<table>
<thead>
<tr>
<th>Title</th>
<th>On imbedding 3-manifolds into 4-manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shiomi, Tatsuyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 28(3) P.649-P.661</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1991</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8845</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/8845</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp.repo/ouka/all/

Osaka University
ON IMBEDDING 3-MANIFOLDS INTO 4-MANIFOLDS

TATSUHISA SHIOI

(Received June 26, 1990)
(Revised November 15, 1990)

Introduction

We discuss an imbedding problem of a closed, connected, oriented 3-manifold into a given compact connected 4-manifold, which arises from certain signature invariants of 3-manifold associated with its cyclic coverings. Our main result is the following:

Theorem. For any compact, connected (orientable or non-orientable) 4-manifold W (with or without boundary), there exist infinitely many closed, connected, orientable 3-manifolds M which cannot be imbedded in W.

For a closed orientable 4-manifold W, this is a direct consequence of [8, Theorem 3.2] and, for an orientable 4-manifold W with boundary, we can prove it by using the doubling technique for W. Thus the main concern in this paper is for a non-orientable 4-manifold W.

The proof of Theorem is given in §3. In §2, a classification of the types of imbeddings of M into a closed 4-manifold W is given. Section 1 is devoted to the calculation of the signatures of the finite cyclic covers of a homology handle M. We can express these signatures in terms of the local signatures of M under a certain condition on the Alexander polynomial of M, where the Alexander polynomial of a homology handle is defined in the same way as in the case of knots (cf. [3, Definition 1.3]). Let $\sigma_a(M)$ be the local signature of M at $a \in [-1,1]$, which is an analogue of the Milnor signature of a knot (cf. [9]). Let $\sigma^{(n)}(M)$ be the signature of n-fold cyclic cover of M (whose definition is given in Section 1 where $\sigma^{(n)}(M)$ is denoted by $\sigma^{(n)}(M_{[a]})$). Then the following will be shown.

Proposition 1.3. If the Alexander polynomial of M has no 2n-th root of unity, then

$$\sigma^{(n)}(M) = \sum_{j=0}^{n-1} (-1)^j \sum_{s_{j+1} < \ldots < s_j} \sigma_s(M),$$
where \(a_j = \cos(j\pi/n), j = 0, 1, \ldots, n\).

This result reveals a connection between the signatures of finite cyclic covers of a homology handle and the local signatures of its infinite cyclic cover. When \(n=2\) the assumption of the above proposition is always satisfied. So we have the following formula, which will be used in §3 to prove Theorem for a non-orientable 4-manifold \(W\).

Corollary 1.4. \(\sigma^{(\ell)}(M) = \sum_{-1 < a < 1} \text{sign}(a) \sigma_a(M)\).

Throughout this paper, all manifolds and all maps between manifolds will be assumed to be smooth.

I would like to thank my advisor Professor Akio Kawauchi for suggesting the problem to me and for his advice and encouragement.

1. **Signatures of Finite Cyclic Covers of a Homology Handle**

In this section, we consider the signature of the \(n\)-fold cyclic cover of a homology handle.

Throughout this paper, we use Kawauchi’s notations for signatures and local signatures of a 3-manifold; for a closed oriented 3-manifold \(M\) equipped with an element \(\gamma \in H^1(M; \mathbb{Z})\), \(\sigma(M)\) denotes the signature of \((M, \gamma)\) and \(\sigma^2(M)\), \(a \in [-1, 1]\), denotes the local signature of \((M, \gamma)\) at \(a\). For the definitions of these invariants, see [6] and also [4], [5], [7]. (Local signatures were first considered in [9, Section 5] for the exterior of a knot in \(S^3\).) In this section, \(\mathbb{Z}\langle t\rangle\) (resp. \(\mathbb{R}\langle t\rangle\)) denotes the group ring over the infinite cyclic group \(\langle t\rangle\) generated by \(t\) with coefficient ring the ring \(\mathbb{Z}\) of integers (resp. the field \(\mathbb{R}\) of real numbers).

Now let \(M\) be an oriented homology handle, that is, a compact oriented 3-manifold having the homology isomorphic to that of \(S^2 \times S^1\) (cf. [3]), and \(\gamma\) be a fixed generator of \(H^1(M; \mathbb{Z}) = [M, S^1]\). Using the transversality of a map \(M \to S^1\) representing \(\gamma\), we can find a closed, connected, oriented surface \(V\) in \(M\) representing the Poincaré dual of \(\gamma\). \(V\) is called a leaf of \(\gamma\) (cf. [6]).

We choose an orientation of \(M \times [-1, 1]\) so that \(M \times 1\) with the induced orientation is identified with \(M\). Let \(N(V)\) be a bicollar neighborhood of \(V\) in \(M\). Let \(W = M \times [-1, 1] - \text{int}(N(V) \times [-1/2, 1/2])\) (cf. [7]). There is a natural diffeomorphism \(N(V) \times [-1/2, 1/2] \cong V \times D^2\). Let \(V\) be a handlebody such that \(\partial V\) is diffeomorphic to \(V\). By identifying \(\partial(V \times S^1)\) with \(V \times S^1 = \partial N(V) \times [-1/2, 1/2] \subset W\), we get a compact 4-manifold \(\bar{W} = W \cup V \times S^1\) with boundary diffeomorphic to \(M \cup -M\). By the Pontrjagin/Thom construction, we have an element \(\bar{\eta} \in H^4(\bar{W}; \mathbb{Z})\) such that \(\bar{\eta}|_{M \times 1} = \gamma, \bar{\eta}|_{M \times (-1)} = 0\) and \(\bar{\eta}|_{V \times S^1}\) is represented by the natural projection \(V \times S^1 \to S^1\). Taking a compact, oriented 4-manifold \(W_0\) bounded by \(M\), we can cap the component
$M \times (-1)$ of $\partial \tilde{W}_c$ and finally get a 4-manifold $W = \tilde{W}_c \cup W_0$ with boundary M.

