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Abstract
We establish a quandle version of the twisted Alexander polynomial. We also develop a theory
that reduces the size of a twisted Alexander matrix with column relations. The reduced matrix
can be used to refine invariants derived from the twisted Alexander matrix.

1. Introduction

The twisted Alexander polynomial [9, 11] is a twisted version of the Alexander polyno-
mial, which is twisted by a group representation. The twisted Alexander polynomial is an
invariant for a pair of a (knot) group and its group representation. Behavior of the twisted
Alexander polynomial for topological properties of knots such as the genus and fiberedness
has been studied (e.g. [1, 4, 7, 8]). A quandle [6, 10] is an algebra whose axioms correspond
to the Reidemeister moves on link diagrams. A knot quandle is known as a complete knot
invariant, although it is not easy to distinguish two knot quandles. In this paper, we introduce
a quandle version of the twisted Alexander polynomial, which is an invariant for a pair of
a (knot) quandle and its quandle representation. It can be used to extract information from
knot quandles.

The usual (twisted) Alexander polynomial is defined through a reduced (twisted) Alexan-
der matrix, which is obtained by using one relation between columns of the (twisted) Alexan-
der matrix. In this paper, we also develop a theory that reduces the size of a quandle twisted
Alexander matrix with column relations, where the quandle twisted Alexander matrix is a
matrix obtained by using the derivative with an Alexander pair introduced in [5]. We empha-
size that our theory covers multiple relations between columns of a matrix. We introduce
a notion of a column relation map, which controls a relation between columns. We then
construct an invariant through the reduced quandle twisted Alexander matrix.

This paper is organized as follows. In Section 2, we introduce a column relation matrix
of a matrix and define an equivalence relation on pairs of matrices and their column relation
matrices. We introduce two invariants for the equivalence classes. In Section 3, we recall
quandle presentations and Tietze transformations on them. In Section 4, we recall a quandle
derivative and introduce a column relation map, which yields a column relation matrix. In
Section 5, we see that an Alexander pair and a column relation map give an invariant of (link)
quandles, whose invariance is proven in Section 7. We also see that the twisted Alexander
polynomial is recoverable as an invariant in our framework. In Section 6, we give calcu-
lation examples of our invariant. In Section 8§, we introduce the notion of cohomologous
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684 A. Isam anp K. OsHIRO

for Alexander pairs and column relation maps and show that cohomologous Alexander pairs
and column relation maps induce the same invariant.

2. Relation matrices

In this section, we introduce a column relation matrix of a matrix and define an equiv-
alence relation on pairs of matrices and their column relation matrices. We introduce two
invariants for the equivalence classes.

Let R be aring. We denote by M(m, n; R) the set of m xn matrices over R. We say that two
matrices A; and A, over R are equivalent (A} ~ A) if they are related by a finite sequence
of the following transformations:

o (a,....a...,aj,....a,) o (ay,....,a;+a;r,...,a;,...,a,) (r €R),
a ag
a; ai+raj n A 0
: : €R A A .
o || : (r ), ° <—>(0), ° <—>(0 1)
a;j a;
a, a,

We denote the n X n identity matrix by E, or simply E. Letey,...,e, be the standard unit
column vectors in R”, that is, (e, ...,e,) = E,. We set

Elj(r) = (elv""ej—laej +rei9ej+l""aen)9

whose (i, j)-entry is r. Then, the first and second transformations are written as A < AE ;(r)
and A & E;;(r)A, respectively. We also set

Pij:=(e1,....ej,....e;,...,e,),
which is a permutation matrix. We denote by R* the group of units of R.

Proposition 2.1 (c.f. [5]). We have the following equivalences:

D) (ay,....a;....a;,...,a,) ~(ay,...,4;,...,—a,...,a,),
2) (ay,...,a;,...,a,) ~(ay,...,au,...,a,) (u€e R,
a; a;
a a;
i aj : :
G~} (4)|a; | ~ |ua; | (u € R).
a; —-a; : :
a, a,
a, a,

Let R be a commutative ring, and let A € M(m, n;R). A k-minor of A is the determinant
of a k X k submatrix of A. The (Oth) elementary ideal E(A) of A is the ideal of R generated
by all n-minors of A if n < m; otherwise E(A) = 0. Suppose that R is a GCD domain.
Then, the (0th) Alexander invariant A(A) of A is the greatest common divisor of all n-
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minors of A if n < m; otherwise A(A) = 0. We remark that A(A) coincides with the greatest
common divisor of generators of E(A) and is determined up to unit multiple. If A ~ B, then
E(A) = E(B) and A(A) = A(B), where the symbol = indicates equality up to a unit factor.
See [3] for more details.

Remark 2.2. We may regard a matrix in M(m, n; M(k, k; R)) as a matrix in M (km, kn; R).
We call such matrices flat matrices, and emphasize that equivalent matrices are equivalent
as flat matrices. The twisted Alexander polynomial is defined through this process.

Lemma 2.3. Let R be a commutative ring. For A € M(m,n;R) and B € M(n,n;R), we
have E(AB) = (det B)E(A). Let R be a GCD domain. For A € M(m,n;R) and B € M(n,n; R),
we have A(AB) = (det B)A(A).

Proof. If n < m, we have

E(AB) = I({det A’B| A’ is an n X n submatrix of A})
= (det B)I({detA"| A’ is an n X n submatrix of A})
= (det B)E(A);

otherwise E(AB) = 0 = (det B)E(A), where I(S) denotes the ideal generated by a set S. Then
A(AB) = (det B)A(A) follows from E(AB) = (det B)E(A). O

Let R be aring. For A = (a;j)) € M(m,n;R), i = (i1,...,i,) and j = (ji,..., j,), we define

Aiji Qiyj, =0 Qi
. Airji  Qirjy " iy,
Aij=1| . )
Aigj,  Qigj, -~ digj,
For example,
asp  dsg
Asp.04) =
ary day

for A = (a;;) € M(4,4; R). We further note that
Ai,j = t(e,'l, e ,ei&)A(ejl, . ,ejr).

