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1. Introduction

The universal Teichmiiller space 7(1), which is a universal parameter space
for all Riemann surfaces, is a complex Banach manifold that may be defined as
the homogeneous space QS(S')/Mob(S'). Here QS(S') denotes the group of all
quasisymmetric homeomorphisms of the unit circle S*, and Mob(S') is the
three-parameter subgroup of Mobius transformations of the unit disc (restricted
to the boundary circle). There is a remarkable homogeneous Kéhler complex
manifold, M = Diff(S*)/M6b(S*),—arising from applying the Kirillov-Kostant coad-
joint orbit method to the C*-diffeomorphism group Diff(S*) of the circle ([27]). M
clearly sits embedded in 7(1) (since any smooth difftomorphism is quasisymmetric).

In [18] it was proved that the canonical complex-analytic and Kédhler structures
on these two spaces coincide under the natural injection of M into 7(1). (The
Kihler structure on T(1) is formal—the pairing converges on precisely the H>'?
vector fields on the circle.) The relevant complex-analytic and symplectic structures
on M, (and its close relative N=Diff(S')/S?, arise from the representation
theory of Diff(S!); whereas on T(1) the complex structure is dictated by Teichmiiller
theory, and the (formal) Kéhler metric is Weil-Petersson. Thus, the homogeneous
space M is a complex analytic submanifold (not locally closed) in 7{(1), carrying
a canonical Kdhler metric.

In subsequent work ([14], [15]) it was shown that one can canonically associate
infinite-dimensional period matrices to the smooth points M of 7(1). The crucial
step in this construction was a faithful representation (Segal [23]) of Diff(S"') on
the Fréchet space

V= C*Maps(S*, R)/R(the constant maps). )

Diff(S!) acts by substitution (i.e., pullback) on the functions in ¥ as a group of
toplinear automorphisms that preserve a basic symplectic from that V carries.

In order to be able to extend the infinite dimensional period map to the full
space T(1), it is necessary to replace V by a suitable “completed” space that is
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preserved under quasisymmetric pullbacks. Now, quasisymmetric homeomor-
phisms of the circle, that arise in the Teichmiiller theory of Riemann surfaces as
boundary values of quasiconfomal difffomorphisms of the disk ([3], [17]), have
fractal graphs in general and are consequently not so amenable to usual analytical
or calculus procedures. In this paper we make use of the remarkable fact that this
group QS(S?) does act by substitution (i.e., pre-composition) as a family of bounded
symplectic operators preserving the Hilbert space # =“H"'?”, This Hilbert space
turns out to be exactly the completion of the pre-Hilbert space V; H'/? comprises
functions on S' (modulo constants) possessing a square-integrable half-order
derivative.

Conversely, and that is also important for our work, quasisymmetric
homeomorphisms are actually characterized amongst homeomorphisms of S' by
the property of preserving the space #.

Interpreting s via boundary values as the square-integrable first cohomology
of the disk with the cup product symplectic structure, and complex structure
provided by the Hodge star, we obtain a universal form of the classical period
mapping extending the map of [14], [15] from Diff(S*)/Méb(S') to all of
0S(SY)/M6b(S*y—namely to the entire universal Teichmiiller space, T(1). The target
space for this period map II is the universal Siegel space of period matrices; that
is the space of all the complex structures on s# that are compatible with the
canonical symplectic structure. We thus show in this paper (Theorem 7.1) a new
faithful realization of the universal Teichmiiller space as a complex submanifold of
the universal Siegel space.

Using Alain Connes’ suggestion of a quantum differential d%f=[J,f]1—
commutator of the multiplication operator with the complex structure operator—we
obtain in lieu of the problematical classical calculus a quantum calculus for
quasisymmetric homeomorphisms. Namely, one has operators {h,L}, do{h,L},
do{h,J}, corresponding to the non-linear classical objects log(h'), (h"/h')dx,
(1/6) Schwarzian(h)dx* defined when h is appropriately smooth. Any one of these
objects is a quantum measure of the conformal distortion of 4 in analogy with
the classical calculus Beltrami coefficient u for a quasiconformal homeomorphism
of the disk. Here L is the smoothing operator on the line (or the circle) with
kernel log|x—y|, J is the Hilbert transform (which is doL or Lod), and {h, A4}
means A conjugated by 4 minus A.

The period mapping IT and the quantum calculus are related in several
ways. For example, f belongs to s if and only if the quantum differential is
Hilbert-Schmidt. Also, the complex structures J on s lying on the Schottky locus
(i.e., the image of IT) satisfy a quantum integrability condition [d%,J]=0.

In universal Teichmiiller space there resides the separable complex submanifold
T(H ,)—the Teichmiiller space of the universal hyperbolic lamination—that is exactly
the closure of the union of all the classical Teichmiiller spaces of closed Riemann
surfaces in T(1) (see [25]). Genus-independent constructions like the universal
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period mapping proceed naturally to live on this completed version of the classical
Teichmiiller spaces. The lattice and Kéhler metric aspect of the classical period
mappings appear by focusing attention on this space. In fact, we show that T(H )
carries a natural convergent Weil-Petersson pairing.

We make no great claim to originality in this work. Our first purpose is to
survey from various different aspects the elegant role of H'/? in universal Techmiiller
theory, the main goal being to understand the period mapping in its new universal
version.

ACKNOWLEDGEMENTS. It is our pleasant duty to acknowledge several
stimulating conversations with Graeme Segal, Michel Zinsmeister, M.S. Narasimhan,
Alain Connes, Ofer Gabber, Stephen Semmes and Tom Wolff. We heartily thank
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conversations with M.S. Narasimhan.
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participants of the Mathematical Society of Japan International Research Institute
on the “Topology of the moduli space of curves” (Kyoto 1993), and of the MSJ
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2. The Hilbert space H'/? on the circle and the line

Let A denote the open unit disc and U the upper half-plane in the complex
plane C. S'=0A is the unit circle.
Intuitively speaking, the real Hilbert space under concern:

# =H'"¥S',R)/R ()

is the subspace of L%(S") comprising real functions of mean-value zero on S* which
have a half-order derivative also in L*(S'). Harmonic analysis will prove that
these functions are actually defined off some set of capacity zero (ie.,
“quasi-everywhere”) on the circle, and that they also appear as the boundary values
of real harmonic functions of finite Dirichlet energy in A. Our first way (of
several) to make this precise is to identify # with the sequence space

¢£1/*={complex sequences uE(ui,uz,u3,--~):{ﬁ u,} is square summable}. (3)
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The identification between (2) and (3) is by showing (see below) that the Fourier
series

=3 ue™ u_,=i, 4

n=— o

converges quasi-everywhere and defines a real function of the required type. The

norm on J# and on /32 is, of course, the £, norm of {\/;1 u,}, ie.,

1AW= NulZia=2 3 nju,> &)
2 n=1

Therefore /3> and # are isometrically isomorphic separable Hilbert

spaces. Note that # is a subspace of L*(S') because {\/; u,} in ¢, implies {u,}
itself is in Z,.

At the very outset let us note the fundamental fact that the space # is
evidently closed under Hilbert transform (“conjugation” of Fourier series):

[eo]

UNED)=— Y isgn(nu,e™. (6)

n=-—ow

In fact, J:# — # is an isometric isomorphism whose square is the negative
identity, and thus J defines a canonical complex structure for .

ReMARK. In the papers [10], [14], [15], [18], we had made use of the fact
that the Hilbert transform defines the almost-complex structure operator for the
tangent space of the coadjoint orbit manifolds (M and N), as well as for the
universal Teichmiiller space 7(1).

When convenient we will have to pass to a description of our Hilbert space
H as functions on the real line, R. This is done by simply using the Mdbius
transformation of the circle onto the line that is the boundary action of the Riemann
mapping (“Cayley transform™) of A onto U. We thus get an isometrically isomorphic
copy, called H'%(R), of our Hilbert space # on the circle defined by taking fe 5#
to correspond to ge H'*(R) where g=foR, R(z)=(z—1i)/(z+1i) being the Riemann
mapping. The Hilbert transform complex structure on 5 in this version is then
described by the usual singular integral operator on the real line with the “Cauchy
kernel” (x—y)~ ..

Fundamental for our set up is the dense subspace V in # defined by equation
(1) in the introduction. At the level of Fourier series, V' corresponds to those
sequence {u,} in ¢£3/* which go to zero more rapidly than n~* for any k>0. On
V one has the basic symplection form that we utilised crucially in [14], [15]:

S:Vx V—->R )]
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1
S(/,g)=—2 f fdg. (®)
T Jst

This is (a constant times) the signed area of the (f(e”), g(¢®®)) curve in the Euclidean
plane. On Fourier coefficients this bilinear form becomes

n=1 n=-—o

S(f,g)=2lm< i nu,,z';,,): —i i nu,v_, )

where {u,} and {v,} are respectively the Fourier coefficients of the (real-valued)
functions f and g, as in (4). Let us note that the Cauchy-Schwarz inequality
applied to (9) shows that this non-degenerate bilinear alternating form extends from
V to the full Hilbert space #. We will call this extension also S:# x # — R.
Cauchy-Schwarz asserts:

ISUl<If1I-lgl- (10)

Thus S is a jointly continuous, in fact analytic, map on # x #.
The important interconnection between the inner produce on s, the
Hilbert-transform complex structure J, and the form S is encapsulated in the identity:

S(f,Jg)=<f,g>, forallf,ges#. (11)

We thus see that V itself was naturally a pre-Hilbert space with respect to the
canonical inner product arising from its symplectic form and its Hilbert-transform
complex structure. We have just established that the completion of V is nothing
other than the Hilbert space 3. Whereas V carried the C® theory, because it
was diffeomorphism invariant, the completed Hilbert space H# allows us to carry
through our constructions for the full Universal Teichmiiller Space because it indeed
is quasisymmetrically invariant.

