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Abstract
The theory of polarized supersingular abelian varieties (A, λ) is often essentially related to the

theory of quaternion hermitian lattices. In this paper, we add one more such relation by giving
an adelic description of supersingular loci of low dimensions. Katsura, Li and Oort have shown
that the supersingular locus in the moduli of principally polarized abelian varieties is not irre-
ducible and that the number of its irreducible components is equal to the class number of certain
maximal quaternion hermitian lattices. Now the locus has certain natural algebraic subsets con-
sisting of A with fixed a-numbers that are defined as the dimensions of embeddings from αp to
A. For low dimensional cases when dim A ≤ 3, we describe configuration of these subsets in
the locus by intersection properties of some adelic subgroups of quaternion hermitian groups
corresponding to parahoric subgroups locally at characteristic p. In particular, we describe
which components each superspecial point lies on. This is proved by using certain liftability
property of isogenies of abelian varieties, where the isogenies are interpreted to cosets of GLn

and of parahoric subgroups of the quaternion hermitian groups acting on quaternion hermitian
matrices.

1. Introduction

1. Introduction
To study geometry of supersingular abelian varieties, often a pure arithmetic theory of

quaternion hermitian lattices is very powerful, as can be seen for example in [4], [11], [7],
[8], [6], [5], [9]. In this paper, from such view point, we consider configurations of the com-
ponents and certain algebraic subsets with fixed a-numbers in supersingular locus of princi-
pally polarized abelian varieties of dimension 2 or 3, explaining geometrical facts by Hecke
double cosets of the general linear groups and by adelic cosets or double cosets associated
with parahoric subgroups of the quaternion hermitian group of degree 2 or 3. Although many
geometrical facts on the supersingular locus have been already known for small dimensions
in [11], [12], [10] and also for general dimensions notably in [13], [3], our point here is
more arithmetical rather than geometrical, and in fact we add new group theoretical details
to such theory in this paper. For example, for small dimensions, we characterize descendable
directions of polarizations by cosets of the minimal parahoric subgroups and criterion on the
descendability by non-emptiness of intersection of certain adelic double cosets. These re-
sults are not trivial interpretation of known geometrical facts at all. Our intention here is to
explain everything only by superspecial abelian varieties. This way of treatment makes the
theory much more arithmetical. The subject is close to Harashita’s work in [3] on a-number
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stratification for general dimensional case, and the author believes that the method used in
this paper gives a basis for further study in general dimensional case.

Now we explain more details. Let k be an algebraically closed field of characteristic
p > 0. We denote by n,1 the moduli of principally polarized abelian varieties (A, λ) defined
over k with dim A = n, and by n,1 the supersingular locus, that is, the locus of those
(A, λ) such that A are supersingular abelian varieties. Here being supersingular means that
A is isogenous to the product En of a supersingular elliptic curve E. The locus n,1 is not
irreducible in general. The number of irreducible components is equal to the class number
of the principal genus (resp. the non-principal genus), if dim A is odd (resp. even) ([12,
Theorem 5.7], [13, Theorem 4.9]). Here the genera consist of certain maximal quaternion
hermitian lattices over End(E) whose definitions will be given in later sections. On the
other hand, the number of isomorphism classes of principal polarizations on En is given by
the class number of principal genus. These can be regarded as discrete points in n,1 ([4,
Theorem 2.10]). Here we may pose a problem how to describe in lattice terminology which
superspecial points are on which irreducible components of n,1. We define the a-number of
A by a = dim Hom(αp, A). If (A, λ) is generic then a = 1, and (A, λ) represents an irreducible
component. We have a = n if and only if A is superspecial ([15, Theorem 2]). So the above
problem is on relations between some algebraic sets with a = 1 and a = n. More generally
we may ask how to define some natural families Wi in n,1 of suitably chosen principally
polarized supersingular abelian varieties (A, λ) with a = i for some 1 ≤ i ≤ n and to describe
inclusion relations between these families Wi. We answer these questions when n = 2 and 3
by using adelic cosets or double cosets. Such inclusion relations as above will be interpreted
by non-emptiness of intersections of adelic double cosets corresponding to various kinds
of genera of quaternion hermitian lattices (See Theorems 5.1, 5.2 in Section 5). Here the
genera are not necessarily those of maximal lattices.

The results mentioned above are derived from characterization of polarized flag type quo-
tients (pftq for short) in [11], [13]. Roughly speaking a pftq is a certain sequence of polarized
abelian varieties, and our point here is how to describe a polarization and an isogeny of En

to En such that the polarization has a descent along that isogeny. When n = 2, these isoge-
nies appear as good directions and very good directions in [12, p. 119]. So we will treat a
generalization and characterization of these directions. For two kinds of directions we will
treat, we give bijective correspondences to cosets of the minimal parahoric subgroup in two
different maximal parahoric subgroups when n = 2 and 3. Then we describe configura-
tion by intersection properties of certain adelic double cosets. Our description is new even
when n = 2. Our ingredient of the proof is essentially a pure arithmetic theory of integral
quaternion hermitian matrices.

The paper is organized as follows. In the next section we review well-known facts on ge-
ometry from [14], [12], [11], [13], [3], [10] mainly for the three dimensional case. In section
3, we review Hecke double cosets of GLn and general arithmetic theory of quaternion her-
mitian lattices and the quaternion hermitian groups. In section 4, first we define quaternion
hermitian matrices and lattices corresponding to polarizations we need. Then we define a
direction to be a coset GLn(O)g for g ∈ Mn(O) for O = End(E) and we give characterization
when a quaternion hermitian matrix in question has a descent by which directions. This
amounts to give descendability of polarizations by some specified isogenies. We establish
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here not only bijection between descendable directions and cosets of the minimal parahoric
subgroup in maximal parahoric subgroups, but also a bijection between the set of orbits of
both by the action of lattice automorphisms. As a corollary, we see that existence of a part
of a pftq sequence is equivalent to a non-emptiness of the intersection of the double cosets
corresponding to neighbouring polarizations. This section is an essence of the whole proof.
A geometrical interpretation of the results in this section is almost clear, but in Section 5,
we state some main conclusions obtained from Section 4.

2. Geometric terminology and known facts

2. Geometric terminology and known facts
As for most of the terminology or results in this section, see [14], [4], [12], [11], [13].

Let k be as before. We say that an elliptic curve E is supersingular if End(E) is a maximal
order O of the definite quaternion algebra B = O ⊗Z Q which ramifies at p and ∞. We
say that A is supersingular if it is isogenous to a product of supersingular elliptic curves,
or equivalently, to En for a supersingular elliptic curve E. By the way, if n ≥ 2, then any
product of n supersingular elliptic curves are isomorphic (Deligne, Ogus, Shioda). We take
E such that it is defined over Fp and hence End(E) contains an element π with π2 = −p. We
define an effective divisor X of En by

X = {0} × En−1 + E × {0} × En−2 + · · · + En−1 × {0}
and define an isomorphism φX of En to the dual (En)t of En by φX(t) = Cl(Xt − X) where
Xt is the translation of X by t and Cl is the linear equivalence class. This gives a princi-
pal polarization of En. We denote by Hermn(B) the set of quaternion hermitian matrices
in Mn(B) and by Herm+n (B) the subset of Hermn(B) of positive definite elements. We put
Hermn(O) = Hermn(B) ∩ Mn(O) and Herm+n (O) = Herm+n (B) ∩ Mn(O). Then by the map-
ping

Hom(En, (En)t) � λ→ φ−1
X ◦ λ ∈ Mn(O),

we can identify the Neron Severi group NS(En) with Hermn(O) and the polarizations of En

with Herm+n (O). We say that elements H1, H2 ∈ Hermn(B) are equivalent if H2 = εH1ε
∗

for some ε ∈ GLn(O) = Mn(O)×, where for ε = (ei j), we write ε∗ = (e ji), denoting by
overline the main involution of B. Then isomorphism classes of polarizations of En are
identified with equivalence classes in Herm+n (O). The Hauptnorm of Hermn(B) is defined to
be a polynomial map such that Hm(H)2 = N(H) for each H ∈ Hermn(B) with reduced norm
N(H) and that Hm(1n) = 1 for the unit matrix 1n([1, Chapter 2.2, denoted as det there]). We
define a subset (n)

prin of Herm+n (O) by


(n)
prin = {H ∈ Herm+n (O); Hm(H) = 1}.

