Title	DEFORMATIONS 0F REDUCIBLE SL(n, C) REPRESENTATIONS OF FIBERED 3-MANIFOLD GROUPS
Author(s)	Kozai, Kenji
Citation	0saka Journal of Mathematics. 2022, 59(3), p. $515-527$
Version Type	VoR
URL	https://doi.org/10.18910/88484
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/

DEFORMATIONS OF REDUCIBLE SL(n, \mathbb{C}) REPRESENTATIONS OF FIBERED 3-MANIFOLD GROUPS

Kenji KOZAI

(Received August 21, 2020, revised March 24, 2021)

Abstract

Let M_{ϕ} be a surface bundle over a circle with monodromy $\phi: S \rightarrow S$. We study deformations of certain reducible representations of $\pi_{1}\left(M_{\phi}\right)$ into $\operatorname{SL}(n, \mathbb{C})$, obtained by composing a reducible representation into $\operatorname{SL}(2, \mathbb{C})$ with the irreducible representation $\operatorname{SL}(2, \mathbb{C}) \rightarrow \operatorname{SL}(n, \mathbb{C})$. In particular, we show that under certain conditions on the eigenvalues of ϕ^{*}, the reducible representation is contained in a $(n+1+k)(n-1)$ dimensional component of the representation variety, where k is the number of components of ∂M_{ϕ}. This result applies to mapping tori of pseudo-Anosov maps with orientable invariant foliations whenever 1 is not an eigenvalue of the induced map on homology, where the reducible representation is also a limit of irreducible representations.

1. Introduction

Suppose that $S=S_{g, p}$ is a surface of genus g with $p \geq 1$ punctures, where $2 g+p>2$. Then S admits a hyperbolic structure. If $\phi: S \rightarrow S$ is a homeomorphism, we can form the mapping torus $M_{\phi}=S \times[0,1] /(x, 1) \sim(\phi(x), 0)$. Whenever λ^{2} is an eigenvalue of $\phi^{*}: H^{1}(S) \rightarrow H^{1}(S)$ with eigenvector $\left(a_{1}, \ldots, a_{2 g+p-1}\right)^{T}$ with respect to a generating set $\left\{\left[\gamma_{1}\right], \ldots,\left[\gamma_{2 g+p-1}\right]\right\}$ of $H^{1}(S)$, we obtain a reducible representation $\rho_{\lambda}: \pi_{1}\left(M_{\phi}\right) \rightarrow \operatorname{SL}(2, \mathbb{C})$ by defining,

$$
\begin{aligned}
\rho_{\lambda}\left(\gamma_{i}\right) & =\left(\begin{array}{cc}
1 & a_{i} \\
0 & 1
\end{array}\right), \\
\rho_{\lambda}(\tau) & =\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right),
\end{aligned}
$$

where τ is the generator of the fundamental group of the S^{1} base of the fiber bundle $S \rightarrow$ $M_{\phi} \rightarrow S^{1}$. (Recall that a representation $\rho: G \rightarrow \mathrm{GL}(n, \mathbb{C})$ is reducible if the image $\rho(G)$ preserves a proper subspace of \mathbb{C}^{n}, and otherwise is called irreducible.)

When M_{ϕ} is the complement of a knot K in S^{3}, this observation was originally made by Burde [1] and de Rham [3]. Furthermore, the Alexander polynomial is the characteristic polynomial of ϕ^{*}, so the condition on λ is equivalent to the condition that λ^{2} is a root of the Alexander polynomial $\Delta_{K}(t)$. It was shown in [6] that the non-abelian, metabelian, reducible representation ρ_{λ} is the limit of irreducible representations if λ^{2} is a simple root of $\Delta_{K}(t)$. Heusener and Medjerab [5] have also shown using an inductive argument that the conclusion still holds in $\operatorname{SL}(n, \mathbb{C}), n \geq 3$, if ρ_{λ} is composed with the irreducible representation
$r_{n}: \operatorname{SL}(2, \mathbb{C}) \rightarrow \mathrm{SL}(n, \mathbb{C})$. These results apply even if the knot complement is not fibered, as long as λ^{2} is a simple root of $\Delta_{K}(t)$.

In this paper, we show that reducible $\operatorname{SL}(n, \mathbb{C})$ representations of fibered 3-manifolds groups obtained as the composition $\rho_{\lambda, n}=r_{n} \circ \rho_{\lambda}$ can be deformed to irreducible representations using a more direct calculation of the deformation space using coordinates for $\mathfrak{s l}(n, \mathbb{C})$. If the punctures form a single orbit under ϕ and the mapping torus M_{ϕ} is the complement of a fibered knot, then the results of [6] and [5] apply. The main result in Theorem 1.1 also covers the cases where M_{ϕ} is the complement of a fibered link L with $k \geq 2$ components L_{1}, \ldots, L_{k}, or a k-cusped fibered manifold which is not a link complement. In the statement of Theorem 1.1, $\bar{\phi}$ is the homeomorphism on $\bar{S}=S_{g, 0}$ obtained from ϕ by filling in the p punctures of $S_{g, p}$. This defines a homeomorphism $\bar{\phi}: \bar{S} \rightarrow \bar{S}$.

Theorem 1.1. Suppose that λ^{2} is a simple eigenvalue of ϕ^{*}. If $|\lambda| \neq 1, \bar{\phi}^{*}: H^{1}(\bar{S}) \rightarrow$ $H^{1}(\bar{S})$ does not have 1 as an eigenvalue, and if for each $2 \leq j \leq n-1$, we have that $\lambda^{2 j}$ is not an eigenvalue of ϕ^{*}, then $\rho_{\lambda, n}$ is a smooth point of the representation variety $R\left(\pi_{1}\left(M_{\phi}\right), \mathrm{SL}(n, \mathbb{C})\right)$, contained in a unique component of dimension $(n+1+k)(n-1)$.

Note that for a knot complement, the Alexander polynomial satisfies $\Delta_{K}(1)= \pm 1$. Hence for a knot complement, the condition that $\bar{\phi}^{*}: H^{1}(\bar{S}) \rightarrow H^{1}(\bar{S})$ does not have 1 as an eigenvalue (in the fibered case) or the corresponding condition that 1 is not a root of $\Delta_{K}(t)$ (in the non-fibered case) is automatically satisfied. For a generic mapping torus, a fixed point of $\bar{\phi}^{*}$ implies that the closed manifold obtained as the mapping torus of $\bar{\phi}$ has second Betti number at least 2 , in which case the manifold fibers over a circle in infinitely many ways [17]. Heuristically, this leads to more infinitesimal deformations. When the local dimension of infinitesimal dimensions is higher than half the dimension of $H^{1}\left(\partial M_{\phi}\right)$, the standard techniques using Poincaré duality to show smoothness of the space of representations cannot be used. Whether the reducible representation can be obtained as a limit of irreducible representations in this case is unknown.

