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0. Introduction

In the study of boundary behavior of solutions of the classical Dirichlet
problem thinness is an important notion. Recently notion of /?-thinness (or
/7-thickness) is introduced in nonlinear potential theory and studied deeply. For
p = 2, p-thinness (resp. /7-thickness) coinsides with thinness (resp. thickness) with
respect to the classical potential theory. In this note we are especially concerned
with d-thinness (or d-thickness) on the d dimensional Euclidean space Rd (d> 2). The
purpose of this note is to consider whether rf-thinness (or rf-thickness) is quasiregularly
invariant or not. We obtain

Theorem 0.1. Let G be a subdomain of Rd(d>2\ E a subset of G, ξ a point
of G\E9 and f a quasiregular mapping from G into Rd. If E is d-thick at ξ, then
f(E) is d-thick at f(ξ).

The following theorem is an immediate conclusion of our main Theorem 0.1.

Theorem 0.2 (O. Martio and J. Sarvas [11]). Let G be a subdomain of Rd

(rf>2), E a subset of G, ξ a point of G\E and f a quasiconformal mapping from
G into Rd. IfE is d-thin (resp. d-thick) at ξ, thenf(E) is d-thin (resp. d-thick) atf(ξ).

Theorem 0.1 is obtained by the results of nonlinear potential theory. For
rf=2, H. Shiga [15] also obtains Theorem 0.2 by a different method from
[11].

This note is organized as follows. In §1 we give preliminaries and discuss
whether J-thickness (or ί/-thinness) is invariant by quasiregular mappings (see
Theorem 1.1). In §2 and §3 we are concerned with applications of Theorem
0.2. In §2, comparison between thinness and minimal thinness, and Theorem 0.2
give us the quasiconformal invariance of minimal thinness under a condition (see
Theorem 2.1). In §3 we prove that the harmonic dimension of Reins' covering
surface is quasiconformally invariant under a condition (see Theorem 3.1).

1. Preliminaries and Proof of Theorem 0.1
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1.1. First we give a mapping stf :RdxRd -> Rd(d>2) which satisfies the
following assumptions for some constants 0<α</?<oo:

the function x h- > jtf(x, ξ) is measurable for all ξ e Rd, and

the function ξ i— > stf(x, ξ) is continuous for a.e. x e Rd

for all ξeRd and a.e. xεRd

(2)

(3)

(4)

whenever £^ζ, and

(5)

for all Λe/?,
Let G be a subdomain of IK We denote by Wfcd(G) the set of all locally

ZAintegrable functions on G whose gradients in distributional sense are locally
ZAintegrable /?d-valued functions on G. We consider the partial differential
operator

where ue Wι0

td(G\ We can develop the potential theory associated with the
operator T. This potential theory is called nonlinear potential theory. For basic
properties and notions of nonlinear potential theory we refer to [4].

A continuous weak solution uEWfcd(G) to the equation

(6) rM=-div^(x,Vw)=0

is called ^/-harmonic on G. We denote by ^/(G) the set of all j^-harmonic
functions on G.

A lower semicontinuous function u:G->(— 00,00] is called stf -super harmonic
on G if u is not identically infinite on G, and if for all relatively compact and open
subset D of G, and all h ε C(D) n ̂ (D\ h<u on dD implies h<u on D. A
function υ on G is called $0 -subharmonic on G if —v is j/-superharmonic on
G. We denote by ^/(G) the set of all nonnegative «£/-superharmonic functions on G.

Next we introduce a notion of balayage to &^(G) (cf. [1]). For a subset E
of G and ue^(G), we define the balayage R%(G9s/) of u on E by the following:

s>u on E}.
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By balayage we can give a definition of j/-thinness.

DEFINITION 1.1 (cf. [2]). Let E be a subset of G and z a point of G\E. E is
called stf-thin at z if there exist open neighborhoods U and ¥ of z with £7 c= V
such that

Otherwise E is called s^ -thick at z.

1.2. We denote by dm the rf-dimensional Lebesgue measure.

DEFINITION 1.2 (cf. [4]). Let G be a subdomain of Rd(d>2) and C a compact
subset of G. The d-capacity of C is defined by

:,G) = inf
" Jc

caP</(C,G) = inf \Vu\'dm9u Jc

where the infimum is taken over all nonnegative functions u which belong to
Wk?(G\ w | C > l , and have compact supports in G.

For an arbitrary Borel set its rf-capacity is defined as usual. We give the
definition of d-thinness.

DEFINITION 1.3 (cf. [4]). Let G be a subdomain of Rd(d>2\ E a subset of
G, and z a point of G\E. Then, we say that E is d thin (resp. d-thick) at z, if

r

Jo capd(£(z,0,£(z,20) / t

(resp.

For ί/=2 rf-thinness coincides with the classical thinness. P. Lindqvist and
O. Martio [10] essentially proved that ^-thinness is equivalent to rf-thinness.