Putn := (1,...,n). Forl < n, we set S,(l) := {(c(1),...,0()|oc € S,}. Forj =
(Jis---»Jj1) € Su(l), we denote by j© the vector obtained by removing ji, ..., j; from 7.

DeriNiTION 2.4. Let A € M(m,n;R). We call B € M(n,l;R) a column relation matrix of
A if AB = O. A column relation matrix B € M(n,[; R) is regular if det Bjj # 0 for some

J € Su(D).

Let R be an integral domain. For a,b € R\ {0} and ideals /, J of R, we write I/a = J/b
if bI = aJ, where al := {ax|x € I}. Fora,b € R\ {0} and x,y € R, we write x/a = y/b if
bx = ay. We remark that these are equivalence relations.
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DeriniTiON 2.5. Let A € M(m,n;R). Let B € M(n,[;R) be a regular column relation
matrix of A. We choose j € S,(/) so that det B;; # 0. When R is an integral domain, we
define

E(A, B) := E(Ap jc)/ det B .
When R is a GCD domain, we define
A(A, B) := A(Ap,jo)/ det Bj.

When we consider E(A, B), we implicitly assume that the base ring is an integral domain.
When we consider A(A, B), we implicitly assume that the base ring is a GCD domain. The
following proposition implies that E(A, B) and A(A, B) are independent of the choices of j.

Proposition 2.6. Let A € M(m,n;R). Let B € M(n,l;R) be a regular column relation
matrix of A. We choose j,k € S,(l) so that detB;; # 0 and detBy; # 0. When R is an
integral domain, we have

E(Aﬁ/l,])/ det B],l_ = E(Arh,kr)/ det Bk,l_'
When R is a GCD domain, we have
A(Ajj)/ det Bj; = A(Agxe)/ det By .

Proof. By permutating rows and columns, we may assume that

A=(Ar A A A Anp=(As Al A= (A A,
B,
B B B

B = Bi , Bj,,—z(B;), Bk,,—z(B;).
B,

Since we have A1By + - - - + A4B4 = O, we then have

B
(E,,] 0 0) o g_(B, 0)

0 A A2 “\A3B; A
3 Ag 0 E, 3b3 Ag

~ B, 0]
" \=AB; —AB, —A4B;, Ay

B O
—A'B, Ay
B, O
Ay B> A4
B
E, O O0\|.)' 0
“lo a4, a)|® 9
2 A4 E,

where n; is the number of columns of A;, which coincides with that of rows of B;. Then we
have
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E Em 0 Bk,l_ 0 -E En1 0 B],l_ 0 ]
O Apji)\O E, O Aux)\O E,

By Lemma 2.3, we have (detBypE(As ) = (detB;j)E(Ank), which implies that
E(Anjo)/detB;; = E(Apx)/ detByj. From this equality, we have A(Az )/ detB;; =
A(Ayh’kc)/ det Bk,l_' O

Dermition 2.7. For matrices Ay, A, over a ring R and their column relation matrices
By, B>, we write (A1, B1) ~1 (A, B,) if they are related by a finite sequence of the following
transformations:

(A, B) & (AP;j, P;;B), (A, B) & (Eij(nA, B),

B R YA

We note that (A1, By) ~7 (A2, By) implies A; ~ A,.

Suppose that R is an integral domain. Then B is regular if and only if B, is regular, since
their ranks coincide when we regard B, B, as matrices over the field of fractions of R.

Proposition 2.8. Let By, B, be regular column relation matrices of matrices Ay, Ay, re-
spectively. If (A1, By) ~r (A2, B2), then E(Ay, B) = E(Az, By) and A(Ay, By) = A(Ay, Bo).

Proof. It is sufficient to show E(A;, B;) = E(A,, B,) for each transformation in Defini-
tion 2.7. Let B € M(n,[;R) be a regular column relation matrix of A € M(m,n;R). It is
easy to see that E(A, B) = E(AP;;, P;;B). Hence, by permutating rows and columns, we may
assume that det B;; # 0. Then, the desired equalities follow from

A Asr 0
Ang ~ Eij(NAz Ane ~ ( 0’1 ) An ~ ( a<1>’lz‘ 1),

where I = (I + 1,...,n). o

Remark 2.9. Let A, A, be matrices over M(k, k;R), and let B, B, be column relation
matrices of A}, A,, respectively. Here, we denote by A the flat matrix of a matrix A. If
(A1, B1) ~1 (A3, By), then (A1, B1) ~1 (A2, By), which implies E(A1, B)) = E(A2, B,) and
A(A1,B1) = A(A, By).

3. Quandles and their presentations

A quandle [6, 10] is a set Q equipped with a binary operation < : Q X Q — Q satisfying
the following axioms:

(Q1) Foranya € Q,a<a = a.

(Q2) For any a € Q, the map <a : Q — Q defined by <«a(x) = x < a is bijective.

(Q3) For any a,b,c € Q,(a<b)<c=(a<c)<(b<c).
We denote the map (<a)" : Q — Q by <"a forn € Z.

For quandles (X1, <;) and (X», %), a quandle homomorphism f : X; — X, is a map satis-
fying f(a < b) = f(a) <« f(b) for any a, b € X,. We call a bijective quandle homomorphism
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Ve

Fig. 1.

a quandle isomorphism. A quandle homomorphism p : X — Q is also called a quandle
representation of X to Q. A quandle representation is trivial if it is a constant map. Let
p1: X1 — Qand p, : X, — QO be quandle representations. We say that (X, p;) and (X3, p2)
are isomorphic if there exists a quandle isomorphism f : X; — X; such that p; = p; o f.