When ϕ is a pseudo-Anosov element of the mapping class group, λ^{2} is the dilatation factor of ϕ, and the p punctures are exactly the singular points of the invariant foliations of $\phi, \rho_{\lambda}=\rho_{\lambda, 2}$ is shown to have deformations to irreducible representations under some additional conditions on the eigenvalues of $\bar{\phi}^{*}$, the map on the closed surface S_{g}, in [8]. We show that under the same hypotheses, the same holds for $\rho_{\lambda, n}$ when $n>2$.

Theorem 1.2. Suppose that λ^{2} is the dilatation of a pseudo-Anosov map ϕ such that the stable and unstable foliations are orientable, and the singular points coincide with the punctures of S. Suppose also that 1 is not an eigenvalue of $\bar{\phi}^{*}$. Then $\rho_{\lambda, n}$ is a limit of irreducible $\operatorname{SL}(n, \mathbb{C})$ representations and is a smooth point of $R\left(\pi_{1}\left(M_{\phi}\right), \operatorname{SL}(n, \mathbb{C})\right)$, contained in a unique component of dimension $(n+1+k)(n-1)$.

In Section 2, we give the basic definitions and background about representations of $\operatorname{SL}(2, \mathbb{C})$ into $\operatorname{SL}(n, \mathbb{C})$. Section 3 discusses the general theory of deformations, and Section 4 contains the main results, including relevant cohomological calculations.

2. Representations into $\operatorname{SL}(n, \mathbb{C})$

For notational convenience, we denote $\operatorname{SL}(n)=\operatorname{SL}(n, \mathbb{C})$, $\mathfrak{s l}(n)=\mathfrak{s l}(n, \mathbb{C}), \operatorname{GL}(n)=$ $\operatorname{GL}(n, \mathbb{C})$, and $\Gamma_{\phi}=\pi_{1}\left(M_{\phi}\right)$. Note that we have the following identities in $\operatorname{SL}(2)$:

$$
\begin{align*}
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) & =\left(\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
1 & \lambda^{2} a \\
0 & 1
\end{array}\right) \tag{2.1}
\end{align*}
$$

Thus, if λ^{2} is an eigenvalue of $\phi^{*}: H^{1}(S) \rightarrow H^{1}(S),\left\{\left[\gamma_{1}\right], \ldots,\left[\gamma_{2 g+p-1}\right]\right\}$ generate $H^{1}(S)$, and $\left(a_{1}, \ldots, a_{2 g+p-1}\right)^{T}$ is an eigenvector for λ^{2}, we can define

$$
\begin{aligned}
\rho_{\lambda}\left(\gamma_{i}\right) & =\left(\begin{array}{cc}
1 & a_{i} \\
0 & 1
\end{array}\right), \\
\rho_{\lambda}(\tau) & =\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) .
\end{aligned}
$$

Since $\pi_{1}\left(\Gamma_{\phi}\right)$ is a semi-direct product of the free group $\pi_{1}(S)=\left\langle\gamma_{1}, \ldots, \gamma_{2 g+p-1}\right\rangle$ with $\pi_{1}\left(S^{1}\right)=\langle\tau\rangle$ satisfying the relations $\tau \gamma_{i} \tau^{-1}=\phi\left(\gamma_{i}\right)$ and ϕ^{*} maps the vector $\left(a_{1}, \ldots, a_{2 g+p-1}\right)^{T}$ to $\lambda^{2}\left(a_{1}, \ldots, a_{2 g+p-1}\right)^{T}$, the identities (2.1) imply that this defines a representation $\rho_{\lambda}: \Gamma_{\phi} \rightarrow$ SL(2).

We now describe representations of $\operatorname{SL}(2)$ into $\operatorname{SL}(n)$, which we will compose with ρ_{γ} to obtain representations $\Gamma_{\phi} \rightarrow \mathrm{SL}(n)$. A more general version of the discussion in this section can be found in [5, Section 4].

Let $R=\mathbb{C}[X, Y]$ be the polynomial algebra on two variables. We have an action of $\operatorname{SL}(2)$ on R by,

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot X=d X-b Y, \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot Y=-c X+a Y,
\end{aligned}
$$

for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2)$. Let $R_{n-1} \subset R$ denote the n-dimensional subspace of homogenous polynomials of degree $n-1$, generated by $X^{\ell-1} Y^{n-\ell}, 1 \leq \ell \leq n$. The action of $\operatorname{SL}(2)$ leaves R_{n-1} invariant, turning R_{n-1} into a $\mathrm{SL}(2)$ module, and we obtain a representation $r_{n}: \mathrm{SL}(2) \rightarrow \mathrm{GL}\left(R_{n-1}\right)$. We can identify R_{n-1} with \mathbb{C}^{n} by identifying the basis elements $\left\{X^{\ell-1} Y^{n-\ell}\right\}$ with the standard basis elements $\left\{e_{\ell}\right\}$ of \mathbb{C}^{n}. The induced isomorphism turns r_{n} into a representation $\mathrm{SL}(2) \rightarrow \mathrm{GL}(n) \cong \mathrm{GL}\left(R_{n-1}\right)$, which we will also call r_{n}. The representation r_{n} is rational, that is the coefficients of the matrix coordinates of $r_{n}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ are polynomials in a, b, c, d.

We have the following two well-known results about r_{n}.
Lemma 2.1 ([16, Lemma 3.1.3 (ii)]). The representation r_{n} is irreducible.
Lemma 2.2 ([16, Lemma 3.2.1]). Any irreducible rational representation of $\operatorname{SL}(2, \mathbb{C})$ is conjugate to some r_{n}.

It is easy to check that r_{n} maps the unipotent matrices $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right)$ to unipotent elements of $\operatorname{SL}\left(R_{n-1}\right)$, and the diagonal element $\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$ is mapped to the diagonal element $\operatorname{diag}\left(a^{n-1}, a^{n-3}, \ldots, a^{-n+1}\right)$. Since these elements generate $\operatorname{SL}(2)$, the image of r_{n} lies in
$\operatorname{SL}\left(R_{n-1}\right) \cong \mathrm{SL}(n)$.
We now define $\rho_{\lambda, n}=r_{n} \circ \rho_{\lambda}$. As we will only be considering the case when λ^{2} is a simple eigenvalue of ϕ^{*} and the above lemmas imply the uniqueness of r_{n}, this gives a well-defined and unique (up to conjugation) representation $\rho_{\lambda, n}: \Gamma_{\phi} \rightarrow \operatorname{SL}(n)$.

By composing $\rho_{\lambda, n}$ with the adjoint representation, we also obtain an action of Γ_{ϕ} on $\mathfrak{s l}(n)$, turning it into a Γ_{ϕ} module. The following decomposition is a consequence of the Clebsch-Gordan formula (see, for example, [11, Lemma 1.4]).

Lemma 2.3. With the Γ_{ϕ} module structure, $\mathfrak{s l}(n) \cong \oplus_{j=1}^{n-1} R_{2 j}$.
This decomposition will be used to calculate the infinitesimal deformations of $\rho_{\lambda, n}$.