It will be important for us to complexify our spaces since we need to deal
with isotropic subspaces and polarizations. Thus we set

CRV=V,=C*Maps(S*, C)/C
CRH =#.=H"*S", O)C. (12)

H¢ is a complex Hilbert space isomorphic to £3/%(C)—the latter comprising the
Fourier series

fle®)= i u,e™, uy=0 13)

with {,/|n|u,} being square summable. The Hermitian inner product on J# derived
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from (5) is:

Sigd=3 Inlus, (14)

The fundamental orthogonal decomposition of #, is given by
He=W.@W_ (15)
W, ={fe #c: all negative index Fourier coefficients vanish}
W,=W_={fe#,: all positive index Foueier coefficients vanish}.

Here we denote by bar the complex anti-linear automorphism of #, given by
conjugation of complex scalars.

We extend C-linearly the form S and the operator J to #,. The complexified
S is still given by the right-most formula in (9). Notice that W, and W_ can
be characterized as precisely the —i and +i eigenspaces (respectively) of the
extension of the Hilbert transform. Further, each of W, and W_ is isotropic for
S, i.e., S(f,g)=0, whenever both f and g are from either W, or W_ (see formula
(9)). Moreover, W, and W_ are positive isotropic subspaces in the sense that the
following identities hold:

{fe:84>=18(f1,84), forfi,g,eW, (16)
<f—,g—>=”—is(f—,g—)a fOl’f_,g_EW_. (17)

REMARK. (16) and (17) show that we could have defined the inner product
and norm on J#, from the symplectic form S, by using these relations to define
the inner products on W, and W_, and declaring W, to be perpendicular to
W_. Thus, for general f, ge #, one has the fundamental identity

Sg>=iSf+,8+)—iS(f-.8-). (18)

The Hilbert space structure of # can thus be described simply in terms of the
canonical symplectic form it carries and the fundamental decomposition (15). (f
denotes the projection of f to W..)

In order to prove the first results of this paper, we have to rely on interpreting
the functions in H'/? as boundary values (“traces”) of functions in the disc A that
have finite Dirichlet energy, (i.e., the first derivatives are in L*(A)). We now explain
this material.

Define the following “Dirichlet space” of harmonic functions:

9={F:A - R:F is harmonic, F(0)=0, and E(F)< o0} 19)
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where the energy E of any (complex-valued) C! map on A is defined as the L%(A)
norm of grad(F):

IIFIIQ—E(F)——Jf<

2, and its complexification &, will be Hilbert spaces with respect to this energy norm.

We want to identify the space 9 as precisely the space of harmonic functions
in A solving the Dirichlet problem for functions in s#. Indeed, the Poisson integral
representation allows us to map P:# — 9 so that P is an isometric isomorphism
of Hilbert spaces.

)dxdy (20)

To see this let fle)= Y u,e™ be an arbitrary member of #;. Then the

Dirichlet extension of f into the disc is:
Az)= Y, u,,rI"Ie"""=< Y u,,z") +< Y u_,,,z"'> (1
n=—o n=1 m=1

where z=re'’. From the above series one can directly compute the L?*(A) norms
of F and also of grad(F)=(0F/0x,0F/dy). One obtains the following:

E(F)= —JJ | grad(F)|* = ZI”““|2—||f"x<°0 (22)

We will require crucially the well-known formula of Douglas (see [2, pg.
36-38]) expressing the above energy of F as the double integral on S* of the
square of the first differences of the boundary values f.

[(le®) —fie')/sin((6 — ¢)/2)]*dbdp. (23)
Sl

Transferring to the real line by the Mobius transform identification explained
before, the above identity becomes simply:

BR=IfP =, f f [ﬂx) ﬂy’] dxdy, feH'(R). (24)

Calculating from the series (21), the L*-norm of F itself is:

1 © |u|2
—| | |FlPdxdy="), —"—<E(F)< . 25
o LI "dxdy Zinl+ D) (F) (25)

(22) shows that indeed Dirichlet extension is isometric from # to 2, whereas (25)
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shows that the functions in 2 are themselves in L2, so that the inclusion of
2 L*() is continuous. (Bounding the L? norm of F by the L? norm of its
derivatives is a “Poincaré inequality”).

It is therefore clear that & is a subspace of the usual Sobolev space H'(A)
comprising those functions in L) whose first derivatives (in the sense of
distributions) are also in L*A). The theory of function spaces implies (by the
“trace theorems”) that H' functions lose half a derivative in going to a boundary
hyperplane. Thus it is known that the functions in 2 will indeed have boundary
values in H'2. See [5], [9] and [26].

Moreover, the identity (24) shows that for any Fe 2, the Fourier expansion
of the trace on the boundary circle is a Fourier series with X|n|u,|> <oc0. But
Fourier expansions with coefficients in such a weighted Z, space, as in our situation,
are known to converge quasi-everywhere (i.e., off a set of logarithmic capacity zero)
on S'. See [28, Vol 2, Chap. XIII]. The identification between 2 and # (or
2, and () is now proved.

It will be necessary for us to identify the W, polarization of # at the level
Z.. In fact, let us decompose the harmonic function F of (21) into its holomorphic
and anti-holomorphic parts; these are F, and F_, which are (respectively) the two
sums bracketed separately on the right hand side of (21). Clearly F, is a
holomorphic function extending f, (the W, part of f), and F_ is anti-holomorphic
extending f_. We are thus led to introduce the following space of holomorphic
functions whose derivatives are in L2(A):

Hol,(A)={H:A — C: H is holomorphic, H(0)=0 and Jf |H'(z)|*dxdy < o0}. (26)
A
This is a complex Hilbert space with the norm

1H) = f f | H'(2)dxdy. @7)
2n) Ja

If H(z)= ), u,z", a computation in polar coordinates (as for (21), (25)) produces

n=1

IH|? = 3 nlu,*. (28)

n=1

Equations (27) and (28) show that the norm-squared is the Euclidean area of the
(possibly multi-sheeted) image of the map H.

We let Hol,(A) denote the Hilbert space of anti-holomorphic functions conjugate
to those in Hol,(A). The norm is defined by stipulating that the anti-linear
isomorphism of Hol, on Hol, given by conjugation should be an isometry. The
Cauchy-Riemann equation for F, and F_ imply that
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|grad(F)|* =2{|F.|*— | F_|*} (29)

and hence
IE 2+ 1F- 117 =11 (30)

The relation between 2 (harmonic functions in H'(A)) and Hol,(A) is now
transparent. The holomorphic functions in Hol, will have non-tangential limits
quasi-everywhere on S”, defining a function in W,. We collect together the various
important representations of our basic Hilbert space in the following Theorem:

Theorem 2.1. There are canonical isometric isomophisms between the following
complex Hilbert spaces:

(1) #=H"XS',0/C=COH'"*(R)=W,®W_;

(2) The sequence space}'*(C) (constituting the Fourier coefficients of the above
quasi-everywhere defined functions);

() 2., comprising normalized finite-energy harmonic functions (either on A or
on the half-plane U); (the norm-squared being given by (20) or (22) or (23)
or (24));

(4) Hol,(A)@Hol,(A).

Under the canonical identifications, W, maps to Hol,(A) and W _ onto Hol,(A).

REMARK One advantage of introducing the full Sobolev space H'(A) (rather
than only its harmonic subspace 2) is that we may use Dirichlet’s principle to
rewrite the norm on # as

A ;to:inf{E(F): F ranges over all extensions to A of f}. (31)

By Dirichlet principle, the infimum is realized by the harmonic extension P(f)=F
of (23). In connection with this it is worth pointing out still another formula for
the norm:

12 = f F-";—fds (32)

where F is the harmonic extension to A of f. This follows from Green’s
formula. The close relation of formula (32) with the symplectic pairing formula
(8) should b noted.

3. Quasisymmetric invariance

Quasiconformal (q.c.) self-homeomorphisms of the disc A (op the upper
half-plane U) are known to extend continuously to the boundary. The action on
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the boundary circle (respectively, on the real line R) is called a quasisymmetric (q.s.)
homeomorphism, characterized by the well-known Beurling-Ahlfors [4] criterion.

