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Abstract

The theory of polarized supersingular abelian varieties (A, 1) is often essentially related to the
theory of quaternion hermitian lattices. In this paper, we add one more such relation by giving
an adelic description of supersingular loci of low dimensions. Katsura, Li and Oort have shown
that the supersingular locus in the moduli of principally polarized abelian varieties is not irre-
ducible and that the number of its irreducible components is equal to the class number of certain
maximal quaternion hermitian lattices. Now the locus has certain natural algebraic subsets con-
sisting of A with fixed a-numbers that are defined as the dimensions of embeddings from «, to
A. For low dimensional cases when dimA < 3, we describe configuration of these subsets in
the locus by intersection properties of some adelic subgroups of quaternion hermitian groups
corresponding to parahoric subgroups locally at characteristic p. In particular, we describe
which components each superspecial point lies on. This is proved by using certain liftability
property of isogenies of abelian varieties, where the isogenies are interpreted to cosets of GL,
and of parahoric subgroups of the quaternion hermitian groups acting on quaternion hermitian
matrices.

1. Introduction

To study geometry of supersingular abelian varieties, often a pure arithmetic theory of
quaternion hermitian lattices is very powerful, as can be seen for example in [4], [11], [7],
[8], [6], [5], [9]. In this paper, from such view point, we consider configurations of the com-
ponents and certain algebraic subsets with fixed a-numbers in supersingular locus of princi-
pally polarized abelian varieties of dimension 2 or 3, explaining geometrical facts by Hecke
double cosets of the general linear groups and by adelic cosets or double cosets associated
with parahoric subgroups of the quaternion hermitian group of degree 2 or 3. Although many
geometrical facts on the supersingular locus have been already known for small dimensions
in [11], [12], [10] and also for general dimensions notably in [13], [3], our point here is
more arithmetical rather than geometrical, and in fact we add new group theoretical details
to such theory in this paper. For example, for small dimensions, we characterize descendable
directions of polarizations by cosets of the minimal parahoric subgroups and criterion on the
descendability by non-emptiness of intersection of certain adelic double cosets. These re-
sults are not trivial interpretation of known geometrical facts at all. Our intention here is to
explain everything only by superspecial abelian varieties. This way of treatment makes the
theory much more arithmetical. The subject is close to Harashita’s work in [3] on a-number
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stratification for general dimensional case, and the author believes that the method used in
this paper gives a basis for further study in general dimensional case.

Now we explain more details. Let k be an algebraically closed field of characteristic
p > 0. We denote by A, ; the moduli of principally polarized abelian varieties (A, A) defined
over k with dimA = n, and by S, ; the supersingular locus, that is, the locus of those
(A, A) such that A are supersingular abelian varieties. Here being supersingular means that
A is isogenous to the product E” of a supersingular elliptic curve E. The locus S, is not
irreducible in general. The number of irreducible components is equal to the class number
of the principal genus (resp. the non-principal genus), if dim A is odd (resp. even) ([12,
Theorem 5.7], [13, Theorem 4.9]). Here the genera consist of certain maximal quaternion
hermitian lattices over End(E) whose definitions will be given in later sections. On the
other hand, the number of isomorphism classes of principal polarizations on E” is given by
the class number of principal genus. These can be regarded as discrete points in S, ([4,
Theorem 2.10]). Here we may pose a problem how to describe in lattice terminology which
superspecial points are on which irreducible components of S, ;. We define the a-number of
Abya =dimHom(e,,A). If (A, A) is generic then a = 1, and (A, 1) represents an irreducible
component. We have a = n if and only if A is superspecial ([15, Theorem 2]). So the above
problem is on relations between some algebraic sets with a = 1 and a = n. More generally
we may ask how to define some natural families W; in S,,; of suitably chosen principally
polarized supersingular abelian varieties (A, ) with a = i for some 1 < i < n and to describe
inclusion relations between these families W;. We answer these questions when n = 2 and 3
by using adelic cosets or double cosets. Such inclusion relations as above will be interpreted
by non-emptiness of intersections of adelic double cosets corresponding to various kinds
of genera of quaternion hermitian lattices (See Theorems 5.1, 5.2 in Section 5). Here the
genera are not necessarily those of maximal lattices.

The results mentioned above are derived from characterization of polarized flag type quo-
tients (pftq for short) in [11], [13]. Roughly speaking a pftq is a certain sequence of polarized
abelian varieties, and our point here is how to describe a polarization and an isogeny of E”
to E" such that the polarization has a descent along that isogeny. When n = 2, these isoge-
nies appear as good directions and very good directions in [12, p. 119]. So we will treat a
generalization and characterization of these directions. For two kinds of directions we will
treat, we give bijective correspondences to cosets of the minimal parahoric subgroup in two
different maximal parahoric subgroups when n = 2 and 3. Then we describe configura-
tion by intersection properties of certain adelic double cosets. Our description is new even
when n = 2. Our ingredient of the proof is essentially a pure arithmetic theory of integral
quaternion hermitian matrices.

The paper is organized as follows. In the next section we review well-known facts on ge-
ometry from [14], [12], [11], [13], [3], [10] mainly for the three dimensional case. In section
3, we review Hecke double cosets of GL, and general arithmetic theory of quaternion her-
mitian lattices and the quaternion hermitian groups. In section 4, first we define quaternion
hermitian matrices and lattices corresponding to polarizations we need. Then we define a
direction to be a coset GL,(0)g for g € M,,(O) for O = End(E) and we give characterization
when a quaternion hermitian matrix in question has a descent by which directions. This
amounts to give descendability of polarizations by some specified isogenies. We establish
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here not only bijection between descendable directions and cosets of the minimal parahoric
subgroup in maximal parahoric subgroups, but also a bijection between the set of orbits of
both by the action of lattice automorphisms. As a corollary, we see that existence of a part
of a pftq sequence is equivalent to a non-emptiness of the intersection of the double cosets
corresponding to neighbouring polarizations. This section is an essence of the whole proof.
A geometrical interpretation of the results in this section is almost clear, but in Section 5,
we state some main conclusions obtained from Section 4.

2. Geometric terminology and known facts

As for most of the terminology or results in this section, see [14], [4], [12], [11], [13].
Let k be as before. We say that an elliptic curve E is supersingular if End(E) is a maximal
order O of the definite quaternion algebra B = O ®z Q which ramifies at p and co. We
say that A is supersingular if it is isogenous to a product of supersingular elliptic curves,
or equivalently, to E" for a supersingular elliptic curve E. By the way, if n > 2, then any
product of n supersingular elliptic curves are isomorphic (Deligne, Ogus, Shioda). We take
E such that it is defined over F,, and hence End(E) contains an element 7 with n*=-p. We
define an effective divisor X of E” by

X={OXE" '+ Ex{O}x E" % +---+ E" ! x {0}

and define an isomorphism ¢y of E" to the dual (E")" of E" by ¢x(f) = CI(X; — X) where
X, is the translation of X by ¢ and C/ is the linear equivalence class. This gives a princi-
pal polarization of E”. We denote by Herm,(B) the set of quaternion hermitian matrices
in M,(B) and by Herm; (B) the subset of Herm,(B) of positive definite elements. We put
Herm,(O) = Herm,(B) N M,(O) and Herm; (O) = Herm, (B) N M,,(O). Then by the map-
ping

