

Title	Quasiregular mappings and d-thinness			
Author(s)	Masaoka, Hiroaki			
Citation	Osaka Journal of Mathematics. 1997, 34(1), p. 223-231			
Version Type	VoR			
URL	https://doi.org/10.18910/8841			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

QUASIREGULAR MAPPINGS AND &THINNESS

HIROAKI MASAOKA

(Received December 28, 1995)

0. Introduction

In the study of boundary behavior of solutions of the classical Dirichlet problem thinness is an important notion. Recently notion of p-thinness (or p-thickness) is introduced in nonlinear potential theory and studied deeply. For p=2, p-thinness (resp. p-thickness) coinsides with thinness (resp. thickness) with respect to the classical potential theory. In this note we are especially concerned with d-thinness (or d-thickness) on the d dimensional Euclidean space R^d ($d \ge 2$). The purpose of this note is to consider whether d-thinness (or d-thickness) is quasiregularly invariant or not. We obtain

Theorem 0.1. Let G be a subdomain of \mathbb{R}^d ($d \ge 2$), E a subset of G, ξ a point of $G \setminus E$, and f a quasiregular mapping from G into \mathbb{R}^d . If E is d-thick at ξ , then f(E) is d-thick at $f(\xi)$.

The following theorem is an immediate conclusion of our main Theorem 0.1.

Theorem 0.2 (O. Martio and J. Sarvas [11]). Let G be a subdomain of \mathbb{R}^d $(d \ge 2)$, E a subset of G, ξ a point of $G \setminus E$ and f a quasiconformal mapping from G into \mathbb{R}^d . If E is d-thin (resp. d-thick) at ξ , then f(E) is d-thin (resp. d-thick) at $f(\xi)$.

Theorem 0.1 is obtained by the results of nonlinear potential theory. For d=2, H. Shiga [15] also obtains Theorem 0.2 by a different method from [11].

This note is organized as follows. In $\S1$ we give preliminaries and discuss whether d-thickness (or d-thinness) is invariant by quasiregular mappings (see Theorem 1.1). In $\S2$ and $\S3$ we are concerned with applications of Theorem 0.2. In $\S2$, comparison between thinness and minimal thinness, and Theorem 0.2 give us the quasiconformal invariance of minimal thinness under a condition (see Theorem 2.1). In $\S3$ we prove that the harmonic dimension of Heins' covering surface is quasiconformally invariant under a condition (see Theorem 3.1).

1. Preliminaries and Proof of Theorem 0.1

1.1. First we give a mapping $\mathscr{A}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d (d \ge 2)$ which satisfies the following assumptions for some constants $0 < \alpha \le \beta < \infty$:

(1) the function
$$x \mapsto \mathcal{A}(x,\xi)$$
 is measurable for all $\xi \in \mathbb{R}^d$, and the function $\xi \mapsto \mathcal{A}(x,\xi)$ is continuous for a.e. $x \in \mathbb{R}^d$;

for all $\xi \in \mathbb{R}^d$ and a.e. $x \in \mathbb{R}^d$

(2)
$$\mathscr{A}(x,\xi) \cdot \xi \ge \alpha |\xi|^d,$$

$$|\mathscr{A}(x,\xi)| \le \beta |\xi|^{d-1},$$

$$(\mathscr{A}(x,\xi)-\mathscr{A}(x,\zeta))\cdot(\xi-\zeta)>0,$$

whenever $\xi \neq \zeta$, and

(5)
$$\mathscr{A}(x,\lambda\xi) = \lambda |\lambda|^{d-2} \mathscr{A}(x,\xi),$$

for all $\lambda \in \mathbb{R}$, $\lambda \neq 0$.

Let G be a subdomain of \mathbb{R}^d . We denote by $W_{loc}^{1,d}(G)$ the set of all locally L^d -integrable functions on G whose gradients in distributional sense are locally L^d -integrable \mathbb{R}^d -valued functions on G. We consider the partial differential operator

$$Tu = -\operatorname{div} \mathscr{A}(x, \nabla u)$$

where $u \in W_{loc}^{1,d}(G)$. We can develop the potential theory associated with the operator T. This potential theory is called *nonlinear potential theory*. For basic properties and notions of nonlinear potential theory we refer to [4].