Now, given any orientation preserving homeomorphism ¢:S* — S?, we use it
to pullback functions in # by pre-composition:

Vw(/)=<p*(/)=f°<p—§1;f (o). (33)
St

(We subtract off the mean value in order that the resulting function also possess
zero mean.)

Theorem 3.1. V., maps # to itself (i.e., the space # - is #) if and only if

@ is quasisymmetric. The operator norm of V,<./K+K™', whenever ¢ allows a
K-quasiconformal extension into the disc.

Corollary 3.2. The quasisymmetric homeomorphism group, QS(S'), acts
faithfully by bounded toplinear automorphisms on the Hilbert space #.

Proof of sufficiency. Assume ¢ is g.s. on S!, and let ®:A—> A be any
quasiconformal extension. Let fes# and suppose P(f)=Fe2 is its unique
harmonic extension into A. Clearly G=F-® has boundary values fo¢, the latter
being (like f) also a continuous function on S' defined quasi-everywhere. (Here
we recall that q.s. homeomorphisms carry capacity zero sets to again such sets,
although measure zero sets can become positive measure.) We need to prove
that the Poisson integral of fo ¢ has finite Dirichlet energy. Indeed we will show

14+k?
E(harmonic extension of <p‘(/))52(1 +k2>E(F). 34
Here 0<k<1 is the q.c. constant for @ i.e.,
|®;|<k|®,| ae.in A. (35)

The operator norm of V,, is thus no more than ﬁ\/(l +k)/(1—kY)=/K+K .
Towards establishing (34) we prove that the inequality holds with the left side
being the energy of the map G=F-®. Dirichlet’s priniciple (see (31)) then implies
the required inequality.
Setting ®=u+iv, we obtain via chain rules:

0G\?> [(0G\? OF\* (0F\? 2 2
(5;) +<5> sz[<a—u> +(%) ] 10,12+ |52]. (36)

By the quasiconformality (35) we therefore get from (36):
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14+k?
1—k?

[G2+G?] sz( )[F3+F§] Jac(®). 37)

Using change of variables in the Dirichlet integral we derive

1+k?
1—k?

E(G)sZ( ) E(F) (38)

as desired. W

ReMARK. The Dirichlet integral in two dimensions is invariant under conformal
mappings. Quasi-invariance of that integral under g.c. transformations has been
noted before and is applied, for example, in [1] and [19]. See also Partyka [20],
[21], for work and ideas related to this section.

Proof of necessity (idea of M. Zinsmeister). Since two-dimensional Dirichlet
integrals are conformally invariant, we will pass to the upper half-plane U and its
boundary R, to aid our presentation. The traces on the boundary constitute the
space of quasi-everywhere defined functions that we called H'/*(R).

The Douglas identity, equation (24), immediately shows that ||g| =|g|| where
g(x)=g(ax +b) for any real a(#0) and b. This will be utilized below.

Assume that ¢: R — R is an orientation preserving homeomorphism such that
V,-1:H'Y*(R) > H'*(R) is a bounded automorphism. Let us say that the norm
of this operator is M.

Fix a bump function fe C(R) such that f=1 on [—1,1], f=0 outside [ —2,2]
and 0<f<1 everywhere. Choose any ceR and any positive ¢ Denote
I,=[x—t,x] and I,=[x,x+¢]. Set gu)=flau+b), choosing a and b so that g
is identically 1 on I, and zero on [x+¢, o0).

By assumption, go ' isin HY?(R)and ||go@ ™| <M|gll=M]|f]. We have

Mfl> J J [g "o~ —g °"’_1(”)]2dudv

u—v

v = P(x) =00 1
> —dudv
v="(x—t) u=°(x+t)(u_v)

_ o(x) —(x—1)
_l°g<1+<p(x+t)—<p(x))' %)

We thus obtain the result that



12 S. NAG and D. SuLLivaNn

o+ —ol) 1

P(x)—p(x—1) M1 (40)

for arbitrary real x and positive ¢. By utilising symmetry, namely by shifting the
bump to be 1 over I, and O for u<x—¢, we get the opposite inequality:

PX+)—9X) _ wsiy _

< 1. 41
09— 1) 4D

The Beurling-Ahlfors condition is verified, and we are through. W

4. The invariant symplectic structure

The quasisymmetric homeomorphism group QS(S!), acts on J# by
precomposition (equation (33)) as bounded operators, preserving the canonical
symplectic form S:# x # — R (equations (8), (9), (10)). This is a central fact; it
is the crux on which the extension of the period mapping to all of 7(1) hinges:

Proposition 4.1. For every ¢eQS(SY), and all f, ge #,

S(@"(f), ¢*(€)=5(/.8)- 42)

Considering the complex linear extension of the action to #, one can assert that
the only quasisymmetrics which preserve the subspace W, =Hol,(A) are the Mdbius
transformations. In fact, M6b(S") acts as unitary operators on W, and W_.

Before proving the proposition we would like to point out that this canonical
symplectic form enjoys a much stronger invariance property:

Lemma 4.2. If ¢:S' - S! is any (say C") map of winding number (= degree) k,
then

S(fop,g°0)=kS(f,8) 43)

for arbitrary choice of C' functions f and g on the circle. In particular, S is
invariant under pullback by all degree one mappings.

Proof. The proof of (43), starting from (8), is an exercise in calculus. Lift
@ to the universal cover to obtain @:R — R; the degree of ¢ being k(€Z) implies
that @(t+2n)=p(¢)+2kn. Partition [0,2x] into pieces on which @ is monotone,
and apply the change of variables formula in each piece. W

Proof of Proposition 4.1. The Lemma shows that (42) is true whenever the
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quasisymmetric homeomorphism ¢ is at last C'. By [13, Chapter II, Section 7.4]
we know that for arbitrary q.s ¢, there exist real analytic q.s. homeomorphisms
¢, (wWith the same quasisymmetry constant as ¢) that converge uniformly to ¢. An
approximation argument, as below, then proves the required result.

Denote the n'* Fourier coefficient of a function f on S! by F,(f). Recall from
equation (9) that

S(fg)=—i ), nF(F_,g) (449
for all f,g in .
Now since S is continuous it is enough to check (42) on the dense subspace
V of smooth functions f and g. Since ¢, — ¢ uniformly it follows that
F(fo@,) = F(fop) as m—- oo (for each fixed n). Applying the dominated
convergence theorem to the sums (44) we immedately see that as m — oo,

S(@m(): 0(8)) = S(9*(f), 9*(2)). (45)

But Lemma 4.1 says that for each m, S(¢.(f), ¥.(g))=S(f,g). Therefore we are
through.

If the action of ¢ on # preserves W, it is easy to see that ¢ must be the
boundary values of some holomorphic map ®:A — A. Since ¢ is a homeomorphism
one can see that ® is a holomorphic homeomorphism (as explained also in [14,
Lemma of Section 1])}—hence a Mobius transformation. Since every ¢ preserves S,
and since S induces the inner product on W, and W_ by (16), (17), we note that
such a symplectic transformation preserving W, must necessarily act unitarily. W

ReMARK. The remarkable invariance property (43) leads us to ask a question
that may shed light on the structure of degree k& maps of S' onto itself. Given
a vector space V equipped with a bilinear form S, one may fix some constant
k(#0) and study the family of linear maps 4 in Hom(V, V) such that

S(A(v1), A(v2)) =kS(v4,v5) (46)

holds for all v,, v, in V. Of course, the trivial multiplication (by \/l—c) will be
such a map, but we have in Lemma 4.1 a situation where the interesting family
of linear maps obtained by degree k pullbacks provides a profusion of examples
precisely when k is an integer.

Furthermore, in the situation at hand, we may take V as the space of C*®
(real or complex) functions on the circle. Then V also carries algebra structure
by pointwise multiplication. The pullbacks by degree k mappings clearly preserve
this multplicative structure (whereas dilatations do not). It is interesting to question
whether the linear maps that preserve the algebra structure and also satisfy the
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relation (46), (for integer k), must necessarily arise from some degree k mapping
of S* on itself.

The heart of the matter in extending the period mapping from Witten’s
homogeneous space M (as in [14], [15]) to T(1) lies in the property of preserving
this symplectic form on #. To establish the naturality of the universal period
mapping, we now prove that S is indeed the unique symplectic form that is Diff(S?),
or QS(S"), invariant. It is more surprising that the form S is canonically specified
by requiring its invariance under simply the 3-parameter subgroup Mob(S?!)
(o Diff(S") o OS(SY).

Theorem 4.3. Let S=S, be the canonical symplectic form on #. Suppose
S,: HxH —> R is any other continuous bilinear form such that S,(¢*(f),
@*'(2)=S,(f.g), for all f, g in H# whenever ¢ is in M6b(S'). Then S, is necessarily
a real multiple of S. Thus every form on 3 that is Mob(S')= PSL(2, R) invariant
is necessarily non-degenerate (if not identically zero) and remains invariant under
the action of the whole of QS(S'). (Therefore it automatically satisfies the stronger
invariance property (43)).

