
Title On the structure of S space

Author(s) Ishihara, Tadashige

Citation Osaka Mathematical Journal. 1961, 13(2), p. 251-
264

Version Type VoR

URL https://doi.org/10.18910/8853

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



ίshihara, T.
Osaka Math. J.
13 (1961), 251-264

On the Structure of S Space

By Tadashige ISHIHARA

§ 1. Introduction.

1. The theory of Fourier transform constitutes an important method
in investigating many problems in mathematical analysis and differential
equations. In classical theory of the Fourier transform the applicability
of this method has been limited by some restrictions on the behaviour
at infinity of the functions to be transformed.

L. Schwartz in his book [1], where he introduced the notion of the
function space S and treated the Fourier transform as a functional on
S, built up the theory of the Fourier transform of the functions which
increase not more rapidly than some powers of the independent variables.

Further, Gelfand and Sylov [2] introduced the notion of the subspace
Z=SQ of the space S and treated the Fourier transform of function
which increases with arbitrary rapidity as a functional on the space Z.
(The research of the Fourier transform based on the same idea was made
independently by L. Ehrenpreis [3].)

Gelfand and Sylov [2, 4, 5] introduced at the same time the notion
of the "S type" spaces SΛ9 Sβ, Sβ, SΛιA, Sβ'B, S*\% which are the sub-
spaces of the space S, and investigated the structure of the space S in
detail.

To study the structure of the space S as this is important from
two points of view.

First we can treat the Fourier or Laplace transform of functions or
f unctionals not only without restriction on their behaviours at infinity but
also with less restrictions on other sort of their behaviours.

In ihβ second place we can investigate in detail the natures of the
dual spaces of S type spaces or their Fourier transforms by using the
structure of S spaces.

Thus we can construct the theory of Fourier (§ 5) or Laplace [6, 7]
transform in more general form, and apply more extensively the theory
of Fourier or Laplace transform to mathematical analysis or differential
equations £8].

2. Gelfand and Sylov define those "S type" spaces from the stand-
points of order of growth of functions and their derivatives. They state
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also that SΛ9 Sβ, S can be considered as the limit space of S£, i.e., SΛ = S*y

Sβ = Sί, S=S™, without giving precise definitions of S ,̂ S£, and SΞ.
To define S« , Sβ and S", first we notice the inclusion relations of Si.

If α<tf', β<&, then S£> >S.csfcs«c

Then the natural definitions of the spaces S« , SS, , S^ are as follows :

If the equalities SΛ = S*, Sβ = Sί, S=S™ were true in this sense of
definitions of S«, S£ and S", then those subspaces S£ would give classi-
fications of the space SΛ , Sβ, or S, and the order of growth* of functions
and their derivatives would become characteristic properties of functions
to be the elements of the classes in S.

In the present paper we show first (§ 3) that there exist some classes

of functions in the space S whose orders of growth* are so rapid that the

functions can not be contained in any of those subspaces, which con-

tradicts S=Soo

In the second place, we show (§ 4) that there exist functions which
can not be bounded by any order of growth* (which contradicts Sa = S^9

Sβ = St, S = S~). This fact means that the countable classification of the
space S, Sα or Sβ by the order of growth of functions and their derivatives
is impossible (Theorem 5).

In the third place, using these facts, we show (§ 5) that we can con-
struct some Fourier invariant functional spaces which include the space S'
and are larger than S'. The existence of these spaces is contradictory to
L. Ehrenpreis' assertion [3] that S' is the furthest Fourier invariant
functional space.

§ 2. Notions and properties of S type spaces.

1. Here we cite notions and properties of S type spaces mainly from
Gelfand and Sylov's works [2, 4, 5].

We consider the space S of infinitely differentiable functions φ(x)
which satisfy the condition : xkφ^(x) converges to 0 when x | -» oo for
any non-negative integers q and k.