A continuous weak solution $u \in W_{loc}^{1,d}(G)$ to the equation

(6)
$$Tu = -\operatorname{div} \mathcal{A}(x, \nabla u) = 0$$

is called \mathcal{A} -harmonic on G. We denote by $\mathcal{H}_{\mathscr{A}}(G)$ the set of all \mathscr{A} -harmonic functions on G.

A lower semicontinuous function $u: G \to (-\infty, \infty]$ is called \mathscr{A} -superharmonic on G if u is not identically infinite on G, and if for all relatively compact and open subset D of G, and all $h \in C(\bar{D}) \cap \mathscr{H}_{\mathscr{A}}(D)$, $h \le u$ on ∂D implies $h \le u$ on D. A function v on G is called \mathscr{A} -subharmonic on G if -v is \mathscr{A} -superharmonic on G. We denote by $\mathscr{G}_{\mathscr{A}}(G)$ the set of all nonnegative \mathscr{A} -superharmonic functions on G.

Next we introduce a notion of balayage to $\mathscr{S}_{\mathscr{A}}(G)$ (cf. [1]). For a subset E of G and $u \in \mathscr{S}_{\mathscr{A}}(G)$, we define the balayage $\hat{R}_{u}^{E}(G,\mathscr{A})$ of u on E by the following:

$$\hat{R}_{u}^{E}(G, \mathcal{A})(z) = \liminf_{x \to z} \inf \{ s(x) : s \in \mathcal{S}_{\mathcal{A}}(G), \ s \ge u \text{ on } E \}.$$

By balayage we can give a definition of \mathcal{A} -thinness.

DEFINITION 1.1 (cf. [2]). Let E be a subset of G and z a point of $G \setminus E$. E is called \mathcal{A} -thin at z if there exist open neighborhoods U and V of z with $U \subset V$ such that

$$\hat{R}_1^{E \cap U}(V, \mathscr{A})(z) < 1.$$

Otherwise E is called \mathcal{A} -thick at z.

1.2. We denote by dm the d-dimensional Lebesgue measure.

DEFINITION 1.2 (cf. [4]). Let G be a subdomain of \mathbb{R}^d ($d \ge 2$) and C a compact subset of G. The d-capacity of C is defined by

$$\operatorname{cap}_d(C,G) = \inf_{u} \int_C |\nabla u|^d dm,$$

where the infimum is taken over all nonnegative functions u which belong to $W_{loc}^{1,d}(G)$, $u \mid C \ge 1$, and have compact supports in G.

For an arbitrary Borel set its d-capacity is defined as usual. We give the definition of d-thinness.

DEFINITION 1.3 (cf. [4]). Let G be a subdomain of \mathbb{R}^d $(d \ge 2)$, E a subset of G, and z a point of $G \setminus E$. Then, we say that E is d-thin (resp. d-thick) at z, if

$$W_d(E,z) = \int_0^1 \left(\frac{\text{cap}_d(B(z,t) \cap E, B(z,2t))}{\text{cap}_d(B(z,t), B(z,2t))} \right)^{\frac{1}{d-1}} \frac{dt}{t} < +\infty$$
(resp. $W_d(E,z) = +\infty$).

For d=2 d-thinness coincides with the classical thinness. P. Lindqvist and O. Martio [10] essentially proved that \mathcal{A} -thinness is equivalent to d-thinness.

Proposition 1.1 (cf. [10],[7]). Let G be a subdomain of \mathbb{R}^d ($d \ge 2$), E a subset of G, and z a point of $G \setminus E$. Then, E is d-thin at z if and only if E is \mathscr{A} -thin at z.

1.3. We begin with recalling the definition of quasiregular mapping.

DEFINITION 1.4 (cf. [14]). Let G be a subdomain of \mathbb{R}^d ($d \ge 2$). Then, a non-constant continuous mapping $f: G \to \mathbb{R}^d$ is called a quasiregular mapping if f

226 H. MASAOKA

satisfies the following conditions:

- (i) $f \in W^{1,d}_{loc}(G)$;
- (ii) there exists $K, 1 \le K < \infty$ such that

$$|f'(x)|^d \le KJ_f(x) \text{ a.e. on } G,$$
 where
$$f'(x) = (\frac{\partial f_i}{\partial x_j})_{1 \le i, j \le d} (f = (f_1, f_2, \dots, f_d) \in \mathbf{R}^d),$$

$$|f'(x)| = \max_{|h| = 1} |f'(x)h|,$$

and $J_f(x)$ is the Jacobian determinant of f at x. Furthermore, if f is injective on G, f is called a quasiconformal mapping.