For a group G, the n-fold conjugation quandle, denoted by Conj,, G, is the quandle (G, <)
defined by a «b = b™ab". The quandle Conj, G is called the conjugation quandle and
denoted by Conj G. The dihedral quandle, denoted by R,, is the quandle (Z,, <) defined by
a<b = 2b — a, where Z, stands for Z/nZ. For a group G, the core quandle, denoted by
Core G, is the quandle (G, <) defined by a<b = ba™'b. Let R[¢*'] be the Laurent polynomial
ring over a commutative ring R and M an R[t*']-module. The Alexander quandle (M, <) is
defined by a<b =ta+ (1 —1)b.

We denote by Fqng(S) the free quandle on a set S. A presentation (S| R) of a quandle can
be used to represent a quandle, where R C Fqng(S) X Fang(S). We call the elements of S the
generators of (S| R) and call the elements of R the relators of (S|R). A relator (a, b) is also
written as a = b. A presentation (S |R) is finite if S and R are finite. For a finitely presented
quandle, we often write

e Xl ) = X b s )

See [2] for details of a presentation of a quandle.

Let L be an oriented link represented by a diagram D. A normal orientation is often used
to represent an orientation of a link on its diagram. The normal orientation is obtained by
rotating the usual orientation counterclockwise by 7/2 on the diagram. We denote by C(D)
and A(D) the sets of crossings and arcs of D, respectively. For a crossing ¢ of D, we denote
the relator (1. <v.,w.) by r., where v, is the over-arc of ¢ and u., w. are the under-arcs of ¢
such that the normal orientation of v, points from u,. to w, (see Figure 1). The fundamental
quandle Q(L) of L is the quandle whose presentation given by

ey (x (x € A(D))|rc (c € C(D))).

This is called the Wirtinger presentation of Q(L) with respect to D. We denote by E(L) the
exterior of L. We remark that we obtain a presentation of the fundamental group G(L) :=
n1(E(L)) by replacing r. by v-'u.vo.w?! in (1), which is the Wirtinger presentation of G(L)
with respect to D.

Let L; be an oriented link and p; : Q(L;) — Q a quandle representation for i € {1,2}.
We say that (L, p;) and (L,,p,) are isomorphic if there exists an orientation-preserving
homeomorphism f : $* — S° such that f(L;) = L, and p; = p, o f., where f, : Q(L;) —
Q(L,) is the induced isomorphism.

Let (S1|R;) and (S | R») be finite presentations of quandles. Let p; : (S;|R;) — Q and
P2 1 (S2|R2) — Q be quandle representations. Then ((S;|R1),01) and ((Sz2|R»),p>) are
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isomorphic if and only if they can be transformed into each other by a finite sequence of the
following transformations:

(TI-1) (SIR),p) & (SIRU{(x, )}, p) (x € Fand(S)),
(T1-2) (SIRU {(a,b)}),p) & (SIRU{(a,b), (D, a)}),p),
(T1-3) (SIRU{(a, ), (b,0)}),p) < (SIRU{(a,b),(b,c),(a,0)}),p),
(T1-4) (SIR U {(a1,a), (b1,D2)}),p)
o (SIRU{(a1,a2), (b1, b2), (a1 <by, a2 <b2)}), p),
(T1-5) (STR U {(a1,az), (b1, b2)}),p)
& ((SIRU{(a1,a), (b1, by), (a1 <" by,ay <" bo)}), p),
(T2) ((SIR),p) < (SU Ly} R U {(y, w)h),p) (y & Fand(S), wy € Fang(S)),
where we use the same symbol p to represent quandle representations which coincide on S.
See [5, Lemma 3.3] for more details.

4. Derivatives and column relation maps

In [5], we introduced the notion of a derivative with an Alexander pair and defined a
quandle twisted Alexander matrix, which yields an Alexander type invariant. In this section,
we recall the definition of the derivative with an Alexander pair and introduce the notion of
a column relation map, which will be used to define a column relation matrix of the quandle
twisted Alexander matrix.

Dermttion 4.1. Let (Q, <) be a quandle. Let R be a ring. The pair (fi, f2) of maps fi, f> :
0 X Q — Ris an Alexander pair if fi and f; satisfy the following conditions:
e Foranya € Q, fi(a,a) + fr(a,a) = 1.
e Forany a,b € Q, fi(a, b) is invertible.
e Foranya,b,c € Q,

fita<b,c)fi(a,b) = fila<c,b<c)fi(a,c),

fila<b,c)fa(a,b) = frla<c,b<c)fi(b,c), and
fala<b,c) = fila<c,b<c)fa(a,c) + frla<c,b<c)fr(b,0).

Let Q = (x1,...,x,|r1,...,1,) be a finitely presented quandle. Put S := {xi, ..., x,}. Let
pr : Fond(S) — Q be the canonical projection. We often omit “pr” to represent pr(a) as a.
Let f = (fi, f>) be an Alexander pair of maps fi, > : O X Q — R. The f-derivative with
respect to x; is the unique map ;—xfj : Fand(S) — R satisfying

0% (a<b) = fita, oa) + fota, By ) O (i = 6
—(a <« = —_— — — (x)=4::
(9)(1' “ fl @ 8xj a f2 @ (‘)xj ’ ij i Y
for any a,b € Fqng(S) and i € {1,...,n}, where 9;; is the Kronecker delta. For a relator
r = (ry, ), we define
Jr Jr Jr
(9_xj(r) = (9_xj(r1) - a—xj(rz)-

DermiTion 4.2. Let (fi, f>) be an Alexander pair of maps fi, > : Q@ X Q — R. A column
relation map f.o : Q — R is a map satisfying
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Jeolla <b) = fi(a,b)feol(@) + fo(a, D) feor(D)
for any a,b € Q.

Proposition 4.3. For each c € Q, the map f.o1 : Q — R defined by f.oi(x) = H(x <! ¢,¢)
is a column relation map.

