H dans S?, Z, vers Z dans 9(?, donc H,*Z, vers H+Z dans 4", —;——i—;=7.
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(7.1.2) X est une semi-martingale sur [S, T'] ssi elle est restriction d’une semi-

martingale X’ sur R, xQ (Schwartz [1], Proposition (2.4), page 10); elle est
semi-martingale continue sur [\S, T'], dans le cas vectoriel, ssi elle est équivalente

4 une semi-martingale continue X'7—X'S sur R, X Q, et alors (1.5) montre
que XeJ[S, T]eXT—XS€ (R, X Q).

(7.1.3) Si X est une semi-martingale vectorielle (2 partir de maintenant, toutes
les semi-martingales seront de nouveau supposées continues) sur [S, T], X&

JA(A) ssi XeAAN]S, T, AN1S, T[ ouvert de R, X Q (car, si X A4
N1S, T[), étant équivalente sur 4 4 une semi-martingale sur R, X Q, elle est
équivalente sur AN]S, T[ 4 un élément de A par (1.5), mais alors, par con-
tinuité, elle ’est aussi sur 4. Ceci subsiste pour des martingales conformes
a valeurs dans une variété complexe, en raisonnant sur (M) et ANMYV").

(7.2) Le probléeme que nous étudierons dans ce paragraphe est le suivant:
X est une semi-martingale (continue) a valeurs dans une variété V, sur [S, T,
T<+oo; quand est-elle prolongeable 4 [.S, T]? Le méme probléme se pose
pour 1S, T'], nous ne le regarderons pas ici. Un théoréme de Meyer Stricker
(Meyer-Stricker [1]) dit qu’il existe une suite (7,),en croissante de temps
d’arrét, T, /T, stationnairement sur {7'=-F oo}, telle que X soit restriction &
[S, T,[ d’une semi-martingale X, sur [S, 4 oo]; nous la supposerons arrétée
en T,, ce qui la rend unique. En particulier X, _ existe sur {7,,>S}. Dans

le cas vectoriel, X°, X, % [X, X], H.X, qui ne sont définis a priori que comme

processus formels, vont exister comme vrais processus sur [S, T'[, grace aux
X, sur [S, T,[; ils ne sont bien entendus définis qu’ades ensembles P-négli-
geables prés; on prendra X=X, X%=0 donc, en la prolongeant par 0 dans
[0, S], définie sur [0, T[, [X, X]s=X;OX,, et H.X pulle en S, donc, pro-
longée par 0 dans [0, S], définie dans [0, T'[, pour H a trajectoires H(w) bor-
nées sur tout compact des [S(w), T(w)[. Pour simplifier, nous écrirons aussi
X7 au lieu de X,=X7», X, =X, _=(X,)r, sur {T,>S}. Ou encore, X sera
automatiquement prolongée par X7 sur [S, T"[, "= oo sur {3 7 tel que T,=
T}, T ailleurs, et elle y sera une semi-martingale, puisqu’elle coincide avec
X, sur [0, T,[, T,=-Fo0 sur {T,=T}, et T, ailleurs, et que [S, T"[= U

neN

[S, T»[. Dans le cas vectoriel, il en sera de méme de X°, X, [X, X], H.X;
si XeJ[S, T, alors XeJ[S, T'[, puisque X, = A[S, T,[ et méme A[S, + o]
par (1.5). Ceci subsiste pour les martingales conformes sur les variétés com-
plexes, par (3.3.1).

(7.3) On dira que X(w) converge si X(¢, w) & une limite pour ¢<T(w) ten-
dant vers T(w). On dira que X(w) converge parfaitement, dans le cas vec-
toriel, si X(w), X°(»), convergent, et si X(w), [X, X] (w) sont & variation finie
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jusqu’en T(w) (donc convergent). L’ensemble {X converge parfaitement} est
défini 4 un ensemble P-négligeable prés.
Le cas vectoriel le plus anciennement connu est celui des martingales.

Proposition 7.4 Soit M une martingale a valeurs dans un espace vectoriel
E. Les 3 ensembles suivants coincident P-ps.:
{1} = {[M, M) est & variation finie jusqu’en T} ;
{2} = {M converge} ;
{3} = {La trajectoire de M est relativement compacte} .
Alors M se prolonge en une martingale M’ sur [S, T'[, o T'= oo sur ces 3 en-
sembles et T ailleurs, et ce prolongement est unique si on lui impose d’étre arrété
en T, c’est MT. Si E est complexe (auquel cas {1} est relatif au crochet de la struc-
ture réelle), et si M est une martingale conforme pour la structure complexe, M’
Pest aussi.