Given any continuous bilinear pairings S;: # x s# — R (i=1,2) one obtains
the induced “duality” maps X;: # — #* (i=1, 2), which are bounded linear operators
defined by X, (g)=S/(e,g), g€ #. By tracing through the definitions one first notes
the following easy Lemma:

Lemma 4.4. The duality induced by canonical form S, is (the negative of) the
Hilbert transform (equation (6)). Thus the map X, from # to its dual is an invertible
isomorphism.

The basic tool in proving the Theorem 4.3 is to consider the “intertwining
operator”

M=3[1Z,: H# > H 47)
which is a bounded linear operator on s# by the above Lemma.

Lemma 4.5. M commutes with every invertible linear operator on # that
preserves both the forms S, and S,.

Proof. M is defined by the identity S,(v, Mw)=S,(v,w). If T preserves both
forms then one has the string of equalities:

S(Tv, TMw)=S (v, Mw)=S,(v,w) = S,(Tv, Tw)=S(Tv, MTw).

Since T is assumed invertible, this is the same as saying
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S1(v, TMw)=S (v, TMw),for all v, we H#. (48)

But S, is non-degenerate, namely X, was an isomorphism. Therefore (48) implies
that TM =MT, as desired. W

It is clear that to prove S, is a real multiple of S; means that the intertwining
operator M has to be simply multiplication by a scalar. This can now be deduced
by looking at the complexified representation of Méb(S?!) on #, which is unitary,
and applying Schur’s Lemma.

Lemma 4.6. The unitary representation of SL(2,R) on #¢ decomposes into
precisely two irreducible pieces, namely on W, and W_. In fact these two
representations correspond to the two lowest (conjugate) members in the discrete
series for SL(2, R).

Proof. We refer to [12] or [24] for the list of irreducible unitary representations
of SL(2,R) that constitute what is called its “discrete series”. Each of these
representations is indexed by an integer m= +2, +3, +4,---. For m>2 one can
write this representation on the L? space of holomorphic functions in A with the
following weighted Poincaré measure:

dxdy
v, =(1—|z)"————, 1. 49
==l 121 (49)

On the Hilbert space L} (A, dv,) the discrete series representation of SL(2, R)
corresponding to this m is given by =, :SL(2, R) = Aut(L3,(A,dv,)), where

maA2) =S ("1’3)(cz+drm. (50)
cz+d
Here, of course, ye SL(2, R) corresponds to the (PSU(1,1)) Mdobius tranformation
(az+b)/(cz+d) on the disc obtained by conjugating the SL(2, R) matrix by the
Mobius isomorphism of the upper half-plane onto the disc.
We claim that the representation given by the operators V, on W, (equation
(33)), @ e Mob(S?), can be indentified with the m=2 case. Recall from Theorem

2.1 that W, is identifiable as Hol,(A). The action of ¢ is given on Hol, by:
Vo(F)=Fop—Fop(0), FeHol,(A). (51)

But Hol, consists of normalized (F{0)=0) holomorphic functions in A whose
derivative is in L*(A, Euclidean measure). From (51), by the chain rule,
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d dF
—Vo(F)=| —o ‘. 52
- (F) < % ¢><p (52

So we can rewrite the representation on the derivatives of the functions in
Hol, by the formula (52)—and that coincides with formula (50) for m=2.

It is clear that the representation on the conjugate space will correspond to
m=—2 in the discrete series. In particular, the representations we obtain of
Méb(S?) by unitary operators of W, and W_ are both irreducible. W

Proof of Theorem 4.3. By Lemma 4.5, (the C-linear extension of) the
intertwining operator M commutes with every one of the unitary operators
Vo:Hc— H#¢ as ¢ varies over Mob(S!). Since W, and W_ are the only two
invariant subspaces for all the V,, as proved above, it follows that M must map
W, either to W, or to W_. Let us first assume the former case. Then M
commutes with all the unitary operators V, on W,, which we know to be an
irreducible representation. Schur’s Lemma asserts that a unitary representation
will be irreducible if and only if the only operators that commute with the operators
in the representation are the scalars (see [24, page 11]). Since M was a real
operator to start with, the scalar concerned must be real.

The alternative assumption that M maps W, to W_ is untenable. In fact,
if that were so we could replace M by M followed with complex conjugation. This
new M will map W, to itself and will again commute with all the V,, hence it
must be a scalar. Since the original M arose from a real operator this scalar
must again be real and the proof is complete. W

The absolute naturality of the symplectic form thus established will be utilised
in understanding the H'/? space as a Hilbertian space,—namely a space possessing
a fixed symplectic structure but a large family of compatible complex structures. See
section 7.

5. The H'/? space as first cohomology

The Hilbert space H'/2, that is the hero of our tale, can be interpreted as the
first cohomology space with real coefficients of the “universal Riemann surface”
—namely the unit disc—in a Hodge-theoretic sense. That will be fundamental for
us in explaining the properties of the period mapping on the universal Teichmiiller
space.

In fact, in the classical theory of the period mapping, the vector space H'(X, R)
plays a basic role, X being a closed orientable topological surface of genus g to
start with. This real vector space comes equipped with a canonical symplectic
structure given by the cup-product pairing, S. Now, whenever X has a complex
manifold structure, this real space H'(X,R) of dimension 2g gets endowed with a
complex structure J that is compatible with the cup-pairing S. This happens as
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follows: When X is a Riemann surface, the cohomology space above is precisely
the vector space of real harmonic 1-forms on X, by the Hodge theorem. Then
the complex structure J is the Hodge star operator on the hormonic 1-forms. The
compatibility with the cup form is encoded in the relationships:

S(Jo, JB)=S(a, B), forall a,fe H'(X,R) (53)
and that, intertwining S and J exactly as in equation (11),
S(a, JB) = inner product (o, B) (54)

should define a positive definite inner product on H'(X,R). (In fact, as we will
make explicit in Section 7, the Siegel disc of period matrices for genus g is precisely
the space of all the S-compatible complex structures J.) Consequently, the period
mapping can be thought of as the variation of the Hodge-star complex structure
on the topologically determined symplectic vector space H'(X,R). See Sections 7
and 8 below.

REMARK. Whenever X has a complex structure, one gets an isomorphism
between the real vector space H(X, R) and the g dimensional complex vector space
H'(X,0), where O denotes the sheaf of germs of holomorphic functions. That is
so because R can be considered as a subsheaf of ¢ and hence there is an induced
map on cohomology. It is interesting to check that this natural map is an
isomorphism, and that the complex structure so induced on H'(X,R) is the same
as that given above by the Hodge star.

For our purposes it therefore becomes relevant to consider, for an arbitrary
Riemann surface X, the Hodge-theoretic first cohomology vector space as the space
of L? (square-integrable) real harmonic 1-forms on X. This real Hilbert space will
be denoted J#(X). Again, in complete generality, this Hilbert space has a
non-degenerate symplectic form S given by the cup (=wedge) product:

S(¢1,¢2)=J.f 1N\, (59)

and the Hodge star is the complex structure J of #(X) which is again comptible
with S as per (53) and (54). In fact, the L? inner product on J#(X) satisfies the
triality relationship (54) (or (11)).

Since in the universal Teichmiiller theory we deal with the “universal Riemann
surface”—namely the unit disc A (being the universal cover of all Riemann surfaces)
—we require the following basic Proposition:

Proposition 5.1. For the disc A, the Hilbert space #(A) is isometrically
isomorphic to the real Hilbert space # of Section 2. Under the canonical identification
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the cup-wedge pairing is the canonical symplectic form S and the Hodge star becomes
the Hilbert-transform on #.

Proof. For every ¢ € #(A) there exists a unique real harmonic function F
on the disc with F{0)=0 and dF=¢. Clearly then, s#(A) is isometrically isomorphic
to the Dirichlet space 2 of normalized real harmonic functions having finite
energy. But in Section 2 we saw that this space is isometrically isomorphic to
# by passing to the boundary values of F on S'.

If ¢, =dF, and ¢,=dF,, then integrating ¢, A ¢, on the disc amounts to, by

Stokes’ theorem, Ij dFlAdF2=J F\dF,=S8(F,, F,).
A St
Finally, let ¢ =udx+vdy be a L?> harmonic 1-form with ¢ =dF. Suppose G
is the harmonic conjugate of F with G(0)=0. Then dF+idG is a holomorphic
1-form on A with real part ¢. It follows that the Hodge star maps ¢ to dG;
hence, under the above canonical identification of J#(A) with #, the star operator

becomes the Hilbert transform, as claimed. W

REMARK ON A GENERALISED JACOBI VARIETY. Concomitant with the theory
developed in this paper, it is natural that one should define for an arbitrary
Riemann surface X, a certain generalised Jacobi variety of X as the quotient of
the complex Hilbert space #(X) by the “discrete subgroup” H'(X,Z). (The integral
homology does sit inside the Hodge-theoretic first cohomology by integration of
forms on cycles. These linear functionals can be considered as elements of #(X)
by the usual canonical isomorphism of a Hilbert space with its dual) For compact
Riemann surfaces this is simply the classical Jacobian torus. Interestingly, for
certain classes of open Riemann surfaces also, that quotient is a reasonable complex
analytic object (Hilbert manifold). We hope to report on these matters in future
articles with H. Shiga and M.S. Narasimhan.

