

Title	DEFORMATIONS OF REDUCIBLE SL(n, C) REPRESENTATIONS OF FIBERED 3-MANIFOLD GROUPS
Author(s)	Kozai, Kenji
Citation	Osaka Journal of Mathematics. 2022, 59(3), p. 515-527
Version Type	VoR
URL	https://doi.org/10.18910/88484
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

DEFORMATIONS OF REDUCIBLE $\mathrm{SL}(n,\mathbb{C})$ REPRESENTATIONS OF FIBERED 3-MANIFOLD GROUPS

KENJI KOZAI

(Received August 21, 2020, revised March 24, 2021)

Abstract

Let M_{ϕ} be a surface bundle over a circle with monodromy $\phi: S \to S$. We study deformations of certain reducible representations of $\pi_1(M_{\phi})$ into $\mathrm{SL}(n,\mathbb{C})$, obtained by composing a reducible representation into $\mathrm{SL}(2,\mathbb{C})$ with the irreducible representation $\mathrm{SL}(2,\mathbb{C}) \to \mathrm{SL}(n,\mathbb{C})$. In particular, we show that under certain conditions on the eigenvalues of ϕ^* , the reducible representation is contained in a (n+1+k)(n-1) dimensional component of the representation variety, where k is the number of components of ∂M_{ϕ} . This result applies to mapping tori of pseudo-Anosov maps with orientable invariant foliations whenever 1 is not an eigenvalue of the induced map on homology, where the reducible representation is also a limit of irreducible representations.

1. Introduction

Suppose that $S = S_{g,p}$ is a surface of genus g with $p \ge 1$ punctures, where 2g + p > 2. Then S admits a hyperbolic structure. If $\phi : S \to S$ is a homeomorphism, we can form the mapping torus $M_{\phi} = S \times [0,1]/(x,1) \sim (\phi(x),0)$. Whenever λ^2 is an eigenvalue of $\phi^* : H^1(S) \to H^1(S)$ with eigenvector $(a_1,\ldots,a_{2g+p-1})^T$ with respect to a generating set $\{[\gamma_1],\ldots,[\gamma_{2g+p-1}]\}$ of $H^1(S)$, we obtain a reducible representation $\rho_{\lambda} : \pi_1(M_{\phi}) \to \mathrm{SL}(2,\mathbb{C})$ by defining,

$$\rho_{\lambda}(\gamma_i) = \begin{pmatrix} 1 & a_i \\ 0 & 1 \end{pmatrix},$$

$$\rho_{\lambda}(\tau) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix},$$

where τ is the generator of the fundamental group of the S^1 base of the fiber bundle $S \to M_\phi \to S^1$. (Recall that a representation $\rho: G \to \mathrm{GL}(n,\mathbb{C})$ is *reducible* if the image $\rho(G)$ preserves a proper subspace of \mathbb{C}^n , and otherwise is called *irreducible*.)

When M_{ϕ} is the complement of a knot K in S^3 , this observation was originally made by Burde [1] and de Rham [3]. Furthermore, the Alexander polynomial is the characteristic polynomial of ϕ^* , so the condition on λ is equivalent to the condition that λ^2 is a root of the Alexander polynomial $\Delta_K(t)$. It was shown in [6] that the non-abelian, metabelian, reducible representation ρ_{λ} is the limit of irreducible representations if λ^2 is a simple root of $\Delta_K(t)$. Heusener and Medjerab [5] have also shown using an inductive argument that the conclusion still holds in $SL(n, \mathbb{C})$, $n \geq 3$, if ρ_{λ} is composed with the irreducible representation

²⁰²⁰ Mathematics Subject Classification. 57K31, 57K32, 57K35.

 $r_n : \mathrm{SL}(2,\mathbb{C}) \to \mathrm{SL}(n,\mathbb{C})$. These results apply even if the knot complement is not fibered, as long as λ^2 is a simple root of $\Delta_K(t)$.

In this paper, we show that reducible $SL(n,\mathbb{C})$ representations of fibered 3-manifolds groups obtained as the composition $\rho_{\lambda,n}=r_n\circ\rho_\lambda$ can be deformed to irreducible representations using a more direct calculation of the deformation space using coordinates for $\mathfrak{sl}(n,\mathbb{C})$. If the punctures form a single orbit under ϕ and the mapping torus M_ϕ is the complement of a fibered knot, then the results of [6] and [5] apply. The main result in Theorem 1.1 also covers the cases where M_ϕ is the complement of a fibered link L with $k\geq 2$ components L_1,\ldots,L_k , or a k-cusped fibered manifold which is not a link complement. In the statement of Theorem 1.1, $\bar{\phi}$ is the homeomorphism on $\bar{S}=S_{g,0}$ obtained from ϕ by filling in the p punctures of $S_{g,p}$. This defines a homeomorphism $\bar{\phi}:\bar{S}\to\bar{S}$.

Theorem 1.1. Suppose that λ^2 is a simple eigenvalue of ϕ^* . If $|\lambda| \neq 1$, $\bar{\phi}^* : H^1(\bar{S}) \to H^1(\bar{S})$ does not have 1 as an eigenvalue, and if for each $2 \leq j \leq n-1$, we have that λ^{2j} is not an eigenvalue of ϕ^* , then $\rho_{\lambda,n}$ is a smooth point of the representation variety $R(\pi_1(M_\phi), SL(n, \mathbb{C}))$, contained in a unique component of dimension (n+1+k)(n-1).

Note that for a knot complement, the Alexander polynomial satisfies $\Delta_K(1)=\pm 1$. Hence for a knot complement, the condition that $\bar{\phi}^*:H^1(\bar{S})\to H^1(\bar{S})$ does not have 1 as an eigenvalue (in the fibered case) or the corresponding condition that 1 is not a root of $\Delta_K(t)$ (in the non-fibered case) is automatically satisfied. For a generic mapping torus, a fixed point of $\bar{\phi}^*$ implies that the closed manifold obtained as the mapping torus of $\bar{\phi}$ has second Betti number at least 2, in which case the manifold fibers over a circle in infinitely many ways [17]. Heuristically, this leads to more infinitesimal deformations. When the local dimension of infinitesimal dimensions is higher than half the dimension of $H^1(\partial M_\phi)$, the standard techniques using Poincaré duality to show smoothness of the space of representations cannot be used. Whether the reducible representation can be obtained as a limit of irreducible representations in this case is unknown.