Proof. As we have

foollaab) = fr((a<b)<'c,c)
= flla<" )<< ¢),0)
= fila,b)frla<"c,0) + fla,b) b <" ¢,¢)
= fi(a.b) feol(@) + fo(a, b) feor(b),

the map fio) is a column relation map. |
Lemma 4.4. Let Q = (x1,...,X,|r1,...,"m) be a finitely presented quandle. Put S :=

{x1,...,x,). Let f = (f1,/2) be an Alexander pair of maps fi,f» : QX Q — R. Let
Jfeol : QO = R be a column relation map. For w € Fgng(S), we have

n af
Jeol(w) = (W) feor(x;).
jZ::J 6)Cj /

Proof. It is sufficient to show that

Jeol(C -+ ((xiy < x3,) <2 x3,) -+ ) <% ;)
S af & & Ek

= D 5 (o (G ) < ) ) < ) fean ()
= O

for any iy, ...,ix € {1,...,n} and gy, ..., & € {£1}. We show this equality by induction on
the length k. When k = 0, we have

n n a
Jeal() = D Suafeot(x) = D 230 for ().
j=1 =17

We suppose that the equality holds for any length less than k. Put w := (- - - ((x;, <*' x;,) <*
Xj,) - -+)<*1 x;_ . We then have

Z —(w ) feol (X))
- Z (fl(w %) (w) b hr(w, vt ,(x») feor(x))
Xj

= fi(w, x)) Z a—)j(w)ﬁol(x,-) + Hw, %) ) 8ijfe(x))
j=1 7 Jj=1

= filw, x;) feol(w) + fo(w, x;) feo1(x:)
= feol(w < x;).
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In a similar manner, by using
Oy Or 0
La )= fila< bby L@ fita < bbY frla < b b (D)
c')xj an 6.)6]'

and

ferla<""b) = fita<"" b,b)™" foa@) = fila <" b,b)" fala <" b,b) foai(D),

we have
f -1 _ -1
Z T < x) feor (X)) = feor(w < x0),
which completes the proof. |

We give examples of Alexander pairs and column relation maps.

ExampLE 4.5. Let Q be a quandle, R aring, and f : Q — Conj R* a quandle homomor-
phism.
(1) The maps fi, > : OxXQ — R defined by fi(a,b) = f(b) ' and fr(a,b) = f(b)"' f(a)-
f(b)~! form an Alexander pair, and the map f., : Q — R defined by fi,(x) =
f(x) — 1 is a column relation map.
(2) The maps fi, /> : O X Q — R defined by fi(a,b) = f(b)~" and fr(a,b) = 1 — f(b)~!
form an Alexander pair, and the map f., : O — R defined by f.o1(x) = 1 is a column
relation map.

By setting f(x) = r~'x", we have the following:

ExampLE 4.6. Let G be a group, and R a commutative ring. Let R[f*!][G] be the group
ring of G over the Laurent polynomial ring R[#*']. Let Q := Conj, G.

(1) The maps fi, /> : O x Q — R[*'][G] defined by fi(a,b) = th™ and fo(a,b) =
b™a" — th™" form an Alexander pair, and the map f.,; : Q — R[t*!][G] defined by
fool(x) = 71X — 1 is a column relation map.

(2) Themaps fi, f> : OxQ — R[r*'][G] defined by fi(a, b) = th™" and f>(a,b) = 1—tb™"
form an Alexander pair, and the map f., : Q — R[t*'][G] defined by f.o(x) = 1 is
a column relation map.

ExawmpLE 4.7. Let G be a group, and R[G] the group ring of G over a commutative ring
R. Let Q := CoreG. The maps fi, f>» : O X Q — R[G] defined by fi(a,b) = —ba~! and
fla,b) =1+ ba~' form an Alexander pair, and the maps feo1.1, feol2 : Q@ — R[G] defined by
Jeor1(x) = 1 and fi12(x) = x are column relation maps.

ExampLE 4.8. Let R be a commutative ring with # € R*. Let Q be the Alexander quandle
R witha<b = ta+ (1 —t)b. The maps fi, o : O X QO — R defined by fi(a,b) = t and
fo(a,b) = 1 —t form an Alexander pair, and the maps feol1, feol2 : @ — R defined by
Jeor1(x) = 1 and fi12(x) = x are column relation maps.

For n € Z, we define P, € Z[t] by
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Table 1. P, and Q,

n P, On

0 2 0

1 t t—2

2 > -2 > -4

3 -3t ?—t-2

4 -4 +2 £ -4t

5 £ -5+ 5t £ -1 =3t+2
6 ©—6t* +92 -2 -5 +4

7 =70 + 1468 - Tt =1 -4 +3t+2
8| 18 —81%+20* — 16/ +2 £ — 68 + 8t

91 -9 +27 =302 +9t | P —t* =52 + 4> + 5t -2

(NP —4y . 2"
2 (t+ VP2 -4y

Py

We then have P,, = P_, and
(2) Ppyy —tPy + Py =0
for any n € Z. For n € Z, we define Q, € Z[t] by
Qo1 = Ppy1 — Py and O = Ppy1 — Py
In Table 1, we list P, and Q,, forO < n < 9.
Lemma 4.9. We have Py, = Py in Z[t]/(Q,) for any k € Z.

Proof. We write x = y if x — y = zQ, for some z € Z[¢]. It is sufficient to show that
P, = Py and Py, = Py, since we have Py, = P, by using
Pin—P;=tPip 1 — Piypo—tPi1 + P
= t(Pi-1)+n — Pi-1) = (P(i-2)4n — Pi-2), or
Pivn = Pi = tPisps1 — Pivnio — tPiy1 + Piiy
= t(P+1yen — Piv1) — (Ps2yen — Pir2)
inductively, where the first and third equalities follow from (2).