The neighborhood V(m, k, 8) of zero in the space S is determined by
integers m and k and a positive number 8 and consists of all functions

of S which satisfy the inequality (l + *2)*l9>co(#)l:<£ for all q<m.

* Any function φ(x) in S satisfies \xkφ^(x) |<Iw*, q for some sequence of numbers {πik, q}
(£, 0 = 0, 1, 2, •••)• So the sequence {mk, ff = inf rhk, g \xkφ^ |<ϊw*, ?}(&, q = 0, 1, 2, •••) corresponds
to the function φ(x). We call the order of growth of m^q (as a function of k, q) of φ simply
by the order of growth of the function φ and its derivatives.
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2. Let tf>0, and Sa denote the subspace of S whose elements satisfy
the inequality \xkφ™\x)\<ίCgA*kkΛ for some A>0 and for k, # = 0, 1, 2, •••,
where the constant Cq depends on φ and q and is independent of k and
a.

Let SΛιA denote the subspace of SΛ whose elements satisfy the
following inequality for any arbitrary positive number δ :

According to Gelfand and Sylov [5], this inequality is equivalent
to the following inequality: |<^C(7)(X)|<C£δ exp ( — a \ x \ 1 / Λ ) where a=
a/e(A+S)l/* and C^ = Cq^eΛe/\

Thus the space SΛ, or Sa>A consists of functions which are, together
with each of their derivatives, of orders of exponential decrease 1/α: with
type a.

The space SΛ is the union of the space SΛtA : S^VΛΛ,^. For
a = Q, the space 8^^ = 80^ consists of C^ functions with carriers in the
interval |#|<A

The topology of the space S^tA is given by the countable system of
norms: \\φ\\,> = *up\x"φ«\x) l(A+S)*kk* fa = 0, 1, 2, -, δ=l, 1/2, 1/3 •••)•

Xyk

By this topology the space SΛtAl becomes Montel space.
If Al<^A2y the space SΛlAl is a subspace of the space SΛlA2, and if

the sequence {φ^(x}} converges in the space SΛtAl, then {φ-,(x)} converges
also in the space SΛlA2.

We define the convergence in the space S^ as follows : the sequence
{<P*(x)} converges to 0 in SΛ if and only if the sequence {φ^(x}} belongs
to a subspace SΛ>A and {ψv(x}} converges to 0 in the space SΛtA.

3. Let /3>0, and Sβ denote the subspace of S whose elements satisfy
the inequality xkφ«\x) \ <CkB

gqβq for some B^O and for A, ^ = 0, 1, 2, •••,
where the constant Ck depends on ψ and k and is independent of q
and β.

Let Sβ'B denote the subspace of Sβ whose elements satisfy the
following inequality for any arbitrary positive number p :

The topology of the space Sβ B is given by the following countable
set of norms: \\φ\\kl> = sup\xkφίn l(B+p)9qqβ (£ = 0,1,2,-, P = i, 1/2 •••).

By this topology the space Sβιβ becomes complete Montal space.
If Bλ<^B2, the space Sβ'Bι is a subspace of the space Sβ'Bz, and if
{<Pv(x)} converges in the space Sβ B\ then it converges in the space Sβ>jB2.

The space Sβ is the union of the space Sβ'B : Sβ = \JBS
β'B. The
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topology of the space Sβ is defined as follows : the sequence {φ*(x)}
converges to 0 in Sβ if and only if all φv(x) belong to some subspace
Sβ'B and {φ^(x)} converges to 0 in the space Sβ>B.

According to Gelfand and Sylov £5], the following structure of Sβ

is shown :
For 0</5<^1, Sβ consists of the functions φ(x) which satisfy the

following conditions :
1) φ(x) can be continued analytically for all complex values of the

arguments z = x + iy.
2) The resulting integral functions φ(z) have orders of growth not

greater than 1/(1 — β) with type by i.e., φ(z) satisfy the following
inequalities: \xkφ(x + iy)\*<C'k ex ~ {δ|^|1/cl~β}}, if φ(x) satisfy the
inequality \xkφ«\x}\<CkB

q ^' , where b = (l-β)(Bey'l-*/e.
For /3=1 it is known also that Sβ consists of quasianaly tic function.