Démonstration. En remplagant M par M—M?, on se raméne a S=0.
Le cas complexe est évident car M est conforme ssi [M, M] (crochet complexe
cette fois)=0, donc aussi [M’, M']=0 (voir note (9) page 96). La démon-
stration est bien connue pour T=-oo; (voir Lenglart [1]; pour d’autres
problémes analogues, voir Sharpe [1]), mais, bien qu’elle soit la méme, elle
ne semble figurer nulle part pour T arbitraire. On utilise les 7T, de Meyer-
Stricker; les M,=M"» sont des martingales, par (1.5). Si les M* sont les

coordonnées de M dans E, [M*, M*] est croissante, et |d[M’, M7]| <% (d[M,

M+d[M’, M), donc {1} est aussi {[M, M] converge}; en outre, ceci permet
de nous ramener au cas réel. Dans le cas réel, on peut définir [M, M] et M*,

M¥=sup |M,|, sur R,XQ, A valeurs<-+oo. Alors {l} est aussi {[M, M],
s<t

<-too}, et {3} est {MF<+oo}. On a les équivalences {1} =Q P.p.s.=Les
[M,, M,]. sont bornées dans L°(Q, O, P)«Les (M,)X sont bornées dans L°
(Q, O, P) (Schwartz [2], topologie de .M, (3.8bis) page 445 (33), (3.9bis) page
446 (34))= {3} =QPp.s. Dong,si {1} ou {3} porte P, les deux portent P. Mais
alors, pour n>m, [M,—M,, M,—M,]|=[M,, M,]—[M,, M,] convergent vers
0 P—p.s. pour n—>-+-oo, donc (M,),en est une suite de Cauchy dans I’espace
complet M des martingales sur R, X, donc a une limite; donc {2} =Q
P p.s., et cette limite ne peut-étre que M”. Mais {2} C {3}, donc, si 'un des
3 ensembles porte P, les 3 portent P, et M7 est une martingale sur R, X Q.

Passons au cas général. Soit R,=Inf {t<T; [M, M],>k} (avec R,=T si
cet ensemble est vide). Alors R, 7T, et stationnairement exactement sur
{1}={[M, M];<-+4oo}. La martingale M* est définie sur R.xQ d’apres
ce qui précede; donc (MZ)F<+ oo Pp.s., et M*: convergeen TP p.s. D’aprés
la stationnarité ci-dessus, {1} C {3} et {1} {2} P p.s. Puis, soit S,=Inf
{t<T; M¥>Fk}; S,/ T, stationnairement exactement sur {3} = {M¥<<-}oo}.
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Le méme raisonnement montre alors que {3} € {1} et {3} € {2} P-p.s.; comme
trivialement {2} C {3}, les 3 ensembles coincident. Appelons-les { }.

Enfin M prolongée en M’ est M*+, martingale sur R, X Q, sur [0, T[U (R,
X {R,=T}); donc M est une martingale sur [0, T[U {R,x{ }}=[0,T[. O

Corollaire 7.4.1 1) Si M est une martingale vectorielle, elle converge
parfaitement la ou elle converge;
2) La convergence parfaite est stable par les applications C?, donc peut se définir
sur une variété V, et elle subsiste lorsqu’on remplace P par une probabilité équiva-
lente. Si T'=-oo sur {X converge parfaitement}, =T ailleurs, X se prolonge
en semi-martingale X' sur [S, T'[, X'=XT. Dans le cas vectoriel, si X A[S, T|[,
alors X' € A[S, T'[. (Voir un petit article d’Emery, just avant Meyer [3].)

Démonstration. 1) est (7.4). 2) résulte d’Ito: si & est une application
C? de E dans F vectoriels, sur {X converge parfaitement}, ®(X)~®'(X)-

X est 2 variation finie, ®” (X)% [X, X] aussi, ®'(X)OP'(X)- ; [X, X] aussi,
donc, par (7.4), ®(X)'=®'(X)-X° converge. Sur une variété V, on dira que X
converge parfaitement en 7, si c’est vrai pour un plongement de V' comme sous-
variété fermée d’un vectoriel, et c’est alors indépendant du plongement; {X

converge parfaitement} = n {p(X) converge parfaitement} (N P-essentielle).
(4%

La possibilité de prolongement en semi-martingale sur [S, 7'[ résulte de ce
que Cest vrai, dans un plongement, pour X° par (7.4) et X trivialement. Le
prolongement par X7’ est P-essentiellement le plus grand prolongement en
semi-martingale arrétée, donc il subsiste si on remplace P par une probabilité
équivalente. Si XEJA[S, T[, dans le cas vectoriel, 'étude de X°, X, [X, X],
montre que XeJ[S, T[.

REMARQUE. 1) Par contre, (7.4) ne subsiste pas du tout tel quel pour les
martingales conformes sur les variétés complexes, et il n’est nullement évident
qu'une martingale conforme converge parfaitement 12 ou elle converge. Ce
sera 'objet de (7.12) et (7.14).

2) La convergence parfaite de X en T est donc la condition nécessaire et suf-
fisante pour que X se prolonge en semi-martingale dans [S, T'], et on aurait
pu prendre cela comme définition.

(7.5) Nous voulons étendre cela & d’autres processus que les martingales.
L’approfondissement a été dit & un théoréme de Darling et & une réciproque
de Zheng,"™. Comme les conditions générales ont été explicitées par Zheng,

(11) Darling et Zheng ont exposé ces résultats (et d’autres plus fins) dans plusieurs articles.
On trouvera un exposé en style “‘strasbourgeois” dans P.A. Meyer [3], et d’autres articles
traitent du méme sujet dans le méme Séminaire.
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nous proposons de donner son nom aux semi-martingales ayant les propriétés

voulues. Soit X une V-semi-martingale sur ACR, X Q. On sait que —;— d[X,

X]=n(X)dX, donc %d[X, X] est de base dX. On peut donc définir
1

|4 [X, X]| _ , ~ ‘

_ 2" " comme une fonction>0 définie dX-p.p.=dX-p.p., d&s qu’on
ldX |

a défini des normes | | continues sur les fibres de T4 V) et de TY(V)OTY (V).