For the unit disc itself therefore, the generalised Jacobian is the Hilbert space
H'? = # equipped with the Hilbert transform complex structure.

6. Quantum calculus and H!/?

A. Connes has proposed (see [7], [8]) a “quantum calculus” that associates
to a function f an operator that should be considered its quantum derivative — so
that the operator theoretic properties of this d%(f) capture the smoothness properties
of the function. One advantage is that this operator can undergo all the operations
of the functional claculus. The fundamental definition in one real dimension is

(=11 M,] (56)

where J is the Hilbert transform in one dimension explained in Section 2, and M,
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stands for (the generally unbounded) operator given by multiplication by /. One
can think of the quantum derivative as operating (possibly unboundedly) on the
Hilbert space L*(S") or on other appropriate function spaces.

Note. We will also allow quantum derivatives to be taken with respect to other
Hilbert-transform like operators; in particular, the Hilbert transform can be replaced
by some conjugate of itself by a suitable automorphism of the Hilbert space under
concern. In that case we will make explicit the J by writing d%(f) for the quantum
derivative. See Section 8 for applications.

As sample results relating the properties of the quantum derivative with the
nature of f, we mention: d%(f) is a bounded operator on L%(S') if and only if the
function fis of bounded mean oscillation. In fact, the operator norm of the quantum
derivative is equivalent to the BMO norm of /. Again, d%(f) is a compact operator
on L*S") if and only if fis in L*(S") and has vanishing mean oscillation. Also, if
fis Holder, (namely in some Holder class), then the quantum derivative acts as a
compact operator on Holder. See [6], [8]. (Note that the union of all the Holder
classes is both quasisymmetrically invariant and Hilbert-transform stable.
Moreover, functions that are of bounded variation and Holder form a
quasisymmetrically invariant subspace of H'/2) Similarly, the requirement that f
is a member of certain Besov spaces can be encoded in properties of the quantum
derivative.

Our Hilbert space H'*(R) has a very simple interpretation in these terms:

Proposition 6.1. fe H'/*(R) if and only if the operator dX(f) is Hilbert-Schmidt
on L*(R) (or on H'*(R)). The Hilbert-Schmidt norm of the quantum derivative
coincides with the H'? norm of f.

Proof. Recall that the Hilbert transform on the real line is given as a singular
integral operator with integration kernel (x—y)~!. A formal calculation therefore
shows that

g(y)dy. (57)

(@U))Ng)x)= J

J&x)—f(y)
R X7y
But the above is an integral operator with kernel K(x,y)=(f(x)—f(»))/(x—y),
and such an operator is Hilbert-Schmidt if and only if the kernel is square-integrable
over R2. Utilising now the Douglas identity — equation (24) — we are done. W
Since the Hilbert transform, J, is the standard complex structure on the H'/?
Hilbert space, and since this last space was shown to allow an action by the
quasisymmetric group, QS(R), some further considerations become relevant.
Introduce the operator L on 1-forms on the line to functions on the line by:
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(Lw)(x)=f [oglx —y[le(y)dy. (58)

One may think of the Hilbert transform J as operating on either the space
of functions or on the space of l-forms (by integrating against the kernel
dx/(x—y)). Letd as usual denote total derivative (from functions to 1-forms). Then
notice that L above is an operator that is essentially a smoothing inverse of the
exterior derivative. In fact, L and d are connected to J via the relationships:

d°L=J1_fo,ms; L°d=qunm'ons' (59)

The Quasisymmetrically deformed operators: Given any q.s. homeomorphism
he QS(R) we think of it as producing a q.s. change of structure on the line, and
hence we define the corresponding transformed operators, L* and J* by
L'=hoLoh™ and J'=hoJoh™'. (J is being considered on functions in
A =H'?(R), as usual) The q.s. homeomorphism (assumed to be say C! for the
deformation on L), operates standardly on functions and forms by pullback.
Therefore, J" simply stands for the Hilbert transform conjugated by the
symplectomorphism T, of # achieved by pre-composing by the q.s. homeomorphism
h. J" is thus a new complex structure on .

Note. The complex structures on J# of type J" are exactly those that constitute
the image of 7(1) by the universal period mapping. (See Section 8.) The target
manifold, the universal Siegel space, can be thought of as a space of S-compatible
complex structures on .

Let us write the perturbation achieved by 4 on these operators as the “quantum
brackets™:

(hLy=L'—L; {hJ}=Jt—1J. (60)

Now, for instance, the operator d - {h,J} is represented by the kernel (2 x h)'m —m
where m=dxdy/(x—y)*>. For h suitably smooth this is simply d,d, (log[(h(x)—h(y))/
(x—y)]). It is well known that (hx h)'m=m when h is a Mobius transformation.
Interestingly, therefore, on the diagonal (x=y), this kernel becomes (1/6 times) the
Schwarzian derivative of & (as a quadratic differential on the line). For the other
operators in the table below the kernel computations are even easier.

Set K(x,y)=log[(h(x)—h(»))/(x—y)] for convenience. We have the following
table of quantum calculus formulas:

Operator Kernel On diagonal Cocycle on QS(R)
{h,L} K(x,y) log(h') function-valued 61)
do{h,L} d K(x,y) bdx 1-form-valued

do{hJ} d,d.K(x,y) &Schwarzian(h)dx? quadratic-form-valued
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The point here is that these operators make sense when A is merely
quasisymmetric. If & happens to be appropriately smooth, we can restrict the
kernels to the diagonal to obtain the respective nonlinear classical derivatives
(affine Schwarzian, Schwarzian, etc.) as listed in the table above.

REMARK. It is worth pointing out that the central extensions associated to
the three cocycles in the horizontal lines of the table above respectively correspond
to the subgroups: (i) Translations, (i) Affine transformations, and (iii) Projective
(Mébius) transformations.

7. The universal period mapping on 7(1)

Having now all the necessary background results behind us, we are finally
able to describe the universal period (or polarisations) map itself.

The Fréchet Lie group, Diff(S') operating by pullback (= pre-composition) on
smooth functions, had a faithful representation by bounded symplectic operators
on the symplectic vector space V of equation (1). That induced the natural map
IT of the homogeneous space M = Diff(S')/Mob(S') into Segal’s version of the
Siegel space of period matrices. In [14], [15] we had shown that this map:

IT: Diff(S!)/M&b(S!) — Spo(V)/U (62)

is equivariant, holomorphic, Kihler isometric immersion, and moreover that it qualifies
as a generalised period matrix map, (remembering [ 18] that the domain is a complex
submanifold of the universal space of Riemann surfaces 7(1)).

From the results of sections 2, 3, and 4, we know that the quasisymmetric
group, QS(S!) operates as bounded symplectic operators on the Hilbert space #
that is the completion of the pre-Hilbert space V. The same proof as offered in
the articles quoted demonstrates that the subgroup of QS acting unitarily is the
Mobius subgroup. Clearly then we have obtained the extension of Il (also called
IT to save on nomenclature) fo the entire universal Teichmiiller space:

I1: T(1) - Sp(#)/ U. (63)

Let us first exhibit the nature of the complex Banach manifold that is the
target space of the period map (63). This space, which is the universal Siegel
period matrix space, denoted &%, , has several interesting descriptions:

(a): &, =the space of positive polarizations of the symplectic Hilbert space
H#. Recall ([14], [15], [23]) that a positive polarization signifies the choice of a
closed complex subspace W in #, such that (i) #,= W® W, (ii) W is S-isotropic,
namely S vanishes on arbitrary pairs from W; and (iii) iS(w,w) defines the square
of a norm on we W.

(b): &,=the space of S-compatible complex structure operators on . That
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consists of bounded invertible operators J of # onto itself whose square is the
negative identity and J is compatible with S in the sense that requirements (53)
and (54) are valid. Alternatively, these are the complex structure operators J on
# such that H(f,g)=S(f,Jg)+iS(f,g) is a positive definite Hermitian form having
S as its imaginary part.

(¢): &, =the space of bounded operators Z from W, to W_ that satisfy the
condition of S-symmetry: S(Zo,f)=S(Zf,o) and are in the unit disc in the sense
that (I—ZZ) is positive definite. The matrix for Z is the “period matrix” of the
classical theory.

(d): &,=the homogeneous space Sp(s)/U; here Sp(#) denotes all bounded
symplectic automorphisms of #, and U is the unitary subgroup defined as those
symplectomorphisms that keep the subspace W, (setwise) invariant.

Introduce the Grassmannian Gr(W,,H;) of subspaces of type W, in i,
which is obviously a complex Banach manifold modelled on the Banach space of
all bounded operators from W, to W_. Clearly, &, is embedded in Gr as a
complex submanifold. The connections between the above descriptions of the
Siegel universal space are transparent:

(a:b) the positive polarizing subspace W is the —i-eigenspace of the complex
structure operator J (extended to #; by complex linearity).

(a:c) the positive polarizing subspace W is the graph of the operator Z.