Suppose n = 2m + 1. We show that P,,.; = P,,.1_; for any j > 0. By the definition of
Qom+1, we have Py, — Py = =Q, and Py — Py, = Q, for j=0,1. We have P, j = Ppyi-j
by using

Puvi = Py1—i = tPpyict — Prgica — tPpya—i + Py
= t(Put(i-1) — Pmr1-i-1) = (Pm+(i-2) = Pm+1--2))
inductively, where the first equality follows from (2). Putting j = m + 1,m + 2, we have
P, = Pyyy1 = Pyand Py, = Pyyip = Py = Py

Suppose n = 2m. We show that P, ; = P,,_; for any j > 0. By the definition of Q,,,, we

have P,, — P,, =0 and P, — P,,_1 = Q, for j =0, 1. We have P, ; = P,_; by using
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Popi = Puoi = tPpyit — Ppyico = tPy_jp1 + Prjin
= t(Pus(i-1) = Pm—(i-1)) = (Pm+(i-2) = Pm—(i-2))

inductively, where the first equality follows from (2). Putting j = m,m + 1, we have P, =
Py = Py and Py, = Py = Py = Py o

Proposition 4.10. Let Q be the dihedral quandle R, of order n. The maps fi, f» : OXQ —
Z[11/(Qn) defined by

fila,b) = -1 and fala,b) = Py
form an Alexander pair.

We remark that P,_, is well-defined for a, b € R, by Lemma 4.9.
Proof. Since fi(a,b) = —1 and f>(a, a) = 2, it is sufficient to show

fala,b) = frla<c,b<c),
fala<b,c) = —fr(a,c) + frla<c,b<c)fr(b,c)

for a,b,c € R,. The first equality follows from P,_, = P,_,. The second equality follows
from

Py qc= =Py + Pyp_yPpe,

which can be obtained by direct calculation. |

Since we have

Q2n+3 - tQ2n+l + Q2n—1 = 07
Oops2 =102 + Q202 =0

it is easy to see that Q, is divisible by ¢ — 2 for any n € Z. From Proposition 4.10, we have
the following corollary.

Corollary 4.11. Let Q be the dihedral quandle R3 of order 3. The maps fi, fo : OxXQ — Z
defined by fi(a,b) = —1 and f,(a,b) = 36, — 1 form an Alexander pair, and the map
Jeole 1 Q = Z defined by feo1(x) = 30y — 1 is a column relation map for ¢ € Q.

5. Quandle twisted Alexander invariants

Let X = {x1,...,x,|r1,...,Fy) be a finitely presented quandle. Letp : X — Qbea
quandle representation. Let f = (fi, f>) be an Alexander pair of maps fi, /> : O X Q — R.
Then f o p? = (fi o p%, f» o p?) is an Alexander pair of maps f; o p?, Hop*> : XX X — R.
The f-twisted Alexander matrix of (X, p) is

5;}( noee é;;( )

AKX, p; f1, o) =

6x1 ( m) Ox, m)

Let feol1s---» feols : @ — R be column relation maps. Then feo11 00, .., foyop : X = R
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are column relation maps. We define

(feor1 ©p)(x1) -+ (feors © p)(X1)
Reol(X, 05 feol 15 -+ - 5 Jeolt) = : : .
(feor1 ©P)(xn) -+ (feors © P)(Xn)

We denote Reoi(X, 05 feolls - -+ » feols) BY Reol(X, p; feo) for short, where feo indicates
(feol.1s -+ + 5 Jeold)-

Proposition 5.1. The matrix R.o1(X, p; feol) is a column relation matrix of A(X, p; fi, f>).

Proof. We may assume that feo = (feol), since AB; = O and AB, = O imply A (31 Bz) =
O. For a relator r = (ry, 1), we have

n

0 fop2
> gx’; () faol © P)(x))

=1

j=1
= (Jeot ©p)(r1) = (feor © P)(r2) = 0,

where the second equality follows from Lemma 4.4. This completes the proof. O

n

0o 0 fop2
(;xi (r))(feo © P)(x;) — Z (';xi (r)(feol © P)(x})

J=1

When R is an integral domain, we define
E(X, p; f1, f25 fea) := E(A(X, p; f1, f2), Reol(X, p5 feol))s
AX, p; f1, f2s feal) = AAX, p; f1, f2), Reol(X, 3 feol)-
When R is a matrix ring consisting of k£ X k matrices over an integral domain, we define
EX, p; /1, 23 fea) := E(AX, p; f1, 12), Reol(X; p3 feol)),
AKX, p; f1, f2i fea) := AAX, p; [, f2), Reat(X, o3 fea))-

The following theorem shows that they are invariants.

Theorem 5.2. Let X = (x|r) and X’ = (x"|r") be finitely presented quandles, and let
p:X > Qandp' : X' — Q be quandle representations. Let (fi, f>) be an Alexander pair
of maps fi,f» : OX Q — R. Let fool1s---5 Jeols : QO — R be column relation maps. If
(X,p) = (X', p"), then we have

(A(X’pa fla f2)’ RCO](Xep;fcol)) ~T (A(XI’P’, f19 f2)7 RCO](X’apI;fcol))'

Furthermore, we have the following.

e If R is an integral domain and R.o (X, p; feol) is regular, then we have

E(A(Xepa fl’ f2)7 RCOI(X’p; fcol)) = E(A(X,7p/a fl’ f2)’ RCOI(Xlap’;fcol))e
AAX, p; f1, 2)s Reol(X, 05 feo)) = AAX', 0 f1, 12)s Real(X, 075 feol))-

e If R is a matrix ring consisting of k X k matrices over an integral domain and
Reoi(X, 5 feol) is regular, then we have
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E(A(Xep’ f19 f2)7 RCOI(X’p; fcol)) = E(A(X,’p,a fl’ f2)’ RCOI(X,9P,;fCOI))9
ACAX, 5 f15 [2)s Real(X, 05 fea)) = AAX?, 075 f1, 12)s Reol (X7, 05 feol))-

