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Abstract
There exists a homomorphism from the affine super Yangian to the completion of the universal

enveloping algebra of ĝl(m|n), called the evaluation map. In this paper, we show that the image
of this homomorphism is dense. Via this homomorphism, we obtain irreducible representations
of the affine super Yangian.

1. Introduction

1. Introduction
Drinfeld ([4], [5]) defined the Yangian of a finite dimensional simple Lie algebra g in order

to obtain a solution of the Yang-Baxter equation. The Yangian is a quantum group which is
a deformation of the current algebra g[z]. The definition of Yangian naturally extends to the
case that g is a Kac-Moody Lie algebra. In the case when g is ŝl(n), the Yangian associated
with g is a deformation of the universal central extension of sl(n)[u±1, v] ([9]).

It is well-known that the Yangians are closely related to W-algebras. At first, Ragoucy
and Sorba ([13]) showed that there exist surjective homomorphisms from Yangians of type
A to rectangular finite W-algebras of type A. More generally, Brundan and Kleshchev ([3])
constructed a surjective homomorphism from a shifted Yangian, a subalgebra of the Yangian
of type A, to finite W-algebras of type A. In the affine case, using a geometric realization
of the Yangian, Schiffman and Vasserot ([14]) have constructed a surjective homomorphism
from the Yangian of ĝl(1) to the universal enveloping algebra of the principal W-algebra of
type A, and proved the celebrated AGT conjecture ([7], [1]).

The relationship between Yangians and W-algebras are also studied in the case of Lie
superalgebras. Provided that g is sl(m|n), Stukopin defined the Yangian of sl(m|n), called the
super Yangian (see [15] and [8]). It is a deformation of the current algebra sl(m|n)[z]. In
the affine super setting, the affine super Yangian was defined in [16] and is a deformation of
ŝl(m|n)[z].

In the finite super case, Briot and Ragoucy [2] constructed a surjective homomorphism
from the super Yangian to rectangular finite W-superalgebras of type A. In the recent pa-
per [6], Gaberdiel, Li, Peng and H. Zhang defined the Yangian ĝl(1|1) for the affine Lie
superalgebra ĝl(1|1) and obtained the similar result to that of [14] in the super setting. More-
over, [17] gives a surjective homomorphism from the affine super Yangian to the universal
enveloping algebra of the rectangular W-superalgebra of type A. Thus, rational represen-
tations of rectangular W-superalgebras of type A can be seen as those of the affine super
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Yangians.
However, we know only a little about irreducible representations of the affine super Yan-

gian. In the case when g is ŝl(n), the easiest irreducible representations of the affine Yangian
are obtained by the pullback of irreducible highest weight representations of ĝl(n) since there
exists a surjective homomorphism from the affine Yangian to the completion of the universal
enveloping algebra of ĝl(n) ([9], [11], and [10]). In [10], Kodera showed that the image of
this homomorphism topologically generates the completed universal enveloping algebra by
using a braid group action on the affine Yangian. It is natural to try to obtain irreducible
representations of the affine super Yangian in the similar way. In [16], we have constructed
a homomorphism from the affine super Yangian to the completion of the universal envelop-
ing algebra of ĝl(m|n). However, we cannot prove that he image of this homomorphism is
dense in the similar way to the one in [10] since we have no braid group actions on the
affine super Yangian. In this paper, we show the statement in the more primitive way. Ow-
ing to this result, we obtain irreducible representations of the affine super Yangian via this
homomorphism.

2. Affine Super Yangians

2. Affine Super Yangians
First, we recall the definition of the affine super Yangian (see [16]). In this paper, we

denote xy + yx as {x, y}. Moreover, we set

p(i) =

⎧⎪⎪⎨⎪⎪⎩0 (1 ≤ i ≤ m),

1 (m + 1 ≤ i ≤ m + n).

