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Appendix Figure 1. Schematic illustration of bagging and boosting approach. a. Bagging:

Each basic model was trained from the bootstrap sample. The final ensemble model took



the average value as the predictions. b. Boosting: The training set was adaptively
updating according to the performance of previous created basic estimators. Each basic

model is created sequentially.

Appendix Algorithm basis

As discussed in the discussion section, in an ensemble, a set of base learners are trained
to act together as a strong learner, thereby providing more accurate predictions (Marani
and Nehdi 2020). Bagging and boosting are the two most frequently used approaches for
constructing ensemble models. The schematic illustration of bagging and boosting were
shown in Appendix Figure 1. The ensemble algorithms used in this study including RF,
ET, GBDT, LightGBM and XGBoost. RF and ET algorithms use the bagging approach,
and the rest of the three algorithms use boosting approach. A brief introduction of the five

algorithms implemented in this study is provided below.

Random Forest (RF)

Breiman developed the random forest algorithms for both regression and classification
purposes (Breiman 2001). As the base constituents of the ensemble are tree-structured
predictors, and since each of tree is constructed using an injection of randomness, the
method is called “random forests” (Segal 2004). This tree-structured predictor is called a
decision tree (DT). It by continuously splitting data based on a certain parameter and a
tree having decision nodes and leaf nodes is obtained. A bootstrap sample was used to

train each decision tree as the basic estimator. The number of the decision tree and how



the tree grows were controlled by the hyperparameters in the algorithm. Each decision
tree will give a predicted value for the regression problem. The final output value in RF
model is the unweighted average of all the predicted values obtained from all decision

trees, which could be expressed as follows:

t

o1 .

v == E 5
t 4 Y
i=1

Where Y is the output value from RF model, 7 is the number of decision tree and ¥ is the

prediction value of each decision tree.

Extra Tree (ET)

Geurts developed the extra tree algorithm as an extension from the random forest
algorithm (Geurts et al. 2006). ET is also a tree-based ensemble algorithm, which has
some differences from that of RF. ET uses the whole training dataset to train each
decision tree, while RF uses the bootstrap sample. RF obtains the best feature and value
to split to two branches for decision tree by calculating specific mathematic parameter.

While ET obtains the splitting feature and value completely randomly.

Gradient Boosting Decision Tree (GBDT)

GBDT is a widely used machine learning algorithm proposed by Friedman which
integrates multiple DTs into a strong final ensemble model using the boosting approach

(Friedman 2001; 2002; Guelman 2012). The training set was adaptively updating



according to the performance of previous created DT (predecessor). Each basic model is
created sequentially trying to correct its predecessor. The process could be expressed as

follows:

ft(x) = fe=1(x) + ah.(x)

Where f;(x) is the GBDT model, h;(x) is the basic model (DT), and « is called the
learning rate, which is a regularization parameter (Marani and Nehdi 2020). It scales the
length of the step for finding the optimum solution. Larger alpha leads to faster iteration
speed, while smaller alpha leads to lower iteration speed, which is more possible to find
the optimum solution, but it requires more computational cost. Except from
regularization through shrinkage of the contributed basic models, randomness was also

incorporated as an integral part of the fitting procedure.

eXtreme Gradient Boosting (XGBoost)

Under the framework of GBDT, XGBoost has been proposed with higher computation
efficiency and better capability to deal with overfitting problems (Chen and Guestrin
2016). There are some main differences between GBDT and XGBoost, one is the
different definition in objective function, in which a regularization function was

implemented alongside with the loss function.
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0bj® = > 1F1,y) + ) 0(f)
k=1 k=1



Where [ is the loss function, n is the number of observations used and (2 is the
regularization term to prevent overfitting issue (Fan et al. 2018). The other main
difference is that GBDT only uses the first-order derivative information of the loss
function when optimizing the objective function, while XGBoost performs a second-
order Taylor expansion on the loss function, and both the first-order and second-order

derivatives are used (Guelman 2012; Marani and Nehdi 2020).

Light Gradient Boosting Machine (LightGBM)

LightGBM was proposed by Microsoft still based on GBDT. When handling with big
data, the conventional implementations of GBDT need to scan every feature for all
instances to estimate the split point which are very time-consuming. To solve the above
issue, LightGBM uses an improved histogram-based algorithm to improve training speed
and space efficiency. Compared with the traditional method level (depth)-wise growing
of DTs in GBDT, LightGBM uses a leaf-wise generation strategy to reduce training data
and exclusive feature bundling technique to reduce the feature numbers. More details

about the algorithm are in (Ju et al. 2019; Ke et al. 2017).