Define an element $\gamma \in H^2(W; \mathbb{Z})$ by $\gamma|\tilde{W}_c = \gamma_c$ and $\gamma|W_0 = 0$. Note that $\partial(W, \gamma) = (M, \gamma)$ and γ has a leaf $U_\gamma = (V \times [1/2, 1]) \cup (V \times x_0)$, where $x_0 \in S^1$ is the point such that $\partial(V \times x_0) \equiv V \times (1/2) \subset \partial W_c$.

For each positive integer n, let $p_n: M_{(n)} \to M$ (resp. $P_n: W_{(n)} \to W$) be the n-fold cyclic covering of M (resp. W) associated with the mod n reduction $\gamma(n)$ (resp. $\gamma(n)$) of γ (resp. γ). If $f_\gamma: M \to S^1$ (resp. $f_\gamma: W \to S^1$) is a map representing γ (resp. γ), then the covering $p_n: M_{(n)} \to M$ (resp. $P_n: W_{(n)} \to W$) is defined to be the fibered product of f_γ (resp. f_γ) with the natural n-fold covering $g_n: S^1 \to S^1, z \mapsto z^n$, where $z \in S^1$ is considered as a complex number with unit norm.

The lift $f_\gamma^{(n)}: M_{(n)} \to S^1$ (resp. $f_\gamma^{(n)}: W_{(n)} \to S^1$) of f_γ (resp. f_γ) by g_n is determined by γ (resp. γ) up to homotopy. The homotopy class of $f_\gamma^{(n)}$ (resp. $f_\gamma^{(n)}$) is denoted by $\hat{\gamma}^{(n)}(\equiv M_{(n)}, \gamma^{(n)})$ and $\hat{\gamma}^{(n)}$ (resp. $\gamma^{(n)}$) has as its leaf a component of the pre-image of V (resp. U_γ) by the projection $p_n: M_{(n)} \to M$ (resp. $P_n: W_{(n)} \to W$).

Since $W_{(2n)}$ is the 2-fold cyclic cover of $W_{(n)}$ associated with the mod 2 reduction of $\gamma^{(n)}$, we have, by [7, Lemma 4.3],

$$\sigma^{(n)}(M_{(n)}) = \text{sign } W_{(2n)} - 2 \text{ sign } W_{(n)}.$$

To calculate $\text{sign } W_{(m)}$, note that $W_{(m)} = W_{(m)}^{(o)} \cup \tilde{V} \times S^1 \cup \bigcup W_0$, where $W_{(m)}^{(o)}$ denotes the m-fold cyclic cover of W_c associated with the mod m reduction of \tilde{V}. Since $\partial V \times S^1 = 0$, the Novikov additivity implies $\text{sign } W_{(m)} = \text{sign } W_{(m)}^{(o)} + m \text{ sign } W_0$. Therefore

$$\sigma^{(m)}(M_{(n)}) = \text{sign } W_{(2n)} - 2 \text{ sign } W_{(n)}.$$

Thus the calculation is reduced to that of $\text{sign } W_{(m)}^{(o)}$. For the calculation, we use, instead of $W_{(m)}^{(o)}$, the m-fold cyclic branched cover $\tilde{W}_{(m)} = W_{(m)}^{(o)} \cup V \times D^2$ of $M \times [-1, 1] = W_c \cup V \times D^2$ branched along $V \times 0$. Note that, by the Novikov additivity and sign $V \times D^2 = 0$, sign $\tilde{W}_{(m)} = \text{sign } W_{(m)}^{(o)}$.

Let $L: H_1(V; \mathbb{R}) \times H_1(V; \mathbb{R}) \to \mathbb{R}$ be the linking form defined by $L(x, y) = \text{Link}_M(c_x, c_y)$ for $x = [c_x], y = [c_y] \in H_1(V; \mathbb{R})$, where c_x^+ denotes the translation of the cycle c_x in the positive normal direction and $\text{Link}_M(c_x, c_y)$ is the linking number of c_x with c_y^+ (cf. [6, p. 53 and p.77]). A matrix representing L for some basis of $H_1(V; \mathbb{R})$ is called a linking matrix on $H_1(V; \mathbb{R})$. Let $T: \tilde{W}_{(m)} \to \tilde{W}_{(m)}$ be the natural extension of the generator $T: \tilde{W}_{(m)} \to \tilde{W}_{(m)}$ of the group of covering transformations of the covering $P_n: W_{(m)}^{(o)} \to \tilde{W}_{(m)}$ which is specified by $\eta_{m}|W_c$. Let $\text{Int}_{(m)}: H_2(\tilde{W}_{(m)}; \mathbb{R}) \times H_2(\tilde{W}_{(m)}; \mathbb{R}) \to \mathbb{R}$ be the intersection form on $\tilde{W}_{(m)}$. Take a basis $\{e_1, e_2, \cdots, e_r\}$ for $H_1(V; \mathbb{R})$. By a standard argument due to [11] or [2] and used in [7, Lemma 3.3], we have the following.
Lemma 1.1. There exist elements $\bar{e}_1, \ldots, \bar{e}_r, \bar{e}_{r+1}, \ldots, \bar{e}_s$ in $H_2(\tilde{W}_m; R)$ such that $\bar{e}_1, \ldots, \bar{e}_r, T_* \bar{e}_1, \ldots, T_* \bar{e}_r, \ldots, T_{r+1}^{m-2} \bar{e}_1, \ldots, T_{r+1}^{m-2} \bar{e}_r, \bar{e}_{r+1}, \ldots, \bar{e}_s$ form a basis for $H_2(\tilde{W}_m; R)$ and such that, for $i, j \leq r$ and $p, q = 0, 1, \ldots, m-2$,

$$\text{Int}_{\tilde{c} \circ \sigma} (T_* \bar{e}_i, T_* \bar{e}_j) = \begin{cases} 0 & \text{if } |p-q| > 1, \\ -L(e_i, e_j) & \text{if } p = q + 1, \\ L(e_j, e_i) & \text{if } q = p + 1, \\ L(e_i, e_j) + L(e_j, e_i) & \text{if } p = q. \end{cases}$$

and, for $i = 1, 2, \ldots, s$, $j > r$ and $k = 0, 1, \ldots, m-2$, $\text{Int}_{\tilde{c} \circ \sigma} (T_* \bar{e}_i, \bar{e}_j) = 0$.