We need the next two propositions.

Proposition 1.2 (cf. [4]). Let $\mathscr{A}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ ($d \ge 2$) be a mapping as in 1.1, G a subdomain of \mathbb{R}^d and $f: G \to \mathbb{R}^d$ a quasiregular mapping. We define a mapping $f^*\mathscr{A}: \mathbb{R}^d \to \mathbb{R}^d$ by the following:

$$f^{\sharp} \mathscr{A}(x,\xi) = \begin{cases} J_f(x)f'(x)^{-1} \mathscr{A}(f(x),f'(x)^{-1*\xi}) & \text{if } J_f(x) \neq 0, \\ (f'(x)^{-1*} \text{ is the transpose of } f'(x)^{-1}) \\ \xi |\xi|^{d-2} & \text{if } J_f(x) = 0, J_f(x) \text{ is undefined, or } x \in \mathbb{R}^d \backslash G. \end{cases}$$

Then, $f^* \mathcal{A}$ is a mapping which satisfies the same conditions (1)–(5) as those of \mathcal{A} in 1.1.

Proposition 1.3 (cf. [4]). Let \mathcal{A} , G, f, $f^*\mathcal{A}$ be as in Proposition 1.2, and s an element of $\mathcal{L}_{\mathcal{A}}(f(G))$. Then, $s \circ f$ is an element of $\mathcal{L}_{f^*\mathcal{A}}(G)$.

1.4. Proof of Theorem 0.1.

First we need the next lemma.

Lemma 1.1. Let G be a subdomain of \mathbb{R}^d $(d \ge 2)$, f a quasiregular mapping from G into \mathbb{R}^d , \tilde{E} a subset of f(G), and $u \in \mathcal{S}_{sd}(f(G))$. Then,

$$\hat{R}_{u}^{\tilde{E}}(f(G),\mathscr{A})\circ f\geq \hat{R}_{u\circ f}^{f^{-1}(\tilde{E})}(G,f^{\sharp}\mathscr{A}).$$

In addition, if f a quasiconformal mapping from G into R^d , then

$$\hat{R}_{u}^{\tilde{E}}(f(G),\mathscr{A})\circ f=\hat{R}_{u\circ f}^{f^{-1}(\tilde{E})}(G,f^{*}\mathscr{A}).$$

Proof. The former part follows from definition of balayage and Proposition 1.3. Suppose that f is a quasiconformal mapping from G into \mathbb{R}^d . We remark that, for all $\xi \in \mathbb{R}^d$ and a.e. $x \in \mathbb{R}^d$,

$$(f^{-1})^{\sharp}(f^{\sharp}\mathscr{A})(x,\xi) = \mathscr{A}(x,\xi).$$

By the former part of this theorem and the above remark we have

$$\begin{split} \hat{R}_{u}^{\tilde{E}}(f(G), \mathscr{A}) &\geq \hat{R}_{u \circ f}^{f^{-1}(\tilde{E})}(G, f^{*}\mathscr{A}) \circ f^{-1} \\ &= \hat{R}_{u \circ f}^{f^{-1}(\tilde{E})}(f^{-1}(f(G)), f^{*}\mathscr{A}) \circ f^{-1} \\ &\geq \hat{R}_{u \circ f \circ f^{-1}}^{f \circ f^{-1}(\tilde{E})}(f(f^{-1}(f(G))), (f^{-1})^{*}(f^{*}\mathscr{A})) \circ f \circ f^{-1} \\ &= \hat{R}_{u}^{\tilde{E}}(f(G), \mathscr{A}). \end{split}$$

Therefore we have the latter part.