Hom(E", (E")) 3 1 — ¢y o 1 € M,(0),

we can identify the Neron Severi group NS(E") with Herm,,(O) and the polarizations of E"
with Herm (0). We say that elements H,, H, € Herm,(B) are equivalent if H, = eH;€"
for some € € GL,(0) = M,(0)*, where for € = (e;;), we write € = (e};), denoting by
overline the main involution of B. Then isomorphism classes of polarizations of E" are
identified with equivalence classes in Herm} (O). The Hauptnorm of Herm,,(B) is defined to
be a polynomial map such that Hm(H)?> = N(H) for each H € Herm,(B) with reduced norm
N(H) and that Hm(1,) = 1 for the unit matrix 1,([1, Chapter 2.2, denoted as det there]). We
define a subset Hl()’;i)n of Herm; (O) by
H"™ = {H e Herm?(0); Hm(H) = 1}.

prin

We easily see that H"

orin = GLn(0) N Herm} (O). When n > 2, we define
My = {H € Herm} (0) N M,(0); Hm(H) = p!"+D/2),

where [%] denotes the maximal integer which does not exceed *. A polarization A of E"
is a principal polarization if and only it ¢3'A belongs to H;';i)n ([4, Theorem 2.10]). For

the moment, for the sake of simplicity, we call the set H;()rrli)n the principal genus and H,ﬁ’g,)
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the non-principal genus. More rigorous definition of notion related to quaternion hermitian
lattices will be explained in the next section. The number of equivalence classes in a genus
is finite and called the class number of the genus.

Assume that dimA = n and A is supersingular. We define the finite group scheme «, =
Spec(k[x]/(x”)) as usual. We call a sequence

E”:Y,,_1E>Y,,_2¢"—_2>---—>YIAY0:Y
a flag type quotient (ftq for short) if Ker(¢;) = (a,)’. We say that a ftp sequence with
polarizations y;

Gn- P ¢
Yooty fnmt) — (Yoo ftyz) — -+ —> (Yo, fo)

is a polarized flag type quotient (pftq for short) if y is a principal polarization, Y,_; = E",
¢; (i-1) = p; and

[i/2] ' .

kerp; C ﬂ Y[V o Fi/],

=0
where F is the absolute Frobenius and V the Verschiebung ([14], [13, Section 3]). We put
a = dim Hom(a,,, A). This is called the a-number of A.

Proposition 2.1. We assume that n > 3 is odd.
(i) For any principal polarization A of A, there exists a pftq starting from (E", p®~Y/2 2y) for
a principal polarization Ay and ending at (A, A).
(i) If a(A) = 1, then pftq in (1) is unique (up to natural isomorphisms of the sequence).
(iii) The irreducible components of the supersingular locus S, in A, correspond bijec-
tively to the isomorphism classes of all principal polarizations Ay of E", or equivalently to

the isomorphism classes of qb;(l/lo € ngli)n’

For the proof of this proposition, see [14, Theorem 2.2], [11, Lemma 4.4, Theorem 6,6,
6.7]. and [13, Theorem 4.9].

We denote by V(Ay) the irreducible component of S, ; corresponding to a principal polar-
ization Ao of E" in the sense of the above (iii).

Proposition 2.2. Assume that n = dimA = 3.
(i) Assume that a(A) = 2 and A is a principal polarization of A. Then there exists a polar-
ization p; of E* and an isogeny ¢,

(1) (B3 1) 25 (A, )

such that 1y = ¢;(), Ker(u) = o, C E*[F], and Ker(¢)) = ).

(ii) For any polarization u; of E> such that Ker(u;) = 0/12,, there exists a principally polarized
abelian threefold (A, A) with a(A) = 2 having a sequence as in (1) for some ¢,.

(iii) Notation and assumption being as in (1), if we regard (A, A) with a(A) = 2 as a point in
S3.1, then we have (A, 1) € V(o) for a principal polarization Ay of E* if and only if there
exists an isogeny ¢,

@) (E3, plo) 2 (E® 1)
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such that pAy = ¢5(u1) and Ker(¢,) = ozf,.

For a proof, see Li and Oort [13, section 9.4], Katsura and Oort [11, Section 5], and
Karemaker, Yobuko and Chia-Fu Yu [10, Proposition 3.12]. See also [19].
We give here a simple remark. For a fixed (A, A), if there are two sequences

(B3 ) 25 (A0, (B ) - (4.0

such that u; = ¢7(1), 41 = YD), Ker(y1) = Ker(¢1) = a, and Ker(u;) = Ker(1;) =
a/[% C E°[F], then there exists an isomorphism of ¢ : (E3, u;) = (E?, A1) such that this is an
isomorphism between sequences. In other words, the above claim is summarized by

Lemma 2.3. The sequence in Proposition 2.2(i) (1) is unique up to isomorphism.

Proof. Since E> and A are not isomorphic, ¢; and ¢ are minimal isogenies. Since
End(E?®) = M3(0) is of class number one, the module Hom(E?, A) is free as right End(E?)
module and we have ¢, € Hom(E>, A) such that Hom(E>, A) = ¢oEnd(E?). So ¢ = ¢oe,
Y1 = ¢o&. Since deg(¢) = deg(y) = deg(dg) = p, we see that € are isomorphisms of E3.
So ¢ = €, '€ is an isomorphism of the claim. o

We add here one more remark whose proof will be obtained later as an easy corollary of
Theorem 5.2.

Lemma 2.4. Let (E?, 1) be a principally polarized superspecial abelian threefold. Then
there exists a polarization u; of E* and an isogeny ¢,

[
3) (E%, 1) — (E°, )
such that Ker(u;) = a/f, and ¢*(A) = u;.

For a polarization u; of E3 with Ker(u;) = a/f,, consider principally polarized abelian
threefolds (A, 4) with a(A) = 2 such that there are sequences as in Proposition 2.2 (1) starting
from (E3, ;). We denote by W(u;) the Zariski closure of all such (A, 1) in S3.1. In this
setting, we have

Proposition 2.5. A principally polarized superspecial abelian threefold (E3, 1) belongs
to W(wy) if and only if there exists the above sequence (3) in Lemma 2.4 for A and ;.

For the proof, see [11] and [10, Proposition 3.16].

Remark. For a polarized threefold (E3, i) in Proposition 2.2, of course principal polar-
izations Ay in the sequence (2) of Proposition 2.2 are not unique. This means that (A, )
belongs to various irreducible components V(A4p) in S3 ;. Also, polarizations u; in the se-
quence (3) are not unique. This means that (E>, 1) belongs to various W(u;).

Next we fix two principal polarizations Ao and g of E3. Then (E>, up) € V(Ap) if and
only if there exists a polarized superspecial abelian threefold (E3, 1;) which gives a pftq by

@) (B3, pao) -5 (B3, 1) 2 (B3, ).

Later we will see that this is equivalent to saying that there exists an isogeny (E>, pdy) —
(E3, o). with pAg = ¢*(uo) (See Theorem 5.3 in section 5).
Next we consider the case n = 2. For the following proposition, see [12, Theorem 5.7]
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and [13, Theorem 4.9].

Proposition 2.6. (i) If n is even, then the number of irreducible components of S, is
equal to the class number of the non-principal genus.
(i) Let Ay be a polarization of E* such that ¢;(1/11 € Hf;,). Denote by V() the corresponding
irreducible component in (i). Then a principally polarized abelian surface (E?, 1) belongs
to V(Ay) as a point of Sy if and only if there exists an isogeny

(B2 ) 25 (B2, )
such that 11 = ¢7(A).