Appendix Table 1. Tuned hyperparameters for the implemented algorithms

Models  Tuned hyperparameters
RF max_depth=6, n_estimators=280, min_samples_split=3,
max_features=14, random_state=100

ET max_depth=6, n_estimators=41, random_state=3

GBDT n_estimators=120, max_depth=5, learning_rate=0.04,
random_state=4, min_weight fraction leaf=0.04

LightGBM boosting_type='dart', objective="regression’, importance type='gain',
n_estimators=141, max_depth=3, learning_rate=0.36,
min_child samples=5, reg alpha=0.01,random_state=2

XGBoost n_estimators=127,max_depth=3,learning_rate=0.55,booster='dart',
min child weight=6, reg alpha=0.01, random state=3




Detailed illustration of Fig. 2

There are 15 features used in this study as shown in Appendix Table 2. For feature 1 to
feature 14, 1 and 0 were used to indicate this component is containing or not. For feature
15, that is, filler content, we set 24 different weight percentages from 62 to 85 (wt%) for
exhaustive search. After combination, we got 2!x24 (393,216) different combinations of

the features. Part of the combinations were demonstrated in Appendix Figure 2:

212757((1,0,0,0,1,0,1,0,1,0,0,0,0,0, 82)|269.4939477

212758((1,0,0,0,1,0,1,0,1,0,0,0,0,0, 83)|269.4939477

212759((1,0,0,0,1,0,1,0,1,0,0,0,0,0, 84)|269.4939477

212760((1,0,0,0,1,0,1,0,1,0,0,0,0,0, 85)(269.4939477

370753((1,1,1,1,0,0,0,1,0,1,1,0,0,0, 62)|132.2225308

370754|(1,1,1,1,0,0,0,1,0,1,1,0,0,0, 63)|132.2225308

370755((1,1,1,1,0,0,0,1,0,1,1,0,0,0, 64)|132.2225308

370756|(1,1,1,1,0,0,0,1,0,1,1,0,0,0, 65)|132.2225308

Appendix Figure 2. The combination numbers are from 1 to 393,216. Some of the
numbers are shown in the red square. For each combination, it represents a specific

composition for the CAD/CAM RCB that was formed by 0 and 1 as shown in the yellow



square. By checking the corresponding feature name, we could know what is containing
in this composition and its filler content. In the meantime, the model will predict the

flexural strength for each combination, which was shown in the blue square.

The horizontal axis of Fig 2 represents the combination number (red square) and the
vertical axis represents the corresponding flexural strength predicted by the model (blue
square). Take Figure 2c for example, the predictions of the low prediction group shown
in red dotted line varied from 132.2 MPa to 180.1 MPa (70,837 compositions). By
contrast, the high prediction group shown in red circle ranged from 256.6 MPa to 269.5
MPa (1,884 compositions). Next, the composition differences between these two groups
were compared by checking how many times does a specific component contained
among those compositions and calculate how much percentage of the compositions
contained this specific component, the detailed results are shown in the Appendix Figure

3.
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Appendix Figure 3. The detailed results of exhaustive search for ET and GBDT model.

Larger figures of ET and GBDT model was shown in the manuscript Fig 2b and c.

a. The detailed analysis of the exhaustive results predicted by ET model. The predictions
of the bottom group shown by red dotted circle ranged from 132.0 MPa to 180.1 MPa,
and those of the top group shown in red circle ranged from 263.7 MPa to 270.0 MPa. The
tables pointed out by the blue dotted arrow indicates the percentage of the compositions
contained the specific filler or monomer in both groups. Among the compositions in high
prediction group, the filler content ranged from 81 to 85(wt%) and ranged from 62 to

69(Wt%) in the low prediction group.

b. The detailed analysis of the exhaustive results predicted by GBDT model. The
predictions of the bottom group shown by red dotted circle ranged from 132.2 MPa to
180.1 MPa, and those of the top group shown in red circle ranged from 256.6 MPa to
269.5 MPa. The tables pointed out by the blue dotted arrow indicates the percentage of
the compositions contained the specific filler or monomer in both groups. Among the
compositions in high prediction group, the filler content ranged from 82 to 85(wt%) and

ranged from 62 to 69(wt%) in the low prediction group
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