3. Infinitesimal deformations

In this section, let M be a 3-manifold with finitely many torus boundary components $\partial M=\sqcup_{i=1}^{k} T_{i}$ and $\Gamma=\pi_{1}(M)$. For each boundary torus T_{i}, the inclusion map $\iota: T_{i} \rightarrow M$ induces a map from $\pi_{1}\left(T_{i}\right)$ to a conjugacy class of subgroups isomorphic to $\pi_{1}\left(T_{i}\right) \cong \mathbb{Z} \times \mathbb{Z}$ in $\pi_{1}(M)$. To each boundary component T_{i}, we associate $\pi_{1}\left(T_{i}\right)$ with a representative subgroup Δ_{i} in Γ. Let $R(\Gamma, \mathrm{SL}(n))=\operatorname{Hom}(\Gamma, \mathrm{SL}(n))$ be the variety of representations of Γ into $\operatorname{SL}(n)$ and $X(\Gamma, \mathrm{SL}(n))=R(\Gamma, \mathrm{SL}(n)) / / \mathrm{SL}(n)$ be the $\mathrm{SL}(n)$ character variety, where the quotient is the GIT quotient as $\operatorname{SL}(n)$ acts by conjugation.

Suppose $\rho: \Gamma \rightarrow \operatorname{SL}(n)$ is a representation. The group of twisted cocycles $Z^{1}\left(\Gamma ; \mathfrak{s l}(n)_{\rho}\right)$ is defined as the set of maps $z: \Gamma \rightarrow \mathfrak{s l}(n)$ that satisfy the twisted cocycle condition

$$
\begin{equation*}
z(a b)=z(a)+\operatorname{Ad}_{\rho(a)} z(b) \tag{3.1}
\end{equation*}
$$

which can be interpreted as the derivative of the homomorphism condition for a smooth family of representation ρ_{t} at ρ. The derivative of the triviality condition that ρ_{t} is a smooth family of representations obtained by conjugating ρ gives the coboundary condition,

$$
\begin{equation*}
z(\gamma)=u-\operatorname{Ad}_{\rho(\gamma)} u \tag{3.2}
\end{equation*}
$$

and $B^{1}\left(\Gamma ; \mathfrak{s l}(n)_{\rho}\right)$ is defined as the set of coboundaries, or the cocycles satisfying Equation (3.2). The quotient is defined to be

$$
H^{1}\left(\Gamma ; \mathfrak{s l}(n)_{\rho}\right)=Z^{1}\left(\Gamma ; \mathfrak{s l}(n)_{\rho}\right) / B^{1}\left(\Gamma ; \mathfrak{s l}(n)_{\rho}\right)
$$

Weil $[18,9]$ has noted that $Z^{1}\left(\Gamma ; \mathfrak{s l}(n)_{\rho}\right)$ contains the tangent space to $R(\Gamma, \operatorname{SL}(n))$ at ρ as a subspace. The following tools can be used to determine if the representation variety is smooth at ρ so that we can study the space of cocycles to determine the first order behavior of deformations of a representation ρ. In the following proposition, $C^{1}\left(\Gamma ; \mathfrak{s l}(n)_{\rho}\right)$ denotes the set of cochains $\{c: \Gamma \rightarrow \mathfrak{s l}(n)\}$.

Proposition 3.1 ([5, Lemma 3.2], [6, Proposition 3.1]). Let $\rho \in R(\Gamma, \operatorname{SL}(n))$, $u_{i} \in$ $C^{1}\left(\Gamma ; \mathfrak{s l}(n)_{\rho}\right), 1 \leq i \leq j$ be given, and $\mathbb{C}[[t]]$ denote the set of formal power series in t with coefficients in \mathbb{C}. If

$$
\rho^{j}(\gamma)=\exp \left(\sum_{i=1}^{j} t^{i} u_{i}(\gamma)\right) \rho(\gamma)
$$

is a homomorphism into $\operatorname{SL}(n, \mathbb{C}[[t]])$ modulo t^{j+1}, then there exists an obstruction class
$\zeta_{j+1}^{\left(u_{1}, \ldots, u_{k}\right)} \in H^{2}\left(\Gamma ; \mathfrak{s l}(n)_{\rho}\right)$ such that:
(1) There is a cochain $u_{j+1}: \Gamma \rightarrow \mathfrak{s l}(n)$ such that

$$
\rho^{j+1}(\gamma)=\exp \left(\sum_{i=1}^{j+1} t^{i} u_{i}(\gamma)\right) \rho(\gamma)
$$

is a homomorphism modulo t^{j+2} if and only if $\zeta_{j+1}=0$.
(2) The obstruction ζ_{j+1} is natural, i.e. if f is a homomorphism then $f^{*} \rho^{j}:=\rho^{j} \circ f$ is also a homomorphism modulo t^{j+1} and $f^{*}\left(\zeta_{j+1}^{\left(u_{1}, \ldots, u_{j}\right)}\right)=\zeta_{j+1}^{\left(f^{*} u_{1}, \ldots, f^{*} u_{j}\right)}$.
We will apply the previous proposition to the restriction map ι^{*} on cohomology, which is induced by the inclusion map $\iota: \partial M \rightarrow M$. As ∂M consists of a disjoint union of tori, we will need to understand $H^{1}\left(\Delta_{i} ; \mathfrak{S l}(n)_{r_{n} \circ \rho}\right)$. Recall that a hyperbolic element of $\operatorname{SL}(2)$ is an element that acts on \mathbb{H}^{3} with no fixed points in \mathbb{H}^{3} and two fixed points on $\partial \mathbb{H}^{3}$. Such elements are characterized by being conjugate in $\operatorname{SL}(2)$ to a diagonal matrix with distinct eigenvalues that are not on the unit circle.

Lemma 3.2. Suppose $\rho: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathrm{SL}(2)$ contains a hyperbolic element in its image. Then $\operatorname{dim} H^{1}\left(\mathbb{Z} \times \mathbb{Z} ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right)=2(n-1)$.

Proof. Suppose $\gamma \in \mathbb{Z} \times \mathbb{Z}$ such that $\rho(\gamma)$ is a hyperbolic element in $\operatorname{SL}(2)$. Then, up to conjugation,

$$
\rho(\gamma)=\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)
$$

for some $|a|>1$. The image of such an element under the irreducible representation $r_{n}: \mathrm{SL}(2) \rightarrow \mathrm{SL}(n)$ is conjugate to a diagonal matrix with n distinct eigenvalues. Hence any nearby representation $\rho^{\prime}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathrm{SL}(n)$ is conjugate to a diagonal matrix with distinct entries. In other words, up to coboundary, we can assume that any class $[z] \in$ $H^{1}\left(\mathbb{Z} \times \mathbb{Z} ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right)$ has the form of a diagonal matrix $z(\gamma)=\operatorname{diag}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where $\operatorname{tr} z(\gamma)=0$. Since for any other $\gamma^{\prime} \in \mathbb{Z} \times \mathbb{Z}$, we have that γ^{\prime} commutes with $\gamma, z\left(\gamma^{\prime}\right)$ must also be diagonal, so the dimension of $H^{1}\left(\mathbb{Z} \times \mathbb{Z}\right.$; sl $\left.(n)_{r_{n} \circ \rho}\right)$ is $2(n-1)$.