In Proposition 2.6, comparing the degrees, we see that deg(¢) = p and Ker(¢) = a,,

3. Review on basic arithmetic

For readers’ convenience, in this section we shortly review Hecke double cosets of GL,,
quaternion hermitian lattices, and the quaternion hermitian group (See [18], [16], [17]).
As before we consider the definite quaternion algebra B with discriminant poo. We fix a
maximal order O of B such that 7 € O with 72 = —p. Such a maximal order always exists.
The choice of O is not essential, but this assumption on O sometimes makes explanation
simpler. We denote by B, the adelization of B. For any prime g, we put O, = O ®7 Z,. We
put Ox = B [, Oy where Bo, = B®qg R. We write GL,(04) = GL,(Bs) [1,GL,(O,). We
assume from now on that n > 2. Then by the strong approximation theorem of SL, and the
property of the norm images, we have

(&) GLu(Ba) = GLy(B)GLA(On).

For any g = (g,) € M,,(04) N GL,(By4), consider a double coset GL,,(04)gGL,(Oy4). By (5),
we may assume that g € GL,(B) in the above double coset. Then we have

GL,(OA)\GL,(04)9GLy(0r) = GLi(O)\GL,(0)gGLA(O).

By this fact, the Hecke algebras with respect to the pair (GL,(B) N M, (O), GL,(0O)) and the
pair (GL,(B4) N M, (O4), GL,(O4)) are isomorphic as rings. (Of course this is not true in
general for n = 1). The isomorphism is given by the restriction to GL,(B). Now for a; € B*
(i = 1,...,n), we denote by diag(ay,...,a,) the n X n diagonal matrix whose diagonal
components are ay, . .., a,. For g € M,,(0) NGL,(B), if we assume that g € GL,(O,) for any
q # p, then in the double coset we may replace g by a diagonal matrix diag(n, ..., 7°) for
some integers e; with 0 < ey < --- < ¢, (See [18, Lemma 2]). We write

Ta(n®, ... 1) = GL,(Oy)diag(n', ..., 1)GL,(O4),
T(x*,...,n°) = GL,(O)diag(7®,...,7n“)GL,(O).
By the assumption n > 2, we have a bijection
GL,(OA)\Ta(7*, ..., 1) = GL,(O\T(n, ..., 7).

Next we explain the arithmetic theory of quaternion hermitian lattices. We denote by
B" the left B vector space of row vectors and consider a quaternion hermitian metric on B"
defined by
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n
(x,y) = Z xiYi,  Xx=(x),y =) € B".
i=1
This is the unique positive definite quaternion hermitian metric up to base change over B.

A quaternion hermitian group G is defined by the set of elements g € M,(B) such that
X

(xg,yg) = n(g)(x, y) for some n(g) € Q7, that is,
G =1{g € Mu(B):gg" = n(9)1.},

where 1, is the n X n unit matrix. We denote by G, the adelization of G and for a place v of
Q, we denote by G, the v-component of G4.

For a lattice L in B" (i.e. a free module over Z such that L ® Q = B"), we say that Lis a
left O lattice if it is a left O module. We say that L; and L, are in the same class if L, = Lig
for some g € G. For a left O lattice L and a prime ¢, we put L, = L ®7 Z,. We say that L,
and L, are in the same genus if L, , = L g, for some g, € G, for all primes q.

For a fixed left O lattice L, we denote by G(L) the set of lattices belonging to the same
genus as L. For any prime ¢, we put

Uq(L) ={ge Gq;ng = Lq},
and define an open subgroup U(L) of G4 by
UL =Ge || Uy,

g:prime

For an element g = (g,),<c € G4 and a left O lattice L, we define a left O lattice Lg by

Lg= () (Lygy 0 B").
g:prime
Then we also have U(L) = {g € Ga; Lg = L} and G(L) is the G 4-orbit of L. Classes in G(L)
correspond bijectively with double cosets in

h
Gs = | JuwygG
i=1

by L — Lg;. This correspondence depends on the choice of L but the number / does not.
The number £ of classes in G(L) is finite and called the class number of G(L).

If n > 2, then the class number of the order M,,(O) is 1, so any left O lattice L is O-free
and there exists an element & € GL,(B) = M,(B)* such that L = O"h. (This is not true for
n = 1.) Changing L in the same class if necessary, we may assume that hh* € Herm; (O).
We say that H,, H, € Herm (O) are equivalent in a wide sense if we have H, = me; H, € for
some € € GL,(0) and m € QF, where Q7 denotes the set of positive rational numbers. When
m = 1 in the above relation, we say that H; and H, are equivalent in a narrow sense. Then
we have a bijection between classes of left O-lattices and classes of Herm, (O) in a wide
sense by the map O"h — hh* € Herm (O). If O"h, = O"h,g for g € G' ={g € G;n(g) = 1}
and h; € GL,(B) with h;h; € Herm} (0), then hyh;, and hyh} are equivalent in a narrow sense
and vice versa. If H; and H, have the same reduced norm and equivalent in the wide sense,
then they are also equivalent in the narrow sense. Geometrically, we often only treat cases
when the norm of the matrices in question are fixed, so the difference of the definition has
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not much problem. Since N(B*) = Q7, we have {n(g); g € G} = Q¥, and the double cosets
for G4 and G}‘ are essentially the same for the lattices we treat here, so hereafter we always
use G and not G! and by equivalence class we mean in a wide sense.

We define the norm N(L) of a left O lattice L by the two sided O ideal generated by
(x,y) for all x, y € L. Even if we fix a class of L, the norm N(L) depends on a choice of
representatives, since N(Lg) = n(g)N(L) for g € G. We may often take a lattice which has
a simple N(L) as a representative of a class of lattices. We say that L is a maximal lattice if
L is maximal among those that have the same norm. When n > 2, maximal left O lattices
in B" are divided into two genera, the one is the principal genus and the other is the non-
principal genus. The principal genus is represented by L = O" and in this case N(L) = O.
The non-principal genus is a little more complicated, but the genus contains a representative
L with N(L) = O (with some extra condition). The corresponding matrix version for n > 2
has been already explained in the previous section as H;(:rli)n and Hr(l'l?, respectively.

4. Parahoric subgroups and descendable directions

In our dictionary between geometry and arithmetic, polarizations on E” are elements in
Herm; (O) and isogenies of E" to E" are elements in M,,(O) N GL,(B). So the problem that
a polarization of E" has a descent to E" with some given property by a certain isogeny of
given type can be described using only by matrices. (A corresponding lattice version will be
explained at the end of this section.) We can ask such problems for very general setting, but
here we content ourselves to the case appearing in the pftq for n = 2 and 3.

To make the story more acceptable for readers, first we explain the case n = 2, relating
them to some known geometry. For n = 2, Katsura and Oort defined good directions and
very good directions in their paper [12]. There a direction means the tangent of the line
which is the image of an embedding of ¢ : @, — a/f,. When the natural map E* — E?/u(a,)
is realized by an element g in the double coset 7(1, 7r) (and this is equivalent to the claim that
E?/ ap) = E?. See [15, Remark 3]), then the direction is called a good direction. In other
words, the set of good directions are identified with GL,(O)\T (1, ) = Pl(Fl,z). So there are
p? + 1 good directions. For any g € T(1, ) and a polarization A of E? such that ¢;(1/l belong
to HI%), . So good
directions are characterized in this way, because for every direction defined by g € End(E?),
the polarization A does descend to a principal polarization on the quotient. For a principal
polarization A of E2, if pA has a descent by an isogeny g to a polarization 1; on E? such that
Ker(4,) = alz,, (in other words, which belongs to the non-principal genus), then the direction
corresponding to GL,(O)g is called a very good direction in [12, p. 119]. To say this by
matrices, for a fixed principal polarization A of E?, we write Ko = ¢' A € Herm3 (0). Then
a very good direction is a coset GL(0)g € T(1, ) such that (g*)"'(pKo)g~! € HI%). (By the
way, note that (g~')* = (g*)~!.) It is easy to count such directions (i.e. the number of cosets
GL,(0)g) by checking if a representative of each coset satisfies the condition. Anyway,
there are p + 1 very good directions ([12, (3.4)]).