On peut définir une infinité de telles normes, euclidiennes si on le désire, par

des cartes, mais elles sont toutes équivalentes sur tout compact de V. Pré-

cisons. La différentielle de processus a variation finie ci?_(, a valeurs dans T4V)
le long de X, est dominée par la différentielle de processus croissant I‘i( | >0,
donc d_?{-——f Icifl , [ section optionnelle de 7% V) le long de X, | f | =1, é(p.p.;
de méme % d[X, X]=n(X) dX==(X)f|dX|, d'ot % 14X, X]|=|z(X)f]

1

_ ?ld [X, X]I _
[dX |, et =————=|#(X) f |, défini dX-p.p. ou dX-p.p. Il en résulte que
~ laX| ~
dX et % d[X, X] seront équivalentes ssi |z(X) f | >0 dX-p.p. On pourra alors

1 _ ]4x]
=1 Larx, x11
Q{-p.P.=d% [X, X] p-p- i

parler de son inverse =p",0<p" <+ oo défini d_}-p.p.z

(7.5.1) On dira alors que X, V-semi-martingale sur 4 ouvert de R, X,

est une semi-martingale de Zheng, si d’_)t( et —% d[X, X] sont équivalentes, et si

p’ est borné “‘sur tout compact de V”’, i.e. sur tout X "{(K), K compact de V.

Proposition 7.6 (Zheng). Soit X une semi-martingale de Zheng sur [S, T.
Sur {X converge en T}, X converge parfaitement (7.3); X est prolongeable en
une semi-martingale X' sur [S, T'[, ot T'=o00 sur {X converge}, T ailleurs,
prolongement unique si on lui impose d’étre arreté en T, et X' est de Zheng.

Démonstration. On la trouvera dans Meyer [3], en remplagant S par 0
comme ci-dessus, #—>-4-oo par T,—T, et en prenant un plongement fermé
de V dans un vectoriel E. Cette démonstration prouve seulement que X con-
verge parfaitement. Mais, toujours en raisonnant dans E, X° se prolonge en
martingale par (7.4), X en processus 2 variation finie, donc X en semi-martin-

t ~ t
gale. En outre I'inégalité S |dX, | <S puld % d[X, X),|sur [0, T[, se prolonge
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par continuité a [0, 7'[ (p n’étant jamais qu’optionnel défini dX-p.p.). Donc
X' est de Zheng.

Nous allons définir une “réciproque”. Sur un plongement de V dans E,
la convergence de X entraine celle de [X, X]; mais celle-ci, sans hypothéese
de convergence de X, entraine celle de [@(X), (X)], pour p = CZ,,, (@ fonction

C? sur V a support compact), par Ito: [@(X), ¢(X)]=<p'(X)®<p’(X)-—;— [X, X],
% [X, X] a variation finie jusqu'en T et @'(X) bornée. Donc, (7.6) dit que,
sur {X converge}, pour toute pEC’ ., [@(X), ¢(X)] converge P ps.

Premiere réciproque (Darling) 7.7. Soit X wune semi-martingale de
Zheng sur [S, T[. Sur Pensemble { }= U {{e(X), p(X)]r<+oo} (N est

{Peccomp

Uintersection P-essentielle), X converge en T P ps., dans le compactifié d’ Alexandroff
V=V U {oo} de V.

Démonstration. Tout étant intrinséque, on peut plonger V' comme sous-
variété de E (fermée ou non). Alors, si pECZ,pnp, (X)=@(X) +@(X). Mais
[¢(X), (X)]=[p(X), p(X)]<+ oo P ps. donc, par (7.4), (X)° converge sur

{ }. Mais les inégalités [@(X), @(X)];<<+ oo ont la conséquence suivante:
quel que soit J, processus 2-cotangent le long de X, élément de P*(V), borné

““a support compact”, i.e. porté par un X "{(K), K compact de V, J. X=]. %

[X, X] converge sur { }. (Schwartz [3], §1, page 3.) En effet, plongeons V'
comme sous-variété, fermée ou non, de E vectoriel; J se reléve en un processus,
que nous appellerons toujours J, 4 valeurs dans E*©E*, borné a support com-

pact. Si (x*);-y,,.. sont les fonctions coordonnées de E, j:% > a;,; D¥(X)O
LET)

Dxi(X), ou les a;; sont optionnelles, bornées a4 support compact sur V, et
ceci a de nouveau un sens intrinséque sur V. Mais, sur ce support compact,
les &* coincident avec des fonctions ¢* C? 4 support compact sur V, d’ou

J=7 3 a; D{(X)CDP(X)- [X, X]
- % fv‘," a;,; [P(X), P/(X)], *

qui converge, en vertu des hypothéses. Nous allons en déduire que, si X
est de Zheng, pour toute p=C3,,,, (X) converge sur { }, donc ¢(X), donc