Lemma 3.3. Let $\rho: \pi_{1}(M) \rightarrow \operatorname{SL}(2)$ be a non-abelian representation such that $\rho\left(\Delta_{i}\right)$ contains a hyperbolic element for each subgroup Δ_{i} of $\pi_{1}(M)$ associated to a boundary component T_{i} of ∂M. If $\operatorname{dim} H^{1}\left(\Gamma ; \mathfrak{s l}(2)_{r_{n} \circ \rho}\right)=k(n-1)$ where k is the number of components of ∂M, then $\iota^{*}: H^{2}\left(M ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right) \rightarrow H^{2}\left(\partial M ; \mathfrak{s l}(n)_{r_{n} \rho \rho}\right)$ is injective.

Proof. We have the cohomology exact sequence for the pair $(M, \partial M)$,

$$
\begin{aligned}
& H^{1}(M, \partial M) \longrightarrow H^{1}(M) \xrightarrow{\alpha} H^{1}(\partial M) \\
& \\
& \beta H^{2}(M, \partial M) \\
& \longrightarrow H^{2}(M) \longrightarrow \\
& i^{*} H^{2}(\partial M) \\
&
\end{aligned}
$$

where all cohomology groups are taken to be with the twisted coefficients $\mathfrak{s l}(n)_{r_{n} \rho \rho}$. A standard Poincaré duality argument $[6,7,13]$ implies that α has half-dimensional image in $H^{1}(\partial M)$. By Lemma 3.2,

$$
\operatorname{dim} H^{1}\left(\Delta_{i}\right)=2(n-1)
$$

as long as $\rho\left(\Delta_{i}\right)$ contains a hyperbolic element for each i. We can identify $H^{1}(\partial M) \cong$ $\oplus_{i=1}^{k} H^{1}\left(\Delta_{i}\right)$, which has dimension $2 k(n-1)$. Since $H^{1}(M) \cong H^{1}(\Gamma)$ has dimension $k(n-1)$, then α is injective. Since β is dual to α under Poincaré duality, then β is surjective. This implies that ι^{*} is injective.

We now utilize the previous facts to determine sufficient conditions for deforming representations.

Proposition 3.4. Let $\rho: \Gamma \rightarrow \mathrm{SL}(2)$ be a non-abelian representation such that $\rho\left(\Delta_{i}\right)$ contains a hyperbolic element for each subgroup Δ_{i}. If $H^{1}\left(\Gamma ; \mathfrak{s l}(2)_{r_{n} \circ \rho}\right)=k(n-1)$ where k is the number of components of ∂M, then $r_{n} \circ \rho$ is a smooth point of the representation variety $R(\Gamma, \mathrm{SL}(n))$, and it is contained in a unique component of dimension $(n+1+k)(n-1)-$ $\operatorname{dim} H^{0}\left(\Gamma ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right)$.

Proof. We begin by showing that every cocycle in $Z^{1}\left(\Gamma ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right)$ is integrable.
Suppose we have $u_{1}, \ldots, u_{j}: \Gamma \rightarrow \mathfrak{s l}(n)$ such that

$$
\rho_{n}^{j}(\gamma)=\exp \left(\sum_{i=1}^{j} t^{i} u_{i}(\gamma)\right) \rho(\gamma)
$$

is a homomorphism modulo t^{j+1}. By Lemma 3.2 and [14], the restriction of ρ_{n} to Δ_{i} is a smooth point of the representation variety $R\left(\Delta_{i}, \mathrm{SL}(n)\right)$. Hence $\left.\rho_{n}^{j}\right|_{\pi_{1}\left(T_{i}\right)}$ extends to a formal deformation of order $j+1$ by the formal implicit function theorem (see [6], Lemma 3.7). This implies that the restriction of $\zeta_{j+1}^{\left(u_{1}, \ldots, u_{j}\right)}$ to each component $H^{2}\left(T_{i}\right)<H^{2}(\partial M)$ vanishes.

As $H^{2}(\partial M)=\oplus_{i=1}^{k} H^{2}\left(T_{i}\right)$, hence, $\iota^{*} \zeta_{j+1}^{\left(u_{1}, \ldots, u_{j}\right)}=\zeta_{j+1}^{\left(\iota^{*} u_{1}, \ldots, \iota^{*} u_{j}\right)}=0$. The injectivity of ι^{*} follows from Lemma 3.3 and implies that $\zeta_{j+1}^{\left(u_{1}, \ldots, u_{j}\right)}=0$. Hence, the homomorphism can be extended to a deformation $\left(r_{n} \circ \rho\right)^{j+1}$ of order $j+1$, and inductively to a formal deformation $\left(r_{n} \circ \rho\right)^{\infty}$.

Applying [6, Proposition 3.6] to the formal deformation $\left(r_{n} \circ \rho\right)^{\infty}$ results in a convergent deformation. Hence, $r_{n} \circ \rho$ is a smooth point of the representation variety.

As in [5], we note that the exactness of

$$
1 \rightarrow H^{0}\left(\Gamma ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right) \rightarrow \mathfrak{s l}(n)_{r_{n} \circ \rho} \rightarrow B^{1}\left(\Gamma ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right)
$$

implies that

$$
\operatorname{dim} B^{1}\left(\Gamma ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right)=n^{2}-1-\operatorname{dim} H^{0}\left(\Gamma ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right) .
$$

Thus, we conclude that the local dimension of $R(\Gamma, \mathrm{SL}(n))$ is

$$
\operatorname{dim} Z^{1}\left(\Gamma ; \mathfrak{s l}(n)_{r_{n} \rho \rho}\right)=(n+1+k)(n-1)-\operatorname{dim} H^{0}\left(\Gamma ; \mathfrak{s l}(n)_{r_{n} \circ \rho}\right) .
$$

That it is in a unique component follows from [6, Lemma 2.6].