There is one more interesting thing here. We can interpret these directions by the set of
cosets of the minimal parahoric subgroup in two maximal parahoric subgroups of G, or by
the set for the corresponding adelic subgroups of G4. Forn = 2 andi = 0, 1, 2, we define
subgroups U , of G, as follows. We can choose ¢ € GL,(0),) such that

we can easily show that we always have ¢;(1/l = gHg" for some H € HP

prin
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. (01
e =[] )

and fix it. We put G,, = £G,¢7" and define subgroups of G, by
U, = GL(0,) NG,

. (0, =m0,
Yin = (77017 Op
Uy, =U;,NU;,.

X
) mG;;,

We put U; , = ¢! U;jpg fori =0, 1, 2. The group G, has two maximal compact subgroups
up to conjugation by G, and representatives are given by U , and U, ,. The group U, is
the unique minimal parahoric subgroup up to conjugation. For i = 0, 1, 2, we define open
subgroups of G4 by

Ui = GuUsy | [(GLa(0,) 0 Gy
q#p

Then it is well-known that [U, : Ug] = [Uy), : Up,l = p>+1and [U, : Uy = [Ui,p :
Uopl = p+ 1 (See [2, IIL, p, 395]). So it is natural to expect that good directions and
very good directions have some natural connection to Uy ,\U, , and Uy ,\U; , respectively
(though not categorical sense). The similar thing happens also for n = 3. The case n = 2 is
much simpler than the case n = 3. so we mainly explain the case n = 3 hereafter.

First we define matrices corresponding to polarizations in the pftq for n = 3 and the adelic
subgroups corresponding to those. For a polarization of E* whose kernel is isomorphic to
aff,, the corresponding matrix is nothing but an element in

M, = Herm’(0) N T(1, 7, 7).

The local class at p of H; up to GL3(0,) equivalence is given by

0 0 «
0 1 0f.
7 0 0

The local class at g # p is represented by 13, so the set H; forms one genus. It is easy to
show that there exists an element & € GL3(O),) such that

00 1
&r=J:=0 1 0].
1 00

We fix such &. Then the left O, lattice corresponding to the above representative of matrices
is given by

N, = (10,,0,,0,)¢ = 1(0,,7'0,,70,)¢.
There is a global left O lattice M c B> such that for any prime v, we have

(6) M = { O} for any prime v # p,

N, forv = p.
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This lattice M is not a maximal lattice, since obviously N(M) = O while M ¢ O* and
N(O?) = O. For any left O lattice L of B", we define the dual lattice L* of L by

L* ={xe B (x,y) € Oforall y € L}.
Then the local dual N, of N, is given by
Ny, = (0p, 0p, 7' 0p)é = 171 (0, 70, 0,)é

and by direct calculation we see that nN; is locally maximal with N (ﬂN;) =n0,. So tM*
belongs to the non-principal genus. We put

G, = prf_] ={g € GL3(B));g9Jg" = n(g)J}.
We define three subgroups of G, by
U, = GL3(0,) NG,

o, 0, n'o,
Ui,=|m0, 0, 0, | NG,
0, n0O, O,
Uy, =Ui,NU;,.

X

We put U; , = ¢ U; x5 fori =0, 1, 2. The group G, has two maximal compact subgroups
up to conjugation and they are represented by U , and U, ,. The group U, is the unique
minimal parahoric subgroup of G, up to conjugation.

If we write Aut(N,) = {g, € G,;N,g, = Np}, then we have U; , = Aut(N,). Indeed, if
we put

7 0 0
=0 1 0],
00 1
then
(7 N, =0ILi¢ and  Aut(N,) = (¢ '] GL;(0)I116) N G,
so we have

0, n'o, =0,
(8) EAu(N,)¢ ! =m0, O, 0, | nG;.
0, 0, O,

Now let (x,y,2) € (O, 7r‘10p, 71‘10p) be the first row of the elements of RHS of (8). Then
since RHS is in G;‘,, we have

(x,y,2)J |y | = Tr(xz) + N(y) = 0.

ST S Y

It is well known that we have O, = O + nOp for the maximal order O of the unramified
quadratic extension of Q, in O, where the multiplication is defined by ar = ma” for any
« € F and the non-trivial automorphism o of Gal(F'/Q)). Since Tr(z~'OF) = 0, we have
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Tr(r'0,) = Z,. Since x € O, and z € 7'0,,, we have N(y) € Z,, so y € O,,. In the same
way, if we take the third row (a, b, c) of RHS of (8), then we can show that b € 70,. So
RHS of (8) is equal to U i‘ > By the same proof, we see Aut(rN,) = Aut(N,) = U 1“ » (or use
the fact that it is the dual of N,.) Now fori = 0, 1, 2, we put

Ui = GuUsy | |(GL3(0,) N Gy

q#p

Then we have

U, =1{g € G4: 0°g = 0°),
U ={geGs;Mg=M)=1{geGr;nM*g =nM*}.

So the classes in the principal genus correspond with U,;\G4/G and the classes in the genus
G(M) correspond with Uj\G4/G. The latter also correspond with the classes in the non-
principal genus. By standard calculation which we omit here, we can show that

[Uy:Ul=p*+1,  [U:Upl=p*+1.

For elements H and K € Herm; (O), we say that H is descendable to K if H = g*Kg for
some g € M, (O).

By abuse of language, for any g € M3(0O) N GL3(B), we call the coset GL3(0)g the
direction of g. We consider two kinds of special descents.

The first one is as follows. We fix H; € H;. For an element g € M3(0) N GL3(B), we
consider a condition for g that H; = g*Hyg for some matrix Hy € HSi)n' Here note that H
is not fixed. If such g exists, then comparing the reduced norms of Hy and H;, we see that
g € T(1,1,m). It is clear that the condition of this descent depends only on a direction of
g. If there exists Hy € HS i)n as above, then we say that GL3(0)g is a descendable direction
for H;. The set of g € T(1,1,n) belonging to some descendable direction is denoted by
THh@1,1, 7).

The second one is as follows. We fix Ky € Hr()fi)n and put H, = pK,. We consider a
condition for an element g € M3(0) that H, = g*H;g for some H, € H,. Again this
condition depends only on GL3(0)g, and if the condition is satisfied, we say that GL3(O)g
is a descendable direction for H,.

Lemma 4.1. Notation being as above, if GL3(O)g is descendable for H,, then g €
T(1,n,m).

Proof. We see easily that the reduced norms of H, and H; are given by N(H,) = p% and
N(H;) = p?, so we have N(g) = p®>. So we have g € T(1,m,7) or T(1,1, p). We show
that the latter case does not occur. Assume g € T(1,1, p) and write g = € diag(1, 1, p)e;
for some g € GL3(0). Put H| = diag(1, 1, p~")(pe;*Koe, diag(l, 1, p~!). Then the con-
dition (¢*) ' pKog™" € T(1,7, ) is equivalent to the condition H| € T(l,7,x). We write
€ " Ko€; I = (aij). Since Ky € HSi)n’ we have (a;;) € HSi)n C GL3(0). Now assume that
H{ € M3(0). Then we have

pain  pan as

H{ =|pan pan a3 |€ M3(0).
—  — -1
ags as p ass
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Soazz € pO. Thensince (a;j) € GL3(0), we have a3 € 0; oras € O;f. So by multiplication
of elementary matrices, we can show that H] € T(1, 1, p). This is a contradiction. O
We note that even if g € T(1, , 7), it might happen that (¢*) "' H,g~' € T(1, 1, p). We denote
the set of g € T'(1, , m) belonging to a descendable direction for H; by

©) T (1,7, 7).