We easily see that (n)
prin = GLn(O) ∩ Herm+n (O). When n ≥ 2, we define


(n)
np = {H ∈ Herm+n (O) ∩ πMn(O); Hm(H) = p[(n+1)/2]},

where [∗] denotes the maximal integer which does not exceed ∗. A polarization λ of En

is a principal polarization if and only it φ−1
X λ belongs to 

(n)
prin ([4, Theorem 2.10]). For

the moment, for the sake of simplicity, we call the set (n)
prin the principal genus and 

(n)
np
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the non-principal genus. More rigorous definition of notion related to quaternion hermitian
lattices will be explained in the next section. The number of equivalence classes in a genus
is finite and called the class number of the genus.

Assume that dim A = n and A is supersingular. We define the finite group scheme αp =

Spec(k[x]/(xp)) as usual. We call a sequence

En = Yn−1
φn−1−→ Yn−2

φn−2−→ · · · −→ Y1
φ1−→ Y0 = Y

a flag type quotient (ftq for short) if Ker(φi) � (αp)i. We say that a ftp sequence with
polarizations μi

(Yn−1, μn−1)
φn−1−→ (Yn−2, μn−2)

φn−2−→ · · · φ1−→ (Y0, μ0)

is a polarized flag type quotient (pftq for short) if μ0 is a principal polarization, Yn−1 = En,
φ∗i (μi−1) = μi and

ker μi ⊂
[i/2]⋂
j=0

Yi[V j ◦ Fi− j].

where F is the absolute Frobenius and V the Verschiebung ([14], [13, Section 3]). We put
a = dim Hom(αp, A). This is called the a-number of A.

Proposition 2.1. We assume that n ≥ 3 is odd.
(i) For any principal polarization λ of A, there exists a pftq starting from (En, p(n−1)/2λ0) for
a principal polarization λ0 and ending at (A, λ).
(ii) If a(A) = 1, then pftq in (i) is unique (up to natural isomorphisms of the sequence).
(iii) The irreducible components of the supersingular locus n,1 in n,1 correspond bijec-
tively to the isomorphism classes of all principal polarizations λ0 of En, or equivalently to
the isomorphism classes of φ−1

X λ0 ∈ (n)
prin.

For the proof of this proposition, see [14, Theorem 2.2], [11, Lemma 4.4, Theorem 6,6,
6.7]. and [13, Theorem 4.9].

We denote by V(λ0) the irreducible component of n,1 corresponding to a principal polar-
ization λ0 of En in the sense of the above (iii).

Proposition 2.2. Assume that n = dim A = 3.
(i) Assume that a(A) = 2 and λ is a principal polarization of A. Then there exists a polar-
ization μ1 of E3 and an isogeny φ1

(1) (E3, μ1)
φ1−→ (A, λ)

such that μ1 = φ
∗
1(λ), Ker(μ1) � α2

p ⊂ E3[F], and Ker(φ1) � αp.
(ii) For any polarization μ1 of E3 such that Ker(μ1) � α2

p, there exists a principally polarized
abelian threefold (A, λ) with a(A) = 2 having a sequence as in (1) for some φ1.
(iii) Notation and assumption being as in (i), if we regard (A, λ) with a(A) = 2 as a point in
S3,1, then we have (A, λ) ∈ V(λ0) for a principal polarization λ0 of E3 if and only if there
exists an isogeny φ2

(2) (E3, pλ0)
φ2−→ (E3, μ1)



Supersingular Locus and Parahoric Subgroups 707

such that pλ0 = φ
∗
2(μ1) and Ker(φ2) � α2

p.

For a proof, see Li and Oort [13, section 9.4], Katsura and Oort [11, Section 5], and
Karemaker, Yobuko and Chia-Fu Yu [10, Proposition 3.12]. See also [19].

We give here a simple remark. For a fixed (A, λ), if there are two sequences

(E3, μ1)
φ1−→ (A, λ), (E3, λ1)

ψ1−→ (A, λ)

such that μ1 = φ∗1(λ), λ1 = ψ∗1(λ), Ker(ψ1) � Ker(φ1) � αp and Ker(μ1) � Ker(λ1) �
α2

p ⊂ E3[F], then there exists an isomorphism of φ : (E3, μ1) � (E3, λ1) such that this is an
isomorphism between sequences. In other words, the above claim is summarized by

Lemma 2.3. The sequence in Proposition 2.2(i) (1) is unique up to isomorphism.

Proof. Since E3 and A are not isomorphic, φ1 and ψ1 are minimal isogenies. Since
End(E3) = M3(O) is of class number one, the module Hom(E3, A) is free as right End(E3)
module and we have φ0 ∈ Hom(E3, A) such that Hom(E3, A) = φ0End(E3). So φ1 = φ0ε1,
ψ1 = φ0ε2. Since deg(φ1) = deg(ψ1) = deg(φ0) = p, we see that εi are isomorphisms of E3.
So φ = ε−1

2 ε1 is an isomorphism of the claim. �

We add here one more remark whose proof will be obtained later as an easy corollary of
Theorem 5.2.

Lemma 2.4. Let (E3, λ) be a principally polarized superspecial abelian threefold. Then
there exists a polarization μ1 of E3 and an isogeny φ1

(3) (E3, μ1)
φ1−→ (E3, λ)

such that Ker(μ1) � α2
p and φ∗(λ) = μ1.

For a polarization μ1 of E3 with Ker(μ1) � α2
p, consider principally polarized abelian

threefolds (A, λ) with a(A) = 2 such that there are sequences as in Proposition 2.2 (1) starting
from (E3, μ1). We denote by W(μ1) the Zariski closure of all such (A, λ) in S3,1. In this
setting, we have

Proposition 2.5. A principally polarized superspecial abelian threefold (E3, λ) belongs
to W(μ1) if and only if there exists the above sequence (3) in Lemma 2.4 for λ and μ1.

For the proof, see [11] and [10, Proposition 3.16].
Remark. For a polarized threefold (E3, μ1) in Proposition 2.2, of course principal polar-

izations λ0 in the sequence (2) of Proposition 2.2 are not unique. This means that (A, λ)
belongs to various irreducible components V(λ0) in S3,1. Also, polarizations μ1 in the se-
quence (3) are not unique. This means that (E3, λ) belongs to various W(μ1).

Next we fix two principal polarizations λ0 and μ0 of E3. Then (E3, μ0) ∈ V(λ0) if and
only if there exists a polarized superspecial abelian threefold (E3, λ1) which gives a pftq by

(4) (E3, pλ0)
φ1−→ (E3, μ1)

φ0−→ (E3, μ0).

Later we will see that this is equivalent to saying that there exists an isogeny (E3, pλ0) →
(E3, μ0). with pλ0 = φ

∗(μ0) (See Theorem 5.3 in section 5).
Next we consider the case n = 2. For the following proposition, see [12, Theorem 5.7]
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and [13, Theorem 4.9].

Proposition 2.6. (i) If n is even, then the number of irreducible components of n,1 is
equal to the class number of the non-principal genus.
(ii) Let λ1 be a polarization of E2 such that φ−1

X λ1 ∈ (2)
np . Denote by V(λ1) the corresponding

irreducible component in (i). Then a principally polarized abelian surface (E2, λ) belongs
to V(λ1) as a point of 2,1 if and only if there exists an isogeny

(E2, λ1)
φ1−→ (E2, λ)

such that λ1 = φ
∗
1(λ).

In Proposition 2.6, comparing the degrees, we see that deg(φ1) = p and Ker(φ1) � αp

3. Review on basic arithmetic

3. Review on basic arithmetic
For readers’ convenience, in this section we shortly review Hecke double cosets of GLn,

quaternion hermitian lattices, and the quaternion hermitian group (See [18], [16], [17]).
As before we consider the definite quaternion algebra B with discriminant p∞. We fix a
maximal order O of B such that π ∈ O with π2 = −p. Such a maximal order always exists.
The choice of O is not essential, but this assumption on O sometimes makes explanation
simpler. We denote by BA the adelization of B. For any prime q, we put Oq = O ⊗Z Zq. We
put OA = B∞

∏
q Oq where B∞ = B ⊗Q R. We write GLn(OA) = GLn(B∞)

∏
q GLn(Oq). We

assume from now on that n ≥ 2. Then by the strong approximation theorem of SLn and the
property of the norm images, we have

(5) GLn(BA) = GLn(B)GLn(OA).

For any g = (gv) ∈ Mn(OA) ∩GLn(BA), consider a double coset GLn(OA)gGLn(OA). By (5),
we may assume that g ∈ GLn(B) in the above double coset. Then we have

GLn(OA)\GLn(OA)gGLn(OA) � GLn(O)\GLn(O)gGLn(O).