4. Deforming $\rho_{\lambda, n}$

We will now show that $\rho_{\lambda, n}$ satisfies the conditions in Proposition 3.4 so that $\rho_{\lambda, n}$ can be deformed within a neighborhood of representations. This will entail a computation of the dimension of the cohomology group $H^{1}\left(\Gamma_{\phi} ; \mathfrak{s l}(n)_{\rho_{\lambda, n}}\right)$. By the decomposition in Lemma 2.3, the cohomology group $H^{1}\left(\Gamma_{\phi} ; \mathfrak{s l}(n)_{\rho_{\lambda, n}}\right)$ is a direct sum,

$$
H^{1}\left(\Gamma_{\phi} ; \mathfrak{S l}(n)_{\rho_{\lambda, n}}\right) \cong \bigoplus_{j=1}^{n-1} H^{1}\left(\Gamma_{\phi} ; R_{2 j}\right)
$$

so it suffices to compute the dimensions of $H^{1}\left(\Gamma_{\phi} ; R_{2 j}\right)$, for $1 \leq j \leq n-1$.
To simplify the computations which follow, we give a presentation of Γ_{ϕ} with an additional generator $\gamma_{2 g+p}$. We will choose $\gamma_{1}, \ldots, \gamma_{2 g}$ to be standard generators of the fundamental group for the closed surface S_{g}, and $\gamma_{2 g+1}, \ldots, \gamma_{2 g+p}$ to be curves around the p punctures of S. Then $\pi_{1}\left(\Gamma_{\phi}\right)$ has a presentation of the form:

$$
\left\langle\gamma_{1}, \ldots, \gamma_{2 g+p}, \tau \mid \tau \gamma_{i} \tau^{-1}=\phi\left(\gamma_{i}\right), \prod_{i=1}^{g}\left[\gamma_{2 i-1}, \gamma_{2 i}\right]=\prod_{s=1}^{p} \gamma_{2 g+s}\right\rangle .
$$

With these generators for $\pi_{1}(S), \phi^{*}: H^{1}(S) \rightarrow H^{1}(S)$ can be written as a block matrix,

$$
\left(\begin{array}{cc}
{\left[\bar{\phi}^{*}\right]} & {[*]} \\
0 & {[P]}
\end{array}\right)
$$

where $\bar{\phi}^{*}: H^{1}(\bar{S}) \rightarrow H^{1}(\bar{S})$ is the induced map on the first cohomology of the closed surface \bar{S} obtained by filling in the p punctures of S, and $P=\left(p_{i j}\right)$ is a permutation matrix denoting the permutation of the punctures of S under ϕ. In particular, $p_{j k_{j}}=1$ if and only if $\tau \delta_{j} \tau^{-1}$ is conjugate to $\delta_{k_{j}}$, and $p_{j k_{j}}=0$ otherwise. The matrix $\bar{\phi}^{*}$ is a symplectic matrix preserving the intersection form ω on \bar{S}. The eigenvalues of P are roots of unity, with 1 occurring as an eigenvalue once for each cycle in the permutation.

We now compute the cohomological dimension of $H^{1}\left(\Gamma_{\phi} ; R_{2 j}\right)$. The argument uses similar ideas to [8, Theorem 4.1] using the generators $X^{\ell-1} Y^{2 j-\ell}, \ell=0, \ldots, 2 j$, of $R_{2 j}$ and is equivalent up to a coordinate change when $j=1$.

Proposition 4.1. Let $\phi: S \rightarrow S$ be a homeomorphism, with λ^{2} a simple eigenvalue of ϕ^{*}. Suppose also that $|\lambda| \neq 1, \bar{\phi}^{*}: H^{1}(\bar{S}) \rightarrow H^{1}(\bar{S})$ does not have 1 as an eigenvalue, and for each $2 \leq j \leq n-1$, we have that $\lambda^{2 j}$ is not an eigenvalue of ϕ^{*}. Then for each $j, 1 \leq j \leq n-1$, $\operatorname{dim} H^{1}\left(\Gamma_{\phi} ; R_{2 j}\right)=k$ where k is the number of components of ∂M_{ϕ}.

Proof. Let $z \in Z^{1}\left(\Gamma_{\phi}, R_{2 j}\right)$. Then z is determined by its values on $\gamma_{1}, \ldots, \gamma_{2 g+p}$, and τ, subject to the cocycle condition (3.1) imposed by the relations in Γ_{ϕ}. These can be computed via the Fox calculus [9, Chapter 3]. Differentiating the relations

$$
\tau \gamma_{i} \tau^{-1}=\phi\left(\gamma_{i}\right)
$$

yields

$$
\begin{equation*}
\frac{\partial\left[\phi\left(\gamma_{i}\right) \tau \gamma_{i}^{-1} \tau^{-1}\right]}{\partial \gamma_{i}}=\frac{\partial \phi\left(\gamma_{i}\right)}{\partial \gamma_{i}}-\phi\left(\gamma_{i}\right) \tau \gamma_{i}^{-1}=\frac{\partial \phi\left(\gamma_{i}\right)}{\partial \gamma_{i}}-\tau \tag{4.1}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\partial\left[\phi\left(\gamma_{i}\right) \tau \gamma_{i}^{-1} \tau^{-1}\right]}{\partial \gamma_{h}}=\frac{\partial \phi\left(\gamma_{i}\right)}{\partial \gamma_{h}}, \quad i \neq h, \\
& \frac{\partial\left[\phi\left(\gamma_{i}\right) \tau \gamma_{i}^{-1} \tau^{-1}\right]}{\partial \tau}=\phi\left(\gamma_{i}\right)-\phi\left(\gamma_{i}\right) \tau \gamma_{i}^{-1} \tau^{-1}=\phi\left(\gamma_{i}\right)-1
\end{aligned}
$$

A cocycle z then must satisfy the set of equations for $1 \leq i \leq 2 g+p$ of the form

$$
\begin{equation*}
\sum_{h=1}^{2 g+p} \frac{\partial\left[\phi\left(\gamma_{i}\right) \tau \gamma_{i}^{-1} \tau^{-1}\right]}{\partial \gamma_{h}} \cdot z\left(\gamma_{h}\right)+\frac{\partial\left[\phi\left(\gamma_{i}\right) \tau \gamma_{i}^{-1} \tau^{-1}\right]}{\partial \tau} \cdot z(\tau)=0 \tag{4.2}
\end{equation*}
$$

With respect to the basis $X^{0} Y^{2 j}, X^{1} Y^{2 j-1}, \ldots, X^{2 j} Y^{0}$ for $R_{2 j}$, the values $z\left(\gamma_{i}\right)$ can be expressed in coordinates $\left(x_{i, \ell}\right)$, where $x_{i, \ell}$ is the coefficient of $X^{\ell} Y^{2 j-\ell}$ for $z\left(\gamma_{i}\right)$. We similarly express $z(\tau)$ in the coordinates $x_{0, \ell}, 0 \leq \ell \leq 2 j$ with $x_{0, \ell}$ being the $X^{\ell} Y^{2 j-\ell}$ coefficient of $z(\tau)$. Direct calculation shows that

$$
\begin{align*}
\rho\left(\gamma_{i}\right) \cdot X^{\ell} Y^{2 j-\ell} & =\left(X-a_{i} Y\right)^{\ell} Y^{2 j-\ell}=\sum_{m=0}^{\ell}\left(-a_{i}\right)^{m}\binom{\ell}{m} X^{\ell-m} Y^{2 j-\ell+m}, \tag{4.3}\\
\rho(\tau) \cdot X^{\ell} Y^{2 j-\ell} & =\left(\lambda^{-1} X\right)^{\ell}(\lambda Y)^{2 j-\ell}=\lambda^{2 j-2 \ell} X^{\ell} Y^{2 j-\ell} .
\end{align*}
$$