Lemma 4.2. Notation being as above, we have
(10) #GL;(O\TT(1,1,7) = p* + 1 = [U; : Up]
(11) #HGL;(O\T™(1,7,7)) = p* + 1 = [Us : Uy
where #(set) means the cardinality of the set.

Proof. We have the following coset representatives.
7 0 0y (1l a O) (1 O b
GL;(O\T(1,1,r)=4]10 1 0Of,]JO0 =~ 0},]0 1 ¢
00 1)J)\0 0 1J\0 O =
. a, b, c are representatives of O/70 = F . ¢,

GL;(O\T(1,n, ) =

S O XN

00
x 0Of,
0 1

S O N

0 0\ (1 b
1 al,|0 «
0 ) \0 O

N © o

. a, b, c are representatives of O/n0 = F

In particular, we have deg T(1, 1,7) = deg T(1,7,7) = 1 + p> + p*. (By the way, we have
degT(1,1,p) = p* + p® + p.) Now we prove Lemma 4.2 for the second case. We have
Ko = €€ for some € € GL3(0,4). Since €g™' = (gg,')™", it is enough to consider a
representative of the coset GL(Oa)ge; '€ Ty(1, 7, 7) for the descent from pl3, so we may
assume that ge; !is a representative in the set given above. For g € T(1,r, ) in the above
representatives, we check if

(12) pgH g™

is in T4(1,m, ) or not. For g = diag(m,, 1), (12) is equal to diag(1l, 1, p) € Ta(1,1, p) so

7 0 0
this is not good. Forg =10 1 a|, (12)isequal to
0 0 =«
1 0 0
0 »p ar .
0 —-ma 1+ N(a)

This is in T(1,x,7) if and only if 1 + N(a) = 0 mod p. We have O,/70, = F, and
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1 b c
NF,,z/Fp(Fp2) = FF,. So the number of sucha mod wis p + 1. Nextforg = {0 x O, (12)is
0 0«
equal to
p br cr
—7b 1+ N(b) n'ber
—n¢  nchn™' 1+ N(c¢)

This is in T(1,n, 7r) if and only if the matrix mod 7 has rank 1. So this is equivalent to
(N(b) + 1)(N(c) + 1) = N(b)N(c) = N(b) + N(c) + 1 € Oj. For each element of {(x,y) €
IF?)Z; x +y + 1 = 0}, the number of » mod 7 and ¢ mod 7 such that N(b) = x, N(c) = y is as
follows. If x = 0, then » = 0 mod 7 and N(c¢) mod m = y = —1. The number of such ¢ mod 7
is p+ 1. If x # 0 and y = 0, then again the number of (b,c) mod risp+ 1. If x+y+1=0
and x # 0, y # 0, then the number of (x, y) is p — 2 and for each such (x, y), the number of
(b,c) mod is (p + 1)>. So the total of this case is 2(p + 1) + (p + D)’ (p = 2) = p(p*> - 1).
So the total number of cosets is (p + 1) + p(p> — 1) = 1 + p>. The proof for the case (10) is
obtained similarly. The second equalities of (10) and (11) are proved directly by calculating
[U; : Up] fori = 1, 2 independently. O

Now here the equalities of the numbers of descendable directions and the group indices
[U; : Up] are given just by a coincidence of independently calculated numbers, but we could
ask if there is more direct relation. We answer this question next.

Before going further, we give lemmas which will be used later. In particular, the first one
is a key lemma for the proof.

Lemma 4.3. We assume n = 2 or 3. For an element v € G, with n(v) € Z%, assume that
every component in the first row of v belongs to n~' O, and that all the other components are
in O,. Then we have

ve Uy, U, (semi-direct product)

N2

Proof. We prove the case n = 3. We write v = (v;;) € M3(B,). If vy, v12, v13 € O,, then we
have v € M3(0,)N G, and since n(v) € Zx, we also have v™" = n(v)"'Jv*J € M3(0,) NG, s0
vE U;p and we are done. So we assume that v; € 7r‘10;f for some i = 1, 2, or 3. Comparing
the (1, 1) component of the relation vJv* = n(v)J, we have

(13) Tr(v11013) + N(v12) = 0.

If vo € n‘IO;, we have N(vyy) € p‘lZ;. But we have Tr(7r‘10p) = Z, so both vy; and vy3
should be in 77‘10;. If v1, € O,, then we may assume that vy € 71‘10; or vi3 € ﬂ‘IOIX,.
Since J € U;,p’ we may change v by vJ if necessary, and v;; and v;3 can be exchanged by
this. So in any case. we can assume that v;3 € 71‘10;. For x, y € B, we put

1 00
[x,yl=]-x 1 O0].
y x 1

Then we have [x, y] € U;’p if and only if x, y € O, and N(x) + Tr(y) = 0 and we also have
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n([x,y]) = 1 in this case. We write vy; = 7 vay; with ay; € O, fori =1, 2, 3. We have
aps € 0; by the assumption. Since Tr(0,) = Z,, there exists an element y € O, such that
Tr(y) = N(aj;a12). By taking v[-ajjar, —y], we may assume vy, = 0. Then by (13), we

have Tr(r 'ayn~'ay3) = p~'Tr(aya3) = 0. This also means Tr(a3a11) = Tr(aja;;) =
Tr(ayai3/N(ai3)) = 0. So we have [0, —aj3a11] € U, , and taking 00, —ay;ay;] instead of v,
we may assume v;; = v = 0. Comparing the (1, 2) and (1, 3) components of vJv* = n(v)J,
we have vy, = 0 and v1303; = n(v). So v3; = n(V)a(a) " Comparing the (2,2) components,
we have N(vx) = n(v) € Zj;. So multiplying

nwlaz 0 0

0 v, 0 |e Us,
0 0 al‘31
to v from the right, we may assume
0 0 n'!
v=10 1 U23
T vn U3

with v3, 023, V33 € O, Since this is in G;, we have v3; + 037 = 0, and this means v3, € 70.
Also we have

— 1

U3 U3 T
vi=n'J=|m 1 0
0 0
So we have
o, 0, n'o,
v, efr0, 0, O,
0, n0, O,
sov € Uj » The proof for n = 2 is similar but easier and we omit it here. m|

We give one more well-known lemma.

Lemma 4.4. Let ® be a group, 91 and K subgroups of ®, and $Ho a subgroup of ;. Fix
g€ GandputT = H; Ngfg'. We make T act on $o\91 by right multiplication. Then the
set of double cosets in Ho\D1gK/K is bijective to the set of right I'-orbits in Ho\9D1,

Proof. Take two double cosets Hohgit and Hoh'gK in Ho\H1gKR /K where h, i’ € H;. If they
are the same, then we have h'g = hohgk for some hy € 99 and k € K. So halh’ = h(gkg‘l).
Here gkg™' € gRg™' N $; =T. So Hoh' € Hohl'. The converse is proved similarly. o

Now we come back to our main theme. First we consider the condition on descent for a
fixed H, = pK, for K € H® by g € T(1, 7, ). We take ko € GL3(B) such that Ky = kok

prin

and put
(14) h2 = k()ﬂ'.