Definition 2.1. Suppose that m, n ≥ 2 and m � n. The affine super Yangian Yε1,ε2 (ŝl(m|n))
is the associative superalgebra over C generated by x+i,r, x

−
i,r, hi,r (i ∈ {0, 1, · · · ,m+ n− 1}, r ∈

Z≥0) with parameters ε1, ε2 ∈ C subject to the relations:

[hi,r, h j,s] = 0,(2.2)

[x+i,r, x
−
j,s] = δi jhi,r+s,(2.3)

[hi,0, x±j,r] = ±ai jx±j,r,(2.4)

[hi,r+1, x±j,s] − [hi,r, x±j,s+1] = ±ai j
ε1 + ε2

2
{hi,r, x±j,s} − mi j

ε1 − ε2

2
[hi,r, x±j,s],(2.5)

[x±i,r+1, x
±
j,s] − [x±i,r, x

±
j,s+1] = ±ai j

ε1 + ε2

2
{x±i,r, x±j,s} − mi j

ε1 − ε2

2
[x±i,r, x

±
j,s],(2.6)

∑
w∈S1+|ai j |

[x±i,rw(1)
, [x±i,rw(2)

, . . . , [x±i,rw(1+|ai j |)
, x±j,s] . . . ]] = 0 (i � j),(2.7)

[x±i,r, x
±
i,s] = 0 (i = 0,m),(2.8)

[[x±i−1,r, x
±
i,0], [x±i,0, x

±
i+1,s]] = 0 (i = 0,m),(2.9)

where
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ai j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)p(i) + (−1)p(i+1) if i = j,

−(−1)p(i+1) if j = i + 1,

−(−1)p(i) if j = i − 1,

1 if (i, j) = (0,m + n − 1), (m + n − 1, 0),

0 otherwise,

mi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(−1)p(i+1) if j = i + 1,

(−1)p(i) if j = i − 1,

−1 if (i, j) = (0,m + n − 1),

1 if (i, j) = (m + n − 1, 0),

0 otherwise,

and the generators x±m,r and x±0,r are odd and all other generators are even.

One of the difficulty of Definition 2.1 is that the number of generators is infinite. There
exists a presentation of the affine super Yangian such that the number of generators are finite.

First, we show that the affine super Yangian is generated by hi,r and x±i,r (i ∈ {0, 1, · · · ,m+
n − 1}, r = 0, 1). Let us set h̃i,1 = hi,1 − ε1 + ε2

2
h2

i,0. Using h̃i,1, we can rewrite (2.5) as

(2.10) [h̃i,1, x±j,r] = ±ai j

(
x±j,r+1 − mi j

ε1 − ε2

2
x±j,r
)
.

By (2.10), we find that Yε1,ε2 (ŝl(m|n)) is generated by x+i,r, x
−
i,r, hi,r (i ∈ {0, 1, · · · ,m+n−1}, r =

0, 1). In fact, by (2.10) and (2.3), we have the following relations;

x±i,r+1 = ±
1

ai,i
[h̃i,1, x±i,r], hi,r+1 = [x+i,r+1, x

−
i,0] if i � m, 0,(2.11)

x±i,r+1 = ±
1

ai+1,i
[h̃i+1,1, x±i,r] + mi+1,i

ε1 − ε2

2
x±i,r, hi,r+1 = [x+i,r+1, x

−
i,0] if i = m, 0

(2.12)

for all r ≥ 1. In the following theorem, we construct the minimalistic presentation of the
affine super Yangian Yε1,ε2 (ŝl(m|n)) whose generators are x+i,r, x

−
i,r, hi,r (i ∈ {0, 1, · · · ,m + n −

1}, r = 0, 1).