(a:d) Sp(s#) acts transitively on the set of positive polarizing subspaces. W, is
a polarizing subspace, and the isotropy (stabilizer) subgroup thereat is exactly U.

# as a Hilbertian space: Note that the method (b) above describes the
universal Siegel space as a space of Hilbert space structures on the fixed underlying
symplectic vector space #. By the result of Section 4 we know that the symplectic
structure on J# is completely canonical, whereas each choice of J above gives a
Hilbert space inner product on the space by intertwining .S and J by the fundamental
relationship (11) (or (54)). Thus J# is a “Hilbertian space”, which signifies a complete
topological vector space with a canonical symplectic structure but lots of compatible
inner products turning it into a Hilbert space in many ways.

Theorem 7.1. The universal period mapping Il is an injective, equivariant,
holomorphic immersion between complex Banach manifolds.

Proof. From our earlier papers [14], [15] we know these facts for IT restricted
to M. The proof of equivariance is the same (and simple). The map is an
injection because if we know the subspace W, pulled back by w,, then we can
recover the q.s. homeomorphism w,. In fact, inside the given subspace look at
those functions which map S' homeomorphically on itself. One sees easily that
these must be precisely the Mobius transformations of the circle pre-composed by

w,. The injectivity (global Torelli theorem) follows.
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Let us write down the matrix for the symplectomorphism T on # obtained
precomposition by w,. We write in the standard orthonormal basis e*?/k'/2, k
=1,2,3.-- for W,, and the complex conjugates as o.n. basis for W_.

In #=W,®W_ block form, T is given by maps: A:W, - W,,
B:W_—> W,. The conjugates of 4 and B map W_ to W_ and W, to W_,
respectively. The matrix entries for 4=((a,,)) and B=((b,;) turn out to be:

27
a,=Q2m)~'p'2q™Y ZJ (w(e*))e™7°d0, p,g=1 (64)
0

2
brs=(2n)—1r1/2s—1/2J‘ (w”(eio))—se—iroda r,SZl. (65)
0

Recalling the standard action of symplectomorphisms on the Siegel disc (model
(c) above), we see that the corresponding operator (= period matrix) Z appearing
from the Teichmiiller point [p] is given by:

M[u]=BA"". (66)

The usual proof of finite dimensions shows that for any symplectomorphism, 4
must be invertible — hence the above explicit formula makes sense.

Since the Fourier coefficients appearing in 4 and B vary only real-analytically
with g, it may be somewhat surprising that I1 is actually holomorphic. In fact, a
computation of the first variation of IT at the origin of 7(1) (i.e., the derivative
map) in the Beltrami direction v shows that the following Rauch variational formula
subsists:

(@], =n""(rs)" ZJJ v(z)z" " 2dxdy. (67)

The proof of this formula is as shown for IT on the smooth points submanifold
M in our earlier papers. The manifest complex linearity of the derivative, namely
the validity of the Cauchy-Riemann equations, combined with equivariance,
demonstrates that TT is complex analytic on T(1), as desired. W

Interpretation of IT as period map: The map IT qualifies as a universal version
of the classical genus g period maps. In the light of P. Griffiths’ ideas [11], the
classical period map may be thought of as associating to a Teichmiiller point a
positive polarizing subspace of the first cohomology H'(X,R). The point is that
when X has a complex structure, then the complexified first cohomology decomposes
as:

HY(X,C)=H"°(X)® H*!(X). (68)
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The period map associates the subspace H''°(X)— which is positive polarizing with
respect to the cup-product symplectic form —to the given complex structure on
X. Of course, H""°(X) represents the holomorphic 1-forms on X, and that is why
this is nothing but the usual period mapping.

But that is precisely what 11 is doing in the universal Teichmiiller space. Indeed,
by the results of Section 5, # is the Hodge-theoretic real first cohomology of the
disc, with S being the cup-product.

The standard complex structure on the unit disc has holomorphic 1-forms
that are of the form dF where F is a holomorphic function on A with F{0)=0. Thus
the boundary values of F will have only positive index Fourier modes — correspond-
ing therefore to the polarizing subspace W,. Now, an arbitrary point of T{(1) is
described by the choice of a Beltrami differential 4 on A perturbing the complex
structure. We are now asking for the holomorphic 1-forms on A,. Solving the
Beltrami equation on A provides us with the p-conformal quasiconformal
self-homeomorphism w, of the disc. This w, is a holomorphic uniformising
coordinate for the disc with the u complex structure. The holomorpic 1-forms
subspace, H"°(A,), should therefore comprise those functions on S* that are the
W, functions precomposed with the boundary values of the q.c. map w,. That is
exactly the action of Il on the Teichmiiller class of p. This explains why II
behaves as an infinite dimeinsional period mapping.

ReMARK. On Segal’'s C* version of the Siegel space—constructed using
Hilbert-Schmidt operators Z, there existed the universal Siegel symplectic metric,
which we studied in [14], [15] and showed to be the same as the Kirillov-Kostant
(= Weil-Petersson) metric on Diff(S')/Mob(S'). For the bigger Banach manifold
&, above, that pairing fails to converge on arbitrary pairs of tangent vectors because
the relevant operators are not any more trace-class in general. The difficulties
asociated with this matter will be addressed in Section 9 below, and in further
work that is in progress.

8. The universal Schottky locus and quantum calculus

Our object is to study the image of IT in &,. The result (equation (69)) can be
recognized to be a quantum “integrability condition” for complex structures on
the circle or the line.

Proposition 8.1.  If a positive polarizing subspace W is in the “universal Schottky
locus”, namely if W is in the image of T(1) under the universal period mapping Il,
then W possesses a dense subspace which is multiplication-closed (i.e., an “algebra”
under pointwise multiplication modulo subtraction of mean-value). In quantum calculus
terminology, this means that
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[d9,7]=0 (69)

where J denotes the S-compatible complex structure of # whose —i-eigenspace is
W. (Recall the various descriptions of &,, spelled out in the last section.)

Multiplication-closed polarizing subspace: The notion of being multiplication-
closed is well-defined for the relevant subspaces in #,. Let us note that the
original polarizing subspace W, contains the dense subspace of holomorphic
trigonometric polynomials (with mean zero) which constitute an algebra. Indeed,
the identity map of S' is a member of W, call it j, and positive integral powers
of j clearly generate W, —since polynomials in j form a dense subspace
therein. Now if W is any other positive polarizing subspace, we know that it
is the image of W, under some TeSp(#). Thus, W will be multiplication-closed
precisely when the image of j by T generates W, in the sense that its positive
integral powers (minus the mean values) also lie in W (and hence span a dense
subspace of W).

In other words, we are considering W (€%, (description (a))) to be
multiplication-closed provided that the pointwise products of functions from W
(minus their mean values) that happen to be H'/? functions actually land up in
the subspace W again. Multiplying f and g modulo arbitrary additive constants
demonstrates that this notion is well-defined when applied to a subspace.

Quantum calculus and equation (69): We suggest a quantum version of complex
structure in one real dimension, and note that the integrable ones correspond to
the universal Schottky locus under study.

In the spirit of algebraic geometry one takes the real Hilbert space of functions
# =H'*(R) as the “coordinate ring” of the real line. Consequently, a complex
structure on R will be considered to be a complex structure on this Hilbert
space. Since &, was a space of (symplectically-compatible) complex structures
on J#, we are interpreting %, as a space of quantum complex structures on the
line (or circle).

Amongst the points of the universal Siegel space, those that can be interpreted
as the holomorphic function algebra for some complex structure on the circle
qualify as the “integrable” ones. But 7(1) parametrises all the quasisymmetrically
related circles, and for each one, the map Il associates to that structure the
holomorphic function algebra corresponding to it; see the interpretation we provided
for IT in the last section. It is clear therefore that T1(7(1)) should be the integrable
complex structures. The point is that taking the standard circle as having integrable
complex structure, all the other integrable complex structures arise from this one
by a QS change of coordinates on the underlying circle. These are the complex
structures J* introduced in section 6 on quantum calculus. The —i-eigenspace
for J" is interpreted as the algebra of analytic functions on the quantum real line
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with the A-structure. We will see in the proof that (69) encodes just this condition.

Proof of Proposition 8.1. For a point of 7(1) represented by a qs.
homeomorphism ¢, the period map sends it to the polarizing subspace
Wy=W,o¢. But W, was a multiplication-closed subspace, generated by just
the identity map j on S', to start with. Clearly then, Ii(¢)=W, is also
multiplication-closed in the sense explained, and is generated by the image of the
generator of W, — namely by the q.s. homeomorphism ¢ (as a member of ). W

Remarks on the converse. We suspect that the converse is also true: that the
T(W,) is such an “algebra” subspace only when T arises as pullback by a
quasisymmetric homeomorphism. This assertion is reminescent of standard
theorems in Banach algebras where one proves, for example, that every algebra
automorphism of the algebra C(X) arises from homeomorphisms of X. (Remark
of Ambar Sengupta.) Owing to the technical point that H'/? functions are not in
general everywhere defined on the circle, we are as yet unable to find a rigorous
proof of this converse.