By this fact, the Hecke algebras with respect to the pair (GLn(B) ∩ Mn(O),GLn(O)) and the
pair (GLn(BA) ∩ Mn(OA),GLn(OA)) are isomorphic as rings. (Of course this is not true in
general for n = 1). The isomorphism is given by the restriction to GLn(B). Now for ai ∈ B×

(i = 1, . . . , n), we denote by diag(a1, . . . , an) the n × n diagonal matrix whose diagonal
components are a1, . . . , an. For g ∈ Mn(O)∩GLn(B), if we assume that g ∈ GLn(Oq) for any
q � p, then in the double coset we may replace g by a diagonal matrix diag(πe1 , . . . , πen) for
some integers ei with 0 ≤ e1 ≤ · · · ≤ en (See [18, Lemma 2]). We write

TA(πe1 , . . . , πen) = GLn(OA)diag(πe1 , . . . , πen)GLn(OA),

T (πe1 , . . . , πen) = GLn(O)diag(πe1 , . . . , πen)GLn(O).

By the assumption n ≥ 2, we have a bijection

GLn(OA)\TA(πe1 , . . . , πen) � GLn(O)\T (πe1 , . . . , πen).

Next we explain the arithmetic theory of quaternion hermitian lattices. We denote by
Bn the left B vector space of row vectors and consider a quaternion hermitian metric on Bn

defined by
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(x, y) =
n∑

i=1

xiyi, x = (xi), y = (yi) ∈ Bn.

This is the unique positive definite quaternion hermitian metric up to base change over B.
A quaternion hermitian group G is defined by the set of elements g ∈ Mn(B) such that
(xg, yg) = n(g)(x, y) for some n(g) ∈ Q×+, that is,

G = {g ∈ Mn(B); gg∗ = n(g)1n},
where 1n is the n × n unit matrix. We denote by GA the adelization of G and for a place v of
Q, we denote by Gv the v-component of GA.

For a lattice L in Bn (i.e. a free module over Z such that L ⊗Z Q = Bn), we say that L is a
left O lattice if it is a left O module. We say that L1 and L2 are in the same class if L2 = L1g

for some g ∈ G. For a left O lattice L and a prime q, we put Lq = L ⊗Z Zp. We say that L1

and L2 are in the same genus if L2,q = L1,qgq for some gq ∈ Gq for all primes q.
For a fixed left O lattice L, we denote by (L) the set of lattices belonging to the same

genus as L. For any prime q, we put

Uq(L) = {g ∈ Gq; Lqg = Lq},
and define an open subgroup U(L) of GA by

U(L) = G∞
∏

q:prime

Uq(L).

For an element g = (gv)v≤∞ ∈ GA and a left O lattice L, we define a left O lattice Lg by

Lg =
⋂

q:prime

(Lqgq ∩ Bn).

Then we also have U(L) = {g ∈ GA; Lg = L} and (L) is the GA-orbit of L. Classes in (L)
correspond bijectively with double cosets in

GA =

h⋃
i=1

U(L)giG

by L 
→ Lgi. This correspondence depends on the choice of L but the number h does not.
The number h of classes in (L) is finite and called the class number of (L).

If n ≥ 2, then the class number of the order Mn(O) is 1, so any left O lattice L is O-free
and there exists an element h ∈ GLn(B) = Mn(B)× such that L = Onh. (This is not true for
n = 1.) Changing L in the same class if necessary, we may assume that hh∗ ∈ Herm+n (O).
We say that H1, H2 ∈ Herm+n (O) are equivalent in a wide sense if we have H2 = mε1H1ε

∗
1 for

some ε ∈ GLn(O) and m ∈ Q×+, where Q×+ denotes the set of positive rational numbers. When
m = 1 in the above relation, we say that H1 and H2 are equivalent in a narrow sense. Then
we have a bijection between classes of left O-lattices and classes of Herm+n (O) in a wide
sense by the map Onh→ hh∗ ∈ Herm+n (O). If Onh2 = Onh1g for g ∈ G1 = {g ∈ G; n(g) = 1}
and hi ∈ GLn(B) with hih∗i ∈ Herm+n (O), then h2h∗2 and h1h∗1 are equivalent in a narrow sense
and vice versa. If H1 and H2 have the same reduced norm and equivalent in the wide sense,
then they are also equivalent in the narrow sense. Geometrically, we often only treat cases
when the norm of the matrices in question are fixed, so the difference of the definition has
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not much problem. Since N(B×) = Q×+, we have {n(g); g ∈ G} = Q×+, and the double cosets
for GA and G1

A are essentially the same for the lattices we treat here, so hereafter we always
use G and not G1 and by equivalence class we mean in a wide sense.

We define the norm N(L) of a left O lattice L by the two sided O ideal generated by
(x, y) for all x, y ∈ L. Even if we fix a class of L, the norm N(L) depends on a choice of
representatives, since N(Lg) = n(g)N(L) for g ∈ G. We may often take a lattice which has
a simple N(L) as a representative of a class of lattices. We say that L is a maximal lattice if
L is maximal among those that have the same norm. When n ≥ 2, maximal left O lattices
in Bn are divided into two genera, the one is the principal genus and the other is the non-
principal genus. The principal genus is represented by L = On and in this case N(L) = O.
The non-principal genus is a little more complicated, but the genus contains a representative
L with N(L) = πO (with some extra condition). The corresponding matrix version for n ≥ 2
has been already explained in the previous section as (n)

prin and 
(n)
np , respectively.

4. Parahoric subgroups and descendable directions

4. Parahoric subgroups and descendable directions
In our dictionary between geometry and arithmetic, polarizations on En are elements in

Herm+n (O) and isogenies of En to En are elements in Mn(O) ∩GLn(B). So the problem that
a polarization of En has a descent to En with some given property by a certain isogeny of
given type can be described using only by matrices. (A corresponding lattice version will be
explained at the end of this section.) We can ask such problems for very general setting, but
here we content ourselves to the case appearing in the pftq for n = 2 and 3.

To make the story more acceptable for readers, first we explain the case n = 2, relating
them to some known geometry. For n = 2, Katsura and Oort defined good directions and
very good directions in their paper [12]. There a direction means the tangent of the line
which is the image of an embedding of ι : αp ↪→ α2

p. When the natural map E2 → E2/ι(αp)
is realized by an element g in the double coset T (1, π) (and this is equivalent to the claim that
E2/ι(αp) � E2. See [15, Remark 3]), then the direction is called a good direction. In other
words, the set of good directions are identified with GL2(O)\T (1, π) � P1(Fp2 ). So there are
p2 + 1 good directions. For any g ∈ T (1, π) and a polarization λ of E2 such that φ−1

X λ belong
to 

(2)
np , we can easily show that we always have φ−1

X λ = gHg∗ for some H ∈ (2)
prin. So good

directions are characterized in this way, because for every direction defined by g ∈ End(E2),
the polarization λ does descend to a principal polarization on the quotient. For a principal
polarization λ of E2, if pλ has a descent by an isogeny g to a polarization λ1 on E2 such that
Ker(λ1) � α2

p, (in other words, which belongs to the non-principal genus), then the direction
corresponding to GL2(O)g is called a very good direction in [12, p. 119]. To say this by
matrices, for a fixed principal polarization λ of E2, we write K0 = φ

−1
X λ ∈ Herm+2 (O). Then

a very good direction is a coset GL2(O)g ∈ T (1, π) such that (g∗)−1(pK0)g−1 ∈ (2)
np . (By the

way, note that (g−1)∗ = (g∗)−1.) It is easy to count such directions (i.e. the number of cosets
GL2(O)g) by checking if a representative of each coset satisfies the condition. Anyway,
there are p + 1 very good directions ([12, (3.4)]).

There is one more interesting thing here. We can interpret these directions by the set of
cosets of the minimal parahoric subgroup in two maximal parahoric subgroups of Gp, or by
the set for the corresponding adelic subgroups of GA. For n = 2 and i = 0, 1, 2, we define
subgroups Ui,p of Gp as follows. We can choose ξ ∈ GL2(Op) such that
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ξξ∗ =
(
0 1
1 0

)

and fix it. We put G∗p = ξGpξ
−1 and define subgroups of G∗p by

U∗2,p = GL2(Op) ∩G∗p,

U∗1,p =
(

Op π−1Op

πOp Op

)×
∩G∗p,

U∗0,p = U∗1,p ∩ U∗2,p.

We put Ui,p = ξ
−1U∗i,pξ for i = 0, 1, 2. The group Gp has two maximal compact subgroups

up to conjugation by Gp and representatives are given by U1,p and U2,p. The group U0,p is
the unique minimal parahoric subgroup up to conjugation. For i = 0, 1, 2, we define open
subgroups of GA by

Ui = G∞Ui,p

∏
q�p

(GL2(Oq) ∩Gq).