Theorem 2.13 ([16], Theorem 3.17). Suppose that m, n ≥ 2 and m � n. The affine
super Yangian Yε1,ε2 (ŝl(m|n)) is isomorphic to the superalgebra generated by x+i,r, x

−
i,r, hi,r

(i ∈ {0, 1, · · · ,m + n − 1}, r = 0, 1) subject to the defining relations:

[hi,r, h j,s] = 0,(2.14)

[x+i,0, x
−
j,0] = δi jhi,0,(2.15)

[x+i,1, x
−
j,0] = δi jhi,1 = [x+i,0, x

−
j,1],(2.16)

[hi,0, x±j,r] = ±ai jx±j,r,(2.17)

[h̃i,1, x±j,0] = ±ai j

(
x±j,1 − mi j

ε1 − ε2

2
x±j,0
)
,(2.18)

[x±i,1, x
±
j,0] − [x±i,0, x

±
j,1] = ±ai j

ε1 + ε2

2
{x±i,0, x±j,0} − mi j

ε1 − ε2

2
[x±i,0, x

±
j,0],(2.19)
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(ad x±i,0)1+|ai j |(x±j,0) = 0 (i � j),(2.20)

[x±i,0, x
±
i,0] = 0 (i = 0,m),(2.21)

[[x±i−1,0, x
±
i,0], [x±i,0, x

±
i+1,0]] = 0 (i = 0,m),(2.22)

where the generators x±m,r and x±0,r are odd and all other generators are even.

Since the definition of the affine super Yangian is very complicated, it is not clear whether
the affine super Yangian is trivial or not. However, there exists the non-trivial homomor-
phism from the affine super Yangian to the completion of U(ĝl(m|n)). This homomorphism
is called as the evaluation map. In order to introduce the evaluation map, we set some
notations.

First, let us recall the definition of a Lie superalgebra ĝl(m|n). We set a Lie superalgebra
ĝl(m|n) as gl(m|n) ⊗ C[t±1] ⊕ Cc ⊕ Cz whose commutator relations are following;

[x ⊗ tu, y ⊗ tv] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x, y] ⊗ tu+v + uδu+v,0str(xy)c if x, y ∈ sl(m|n),

[ea,b, ei,i] ⊗ tu+v + uδu+v,0str(ea,bei,i)c + uδu+v,0δa,b(−1)p(a)+p(i)z

if x = ea,b, y = ei,i,

c and z are central elements of ĝl(m|n),

where str is a supertrace of gl(m|n). In this section, we assume that the central element c and
z are not indeterminates but complex numbers. Taking the degree of U(ĝl(m|n)) determined
by

deg(Ei, j(s)) = s, deg(c) = deg(z) = 0,

we define U(ĝl(m|n))comp as the degreewise completion of U(ĝl(m|n)) in the sense of [12].
Let us set

δ(i ≤ j) =

⎧⎪⎪⎨⎪⎪⎩1 (i ≤ j),

0 (i > j).
,

hi =

⎧⎪⎪⎨⎪⎪⎩−E1,1 − Em+n,m+n + c (i = 0),

(−1)p(i)Eii − (−1)p(i+1)Ei+1,i+1 (1 ≤ i ≤ m + n − 1),

x+i =

⎧⎪⎪⎨⎪⎪⎩Em+n,1 ⊗ t (i = 0),

Ei,i+1 (otherwise),
x−i =

⎧⎪⎪⎨⎪⎪⎩−E1,m+n ⊗ t−1 (i = 0),

(−1)p(i)Ei+1,i (otherwise).

Then, we are in the position to introduce the evaluation map.

Theorem 2.23 ([16], Theorem 5.1). Let α be a complex number. We also assume that
�c = (−m + n)ε1 and z = 1. Then, there exists an algebra homomorphism evε1,ε2 :
Yε1,ε2 (ŝl(m|n))→ U(ĝl(m|n))comp uniquely determined by

evε1,ε2 (x+i,0) = x+i ,

evε1,ε2 (x−i,0) = x−i ,

evε1,ε2 (hi,0) = hi,
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evε1,ε2 (hi,1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α − (m − n)ε1)h0 + �Em+n,m+n(E1,1 − c)

−�
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,m+n(s)

−�
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s − 1)Ek,1(s + 1) if i = 0,

(α − (i − 2δ(i ≥ m + 1)(i − m))ε1)hi − (−1)p(Ei,i+1)
�Ei,iEi+1,i+1

+�(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)

+�(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1)Ek,i(s + 1)

−�(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s)

−�(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s − 1)Ek,i+1(s + 1)

if i � 0,

where � = ε1 + ε2 and Ei, j(s) = Ei, j ⊗ ts.