Let \mathcal{E} be the subspace of $H_2(\tilde{W}_m; R)$ generated by $T_* \bar{e}_i, i = 1, \ldots, r, j = 0, 1, \ldots, m-2$. It is easily seen that the form $(\text{Int}_{\tilde{c} \circ \sigma} | \mathcal{E}, T_* | \mathcal{E})$ is isomorphic to the symmetric \mathbb{Z}_m-form of L defined in [11] (although the coefficient in [11] is rational). Recall that the symmetric \mathbb{Z}_m-form of L is the pair $(L^{(m)}, \tau_m)$ of symmetric bilinear form $L^{(m)} \colon H_{m-1} \times H_{m-1} \to R$ and isometry $\tau_m \colon H_{m-1} \to H_{m-1}$ of $L^{(m)}$ of order m, defined by

$$L^{(m)}(x, y) = \sum_{i=1}^{m-1} L(\pi_i(x), \pi_i(y)) + L(\pi_i(y), \pi_i(x)) - \sum_{i=1}^{m-2} L(\pi_{i+1}(x), \pi_i(y)) + L(\pi_{i+1}(y), \pi_i(x))$$

and

$$\tau_m(x) = \sum_{i=1}^{m-1} t_{i+1} \pi_i(x) - \sum_{i=1}^{m-1} t_i \pi_{m-i}(x)$$

for $x, y \in H_{m-1}$, where H_{m-1} denotes the $(m-1)$th Cartesian product of the real vector space $H = H_1(V; R)$, and $\pi_i \colon H_{m-1} \to H$ and $t_i \colon H \to H_{m-1}(i = 1, 2, \ldots, m-1)$ are the i-th coordinate projection and imbedding respectively.

Thus we have proved the following.

Proposition 1.2. $\sigma^{(\infty)}(M_\gamma(N)) = \text{sign} L^{(m)} - 2 \text{sign} L^{(n)}$.

By using Proposition 1.2, we can express $\sigma^{(\infty)}(M_\gamma(N))$ in terms of local signatures $\sigma_\mathcal{M}(M)$ of (M, γ).

Proposition 1.3. If the Alexander polynomial $A_\gamma(t) \in \mathbb{Z}[t]$ of the homology handle (M, γ) has no $2n$-th root of unity, then

$$\sigma^{(\infty)}(M_\gamma(N)) = \sum_{j=0}^{n-1} (-1)^j \sum_{a_j \cos(j\pi/n), j=0, 1, \ldots, n} \sigma_\mathcal{M}(M),$$

where $a_j = \cos(j\pi/n), j=0, 1, \ldots, n$.

Since $|A_\gamma(1)| = 1$ for any homology handle (M, γ) (cf. [3, Theorem 1.4]),
Corollary 1.4. For any homology handle \((M, \gamma)\),

\[\sigma^{(2)}(M; \omega) = \sum_{-1 < a < 1} \text{sign}(a) \sigma_a^2(M). \]

To prove Proposition 1.3, we need some lemmas. Let \(H_{\mathbb{C}}^{-1} = H_{\mathbb{C}}^{-1} \otimes \mathbb{C}(m \geq 2)\) and \(L_c^{(m)}: H_{\mathbb{C}}^{-1} \times H_{\mathbb{C}}^{-1} \to \mathbb{C}\) be the Hermitian form of \(L^{(m)}\) in the usual sense (cf. [11, 3.6. Note]). The isometry \(\tau_m: H_{\mathbb{C}}^{-1} \to H_{\mathbb{C}}^{-1}\) of \(L_c^{(m)}\) extends to the isometry (also denoted by \(\tau_m\)) \(H_{\mathbb{C}}^{-1} \otimes \mathbb{C} \to H_{\mathbb{C}}^{-1} \otimes \mathbb{C}\) naturally. Let \(E_m(\zeta)\) be the eigenspace of \(H_c^{-1}\) corresponding to the eigenvalue \(\zeta \in \mathbb{C}\) of \(\tau_m: H_{\mathbb{C}}^{-1} \to H_{\mathbb{C}}^{-1}\).

Lemma 1.5. If \(m = pq, p, q > 0, \) and \(\zeta_p\) is a primitive \(p\)-th root of unity, then

\[\mu: E_p(\zeta_p) \to E_m(\zeta_p), \quad \mu(x) = \frac{1}{\sqrt{q}} \sum_{j=0}^{q-1} \sum_{i=0}^{p-1} \epsilon^{(m)}_{j+p; i} \pi_i^{(p)}(x) \]

is an isometry between \(L_c^{(p)}|_{E_p(\zeta_p)}\) and \(L_c^{(m)}|_{E_m(\zeta_p)}\), where \(\pi_i^{(p)}: H_c^{-1} \to \mathbb{C}\) and \(\epsilon^{(p)}: H_{\mathbb{C}}^{-1} \to \mathbb{C}\) are the \(j\)-th coordinate projection and imbedding respectively on \(H_{\mathbb{C}}^{-1}\).

Proof. First we show that

\[\overline{\mu}: E_p(\zeta_p) \to H_{\mathbb{C}}^{-1}, \quad \overline{\mu}(x) = \sum_{j=0}^{p-1} \sum_{i=0}^{q-1} \epsilon^{(m)}_{j+p; i} \pi_i^{(p)}(x) \]

is an injection and the image of \(\overline{\mu}\) is \(E_m(\zeta_p)\). In fact, by solving the equation \(\tau_x z = \zeta_p z(k = p, m)\) directly, we can check that

\[E_p(\zeta_p) = \left\{ (x, \sum_{j=0}^{1} E_j x, \ldots, \sum_{j=0}^{p-2} E_j x) \in H_{\mathbb{C}}^{-1}; x \in \mathbb{C} = H_{\mathbb{C}} \right\} \]

and \(E_m(\zeta_p) = \overline{\mu}(E_p(\zeta_p))\), from which the injectivity of \(\overline{\mu}\) is obvious.