When ϕ is a pseudo-Anosov element of the mapping class group, λ^2 is the dilatation factor of ϕ , and the p punctures are exactly the singular points of the invariant foliations of ϕ , $\rho_{\lambda} = \rho_{\lambda,2}$ is shown to have deformations to irreducible representations under some additional conditions on the eigenvalues of $\bar{\phi}^*$, the map on the closed surface S_g , in [8]. We show that under the same hypotheses, the same holds for $\rho_{\lambda,n}$ when n > 2.

Theorem 1.2. Suppose that λ^2 is the dilatation of a pseudo-Anosov map ϕ such that the stable and unstable foliations are orientable, and the singular points coincide with the punctures of S. Suppose also that 1 is not an eigenvalue of $\bar{\phi}^*$. Then $\rho_{\lambda,n}$ is a limit of irreducible $SL(n, \mathbb{C})$ representations and is a smooth point of $R(\pi_1(M_\phi), SL(n, \mathbb{C}))$, contained in a unique component of dimension (n + 1 + k)(n - 1).

In Section 2, we give the basic definitions and background about representations of $SL(2,\mathbb{C})$ into $SL(n,\mathbb{C})$. Section 3 discusses the general theory of deformations, and Section 4 contains the main results, including relevant cohomological calculations.

2. Representations into $SL(n, \mathbb{C})$

For notational convenience, we denote $SL(n) = SL(n, \mathbb{C})$, $\mathfrak{sl}(n) = \mathfrak{sl}(n, \mathbb{C})$, $GL(n) = GL(n, \mathbb{C})$, and $\Gamma_{\phi} = \pi_1(M_{\phi})$. Note that we have the following identities in SL(2):

(2.1)
$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix},$$

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & \lambda^2 a \\ 0 & 1 \end{pmatrix}.$$

Thus, if λ^2 is an eigenvalue of $\phi^*: H^1(S) \to H^1(S)$, $\{[\gamma_1], \dots, [\gamma_{2g+p-1}]\}$ generate $H^1(S)$, and $(a_1, \dots, a_{2g+p-1})^T$ is an eigenvector for λ^2 , we can define

$$\rho_{\lambda}(\gamma_i) = \begin{pmatrix} 1 & a_i \\ 0 & 1 \end{pmatrix},$$

$$\rho_{\lambda}(\tau) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}.$$

Since $\pi_1(\Gamma_{\phi})$ is a semi-direct product of the free group $\pi_1(S) = \langle \gamma_1, \dots, \gamma_{2g+p-1} \rangle$ with $\pi_1(S^1) = \langle \tau \rangle$ satisfying the relations $\tau \gamma_i \tau^{-1} = \phi(\gamma_i)$ and ϕ^* maps the vector $(a_1, \dots, a_{2g+p-1})^T$ to $\lambda^2(a_1, \dots, a_{2g+p-1})^T$, the identities (2.1) imply that this defines a representation $\rho_{\lambda} : \Gamma_{\phi} \to \mathrm{SL}(2)$.

We now describe representations of SL(2) into SL(n), which we will compose with ρ_{γ} to obtain representations $\Gamma_{\phi} \to SL(n)$. A more general version of the discussion in this section can be found in [5, Section 4].

Let $R = \mathbb{C}[X, Y]$ be the polynomial algebra on two variables. We have an action of SL(2) on R by,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot X = dX - bY,$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot Y = -cX + aY,$$

for $\binom{a \ b}{c \ d} \in SL(2)$. Let $R_{n-1} \subset R$ denote the n-dimensional subspace of homogenous polynomials of degree n-1, generated by $X^{\ell-1}Y^{n-\ell}$, $1 \le \ell \le n$. The action of SL(2) leaves R_{n-1} invariant, turning R_{n-1} into a SL(2) module, and we obtain a representation $r_n: SL(2) \to GL(R_{n-1})$. We can identify R_{n-1} with \mathbb{C}^n by identifying the basis elements $\{X^{\ell-1}Y^{n-\ell}\}$ with the standard basis elements $\{e_\ell\}$ of \mathbb{C}^n . The induced isomorphism turns r_n into a representation $SL(2) \to GL(n) \cong GL(R_{n-1})$, which we will also call r_n . The representation r_n is rational, that is the coefficients of the matrix coordinates of $r_n\binom{a \ b}{c \ d}$ are polynomials in a,b,c,d.

We have the following two well-known results about r_n .

Lemma 2.1 ([16, Lemma 3.1.3 (ii)]). The representation r_n is irreducible.

Lemma 2.2 ([16, Lemma 3.2.1]). Any irreducible rational representation of $SL(2, \mathbb{C})$ is conjugate to some r_n .

It is easy to check that r_n maps the unipotent matrices $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}$ to unipotent elements of $SL(R_{n-1})$, and the diagonal element $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ is mapped to the diagonal element diag $(a^{n-1}, a^{n-3}, \ldots, a^{-n+1})$. Since these elements generate SL(2), the image of r_n lies in

 $SL(R_{n-1}) \cong SL(n)$.

We now define $\rho_{\lambda,n} = r_n \circ \rho_{\lambda}$. As we will only be considering the case when λ^2 is a simple eigenvalue of ϕ^* and the above lemmas imply the uniqueness of r_n , this gives a well-defined and unique (up to conjugation) representation $\rho_{\lambda,n} : \Gamma_{\phi} \to \mathrm{SL}(n)$.

By composing $\rho_{\lambda,n}$ with the adjoint representation, we also obtain an action of Γ_{ϕ} on $\mathfrak{sl}(n)$, turning it into a Γ_{ϕ} module. The following decomposition is a consequence of the Clebsch–Gordan formula (see, for example, [11, Lemma 1.4]).

Lemma 2.3. With the
$$\Gamma_{\phi}$$
 module structure, $\mathfrak{sl}(n) \cong \bigoplus_{j=1}^{n-1} R_{2j}$.

This decomposition will be used to calculate the infinitesimal deformations of $\rho_{\lambda,n}$.