Remark 2.24. In the case when g is ŝl(n), the evaluation map is defined in [9] and [11]. In
this case, Kodera [10] showed that the image of the evaluation is dense in the completion of
U(ĝl(m|n). However, since the proof in [10] needs a braid group, we cannot prove the same
statement in the super setting.

3. The surjectivity of the evaluation map

3. The surjectivity of the evaluation map
In this section, we show that the image of evε1,ε2 is dense in the completion of U(ĝl(m|n))

provided that ε1 � 0. By the definition of evε1,ε2 , the image of evε1,ε2 contains hi and x±i .
Since hi and x±i are generators of ŝl(m|n), the image of evε1,ε2 contains ŝl(m|n). Thus, it is
enough to prove that the image of evε1,ε2 contains Ei,i(s) for all 1 ≤ i ≤ m + n and s ∈ Z.

First, we show that the image of evε1,ε2 contains Ei,i(0).

Theorem 3.1. We obtain

evε1,ε2 (
∑

0≤i≤m+n−1

h̃i,1)(3.2)

= (α − (m − n)ε1)h0

+
∑

1≤i≤m+n−1

(α − (i − 2δ(i ≥ m + 1)(i − m))ε1)hi − c�Em+n,m+n.
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Proof. By the definition of evε1,ε2 (hi,1), we obtain

evε1,ε2 (h̃i,1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α − (m − n)ε1)h0 − 1
2
�E2

m+n,m+n −
1
2
�E2

1,1 − c�Em+n,m+n

−�
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,m+n(s)

−�
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s − 1)Ek,1(s + 1)

if i = 0,

(α − (i − 2δ(i ≥ m + 1)(i − m))ε1)hi − 1
2
�E2

i,i −
1
2
�E2

i+1,i+1

+�(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)

+�(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1)Ek,i(s + 1)

−�(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s)

−�(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s − 1)Ek,i+1(s + 1)

if i � 0.

Then, we rewrite the left hand side of (3.2) as

(α − (m − n)ε1)h0 +
∑

1≤i≤m+n−1

(α − (i − 2δ(i ≥ m + 1)(i − m))ε1)hi(3.3)

− �
2

(E2
1,1 + E2

m+n,m+n) − c�Em+n,m+n −
∑

1≤i≤m+n−1

�

2
(E2

i,i + E2
i+1,i+1)

+
∑

1≤i≤m+n

�(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)

+
∑

1≤i≤m+n

�(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1)Ek,i(s + 1)

−
∑

0≤i≤m+n−1

�(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s)

−
∑

0≤i≤m+n−1

�(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s − 1)Ek,i+1(s + 1).

Adding the first and third terms of (3.3), we have

∑
1≤i≤m+n

�(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)(3.4)
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−
∑

1≤ j≤m+n

�(−1)p( j)
∑
s≥0

j−1∑
k=1

(−1)p(k)E j,k(−s)Ek, j(s)

= �
∑

1≤i≤m+n

∑
s≥0

Ei,i(−s)Ei,i(s).

Adding the second and 4-th terms of (3.3), we obtain

∑
1≤i≤m+n

�(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1)Ek,i(s + 1)(3.5)

−
∑

1≤ j≤m+n

�(−1)p( j)
∑
s≥0

m+n∑
k= j

(−1)p(k)E j,k(−s − 1)Ek, j(s + 1)

= −�
∑

1≤i≤m+n

∑
s≥0

Ei,i(−s − 1)Ei,i(s + 1).

Applying (3.4) and (3.5) to (3.3), we find that the left hand side of (3.2) is equal to

(α − (m − n)ε1)h0 +
∑

1≤i≤m+n−1

(α − (i − 2δ(i ≥ m + 1)(i − m))ε1)hi

− �
2

(E2
1,1 + E2

m+n,m+n) − c�Em+n,m+n −
∑

1≤i≤m+n−1

�

2
(E2

i,i + E2
i+1,i+1) + �

∑
1≤i≤m+n

E2
i,i.