Since spaces \(E_p(\zeta_p)\) and \(E_m(\zeta_p)\) are such ones as described above, we can easily calculate \(L_c^{(m)}(\overline{\mu}(x), \overline{\mu}(y))\) for \(x, y \in E_p(\zeta_p)\) and have

\[L_c^{(m)}(\overline{\mu}(x), \overline{\mu}(y)) = qL_c^{(p)}(x, y), \]

which means that \(\mu=(1/\sqrt{q}) \cdot \overline{\mu}\) is an isometry between \(L_c^{(p)}|_{E_p(\zeta_p)}\) and \(L_c^{(m)}|_{E_m(\zeta_p)}\). This completes the proof.

For \(\omega \in \mathbb{C}, |\omega| = 1, \omega \neq 1,\) define a Hermitian form \(L_{(\omega)}: (H \otimes \mathbb{C}) \times (H \otimes \mathbb{C}) \to \mathbb{C}\) by

\[L_{(\omega)}(x \otimes \alpha, y \otimes \beta) = \alpha \beta((1 - \overline{\omega})L(x, y) + (1 - \omega)L(y, x)) \]
for \(x, y \in H\) and \(\alpha, \beta \in \mathbb{C}\). The following lemma is well-known (cf. [11, 4.7]).

Lemma 1.6. Let \(p(\geq 2)\) be an integer. If \(\zeta_p\) is a primitive \(p\)-th root of unity, then the form \(L_{(\zeta_p)}\) is isomorphic to the restriction to \(E_p(\zeta_p)\) of the form \(L_{\mathbb{F}_p}\).

Let \(\omega_2 = x + \sqrt{1-x^2} i \in \mathbb{C}\), \(x \in [-1, 1]\). For any real square matrix \(A\), define a \(t\)-Hermitian \(\mathcal{R}(t)\)-matrix

\[
A^-(t) = (2 - (t + t^{-1})) ((1 - t) A + (1 - t^{-1}) A^T).
\]

Kawauchi [6, §5] considered the "local signatures" \(\sigma_A^\pm(A)\), \(a \in [-1, 1]\), of \(A\) which are defined by \(\sigma_A^+(A) = \lim_{x \to +0} \text{sign} A^-(\omega_x) - \lim_{x \to +0} \text{sign} A^-(\omega_x) \) for \(a \in (-1, 1)\) and \(\sigma_A^-(A) = \lim_{x \to -1} \text{sign} A^-(\omega_x), \sigma_A^+(A) = \text{sign} (A + A^T) - \lim_{x \to -1} \text{sign} A^-(\omega_x).

Lemma 1.7. For \(\omega_0(\pm 1)\) satisfying \(\text{rank}_C(A - \omega_x A^T) = \text{rank}_R(\omega_0 (A - t A^T))\),

\[
\text{sign} ((1 - \omega_x) A + (1 - \omega_x) A^T) = \sum_{a \leq s \leq 1} \sigma_A^-(A).
\]

Proof. Note that \(A^-(t) = (1 - t^2)(1 - t^{-1}) (A - t^{-1}) A^T\). Let \(x_1 < x_2 < \cdots < x_n\) be the all points in the interval \((a, 1)\) satisfying \(\text{rank}_C(A - \omega_{x_i} A^T) < \text{rank}_R(\omega_0 (A - t^{-1}) A^T)\). By assumption, \(\text{rank}_C(A - \omega_x A^T) = \text{rank}_R(\omega_0 (A - t^{-1}) A^T)\) on \(x \in [a, 1) - \{x_1, x_2, \ldots, x_r\}\). Then by [6, Corollary 5.2],

\[
\text{sign} A^-(\omega_x) = \lim_{x \to i} \text{sign} A^-(\omega_x),
\]
and

\[
\lim_{x \to u} \text{sign} A^-(\omega_x) = \lim_{x \to u} \text{sign} A^-(\omega_x), \quad i = 1, \ldots, r - 1
\]

Thus

\[
\text{sign} ((1 - \omega_x) A + (1 - \omega_x) A^T) = \text{sign} A^-(\omega_x) = \text{sign} A^-(\omega_x) = \sum_{a \leq s \leq 1} \sigma_A^-(A).
\]

This completes the proof.

1.8. Proof of Proposition 1.3. For simplicity, we use the following notations:

\[
\langle k \rangle_m = E_m(e^{2\pi ik/m}), \quad k = 0, 1, \ldots, m - 1,
\]

\[
\sigma \langle k \rangle_m = \text{sign}(L_{(\omega_0)} | \langle k \rangle_m), \quad k = 0, 1, \ldots, m - 1
\]

\[
s_j = \sum_{s_{j+1} < s < s_j} \sigma^\omega(M), \quad j = 0, 1, \ldots, n - 1.
\]

Note that \(\langle 0 \rangle_m = \{0\}\) for all \(m\). We have to show \(\sigma^\omega(M_{(\omega_0)} = \sum_{j=0}^{n-1} (-1)^j s_j\).

First we consider the case when \(n\) is odd. In this case, \(H_{\mathbb{C}^{-1}}\) and \(H_{\mathbb{C}^{-1}}\)}
split into the orthogonal sums

\[H_{c}^{2n-1} = \left(\frac{1}{k=1}^{n-1} \langle k \rangle_{2n} \perp \langle -k \rangle_{2n} \right) \perp \langle n \rangle_{2n} \]

and

\[H_{c}^{-1} = \left(\frac{1}{k=1}^{(a-1)/2} \langle k \rangle_{n} \perp \langle -k \rangle_{n} \right) \]

with respect to \(L_{c}^{(2n)} \) and \(L_{c}^{(3)} \) respectively. By Proposition 1.2 and the fact \((\dagger)\) \(\sigma \langle 2k \rangle_{2n} = \sigma \langle k \rangle_{n} = \sigma \langle q \rangle_{p} \), where \(0 < q < p, (p, q) = 1 \) and \(q/p = k/n \), which is derived from Lemma 1.5, we have

\[\sigma^{(2n)}(M_{r}(n)) = \text{sign} L_{c}^{(2n)} - 2\text{sign} L_{c}^{(3)} \]

\[= \sum_{k=1}^{n-1} 2\sigma \langle k \rangle_{2n} + \sigma \langle n \rangle_{2n} - 2 \sum_{k=1}^{(a-1)/2} 2\sigma \langle k \rangle_{n} \]

\[= 2 \sum_{k=1}^{(a-1)/2} (\sigma \langle 2k - 1 \rangle_{2n} - \sigma \langle 2k \rangle_{2n} + \sigma \langle n \rangle_{2n}). \]

