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Appendix Figure 1. Schematic illustration of bagging and boosting approach. a. Bagging: 

Each basic model was trained from the bootstrap sample. The final ensemble model took 



 
 

the average value as the predictions. b. Boosting: The training set was adaptively 

updating according to the performance of previous created basic estimators. Each basic 

model is created sequentially. 

 

Appendix Algorithm basis 

As discussed in the discussion section, in an ensemble, a set of base learners are trained 

to act together as a strong learner, thereby providing more accurate predictions (Marani 

and Nehdi 2020).  Bagging and boosting are the two most frequently used approaches for 

constructing ensemble models. The schematic illustration of bagging and boosting were 

shown in Appendix Figure 1. The ensemble algorithms used in this study including RF, 

ET, GBDT, LightGBM and XGBoost. RF and ET algorithms use the bagging approach, 

and the rest of the three algorithms use boosting approach. A brief introduction of the five 

algorithms implemented in this study is provided below. 

 

Random Forest (RF) 

Breiman developed the random forest algorithms for both regression and classification 

purposes (Breiman 2001). As the base constituents of the ensemble are tree-structured 

predictors, and since each of tree is constructed using an injection of randomness, the 

method is called “random forests” (Segal 2004). This tree-structured predictor is called a 

decision tree (DT). It by continuously splitting data based on a certain parameter and a 

tree having decision nodes and leaf nodes is obtained. A bootstrap sample was used to 

train each decision tree as the basic estimator. The number of the decision tree and how 



 
 

the tree grows were controlled by the hyperparameters in the algorithm. Each decision 

tree will give a predicted value for the regression problem. The final output value in RF 

model is the unweighted average of all the predicted values obtained from all decision 

trees, which could be expressed as follows: 
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1
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Where 𝑌𝑌�  is the output value from RF model, t is the number of decision tree and 𝑦𝑦� is the 

prediction value of each decision tree. 

 

Extra Tree (ET) 

Geurts developed the extra tree algorithm as an extension from the random forest 

algorithm (Geurts et al. 2006). ET is also a tree-based ensemble algorithm, which has 

some differences from that of RF. ET uses the whole training dataset to train each 

decision tree, while RF uses the bootstrap sample. RF obtains the best feature and value 

to split to two branches for decision tree by calculating specific mathematic parameter. 

While ET obtains the splitting feature and value completely randomly. 

 

Gradient Boosting Decision Tree (GBDT) 

GBDT is a widely used machine learning algorithm proposed by Friedman which 

integrates multiple DTs into a strong final ensemble model using the boosting approach 

(Friedman 2001; 2002; Guelman 2012). The training set was adaptively updating 



 
 

according to the performance of previous created DT (predecessor). Each basic model is 

created sequentially trying to correct its predecessor. The process could be expressed as 

follows: 

𝑓𝑓𝑡𝑡(𝑥𝑥) = 𝑓𝑓𝑡𝑡−1(𝑥𝑥) + 𝛼𝛼ℎ𝑡𝑡(𝑥𝑥) 

Where 𝑓𝑓𝑡𝑡(𝑥𝑥) is the GBDT model, ℎ𝑡𝑡(𝑥𝑥) is the basic model (DT), and 𝛼𝛼  is called the 

learning rate, which is a regularization parameter (Marani and Nehdi 2020). It scales the 

length of the step for finding the optimum solution. Larger alpha leads to faster iteration 

speed, while smaller alpha leads to lower iteration speed, which is more possible to find 

the optimum solution, but it requires more computational cost. Except from 

regularization through shrinkage of the contributed basic models, randomness was also 

incorporated as an integral part of the fitting procedure. 

 

eXtreme Gradient Boosting (XGBoost) 

Under the framework of GBDT, XGBoost has been proposed with higher computation 

efficiency and better capability to deal with overfitting problems (Chen and Guestrin 

2016). There are some main differences between GBDT and XGBoost, one is the 

different definition in objective function, in which a regularization function was 

implemented alongside with the loss function. 
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Where l is the loss function, n is the number of observations used and 𝛺𝛺  is the 

regularization term to prevent overfitting issue (Fan et al. 2018). The other main 

difference is that GBDT only uses the first-order derivative information of the loss 

function when optimizing the objective function, while XGBoost performs a second-

order Taylor expansion on the loss function, and both the first-order and second-order 

derivatives are used (Guelman 2012; Marani and Nehdi 2020). 

 

Light Gradient Boosting Machine (LightGBM) 

LightGBM was proposed by Microsoft still based on GBDT. When handling with big 

data, the conventional implementations of GBDT need to scan every feature for all 

instances to estimate the split point which are very time-consuming. To solve the above 

issue, LightGBM uses an improved histogram-based algorithm to improve training speed 

and space efficiency. Compared with the traditional method level (depth)-wise growing 

of DTs in GBDT, LightGBM uses a leaf-wise generation strategy to reduce training data 

and exclusive feature bundling technique to reduce the feature numbers. More details 

about the algorithm are in (Ju et al. 2019; Ke et al. 2017). 