(12) Pour cette formule, voir proposition (2.14) page 22 de Schwartz [3]. Il y a bien

disparition d’un facteur —;—: (]@]’-)_{)z(]@]')-% X, X1=[J-X, J'-X].
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X converge en T sur le compactifié d’Alexandroff V de V. Utilisons main-
tenant la propriété précédente de Zheng. Récrivons, comme 2 la page précé-

dente, dX—f|dX|, % d[X, X]=h|dX|, h=n(X)f; il existe une application
linéaire p (¢, w) de THV; X(¢, 0))OTYV; X(8, w)) dans TXV; X(¢, w)), telle
que p (t, ») (¢, ©)=f(t, ®), de norme k|p(t, 0)| =p'(t, )——H, en repre-
nant les notations de (7.5), si les normes sur les 74 V; X(¢, w)), T'(V; X(¢, ))©
TV; X(t, »)) ont été choisies euclidiennes. Alors dX=p % d[X, X], dX-pp.
Donc ;(t;f ) Dp(X)-X=D*p(X) p’ % [X, X]; et D’p(X) p est un processus

J a valeurs dans P*(V) le long de X, borné a support compact (p: T'OT'—
T? D’p(X): T*—R), donc ¢(X) converge bien. []

[s.7r

REMARQUE. On sait qu'on ne peut pas remplacer ici 14 par V. 1l suffit
de prendre V sous-espace ouvert d’un vectoriel E, X=M martingale & valeur
dans E, T=temps de sortie de V. Alors, si [M, M] converge dans E, [p(M),
@(M)] converge par Ito pour pC2,,,(V); M converge dans E, donc dans v,
pas dans V. D’ou I'idée d’une deuxiéme réciproque. Car (7.6) dit aussi que,
si X converge, [@(X), ¢(X)] converge pour toute p&C? & support quelconque,
puisque X converge parfaitement, propriété stable par applications C2.

Deuxiéme réciproque 7.8. Soit X une V-semi-martingale de Zheng
sur [S, T[. Sur{ }= r‘] {[<p(X )y P(X)]r<4-oo} (N P-essentielle) X converge
en T dans V elle-méme.

Démonstration. Comme dans (7.7), Fp=C? @(X)° converge sur { }.
Ensuite soit J 2-cotangent le long de X & valeurs dans P*, optionnel “borné
sur tout compact de V", i.e. sur tout X %K), K compact de V. Plongeons
encore V dans E, mais cette fois-ci comme variété non nécessairement fermée,

dans un ouvert borné de V; les x* sont bornées sur V. On a encore ]:l P

a; ; Dx'(X)ODx/(X), a; ; bornées sur tout compact de V.  Soit (K,),en une suite

croissante de compacts K, épuisant V, K,CK,,,. Soit a,=sup|a; (¢, o)|
i

pour X(t, w)eK,. Il existe une fonction B C? réelle>0 sur V, telle que B>«
sur K,,\K,, -1~ Alors les a; ;/B(X) sont optionnelles bornées en module par 1.

Bt J= 5 s BODE(0ODR(X0)=3 5 i (D(x8) (OOD(X)~
%(X) DR(X)ODx/(X)). Comme les x* sont bornees sur V,

J =3 v, D@'(X)OD!(X), o bornées, @', ' &C?.
1]

Donc J % [X, X]=$ 7 [#'(X), ¥(X)] converge. Ensuite on refait la fin du
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raisonnement de (7.7) utilisant la propriété de Zheng:
V peC?, (X Y~ D’p(X)p-— [X X)], ot D*p(X)p est un processus a valeurs

dans P*, optionnel, borné sur tout compact de ¥, donc ¢(X ) converge sur { },
donc @(X) aussi, et X converge en T, dans V' elle-méme (en prenant pour ¢ les
coordonnées d’un plongement fermé de ¥ dans un vectoriel). []

On peut résumer ces résultats dans le tableau suivant:

[S.T]

{1} = {X converge parfaitement} C {2} =
N Ale(X),p(X)]r<+oo} {3} =

yec

(7.8.1) 4 N Alp(X), PX]r<too}

{4} = {X converge} < {5} = {xX converge dans V};
si X est de Zheng, {1} = {2} = {4} {3} = {5}

si X est de Zheng et V compacte, {1} = {2} = {3} = {4} = {5} .

(7.9) Applications aux connexions.

Toutes les connexions sur une variété V' seront supposées relatives au fibré
tangent T'(V), sans torsion et boréliennes localement bornées. Une telle
connexion est définie par un relévement linéaire p de TH(V)OTY(V) dans T V),
mp=1, ou aussi bien par une projection linéaire de T?, d’image T?, §=1—pz.
Dans une carte sur un ouvert d’un vectoriel E, p=—T'®1, T" application
linéaire de EQE dans E, 1 identité de EOE. Une I'-martingale pour cette

connexion, sur un ouvert 4 de B, XQ ou de [S, T, est une semi-martingale
X telle que dezp(X) %d[X, X], ou (X) dezo, ou dX—}—%- I'(X)d[X, X]=
0; p(X), 6(X), I'(X) sont optionnelles. (Voir par exemple Schwartz [4].)