Note that \(\sigma \langle k \rangle_{m} = \sigma \langle -k \rangle_{m} \) by \((\dagger) \) and Lemma 1.7. If the Alexander polynomial \(A(t) = \det(A - tA^{T}) \in R[t] \) has no 2n-th root of unity, then, by \((\dagger) \) and Lemmas 1.6 and 1.7, we have

\[\sigma \langle k \rangle_{2n} = \text{sign} L_{c}^{(2n)}(A(\sigma^{ik/n}A^{T}) + (1 - e^{-\sigma^{ik/n}}A^{T})) \]

\[= \sum_{j=0}^{k-1} s_{j}, \]

for all \(k=1, 2, \ldots, n \), where \(A \) is a linking matrix on \(H = H_{1}(V; R) \). So we have \(\sigma \langle 2k - 1 \rangle_{2n} - \sigma \langle 2k \rangle_{2n} = -s_{2k-1}, k=1, 2, \ldots, (n-1)/2 \). Furthermore, by [6, Main Theorem], \(\sigma \langle n \rangle_{2n} = \sigma \langle 1 \rangle_{2} = \sigma^{(2)}(M) = \sum_{j=1}^{n-1} s_{j} \). Therefore

\[\sigma^{(2n)}(M_{r}(n)) = 2 \sum_{k=1}^{(a-1)/2} (-s_{2k-1}) + \sum_{j=0}^{n-1} s_{j} = \sum_{j=0}^{n-1} (-1)^{j} s_{j}. \]

Next we consider the case when \(n \) is even. In this case, \(H_{c}^{2n-1} \) and \(H_{c}^{-1} \) split into the orthogonal sums

\[H_{c}^{2n-1} = \left(\frac{1}{k=1}^{n-1} \langle k \rangle_{2n} \perp \langle -k \rangle_{2n} \right) \perp \langle n \rangle_{2n} \]

and

\[H_{c}^{-1} = \left(\frac{1}{k=1}^{(n-2)/2} \langle k \rangle_{n} \perp \langle -k \rangle_{n} \right) \perp \langle n/2 \rangle_{n} \]
respectively. By the same argument as in the odd case, we have

$$\sigma_0^{(2\ell)}(M_{\gamma(u)}) = \text{sign } L_\ell^{(2n)} - 2\text{sign } L_\ell^{(g)}$$

$$= \left(\sum_{k=1}^{n-1} 2\sigma(k)_{2n} + \sigma(n)_{2n}\right) - 2 \left(\sum_{k=1}^{n-2} 2\sigma(k)_{2n} + \sigma(n/2)_{2n}\right)$$

$$= 2 \left(\sum_{k=1}^{n-2} (\sigma(2k-1)_{2n} - \sigma(2k)_{2n} - \sigma(n-1)_{2n} - \sigma(1)_{2n}\right)$$

$$= 2 (- \sum_{k=1}^{n-2} s_{2k-1} + \sum_{j=0}^{n-2} s_j) - \sum_{j=0}^{n-1} s_j$$

$$= 2 \sum_{j=0}^{n-1} (-1)^j s_j$$

This completes the proof.

Example 1.9. Let k be a knot in S^3 and $M=M(k)$ denote S^3 surgered along k with framing zero. Then M is a homology handle. Let \tilde{M} be the infinite cyclic cover of M associated with any generator γ of $H^1(M; \mathbb{Z})$. The quadratic form of \tilde{M} on $H^1(\tilde{M}; \mathbb{R})$ (see [4, p. 186] for the definition) in the present case is non-singular (cf. [5, p. 99]).

If k is a trefoil knot, then $H^1(\tilde{M}; \mathbb{R}) \approx \mathbb{R}^2/(t^2 - t + 1)$. Thus $\sigma_1^{(2)}(M) = \pm 2$ and $\sigma_2^a(M) = 0$ for $a = 1/2$ (cf. [9, Assertion 11] or [5, Lemma 1.4]). By Corollary 1.4, we have $\sigma_0^{(2\ell)}(M_{\gamma(2)}) = \sigma_1^{(2)}(M) = \pm 2$. This result can be obtained from a direct calculation of the quadratic form by using a mapping torus structure of $M(k)_{\gamma(2)}$ (cf. [10, p. 333]). Furthermore, if k is the g-fold connected sum of trefoil knot, then the quadratic form of \tilde{M} is the orthogonal sum of g copies of the form of trefoil knot. Thus $\sigma_1^{(2)}(M(k)) = \pm 2g$ and $\sigma_2^a(M(k)) = 0$ for $a = 1/2$.

By Corollary 1.4, $\sigma_0^{(2\ell)}(M(k)_{\gamma(2)}) = \sigma_1^{(2)}(M(k)) = \pm 2g$, which of course coincides with the result obtained from the calculation using the mapping torus structure of $M(k)_{\gamma(2)}$.

2. Types of Imbeddings

Throughout this section, M is a closed, connected, oriented 3-manifold and W a closed, connected 4-manifold. We consider imbeddings $f: M \to W$.

First note that f has at least two types according to whether $W - fM$ is connected or not. We say that f is of type I (resp. type II) if $W - fM$ is connected (resp. disconnected). We can characterize the type I or II imbedding by examining the homomorphism $f_*: H_3(M; \mathbb{Z}) \to H_3(W; \mathbb{Z})$. If $f_* = 0$ then f is of type I, and if $f_* = 0$ then f is of type II and $W - fM$ has exactly two components. This is stated in [8] in the case when W is orientable, and Kawauchi's
proof is valid for non-orientable 4-manifold W. Note that the coefficient of the (co-)homology in [8, p. 171] is \mathbb{Z}_2.

For the rest of this section we assume that W is non-orientable, and classify the types of $f: M \to W$ more in detail. Let $p: W \to W$ be the orientation double covering of W.