The set of coboundaries can be computed from Equation (3.2) as the set of cocycles z^{\prime} satisfying,

$$
\begin{aligned}
& z^{\prime}\left(\gamma_{i}\right)=\sum_{\ell=0}^{2 j} b_{\ell} X^{\ell} Y^{2 j-\ell}-b_{\ell}\left(X-a_{i} Y\right)^{\ell} Y^{2 j-\ell}=\sum_{\ell=0}^{2 j} \sum_{m=1}^{\ell}-b_{\ell}\left(-a_{i}\right)^{m}\binom{\ell}{m} X^{\ell-m} Y^{2 j-\ell+m}, \\
& z^{\prime}(\tau)=\sum_{\ell=0}^{2 j}\left(b_{\ell}-\lambda^{2 j-2 \ell} b_{\ell}\right) X^{\ell} Y^{2 j-\ell}
\end{aligned}
$$

where $b_{0}, \ldots, b_{2 j} \in \mathbb{C}$ parametrize the set $B^{1}\left(\Gamma_{\phi}, R_{2 j}\right)$ of coboundaries. In particular, adding the appropriate coboundary z^{\prime} to z, we can assume $x_{0, \ell}=0$ for $\ell \neq j$, so that $z(\tau)$ has the form

$$
z(\tau)=x_{0, j} X^{j} Y^{j}
$$

Then z is determined by a vector

$$
\vec{v}=\left(x_{1,0}, \ldots, x_{2 g+p, 0}, \ldots, x_{0, j}, x_{1, j}, \ldots, x_{2 g+p, j}, \ldots, x_{1,2 j}, \ldots, x_{2 g+p, 2 j}\right)^{T}
$$

in the kernel of a block matrix $A=\left(A_{\alpha, \beta}\right)$ where the entries in the i-th row of $A_{\alpha, \beta}$ are the coefficients of the terms $x_{*, \beta} X^{\alpha} Y^{2 j-\alpha}$ in Equation (4.2). Since the image under ρ of any word w in $\left\{\gamma_{i}, \gamma_{i}^{-1}\right\}_{i=1}^{2 g+p}$ has the form

$$
\rho(w)=\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)
$$

for some $a \in \mathbb{C}$, then the previous calculations in Equations (4.3) imply that $A_{\alpha, \beta}=\mathbf{0}$ for $\beta<\alpha$. Moreover, when $\alpha \neq j, A_{\alpha, \alpha}$ is a square matrix, and we note that the coefficient of $X^{\alpha} Y^{2 j-\alpha}$ in $\rho\left(\gamma_{i}\right) \cdot X^{\alpha} Y^{2 j-\alpha}$ is 1 , so that in Equation (4.2), the coefficient of $x_{h, \alpha}$ in the $X^{\alpha} Y^{2 j-\alpha}$ term is the signed number of times that γ_{h} appears in the word $\phi\left(\gamma_{i}\right)$. In addition, Equation (4.2) will contain a single $-\tau \cdot z\left(\gamma_{i}\right)$ term, so that $A_{\alpha, \alpha}=\phi^{*}-\lambda^{2 j-2 \alpha} I$ when $\alpha \neq j$. We also
see that

$$
A_{j, j}=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\left[\begin{array}{l}
\\
\phi^{*}-I
\end{array}\right)\right.
$$

Since $z(\tau)=x_{0, j} X^{j} Y^{j}$, direct calculation also shows that for some matrix K,

$$
A_{j-1, j}=\left(\begin{array}{c|c}
-j \lambda^{2} a_{1} & \\
\vdots & K \\
-j \lambda^{2} a_{2 g+p} &
\end{array}\right)
$$

As λ^{2} is a simple eigenvalue, $\bar{\phi}^{*}$ is symplectic, and the eigenvalues of P are roots of unity, $\phi^{*}-\lambda^{2} I$ and $\phi^{*}-\lambda^{-2} I$ have 1 dimensional kernel. Furthermore, since 1 is not an eigenvalue of $\bar{\phi}^{*}, \phi^{*}-I$ has kernel whose dimension is equal to the number of disjoint cycles of the permutation of the punctures. This is equal to the number of components of ∂M_{ϕ}. In addition, since $\lambda^{2 j-2 \alpha}$ is not an eigenvalue of ϕ^{*} for $\alpha \neq j-1, j, 1$, the kernel of $A_{\alpha, \alpha}$ is trivial in these cases. Hence, the kernel of A has dimension at most $2+k+1$, where

$$
k=\# \text { of components of } \Sigma=\# \text { of components of } \partial M_{\phi} .
$$

The additional dimension comes from the possible contribution to the kernel from the first column of $A_{(j-1), j}$. Consider the submatrix

$$
\begin{aligned}
U & =\left(\begin{array}{c|c|c}
A_{j-1, j-1} & A_{j-1, j} \\
\hline \mathbf{0} & A_{j, j}
\end{array}\right) \\
& =\left(\begin{array}{c|c|c}
\\
\phi^{*}-\lambda^{2} I & -j \lambda^{2} a_{1} & \\
& -j \lambda^{2} a_{2 g+n} & \\
\hline & 0 & \\
\mathbf{0} & \vdots & \phi^{*}-I \\
& 0 &
\end{array}\right) .
\end{aligned}
$$

If $\operatorname{null}(A)>2+k$, then we must have that $\operatorname{null}(U)>k+1$.
Since λ^{2} is a simple eigenvalue of ϕ^{*} and $\left(a_{1}, \ldots, a_{2 g+p}\right)^{T}$ is an eigenvector of the λ^{2} eigenspace, $\left(a_{1}, \ldots, a_{2 g+p}\right)^{T}$ is not in the image of $\phi^{*}-\lambda^{2} I$. Hence, for any $x=\left(x_{1, j}, \ldots\right.$, $\left.x_{2 g+p, j}\right)^{T}$ in the kernel of $\phi^{*}-I$, there is a unique $x_{0, j}$ such that $K x-x_{0, j}\left(a_{1}, \ldots, a_{2 g+p}\right)^{T}$ is in the image of $\phi^{*}-\lambda^{2} I$. Therefore, $\operatorname{null}(U)=k+1$.

Hence $\operatorname{null}(A)=2+k$. However, the solution arising from the kernel of $\phi^{*}-\lambda^{2} I$ is the eigenvector

$$
\left(0, \ldots, 0, x_{1, j}, \ldots, x_{2 g+p, j}, 0, \ldots, 0\right)^{T}=\left(0, \ldots, 0, a_{1}, \ldots, a_{2 g+p}, 0, \ldots, 0\right)^{T}
$$

which is a coboundary. So we have that $\operatorname{dim} H^{1}\left(\Gamma_{\phi} ; R_{2 j}\right) \leq k+1$. Finally, there is one further redundancy since

$$
\prod_{i=1}^{g}\left[\gamma_{2 i-1}, \gamma_{2 i}\right]=\prod_{s=1}^{p} \gamma_{2 g+s} .
$$