 

 

 

 

 



 
 

Appendix Table 1. Tuned hyperparameters for the implemented algorithms 

 

 

 

 

 

 

 

 

 

 

 

Models Tuned hyperparameters
max_depth=6, n_estimators=280,  min_samples_split=3, 
max_features=14, random_state=100

ET max_depth=6, n_estimators=41, random_state=3

n_estimators=120, max_depth=5, learning_rate=0.04, 
 random_state=4, min_weight_fraction_leaf=0.04

boosting_type='dart', objective='regression', importance_type='gain',
 n_estimators=141, max_depth=3, learning_rate=0.36, 
min_child_samples=5, reg_alpha=0.01,random_state=2

XGBoost n_estimators=127,max_depth=3,learning_rate=0.55,booster='dart',
min_child_weight=6, reg_alpha=0.01, random_state=3

RF

GBDT

LightGBM



 
 

Detailed illustration of Fig. 2 

There are 15 features used in this study as shown in Appendix Table 2. For feature 1 to 

feature 14, 1 and 0 were used to indicate this component is containing or not. For feature 

15, that is, filler content, we set 24 different weight percentages from 62 to 85 (wt%) for 

exhaustive search. After combination, we got 214×24 (393,216) different combinations of 

the features. Part of the combinations were demonstrated in Appendix Figure 2: 

                          

Appendix Figure 2. The combination numbers are from 1 to 393,216. Some of the 

numbers are shown in the red square. For each combination, it represents a specific 

composition for the CAD/CAM RCB that was formed by 0 and 1 as shown in the yellow 



 
 

square. By checking the corresponding feature name, we could know what is containing 

in this composition and its filler content. In the meantime, the model will predict the 

flexural strength for each combination, which was shown in the blue square. 

 

The horizontal axis of Fig 2 represents the combination number (red square) and the 

vertical axis represents the corresponding flexural strength predicted by the model (blue 

square). Take Figure 2c for example, the predictions of the low prediction group shown 

in red dotted line varied from 132.2 MPa to 180.1 MPa (70,837 compositions). By 

contrast, the high prediction group shown in red circle ranged from 256.6 MPa to 269.5 

MPa (1,884 compositions). Next, the composition differences between these two groups 

were compared by checking how many times does a specific component contained 

among those compositions and calculate how much percentage of the compositions 

contained this specific component, the detailed results are shown in the Appendix Figure 

3. 
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Appendix Figure 3. The detailed results of exhaustive search for ET and GBDT model. 

Larger figures of ET and GBDT model was shown in the manuscript Fig 2b and c.   

a. The detailed analysis of the exhaustive results predicted by ET model. The predictions 

of the bottom group shown by red dotted circle ranged from 132.0 MPa to 180.1 MPa, 

and those of the top group shown in red circle ranged from 263.7 MPa to 270.0 MPa. The 

tables pointed out by the blue dotted arrow indicates the percentage of the compositions 

contained the specific filler or monomer in both groups.  Among the compositions in high 

prediction group, the filler content ranged from 81 to 85(wt%) and ranged from 62 to 

69(wt%) in the low prediction group. 

 

b. The detailed analysis of the exhaustive results predicted by GBDT model. The 

predictions of the bottom group shown by red dotted circle ranged from 132.2 MPa to 

180.1 MPa, and those of the top group shown in red circle ranged from 256.6 MPa to 

269.5 MPa. The tables pointed out by the blue dotted arrow indicates the percentage of 

the compositions contained the specific filler or monomer in both groups.  Among the 

compositions in high prediction group, the filler content ranged from 82 to 85(wt%) and 

ranged from 62 to 69(wt%) in the low prediction group 

 

 

 



 
 

Appendix references 
 

Breiman L. 2001. Random forests. Mach Learn. 45(1):5-32. 

Chen TQ, Guestrin C. 2016. Xgboost: A scalable tree boosting system. Kdd'16: 

Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge 

Discovery and Data Mining.785-794. 

Fan JL, Wang XK, Wu LF, Zhou HM, Zhang FC, Yu X, Lu XH, Xiang YZ. 2018. 

Comparison of support vector machine and extreme gradient boosting for 

predicting daily global solar radiation using temperature and precipitation in 

humid subtropical climates: A case study in china. Energ Convers Manage. 

164:102-111. 

Friedman JH. 2001. Greedy function approximation: A gradient boosting machine. Ann 

Stat. 29(5):1189-1232. 

Friedman JH. 2002. Stochastic gradient boosting. Comput Stat Data An. 38(4):367-378. 

Geurts P, Ernst D, Wehenkel L. 2006. Extremely randomized trees. Mach Learn. 63(1):3-

42. 

Guelman L. 2012. Gradient boosting trees for auto insurance loss cost modeling and 

prediction. Expert Syst Appl. 39(3):3659-3667. 

Ju Y, Sun GY, Chen QH, Zhang M, Zhu HX, Rehman MU. 2019. A model combining 

convolutional neural network and lightgbm algorithm for ultra-short-term wind 

power forecasting. Ieee Access. 7:28309-28318. 

Ke GL, Meng Q, Finley T, Wang TF, Chen W, Ma WD, Ye QW, Liu TY. 2017. 

Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural 

Information Processing Systems 30 (Nips 2017). 30. 



 
 

Marani A, Nehdi ML. 2020. Machine learning prediction of compressive strength for 

phase change materials integrated cementitious composites. Constr Build Mater. 

265. 

Segal MR. 2004. Machine learning benchmarks and random forest regression. UCSF: 

Center for Bioinformatics and Molecular Biostatistics.1-14. 

 