Then Hy = hyh. Of course there are several choices of h; or ko but we fix them for sim-
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plicity. The standard lattice corresponding to the genus containing H, is O°xr. So we choose
g> € G4 such that

(15) O’hy = O’ng»

and fix it. By our choice, comparing the norm of lattices, we have n(g») € Z} := R [1, Z;.
(By the way, the lattices O*r and O? are in the same class by G and the automorphism groups
of these are both U,, but the double coset U,ng,G and U,¢g,G are different in general. This
is natural since the correspondence with double cosets depend on the choice of a lattice
representative of the genus. The lattices 037rg2 and O3g2 are not in the same class but
belong to the same G type in the sense of [8, p. 372].) For any H € Herm, (O), we define

Aut(H) = {a € M,(0);a"Ha = H).

By comparing the reduced norms of the defining equality, we see that Aut(H) c GL,(O).
Since H is positive definite, it is also obvious that Aut(H) is a finite group. Going back to the
above setting, we have Aut(H,) = Aut(K,). The group Aut(H,) acts on T*2(1, x, ) by the
right multiplication since if g € T™2(1, rr, 7), then there exists H, € H; such thatg*H,g = H,
and this means that a*g*H;ga = a*Hya = H,. Now we put

I, = ggl Uygr NG,

T = U, Ng2Gg3' = golags '
Then the group FQ acts on Uy\ U, by the right multiplication. If @ € Aut(H,), then obviously
hy'a*h, € G' and we have O’ hy(hy'a*hy) = O’a*hy = O’hy. The stabilizer of O°h, =
0O’ng> = 0%y in G4 is g5 Uags, so we have

1y Aut(Hp)'hy = T = g3'Taga.

where we write Aut(H,)" = {a*;a € Aut(H,)}. Here we define an isomorphism R, of
Aut(H,) to I'; by

Aut(Hy) 3 @ — Ry(@) = goh3 ' (@") ' hag;' €T

(Here we take (a*)”! instead of a* to make the map an isomorphism and not an anti-
isomorphism.)

The group Aut(H,) acts on GL3(O)\T?2(1, 7, r) and I'> on U\ U,, both by right multipli-
cation.

Proposition 4.5. Notation and assumption being as above, we can define a map p from
TH:(1,r, 1) to Ug\U, which has the following properties.
(1) The map p induces a bijection

p : GLy(O\T™ (1,7, ) = Up\U>.

(i1) The action of Aut(H,) and the action ofi:z defined above are compatible with p. That is,
we have

p(ga) = p(g)Rx(a), for @ € Aut(H),g € GLy(O\T™(1, 1, ).

This induces a bijection between the following set of orbits.
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GL;(O\T™(1, 7, )/ Aut(H,) = Uy\U,/T>.

(iii) The map p induces a bijection between the set of Aut(H,) orbits in GL;(O)\T™>(1, n, )
and the set of all double cosets in Uy\U»9,G |G, where the map is given by g — Uyp(9)g.G.
(iv) We fix H, = pK, for Ky € HSi)n and Hy € Hy. We choose hy, hy so that hyh; = H, and
hih} = Hy. We choose g, and g, € Gx so that O’hy = 037rg2 and O®h; = Mg, where M is
the standard lattice defined by (6) in the genus corresponding to matrices in Hy. Then H, is
descendable to H, if and only if U,g,G N U19:G # 0.

We postpone the proof of this proposition after stating a claim for the other case which is
quite similar.

Now we explain the other case. We fix H; € H; and also fix &y € GL3(B) such that
Hy = hih]. We fix g1 € Ga such that O’hy = Mg,. where M is the standard lattice in
H, defined in (6). More precisely we use following notation. We write I1; = diag(n, 1, 1).
By II; and ¢ (being defined by &&* = J), we also mean elements in GL3(B4) such that the
p-components are I1; and & respectively and the other components are 13, Then there exists
€1 € GL3(0y) such that

(16) eth; = Ii&g;.
Such elements €; and g; are not unique, but we fix them. We write
Aut(H)) = {@ € M3(0);a"Hya = H;}
I =g;'UigiNG
T =UingiGg' = gilig;".

We have h['Aut(Hl)*hl =1 = gl‘rl:lgl. We define an isomorphism R; from Aut(H) to i:l
by

Ri(@) = gihi' (@) gy
Here Aut(H,) acts on T (1,1, ) and i:l acts on Up\U; both by right multiplication.

Proposition 4.6. Notation and assumption being as above, we can define a map p from
TH(1,1,7) to Up\U, which has the following properties.
(1) The map p induces a bijection

p: GLy(ON\T™'(1,1,7) = Uo\U,.

(i1) The map p is compatible with the action of Aut(H;) and T\. In other words, for any
g € T (1,1, 7). we have

plga) = p(g)Ri(a).
This induces a bijection between the following set of orbits.
GLy(ONT™' (1, 1, m)/Aut(H)) = Uo\Uy /T

(iii) The map p induces a bijection between the above set of orbits and the set of all double
cosets in Uyg\U191G /G, where the map is given by g — Uyp(9)g1G.
(iv) We fix Hy € H, and Hy € H[(ji)n' We fix h; € GL3(O) for i = 0, 1 such that h;h: = H;. We
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choose g, and gy € G4 such that O’hy = Mg, and O3hy = 03g0. Then H, is descendable to
Hy if and only if U1g:G N UpgoG # 0.

Proof of Proposition 4.5. First, before defining the map p in the proposition, we prepare
several notation and explain necessary properties. We fix i, € GL3(B) and g, € G4 as in
(14) and (15). For g € T™>(1, , ), we put

hy = (g") .

Then by definition of T*2(1, z, 7) at (9), we have H; = hih} € Hy. By our choice as in (15)
and (16), we have

h =€ 'hég), (I = diag(n, 1,1)),
hy = 62_17Tg2

for some €, €, € GL3(04), g1 € Ga. In order to see a relation between H; and H, by adelic
elements, we put

(17 n= 9297 €Ga.
Then we have
n= ﬂ_lezhzhl_lel_ll'llf = Jr_lezg*el_ll'hf,
and
n = alg) g ng e,
Here we have GL3(04)r = nGL3(0y4) and (¢*)"' € T(1, 77!, 77 1), so we have
a(g)'e'ne T, 1,n).

By this fact, the first row of the p-component of I1;'e|(9")'&;'n¢™" € G is in 77(0,)’
and the other components are in O,,. So this is in U T’p . U;p by Lemma 4.3. All the other
local components of 7! at ¢ # p are in GL3(0,), so we have n'eU,-Uyandne U,-Uy.
So there exists w € U, such that wn € U;.

Now under these preparations, we define the map p and then prove (i) of the proposition.
The coset Uyw does not depend on the choice of w, since if wn, w'n € Uy and w, w’ € Us,
then we have w'w™! = (w'n)(wn)™' € U, N U; = Uy. So we would like to define p(g) by
p(g) = Upw. But we must show that this is well-defined, since this might depend on the
choice of /1 and g;. Also we want to show that p(g) is the same for any element in GL3(O)g.
So to prove both at the same time, we take another g’ € T™2(1, rr, 1), hy = (g/*)‘lhz. We also
write

(18) hy = e 'ég), (€] € GL3(04), 4} € Ga),
(19) N =929, "
Then we have

' =nlag e hé =nE Tl alg) 9" e The).

If ¢ € GL3(0)g, then we have g’ = g for some € € GL3(0) and (¢g*)"'¢g’* = €. So the p
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component of IT; e "¢, "', is in
0, n'o, =0,
70, 0, 0, | NG
70, 0, O,
This is equal to Uy SO We have
n €nU,.