Proposition 1.1 (cf. [10],[7]). Let G be a subdomain of Rd(d>2\ E a subset
0/G, and z a point ofG\E. Then, E is d-thin at z if and only ifE is stf-thin at z.

1.3. We begin with recalling the definition of quasiregular mapping.

DEFINITION 1.4 (cf. [14]). Let G be a subdomain of Rd(d>2\ Then, a
non-constant continuous mapping /: G -> Rd is called a quasiregular mapping iff
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satisfies the following conditions:

(i) /e^ΛG);

(ii) there exists K,l<K<co such that

\f(x)\d<KJf(x) a.e. on G,

where /'(*) = (f^)1 ̂ d(/= (/l5/2, - ,/d) e Λd),

and //-(.x) is the Jacobian determinant of / at x.
Furthermore, if / is injective on G, / is called a quasiconformal mapping.

We need the next two propositions.

Proposition 1.2 (cf. [4]). Let <tf:Rd xRd -> Rd(d>2) be a mapping as in 1.1,
G a subdomain of Rά and f: G -» Rd a quasiregular mapping. We define a mapping
f*j* \Rd->Rd by the following:

f*ΛΪ(x,ξ)= 1* is the transpose off(xΓl)

ξ\ξ\d~2 ifJf(x)=Q, Jf(x) is undefined, or xeRd\G.

Then, f*jtf is a mapping which satisfies the same conditions (l)-(5) as those of
*/ in 1.1.

Proposition 1.3 (cf. [4]). Let stf, G,f,f*<$/ be as in Proposition 1.2, and s an
element of ^(f(G)). Then, sof is an element o

1.4. Proof of Theorem 0.1.

First we need the next lemma.

Lemma 1.1. Let G be a subdomain of Rd(d>2), f a quasiregular mapping
from G into Rd, E a subset of f(G\ and we^(/(G)). Then,

In addition, if f a quasiconformal mapping from G into Rd, then

\xί) o/= Riγ^(G, /V).
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Proof. The former part follows from definition of balayage and Proposition
1.3. Suppose that / is a quasiconformal mapping from G into Rd. We
remark that, for all ξeRd and a.e.

By the former part of this theorem and the above remark we have

B*(f(G)^) > R{0-/(S\G, f V) of- '

l(f(G))W W^)) of of

Therefore we have the latter part.

Proof of Theorem 0.1. By Lemma 1.1, for all neighborhoods £/, V of f ( ξ )
with U c F,

By Proposition 1.1, we obtain the desired result.

1.5. In this subsection we are concerned with quasiregular mappings from
subdomains of R2 into R2.

Theorem 1.1. Let G be a subdomain of R2, E a subset of G, ξ a point of
G\E, and f a quasiregular mapping from G into R2. Then, it holds that

(i) if E is thin at ξ with Enf~*(f(ξ)) = {ξ}, and there exists a neighborhood
W of ξ with W^G such that J\E\W) n (f(ξ)} = 0, then f(E) is thin at /({);

(ii) if E is thick at ξ, then f(E) is thick at f(ξ).

Proof. By Theorem 0.1 we obtain (ii) and hence, have only to prove (i).

Suppose that E is thin at a point ξ of G with Enf~1(f(ξ)) = {ξ}9 and there
exists a neighborhood W of ξ with W ci G such that f(E\ W) n {/(£)} = 0. Thus
we have only to prove that, for a neighborhood U' of ξ, f(Er\ U') is thin at
f(ζ). In the following discussion, we identify R2 with C. It is well-known that
quasiregular mappings in dimension two are written as compositions of analytic
functions and quasiconformal mappings (cf. [9]) and hence, by Theorem 0.2 we
may suppose that /is analytic on G. There exist a disc B=B(Q,r) with B + ξ c: G,
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a conformal mapping g\B^g(B) and an integer n such that/(z) = [g(z — £)
on B+ξ. By Theorem 0.2, we may suppose that £=0 and/(z) = z". It is easily

seen that, for any Kc B f^K^^^l'^e^K. By Theorem 0.2 each e~^*E is
thin at 0 and hence, f~l(f(Er\B)) is thin at 0. On the other hand, we have the
following equality, for open neighborhoods U9 V of 0 in B with U c V,

and hence, by Definition 1.1 we find that/(£n U) is thin at/(0). We must prove
(*). By Lemma 1.1

R{(EnV\V,ξ) of> R{~ l</<*nu))(y- \V\ /»£).

To prove the converse inequality, we take an element se^ξ(f~l(¥)) such that

s > 1 on /- l(f(Er\ U)). We set

2kπt

s(z)'.= min{s(e n z), fc=0, ,n— 1},

for every z^f~\V\ We remark that s(z) = s(e^iz) onf-\V) and f~\f(EnU))

' C7). We set

We find that s*eSr£V) and s*>l on f(EnU). Therefore we have the desired
result.

2. Minimal thinness and quasiconformal mappings

Throughout this section we consider a half plane H of R2. Let Pζ(z) (z e //,

ζedH) be the Poisson kernel with pole at ζ.