Here is the sketch of an idea for proving the converse. Suppose we are given
a subspace E that is multiplication-closed in the sense explained. Now, Sp(#)
acts transitively on the set of positive polarizing subpaces. We consider a T'e Sp(#°)
that maps W, to E preserving the multiplicative structure. Denote by j the identity
function on S* and let 7T(j)=w be its image in E.

Since j is a homeomorphism and T is an invertible real symplectomorphism,
one expects that w is also a homeomorphism on S!. (Recall the signed area
interpretation of the canonical form (8).) It then follows that the 7 is nothing
other that precomposition by this w. That is because:

T(/™) = T(j)" —mean value = (w(e’®))"—mean value=;"ow—mean value.

Knowing T to act so on powers of j is sufficient, since polynomials in j are dense
in W,. Finally, since T is the complexification of a real symplectomorphism,
seeing the action of T on W, tells us T on all of # namely, T is
everywhere precomposition by that homeomorphism w of S'. By the necessity
part of Theorem 3.1 we conclude then that w must be quasisymmetric, and hence
that the given subspace E is the image under Il of the Teichmiiller
point determined by w.

Proof of equation (69). Let J be any S-compatible complex structure on %,
namely J is an arbitrary point of &, (description (b) of Section 7). Let J,
denote the Hilbert transform itself, which is the reference point in the
universal Siegel space; therefore J=TJ,T ' for some symplectomorphism 7 in
Sp(#). The —i-eigenspace for J, is, of course, the reference polarizing subspace
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W,, and the subspace W corresponding to J consists of the functions
(f+iJf)) for all fin s#. Now, the pointwise product of two such typical elements
of W gives:

U+ Ne +iVe)=LIe— UM +ilf(Vg)+gUf)].

In order for W to be multiplication closed the function on the right hand side
must also be of the form (h+i(JAh)). Namely, for all relevant f and g in the real
Hilbert space s# we must have:

JL/e—UNUR]=L/Ug) +8Uf)]. (70)

Now recall from the concepts introduced in section 6 that one can associate
to functions f their quantum derivative operators d%(f) which is the commutator
of J with the multiplication operator M, defined by f. The quantum derivative
is being taken with respect to any Hilbert-transform-like operator J as explained
before. But now a short computation demonstrates that equation (70) is the same
as saying that:

Jod§(f)=—d¥(/).
Operating by J on both sides shows that this is (69). That is as desired. W

9. The Teichmiiller space of the universal lamination and Weil-Petersson

The universal Teichimiiller space, 7(1)=T(A), is a non-separable complex
Banach manifold that contains, as properly embedded complex submanifolds, all
the Teichmiiller spaces, T,, of the classical compact Riemann surfaces of every
genus g (>2). T, is 3g—3 dimensional and appears (in multiple copies) within
T(A) as the Teichmiiller space 7(G) of the Fuchsian group G whenever A/G is of
genus g.  The closure of the union of a family of these embedded T, in T(A) turns
out to be a separable complex submanifold of 7(A) (modelled on a separable
complex Banach space). That submanifold can be identified as being itself the
Teichmiiller space of the “universal hyperbolic lamination” H,. We will show
that T(H_) carries a canonical, genus-independent version of the Weil-Petersson
metric, thus bringing back into play the Kéhler structure-preserving aspect of the
period mapping theory.

The universal laminated surfaces: Let us proceed to explain the nature of the
(two possible) “universal laminations” and the complex structure on these. Starting
from any closed topological surface, X, equipped with a base point, consider the
inverse (dircted) system of all finite sheeted unbranched covering spaces of X by
other closed pointed surfaces. The covering projections are all required to be
base point preserving, and isomorphic covering spaces are identified. The inverse



28 S. NAG and D. SULLIVAN

limit space of such an inverse system is the “lamination” — which is the focus of
our interest.

The lamination £,: Thus, if X has genus one, then, of course, all coverings
are also tori, and one obtains as the inverse limit of the tower a certain compact
topological space—every path component of which (the laminating leaves) —is
identifiable with the complex plane. This space E, (to be thought of as the
“universal Euclidean lamination”) is therefore a fiber space over the original torus
X with the fiber being a Cantor set. The Cantor set corresponds to all the possible
backward strings in the tower with the initial element being the base point of
X. The total space is compact since it is a closed subset of the product of all the
compact objects appearing in the tower.

The lamination H_: Starting with an arbitrary X of higher genus clearly
produces the same inverse limit space, denoted H,, independent of the initial
genus. That is because given any two surfaces of genus greater than one, there
is always a common covering surface of higher genus. H_ is our universal
hyperbolic lamination, whose Teichmiiller theory we will consider in this
section. For the same reasons as in the case of E_, this new lamination is also
a compact topological space fibering over the base surface X with fiber again a
Cantor set. (It is easy to see that in either case the space of backward strings
starting from any point in X is an uncountable, compact, perfect, totally-disconnected
space — hence homeomorphic to the Cantor set.) The fibration restricted to each
individual leaf (i.e., path component of the lamination) is a universal covering
projection. Indeed, notice that the leaves of H, (as well as of E,) must all be
simply connected —since any non-trivial loop on a surface can be unwrapped in
a finite cover. (That corresponds to the residual finiteness of the fundamental
group of a closed surface.) Indeed, group-theoretically speaking, covering spaces
correspond to the subgroups of the fundamental group. Utilising only normal
subgroups (namely the regular coverings) would give a cofinal inverse system and
therefore the inverse limit would still continue to be the H_, lamination. This
way of interpreting things allows us to see that the transverse Cantor-set fiber
actually has a group structure. In fact it is the pro-finite group that is the inverse
limit of all the deck-transformation groups corresponding to these normal coverings.

Complex structures: Let us concentrate on the universal hyperbolic lamination
H, from now on. For any complex structure on X there is clearly a complex
structure induced by pullback on each surface of the inverse system, and therefore
H itself inherits a complex structure on each leaf, so that now biholomorphically
each leaf is the Poincaré hyperbolic plane. If we think of a reference complex
structure on X, then any new complex structure is recorded by a Beltrami coefficient
on X, and one obtains by pullback a complex structure on the inverse limit in
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the sense that each leaf now has a complex structure and the Beltrami coefficients
vary continuously from leaf to leaf in the Cantor-set direction. Indeed, the
complex strucrtures obtained in the above fashion by pulling back to the inverse
limit from a complex structure on any closed surface in the inverse tower, have
the special property that the Beltrami coefficients on the leaves are locally consant
in the transverse (Cantor) direction. These “locally constant” families of Beltrami
coefficients on H , comprise the transversely locally constant (written “TLC”) complex
structures on the lamination. The generic complex structure on H_, where all
continuously varying Beltrami coefficients in the Cantor-fiber direction are
admissible, will be a limit of the TLC subfamily of complex structures.

To be precise, a complex structure on a lamination L is a covering of L
by lamination charts (disc) x (transversal) so that the overlap homeomorphisms are
complex analytic on the disc direction. Two complex structures are Teichmiiller
equivalent whenever they are related to each other by a homeomorphism that is
homotopic to the identity through leaf-preserving continuous mappings of L. For
us L is, of course, H,. Thus we have defined the set T(H,).

Note that there is a distinguished leaf in our lamination, namely the path
component of the point which is the string of all the base points. Call this leaf
I Note that all leaves are dense in H_, in particular / is dense. With respect
to the base complex structure the leaf / gets a canonical identification with the
hyperbolic unit disc A. Hence we have the natural “restriction to /” mapping of
the Teichmiiller space of H, into the universal Teichmiiller space 7(/)=T7(1). Since
the leaf is dense, the complex structure on it records the entire complex structure
of the lamination. The above restriction map is therefore actually injective (see
[25]) and therefore describes T{H ) as an embedded complex analytic submanifold
in 7(1).

Indeed, as we will explain in detail below, T(H ,) embeds as precisely the closure
in T(1) of the union of the Teichmiiller spaces 7(G) as G varies over all finite-index
subgroups of a fixed cocompact Fuchsian group. These finite dimensional classical
Teichmiiller spaces lying within the separable, infinite-dimensional T(H ), comprise
the TLC points of T(H ).

Alternatively, one may understand the set-up at hand by looking at the
direct system of maps between Teichmiiller spaces that is induced by our inverse
system of covering maps. Indeed, each covering map provides an immersion of
the Teichmiiller spaces of the covered surface into the Teichmiiller space of the
covering surface induced by the standard pullback of complex structure. These
immersions are Teichmiiller metric preserving, and provide a direct system whose
direct limit, when completed in the Teichmiiller metric, produces again T(H,). The
direct limit already contains the classical Teichmiiller spaces of closed Riemann
surfaces, and the completion corresponds to taking the closure in 7(1).

We need to elaborate somewhat on these various possible embeddings of
T(H,) (which is to be thought of as the universal Teichmiiller space of compact
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Riemann surfaces) within the classical universal Teichmiiller space T(A).