This means that if w € U, and wn € Uy, then wy’ € U,. So we have p(g) = p(g9’) = Uyw,
and p is a well defined map from GL;(O)\T™>(1, x, ).
Next we show that p is injective from GL3;(O)\T™2(1, , ). We take g, g’ € TH(1,7,7)
and define i, 7’ as (17), (19). If wy, wyy’ € U, for w € U, then we have '3’ € U; and
a(g) @) e = e ) T € M3(0).

So we have g’* € g*M3(0) and ¢’ € M3(0)g. Since N(g) = N(¢’) = p*>. we have ¢’ €
GL3(0)g, so p is injective.

Next we show that p is surjective to Uy\U,. In order to find g for any w € U,, we put
g1 = wg, and take h; € GL3(B) such that Mg, = O3h,. Then we have

hy = € 'iég,
for some €; € GL3(04). We define g by g* = hzhl‘l. Then we have
g = ez_lirgzgfl.f_lﬂflel = ez_lﬂw_l.f_lﬂl_lel.
Since w € U,, obviously we have g* € GL3(04) N GL3(B) and by Lemma 4.1, we have
g € T(1,m, 7). For g, we have n = n'exg*e;'TIi¢€ = w™'. So p(g) = Ugw. Hence p is
surjective and we finished the proof of (i).

Now we see the correspondence of the orbits and prove (ii) and (iii) of the proposition.
We put ¢’ = ga for @ € Aut(H,). Here we will show that p(g’) € Ugp(g)I'>. We define g1,
g1, hi, by, €1, €/, n, " as in the proof of (i). Then we have

n =0 alg) g e T e

=& ' a(g) o'y e L

=& ' e h)(hy @' hy)(hy €' T )

= ngi(hy' " h)gy ' (&' e €71 €)

= (g2h3' @ hagy Ngagy NE T @€' TLE)

= (g2h3y' @ hagy (€T e €7 L E).
Since n, 1, g, and hgla*hz € G4, we have f‘ll'[flel e{‘lﬂlg € G4 and this also belongs to
U,. Soifwn € U, for w € U,, then we have

w(gahy' (@) gy ' € Uy

If @ € Aut(H»), then goh; ' (@) 'hag;' = Ro(a) € U, so for w € U, such that p(g) = Upw,
we have p(g") = p(ga) = Upp(g)R2(a). On the contrary, if Upp(g’) = Upp(g)R2(a) =
Upp(ga) for some a € Aut(H,), then by injectivity we have GL3(0)g’ = GL3(O)ga. So we
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prove (ii). The claim (iii) is obvious by Lemma 4.4.

We prove (iv). Assume that H, = g*Hg for some g € M3(0). Since Uyp(g) = Upw for
w € U, such that wny = wgzgfl € Uy, we have Uyp(9)g.G C Ug,G N U1g1G. So this is
non empty. Conversely, if U>g>G N U1g1G # 0, then we have Uywg,G C Uyg,G N U19:G
for some w € U,. So we have wg, = u g0 for some 6 € G and u; € U,. Since U u;9,G =
U19:G, we may write u;g; by g;. Since we may assume n(g,), n(g,) € ZX and since we
have n(w) € Z}, we have n(6) = 1. So we have H; = hh] = (h6)(h6)". If we put
g* = hy(h16)", then we have g*H g = H, and as in the proof of the surjectivity of p, we can
show that g € M3(0) N GL3(B). (We can also show that p(g) = Uyw.) O

Proof of Proposition 4.6. The proof is almost the same as the proof of Proposition 4.5,
so we explain shortly. We fixed h; € GL3(B) such that H, = h1h}. We also fix g; € G4 such
that

03h1 = Mgl.
We have
h = € 'Thég

for a certain €, € GL3(0,). For g € TH(1,1,7), we put hy = (g*)"'h; and define ¢ €
GL3(0y) and go € Gy by

h() = 66190.
We put
n=ag19;"

Then as in the proof of Proposition 4.5, we can show that there exists w € U, such that
wn € U,. We define

p(g) = Upw C U,.
For this p, the proof of the claims is almost the same as that of Proposition 4.5, so we omit

it here. o

Proposition 4.7. Fix K, € HS and put H, = pKy. We also fix Hy € HS) If Hy is

prin prin”
descendable to Hy by g € M3(0), i.e. Hy = g*Hyg, then there exist some Hy € H| and
ay € T(1,1,n), @y € T(1, 7, ) such that g = a\az, Hy = ayH @, and ajHoay = H;.

Proof. Comparing the norm of H, = g*Hyg, we have N(g) = p°, so we have g €
T(n,7,n), T(1,m,7%), or T(1,1,7°). We see that the last case does not happen. Indeed,
if g = e diag(1, 1, 7%)e, for € GL3(0), then

diag(1, 1,773)61"H061diag(1, 1,7} e pGLs(0).
We write
e Hoer = (a;)).

Then we see that ajy, aio, az1, ax € pO. Then obviously the rank of the matrix ((a;;) mod )
is at most 2. This contradicts to the fact (a;;) € GL3(0). So this case does not happen. Next,
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we assume that g € T(1, 7, 7). We may write
g = ediag(l, 7, 1)e, €1, & € GL3(0).

By definition we have g*Hog = Hy = pKo, If we write H| = €/ Hoe; = (b;;), then we have
diag(1,7, T)(b; jdiag(1, 7, %) € pGL3(0).

So we have by; € pO, by, = b_21 € 0. Since (b;;) € GL3(0), we have by, b_31 =bjz € 0;.
Now put

ay = ediag(1, 1,7),

ap = diag(1, 7, m)e;.
Then we have

by by bpm

. 2
aHoay =| b1y by bur
b137T b2371' ﬁb337‘l’.

Since b;1, b1 = 0 mod 7, we have

0 0 0
ajHoay modr=(0 bpymodn 0].
0 0 0

Since N(ajHoay) = p2 and by, € O%, we see that ajHoay € T(1,7,7) N Hermg(O) = H;.
So if we put Hy = ajHoa, then o, H @z = g*Hog = H>. So this case is proved.

Next we assume that g € T'(n,m, 7). We have g = me for some € € GL3(0). Put a; =
e diag(1, 1, m) for arbitrary €, € GL3(O). Then there exists €, € GL3(0O) such that we have
g = a1, for ap = diag(nm, , 1)e;. Indeed since GL3(O)r = nGL3(0), writing «; as above,
we have

a1, = € (nl3)e = el e

for some €. So we may put & = ei‘l €. So all we should do is to find € € GL3(0O) such that
ajHoay € H,. For any € € GL3(0), if we define a; as above, we have ajHoa; € T(1, 7, 7)
or T(1,1, p) and the condition that this belongs to T'(1,r, ) is equivalent to the condition
that the matrix rank of ajHoa; mod x is 1. This means that the first 2 X 2 diagonal block
modulo 7 of the matrix €] Hoe; is of rank 1. Since Hy belongs to the principal genus, we
have € € GL3(04) such that Hy = €¢,. So we have

€ Hoer = (6/€)(€/ &))"

First of all, we show that there exists an element 6 € SL3;(0O,4) such that the first 2 x 2 block
of 6¢d;, is of rank 1 modulo 7. There exists y € O, C Oy such that N(y) + 1 = 0. Identifying
y with an element of O4 such that the p-component is y and the other components are 0, put

1 00
(5() =10 1 y GSL3(OA).
0 0 1

Then we have
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1 0
5056: 0 yl.
0 1

= OO

Now put put 6 = (e(’;)‘lé(’;, then 6"Ho6 = 606, and its (2, 2) block modulo 7 is of rank 1. If
N(6) = e € Z}, then we replace ¢ by ddiag(1, 1,a) for some a € O such that N(a) = ™"
This belongs to SL3(0,4) and the (2, 2) block does not change, so we assume that 6 € SL3(O4)
from the first. We write I'(1) = (13 + 71M3(04)) N SL3(04). Since this is a open subgroup of
SLs(Ba), by the strong approximation theorem, we have

0= €E3€4

for some €3 € GL3(B) and ¢ € I'(1). Since 6 € SL3(0,4), we have €5 € GL3(0). Since €; =
13 mod , the (2,2) block of G;‘HOQ mod r is of rank 1 and if we put a; = esdiag(l, 1, ),
then H, := ajHoa1 € H;. Since nGL3(0) = GL3(O)r, we can choose €& € GL3(0) such
that

g = gdiag(1, 1, m)diag(r, 7, 1)es.
So we put a; = diag(m, 7, 1)es. Then we have
Hy = g"Hog = as(a)Hoay)an = a3 H ;.