3. Infinitesimal deformations

In this section, let M be a 3-manifold with finitely many torus boundary components $\partial M = \bigsqcup_{i=1}^k T_i$ and $\Gamma = \pi_1(M)$. For each boundary torus T_i , the inclusion map $\iota : T_i \to M$ induces a map from $\pi_1(T_i)$ to a conjugacy class of subgroups isomorphic to $\pi_1(T_i) \cong \mathbb{Z} \times \mathbb{Z}$ in $\pi_1(M)$. To each boundary component T_i , we associate $\pi_1(T_i)$ with a representative subgroup Δ_i in Γ . Let $R(\Gamma, \operatorname{SL}(n)) = \operatorname{Hom}(\Gamma, \operatorname{SL}(n))$ be the variety of representations of Γ into $\operatorname{SL}(n)$ and $X(\Gamma, \operatorname{SL}(n)) = R(\Gamma, \operatorname{SL}(n))$ | $\operatorname{SL}(n)$ be the $\operatorname{SL}(n)$ character variety, where the quotient is the GIT quotient as $\operatorname{SL}(n)$ acts by conjugation.

Suppose $\rho: \Gamma \to \mathrm{SL}(n)$ is a representation. The group of twisted cocycles $Z^1(\Gamma; \mathfrak{sl}(n)_\rho)$ is defined as the set of maps $z: \Gamma \to \mathfrak{sl}(n)$ that satisfy the twisted cocycle condition

$$(3.1) z(ab) = z(a) + \operatorname{Ad}_{o(a)}z(b),$$

which can be interpreted as the derivative of the homomorphism condition for a smooth family of representation ρ_t at ρ . The derivative of the triviality condition that ρ_t is a smooth family of representations obtained by conjugating ρ gives the coboundary condition,

(3.2)
$$z(\gamma) = u - \mathrm{Ad}_{\rho(\gamma)}u,$$

and $B^1(\Gamma; \mathfrak{sl}(n)_{\rho})$ is defined as the set of coboundaries, or the cocycles satisfying Equation (3.2). The quotient is defined to be

$$H^1(\Gamma; \mathfrak{sl}(n)_{\varrho}) = Z^1(\Gamma; \mathfrak{sl}(n)_{\varrho})/B^1(\Gamma; \mathfrak{sl}(n)_{\varrho}).$$

Weil [18, 9] has noted that $Z^1(\Gamma; \mathfrak{sl}(n)_{\rho})$ contains the tangent space to $R(\Gamma, SL(n))$ at ρ as a subspace. The following tools can be used to determine if the representation variety is smooth at ρ so that we can study the space of cocycles to determine the first order behavior of deformations of a representation ρ . In the following proposition, $C^1(\Gamma; \mathfrak{sl}(n)_{\rho})$ denotes the set of cochains $\{c: \Gamma \to \mathfrak{sl}(n)\}$.

Proposition 3.1 ([5, Lemma 3.2], [6, Proposition 3.1]). Let $\rho \in R(\Gamma, SL(n))$, $u_i \in C^1(\Gamma; \mathfrak{sl}(n)_{\rho})$, $1 \leq i \leq j$ be given, and $\mathbb{C}[[t]]$ denote the set of formal power series in t with coefficients in \mathbb{C} . If

$$\rho^{j}(\gamma) = \exp\left(\sum_{i=1}^{j} t^{i} u_{i}(\gamma)\right) \rho(\gamma)$$

is a homomorphism into $SL(n, \mathbb{C}[[t]])$ modulo t^{j+1} , then there exists an obstruction class

 $\zeta_{j+1}^{(u_1,\dots,u_k)} \in H^2(\Gamma;\mathfrak{sl}(n)_\rho)$ such that:

(1) There is a cochain $u_{j+1}: \Gamma \to \mathfrak{sl}(n)$ such that

$$\rho^{j+1}(\gamma) = \exp\left(\sum_{i=1}^{j+1} t^i u_i(\gamma)\right) \rho(\gamma)$$

is a homomorphism modulo t^{j+2} if and only if $\zeta_{j+1} = 0$.

(2) The obstruction ζ_{j+1} is natural, i.e. if f is a homomorphism then $f^*\rho^j := \rho^j \circ f$ is also a homomorphism modulo t^{j+1} and $f^*(\zeta_{j+1}^{(u_1,\dots,u_j)}) = \zeta_{j+1}^{(f^*u_1,\dots,f^*u_j)}$.

We will apply the previous proposition to the restriction map ι^* on cohomology, which is induced by the inclusion map $\iota: \partial M \to M$. As ∂M consists of a disjoint union of tori, we will need to understand $H^1(\Delta_i; \mathfrak{sl}(n)_{r_n \circ \rho})$. Recall that a *hyperbolic* element of SL(2) is an element that acts on \mathbb{H}^3 with no fixed points in \mathbb{H}^3 and two fixed points on $\partial \mathbb{H}^3$. Such elements are characterized by being conjugate in SL(2) to a diagonal matrix with distinct eigenvalues that are not on the unit circle.

Lemma 3.2. Suppose $\rho: \mathbb{Z} \times \mathbb{Z} \to SL(2)$ contains a hyperbolic element in its image. Then dim $H^1(\mathbb{Z} \times \mathbb{Z}; \mathfrak{sl}(n)_{r_n \circ \rho}) = 2(n-1)$.

Proof. Suppose $\gamma \in \mathbb{Z} \times \mathbb{Z}$ such that $\rho(\gamma)$ is a hyperbolic element in SL(2). Then, up to conjugation,

$$\rho(\gamma) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix},$$

for some |a| > 1. The image of such an element under the irreducible representation $r_n : \operatorname{SL}(2) \to \operatorname{SL}(n)$ is conjugate to a diagonal matrix with n distinct eigenvalues. Hence any nearby representation $\rho' : \mathbb{Z} \times \mathbb{Z} \to \operatorname{SL}(n)$ is conjugate to a diagonal matrix with distinct entries. In other words, up to coboundary, we can assume that any class $[z] \in H^1(\mathbb{Z} \times \mathbb{Z}; \mathfrak{sl}(n)_{r_n \circ \rho})$ has the form of a diagonal matrix $z(\gamma) = \operatorname{diag}(y_1, y_2, \ldots, y_n)$ where $\operatorname{tr} z(\gamma) = 0$. Since for any other $\gamma' \in \mathbb{Z} \times \mathbb{Z}$, we have that γ' commutes with γ , $z(\gamma')$ must also be diagonal, so the dimension of $H^1(\mathbb{Z} \times \mathbb{Z}; \mathfrak{sl}(n)_{r_n \circ \rho})$ is 2(n-1).