The twisted Alexander polynomial [9, 11] can be realized as the invariant A(X, p; fi,
f2; feo) for some Alexander pair (fi, f2) and column relation map fe.
Let L be an oriented link, and D a diagram of L. Let

O(L) = (X1, s X UL QUL = Wi, en, Uy QU = Wiy,
—1 —1 -1 -1
G(L) = {x1,..., X |V] upviwy -, ..., 0, UplpW,, )

be the Wirtinger presentations of the fundamental quandle Q(L) and the fundamental group
G(L) with respect to D, respectively. See Section 3. Let R be a commutative ring. Set G :=
GL(k;R). Let p : G(L) — G be a group representation. The induced quandle representation
of p is a quandle homomorphism from Q(L) to Conj G that sends x; to p(x;), and we denote
it by the same symbol p : Q(L) — ConjG.

Proposition 5.3. Let Ar,(t) be the twisted Alexander polynomial of (L,p) with the
abelianization a : G(L) — (t) that sends every meridian to t'. Let fi, f» : Q(L) X Q(L) —
R[t*'1[G] be the maps defined by fi(a,b) = th™" and f>(a,b) = b™'a—tb~'. Let f.o; : Q(L) —
R[t*1[G] be the map defined by f.o(x) = t'x — 1. Then we have

ALp(0) = AA(Q(L), o3 1, f2); Reol(Q(L), 5 feol))-

Proof. We note that (f1, f>) and f.o are an Alexander pair and column relation map. See
Example 4.6 (1) with n = 1. In [5], we showed that the twisted Alexander matrix of (L, p)
coincides with A(Q(L), p; fi, f2). Then, the twisted Alexander polynomial (L, p) is defined
by

AL, = AAQ(L), p; fi, Py )/ dett” p(x)) — Ep),
which coincides with A(A(Q(L), p; fi, ), Reot(Q(L), p; feol))- o

In a similar manner, we have the following proposition:

Proposition 5.4. Let Ar(t) be the Alexander polynomial of L with the abelianization
@ : G(L) — {t) that sends every meridian to t'. Let f, f» : Q(L) x Q(L) — R[t*'] be the
maps defined by fi(a,b) = t and f>(a,b) = 1 —t. Let f.o : Q(L) — R[t*'] be the map defined
by fio(x) = 71 = 1. Then we have

A
t—lL(_t)l = AAQ(L). p: fi. o) Real( Q(L). : feot).

Furthermore, setting fe.o1(x) = 1, we have

Ap(r) = AA(Q(L), p; f1 12), Reol(Q(L), p5 feo))-

RemMArk 5.5. We note that the (twisted) Alexander polynomials with the abelianization «
that sends every meridian to ¢ can be obtained by setting

fila,b) =t"'p7", fola,b) =b"la—t'p7", fool(x) = tx— 1,
fila,b) =17", flab)y=1-1", Seot(x) =11
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L1

C1 Cy
( XT3 T
C3 C11 4
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Cg X 10

2 C7
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Zs
)

D1 D2

Fig.2. The knots 11738 and 111102

in Propositions 5.3 and 5.4, respectively.

6. Examples

In this section, we investigate our invariant with the Alexander pair and the two column
relation maps given in Corollary 4.11.

Let Q be the dihedral quandle R; of order 3. Let fi, f> : QX Q — Z be the Alexander pair
defined by fi(a,b) = —1 and fa(a,b) = 36,, — 1. Let feo1 : O — Z be the column relation
map defined by feo1(x) = 36, — 1 for c € Q. See Corollary 4.11. Let L be an oriented link.
Let p : Q(L) — Q be a quandle representation.

First, we see that, for a trivial representation p,

DetL/2 ifImp = {c},

3 A L), p; f1, f2; feole) =
(3) (Q(L), 03 1> 23 Jeole) {DetL if Imp # {c},

where Det L is the determinant of L. We remark that Det L = [A (—1)|. Letg;,92 : OXQ —
Z be the Alexander pair defined by g;(a,b) = —1 and g»(a,b) = 2. Let g¢o1 : Q — Z be the
column relation map defined by g.o1(x) = 1. By Proposition 5.4, we have

A(O(L), p; 91,925 geol) = Ar(=1).
Since f; 0 p?> = g1 0 p? and f> 0 p? = gy 0 p%, we have A(Q(L), p; fi, ) = A(Q(L), p; g1, g).
Since (feol,c © P)(X) = (30xc — 1)(geol © p)(X), We have

2R001(Q(L)’p; gcol) if Imp = {C},
Reol(Q(L), p; feo ,c) = .
" ol {RCOI(Q(L)’p;gcol) if Imp # {c}.

Thus we have (3).
Let K be the knot 111738, and let K, be the knot 1172102. Let D and D, be their diagrams
depicted in Figure 2. Then, we see that
ACQ(KY), p1; f15 125 feol0s feot1) = 2/3,
AQ(K3), p2; f1, f23 feol0s feot1) = 7/3

for any nontrivial quandle representation p; : Q(K;) — Q. We note that both Q(K;) and
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Q(K>) have 6 nontrivial quandle representations. We also note that Ag, (f) = Ag,(f) and

E (K)) = E (K>) for any d, where E;(K) is the dth Alexander ideal of a knot K.
The Wirtinger presentation of Q(K;) with respect to D is

X1 9X3 = X171, X1 9X9 = Xp, X3 <4X] = Xp,

_ X4 4X11 = X3, X421X7 = X5, X5 4X4 = Xo,
O(Ky) = (x1,...,x11

X7 4X10 = X6, X7 <X5 = Xg, Xg < X2 = Xo,
X10 9 X7 = X9, X11 <X4 = X190
Putting a = pi(x1), b = p1(x2) and ¢ = p;(x3), we have a # b, ¢ = 2a + 2b and
p1(xs) = p1(xg) = a, pi(xs) = pi(x11) = b,
p1(x6) = p1(x7) = p1(x9) = p1(x10) = c.