Proof of Theorem 0.1. By Lemma 1.1, for all neighborhoods U, V of $f(\xi)$ with $U \subset V$,

$$\begin{split} \hat{R}_{1}^{f(E) \cap U}(V, \mathscr{A}) \circ f(\xi) &\geq \hat{R}_{1}^{f^{-1}(f(E) \cap U)}(f^{-1}(V), f^{*}\mathscr{A})(\xi) \\ &\geq \hat{R}_{1}^{E \cap f^{-1}(U)}(f^{-1}(V), f^{*}\mathscr{A})(\xi) = 1. \end{split}$$

By Proposition 1.1, we obtain the desired result.

1.5. In this subsection we are concerned with quasiregular mappings from subdomains of \mathbb{R}^2 into \mathbb{R}^2 .

Theorem 1.1. Let G be a subdomain of \mathbb{R}^2 , E a subset of G, ξ a point of $G \setminus E$, and f a quasiregular mapping from G into \mathbb{R}^2 . Then, it holds that

- (i) if E is thin at ξ with $\overline{E} \cap f^{-1}(f(\xi)) = \{\xi\}$, and there exists a neighborhood W of ξ with $W \subset G$ such that $\overline{f(E \setminus W)} \cap \{f(\xi)\} = \emptyset$, then f(E) is thin at $f(\xi)$;
 - (ii) if E is thick at ξ , then f(E) is thick at $f(\xi)$.

Proof. By Theorem 0.1 we obtain (ii) and hence, have only to prove (i). Suppose that E is thin at a point ξ of G with $\overline{E} \cap f^{-1}(f(\xi)) = \{\xi\}$, and there exists a neighborhood W of ξ with $W \subset G$ such that $\overline{f(E \setminus W)} \cap \{f(\xi)\} = \emptyset$. Thus we have only to prove that, for a neighborhood U' of ξ , $f(E \cap U')$ is thin at $f(\xi)$. In the following discussion, we identify \mathbb{R}^2 with \mathbb{C} . It is well-known that quasiregular mappings in dimension two are written as compositions of analytic functions and quasiconformal mappings (cf. [9]) and hence, by Theorem 0.2 we may suppose that f is analytic on G. There exist a disc B = B(0,r) with $B + \xi \subset G$,

228 H. MASAOKA

a conformal mapping $g: B \to g(B)$ and an integer n such that $f(z) = [g(z-\xi)]^n + f(\xi)$ on $B+\xi$. By Theorem 0.2, we may suppose that $\xi=0$ and $f(z)=z^n$. It is easily seen that, for any $K \subset B$ $f^{-1}(f(K)) = \bigcup_{k=0}^{n-1} e^{\frac{2k\pi}{n}i} K$. By Theorem 0.2 each $e^{\frac{2k\pi}{n}i} E$ is thin at 0 and hence, $f^{-1}(f(E\cap B))$ is thin at 0. On the other hand, we have the following equality, for open neighborhoods U, V of 0 in B with $U \subset V$,

$$\hat{R}_{1}^{f(E\cap U)}(V,\zeta)\circ f = \hat{R}_{1}^{f^{-1}(f(E\cap U))}(f^{-1}(V),f^{*}\zeta),$$

and hence, by Definition 1.1 we find that $f(E \cap U)$ is thin at f(0). We must prove (*). By Lemma 1.1

$$\hat{R}_{1}^{f(E \cap U)}(V, \xi) \circ f \ge \hat{R}_{1}^{f^{-1}(f(E \cap U))}(f^{-1}(V), f^{*}\xi).$$

To prove the converse inequality, we take an element $s \in \mathcal{S}_{f * \xi}(f^{-1}(V))$ such that $s \ge 1$ on $f^{-1}(f(E \cap U))$. We set

$$\tilde{s}(z) := \min\{s(e^{\frac{2k\pi}{n}i}z), k = 0, \dots, n-1\},\$$

for every $z \in f^{-1}(V)$. We remark that $\tilde{s}(z) = \tilde{s}(e^{\frac{2k\pi}{n}i}z)$ on $f^{-1}(V)$ and $f^{-1}(f(E \cap U))$ = $\bigcup_{k=0}^{n-1} e^{\frac{2k\pi}{n}i}$ $(E \cap U)$. We set

$$s^{\sharp}(z) := \tilde{s}(\sqrt[n]{z}).$$

We find that $s^* \in \mathcal{S}_{\xi}(V)$ and $s^* \ge 1$ on $f(E \cap U)$. Therefore we have the desired result.