By direct computation, it is equal to

(α − (m − n)ε1)h0 +
∑

1≤i≤m+n−1

(α − (i − 2δ(i ≥ m + 1)(i − m))ε1)hi − c�Em+n,m+n.

Thus, we have obtained Theorem 3.1. �

Since hi is contained in the image of evε1,ε2 , the image of evε1,ε2 contains c�Em+n,m+n.

Corollary 3.6. The image of evε1,ε2 contains Em+n,m+n provided that �c � 0.

Next, let us show that the completion of the image of evε1,ε2 contains Ei,i(s) (s � 0).

Theorem 3.7. For all i � 0, we obtain

[evε1,ε2 (hi,1), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]

= �
∑
s≥0

δs+a,0scEi,i(−s) − �
∑
s≥0

δ−s+a,0scEi,i(s)

+ �
∑
s≥0

δs+1+a,0(s + 1)cEi+1,i+1(−s − 1) − �
∑
s≥0

δ−s−1+a,0(s + 1)cEi+1,i+1(s + 1)

+ sum of elements of the completion of U(ŝl(m|n)).

Proof. The proof is done by direct computation. By the definition of evε1,ε2 (hi,1), we have

[evε1,ε2 (hi,1), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]

(3.8)

= [(α − (i − 2δ(i ≥ m + 1)(i − m))ε1)hi, ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]



488 M. Ueda

− (−1)p(Ei,i+1)
�[Ei,iEi+1,i+1, ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]

+ [�(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]

+ [�(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1)Ek,i(s + 1), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]

− [�(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]

− [�(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s − 1)Ek,i+1(s + 1),

((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta].

We can rewrite each terms of the right hand side of (3.8). By an easy computation, we find
that the first two terms of the right hand side of (3.8). Other terms are computed as follows.

Claim 3.9. (1) The 4-th and 5-th terms of the right hand side of (3.8) are elements of the
completion of U(ŝl(m|n)).

(2) We can rewrite the third term of the right hand side of (3.8) as

�(−1)p(i)
∑
s≥0

δs+a,0scEi,i(−s) − �
∑
s≥0

δ−s+a,0scEi,i(s)(3.10)

+ an element of the completion of U(ŝl(m|n)).

(3) We can rewrite 6-th term of the right hand side of (3.8) as

�

∑
s≥0

δs+1+a,0(s + 1)cEi+1,i+1(−s − 1) − �
∑
s≥0

δ−s−1+a,0(s + 1)cEi+1,i+1(s + 1)(3.11)

+ an element of the completion of U(ŝl(m|n)).

Assuming Claim 3.9, we obtain Theorem 3.7 by adding (3.10) and (3.11). In order to
complete the proof of Theorem 3.7, we prove Claim 3.9.

the proof of Claim 3.9. (1) The proof is due to direct computation. First we prove the
4-th case. We can rewrite the 4-th term of the right hand side of (3.8) as follows;

�(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1)[Ek,i(s + 1), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]

(3.12)

+ �(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)[Ei,k(−s − 1), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]Ek,i(s + 1).

We rewrite each terms of the right hand side of (3.12). By direct computation, we can rewrite
the first term of the right hand side of (3.12) as

�

∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1)Ek,i(s + 1 + a)(3.13)
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+ �(−1)p(i)+p(i+1)
∑
s≥0

(−1)p(i+1)Ei,i+1(−s − 1)Ei+1,i(s + 1 + a).

By direct computation, we can rewrite the second term of the right hand side of (3.12) as

− �(−1)p(i)
∑
s≥0

Ei,i+1(−s − 1 + a)Ei+1,i(s + 1)(3.14)

− �
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1 + a)Ek,i(s + 1).