Explicit realizations of T(H ) within the universal Teichmiiller space: Start
with any cocompact Fuchsian group G operating on the unit disc A, such that
the quotient is a Riemann surface X of arbitrary genus g greater than
one. Considering the inverse limit of the directed system of all unbranched
finite-sheeted pointed covering spaces over X gives us a copy of the universal
laminated space H, equipped with a complex structure induced from that on
X. Every such choice of G allows us to embed the separable Teichmiiller space
T(H,) holomorphically in the Bers universal Teichmiiller space T(A).

To fix ideas, let us think of the universal Teichmiiller space as:
T(A) = T(1)= QS(S")/M6b(S!) as usual.

For any Fuchsian group I' define:

OS(N)={we OS(S"):wI'w~! is again a Mébius group}.

We say that the quasisymmetric homeomorphisms in QS(I') are those that are
compatible with . Then the Teichmiiller space T(I')= QS(I')/Mob(S') clearly
sits embedded within 7(1). (We always think of points of 7(1) as left-cosets of
the form Mob(S!)ow=[w] for arbitrary quasisymmetric homeomorphism w of the
circle.)

Having fixed the cocompact Fuchsian group G, the Teichmiiller space T(H )
is now the closure in T(1) of the direct limit of all the Teichmiiller spaces T(H)
as H runs over all the finite-index subgroups of the initial cocompact Fuchsian group
G. Since each T(H) is actually embedded injectively within the universal Teichmiiller
space, and since the connecting maps in the directed system are all inclusion maps,
we see that the direct limit (which is, in general, a quotient of the disjoint union)
in this situation is nothing other than the set-theoretic union of all the
embedded T(H), as H varies over all finite index subgroups of G. This union in
T(1) constitutes the dense “TLC” (transversely locally constant) subset of
T(H,). Therefore, the TLC subset of this embedded copy of T(H,) comprises the
Méb-classes of all those QS-homeomorphisms that are compatible with some finite
index subgroup in G.

We may call the above realization of T(H,) as “the G-tagged embedding” of

T(H,) in T1).

REMARK. We see above, that just as the Teichmiiller space of Riemann
surfaces of any genus p has lots of realizations within the universal Teichmiiller
space (corresponding to choices of reference cocompact Fuchisian groups of genus
p), the Teichmiiller space of the lamination H , also has many different realizations
within 77(1).

Therefore, in the Bers embedding of 7{(1), this realization of T(H,) is the
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intersection of the domain T(1) in the Bers-Nehari Banach space B(1) with the
separable Banach subspace that is the inductive (direct) limit of the subspaces B(H)
as H varies over all finite index subgroups of the Fuchsian group G. (The inductive
limit topology will give a complete (Banach) space; see, e.g., Bourbaki’s “Topological
Vector Spaces”) It is relevant to recall that B(H) comprises the bounded
holomorphic quadratic forms for the group H. By Tukia’s results, the Teichmiiller
space of H is exactly the intersection of the universal Teichmiiller space with B(H).

ReMARK. Indeed one expects that the various G-tagged embeddings of T(H )
must be sitting in general discretely separated from each other in the universal
Teichmiiller space. There is a result to this effect for the various copies of T(I),
as the base group is varied, due to K. Matsuzaki (to appear in Annales Acad.
Scient. Fenn.). That should imply a similar discreteness for the family of embeddings
of T(H,) in T(A).

It is not hard now to see how many different copies of the Teichmiiller space
of genus p Riemann surfaces appear embedded within the G-tagged embedding of
T(H,). That corresponds to non-conjugate (in G) subgroups of G that are of
index (p—1)/(g—1) in G. This last is a purely topological question regarding the
fundamental group of genus g surfaces.

Modular group: One may look at those elements of the full universal modular
group Mod(1) (quasisymmetric homeomorphism acting by right translation (i.e.,
pre-composition) on 7(1)) that preserve setwise the G-tagged embedding of
T(H,). Since the modular group Mod(I') on T(I') is induced by right translations
by those QS-homeomorphisms that are in the normaliser of I':

N D)={te QS(I): Tt~ ' =T}

it is not hard to see that only the elements of Mod(G) itself will manage to preserve
the G-tagged embedding of T(H ).

The Weil-Petersson pairing: In [25], it has been shown that the tangent (and
the cotangent) space at any point of T(H ) consist of certain holomorphic quadratic
differentials on the universal lamination H,. In fact, the Banach space B(c) of
tangent holomorphic quadratic differentials at the Teichmiiller point represented
by the complex structure ¢ on the lamination, consists of holomorphic quadratic
differentials on the leaves that vary continuously in the transverse Cantor-fiber
direction. Thus locally, in a chart, these objects look like ¢(z,A)dz? in self-evident
notaion; (1 represents the fiber coordinate). The lamination H, also comes
equipped with an invariant transverse measure on the Cantor-fibers (invariant with
respect to the holonomy action of following the leaves). Call that measure (fixed
up to a scale) di. (The measure appears as the limit of (normalized) measures
on the fibers above the base point that assign (at each finite Galois covering stage)
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uniform weights to the points in the fiber) From [25] we have directly therefore
our present goal:

Theorem 9.1. The Teichmiiller space T(H,) is a separable complex Banach
manifold in T(1) containing the direct limit of the classical Teichmiiller spaces as a
dense subset. The Weil-Petersson metrics on the classical T,, normalized by a factor
depending on the genus, fit together and extend to a finite Weil-Petersson inner
product on T(H ) that is defined by the formula:

J ¢1¢2(P0in)'2dz ANdzdA (1)
Hoo

where (Poin) denotes the Poincaré conformal factor for the Poincaré metric on the
leaves (appearing as usual for all Weil-Petersson formulas).

Remark on Mostow rigidity for 7(H_,). The quasisymmetric homeomorphism
classes comprising this Teichmiiller space are again very non-smooth, since they
appear as limits of the fractal q.s. boundary homeomorphisms corresponding to
deformations of co-compact Fuchsian groups. Thus, the transversality proved in
[18, Part II] of the finite dimensional Teichmiiller spaces with the coadjoint orbit
homogeneous space M continues to hold for T(H_). As explained there, that
transversality is a form of the Mostow rigidity phenomenon. The formal
Weil-Petersson converged on M and coincided with the Kirillov-Kostant metric,
but that formal metric fails to give a finite pairing on the tangent spaces to the
finite dimensional 7,. Hence the interest in the above Proposition.

10. The Universal Period mapping and the Krichever map

We make some remarks on the relationship of IT with the Krichever mapping
on a certain family of Krichever data. This could be useful in developing
infinite-dimensional theta functions that go hand-in-hand with our infinite
dimensional period matrices.

The positive polarizing subspace, T,(W,), that is assigned by the period
mapping IT to a point [u] of the universal Teichmiiller space has a close relationship
with the Krichever subspace of L%(S!) that is determined by the Krichever map
on certain Krichever data, when [u] varies in the Teichmiiller space of a compact
Riemann surface with one puncture (distinguished point). One of us (S.N.) is
grateful to R. Penner for discussions on this.

Recall that in the Krichever mapping one takes a compact Riemann surface
X, a point pe X, and a local holomorphic coordinate around p to start with (i.e.,
a member of the “dressed moduli space”). One also chooses a holomorphic line
bundle L over X and a particular trivialization of L over the given (z) coordinate



TEICHMULLER THEORY AND THE UNIVERSAL PERIOD MAPPING 33

patch around p. We assume that the z coordinate contains the closed unit disc
in the z-plane. To such data, the Krichever mapping associates the subspace of
L*(S") (here S* is the unit circle in the z coordinate) comprising functions which
are restrictions to that circle of holomorphic sections of L over the punctured
surface X—{p}.

If we select to work in a Teichmiiller space 7(g,1) of pointed Riemann surfaces
of genus g, then one may choose z canonically as a certain horocyclic coordinate
around the point p. Fix L to be the canonical line bundle T*(X) over X (the
compact Riemann surface). This has a corresponding trivialization via “dz”. The
Krichever image of this data can be considered as a subspace living on the unit
horocycle around p. That horocycle can be mapped over to the boundary circle
of the universal covering disc for X—{p} by mapping out by the natural pencil
of Poincaré geodesics having one endpoint at a parabolic cusp corresponding to p.

We may now see how to recover the Krichever subspace (for this restricted
domain of Krichever data) from the subspace in HY*(S") associated to (X,p) by
IT. Recall that the functions appearing in the IT subspace are the boundary values
of the Dirichlet-finite harmonic functions whose derivatives give the holomorphic
Abelian differentials of the Riemann surface. Hence, to get Krichever from IT one
takes Poisson integrals of the functions in the IT image, then takes their total
derivative in the universal covering disc, and restricts to the horocycle around p
that is sitting inside the universal cover (as a circle tangent to the boundary circle
of the Poincaré disc).

Since Krichever data allows one to create the tau-functions of the KP-hierarchy
by the well-known theory of the Sato and the Russian schools, one may now use
the tau-function from the Krichever data to associate a tau (or theta) function to
such points of our universal Schottky locus. The search for natural theta functions
associated to points of the universal Siegel space .&,, and their possible use in
clarifying the relationship between the universal and classical Schottky problems,
is a matter of interest that we are pursuing.
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