Then, A(Q(KY). p1: f1. f2) s

fr 0 £ 0 0 0 0 0 0 0 -1
fr -1 0 0 0 0 0 0 f£ 0 0
ff-1 f£0 0 0 0 0 0 0 0
0 0 -1 f£ 0 0 0 0 0 0 ff
0 0 0 ff -1 0 ff 0 0 0 0
0 0 0 ff fr -1 0 0 0 0 0 |,
0 0 0 0 0 -1 f£ 0 0 f£ 0
0 0 0 0 fF 0 ff -1 0 0 0
O ff 0 0 0 0 0 fF -1 0 0
0 0 0 0 0 0 ff 0 -1 f 0
0O 0 0 f£ 0 0 0 0 0 -1 f

where f = ~1, f; =2 and f; = —1. The matrix A(Q(K1),p1; fi, f2)17 (1 2 1S €quivalent to

the 1 x 1 matrix (2) We have

Jeoro(@)  feol1(@) 3600 —1 36a1—1
Jeolo(D)  feol1(D) 3000 — 1 36,1 —1
feor0(€)  feor1(©) | |36c0—1 361 —1
feoro(@)  feori(@| |30a0 =1 364 —1
Jeolo(D)  feol1(D) 3000 =1 36,1 —1
Reol(Q(K1), P15 feol0s Jeor1) = | Jeor0(€)  feor1(e) | =360 —1 361 — 1].
Jeol0(€)  feol1(€) 3600 —1 36 —1
Jeoro(@)  feol1(@) 3600 —1 3641 —1
feor0(€)  feor1(©) | |36c0—1 361 —1
feor0(©)  feor1(@) | [36c0 =1 30, -1
feolo(B)  feor1(D)) 36,0 =1 365 — 1

Since Reoi(Q(K1), 015 feol0s feol1)(1,2)3 18

122G 2 DG DS Al )

we have det Reol(Q(K1), p15 feol0s feol1)(12)2 = 3. Thus we have
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AQ(KY1), p1; f1, 125 feol 05 Jool,1)
= AA(Q(KY, o153 f15 )17 (1 2/ det Reol(Q(KY), P15 feol05 feol,1)1,2).3
=2/3.

The Wirtinger presentation of Q(K,) with respect to D, is

X11 9 X5 = X1, Xp 9Xg = X1, X3 <2X]0 = X2,

_ X4 A X7 = X3, X5 9Xg = X4, X5 3X]1] = Xo,
O(K>) = (x1,...,x11

X7 4X4 = Xg, Xg X2 = X7, Xg 1X7 = Xo,
X10 9X3 = X9, X1] <X2 = X0
Putting a = py(x1), b = pa(x2) and ¢ = p,(x3), we have a # b, ¢ = 2a + 2b and
P2(x3) = p2(x4) = pa(xs) = pa(x6) = p2(x7) = pa(x11) = a,
p2(x9) = b, pa(x10) = c.

Then, A(Q(K2), p2; f1, f2) s

-1 0 0 0 2 0 O O 0 0 -1
-1 -1 0 0 0 O O -1 0 O O
o -1 -1 06 0 0 0 O O -1 0
o 0 -1 -1 0 0 2 O O 0 O
o o o0 -1 -1 2 0 O O 0 O
o o o0 o0 -1 -1 0 O 0 0 2
o o o0 2 O -1 -1 0 O O O
o -1 0 0 0 0 -1 -1 0 0 O
o o o0 o0 o0 O -1 -1 -1 0 O
o 0 -1 0 0 O O O -1 -1 O
O -r 0 0 0 O O 0 0 -1 -1

The matrix A(Q(K3), p2; f1, f2)ﬁ,(1 2 is equivalent to the 1 X 1 matrix (7) In the same
manner as det Reol(Q(K1), P15 feol 05 feol,1)(1,2).3, We have

det Reoi(Q(K2), 25 feor05 feol1)(1,2)5 = 3-

Thus we have

A(Q(K32), p2; f1, [25 Jeol,05 Jeol,1)
= AA(Q(K2), P23 1, [2)171.2)/ det Real(Q(K2), 025 feol,05 feol,1)(1.2)3
=7/3.

7. Proof of Theorem 5.2
We show
(A(va’ fl ’ fz)v RCOl(Xap; fCOl)) ~T (A(X,9p,9 f] 9 fz)’ RCOl(X,’ p,’ fCOl))'

It is sufficient to show this equivalence for the transformations (T1-1)—(T1-5) and (T2) in
Section 3. We set
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A= A(<x|r>,p;fl’f2)’ B:= RC01(<x|r>’p;fCOI)’
A= A |, 05 s ) B := Reat (X" | 77), 0" feo)-

We denote by a; the i-th row vector of A and denote by a;; the (i, j) entry of A.
For (T1-1), we suppose

<x|r>:<xl""’xn|rl""’rm>7
XYy = (X1, X 71y e Py X = X) (x € Fang()).

We then have

(A,B) ~7 ((13) , B) = (A", B).

For (T1-2), we suppose

<x|r>:<X],...,.xn|r],...,rm,a:b>,

X'y =Ax1,...., x4 |71>...,Fm,a =b,b=a).

We then have

ag ag
al . .
AB =\ : [.B|~r|| * |.B|~r|| = | B|=@&".B).
a Ayl vl
m+1 0 —d,.
For (T1-3), we suppose
(x|ry=Ax1,....,x,|1r1,....,'mya=b,b=c),

X'Nry={x,....x,|r,....rmma=b,b=c,a=c).