Adding (3.13) and (3.14), we obtain

the 4-th term of the right hand side of (3.8)

(3.15)

= �
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1)Ek,i(s + 1 + a) + �(−1)p(i)
∑
s≥0

Ei,i+1(−s − 1)Ei+1,i(s + 1 + a)

− �(−1)p(i)
∑
s≥0

Ei,i+1(−s − 1 + a)Ei+1,i(s + 1)

− �
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s − 1 + a)Ek,i(s + 1),

Since all of the terms of the right hand side of (3.15) are elements of the completion of
U(ŝl(m|n)), the 4-th term of the right hand side of (3.8) is an element of the completion of
U(ŝl(m|n)).

Next, we prove the 5-th case. Let us rewrite the 5-th term of the right hand side of (3.8)
as follows;

− �(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)[Ek,i+1(s), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]

(3.16)

− �(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)[Ei+1,k(−s), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]Ek,i+1(s).

We rewrite each terms of the right hand side of (3.16). By direct computation, we can rewrite
the first term of the right hand side of (3.16) as

�

∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s + a) + �(−1)p(i+1)
∑
s≥0

Ei+1,i(−s)Ei,i+1(s + a).(3.17)

By direct computation, we can also rewrite the first term of the right hand side of (3.16) as

− �(−1)p(i+1)
∑
s≥0

Ei+1,i(−s + a)Ei,i+1(s) − �
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(a − s)Ek,i+1(s).(3.18)

Adding (3.17) and (3.18), we have

the 5-th term of the right hand side of (3.8)(3.19)
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= �
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s + a) + �(−1)p(i+1)
∑
s≥0

Ei+1,i(−s)Ei,i+1(s + a)

− �(−1)p(i+1)
∑
s≥0

Ei+1,i(−s + a)Ei,i+1(s) − �
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(a − s)Ek,i+1(s).

Since all of the terms of the right hand side of (3.19) are elements of the completion of
U(ŝl(m|n)), the 5-th term of the right hand side of (3.8) is an element of the completion of
U(ŝl(m|n)).

(2) The proof is due to direct computation. Let us rewrite the third term of the right hand
side of (3.8) as follows;

�(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)[Ek,i(s), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta](3.20)

+ �(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)[Ei,k(−s), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]Ek,i(s).

We rewrite each terms of the right hand side of (3.20). By direct computation, we can rewrite
the first term of the right hand side of (3.20) as

�

∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s + a) − �(−1)p(i)
∑
s≥0

Ei,i(−s)Ei,i(s + a)(3.21)

+ �
∑
s≥0

δs+a,0scEi,i(−s) + �
∑
s≥0

δs+a,0sEi,i(−s) − �
∑
s≥0

δs+a,0sEi,i(−s)

= �
∑
s≥0

i−1∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s + a) + �
∑
s≥0

δs+a,0scEi,i(−s).

Similarly, we can rewrite the second term of the right hand side of (3.20) as

�(−1)p(i)
∑
s≥0

Ei,i(−s + a)Ei,i(s) − �
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s + a)Ek,i(s)(3.22)

− �
∑
s≥0

δ−s+a,0scEi,i(s) − �
∑
s≥0

δ−s+a,0sEi,i(s) + �
∑
s≥0

δ−s+a,0sEi,i(s)

= −�
∑
s≥0

i−1∑
k=1

(−1)p(k)Ei,k(−s + a)Ek,i(s) − �
∑
s≥0

δ−s+a,0scEi,i(s).

Adding (3.21) and (3.22), we obtain

the third term of the right hand side of (3.8)(3.23)

= �
∑
s≥0

i−1∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s + a) − �
∑
s≥0

i−1∑
k=1

(−1)p(k)Ei,k(−s + a)Ek,i(s)

+ �(−1)p(i)
∑
s≥0

δs+a,0scEi,i(−s) − �
∑
s≥0

δ−s+a,0scEi,i(s).