Type I imbedding. A type I imbedding f is called two-sided or one-sided according as the normal bundle of f is trivial or not.

If f is of type I and one-sided (called type I_1), we have two cases according as $W - fM$ is orientable or not. These two cases may be characterized by the types of the imbedding $\tilde{M} = p^{-1}(fM) \subset W$. That is, $W - fM$ is non-orientable (resp. orientable) if and only if $\tilde{M} \subset W$ is of type I (resp. type II). Thus we say that f is of type $I_1 - 1$ (resp. type $I_1 - 2$) if $W - fM$ is non-orientable (resp. orientable).

If f is of type I and two-sided (called type I_2), then f can be lifted to two imbeddings $\tilde{f}: M \to W$, each of which is of type I. [To see that \tilde{f} is of type I, note that there is a loop α in W which intersects fM transversely in a single point. If α preserves orientation, then one of the lifts of α to W intersects fM transversely in a single point. Thus $\tilde{f}_* = 0: H_3(M; \mathbb{Z}_2) \to H_3(W; \mathbb{Z}_2)$, which means \tilde{f} is of type I. If α reverses orientation, then, by using the loop $p^{-1} \alpha$, we can do the same argument as above and have the same conclusion.]

Type II imbedding. Assume f is of type II. Let W_1, W_2 be the components of $W - fM$. Since W is non-orientable and M is connected, we have the following two cases:

a) both W_1 and W_2 are non-orientable,

b) one of W_1 and W_2 is orientable and the other is non-orientable.

The type II imbedding f can be lifted to two imbeddings $\tilde{f}: M \to W$. Take any one of them. Then it is easily seen that a) (resp. b)) is equal to the condition that \tilde{f} is of type I (resp. \tilde{f} is of type II). From this, in case a) (resp. b)) we say that f is of type II - 1 (resp. type II - 2).

3. Proof of Theorem

Throughout this section, for a manifold X with boundary, DX denotes the double of X. For a closed oriented 3-manifold M equipped with an element $\gamma \in H^1(M; \mathbb{Z})$, we define $\tau_\gamma(M) = \sum_{\alpha \in \langle a, 1 \rangle} \sigma_\gamma(M)$ for all $a \in [-1, 1]$ (cf. [8]). We denote by $\kappa(M)$ the rank of the kernel of the homomorphism $t - 1: H_1(M; \mathbb{Z}) \to H_1(M; \mathbb{Z})$, where M is the infinite cyclic cover of M associated with γ and $t: H_1(M; \mathbb{Z}) \to H_1(M; \mathbb{Z})$ is the automorphism induced from the generator specified by γ of the group of covering transformations on M (cf. [8]).

For the rest of this section, M denotes a closed, connected, oriented 3-manifold and W denotes a compact, connected 4-manifold. Let M^0 denote the once punctured M. Recall that an element $\tilde{\gamma} \in H^1(DM^0; \mathbb{Z})$ is called \mathbb{Z}_2-asym-
metric if the mod 2 reduction \(\hat{\gamma}(2) \in H^1(DM^0; \mathbb{Z}_2) \) of \(\hat{\gamma} \) satisfies \(\rho_2(\hat{\gamma}(2)) = \hat{\gamma}(2) \) for the standard reflection \(\rho \) of \(DM^0 \) ([8, p. 179]). Theorem 3.1 of [8] can be extended to the case of orientable 4-manifold \(W \) with boundary.

Lemma 3.1. Assume that \(W \) is orientable and \(\partial W \neq \emptyset \). If \(M^0 \) is imbedded in \(W \), then \(\beta_1(M; \mathbb{Z}) \leq \beta_2(W; \mathbb{Z}_2) \) or there is a \(\mathbb{Z}_2 \)-asymmetric indivisible element \(\hat{\gamma} \in H^1(DM^0; \mathbb{Z}) \) such that for all \(a \in [-1, 1] \)

\[
|\tau^2_2(DM^0)| - \kappa_2^1(DM^0) \leq 2\beta_2(W; \mathbb{Z}) .
\]

Proof. Applying [8, Theorem 3.1] to the imbedding \(M^0 \subset W \subset DW \), we have the above conclusion. Note that \(\beta_2(DW; \mathbb{Z}) = 2\beta_2(W; \mathbb{Z}) \), \(\beta_2(DW; \mathbb{Z}_2) = 2\beta_2(W; \mathbb{Z}_2) \) and sign \(DW = 0 \).

We then think of non-orientable case.

Lemma 3.2. Assume \(W \) is non-orientable and closed. Let \(f: M \to W \) be an imbedding.

1. If \(f \) is of type \(I_2 \) or \(II-1 \), then \(\beta_1(M; \mathbb{Z}) \leq \beta_2(W; \mathbb{Z}_2) \) or there is a \(\mathbb{Z}_2 \)-asymmetric indivisible element \(\hat{\gamma} \in H^1(DM^0; \mathbb{Z}) \) such that for all \(a \in [-1, 1] \)

\[
|\tau^2_2(DM^0)| - \kappa_2^1(DM^0) \leq \beta_2(W; \mathbb{Z}) + \beta_2(W; \mathbb{Z}_2) .
\]

2. If \(f \) is of type \(II-2 \), then \(2\beta_1(M; \mathbb{Z}) \leq \beta_2(W; \mathbb{Z}) + \beta_2(W; \mathbb{Z}_2) \) or there is an indivisible element \(\hat{\gamma} \in H^1(M; \mathbb{Z}) \) such that for all \(a \in [-1, 1] \)

\[
|\tau^2_2(M)| - \kappa_2^1(M) \leq \beta_2(W; \mathbb{Z}) + \beta_2(W; \mathbb{Z}_2) .
\]

Proof. Let \(\tilde{W} \) be the orientation double cover of \(W \). As seen in section 2, each imbedding of above types has a lift \(\tilde{f}: M \to \tilde{W} \). Applying [8, Theorems 2.1, 3.1] to \(\tilde{f} \) and noting the following lemma and the fact that sign \(\tilde{W} = 0 \) [because \(\tilde{W} \) admits an orientation-reversing involution], we have the result.