Proposition 7.9.1. Une T'-martingale relative a une connexion est une
semi-martingale de Zheng. Si X est une T-martingale sur [0, T'[, et si T'="F oo
sur {X converge}, T ailleurs, le prolongement X' sur [0, T'[, X'=XT7, est une
T-martingale.

Démonstration. l?l;Xl < | p(X) l% |d[X, X]]|, donc X est de Zheng. Alors,
sur [0, T'[, pour un plongement de V' comme sous variété fermée d’un vec-
toriel, XNp(X)-% [X, X] sur [0, T[ donne la méme relation, par continuité,

pour X’ sur [0, T'[ (7.6) (méme si p n’est pas continue: p(X) est optionnel &
trajectoires bornées sur {X converge}) [

(7.9.1) Dans le cas ol la connexion est celle de Levi-Civita, pour une structure
riemannienne sur V, TYV)OT* V) a des normes euclidiennes naturelles sur
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ses fibres, que nous noterons || ||; son dual alors aussi, || ||*. Alors

H% d[X, X]|| posseéde un sens; il définit un processus réel>0 croissant,
t —

t—>g ||% d[X, X]l|, que nous étendrons par continuité et arrét en T &4 R, XQ,
s

a valeurs<< 4 oo,  Si nous reprenons les notations de (7.5),
1
- 4 X]=h|dX|, II% d[X, X]ll=Inl| |dX] .
Proposition 7.9.2. Pour toute semi-martingale sur [S, T[:

(793) 0 Ap(X), p(Dlr<+20} © ] 41X, XLlI<+o0}
c N A{lpX), pX)]r<+e} Pops

(l’EG'comp

En effet, d[p(X), o(X)]=(Dp(X)ODp(X)) - d[X, X]

<IIDAX)ODP(X)*I| d - X, XI.
Si pEClomp, ||[DP(X)ODp(X)||* est borné, d’ott la deuxieme inclusion. En-
suite, si G est un espace euclidien de produit scalaire (|), de norme || || (ici

G=TV; v)OTYV; ), si heG, la forme linéaire &' sur G: g—»ﬂ’l‘zi) est
de norme 1 dans G*, et h'(h)=||k||. 1Al

Donc % [X, X]|=h'(h)|dX| =h’(% d[X, X]), ot ||#']|*=1, k' processus

2-cotangent a valeurs dans P* le long de X. Donc %’ est un processus J ana-
logue & ceux qui ont été considérés dans la démonstration de (7.8), et on sait

que ]% [X, X] converge en T sur N {[@(X), p(X)];<+<o}. [
peC
C’est pourquoi Darling en a déduit que, sur {ST —;—Ild [X, X]ll<+4oo}, X
S

converge en T dans le compactifié d’Alexandroff V, si X est de Zheng®™. On

(13) On procéde souvent autrement. La forme quadratique g est une forme linéaire

(définie positive) sur T1OTL. 1l est donc possible de considérer g(X)( d[X, X})

et {{ 8(x) (5 dIX, X1) <+e}. Mais i est facile de voir que g(X) (3 dIX, X]) et Iy
d[X, X]|| sont equwalentes, du fait que — d[X X]1>0 dans T1(OT?1, pour sa structure d’ordre

naturelle. Soit en effet (¢;)z=1,2,,; une base orthonormée de T'! (V;v). On sait qu’une base
orthogonale de T'Y(V; v)OTY(V; v) est constituée des e;(De;, i <], et que ||e;Oej|| =1 si 7 %7,

Ne:@eill=+/2. Soit 6>0 dans TY(V; v)OTXV; v), 0=‘1— 20' 7 ei(Dey §iri=0¢J. Parla
positivité, 0 >0, et |a~:1<7 (6i+i46-7), donc uan_( z 03 ; ~/ 3 (6447, Drautre

part, gefQe)=0 si i+j, g(e!Oe))=1, donc g(0)=7“2110" g(ei@ef)=’5k21 Gk,
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ne peut pas remplacer 14 par V, parce que la premiére inclusion est stricte.

Il suffit par exemple de remplacer V' par un ouvert V' de V, et d’appeler 7"
T/

le temps de sortie de X de V'. Si ST%Hd[X, X]||< 4o, a fortiori S ;
S

S
or X converge en T sur V, donc sur v, pas sur V' elle-méme. Il est vrai
que V' n’est pas riemannienne compléte. Mais méme si V' est compléte, ce
n’est pas suffisant. Soit X une diffusion brownienne sur une variété rieman-

nienne, relative a I'opérateur différentiel de diffusion Lzé A. L’image =L
1

sur T'OT! est > @:% i €;0ey, 0l (€;)4=1,5,., v €St n'importe quelle base ortho-
F=1

normée sur T, et Hn‘LH:%W. Donc S:%lld[X, X]H=Ellm_lZ(H=

STllnL(X)H dt (rappelons que cisz(X)dt)z«/ ? T). Or il peut arriver que
0

cette diffusion ait un temps de mort 7'<<+-co méme si V" est riemannienne com-
pléte, alors X ne converge que sur v, passur V. Or elle est une I'-martingale.™

(7.10) Connexions complexes sur une variété complexe V.