We then have

a ag
a
_ ’ /
(A’B): ’B ~T [/ 5B ~T Ai ’B _(AaB)a
A
A2 Am+2
Ap+2 0 a
where a’ = a,;,11 + a42.
For (T1-4), we suppose
(x|r)=<x1,..., X, 11,..., ', a1 = az, by = by),

XNy =(x1,....x, |11, ... Fm, a1 = az,by = by,a; <by = a <by).

We then have
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a a
a
(Ay B) = a ’ aB ~T [/ 9B ~T Ai ’B = (A,aBl)y
+1
am A2 Ay
m+2 0 a
where a’ = (fi o p*)(a1, b1)@ms1 + (f> © p*)(ar, b)ansa.
For (T1-5), we suppose
x[r)y=<x1,...,x,|r1,...,'m,a1 = az, by = by),
-1 -1
X' FY={x1,...., %, |71y, Fna1 = a2, by =by,a1 < by =ar < by).
We then have
ai ag
aj
: PR
(A7B): a aB ~T am+1 7B ~T am+1 ’B _(A’B)7
+1
am A2 A2
m+2 0 a

where @’ = (fi op®)(ar < by, by) @yt — (fiop*)ar < by, b)) (frop?)ar < by, b))y
For (T2), we suppose

xlry =, X, ),
<x/|r,> = <xlv"'vxn’y|r1""9rm’y:w> (yiFQnd(x)a U)EFQnd(x))-
We then have

6)61 (l"]) 6x,, l)

A 0\ (B
S e W I

6 6
3)61 m) e 8x m)

where

, 0 fop O fop
a _(_axl (w)a---a axn( ))

b = (foor1(0W))s - - . » frors(P(W)))
[} N a op’
:( Orer ) feona (), D : 'D]-
i=1 l

i=1

The rest follows from Proposition 2.8 and Remark 2.9.

8. Cohomologous Alexander pairs and column relation maps

Let (f1, f>) and (g1,9>) be Alexander pairs of maps fi, f>,91,92 : O X Q — R. Let
Jeol 1 Q@ = R and g0 : O — R be column relation maps with respect to (fi, f>) and (g1, g2),
respectively. Two triples (f1, f2, feol) and (g1, g2, geol) are cohomologous if there exists a map
h : Q — R satistying the following conditions:
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For any a € Q, h(a) is invertible in R.

For any a,b € Q, h(a <b)fi(a,b) = gi(a, b)h(a).

For any a,b € Q, h(a < b) f>(a,b) = g2(a, b)h(b).

For any a € Q’ h(a)fcol(a) = gcol(a)-

We then write (f1, f2, feol) ~r (91,92, geot) to specify h. Let feor1s-- - feors © @ — R and
Jeol.ls - - - s geols - © — R be column relation maps with respect to (fi, f2) and (g1, g2), respec-
tively. When (f1, f2, feol.i) ~n (91> 92, geor,i) for any i, we write (f1, f2, feo) ~n (91592, Geol)-

ExawmpLE 8.1. For an Alexander pair (f, f>) and a € Q, we define f; <a and f, <a by

(<a)(xy) = filx<a,y<a), (ea)(x,y) = frlx<a,y<a).

For a column relation map f., and a € Q, we define f., <a by

(Jeor <a@)(x) = f1(x, @) feor(x).
Putting A(x) := fi(x, a), we have

(flefZ’fCOI) ~h (fl <‘a7f2 <da, fCOl <la)'

Proposition 8.2. Let X = (x1,...,x,|r1,...,rm) be a finitely presented quandle, and
let p : X — Q be a quandle representation. Let (fi, f>) and (g1, g2) be Alexander pairs

of maps fi, f.91,92 + @ X Q — R. Let feoi1s--. feolg © Q@ = R and geolts -, gl
Q — R be column relation maps with respect to (f1, f>) and (g1, g»), respectively. Suppose

(f1> 2 feo) ~n (915925 Gcol)-
e [fR is an integral domain and R.o|(X, p; feo) is regular, then we have
E(AX, p; f1, 12), Rea(X, 05 feo))) = E(A(X, p3 g1, 92), Reol (X, P3 geot))s
A(A(X, P fl s f2)’ Rcol(Xa,O; fcol)) = A(A(X,,O; g1, 92), Reoi(X, P gcol))-

e [f R is a matrix ring consisting of k X k matrices over an integral domain and
Reoi(X, p; feol) is regular, then we have

E(AX, p; f1, f2)s Reat (X, 05 fea)) = E(A(X, p; 91, 92), Reol(X, P53 Geol))
AAX, p; fi, 2), Real(X, 5 fea)) = AAX, 3 g1, 92), Reol(X, 05 Geor))-

Proof. We assume that

X:<X1,...,xn|M1<IUI :wl,...,um<vm=wm)

for some uy, ..., Uy, U1y Uy Wi, ..., Wy € {X1,...,X,}, where we note that any finitely
presented quandle can be presented in this form. By the proof of Theorem 9.3 in [5], we
have

diag(h(o(w1)), . .., l(p(wn)AX, p; f1, f2) = AX, p; g1, g2) diag(h(p(x1)), . . ., h(p(x,))).
Since h(p(x;)) feol, j(P(X1)) = geor,j(P(Xi)), We have
diag(h(p(x1)), . . ., h(p(x))Reol(X, 05 feo) = Reol(X, P: geol)-
We choose j € S, () so that det R.1(X, 0; feol) ;7 # 0. Then we have
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diag(h(p(w)), . . .. HpW))AX, o3 fi, [2)mje
= AX, p3191,92)m ¢ diag(h(o(x1)), . . ., B(p(x))) je jes
diag(h(p(xl)), SRR h(p(xn)))j,chol(X’ p;fcol)j,[_ = Rea(X, p; gcol)jj

which imply
AX, p; fi, i je ~ AKX, 591, 92)m,jes
Reol(X, p; fcol)j,[_ ~ Reol(X, 3 gcol)jj,
respectively. The desired equalities follow from these equivalences. |
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