O

The similar statement for very good directions for the case n = 2 is now much easier.
Assume that K, Hy € H;(ji)n and H; € Hg?. Put H, = pKy. We fix h; € GL,(B) such that

hih; = H;. Define g; € G4 such that
O*hy = O’ngy,  O%°hg = O°gy  O*hy = Ly,

where L is a standard global lattice in the non-principal genus such that L, = 0(2] and L, =
O, diag(m, 1)E.

Proposition 4.8. Assume that n = 2. Notation and assumption being the same as above,
we have
(1) H is descendable to H, if and only if U1g1G N Ug2G # 0.
(i1) H; is descendable to H if and only if Uig1G N UygoG # 0.

We have also bijective correspondences between the set of orbits of directions and the
orbits in Ug\U, by U N g2Gg," and those in Ug\U, by U; N g1Gg;'. This is also bijective
to the set of Uy — G double cosets in U,g,G or Uyg,G. Since the statement is similar to
the case when n = 3 and obvious, we omit that part here. The proof of Proposition 4.8 uses
Lemma 4.3 as in the case of n = 3. This is an easy exercise after completing the proofs for
n = 3, so we omit the details.

In this section, we treated a lot about existence of g € M,,(0) such that K, = g*K,g for
some positive quaternion hermitian matrices K; and K;. We add here an easy lemma to
interpret this into lattice terminology.

Lemma 4.9. Let K|, K> be n X n positive definite quaternion hermitian matrices. For
i =1, 2, wewrite K; = kik} for some k; € GL,(B) and define left O lattices L; by L; = O"k;.
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Then there exists g € M,(O) such that K> = g*K,q if and only if Lyy C L, for some y € G'.
Proof. If L,y c L, for y € G', then we have O"kzykl" c 0", so if we put
g =koyky!

then we have g € M,(0). Also we have g*K1g = kayy'k; = koki = K>. Conversely, if
K, = g"K,g for some g € M,(0O), then puty = kglg*kl. Then obviously we have yy* =1,
and Lz’y = Ong*kl c Ok = L,4. O

The lattice terminology looks conceptually simpler but it does not mean that the proofs
in this section become simpler by that.

5. Geometric Theorems

The results in the last section are actually all very geometric. Most interpretations are
quite obvious and maybe there is no need to be repeated here. But some geometric theorems
would be worth to be mentioned. In particular, we see how adelic double cosets describe
existence of pftq explained in section 2 for n = 2 and 3. These are directly deduced from the
results in the last section and the proofs will be mostly omitted here.

First we state our results for n = 2. We fix a polarization u; of E?> which belongs to the
non-principal genus. We denote by V() the component of S, ; corresponding to u;. We
denote by U;g;G the double coset corresponding to y;. We also fix a principal polarization
o of E? and denote by U,goG the double coset corresponding to y. Here g; are chosen as

in the last section for ¢;{1 Ui € H;()fi)n or HI%).

Theorem 5.1. The principally polarized superspecial abelian surface (E?, o) is on V(uy)
if and only if U>goG N U19,G # 0.

The proof is a direct interpretation of Proposition 4.8 and omitted here.

For a fixed U,g0G, of course the double cosets U;g,G with UygoG N U1g1G # O are
not unique in general. In the same way, for a fixed U,g,G, the double cosets U,goG with
U>goG N U;g,G # 0 are not unique in general.

Hereafter, we assume that n = dimA = 3. A polarization u; of E* satisfies Ker(u;) =
(ap)* if and only if ¢!y € Hy ¢ T(1,m, 7). For ¢3'uy = Hy, we write Hy = hyh} for
hi € GL3(B) and choose g; € Gy4 such that O*h; = Mg;, where M is the standard global
lattice defined in the last section. We fix principal polarizations 1y and g of E* and denote
by Ko and H, the corresponding matrices in HSi)n respectively. We put H, = pK,, We
choose elements 7, and hy € GL3(B) such that H; = h;h; for i = 0, 2. Choose g2, go € Ga
such that O°hy = O’rtg, and O’hy = O’go. We have n(g;) € Z = R [1.prime Z;; for i = 0,
1,2.

We denote by V(4y) the irreducible component of S3; corresponding to pAdy by Proposi-
tion 2.1.

Theorem 5.2. Notation and assumption being as above, we have the following results.
(i) Assume that for a principally polarized supersingular abelian three fold (A, 1) with
a(A) = 2, there exists an isogeny ¢, : (E3,u1) — (A, ) such that uy = ¢*(1). Then
V(Ap) contains (A, A) if and only if Urg,G N U19,G # 0.
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(ii) The principally polarized superspecial abelian variety (E*, o) is in W(u,) if and only if
Ui1g1G N UygoG # 0.

The proof is a direct consequence of Propositions 4.5 and 4.6 and omitted here.

We add a few remarks on the intersection of adelic double cosets. Since Uy C U; and
U,, any fixed U; — G double coset for each i = 1, 2 is a union of several Uy — G double
cosets, and this inclusion relations describe a configuration of the algebraic subsets of fixed
a-numbers defined above. For example, for a fixed g,, we have

U29:G = | | Usg>,jG  (finite disjoint union)
j=1

for some g, ; € G4. If we fix U1g1G (g1 € Gp), then the number of j such that Uyg, ;G C
U191G, which might be 0, counts the number of Aut(H;)-orbits of descendable directions
from H, to (isomorphism classes of) H; as shown in Proposition 4.5 and in Theorem 5.2. But
it seems we cannot expect a concrete formula for that. A similar thing is said for descendable
directions from H, to H, based on claims in Propposition 4.6. When n = 2, see [12, section
8] for some explicit descriptions of such orbits in an irreducible component for small primes
p. Also for n = 2, a list of the automorphism groups of irreducible components and the
numbers of different components having the same automorphism group have been given in
[5, Theorem 7.1].

Now, Lemma 2.4 is an easy corollary of Theorem 5.2. Indeed for U,¢g¢G corresponding
to A in the lemma, we have

h
Uz90G C Gy = U Uig;G
i=1
for some set of g; € G4, so obviously we have UxgoG N U1g;G # 0 for some i. This means
that there exists y; in the lemma.
Next, we fix principal polarizations Ay and g of E? and see the condition that (E3, o) €
V(Ap). The following result is a direct consequence of Proposition 4.7.

Theorem 5.3. Notation and assumption being as above, we see that (E>, 119) belongs to
the component V() C Ss; if and only if there exists ¢ : E> — E> such that pdy = ¢* (o).
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