On appellera connexion complexe ou f{-connexion, ou I-connexion, un re-
levement C-linéaire p, de T ,OT) dans T%. Cela revient aussi 4 dire une
projection 8, de T% sur T). Sous cette forme 13, il n’y a pas de rapport direct
entre connexion et connexion complexe. Mais p, définit un relévement p*°
de THOT*® dans T*°. Il y a une infinité de maniéres de le prolonger en
une connexion; p”? relévement de T%'OT*! dans 7% est le conjugué de p*°,
donc p*°@p"? sera un relévement réel de Re((TH°OT)P(T*'OT*')) dans
Re(T*°PT*?), et on pourra prendre pour relévement p!' de T™°QT la
somme de (z"')"! et de n’importe quelle application linéaire autoconjuguée
B de TY*QT*! dans T'+4iT", donc réelle de Re(T"°'QRT*') dans T*'. On
appellera connexion associée 4 p . 'unique prolongement p pour lequel Pt
=(z")", ou B"'=0, donc p=p**Pp**P(z*)". Cette connexion p sera dite
la connexion associée 4 la connexion complexe p,, et on dira que p est une con-
nexion complexe, ou 4{-connexion, ou I-connexion: une connexion quelconque
p est complexe ssi elle est 'associée d’une p,, nécessairement unique. Une

6%k >0, d’oli I’équivalence.

Si on avait pris g au lieu de || ||, c’est la premiére inclusion qui aurait été plus simple,
parce que g(X) est un processus 2-cotangent, a valeurs dans P*=(T'1(9)T!)*, localement broné.
Mais c’est la deuxiéme qui aurait été plus difficile, car nous avons utilisé ici une majoration
en || |I¥] Il
(14) Pour dX=L(X)dt, voir Schwartz [3], proposition (13.16) page 45. Pour un mouvement
brownien 2 temps de mort sur une variété riemannienne compléte, voir Debiart-Gaveau-

. 1 Cr s .
Mazet [1]. Le brownien correspondant 2 L=-2~A sur une variété riemannienne est une

I'-martingale, voir Schwartz [4], proposition (2.29).
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connexion p. donne un p.?? qui s’écrit d’'une maniére unique comme somme
pP4a??, p*° relevement de TH'OT™® dans T%° «®° application linéaire de
TYOT™ dans T°'; d’ou p."2=p"*a®=p20=p*4-a?%; puis p.l'=(z"")"+
8"}, ce qui donne p.=p+a+pB, p=p"’Pp™*P (")}, a=a*’Pa"*P0, B=
0B0P B ; p. est complexe ssi a=RB=0, ou a*’=pB“'=0. En termes de
projections, 8, donnera 6*° projection de T?° sur T*° 6*°=1—p>° 7*°; sa
connexion associée sera §=0*°PH**P0, qui sera dite complexe; une connexion
6. s’écrit d’une maniére unique §.=0—azr—Br, 6*°=6>"—a*® o*°, a®® 7*°
application linéaire de 7%° dans 7°!, nulle sur T%° @' z"“! application
linéaire autoconjuguée de 7! dans T"+:T™.

Dans une carte complexe sur un ouvert de E, p.=—T.91, donc I'.=
T2°@r.2@r.", T. application linéaire de (E+iE)O(E-+iE) dans E+-iE;
2% de EMOE" dans E+iE, T »°=T*'P(—a?°), T?° linéaire de EVOE"°
dans E'°, a®° dans E®'; T''=—g@"!, application linéaire autoconjuguée de
EYQE®! dans E-+-iE; donc I'.=T'—a—g, I'=T*’PI*?P0, a=a>’Pa’*P0,
B=0B0PE"; T'. est complexe, I'.=T, ssi a=B8=0. Si on prend une base

1/9 .0

de E+41iE formée des 9,, 05=0, 6k=? (W_l a—y’;)’ il y a des coefficients I'?,, 5

ou a, (3, v prennent les valeurs 1, 2, ---, N, 1, 2, -+, N, T'.(8,05)=> T'?, 5 O,
Y
avec des relations de symétrie T, ;=TI ,, et de conjugaison T7; z=T7,,.

Alors T'. est complexe ssi I'f ;=0, T'};=0, i, j, k=1, 2, ---, N, avec les con-
séquences par symétrie et conjugaison. Si par exemple ¥ est munie d’une
structure hermitienne, c.4 d. d’'une forme sesquilinéaire hermitienne dont la

partie réelle donne une structure riemannienne, un calcul rapide des I'f; et

des T ; par les symboles de Riemann-Christeffel montre que sa connexion de
Levi-Civita associée est complexe, ssi la forme hermitienne est kidhlérienne.
La connexion réelle p. est complexe, p.=p, a=R8=0, ssi, en tant qu’application
C-linéaire de T'OT" dans T? elle commute avec I, ou est I-linéaire; 6., projection
de T? sur T, est complexe, 0.=0, ar=Br=0, ssi elle commute avec I, ou est
I-linéaire; sur une carte complexe, I'. est complexe, I'.=T, a=B=0, ssi, en
tant qu’application de EOE dans E, elle commute avec I. On peut dire aussi