Lemma 3.3. Let \(X \) be a compact manifold and \(\tilde{X} \) be any double cover of \(X \). Then \(\beta_k(X; \mathbb{Z}) \leq \beta_k(\tilde{X}; \mathbb{Z}) \leq \beta_k(X; \mathbb{Z}) + \beta_k(X; \mathbb{Z}_2) \) and \(\beta_k(\tilde{X}; \mathbb{Z}_2) \leq 2\beta_k(X; \mathbb{Z}_2) \) for all \(k \).

Proof. By the transfer argument, we have \(\beta_k(X; \mathbb{Z}) \leq \beta_k(\tilde{X}; \mathbb{Z}) \). The inequality \(\beta_k(\tilde{X}; \mathbb{Z}) \leq \beta_k(X; \mathbb{Z}) + \beta_k(X; \mathbb{Z}_2) \) is the case \(d=2 \) of [1, Proposition 1.3]. The inequality \(\beta_k(\tilde{X}; \mathbb{Z}_2) \leq 2\beta_k(X; \mathbb{Z}_2) \) is readily obtained from the exact sequence of Smith homology groups used in the proof of [1, Proposition 1.3].

In the case of type \(I_1 \) imbedding, we cannot use [8, Theorem 2.1, 3.1] as in the proof of Lemma 3.2. But for certain \(M \) an estimation like Lemma 3.2 can be obtained by using the consequence of Section 1. For each positive integer \(r \), consider the class \(\mathcal{A}(r) \) of 3-manifolds consisting of the connected
sums of r homology handles:

$$\mathcal{H}(r) = \{ M = \bigoplus_{i=1}^{r} M_i ; M_i is a 3-manifold with H_*(M_i; \mathbb{Z}) \cong H_*(S^2 \times S^1; \mathbb{Z}), \forall i \} .$$

Especially we have a subclass $\mathcal{H}'(r)$ of $\mathcal{H}(r)$ consisting of all $M = \bigoplus_{i=1}^{r} M_i$ such that each M_i is S^3 surgered along a knot with framing zero (cf. Example 1.9). Note that, for any $M \in \mathcal{H}(r)$ and any $\hat{\gamma} \in H^1(M; \mathbb{Z})$, $\tau^{\hat{\gamma}}(M) = \sigma^{\hat{\gamma}}(M)$ and $\kappa^{\hat{\gamma}}(M) = 0$ (cf. [3]). For an (oriented) homology handle M, we denote by $\sigma(M)$ (resp. $\sigma_s(M)$) the signature $\sigma^{\hat{\gamma}}(M)$ (resp. the local signature $\sigma_s^{\hat{\gamma}}(M)$) associated with any generator $\hat{\gamma}$ of $H^1(M; \mathbb{Z})$. [Note that $\sigma^{\hat{\gamma}}(M) = \sigma_s^{\hat{\gamma}}(M)$ and $\sigma_s^{\hat{\gamma}}(M) = \sigma_s^{\hat{\gamma}}(M)$.]

Lemma 3.4. Let W be as in Lemma 3.2. Let $M = \bigoplus_{i=1}^{r} M_i$ be the connected sum of homology handles M_i, $i=1, 2, \ldots, r$. If M is type I, imbedded in W, then $r \leq \beta_2(W; \mathbb{Z}_2)$ or there are numbers $(1 \leq i, i_2, \ldots, i_p, i_{p+1}, \ldots, i_q \leq r)$ such that

$$\sum_{j=1}^{r} \sum_{-l \leq i \leq l} \varepsilon_i \sign(a) \sigma(M_{ij}) + \sum_{j=p+1}^{q} \varepsilon_i \sigma(M_{ij}) \leq \beta_2(W; \mathbb{Z}) + \beta_2(W; \mathbb{Z}_2),$$

where $\varepsilon_i = 1$, or -1, $j=1, 2, \ldots, q$.

Proof. Assume that M is type I_1 imbedded in W. We think M is a submanifold of W. If $p: W \to W$ is the orientation double covering of W, then $M^{(2)} = p^{-1} M \subset W$ is a double cover of M.

Since the mod 2 reduction $H^1(M; \mathbb{Z}) \cong \bigoplus_{i=1}^{r} \mathbb{Z} \to H^1(M; \mathbb{Z}_2) \cong \bigoplus_{i=1}^{r} \mathbb{Z}_2$ is onto, any double cover of M is associated with the mod 2 reduction $\psi(2) \in H^1(M; \mathbb{Z}_2)$ of some $\psi \in H^1(M; \mathbb{Z})$. For each $i=1, 2, \ldots, r$, the restriction $\psi(2) | M_i$ is the δ_i multiple of the generator of $H^1(M_i; \mathbb{Z}_2) \cong \mathbb{Z}_2$, where $\delta_i = 0$ or 1. Thus we denote $\psi(2)$ by $\psi[\delta_1, \ldots, \delta_r]$.

We may assume $\psi(2)$ is the double cover corresponding to $\psi[1, \ldots, 1, 0, \ldots, 0]$ by permuting the indices if necessary. Then $M^{(2)}$ is diffeomorphic to

$$\bigoplus_{i=1}^{m} M^{(2)}_i \cong \bigoplus_{i=m+1}^{r} M_i \cong \bigoplus_{i=m+1}^{r} M_i \cong (\# S^2 \times S^1),$$

where $M^{(2)}_i$ denotes the unique (up to equivalence) double cover of M_i.

Put $\hat{M} = (\#_{i=1}^{r} M^{(2)}_i) \# (\#_{i=m+1}^{r} M_i)$. Since \hat{M} can be imbedded into W. Applying Theorem 3.1 of [8] and using Lemma 3.3, we have $r \leq \beta_2(W; \mathbb{Z}_2)$ or there is a \mathbb{Z}_2-asymmetric indivisible element $\hat{\gamma} \in H^1(D\hat{M}; \mathbb{Z})$ such that $|\sigma^{\hat{\gamma}}(D\hat{M})| \leq \beta_2(W; \mathbb{Z}) + \beta_2(W; \mathbb{Z}_2)$. (Note that $\tau^{\hat{\gamma}}(D\hat{M}) = \sigma^{\hat{\gamma}}(D\hat{M})$.)