Since the first two terms of the right hand side of (3.23) are elements of the completion of
U(ŝl(m|n)), we have obtained (3.10).
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(3) We rewrite the 6-th term of the right hand side of (3.8) as follows;

− �(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s − 1)

(3.24)

[Ek,i+1(s + 1), ((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]

− �(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)[Ei+1,k(−s − 1),

((−1)p(i)Ei,i − (−1)p(i+1)Ei+1,i+1)ta]Ek,i+1(s + 1).

We compute each terms of the right hand side of (3.24). By direct computation, we can
rewrite the first term of the right hand side of (3.24) as

�

∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s − 1)Ek,i+1(s + 1 + a)

(3.25)

− �(−1)p(i+1)
∑
s≥0

Ei+1,i+1(−s − 1)Ei+1,i+1(s + 1 + a) + �
∑
s≥0

(s + 1)cδs+1+a,0Ei+1,i+1(−s − 1)

− �
∑
s≥0

(s + 1)δs+1+a,0Ei+1,i+1(−s − 1) + �
∑
s≥0

(s + 1)δs+1+a,0Ei+1,i+1(−s − 1)

= �
∑
s≥0

m+n∑
k=i+2

(−1)p(k)Ei+1,k(−s − 1)Ek,i+1(s + 1 + a) + �
∑
s≥0

δs+1+a,0(s + 1)cEi+1,i+1(−s − 1).

By direct computation, we can also rewrite the second term of the right hand side of (3.24)
as

�(−1)p(i+1)
∑
s≥0

Ei+1,i+1(−s − 1 + a)Ei+1,i+1(s + 1)

(3.26)

− �
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s − 1 + a)Ek,i+1(s + 1) − �
∑
s≥0

δ−s−1+a,0(s + 1)cEi+1,i+1(s + 1)

+ �
∑
s≥0

δ−s−1+a,0(s + 1)Ei+1,i+1(s + 1) − �
∑
s≥0

δ−s−1+a,0(s + 1)Ei+1,i+1(s + 1)

= −�
∑
s≥0

m+n∑
k=i+2

(−1)p(k)Ei+1,k(−s − 1 + a)Ek,i+1(s + 1)

− �
∑
s≥0

δ−s−1+a,0(s + 1)cEi+1,i+1(s + 1).

Adding (3.25) and (3.26), we have

the 6-th term of the right hand side of (3.8)(3.27)

= �
∑
s≥0

m+n∑
k=i+2

(−1)p(k)Ei+1,k(−s − 1)Ek,i+1(s + 1 + a)
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− �
∑
s≥0

m+n∑
k=i+2

(−1)p(k)Ei+1,k(−s − 1 + a)Ek,i+1(s + 1)

+ �
∑
s≥0

δs+1+a,0(s + 1)cEi+1,i+1(−s − 1) − �
∑
s≥0

δ−s−1+a,0(s + 1)cEi+1,i+1(s + 1).

Since the first two terms of the right hand side of (3.27) are elements of the completion of
U(ŝl(m|n)), we have obtained (3.11). �

This completes the proof of Theorem 3.7. �

By the assumption that m, n ≥ 2 and m � n, we can take 1 ≤ i ≤ m + n − 1 such
that p(i) = p(i + 1). By Theorem 3.7, the completion of the image of evε1,ε2 contains
�c(Ei,i + Ei+1,i+1)ta for all a � 0. Provided that �c � 0, the completion of the image of evε1,ε2

contains (Ei,i + Ei+1,i+1)ta. By the assumption that p(i) = p(i + 1), (Ei,i + Ei+1,i+1)ta is not
contained in ŝl(m|n). Thus, we obtain the following corollary.

Corollary 3.28. The completion of the image of evε1,ε2 contains Ei,ita for all a � 0 pro-
vided that �c � 0.

By the assumption that �c = −(m − n)ε1, we find that �c is nonzero if and only if ε1 � 0.
Under the assumption that by Corollary 3.6 and Corollary 3.28, the image of evε1,ε2 contains
Ei,its for all s ∈ Z. Thus, we have the following theorem.

Theorem 3.29. Provided that ε1 � 0, the image of evε1,ε2 is dense in U(ĝl(m|n))comp.
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