Then it is well-known that [U2 : U0] = [U2,p : U0,p] = p2 + 1 and [U1 : U0] = [U1,p :
U0,p] = p + 1 (See [2, III, p, 395]). So it is natural to expect that good directions and
very good directions have some natural connection to U0,p\U2,p and U0,p\U1,p respectively
(though not categorical sense). The similar thing happens also for n = 3. The case n = 2 is
much simpler than the case n = 3. so we mainly explain the case n = 3 hereafter.

First we define matrices corresponding to polarizations in the pftq for n = 3 and the adelic
subgroups corresponding to those. For a polarization of E3 whose kernel is isomorphic to
α2

p, the corresponding matrix is nothing but an element in

1 = Herm+3 (O) ∩ T (1, π, π).

The local class at p of 1 up to GL3(Op) equivalence is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 π

0 1 0
π 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The local class at q � p is represented by 13, so the set 1 forms one genus. It is easy to
show that there exists an element ξ ∈ GL3(Op) such that

ξξ∗ = J :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 1
0 1 0
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
We fix such ξ. Then the left Op lattice corresponding to the above representative of matrices
is given by

Np = (πOp,Op,Op)ξ = π(Op, π
−1Op, π

−1Op)ξ.

There is a global left O lattice M ⊂ B3 such that for any prime v, we have

(6) Mv =

{
O3
v for any prime v � p,

Np for v = p.
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This lattice M is not a maximal lattice, since obviously N(M) = O while M � O3 and
N(O3) = O. For any left O lattice L of Bn, we define the dual lattice L∗ of L by

L∗ = {x ∈ Bn; (x, y) ∈ O for all y ∈ L}.
Then the local dual N∗p of Np is given by

N∗p = (Op,Op, π
−1Op)ξ = π−1(πOp, πOp,Op)ξ

and by direct calculation we see that πN∗p is locally maximal with N(πN∗p) = πOp. So πM∗

belongs to the non-principal genus. We put

G∗p = ξGpξ
−1 = {g ∈ GL3(Bp); gJg∗ = n(g)J}.

We define three subgroups of G∗p by

U∗2,p = GL3(Op) ∩G∗p,

U∗1,p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Op Op π−1Op

πOp Op Op

πOp πOp Op

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

∩G∗p,

U∗0,p = U∗1,p ∩ U∗2,p.

We put Ui,p = ξ
−1U∗i,pξ for i = 0, 1, 2. The group Gp has two maximal compact subgroups

up to conjugation and they are represented by U1,p and U2,p. The group U0.p is the unique
minimal parahoric subgroup of Gp up to conjugation.

If we write Aut(Np) = {gp ∈ Gp; Npgp = Np}, then we have U1,p = Aut(Np). Indeed, if
we put

Π1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
then

(7) Np = O3
pΠ1ξ, and Aut(Np) = (ξ−1Π−1

1 GL3(Op)Π1ξ) ∩Gp,

so we have

(8) ξAut(Np)ξ−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Op π−1Op π−1Op

πOp Op Op

πOp Op Op

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

∩G∗p.

Now let (x, y, z) ∈ (Op, π
−1Op, π

−1Op) be the first row of the elements of RHS of (8). Then
since RHS is in G∗p, we have

(x, y, z)J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
y

z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = Tr(xz) + N(y) = 0.

It is well known that we have Op = OF + πOF for the maximal order OF of the unramified
quadratic extension of Qp in Op, where the multiplication is defined by απ = πασ for any
α ∈ F and the non-trivial automorphism σ of Gal(F/Qp). Since Tr(π−1OF) = 0, we have
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Tr(π−1Op) = Zp. Since x ∈ Op and z ∈ π−1Op, we have N(y) ∈ Zp, so y ∈ Op. In the same
way, if we take the third row (a, b, c) of RHS of (8), then we can show that b ∈ πOp. So
RHS of (8) is equal to U∗1,p. By the same proof, we see Aut(πN∗p) = Aut(N∗p) = U∗1,p (or use
the fact that it is the dual of Np.) Now for i = 0, 1, 2, we put

Ui = G∞Ui,p

∏
q�p

(GL3(Oq) ∩Gq).

Then we have

U2 = {g ∈ GA; O3g = O3},
U1 = {g ∈ GA; Mg = M} = {g ∈ GA; πM∗g = πM∗}.

So the classes in the principal genus correspond with U2\GA/G and the classes in the genus
(M) correspond with U1\GA/G. The latter also correspond with the classes in the non-
principal genus. By standard calculation which we omit here, we can show that

[U2 : U0] = p3 + 1, [U1 : U0] = p2 + 1.

For elements H and K ∈ Herm+n (O), we say that H is descendable to K if H = g∗Kg for
some g ∈ Mn(O).

By abuse of language, for any g ∈ M3(O) ∩ GL3(B), we call the coset GL3(O)g the
direction of g. We consider two kinds of special descents.

The first one is as follows. We fix H1 ∈ 1. For an element g ∈ M3(O) ∩ GL3(B), we
consider a condition for g that H1 = g

∗H0g for some matrix H0 ∈ (3)
prin. Here note that H0

is not fixed. If such g exists, then comparing the reduced norms of H0 and H1, we see that
g ∈ T (1, 1, π). It is clear that the condition of this descent depends only on a direction of
g. If there exists H0 ∈ (3)

prin as above, then we say that GL3(O)g is a descendable direction
for H1. The set of g ∈ T (1, 1, π) belonging to some descendable direction is denoted by
T H1 (1, 1, π).

The second one is as follows. We fix K0 ∈ 
(3)
prin and put H2 = pK0. We consider a

condition for an element g ∈ M3(O) that H2 = g∗H1g for some H1 ∈ 1. Again this
condition depends only on GL3(O)g, and if the condition is satisfied, we say that GL3(O)g
is a descendable direction for H2.

Lemma 4.1. Notation being as above, if GL3(O)g is descendable for H2, then g ∈
T (1, π, π).

Proof. We see easily that the reduced norms of H2 and H1 are given by N(H2) = p6 and
N(H1) = p2, so we have N(g) = p2. So we have g ∈ T (1, π, π) or T (1, 1, p). We show
that the latter case does not occur. Assume g ∈ T (1, 1, p) and write g = ε1diag(1, 1, p)ε2

for some εi ∈ GL3(O). Put H′1 = diag(1, 1, p−1)(pε−∗2 K0ε
−1
2 )diag(1, 1, p−1). Then the con-

dition (g∗)−1 pK0g
−1 ∈ T (1, π, π) is equivalent to the condition H′1 ∈ T (1, π, π). We write

ε−∗2 K0ε
−1
2 = (ai j). Since K0 ∈ 

(3)
prin, we have (ai j) ∈ 

(3)
prin ⊂ GL3(O). Now assume that

H′1 ∈ M3(O). Then we have

H′1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
pa11 pa12 a13

pa12 pa22 a23

a13 a23 p−1a33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ M3(O).
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So a33 ∈ pO. Then since (ai j) ∈ GL3(O), we have a13 ∈ O×p or a23 ∈ O×p . So by multiplication
of elementary matrices, we can show that H′1 ∈ T (1, 1, p). This is a contradiction. �
We note that even if g ∈ T (1, π, π), it might happen that (g∗)−1H2g

−1 ∈ T (1, 1, p). We denote
the set of g ∈ T (1, π, π) belonging to a descendable direction for H2 by

(9) T H2 (1, π, π).

Lemma 4.2. Notation being as above, we have

#(GL3(O)\T H1 (1, 1, π)) = p2 + 1 = [U1 : U0](10)

#(GL3(O)\T H2 (1, π, π)) = p3 + 1 = [U2 : U0](11)

where #(set) means the cardinality of the set.

Proof. We have the following coset representatives.