Lemma 3.3. Let $\rho: \pi_1(M) \to \operatorname{SL}(2)$ be a non-abelian representation such that $\rho(\Delta_i)$ contains a hyperbolic element for each subgroup Δ_i of $\pi_1(M)$ associated to a boundary component T_i of ∂M . If $\dim H^1(\Gamma; \mathfrak{sl}(2)_{r_n \circ \rho}) = k(n-1)$ where k is the number of components of ∂M , then $\iota^*: H^2(M; \mathfrak{sl}(n)_{r_n \circ \rho}) \to H^2(\partial M; \mathfrak{sl}(n)_{r_n \circ \rho})$ is injective.

Proof. We have the cohomology exact sequence for the pair $(M, \partial M)$,

$$H^{1}(M, \partial M) \longrightarrow H^{1}(M) \xrightarrow{\alpha} H^{1}(\partial M)$$

$$\xrightarrow{\beta} H^{2}(M, \partial M) \longrightarrow H^{2}(M) \xrightarrow{\iota^{*}} H^{2}(\partial M)$$

$$\longrightarrow H^{3}(M, \partial M) \longrightarrow \cdots$$

where all cohomology groups are taken to be with the twisted coefficients $\mathfrak{sl}(n)_{r_n \circ \rho}$. A standard Poincaré duality argument [6, 7, 13] implies that α has half-dimensional image in $H^1(\partial M)$. By Lemma 3.2,

$$\dim H^1(\Delta_i) = 2(n-1),$$

as long as $\rho(\Delta_i)$ contains a hyperbolic element for each i. We can identify $H^1(\partial M) \cong \bigoplus_{i=1}^k H^1(\Delta_i)$, which has dimension 2k(n-1). Since $H^1(M) \cong H^1(\Gamma)$ has dimension k(n-1), then α is injective. Since β is dual to α under Poincaré duality, then β is surjective. This implies that ι^* is injective.

We now utilize the previous facts to determine sufficient conditions for deforming representations.

Proposition 3.4. Let $\rho: \Gamma \to \operatorname{SL}(2)$ be a non-abelian representation such that $\rho(\Delta_i)$ contains a hyperbolic element for each subgroup Δ_i . If $H^1(\Gamma; \mathfrak{sl}(2)_{r_n \circ \rho}) = k(n-1)$ where k is the number of components of ∂M , then $r_n \circ \rho$ is a smooth point of the representation variety $R(\Gamma, \operatorname{SL}(n))$, and it is contained in a unique component of dimension $(n+1+k)(n-1) - \dim H^0(\Gamma; \mathfrak{sl}(n)_{r_n \circ \rho})$.

Proof. We begin by showing that every cocycle in $Z^1(\Gamma; \mathfrak{sl}(n)_{r_n \circ \rho})$ is integrable. Suppose we have $u_1, \ldots, u_i : \Gamma \to \mathfrak{sl}(n)$ such that

$$\rho_n^j(\gamma) = \exp\left(\sum_{i=1}^j t^i u_i(\gamma)\right) \rho(\gamma)$$

is a homomorphism modulo t^{j+1} . By Lemma 3.2 and [14], the restriction of ρ_n to Δ_i is a smooth point of the representation variety $R(\Delta_i, \operatorname{SL}(n))$. Hence $\rho_n^j|_{\pi_1(T_i)}$ extends to a formal deformation of order j+1 by the formal implicit function theorem (see [6], Lemma 3.7). This implies that the restriction of $\zeta_{j+1}^{(u_1,\dots,u_j)}$ to each component $H^2(T_i) < H^2(\partial M)$ vanishes.

As $H^2(\partial M) = \bigoplus_{i=1}^k H^2(T_i)$, hence, $\iota^*\zeta_{j+1}^{(u_1,\dots,u_j)} = \zeta_{j+1}^{(\iota^*u_1,\dots,\iota^*u_j)} = 0$. The injectivity of ι^* follows from Lemma 3.3 and implies that $\zeta_{j+1}^{(u_1,\dots,u_j)} = 0$. Hence, the homomorphism can be extended to a deformation $(r_n \circ \rho)^{j+1}$ of order j+1, and inductively to a formal deformation $(r_n \circ \rho)^{\infty}$.

Applying [6, Proposition 3.6] to the formal deformation $(r_n \circ \rho)^{\infty}$ results in a convergent deformation. Hence, $r_n \circ \rho$ is a smooth point of the representation variety.

As in [5], we note that the exactness of

$$1 \to H^0(\Gamma; \mathfrak{sl}(n)_{r_n \circ \rho}) \to \mathfrak{sl}(n)_{r_n \circ \rho} \to B^1(\Gamma; \mathfrak{sl}(n)_{r_n \circ \rho})$$

implies that

$$\dim B^1(\Gamma; \mathfrak{sl}(n)_{r_n \circ \rho}) = n^2 - 1 - \dim H^0(\Gamma; \mathfrak{sl}(n)_{r_n \circ \rho}).$$

Thus, we conclude that the local dimension of $R(\Gamma, SL(n))$ is

$$\dim Z^{1}(\Gamma; \mathfrak{sl}(n)_{r_{n} \circ \rho}) = (n+1+k)(n-1) - \dim H^{0}(\Gamma; \mathfrak{sl}(n)_{r_{n} \circ \rho}).$$

That it is in a unique component follows from [6, Lemma 2.6].

4. Deforming $\rho_{\lambda,n}$

We will now show that $\rho_{\lambda,n}$ satisfies the conditions in Proposition 3.4 so that $\rho_{\lambda,n}$ can be deformed within a neighborhood of representations. This will entail a computation of the dimension of the cohomology group $H^1(\Gamma_{\phi}; \mathfrak{sl}(n)_{\rho_{\lambda,n}})$. By the decomposition in Lemma 2.3, the cohomology group $H^1(\Gamma_{\phi}; \mathfrak{sl}(n)_{\rho_{\lambda,n}})$ is a direct sum,

$$H^1(\Gamma_\phi;\mathfrak{sl}(n)_{
ho_{\lambda,n}})\cong igoplus_{j=1}^{n-1}H^1(\Gamma_\phi;R_{2j}),$$

so it suffices to compute the dimensions of $H^1(\Gamma_{\phi}; R_{2j})$, for $1 \le j \le n - 1$.