2. Minimal thinness and quasiconformal mappings

Throughout this section we consider a half plane H of \mathbb{R}^2 . Let $P_{\zeta}(z)$ $(z \in H, \zeta \in \partial H)$ be the Poisson kernel with pole at ζ .

DEFINITION 2.1. (cf. [2]) Let E be a subset of H and ζ a point of ∂H . Then, we say that E is minimally thin at ζ if

$$\hat{R}_{P_{\zeta}}^{E}(H,\xi)(z) \neq P_{\zeta}(z)$$

on H.

J. Lelong-Ferrand proved that thinness is equivalent to minimal thinness under a condition.

Proposition 2.1 (J. Lelong-Ferrand [8]). Let E be a subset of H and ζ a point of ∂H . Suppose that E belongs to a Stolz domain at vertex ζ . Then, E is thin at ζ if and only if E is minimally thin at ζ .

The next theorem gives us the quasiconformal invariance of minimal thinness under the same condition as that of Proposition 2.1.

Theorem 2.1. Let H be a half plane of \mathbb{R}^2 , E a subset of H and f a quasiconformal mapping from H onto H. Suppose that E is a subset of a Stolz domain at vertex ζ . If E is minimally thin at a point ζ of ∂H , then f(E) is minimally thin at $f(\zeta)$.

Proof. First we recall that f is extended as a quasiconformal mapping on \mathbb{R}^2 . Suppose that E is minimally thin at ζ and belongs to a Stolz domain at vertex ζ . By Proposition 2.1 E is thin at ζ in \mathbb{R}^2 . By Theorem 0.2 we find that f(E) is thin at $f(\zeta)$ in \mathbb{R}^2 . On the other hand, it is well-known that thinness means minimal thinness (cf. [6]). Therefore we obtain the desired result.

3. Quasiconformal invariance of Harmonic dimension of Heins' covering surfaces

Let F be an open Riemann surface of null boundary which has a single ideal boundary component in the sense of Kerékjártó-Stoïlow (cf. [3]). A relatively noncompact subregion Ω of F is said to be an end of F if the relative boundary $\partial\Omega$ consists of finitely many analytic Jordan curves (cf. Heins [5]). We denote by $\mathcal{P}(\Omega)$ the class of all nonnegative harmonic functions on Ω with vanishing boundary values on $\partial\Omega$. The harmonic dimension of Ω , dim $\mathcal{P}(\Omega)$ in notation, is defined as the minimum number of elements of $\mathcal{P}(\Omega)$ generating $\mathcal{P}(\Omega)$ provided that such a finite set exists, otherwise as ∞ . It is well-known that dim $\mathcal{P}(\Omega)$ does not depend on a choice of end of F: dim $\mathcal{P}(\Omega)$ =dim $\mathcal{P}(\Omega')$ for any pair (Ω,Ω') of ends of F (cf. [5]). In terms of the Martin compactification dim $\mathcal{P}(\Omega)$ coincides with the number of minimal points over the ideal boundary (cf. Constantinesc and Cornea [3]).

In this section we are especially concerned with ends W which are subregions of p-sheeted unlimited covering surfaces of $\{0 < |z| \le \infty\}$. For these W it is known that $1 \le \dim \mathcal{P}(W) \le p$ (cf. [5]).

Consider two positive sequences $\{a_n\}$ and $\{b_n\}$ satisfying $b_{n+1} < a_n < b_n < 1$ and $\lim_{n \to \infty} a_n = 0$. Set $G = \{0 < |z| < 1\} \setminus I$ where $I = \bigcup_{n=1}^{\infty} I_n$ and $I_n = [a_n, b_n]$. We take p(>1) copies G_1, \dots, G_p of G. Joining the upper edge of I_n on G_j and the lower edge of I_n on $G_{j+1}(j \mod p)$ for every n, we obtain a p-sheeted covering surface $W = W_p^I$ of $\{0 < |z| < 1\}$ which is naturally considered as an end of a p-sheeted covering surface of $\{0 < |z| \le \infty\}$. Such a covering surface W is referred to as the Heins' covering surface. We recall the characterization of harmonic dimension of Heins' covering surface.