GL3(O)\T (1, 1, π) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 a 0
0 π 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 b
0 1 c
0 0 π

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: a, b, c are representatives of O/πO � Fp2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

GL3(O)\T (1, π, π) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π 0 0
0 π 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π 0 0
0 1 a
0 0 π

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 b c
0 π 0
0 0 π

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: a, b, c are representatives of O/πO � Fp2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
In particular, we have deg T (1, 1, π) = deg T (1, π, π) = 1 + p2 + p4. (By the way, we have
deg T (1, 1, p) = p4 + p6 + p8.) Now we prove Lemma 4.2 for the second case. We have
K0 = ε∗0ε0 for some ε0 ∈ GL3(OA). Since ε0g

−1 = (gε−1
0 )−1, it is enough to consider a

representative of the coset GL(OA)gε−1
0 ∈ TA(1, π, π) for the descent from p13, so we may

assume that gε−1
0 is a representative in the set given above. For g ∈ T (1, π, π) in the above

representatives, we check if

(12) p(g∗)−1g−1

is in TA(1, π, π) or not. For g = diag(π, π, 1), (12) is equal to diag(1, 1, p) ∈ TA(1, 1, p) so

this is not good. For g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π 0 0
0 1 a
0 0 π

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (12) is equal to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 p aπ
0 −πa 1 + N(a)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
This is in T (1, π, π) if and only if 1 + N(a) ≡ 0 mod p. We have Op/πOp � Fp2 and
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NFp2/Fp(Fp2 ) = Fp. So the number of such a mod π is p + 1. Next for g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 b c
0 π 0
0 0 π

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (12) is

equal to ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p bπ cπ
−πb 1 + N(b) π−1bcπ
−πc πcbπ−1 1 + N(c)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
This is in T (1, π, π) if and only if the matrix mod π has rank 1. So this is equivalent to
(N(b) + 1)(N(c) + 1) − N(b)N(c) = N(b) + N(c) + 1 ∈ O×p . For each element of {(x, y) ∈
F2

p2 ; x + y + 1 = 0}, the number of b mod π and c mod π such that N(b) = x, N(c) = y is as
follows. If x = 0, then b ≡ 0 mod π and N(c) mod π = y = −1. The number of such c mod π
is p + 1. If x � 0 and y = 0, then again the number of (b, c) mod π is p + 1. If x + y + 1 = 0
and x � 0, y � 0, then the number of (x, y) is p − 2 and for each such (x, y), the number of
(b, c) mod π is (p + 1)2. So the total of this case is 2(p + 1) + (p + 1)2(p − 2) = p(p2 − 1).
So the total number of cosets is (p + 1) + p(p2 − 1) = 1 + p3. The proof for the case (10) is
obtained similarly. The second equalities of (10) and (11) are proved directly by calculating
[Ui : U0] for i = 1, 2 independently. �

Now here the equalities of the numbers of descendable directions and the group indices
[Ui : U0] are given just by a coincidence of independently calculated numbers, but we could
ask if there is more direct relation. We answer this question next.

Before going further, we give lemmas which will be used later. In particular, the first one
is a key lemma for the proof.

Lemma 4.3. We assume n = 2 or 3. For an element v ∈ G∗p with n(v) ∈ Z×p, assume that
every component in the first row of v belongs to π−1Op and that all the other components are
in Op. Then we have

v ∈ U∗1,p · U∗2,p. (semi-direct product)

Proof. We prove the case n = 3. We write v = (vi j) ∈ M3(Bp). If v11, v12, v13 ∈ Op, then we
have v ∈ M3(Op)∩G∗p and since n(v) ∈ Z×p , we also have v−1 = n(v)−1Jv∗J ∈ M3(Op)∩G∗p, so
v ∈ U∗2,p and we are done. So we assume that v1i ∈ π−1O×p for some i = 1, 2, or 3. Comparing
the (1, 1) component of the relation vJv∗ = n(v)J, we have

(13) Tr(v11v13) + N(v12) = 0.

If v12 ∈ π−1O×p , we have N(v12) ∈ p−1Z×p . But we have Tr(π−1Op) = Zp so both v11 and v13

should be in π−1O×p . If v12 ∈ Op, then we may assume that v11 ∈ π−1O×p or v13 ∈ π−1O×p .
Since J ∈ U∗2,p, we may change v by vJ if necessary, and v11 and v13 can be exchanged by
this. So in any case. we can assume that v13 ∈ π−1O×p . For x, y ∈ Bp, we put

[x, y] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
−x 1 0
y x 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Then we have [x, y] ∈ U∗2,p if and only if x, y ∈ Op and N(x) + Tr(y) = 0 and we also have
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n([x, y]) = 1 in this case. We write v1i = π−1a1i with a1i ∈ Op for i = 1, 2, 3. We have
a13 ∈ O×p by the assumption. Since Tr(Op) = Zp, there exists an element y ∈ Op such that
Tr(y) = N(a−1

13 a12). By taking v[−a−1
13 a12,−y], we may assume v12 = 0. Then by (13), we

have Tr(π−1a11π−1a13) = p−1Tr(a11a13) = 0. This also means Tr(a−1
13 a11) = Tr(a11a−1

13 ) =
Tr(a11a13/N(a13)) = 0. So we have [0,−a−1

13 a11] ∈ U∗2,p and taking v[0,−a−1
13 a11] instead of v,

we may assume v11 = v12 = 0. Comparing the (1, 2) and (1, 3) components of vJv∗ = n(v)J,
we have v21 = 0 and v13v31 = n(v). So v31 = n(v)π(a13)−1. Comparing the (2, 2) components,
we have N(v22) = n(v) ∈ Z×p . So multiplying⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(v)−1a13 0 0
0 v−1

22 0
0 0 a−1

13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ U∗2,p

to v from the right, we may assume

v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 π−1

0 1 v23

π v32 v33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with v13, v23, v33 ∈ Op. Since this is in G∗p, we have v32 + v23π = 0, and this means v32 ∈ πO.
Also we have

v−1 = Jv∗J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
v33 v23 π−1

v32 1 0
π 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
So we have

v, v−1 ∈
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Op Op π−1Op

πOp Op Op

πOp πOp Op

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
so v ∈ U∗1,p. The proof for n = 2 is similar but easier and we omit it here. �

We give one more well-known lemma.

Lemma 4.4. Let G be a group, H1 and K subgroups of G, and H0 a subgroup of H1. Fix
g ∈ G and put Γ = H1 ∩ gKg−1. We make Γ act on H0\H1 by right multiplication. Then the
set of double cosets in H0\H1gK/K is bijective to the set of right Γ-orbits in H0\H1,

Proof. Take two double cosetsH0hgK andH0h′gK inH0\H1gK/Kwhere h, h′ ∈ H1. If they
are the same, then we have h′g = h0hgk for some h0 ∈ H0 and k ∈ K. So h−1

0 h′ = h(gkg−1).
Here gkg−1 ∈ gKg−1 ∩ H1 = Γ. So H0h′ ∈ H0hΓ. The converse is proved similarly. �

Now we come back to our main theme. First we consider the condition on descent for a
fixed H2 = pK0 for K0 ∈ (3)

prin by g ∈ T (1, π, π). We take k0 ∈ GL3(B) such that K0 = k0k∗0
and put

(14) h2 = k0π.

Then H2 = h2h∗2. Of course there are several choices of h2 or k0 but we fix them for sim-
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plicity. The standard lattice corresponding to the genus containing H2 is O3π. So we choose
g2 ∈ GA such that

(15) O3h2 = O3πg2

and fix it. By our choice, comparing the norm of lattices, we have n(g2) ∈ Z×A := R×+
∏

q Z
×
q .

(By the way, the lattices O3π and O3 are in the same class by G and the automorphism groups
of these are both U2, but the double coset U2πg2G and U2g2G are different in general. This
is natural since the correspondence with double cosets depend on the choice of a lattice
representative of the genus. The lattices O3πg2 and O3g2 are not in the same class but
belong to the same G type in the sense of [8, p. 372].) For any H ∈ Herm+n (O), we define

Aut(H) = {α ∈ Mn(O);α∗Hα = H}.
By comparing the reduced norms of the defining equality, we see that Aut(H) ⊂ GLn(O).
Since H is positive definite, it is also obvious that Aut(H) is a finite group. Going back to the
above setting, we have Aut(H2) = Aut(K0). The group Aut(H2) acts on T H2 (1, π, π) by the
right multiplication since if g ∈ T H2 (1, π, π), then there exists H1 ∈ 1 such that g∗H1g = H2

and this means that α∗g∗H1gα = α
∗H2α = H2. Now we put

Γ2 = g
−1
2 U2g2 ∩G,

Γ̂2 = U2 ∩ g2Gg−1
2 = g2Γ2g

−1
2 .

Then the group Γ̂2 acts on U0\U2 by the right multiplication. If α ∈ Aut(H2), then obviously
h−1

2 α∗h2 ∈ G1 and we have O3h2(h−1
2 α∗h2) = O3α∗h2 = O3h2. The stabilizer of O3h2 =

O3πg2 = πO3g2 in GA is g−1
2 U2g2, so we have

h−1
2 Aut(H2)∗h2 = Γ2 = g

−1
2 Γ̂2g2.

where we write Aut(H2)∗ = {α∗;α ∈ Aut(H2)}. Here we define an isomorphism R2 of
Aut(H2) to Γ̂2 by

Aut(H2) � α −→ R2(α) = g2h−1
2 (α∗)−1h2g

−1
2 ∈ Γ̂2.