Since $D\hat{M} = [\#_{i=1}^{r} (M^{(2)}_i \# - M^{(2)}_i)] \# [\#_{i=m+1}^{r} (M_i \# - M_i)]$, we have

$$\sigma^{\hat{\gamma}}(D\hat{M}) = \sum_{i=1}^{r} \sigma^{\hat{\gamma}}(M^{(2)}_i \# - M^{(2)}_i) \sigma^{\hat{\gamma}}(M_i \# - M_i),$$
where \(\tilde{\eta}_i \) is the restriction of \(\tilde{\eta} \) to the \(i \)-th summand, \(i = 1, 2, \ldots, r \). Let \(\{ i_j; 1 \leq j \leq p \} \) (resp. \(\{ i_j; p+1 \leq j \leq q \}) \) be the set of all integers \(i \) between 1 and \(m \) (resp. \(m+1 \) and \(r \)) such that the restriction \(\tilde{\eta}_i \) of \(\tilde{\eta} \) is still \(\mathbb{Z}_2 \)-asymmetric. Then by [8, Lemma 1.3] we have

\[
\sigma^i(D[M^0]) = \sum_{j=1}^s \varepsilon_j \sigma^i_j(M^{(2)}_i) + \sum_{j=p+1}^q \varepsilon_j \sigma(M_{ij})
\]

for some \(\varepsilon_j \in \{1, -1\}, j = 1, 2, \ldots, q \), where \(\dot{\gamma}^{(2)}_{ij} \in H^*(M_i^{(2)}; \mathbb{Z}) = \mathbb{Z} \) is the element defined, as in section 1, by a generator \(\dot{\gamma}_{ij} \) of \(H^1(M_i; \mathbb{Z}); j = 1, 2, \ldots, p \). Compare the proof of [8, Theorem 3.2]. Since \(\sigma^{\dot{\gamma}^{(2)}_{ij}}(M^{(2)}_i) = \sum_{-1 \leq a \leq 1} \text{sign}(a) \sigma_a(M_i) \) by Corollary 1.4, this implies the inequality (*). This completes the proof.

We now prove Theorem.

3.5. Proof of Theorem for orientable 4-manifold \(W \). Assume that \(W \) is compact, connected and orientable. If \(W \) is closed, then Theorem is an immediate consequence of [8, Theorem 3.2] showing that, for sufficiently large \(r_0 \) and for all \(r > r_0 \), certain elements of \(\mathcal{M}'(r) \) cannot be imbedded in \(W \). If \(W \) is bounded, then Lemma 3.1 implies Theorem by the same argument as the proof of [8, Theorem 3.2].

3.6. Proof of Theorem for non-orientable 4-manifold \(W \). Assume first that \(W \) is closed, connected and non-orientable. Let \(M[g] = S^3 \) surgered along the \(g \)-fold connected sum of trefoil knot with framing zero. Recall that, for any generator \(\dot{\gamma} \in H^1(M[g]; \mathbb{Z}) = \mathbb{Z}, \quad \sigma^\dot{\gamma}(M[g]) = \sigma^{\dot{\gamma}(2)}(M[g][s]) = \pm 2g \) (cf. Example 1.9).

From now on, assume \(M = \#_{i=1}^s M[g_i] \). We show that if \(M \) is imbedded in \(W \), then one of the following conditions holds:

1. \(r \leq \beta_2(W; \mathbb{Z}). \)
2. For some numbers \((1 \leq i_1, i_2, \ldots, i_s \leq r) \) and for some choice of \(\varepsilon_j \in \{1, -1\}, j = 1, 2, \ldots, s \), the inequality

\[
|\varepsilon_{i_1} g_{i_1} + \varepsilon_{i_2} g_{i_2} + \cdots + \varepsilon_{i_s} g_{i_s}| \leq \beta_2(W; \mathbb{Z}) + \beta_2(W; \mathbb{Z})
\]

holds.

In fact, if \(M \) is type \(I \) imbedded in \(W \), then, by Lemma 3.4, we obtain the desired result. If \(M \) is type \(I_2 \) or \(II-1 \) imbedded in \(W \), then, by Lemma 3.2-(1), we have the above result. Compare the proof of Lemma 3.4. If \(M \) is type \(II-2 \) imbedded in \(W \), then by Lemma 3.2-(2) we have \(r \leq \beta_2(W; \mathbb{Z}) + \beta_2(W; \mathbb{Z}) \) or the above condition (2) holds. Note that for an indivisible element \(\dot{\gamma} \in H^1(M; \mathbb{Z}) \), if \(M[g_{i_j}], j = 1, 2, \ldots, s, 1 \leq i_1 < i_2 < \cdots < i_s \leq r \) are the all summands of \(M \) such that \(\dot{\gamma}|M[g_{i_j}] \) is an odd multiple of a generator of \(H^1(M[g_{i_j}]; \mathbb{Z}) = \mathbb{Z} \), we have
\[\tau^\mu(M) = \sigma^\mu(M) = 2(\varepsilon_1 g_{i_1} + \varepsilon_2 g_{i_2} + \cdots + \varepsilon_s g_{i_s}) \]

for some \(\varepsilon \in \{1, -1\} \) (cf. [8, Lemma 1.3]).

Thus, if we take \(r_0 = \beta_2(W; \mathbb{Z}_2) \), then for all \(r > r_0 \) and for \(\{ g_i \}_{i=1}^{r} \) such that

\[g_i \geq \beta_2(W; \mathbb{Z}_2) \quad \text{and} \quad g_i \geq \beta_2(W; \mathbb{Z}_2) + \sum_{j=1}^{i-1} g_j, \quad i = 2, 3, \ldots, r, \]

\(M = \#^{r-1} M[g_i] \) cannot be imbedded in \(W \). This implies Theorem for closed non-orientable 4-manifold \(W \).

To have Theorem for non-orientable 4-manifold \(W \) with boundary, we have only to use the doubling technique as in the orientable case. The proof of Theorem is completed.

References