From the $\phi^{*}-I$ in $A_{j, j}$, we can see that $x_{j, 2 g+1}, \ldots, x_{j, 2 g+p}$ can be freely chosen as long as $x_{j, 2 g+s}=x_{j, 2 g+t}$ whenever $\gamma_{2 g+s}$ and $\gamma_{2 g+t}$ are in the same cycle of P. Since $|\lambda| \neq 1$, for any eigenvector of $\phi^{*}, a_{2 g+1}=\cdots=a_{2 g+p}=0$, so the $X^{j} Y^{j}$ coefficient of $z\left(\Pi_{s=1}^{n} \gamma_{2 g+s}\right)$ can be chosen to be any quantity

$$
\begin{equation*}
x_{j, 2 g+1}+\cdots+x_{j, 2 g+p} \tag{4.4}
\end{equation*}
$$

The relation $\Pi_{i=1}^{g}\left[\gamma_{2 i}, \gamma_{2 i+1}\right]=\prod_{s=1}^{p} \gamma_{2 g+s}$ relates the sum in Equation (4.4) to the $X^{j} Y^{j}$ coefficient of $\Pi_{i=1}^{g}\left[\gamma_{2 i}, \gamma_{2 i+1}\right]$, which has no dependence on $x_{j, 2 g+s}$, for $1 \leq s \leq p$. This imposes a 1-dimensional relation on the space of cocycles, and we conclude that

$$
\operatorname{dim} H^{1}\left(\Gamma_{\phi}, R_{2 j}\right)=k
$$

We now prove Theorem 1.1 and Theorem 1.2.
Proof of Theorem 1.1. By Lemma 2.3, $\mathfrak{s l}(n)$ is the direct sum of $R_{2 j}, j=1, \ldots, n-$ 1. The conditions on the eigenvalues of ϕ^{*} and Proposition 4.1 imply that for each j, $\operatorname{dim} H^{1}\left(\Gamma_{\phi} ; R_{2 j}\right)=k$. Hence $\operatorname{dim} H^{1}\left(\Gamma_{\phi}, \mathfrak{s l}(n)_{\rho_{\lambda, n}}\right)=k(n-1)$. By Proposition 3.4, this implies smoothness of $R\left(\Gamma_{\phi}, \operatorname{SL}(n)\right)$ at $\rho_{\lambda, n}$. Since $\rho_{\lambda, n}$ is non-abelian, it has trivial infinitesimal centralizer, so $H^{0}\left(\Gamma_{\phi} ; R_{2}\right)=0$, so that the local dimension is $(n+1+k)(n-1)$.

We obtain the special case in Theorem 1.2 when λ^{2} is the dilatation of a pseudo-Anosov map ϕ.

Proof of Theorem 1.2. When the stable and unstable foliations of ϕ are orientable, it is a well-known fact that the dilatation is a simple eigenvalue and the largest eigenvalue of ϕ^{*} (see [4], [10], [12]). Hence, ϕ satisfies the conditions of Theorem 1.1.

From [8], we know that there are hyperbolic deformations of $\rho_{\lambda}=\rho_{\lambda, 2}$, which are irreducible representations since they correspond to hyperbolic structures. The composition of these deformations with the irreducible representation r_{n} then provides nearby deformations of $\rho_{\lambda, n}$ which are also irreducible.

5. Description of deformations

Recall that the action of Γ_{ϕ} on $\mathfrak{s l}(n)$ is given by composing $\rho_{\lambda, n}$ with the adjoint representation. That is, for $\gamma \in \Gamma_{\phi}$ and $c \in \mathfrak{s l}(n)$,

$$
\gamma \cdot c=\operatorname{Ad}_{\rho_{\lambda, n}(\gamma)}(c)=\rho_{\lambda, n}(\gamma) c \rho_{\lambda, n}(\gamma)^{-1}
$$

Let E_{j} denote the j-th standard basis vector for \mathbb{C}^{n}. Then every element of $\mathfrak{s l}(n)$ is a linear combination of the matrices $E_{j, \ell}=E_{j} \cdot E_{\ell}^{T}$. In order to obtain a useful description of the action of Γ_{ϕ} on $\mathfrak{s l}(n)$, it suffices to compute the action of γ on $E_{j, \ell}$ for a set of generators of Γ_{ϕ}. By direct calculation,

$$
\begin{align*}
& \begin{aligned}
& \gamma_{i} \cdot E_{j, \ell}=r_{n}\left(\left[\begin{array}{cc}
1 & a_{i} \\
0 & 1
\end{array}\right]\right) E_{j} \cdot E_{\ell}^{T} r_{n}\left(\left[\begin{array}{cc}
1 & a_{i} \\
0 & 1
\end{array}\right]\right)^{-1}=\left(\begin{array}{c}
\left(-a_{i}\right)^{j-1}\binom{j-1}{\ell-1} \\
\left(-a_{i}\right)^{j-2}\binom{j-1}{\ell-2} \\
\vdots \\
\left(-a_{i}\right)^{0}\binom{j-1}{0} \\
0 \\
\vdots \\
0
\end{array}\right)\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
\left(a_{i}\right)^{1}\binom{\ell}{1} \\
\left(a_{i}\right)^{2}\binom{\ell+1}{2} \\
\vdots \\
\left(a_{i}\right)^{n-\ell}\binom{n-1}{n-\ell}
\end{array}\right)^{T} \\
& \begin{aligned}
\tau \cdot E_{j, \ell} & =r_{n}\left(\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right]\right) E_{j} \cdot E_{\ell}^{T} r_{n}\left(\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right]\right)^{-1} \\
& =\lambda^{2(n-j+1)} E_{j} \cdot E_{\ell}^{T} \lambda^{-2(n-\ell+1)}=\lambda^{2(\ell-j)} E_{j, \ell} .
\end{aligned}
\end{aligned}{ }^{2} . \tag{5.1}
\end{align*}
$$

Notably, the actions of Γ_{ϕ} on the (j, ℓ)-coordinates of $\mathfrak{s l}(n)$ have no contributions to all rows $>j$ and all columns $<\ell$. Applying analogous calculations as in the proof of Proposition 4.1 to the relations in Γ_{ϕ}, we find that if $z: \Gamma_{\phi} \rightarrow \mathfrak{s l}(n)_{\rho_{\lambda, n}}$ is a cocycle and $z_{j, \ell}\left(\gamma_{i}\right)$ is the (j, ℓ)-coordinate of $z\left(\gamma_{i}\right)$, then the vector

$$
\vec{v}_{n, 1}=\left(\begin{array}{c}
z_{n, 1}\left(\gamma_{1}\right) \\
\vdots \\
z_{n, 1}\left(\gamma_{2 g+p}\right)
\end{array}\right)=\left(z_{n, 1}\left(\gamma_{i}\right)\right)
$$

is a solution to $\left(\phi^{*}-\lambda^{-2(n-1)} I\right) \vec{v}_{n, 1}=\mathbf{0}$. Since $\lambda^{-2(n-1)}$ is not an eigenvalue of ϕ^{*}, it follows that $\vec{v}_{n, 1}=\mathbf{0}$.