To simplify the computations which follow, we give a presentation of Γ_{ϕ} with an additional generator γ_{2g+p} . We will choose $\gamma_1, \ldots, \gamma_{2g}$ to be standard generators of the fundamental group for the closed surface S_g , and $\gamma_{2g+1}, \ldots, \gamma_{2g+p}$ to be curves around the p punctures of S. Then $\pi_1(\Gamma_{\phi})$ has a presentation of the form:

$$\left\langle \gamma_1, \ldots, \gamma_{2g+p}, \tau \mid \tau \gamma_i \tau^{-1} = \phi(\gamma_i), \prod_{i=1}^g [\gamma_{2i-1}, \gamma_{2i}] = \prod_{s=1}^p \gamma_{2g+s} \right\rangle.$$

With these generators for $\pi_1(S)$, $\phi^*: H^1(S) \to H^1(S)$ can be written as a block matrix,

$$\begin{pmatrix} [\bar{\phi}^*] & [*] \\ 0 & [P] \end{pmatrix},$$

where $\bar{\phi}^*: H^1(\bar{S}) \to H^1(\bar{S})$ is the induced map on the first cohomology of the closed surface \bar{S} obtained by filling in the p punctures of S, and $P=(p_{ij})$ is a permutation matrix denoting the permutation of the punctures of S under ϕ . In particular, $p_{jk_j}=1$ if and only if $\tau \delta_j \tau^{-1}$ is conjugate to δ_{k_j} , and $p_{jk_j}=0$ otherwise. The matrix $\bar{\phi}^*$ is a symplectic matrix preserving the intersection form ω on \bar{S} . The eigenvalues of P are roots of unity, with 1 occurring as an eigenvalue once for each cycle in the permutation.

We now compute the cohomological dimension of $H^1(\Gamma_{\phi}; R_{2j})$. The argument uses similar ideas to [8, Theorem 4.1] using the generators $X^{\ell-1}Y^{2j-\ell}$, $\ell=0,\ldots,2j$, of R_{2j} and is equivalent up to a coordinate change when j=1.

Proposition 4.1. Let $\phi: S \to S$ be a homeomorphism, with λ^2 a simple eigenvalue of ϕ^* . Suppose also that $|\lambda| \neq 1$, $\bar{\phi}^*: H^1(\bar{S}) \to H^1(\bar{S})$ does not have 1 as an eigenvalue, and for each $2 \leq j \leq n-1$, we have that λ^{2j} is not an eigenvalue of ϕ^* . Then for each $j, 1 \leq j \leq n-1$, dim $H^1(\Gamma_{\phi}; R_{2j}) = k$ where k is the number of components of ∂M_{ϕ} .

Proof. Let $z \in Z^1(\Gamma_{\phi}, R_{2j})$. Then z is determined by its values on $\gamma_1, \ldots, \gamma_{2g+p}$, and τ , subject to the cocycle condition (3.1) imposed by the relations in Γ_{ϕ} . These can be computed via the Fox calculus [9, Chapter 3]. Differentiating the relations

$$\tau \gamma_i \tau^{-1} = \phi(\gamma_i),$$

yields

(4.1)
$$\frac{\partial [\phi(\gamma_i)\tau\gamma_i^{-1}\tau^{-1}]}{\partial \gamma_i} = \frac{\partial \phi(\gamma_i)}{\partial \gamma_i} - \phi(\gamma_i)\tau\gamma_i^{-1} = \frac{\partial \phi(\gamma_i)}{\partial \gamma_i} - \tau,$$

$$\frac{\partial [\phi(\gamma_i)\tau\gamma_i^{-1}\tau^{-1}]}{\partial \gamma_h} = \frac{\partial \phi(\gamma_i)}{\partial \gamma_h}, \quad i \neq h,$$

$$\frac{\partial [\phi(\gamma_i)\tau\gamma_i^{-1}\tau^{-1}]}{\partial \tau} = \phi(\gamma_i) - \phi(\gamma_i)\tau\gamma_i^{-1}\tau^{-1} = \phi(\gamma_i) - 1.$$

A cocycle z then must satisfy the set of equations for $1 \le i \le 2g + p$ of the form

(4.2)
$$\sum_{h=1}^{2g+p} \frac{\partial [\phi(\gamma_i)\tau \gamma_i^{-1}\tau^{-1}]}{\partial \gamma_h} \cdot z(\gamma_h) + \frac{\partial [\phi(\gamma_i)\tau \gamma_i^{-1}\tau^{-1}]}{\partial \tau} \cdot z(\tau) = 0.$$

With respect to the basis X^0Y^{2j} , X^1Y^{2j-1} , ..., $X^{2j}Y^0$ for R_{2j} , the values $z(\gamma_i)$ can be expressed in coordinates $(x_{i,\ell})$, where $x_{i,\ell}$ is the coefficient of $X^\ell Y^{2j-\ell}$ for $z(\gamma_i)$. We similarly express $z(\tau)$ in the coordinates $x_{0,\ell}$, $0 \le \ell \le 2j$ with $x_{0,\ell}$ being the $X^\ell Y^{2j-\ell}$ coefficient of $z(\tau)$. Direct calculation shows that

(4.3)
$$\rho(\gamma_{i}) \cdot X^{\ell} Y^{2j-\ell} = (X - a_{i} Y)^{\ell} Y^{2j-\ell} = \sum_{m=0}^{\ell} (-a_{i})^{m} \binom{\ell}{m} X^{\ell-m} Y^{2j-\ell+m},$$
$$\rho(\tau) \cdot X^{\ell} Y^{2j-\ell} = (\lambda^{-1} X)^{\ell} (\lambda Y)^{2j-\ell} = \lambda^{2j-2\ell} X^{\ell} Y^{2j-\ell}.$$