(Here we take (α∗)−1 instead of α∗ to make the map an isomorphism and not an anti-
isomorphism.)

The group Aut(H2) acts on GL3(O)\T H2 (1, π, π) and Γ̂2 on U0\U2, both by right multipli-
cation.

Proposition 4.5. Notation and assumption being as above, we can define a map ρ from
T H2 (1, π, π) to U0\U2 which has the following properties.
(i) The map ρ induces a bijection

ρ : GL3(O)\T H2 (1, π, π) � U0\U2.

(ii) The action of Aut(H2) and the action of Γ̂2 defined above are compatible with ρ. That is,
we have

ρ(gα) = ρ(g)R2(α), for α ∈ Aut(H), g ∈ GL3(O)\T H2 (1, 1, π).

This induces a bijection between the following set of orbits.
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GL3(O)\T H2 (1, π, π)/Aut(H2) � U0\U2/̂Γ2.

(iii) The map ρ induces a bijection between the set of Aut(H2) orbits in GL3(O)\T H2 (1, π, π)
and the set of all double cosets in U0\U2g2G/G, where the map is given by g→ U0ρ(g)g2G.
(iv) We fix H2 = pK0 for K0 ∈ (3)

prin and H1 ∈ 1. We choose h2, h1 so that h2h∗2 = H2 and
h1h∗1 = H1. We choose g2 and g1 ∈ GA so that O3h2 = O3πg2 and O3h1 = Mg1, where M is
the standard lattice defined by (6) in the genus corresponding to matrices in 1. Then H2 is
descendable to H1 if and only if U2g2G ∩ U1g1G � ∅.

We postpone the proof of this proposition after stating a claim for the other case which is
quite similar.

Now we explain the other case. We fix H1 ∈ 1 and also fix h1 ∈ GL3(B) such that
H1 = h1h∗1. We fix g1 ∈ GA such that O3h1 = Mg1. where M is the standard lattice in
1 defined in (6). More precisely we use following notation. We write Π1 = diag(π, 1, 1).
By Π1 and ξ (being defined by ξξ∗ = J), we also mean elements in GL3(BA) such that the
p-components are Π1 and ξ respectively and the other components are 13, Then there exists
ε1 ∈ GL3(OA) such that

(16) ε1h1 = Π1ξg1.

Such elements ε1 and g1 are not unique, but we fix them. We write

Aut(H1) = {α ∈ M3(O);α∗H1α = H1}
Γ1 = g

−1
1 U1g1 ∩G

Γ̂1 = U1 ∩ g1Gg−1
1 = g1Γ1g

−1
1 .

We have h−1
1 Aut(H1)∗h1 = Γ1 = g

−1
1 Γ̂1g1. We define an isomorphism R1 from Aut(H1) to Γ̂1

by

R1(α) = g1h−1
1 (α∗)−1h1g

−1
1 .

Here Aut(H1) acts on T H1 (1, 1, π) and Γ̂1 acts on U0\U1 both by right multiplication.

Proposition 4.6. Notation and assumption being as above, we can define a map ρ from
T H1 (1, 1, π) to U0\U1 which has the following properties.
(i) The map ρ induces a bijection

ρ : GL3(O)\T H1 (1, 1, π)→ U0\U1.

(ii) The map ρ is compatible with the action of Aut(H1) and Γ̂1. In other words, for any
g ∈ T H1 (1, 1, π). we have

ρ(gα) = ρ(g)R1(α).

This induces a bijection between the following set of orbits.

GL3(O)\T H1 (1, 1, π)/Aut(H1) � U0\U1/̂Γ1.

(iii) The map ρ induces a bijection between the above set of orbits and the set of all double
cosets in U0\U1g1G/G, where the map is given by g→ U0ρ(g)g1G.
(iv) We fix H1 ∈ 1 and H0 ∈ (3)

prin. We fix hi ∈ GL3(O) for i = 0, 1 such that hih∗i = Hi. We
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choose g1 and g0 ∈ GA such that O3h1 = Mg1 and O3h0 = O3g0. Then H1 is descendable to
H0 if and only if U1g1G ∩ U0g0G � ∅.

Proof of Proposition 4.5. First, before defining the map ρ in the proposition, we prepare
several notation and explain necessary properties. We fix h2 ∈ GL3(B) and g2 ∈ GA as in
(14) and (15). For g ∈ T H2 (1, π, π), we put

h1 = (g∗)−1h2.

Then by definition of T H2 (1, π, π) at (9), we have H1 = h1h∗1 ∈ 1. By our choice as in (15)
and (16), we have

h1 = ε
−1
1 Π1ξg1, (Π1 = diag(π, 1, 1)),

h2 = ε
−1
2 πg2

for some ε1, ε2 ∈ GL3(OA), g1 ∈ GA. In order to see a relation between H1 and H2 by adelic
elements, we put

(17) η = g2g
−1
1 ∈ GA.

Then we have

η = π−1ε2h2h−1
1 ε−1

1 Π1ξ = π
−1ε2g

∗ε−1
1 Π1ξ,

and

η−1 = ξ−1(Π−1
1 ε1(g∗)−1ε−1

2 πξ−1)ξ.

Here we have GL3(OA)π = πGL3(OA) and (g∗)−1 ∈ T (1, π−1, π−1), so we have

ε1(g∗)−1ε−1
2 π ∈ T (1, 1, π).

By this fact, the first row of the p-component of Π−1
1 ε1(g∗)−1ε−1

2 πξ−1 ∈ G∗p is in π−1(Op)3

and the other components are in Op. So this is in U∗1,p · U∗2,p by Lemma 4.3. All the other
local components of η−1 at q � p are in GL3(Oq), so we have η−1 ∈ U1 ·U2 and η ∈ U2 ·U1.
So there exists w ∈ U2 such that wη ∈ U1.

Now under these preparations, we define the map ρ and then prove (i) of the proposition.
The coset U0w does not depend on the choice of w, since if wη, w′η ∈ U1 and w, w′ ∈ U2,
then we have w′w−1 = (w′η)(wη)−1 ∈ U2 ∩ U1 = U0. So we would like to define ρ(g) by
ρ(g) = U0w. But we must show that this is well-defined, since this might depend on the
choice of h1 and g1. Also we want to show that ρ(g) is the same for any element in GL3(O)g.
So to prove both at the same time, we take another g′ ∈ T H2 (1, π, π), h′1 = (g

′∗)−1h2. We also
write

h′1 = ε
′−1
1 Π1ξg

′
1, (ε′1 ∈ GL3(OA), g′1 ∈ GA),(18)

η′ = g2g
′−1
1 .(19)

Then we have

η′ = π−1ε2g
′∗ε′−1

1 Π1ξ = η(ξ−1Π−1
1 ε1(g∗)−1g′∗ε′−1

1 Π1ξ).

If g′ ∈ GL3(O)g, then we have g′ = εg for some ε ∈ GL3(O) and (g∗)−1g′∗ = ε∗. So the p
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component of Π−1
1 ε1ε

∗ε ′−1
1 Π1 is in⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Op π−1Op π−1Op

πOp Op Op

πOp Op Op

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

∩G∗p.

This is equal to U∗1,p, so we have

η′ ∈ ηU1.

This means that if w ∈ U2 and wη ∈ U1, then wη′ ∈ U1. So we have ρ(g) = ρ(g′) = U0w,
and ρ is a well defined map from GL3(O)\T H2 (1, π, π).

Next we show that ρ is injective from GL3(O)\T H2 (1, π, π). We take g, g′ ∈ T H2 (1, π, π)
and define η, η′ as (17), (19). If wη, wη′ ∈ U1 for w ∈ U2, then we have η−1η′ ∈ U1 and

ε1(g∗)−1(g′)∗ε′−1
1 = Π1ξ(η−1η′)ξ−1Π−1

1 ∈ M3(OA).

So we have g′∗ ∈ g∗M3(O) and g′ ∈ M3(O)g. Since N(g) = N(g′) = p2. we have g′ ∈
GL3(O)g, so ρ is injective.

Next we show that ρ is surjective to U0\U2. In order to find g for any w ∈ U2, we put
g1 = wg2 and take h1 ∈ GL3(B) such that Mg1 = O3h1. Then we have

h1 = ε
−1
1 Π1ξg1

for some ε1 ∈ GL3(OA). We define g by g∗ = h2h−1
1 . Then we have

g∗ = ε−1
2 πg2g

−1
1 ξ−1Π−1

1 ε1 = ε
−1
2 πw−1ξ−1Π−1

1 ε1.