que la connexion est cofnplexe ssi elle conserve le champ des opérateurs I
e L(T*; T"), cad. si la dérivée covariante de I est nulle. Prenons en effet
une carte complexe sur un ouvert de E. En appelant V. la dérivée covariante,
écrivons que V. I=0, c.ad., pour tout champ de vecteurs tangents X,
(V:(IX) ()=I(V..X) (x), Z€T(V; x)=E. On a (V. X)(x)=(D.X) (x)+
T'(x) (X (%), Z(x)), (V-o(1X) () =(DA(I X)) (5)+T() I X(x), Z(x)), I(V.2X) (2)
=I(D,X) (x)+:T". (x) (X (%), Z(x)). Complexifions. D’abord (D (IX)) (x)=
I(D,X)(x); car,si X est & valeurs dans V%, 7.X=1X, D,X est a valeurs dans E'°,
ID,X=iD,X, et de méme pour E™. La dérivée covariante de I sera donc
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nulle ssi, pour X, ZEE+-iE, T'.(x) (IXOZ)=IT.(x) (XOZ). En prenant X,Z
dans T Clest vrai ssi a®’(x)=0, et dans T°! ssi a®*(x)=0; en prenant
XeTW ZeT™ et XeT™, ZeT*, ssi f'=0. Les connexions réelles sur
V, variété réelle C™*?, sont les sections d’un fibré R-affine de classe C™ sur V,
le fibré {pe L(TY(V)OTY(V); TXV)); mp=1}, le fibré vectoriel associé est
Le(TV)OTXV); TYV)) (T est le noyau de z). 1l y a donc toujours des

connexions C” et on peut les choisir & peu prés arbitrairement sur un ouvert,

au sens suivant: si V'’ est un ouvert de V, V" aussi, V7 C V", et si p’ est une
section donnée sur V', p” une section arbitraire sur ¥V, si o, 1—a est une
partition de ’unité sur V, subordonnée au recouvrement V”, pV”, ap’+(1—a)p”
est une section sur V qui coincide avec p’ sur V’. Si V est complexe, on a
le méme résultat pour des connexions complexes, avec le fibré affine complexe
des {p 4 €ELATW(V)OTLV); TUV)); py mg=1}, de fibré vectoriel complexe
associé Lo(Tu(MOTW(V); TW(V)), et on a des sections C* (au sens réel).
Ce fibré est C-analytique; si V" est de Stein, il a des sections holomorphes®™.

(7.11) Connexions complexes et martingales conformes.
Soit (pg4, 0.4, I'g) une connexion complexe sur V, et (p, 4, I') sa connexion
réelle associée. Si X est une V-semi-martingale, elle est une I'-martingale,

_dzfzp(X) % d[X, X], ssi elle est une I",-martingale, dX=p ,(X) % d[X, X]4.9®
En effet,

dX = @2,0_}_4;}20,2_'_@1,1, et p d_li [X, X]= pz,o%d[X, Xp°
—l—p"'z—;—d[X, X‘JO,Z_I_(”I,I)—I %d[X, X, O

Proposition 7.12. Une semi-martingale M sur une variété complexe V,

sur un ouvert A de R, X Q ou [S, T, est une martingale conforme ssi elle est une
martingale pour toutes les connexions boréliennes localement bornées (ou pour toutes
les connexions C*), compatibles avec la structure complexe. Elle est alors de Zheng.

(15) 'Tout fibré affine holomorphe sur une variété de Stein admet au moins une section
holomorphe. C’est connu, mais je n’ai pas de référance. Nous ne nous en servons pas ici.
(16) De tels faits sont réconfortants, et méritent d’éure signalés. Au contraire, pour
reconnaitre la propriété de Zheng, le crochet complexe ne convient pas. Il reste tou-

. . R . C . > 1

jours vrai qu’une inégalité [dX,g,l<p3{-%| d[X, X]4| entraine une inégalité IthIQpil d

[X, X]]|, mais la réciproque n’est pas vraie, bien sQir. Prenons, par exemple, pour V'=C,
. . 1 _ i

la semi-martingale conforme X=-—[M, M]+ M, ol M est une martingale conforme. Elle

2
est de Zheng, car d_)?=% dlM, M1+ % d[M, Mg, donc |dX 4| =d[M, M], et %—d[X, X]=-;~

d[M, M1g==d[M, M]; voir Note (12) page 106. Mais d_)?gt=% d[M, M], et -;— d[X, X]4=0.



COMPLEMENTS SUR LES MARTINGALFS CONFORMES 113

Si M est une V-martingale conforme sur [S, T, elle converge parfaitement la
oit elle converge, et son prolongement M'=M" sur [0, T'[, T'=-F oo sur {M con-
verge} ,=T ailleurs, est encore une martingale conforme.