The set of coboundaries can be computed from Equation (3.2) as the set of cocycles z' satisfying,

$$\begin{split} z'(\gamma_i) &= \sum_{\ell=0}^{2j} b_\ell X^\ell Y^{2j-\ell} - b_\ell (X - a_i Y)^\ell Y^{2j-\ell} = \sum_{\ell=0}^{2j} \sum_{m=1}^{\ell} -b_\ell (-a_i)^m \binom{\ell}{m} X^{\ell-m} Y^{2j-\ell+m}, \\ z'(\tau) &= \sum_{\ell=0}^{2j} (b_\ell - \lambda^{2j-2\ell} b_\ell) X^\ell Y^{2j-\ell}, \end{split}$$

where $b_0, \ldots, b_{2j} \in \mathbb{C}$ parametrize the set $B^1(\Gamma_{\phi}, R_{2j})$ of coboundaries. In particular, adding the appropriate coboundary z' to z, we can assume $x_{0,\ell} = 0$ for $\ell \neq j$, so that $z(\tau)$ has the form

$$z(\tau) = x_{0,j} X^j Y^j.$$

Then z is determined by a vector

$$\vec{v} = (x_{1,0}, \dots, x_{2g+p,0}, \dots, x_{0,j}, x_{1,j}, \dots, x_{2g+p,j}, \dots, x_{1,2j}, \dots, x_{2g+p,2j})^T$$

in the kernel of a block matrix $A = (A_{\alpha,\beta})$ where the entries in the *i*-th row of $A_{\alpha,\beta}$ are the coefficients of the terms $x_{*,\beta}X^{\alpha}Y^{2j-\alpha}$ in Equation (4.2). Since the image under ρ of any word w in $\{\gamma_i, \gamma_i^{-1}\}_{i=1}^{2g+p}$ has the form

$$\rho(w) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

for some $a \in \mathbb{C}$, then the previous calculations in Equations (4.3) imply that $A_{\alpha,\beta} = \mathbf{0}$ for $\beta < \alpha$. Moreover, when $\alpha \neq j$, $A_{\alpha,\alpha}$ is a square matrix, and we note that the coefficient of $X^{\alpha}Y^{2j-\alpha}$ in $\rho(\gamma_i) \cdot X^{\alpha}Y^{2j-\alpha}$ is 1, so that in Equation (4.2), the coefficient of $x_{h,\alpha}$ in the $X^{\alpha}Y^{2j-\alpha}$ term is the signed number of times that γ_h appears in the word $\phi(\gamma_i)$. In addition, Equation (4.2) will contain a single $-\tau \cdot z(\gamma_i)$ term, so that $A_{\alpha,\alpha} = \phi^* - \lambda^{2j-2\alpha}I$ when $\alpha \neq j$. We also

see that

$$A_{j,j} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \left[\phi^* - I \right].$$

Since $z(\tau) = x_{0,i}X^jY^j$, direct calculation also shows that for some matrix K,

$$A_{j-1,j} = \begin{pmatrix} -j\lambda^2 a_1 \\ \vdots \\ -j\lambda^2 a_{2g+p} \end{pmatrix} K.$$

As λ^2 is a simple eigenvalue, $\bar{\phi}^*$ is symplectic, and the eigenvalues of P are roots of unity, $\phi^* - \lambda^2 I$ and $\phi^* - \lambda^{-2} I$ have 1 dimensional kernel. Furthermore, since 1 is not an eigenvalue of $\bar{\phi}^*$, $\phi^* - I$ has kernel whose dimension is equal to the number of disjoint cycles of the permutation of the punctures. This is equal to the number of components of ∂M_{ϕ} . In addition, since $\lambda^{2j-2\alpha}$ is not an eigenvalue of ϕ^* for $\alpha \neq j-1$, j, 1, the kernel of $A_{\alpha,\alpha}$ is trivial in these cases. Hence, the kernel of A has dimension at most 2 + k + 1, where

$$k = \#$$
 of components of $\Sigma = \#$ of components of ∂M_{ϕ} .

The additional dimension comes from the possible contribution to the kernel from the first column of $A_{(j-1),j}$. Consider the submatrix

$$U = \begin{pmatrix} A_{j-1,j-1} & A_{j-1,j} \\ \hline \mathbf{0} & A_{j,j} \end{pmatrix}$$

$$= \begin{pmatrix} \phi^* - \lambda^2 I & \vdots & K \\ -j\lambda^2 a_{2g+n} & & & \\ \hline \mathbf{0} & \vdots & \phi^* - I \\ 0 & & 0 \end{pmatrix}.$$

If null(A) > 2 + k, then we must have that null(U) > k + 1.

Since λ^2 is a simple eigenvalue of ϕ^* and $(a_1, \ldots, a_{2g+p})^T$ is an eigenvector of the λ^2 eigenspace, $(a_1, \ldots, a_{2g+p})^T$ is not in the image of $\phi^* - \lambda^2 I$. Hence, for any $x = (x_{1,j}, \ldots, x_{2g+p,j})^T$ in the kernel of $\phi^* - I$, there is a unique $x_{0,j}$ such that $Kx - x_{0,j}(a_1, \ldots, a_{2g+p})^T$ is in the image of $\phi^* - \lambda^2 I$. Therefore, null(U) = k + 1.

Hence $\operatorname{null}(A) = 2 + k$. However, the solution arising from the kernel of $\phi^* - \lambda^2 I$ is the eigenvector

$$(0,\ldots,0,x_{1,j},\ldots,x_{2q+p,j},0,\ldots,0)^T=(0,\ldots,0,a_1,\ldots,a_{2q+p},0,\ldots,0)^T$$

which is a coboundary. So we have that dim $H^1(\Gamma_{\phi}; R_{2j}) \le k + 1$. Finally, there is one further redundancy since

$$\prod_{i=1}^{g} [\gamma_{2i-1}, \gamma_{2i}] = \prod_{s=1}^{p} \gamma_{2g+s}.$$