Since w ∈ U2, obviously we have g∗ ∈ GL3(OA) ∩ GL3(B) and by Lemma 4.1, we have
g ∈ T (1, π, π). For g, we have η = π−1ε2g

∗ε−1
1 Π1ξ = w−1. So ρ(g) = U0w. Hence ρ is

surjective and we finished the proof of (i).
Now we see the correspondence of the orbits and prove (ii) and (iii) of the proposition.

We put g′ = gα for α ∈ Aut(H2). Here we will show that ρ(g′) ∈ U0ρ(g)̂Γ2. We define g1,
g′1, h1, h′1, ε1, ε′1, η, η′ as in the proof of (i). Then we have

η′ = η(ξ−1Π−1
1 ε1(g∗)−1g

′∗)ε
′−1
1 Π1ξ

= η(ξ−1Π−1
1 ε1(g∗)−1α∗g∗ε

′−1
1 Π1ξ

= η(ξ−1Π−1
1 ε1h1)(h−1

2 α∗h2)(h−1
1 ε

′−1
1 Π1ξ)

= ηg1(h−1
2 α∗h2)g−1

1 (ξ−1Π−1
1 ε1ε

′−1
1 Π1ξ)

= (g2h−1
2 α∗h2g

−1
2 )(g2g

−1
1 )(ξ−1Π−1

1 ε1ε
′−1
1 Π1ξ)

= (g2h−1
2 α∗h2g

−1
2 )η(ξ−1Π−1

1 ε1ε
′−1
1 Π1ξ).

Since η, η′, g2 and h−1
2 α∗h2 ∈ GA, we have ξ−1Π−1

1 ε1ε
′−1
1 Π1ξ ∈ GA and this also belongs to

U1. So if wη ∈ U1 for w ∈ U2, then we have

w(g2h−1
2 (α∗)−1h2g

−1
2 )η′ ∈ U1.

If α ∈ Aut(H2), then g2h−1
2 (α∗)−1h2g

−1
2 = R2(α) ∈ U2, so for w ∈ U2 such that ρ(g) = U0w,

we have ρ(g′) = ρ(gα) = U0ρ(g)R2(α). On the contrary, if U0ρ(g′) = U0ρ(g)R2(α) =
U0ρ(gα) for some α ∈ Aut(H2), then by injectivity we have GL3(O)g′ = GL3(O)gα. So we
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prove (ii). The claim (iii) is obvious by Lemma 4.4.
We prove (iv). Assume that H2 = g

∗H1g for some g ∈ M3(O). Since U0ρ(g) = U0w for
w ∈ U2 such that wη = wg2g

−1
1 ∈ U1, we have U0ρ(g)g2G ⊂ U2g2G ∩ U1g1G. So this is

non empty. Conversely, if U2g2G ∩ U1g1G � ∅, then we have U0wg2G ⊂ U2g2G ∩ U1g1G
for some w ∈ U2. So we have wg2 = u1g1δ for some δ ∈ G and u1 ∈ U1. Since U1u1g1G =
U1g1G, we may write u1g1 by g1. Since we may assume n(g2), n(g1) ∈ Z×A and since we
have n(w) ∈ Z×A, we have n(δ) = 1. So we have H1 = h1h∗1 = (h1δ)(h1δ)∗. If we put
g∗ = h2(h1δ)−1, then we have g∗H1g = H2 and as in the proof of the surjectivity of ρ, we can
show that g ∈ M3(O) ∩GL3(B). (We can also show that ρ(g) = U0w.) �

Proof of Proposition 4.6. The proof is almost the same as the proof of Proposition 4.5,
so we explain shortly. We fixed h1 ∈ GL3(B) such that H1 = h1h∗1. We also fix g1 ∈ GA such
that

O3h1 = Mg1.

We have

h1 = ε
−1
1 Π1ξg1

for a certain ε1 ∈ GL3(OA). For g ∈ T H1 (1, 1, π), we put h0 = (g∗)−1h1 and define ε0 ∈
GL3(OA) and g0 ∈ GA by

h0 = ε
−1
0 g0.

We put

η = g1g
−1
0 .

Then as in the proof of Proposition 4.5, we can show that there exists w ∈ U1 such that
wη ∈ U2. We define

ρ(g) = U0w ⊂ U1.

For this ρ, the proof of the claims is almost the same as that of Proposition 4.5, so we omit
it here. �

Proposition 4.7. Fix K0 ∈ 
(3)
prin and put H2 = pK0. We also fix H0 ∈ 

(3)
prin. If H2 is

descendable to H0 by g ∈ M3(O), i.e. H2 = g∗H0g, then there exist some H1 ∈ 1 and
α1 ∈ T (1, 1, π), α2 ∈ T (1, π, π) such that g = α1α2, H2 = α

∗
2H1α2, and α∗1H0α1 = H1.

Proof. Comparing the norm of H2 = g∗H0g, we have N(g) = p3, so we have g ∈
T (π, π, π), T (1, π, π2), or T (1, 1, π3). We see that the last case does not happen. Indeed,
if g = ε1diag(1, 1, π3)ε2 for εi ∈ GL3(O), then

diag(1, 1, π3)ε∗1 H0ε1diag(1, 1, π3) ∈ pGL3(O).

We write

ε∗1 H0ε1 = (ai j).

Then we see that a11, a12, a21, a22 ∈ pO. Then obviously the rank of the matrix ((ai j) mod π)
is at most 2. This contradicts to the fact (ai j) ∈ GL3(O). So this case does not happen. Next,
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we assume that g ∈ T (1, π, π2). We may write

g = ε1diag(1, π, π2)ε2, ε1, ε2 ∈ GL3(O).

By definition we have g∗H0g = H2 = pK0, If we write H′0 = ε
∗
1 H0ε1 = (bi j), then we have

diag(1, π, π2)(bi j)diag(1, π, π2) ∈ pGL3(O).

So we have b11 ∈ pO, b12 = b21 ∈ πO. Since (bi j) ∈ GL3(O), we have b22, b31 = b13 ∈ O×p .
Now put

α1 = ε1diag(1, 1, π),

α2 = diag(1, π, π)ε2.

Then we have

α∗1H0α1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b11 b12 b13π

b12 b22 b23π

b13π b23π πb33π.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Since b11, b12 ≡ 0 mod π, we have

α∗1H0α1 mod π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 b22 mod π 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Since N(α∗1H0α1) = p2 and b22 ∈ O×p , we see that α∗1H0α1 ∈ T (1, π, π) ∩ Herm+3 (O) = 1.
So if we put H1 = α

∗
1H0α1, then α∗2H1α2 = g

∗H0g = H2. So this case is proved.
Next we assume that g ∈ T (π, π, π). We have g = πε for some ε ∈ GL3(O). Put α1 =

ε1diag(1, 1, π) for arbitrary ε1 ∈ GL3(O). Then there exists ε2 ∈ GL3(O) such that we have
g = α1α2 for α2 = diag(π, π, 1)ε1. Indeed since GL3(O)π = πGL3(O), writing αi as above,
we have

α1α2 = ε1(π13)ε2 = πε
′
1ε2

for some ε′1. So we may put ε2 = ε
′−1
1 ε. So all we should do is to find ε1 ∈ GL3(O) such that

α∗1H0α1 ∈ 1. For any ε1 ∈ GL3(O), if we define α1 as above, we have α∗1H0α1 ∈ T (1, π, π)
or T (1, 1, p) and the condition that this belongs to T (1, π, π) is equivalent to the condition
that the matrix rank of α∗1H0α1 mod π is 1. This means that the first 2 × 2 diagonal block
modulo π of the matrix ε∗1 H0ε1 is of rank 1. Since H0 belongs to the principal genus, we
have ε0 ∈ GL3(OA) such that H0 = ε0ε

∗
0. So we have

ε∗1 H0ε1 = (ε∗1ε0)(ε∗1ε0)∗.

First of all, we show that there exists an element δ ∈ SL3(OA) such that the first 2 × 2 block
of δ0δ

∗
0 is of rank 1 modulo π. There exists y ∈ Op ⊂ OA such that N(y) + 1 = 0. Identifying

y with an element of OA such that the p-component is y and the other components are 0, put

δ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 y

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ SL3(OA).