Démonstration. Qu’une martingale conforme soit de Zheng est évident
d’emblée, puisque Q’ZT/.[:M“:(”"I)“‘ %d[M, M, —%— d[M, M]leT"'. Mais
nous voulons démontrer beaucoup plus. Soit M une mattingale conforme.
Alors dM,=0, et % d[M, M)4—=0, donc dMy—p (M) %J[M, M1, elle est
une I',-martingale pour toute connexion complexe. Inversement, supposons
cette propriété vérifiée. En choisissant deux connexions C* (au sens réel)
complexes p%, p4, on devra avoir (py—p4) %d[M, M]4=0. La différence
pu—p4 est une action C= arbitraire du fibré L(T,OT; T4). Un raisonne-

ment en coordonnées locales par une carte holomorphe (ou les (I ;) sont
C= arbitraires) montre alors immédiatement que 1’égalité ci-dessus n’est pos-

sible que si —;-d[M, M],=0. Mais alors @t@,:pﬁ %d[M, M], donne 4}[@,

=0. Donc M est une martingale conforme. La fin résulte de (7.9.1). [
En fait il n’est pas nécessaire de se borner aux connexions complexes:

Proposition 7.13. Soit p. une connexion continue. Pour que toute martin-
gale conforme sur V soit une T-martingale pour cette connexion, il faut et il suffit
que (3 soit nul, p.=p-+a, p connexion complexe.

Démonstration. 1) Soit M une martingale conforme, donc dM=dM"'=

b))t -l—d M, M et id M, M =ld M, M1]**. Elle sera une martingale
2 2 2 &

pour p. si (ﬂl'l)'l% d[M, M]"'=p. %d[M, M] = () % d[M, M+
B —;- d[M, M]", donc dés que 8=0.

2) Soit inversement p. une connexion sur V, faisant de toutes les martingales
conformes des martingales. Soient ¥’ un ouvert de V, V" un sous-ouvert

relativement compact, VV/CV”, et une carte holomorphe de V' sur un ouvert

U’ d’un espace vectoriel I-complexe E ou V” ait pour image U”, U”CU".
Soient B, B, deux mouvements browniens réels indépendants, xe U”, e<E,
et considérons la martingale conforme M a valeurs dans E: x+Be+B, Ie; si

T est son temps de sortie de U”, MT est a valeurs dans U” et peut donc étre

transporté dans V. Posons e=e"'+e'=f+f, f= 1—2iI esT™Y, feT™.

Alors M s'écrit, si de méme x=y-+7, (y-+(B,+iB,) f)+(F+(Bi—iB,) f), et
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I’examen de la composante M™® montre aussitdt que c’est une martingale con-
forme. Ensuite % d[M, Ml=dt fQfeE"QE™. D’aprés '’hypothése, MT
doit étre une T.-martingale, dMT--T.(M7) %d [MT, MT]=0, ou 0=8(MT)
(f®JF)dt, dans [0, T]. Donc, P-ps. pour tout ¢<T, S: BOMT) (F®F) ds=0.

Comme M7 est continue P-p.s et 8 continue, B(M7T) (f® f)=0 P-ps. pour
tout s, et en faisant s=0, B(x) (f ®f)=0, pour tout x et tout f. Comme les
f® f engendrent EM*QE®!, cela donne 8=0 dans V", donc dans V. []

RemARQUE 7.13.1. Si l'on appelle orthogonal d’un ensemble de con-
nexions continues l’ensemble des semi-martingales qui sont des martingales
pour toutes ces connexions, et orthogonal d’un ensemble de semi-martingales
Pensemble des connexions continues qui en font des martingales, on voit que
P'orthogonal de I’ensemble des connexions complexes est ’ensemble des mar-
tingales conformes, et 'orthogonal de l'ensemble des martingales conformes
est ’ensemble des connexions 4 8 nul.

RemMARQUE 7.14. Dans tous les théorémes énoncés, la partie {3} de (7.4)
a disparu. Elle ne subsiste en effet pas en dehors des martingales vectorielles.
Si par exemple nous prenons le brownien complexe sur C, si on le considére
comme martingale conforme sur [0, 4-co[XQ a valeurs dans la sphére de
Riemann S=CU {co}, variété complexe compacte, les trajectoires sont toutes
forcément relativement compactes, mais n’ont pas de limite au temps - oo.
Cependant, si V' est une variété de Stein, (7.4) subsiste intégralement pour les
martingales conformes: les 3 ensembles coincident P ps. (avec la propriété de
prolongement), en appelant {1} I’ensemble {‘Pgoz[y)(M), @(M)]<A-oo}; car

{1} et {3} coincident, par (7.6), (7.8), et, en plongeant V' dans C***' comme
sous-variété analytique fermée, 1’égalité {2} ={3} est ramenée a celle de E
(7.4), M étant devenue une martingale (conforme) a valeurs dans E.

Proposition 7.14. Soit V une wvariété munie d’ume connexion continue.
Dans Pespace topologique S M des semi-martinéales sur V, Uensemble des T'-mar-
tingales est fermé.

Démonstration. La relation
- 1
(@(M)-M)~ = fﬁ(M) p(M)-[M, M],

@ champ de vecteurs 2-cotangents continu a support compact, passe en effet
a la limite des suites, comme dans (6.8) (Alors (7.12) et (7.14) peuvent aussi
redonner (6.8)). []
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Index terminologique
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(=), pages 96-97.
Différentielle de martingale conforme, page 98.
Processus sur un ouvert relatif de [.S, T], page 101.

X, X, X [X X], HX, sur [S, T, page 102.

, pages 91-92.

Xsur[S, T [, X converge en T, converge parfaitement en T, page 102.
Semi-martingale de Zheng, page 105.

P*=(T'© T"*, page 106.

Connexions, I'-martingales, page 108.

Connexions complexes, page 110.
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