DEFINITION 2.1. (cf. [2]) Let E be a subset of H and ζ a point of dH. Then,
we say that E is minimally thin at £ if

on //.

J. Lelong-Ferrand proved that thinness is equivalent to minimal thinness under
a condition.

Proposition 2.1 (J. Lelong-Ferrand [8]). Let E be a subset of H and ζ a point
of dH. Suppose that E belongs to a Stolz domain at vertex ζ. Then, E is thin at

ζ if and only if E is minimally thin at ζ.
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The next theorem gives us the quasiconformal invariance of minimal thinness
under the same condition as that of Proposition 2.1.

Theorem 2.1. Let H be a half plane of R2, E a subset of H and f a

quasiconformal mapping from H onto H. Suppose that E is a subset of a Stolz
domain at vertex ζ. If E is minimally thin at a point ζ of dH, thenf(E) is minimally
thin at f(ζ).

Proof. First we recall that / is extended as a quasiconformal mapping on
R2. Suppose that E is minimally thin at ζ and belongs to a Stolz domain at
vertex ζ. By Proposition 2.1 E is thin at ζ in R2. By Theorem 0.2 we find that

f(E) is thin at f(ζ) in R2. On the other hand, it is well-known that thinness
means minimal thinness (cf. [6]). Therefore we obtain the desired result.

3. Quasiconformal invariance of Harmonic dimension of Heins9 covering

surfaces

Let F be an open Riemann surface of null boundary which has a single ideal

boundary component in the sense of Kerekjartό-Stoϊlow (cf. [3]). A relatively
noncompact subregion Ω of F is said to be an end of F if the relative boundary
dΩ consists of finitely many analytic Jordan curves (cf. Heins [5]). We denote
by (̂Ω) the class of all nonnegative harmonic functions on Ω with vanishing
boundary values on δΩ. The harmonic dimension of Ω, dim ̂ (Ω) in notation, is

defined as the minimum number of elements of (̂Ω) generating (̂Ω) provided
that such a finite set exists, otherwise as oo. It is well-known that dim^(Ω) does
not depend on a choice of end of F: dim ̂ (Ω) = dim ̂ (Ω') for any pair (Ω,Ω') of
ends of F (cf. [5]). In terms of the Martin compactification dim ̂ (Ω) coincides
with the number of minimal points over the ideal boundary (cf. Constantinesc and

Cornea [3]).
In this section we are especially concerned with ends W which are subregions

of/7-sheeted unlimited covering surfaces of {0<|z|<oo}. For these W it is known

that l<dim0>(Ψ)<p (cf. [5]).
Consider two positive sequences {an} and {bn} satisfying bn+i<an<bn<l and

lim^^fl^O. Set G = {0<|z|<l}\7 where /=uw°°=1/w and In = [an,bn~\. We take
/?(>!) copies G1? ,GP of G. Joining the upper edge of /„ on Gj and the lower
edge of /„ on Gj+l(j mod/?) for every n, we obtain a /?-sheeted covering surface

W=Wl

p of {0<|z|<l} which is naturally considered as an end of a /7-sheeted
covering surface of {0<|z|<oo}. Such a covering surface W is referred to as the
Heins" covering surface. We recall the characterization of harmonic dimension of

Heins' covering surface.

Proposition 3.1 ([12] and [13]). For every integer p(>\\ it holds that
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(i) dim0>(W)=p if and only if I is thin at z = 0;

(ii) ά\m0>(W} = \ if and only if I is not thin at z = 0.

The next theorem gives us the quasiconformal invariance of harmonic dimension
of Heins' covering surface under a condition.

Theorem 3.1. Let W=WJ

p (resp. W=WI

p) be Heins" covering surfaces of
D = {0 < |z| < 1} with the covering map π: W -* D (resp. π':W-+ D) which is

constructed by Gj (j=l9 9p) (resp. Gj (/ = 1, •••,/?)) as above. Suppose that there
exists a quasiconformal mapping f from W onto W such that, for z,z'e W with

π(z) = π(z') e /, π'(/00) = π'(/(z')) e /'. Tfcen, dim 0>( W) = dim 9( W'\

Proof. Suppose that there exists a quasiconformal mapping / from W onto
W such that, for z,z'e W with π(z) = π(z') e /, π'(/(z)) = π'(/(z')) e /'. Then, we find

that/(H^\π~1(^))= W'\π"\Γ). Thus, for every7 (/=!,•••,/?), there exists an integer
Λ(/) (K/) = 1 j j/j) such that/(G/)= G«ϋ) because each G,- (/ = 1, ,;?) is connected and
/(π~1(/)) = π'~1(//). Hence, we can consider each f \ G j ( J — ^ > ' " > P ) as a quasi-
conformal mapping gj from I?2 onto /?2 such that gj(I) = Γ. By Theorem 0.2 /
is thin (resp. thick) at z = 0 if and only if /' is thin (resp. thick) at z = 0. Therefore,
by Proposition 3.1, we have the desired result.
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