Then we have
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δ0δ
∗
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 0 y

0 y 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Now put put δ = (ε∗0)−1δ∗0, then δ∗H0δ = δ0δ

∗
0 and its (2, 2) block modulo π is of rank 1. If

N(δ) = e ∈ Z×A, then we replace δ by δdiag(1, 1, a) for some a ∈ O×A such that N(a) = e−1.
This belongs to SL3(OA) and the (2, 2) block does not change, so we assume that δ ∈ SL3(OA)
from the first. We write Γ(1) = (13 + πM3(OA)) ∩ SL3(OA). Since this is a open subgroup of
SL3(BA), by the strong approximation theorem, we have

δ = ε3ε4

for some ε3 ∈ GL3(B) and ε4 ∈ Γ(1). Since δ ∈ SL3(OA), we have ε3 ∈ GL3(O). Since ε4 ≡
13 mod π, the (2, 2) block of ε∗3 H0ε3 mod π is of rank 1 and if we put α1 = ε3diag(1, 1, π),
then H1 := α∗1H0α1 ∈ 1. Since πGL3(O) = GL3(O)π, we can choose ε5 ∈ GL3(O) such
that

g = ε3diag(1, 1, π)diag(π, π, 1)ε5.

So we put α2 = diag(π, π, 1)ε5. Then we have

H2 = g
∗H0g = α

∗
2(α∗1H0α1)α2 = α

∗
2H1α2.

�

The similar statement for very good directions for the case n = 2 is now much easier.
Assume that K0, H0 ∈ 

(2)
prin and H1 ∈ 

(2)
np . Put H2 = pK0. We fix hi ∈ GL2(B) such that

hih∗i = Hi. Define gi ∈ GA such that

O2h2 = O2πg2, O2h0 = O2g0 O2h1 = Lg1

where L is a standard global lattice in the non-principal genus such that Lq = O2
q and Lp =

O2
pdiag(π, 1)ξ.

Proposition 4.8. Assume that n = 2. Notation and assumption being the same as above,
we have
(i) H2 is descendable to H1 if and only if U1g1G ∩ U2g2G � ∅.
(ii) H1 is descendable to H0 if and only if U1g1G ∩ U2g0G � ∅.

We have also bijective correspondences between the set of orbits of directions and the
orbits in U0\U2 by U2 ∩ g2Gg−1

2 and those in U0\U1 by U1 ∩ g1Gg−1
1 . This is also bijective

to the set of U0 − G double cosets in U2g2G or U1g1G. Since the statement is similar to
the case when n = 3 and obvious, we omit that part here. The proof of Proposition 4.8 uses
Lemma 4.3 as in the case of n = 3. This is an easy exercise after completing the proofs for
n = 3, so we omit the details.

In this section, we treated a lot about existence of g ∈ Mn(O) such that K2 = g
∗K1g for

some positive quaternion hermitian matrices K1 and K2. We add here an easy lemma to
interpret this into lattice terminology.

Lemma 4.9. Let K1, K2 be n × n positive definite quaternion hermitian matrices. For
i = 1, 2, we write Ki = kik∗i for some ki ∈ GLn(B) and define left O lattices Li by Li = Onki.
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Then there exists g ∈ Mn(O) such that K2 = g
∗K1g if and only if L2γ ⊂ L1 for some γ ∈ G1.

Proof. If L2γ ⊂ L1 for γ ∈ G1, then we have Onk2γk−1
1 ⊂ On, so if we put

g∗ = k2γk−1
1

then we have g ∈ Mn(O). Also we have g∗K1g = k2γγ
∗k∗2 = k2k∗2 = K2. Conversely, if

K2 = g
∗K1g for some g ∈ Mn(O), then put γ = k−1

2 g∗k1. Then obviously we have γγ∗ = 1n

and L2γ = Ong∗k1 ⊂ Onk1 = L1. �

The lattice terminology looks conceptually simpler but it does not mean that the proofs
in this section become simpler by that.

5. Geometric Theorems

5. Geometric Theorems
The results in the last section are actually all very geometric. Most interpretations are

quite obvious and maybe there is no need to be repeated here. But some geometric theorems
would be worth to be mentioned. In particular, we see how adelic double cosets describe
existence of pftq explained in section 2 for n = 2 and 3. These are directly deduced from the
results in the last section and the proofs will be mostly omitted here.

First we state our results for n = 2. We fix a polarization μ1 of E2 which belongs to the
non-principal genus. We denote by V(μ1) the component of 2,1 corresponding to μ1. We
denote by U1g1G the double coset corresponding to μ1. We also fix a principal polarization
μ0 of E2 and denote by U2g0G the double coset corresponding to μ0. Here gi are chosen as
in the last section for φ−1

X μi ∈ (2)
prin or (2)

np .

Theorem 5.1. The principally polarized superspecial abelian surface (E2, μ0) is on V(μ1)
if and only if U2g0G ∩ U1g1G � ∅.

The proof is a direct interpretation of Proposition 4.8 and omitted here.
For a fixed U2g0G, of course the double cosets U1g1G with U2g0G ∩ U1g1G � ∅ are

not unique in general. In the same way, for a fixed U1g1G, the double cosets U2g0G with
U2g0G ∩ U1g1G � ∅ are not unique in general.

Hereafter, we assume that n = dim A = 3. A polarization μ1 of E3 satisfies Ker(μ1) �
(αp)2 if and only if φ−1

X μ1 ∈ 1 ⊂ T (1, π, π). For φ−1
X μ1 = H1, we write H1 = h1h∗1 for

h1 ∈ GL3(B) and choose g1 ∈ GA such that O3h1 = Mg1, where M is the standard global
lattice defined in the last section. We fix principal polarizations λ0 and μ0 of E3 and denote
by K0 and H0 the corresponding matrices in 

(3)
prin respectively. We put H2 = pK0, We

choose elements h2 and h0 ∈ GL3(B) such that Hi = hih∗i for i = 0, 2. Choose g2, g0 ∈ GA

such that O3h2 = O3πg2 and O3h0 = O3g0. We have n(gi) ∈ Z×A = R×+
∏

q:prime Z
×
q for i = 0,

1, 2.
We denote by V(λ0) the irreducible component of 3,1 corresponding to pλ0 by Proposi-

tion 2.1.

Theorem 5.2. Notation and assumption being as above, we have the following results.
(i) Assume that for a principally polarized supersingular abelian three fold (A, λ) with
a(A) = 2, there exists an isogeny φ1 : (E3, μ1) −→ (A, λ) such that μ1 = φ∗(λ). Then
V(λ0) contains (A, λ) if and only if U2g2G ∩ U1g1G � ∅.
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(ii) The principally polarized superspecial abelian variety (E3, μ0) is in W(μ1) if and only if
U1g1G ∩ U2g0G � ∅.

The proof is a direct consequence of Propositions 4.5 and 4.6 and omitted here.
We add a few remarks on the intersection of adelic double cosets. Since U0 ⊂ U1 and

U2, any fixed Ui − G double coset for each i = 1, 2 is a union of several U0 − G double
cosets, and this inclusion relations describe a configuration of the algebraic subsets of fixed
a-numbers defined above. For example, for a fixed g2, we have

U2g2G =
m⋃

j=1

U0g2, jG (finite disjoint union)

for some g2, j ∈ GA. If we fix U1g1G (g1 ∈ GA), then the number of j such that U0g2, jG ⊂
U1g1G, which might be 0, counts the number of Aut(H2)-orbits of descendable directions
from H2 to (isomorphism classes of) H1 as shown in Proposition 4.5 and in Theorem 5.2. But
it seems we cannot expect a concrete formula for that. A similar thing is said for descendable
directions from H1 to H0 based on claims in Propposition 4.6. When n = 2, see [12, section
8] for some explicit descriptions of such orbits in an irreducible component for small primes
p. Also for n = 2, a list of the automorphism groups of irreducible components and the
numbers of different components having the same automorphism group have been given in
[5, Theorem 7.1].

Now, Lemma 2.4 is an easy corollary of Theorem 5.2. Indeed for U2g0G corresponding
to λ in the lemma, we have

U2g0G ⊂ GA =

h⋃
i=1

U1g
′
iG

for some set of g′i ∈ GA, so obviously we have U2g0G ∩ U1g
′
iG � ∅ for some i. This means

that there exists μ1 in the lemma.
Next, we fix principal polarizations λ0 and μ0 of E3 and see the condition that (E3, μ0) ∈

V(λ0). The following result is a direct consequence of Proposition 4.7.

Theorem 5.3. Notation and assumption being as above, we see that (E3, μ0) belongs to
the component V(λ0) ⊂ 3,1 if and only if there exists φ : E3 → E3 such that pλ0 = φ

∗(μ0).
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