From the $\phi^* - I$ in $A_{j,j}$, we can see that $x_{j,2g+1}, \ldots, x_{j,2g+p}$ can be freely chosen as long as $x_{j,2g+s} = x_{j,2g+t}$ whenever γ_{2g+s} and γ_{2g+t} are in the same cycle of P. Since $|\lambda| \neq 1$, for any eigenvector of ϕ^* , $a_{2g+1} = \cdots = a_{2g+p} = 0$, so the $X^j Y^j$ coefficient of $z(\prod_{s=1}^n \gamma_{2g+s})$ can be chosen to be any quantity

$$(4.4) x_{j,2q+1} + \dots + x_{j,2q+p}.$$

The relation $\Pi_{i=1}^g[\gamma_{2i}, \gamma_{2i+1}] = \Pi_{s=1}^p \gamma_{2g+s}$ relates the sum in Equation (4.4) to the $X^j Y^j$ coefficient of $\Pi_{i=1}^g[\gamma_{2i}, \gamma_{2i+1}]$, which has no dependence on $x_{j,2g+s}$, for $1 \le s \le p$. This imposes a 1-dimensional relation on the space of cocycles, and we conclude that

$$\dim H^1(\Gamma_{\phi}, R_{2i}) = k.$$

We now prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. By Lemma 2.3, $\mathfrak{sl}(n)$ is the direct sum of R_{2j} , $j=1,\ldots,n-1$. The conditions on the eigenvalues of ϕ^* and Proposition 4.1 imply that for each j, $\dim H^1(\Gamma_\phi;R_{2j})=k$. Hence $\dim H^1(\Gamma_\phi,\mathfrak{sl}(n)_{\rho_{\lambda,n}})=k(n-1)$. By Proposition 3.4, this implies smoothness of $R(\Gamma_\phi,\operatorname{SL}(n))$ at $\rho_{\lambda,n}$. Since $\rho_{\lambda,n}$ is non-abelian, it has trivial infinitesimal centralizer, so $H^0(\Gamma_\phi;R_2)=0$, so that the local dimension is (n+1+k)(n-1).

We obtain the special case in Theorem 1.2 when λ^2 is the dilatation of a pseudo-Anosov map ϕ .

Proof of Theorem 1.2. When the stable and unstable foliations of ϕ are orientable, it is a well-known fact that the dilatation is a simple eigenvalue and the largest eigenvalue of ϕ^* (see [4], [10], [12]). Hence, ϕ satisfies the conditions of Theorem 1.1.

From [8], we know that there are hyperbolic deformations of $\rho_{\lambda} = \rho_{\lambda,2}$, which are irreducible representations since they correspond to hyperbolic structures. The composition of these deformations with the irreducible representation r_n then provides nearby deformations of $\rho_{\lambda,n}$ which are also irreducible.

5. Description of deformations

Recall that the action of Γ_{ϕ} on $\mathfrak{sl}(n)$ is given by composing $\rho_{\lambda,n}$ with the adjoint representation. That is, for $\gamma \in \Gamma_{\phi}$ and $c \in \mathfrak{sl}(n)$,

$$\gamma \cdot c = \mathrm{Ad}_{\rho_{\lambda,n}(\gamma)}(c) = \rho_{\lambda,n}(\gamma) c \rho_{\lambda,n}(\gamma)^{-1}.$$

Let E_j denote the j-th standard basis vector for \mathbb{C}^n . Then every element of $\mathfrak{sl}(n)$ is a linear combination of the matrices $E_{j,\ell} = E_j \cdot E_\ell^T$. In order to obtain a useful description of the action of Γ_{ϕ} on $\mathfrak{sl}(n)$, it suffices to compute the action of γ on $E_{j,\ell}$ for a set of generators of Γ_{ϕ} . By direct calculation,

$$\gamma_{i} \cdot E_{j,\ell} = r_{n} \begin{pmatrix} 1 & a_{i} \\ 0 & 1 \end{pmatrix} E_{j} \cdot E_{\ell}^{T} r_{n} \begin{pmatrix} 1 & a_{i} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} (-a_{i})^{j-1} \binom{j-1}{\ell-1} \\ (-a_{i})^{j-2} \binom{j-1}{\ell-2} \\ \vdots \\ (-a_{i})^{0} \binom{j-1}{0} \\ \vdots \\ (-a_{i})^{0} \binom{j-1}{0} \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ (a_{i})^{1} \binom{\ell}{1} \\ (a_{i})^{2} \binom{\ell+1}{2} \\ \vdots \\ (a_{i})^{n-\ell} \binom{n-1}{n-\ell} \end{pmatrix} \\
\tau \cdot E_{j,\ell} = r_{n} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} E_{j} \cdot E_{\ell}^{T} r_{n} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}^{-1} \\
= \lambda^{2(n-j+1)} E_{j} \cdot E_{\ell}^{T} \lambda^{-2(n-\ell+1)} = \lambda^{2(\ell-j)} E_{j,\ell}.$$

Notably, the actions of Γ_{ϕ} on the (j,ℓ) -coordinates of $\mathfrak{sl}(n)$ have no contributions to all rows > j and all columns $< \ell$. Applying analogous calculations as in the proof of Proposition 4.1 to the relations in Γ_{ϕ} , we find that if $z : \Gamma_{\phi} \to \mathfrak{sl}(n)_{\rho_{\lambda,n}}$ is a cocycle and $z_{j,\ell}(\gamma_i)$ is the (j,ℓ) -coordinate of $z(\gamma_i)$, then the vector

$$\vec{v}_{n,1} = \begin{pmatrix} z_{n,1}(\gamma_1) \\ \vdots \\ z_{n,1}(\gamma_{2q+p}) \end{pmatrix} = (z_{n,1}(\gamma_i))$$

is a solution to $(\phi^* - \lambda^{-2(n-1)}I)\vec{v}_{n,1} = \mathbf{0}$. Since $\lambda^{-2(n-1)}$ is not an eigenvalue of ϕ^* , it follows that $\vec{v}_{n,1} = \mathbf{0}$.

Since $\vec{v}_{n,1} = \mathbf{0}$, when the relations in Γ_{ϕ} applied to z are restricted to the (n-1,1)-coordinate and the (n,2)-coordinate, we obtain that $\vec{v}_{n-1,1} = (z_{n-1,1}(\gamma_i))$ and $\vec{v}_{n,2} = (z_{n,2}(\gamma_i))$ are solutions to $(\phi^* - \lambda^{-2(n-2)}I)\vec{v} = \mathbf{0}$. A straightforward induction combined with Equations (5.1) then shows that $z_{j,\ell}(\gamma_i) = 0$ for all $j > \ell + 1$ while $\vec{v}_{j,\ell} = (z_{j,\ell}(\gamma_i))$ is a λ^{-2} -eigenvector of ϕ^* when $j = \ell + 1$, i.e. the subdiagonal entries of $z(\gamma_i) \in \mathfrak{sl}(n)$ are coordinates from eigenvectors of ϕ^* , and all other entries below the diagonal are 0. This provides n-1 generators of cocycles. The others come from the 1-eigenspaces of ϕ^* when applying the cocycle conditions to the diagonal entries of $z(\gamma_i)$.