Since $\vec{v}_{n, 1}=\mathbf{0}$, when the relations in Γ_{ϕ} applied to z are restricted to the $(n-1,1)$ coordinate and the ($n, 2$)-coordinate, we obtain that $\vec{v}_{n-1,1}=\left(z_{n-1,1}\left(\gamma_{i}\right)\right)$ and $\vec{v}_{n, 2}=\left(z_{n, 2}\left(\gamma_{i}\right)\right)$ are solutions to $\left(\phi^{*}-\lambda^{-2(n-2)} I\right) \vec{v}=\mathbf{0}$. A straightforward induction combined with Equations (5.1) then shows that $z_{j, \ell}\left(\gamma_{i}\right)=0$ for all $j>\ell+1$ while $\vec{v}_{j, \ell}=\left(z_{j, \ell}\left(\gamma_{i}\right)\right)$ is a λ^{-2}-eigenvector of ϕ^{*} when $j=\ell+1$, i.e. the subdiagonal entries of $z\left(\gamma_{i}\right) \in \mathfrak{s l}(n)$ are coordinates from eigenvectors of ϕ^{*}, and all other entries below the diagonal are 0 . This provides $n-1$ generators of cocycles. The others come from the 1-eigenspaces of ϕ^{*} when applying the cocycle conditions to the diagonal entries of $z\left(\gamma_{i}\right)$.

We have that $\mathfrak{s l}(n)$ can be associated with the tangent space to $\operatorname{SL}(n)$ at the identity, and multiplying $z\left(\gamma_{i}\right)$ by $\rho_{\lambda, n}\left(\gamma_{i}\right)$ gives the derivative at $\rho_{\lambda, n}\left(\gamma_{i}\right)$. The previous calculations then imply that if $\rho_{t}: \Gamma_{\phi} \rightarrow \operatorname{SL}(n)$ is a path of representations such that $\rho_{0}=\rho_{\lambda, n}$, then the subdiagonal entries of $\rho_{t}^{\prime}\left(\gamma_{i}\right)$ at $t=0$ are equal to the subdiagonal entries of $z\left(\gamma_{i}\right)$. Hence, for each j, ℓ, there exists at least one i for which $z_{j, \ell}\left(\gamma_{i}\right) \neq 0$.

Note that in the case that λ^{2} is the dilatation of a pseudo-Anosov map ϕ as in Theorem 1.2, the subdiagonal entries of the irreducible representations obtained by deforming ρ_{λ} in SL(2) and composing with r_{n} to obtain a deformation of $\rho_{\lambda, n}$ necessarily satisfy certain relations. In particular, the first derivatives of the subdiagonal entries would have to be fixed multiples of entries of the λ^{-2}-eigenvector determined by the irreducible representation r_{n}. As described above, the deformations in $\operatorname{SL}(n)$ allow the derivatives to be freely chosen multiples of the $n-1$ generators, so there are deformations which are not from deformations of ρ_{λ} that are composed with r_{n}. Since the set of irreducible representations is an open subset

Fig. 1. The curves $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ which form the basis for $H_{1}(S)$, and γ.
of the space of $R\left(\pi_{1}\left(M_{\phi}\right), \mathrm{SL}(n)\right)$ (see, for example, [2, Lemma 1.4.2], [15, Proposition 27]), this also implies there are nearby irreducible representations which are not from composing deformations of ρ_{λ} with r_{n}.

6. Example

The genus 2 example $\phi: S_{2,2} \rightarrow S_{2,2}$ from [8], obtained from taking the left Dehn twists $T_{\beta_{1}}, T_{\beta_{2}}, T_{\gamma}$, followed by the right Dehn twists $T_{\alpha_{1}}^{-1}, T_{\alpha_{2}}^{-1}$, satisfies the hypotheses of Theorem 1.2. Each component of $S_{2} \backslash\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \gamma\right\}$ contains one of the two punctures. The map on cohomology $\bar{\phi}^{*}$ has two simple eigenvalues $\lambda_{1}^{2}=\frac{5+\sqrt{21}}{2}$ and $\lambda_{2}^{2}=\frac{3+\sqrt{5}}{2}$, along with their reciprocals λ_{1}^{-2} and λ_{2}^{-2}. The reducible representations $\rho_{\lambda_{i}, n}$ are smooth points of $R\left(\Gamma_{\phi}, \mathrm{SL}(n)\right)$, each on a component of dimension $(n+3)(n-1)$. There is a two-dimensional family of irreducible representations in $X\left(\Gamma_{\phi}, \mathrm{SL}(n)\right)$, which is the image of a two-dimensional family of irreducible representations in $X\left(\Gamma_{\phi}, \mathrm{SL}(2)\right)$ under r_{n}, limiting to $\rho_{\lambda_{1}, n}$.

References

[1] B. Gerhard: Darstellungen von knotengruppen, Math. Ann. 173 (1967), 24-33.
[2] M. Culler and P.B. Shalen: Varieties of group representations and splittings of 3-manifolds, Ann. of Math. (2) 117 (1983), 109-146.
[3] G. de Rham: Introduction aux polynomes d'un noeud, Enseign. Math. (2) 13 (1968), 187-194.
[4] A. Fathi, L. François and V. Poénaru: Thurston's Work on Surfaces, Mathematical Notes 48, Princeton University Press, Princeton, NJ, 2012. Translated from the 1979 French original by D.M. Kim and D. Margalit.
[5] M. Heusener and O. Medjerab: Deformations of reducible representations of knot groups into $\operatorname{SL}(n, \mathbf{C})$, Math. Slovaca 66 (2016), 1091-1104.
[6] M. Heusener, J. Porti and E. Suárez Peiró: Deformations of reducible representations of 3-manifold groups into $\mathrm{SL}_{2}(\mathbb{C})$, J. Reine Angew. Math. 530 (2001), 191-227.
[7] C.D. Hodgson and S.P. Kerckhff: Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998), 1-59.
[8] K. Kozai: Hyperbolic structures from sol on pseudo-anosov mapping tori, Geom. Topol. 20 (2016), 437468.
[9] A. Lubotzky and A.R. Magid: Varieties of Representations of Finitely Generated Groups, Mem. Amer. Math. Soc. 58 (1985), no. 336.
[10] C.T. McMullen: Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003), 857-885.
[11] P. Menal-Ferrer and J. Porti: Twisted cohomology for hyperbolic three manifolds, Osaka J. Math. 49 (2012), 741-769.
[12] R.C. Penner: Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), 443-450.
[13] J. Porti: Torsion de Reidemeister pour les Variétés Hyperboliques, Mem. Amer. Math. Soc. 128 (1997), no. 612.
[14] R.W. Richardson: Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), 311-327.
[15] A.S. Sikora: Character varieties, Trans. Amer. Math. Soc. 364 (2012), 5173-5208.
[16] T.A. Springer: Invariant theory, Lecture Notes in Mathematics 585, Springer-Verlag, Berlin-New York, 1977.
[17] W.P. Thurston: A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, i-vi and 99-130.
[18] A. Weil: Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157.

Department of Mathematics
Southern Connecticut State University
501 Crescent Street, New Haven, CT 06515
USA
e-mail: kozaik1@southernct.edu