Proposition 3.1 ([12] and [13]). For every integer p(>1), it holds that

- (i) dim $\mathcal{P}(W) = p$ if and only if I is thin at z = 0;
- (ii) $\dim \mathcal{P}(W) = 1$ if and only if I is not thin at z = 0.

The next theorem gives us the quasiconformal invariance of harmonic dimension of Heins' covering surface under a condition.

Theorem 3.1. Let $W = W_p^I$ (resp. $W' = W_p^{I'}$) be Heins' covering surfaces of $D = \{0 < |z| < 1\}$ with the covering map $\pi: W \to D$ (resp. $\pi': W' \to D$) which is constructed by G_j $(j = 1, \dots, p)$ (resp. G'_j $(j = 1, \dots, p)$) as above. Suppose that there exists a quasiconformal mapping f from W onto W' such that, for $z, z' \in W$ with $\pi(z) = \pi(z') \in I$, $\pi'(f(z)) = \pi'(f(z')) \in I'$. Then, $\dim \mathcal{P}(W) = \dim \mathcal{P}(W')$.

Proof. Suppose that there exists a quasiconformal mapping f from W onto W' such that, for $z,z' \in W$ with $\pi(z) = \pi(z') \in I$, $\pi'(f(z)) = \pi'(f(z')) \in I'$. Then, we find that $f(W \setminus \pi^{-1}(I)) = W' \setminus \pi'^{-1}(I')$. Thus, for every $f(j) = 1, \dots, p$, there exists an integer $f(j) = 1, \dots, p$ such that $f(G_j) = G'_{n(j)}$ because each $f(j) = 1, \dots, p$ is connected and $f(\pi^{-1}(I)) = \pi'^{-1}(I')$. Hence, we can consider each $f(j) = 1, \dots, p$ as a quasiconformal mapping $f(j) = 1, \dots, p$ and $f(j) = 1, \dots, p$ are $f(j) = 1, \dots, p$. Therefore, by Proposition 3.1, we have the desired result.

ACKNOWLEDGEMENT. The author would like to express his sincere gratitude to the refree for valuable comments and advices.

References

- [1] J. Bliedtner and W. Hansen: Potential Theory, Springer-Verlag, 1986.
- [2] M. Brelot: On topologies and boundaries in potential theory, Lecture Notes in Math. 175 (1971), Springer-Verlag.
- [3] C. Constantinescu and A. Cornea: Ideal Ränder Riemannser Flächen, Springer-Verlag, 1966.
- [4] J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford, 1993.
- [5] M. Heins: Riemann surfaces of infinite genus, Ann. Math., 55 (1952), 296-317.
- [6] H. Jackson: Some results on thin sets in a half-plane, Ann. Inst. Fourier 20 (1970), 201-218.
- [7] T. Kilpeläinen and J. Malý: The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137-161.
- [8] J. Lelong-Ferrand: Etude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Ecole. N. Sup. 66 (1949), 125-159.
- [9] O. Lehto and K. Virtanen: Quasiconformal Mappings in the Plane, Springer-Verlag, 1973.
- [10] P. Lindqvist and O. Martio: Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math. 155 (1985), 153-171.
- [11] O. Martio and J. Sarvas: Density conditions in the n-capacity, Indiana Univ. Math. J. 26 (1977), 761-776.
- [12] H. Masaoka: Harmonic dimension of covering surfaces, II, Kodai Math. J. 18 (1995), 487-493.

- [13] H. Masaoka and S. Segawa: Harmonic dimension of covering surfaces, Kodai Math. J., 17 (1994), 351-359.
- [14] S. Rickman: Quasiregular Mappings, Springer-Verlarg, 1993.
- [15] H. Shiga: Quasiconformal mappings and potentials, XVIth Rolf Nevanlinna Colloquium, Walter de Gruyter & Co., 1996, 215-222.

Department of Mathematics Faculty of Science Kyoto Sangyo University Kamigamo-Motoyama, Kitaku, Kyoto 603 Japan