We have that $\mathfrak{sl}(n)$ can be associated with the tangent space to SL(n) at the identity, and multiplying $z(\gamma_i)$ by $\rho_{\lambda,n}(\gamma_i)$ gives the derivative at $\rho_{\lambda,n}(\gamma_i)$. The previous calculations then imply that if $\rho_t: \Gamma_{\phi} \to SL(n)$ is a path of representations such that $\rho_0 = \rho_{\lambda,n}$, then the subdiagonal entries of $\rho'_t(\gamma_i)$ at t = 0 are equal to the subdiagonal entries of $z(\gamma_i)$. Hence, for each z_i , there exists at least one z_i for which z_i , z_i and z_i there exists at least one z_i for which z_i , z_i and z_i is a path of representations such that z_i is a path of representation z_i .

Note that in the case that λ^2 is the dilatation of a pseudo-Anosov map ϕ as in Theorem 1.2, the subdiagonal entries of the irreducible representations obtained by deforming ρ_{λ} in SL(2) and composing with r_n to obtain a deformation of $\rho_{\lambda,n}$ necessarily satisfy certain relations. In particular, the first derivatives of the subdiagonal entries would have to be fixed multiples of entries of the λ^{-2} -eigenvector determined by the irreducible representation r_n . As described above, the deformations in SL(n) allow the derivatives to be freely chosen multiples of the n-1 generators, so there are deformations which are not from deformations of ρ_{λ} that are composed with r_n . Since the set of irreducible representations is an open subset

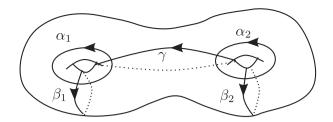


Fig. 1. The curves $\alpha_1, \alpha_2, \beta_1, \beta_2$ which form the basis for $H_1(S)$, and γ .

of the space of $R(\pi_1(M_\phi), SL(n))$ (see, for example, [2, Lemma 1.4.2], [15, Proposition 27]), this also implies there are nearby irreducible representations which are not from composing deformations of ρ_{λ} with r_n .

6. Example

The genus 2 example $\phi: S_{2,2} \to S_{2,2}$ from [8], obtained from taking the left Dehn twists $T_{\beta_1}, T_{\beta_2}, T_{\gamma}$, followed by the right Dehn twists $T_{\alpha_1}, T_{\alpha_2}^{-1}$, satisfies the hypotheses of Theorem 1.2. Each component of $S_2 \setminus \{\alpha_1, \beta_1, \alpha_2, \beta_2, \gamma\}$ contains one of the two punctures. The map on cohomology $\bar{\phi}^*$ has two simple eigenvalues $\lambda_1^2 = \frac{5+\sqrt{21}}{2}$ and $\lambda_2^2 = \frac{3+\sqrt{5}}{2}$, along with their reciprocals λ_1^{-2} and λ_2^{-2} . The reducible representations $\rho_{\lambda_l,n}$ are smooth points of $R(\Gamma_{\phi}, SL(n))$, each on a component of dimension (n+3)(n-1). There is a two-dimensional family of irreducible representations in $X(\Gamma_{\phi}, SL(n))$, which is the image of a two-dimensional family of irreducible representations in $X(\Gamma_{\phi}, SL(2))$ under r_n , limiting to $\rho_{\lambda_l,n}$.

References

- [1] B. Gerhard: Darstellungen von knotengruppen, Math. Ann. 173 (1967), 24–33.
- [2] M. Culler and P.B. Shalen: *Varieties of group representations and splittings of 3-manifolds*, Ann. of Math. (2) **117** (1983), 109–146.
- [3] G. de Rham: Introduction aux polynomes d'un noeud, Enseign. Math. (2) 13 (1968), 187-194.
- [4] A. Fathi, L. François and V. Poénaru: Thurston's Work on Surfaces, Mathematical Notes 48, Princeton University Press, Princeton, NJ, 2012. Translated from the 1979 French original by D.M. Kim and D. Margalit.
- [5] M. Heusener and O. Medjerab: *Deformations of reducible representations of knot groups into* SL(n, C), Math. Slovaca **66** (2016), 1091–1104.
- [6] M. Heusener, J. Porti and E. Suárez Peiró: Deformations of reducible representations of 3-manifold groups into SL₂(C), J. Reine Angew. Math. 530 (2001), 191–227.
- [7] C.D. Hodgson and S.P. Kerckhff: *Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery*, J. Differential Geom. **48** (1998), 1–59.
- [8] K. Kozai: Hyperbolic structures from sol on pseudo-anosov mapping tori, Geom. Topol. 20 (2016), 437–468
- [9] A. Lubotzky and A.R. Magid: Varieties of Representations of Finitely Generated Groups, Mem. Amer. Math. Soc. 58 (1985), no. 336.
- [10] C.T. McMullen: Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003), 857–885.
- [11] P. Menal-Ferrer and J. Porti: *Twisted cohomology for hyperbolic three manifolds*, Osaka J. Math. **49** (2012), 741–769.
- [12] R.C. Penner: Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), 443–450.

- [13] J. Porti: Torsion de Reidemeister pour les Variétés Hyperboliques, Mem. Amer. Math. Soc. 128 (1997), no. 612.
- [14] R.W. Richardson: *Commuting varieties of semisimple Lie algebras and algebraic groups*, Compositio Math. **38** (1979), 311–327.
- [15] A.S. Sikora: Character varieties, Trans. Amer. Math. Soc. 364 (2012), 5173–5208.
- [16] T.A. Springer: Invariant theory, Lecture Notes in Mathematics 585, Springer-Verlag, Berlin-New York, 1977.
- [17] W.P. Thurston: A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. **59** (1986), no. **339**, i–vi and 99–130.
- [18] A. Weil: Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149–157.

Department of Mathematics Southern Connecticut State University 501 Crescent Street, New Haven, CT 06515 USA

e-mail: kozaik1@southernct.edu