4. Let α:>0, β>0 and Sa denote the subspace of S whose elements
satisfy the inequality \xkφ^q\x)\<CAkBqkk*qqβ for some A>Q, 5>0,
C>0 and for k, q = Q> 1, 2, •••, where the constant C depends on φ.

Let 52;* denote the subspace of S£ whose elements satisfy the follow-
ing inequality for any positive number δ, p

We introduce the system of countable norms in the space S£;i as

follows: \\φ\\,μ = sup\xΛφ^(x)\/(A+Sγ(B+PγkkΛg9β (8, p = l, 1/2, -).'
x>k,<ι

By this set of norms S£;i becomes complete Montal space [5].
If A^Az, Bl<^B2y then the space S^ f} is a subspace of Sg jξ, and if

the sequence {φ*(x)} converges in the space S£;ij, then it converges in
the space S .̂

The space Sβ is the union of the space 52:1 > i-e-» S^ = \JAiBS^.
The togology of the space Sβ is given as follows : the sequence (φ^(x)}

converges to 0 in S£ if and only if all φ*(x) belong to some subspace
S^;5> and the sequence {<pv(x}} converges to 0 in the space S£;2.

The space Sβ is included in the space SΛ and Sβ. If φ(x) G S^
satisfies the inequality \xkφ«\x) <CAkBqkk*qqβ, then φ(x) satisfies the

inequality \φ«\x)\^Cβqqf* exp(-a\x\l/*). Moreover, for β<Λ. any
function φ(x) G S% can be uniquely continued for all complex values of the
arguments z = x + iy, and for β<^l, φ(z) satisfies the following inequality :

For α:+/3<^l, SΛ consists of only trivial function φ(x)=Q. So and
Si also contain only trivial function. It is shown by Gelfand and Sylov
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that the following spaces have non trivial functions :
1) SΛlA, Sβ'B with arbitrary a, β, A, B. (except S0>0, S° °)
2) S°«B

A, Sδ;3 with any α>l, /9>1, A 5, (except SJΛ, Sg;?)
3) S£;5 with «+£>!, A 5;
4) S£;% with <*4-β=l, AB>γ, where γ is arbitrary positive number.

(The above exceptions in 1) and 2) are not stated in [5]).
According to Gelfand and Sylov [5], the Fourier transform-^of

these spaces are as follows: Soύ = SΛ, Sβ = Sβ, S£ = S£, and the topology is
preserved under these transformations. For example if φv converges in
Sa then the Fourier transform <pv converges in S*.

§ 3. Some subspaces which are not included in S^ , S°°.

1. As stated in § 2, φ(x) G SΛ is a decreasing function of exponential
order I/ a. We shall show here that there exist functions whose orders
of decrease are less than any 1/tf, (i.e., 0) and decrease faster than
l / \ x \ n for any integer n.

These functions belong to the space S, but not to the space S^.
Thus we shall see SΦS^ and

Lemma 1. Let f0 be the following function :

rexp{-(log|*|) γ} for \x\>e ,
ΛW 1 1/* for \x\^e,

where γ is an arbitrary real number which is larger than 1.
Then the function /0 is continuous in (—00, oo) and has following

properties :
(1) /o is a rapidly decreasing function, i.e., for any positive integer n,

lim|*"/0(*)l=0
*-*±°°

(2) The order of decreasing, as an exponential type function, is 0, i.e.,

limlog|log/0(*)|/log | * |=0.
X->±°o

Proof. For \x\^>e, we see that log | log f0(x) \ = 7 log log | x \ .
So, for any positive integer n, there exists XQ such that, if |

then

Hence -log/0(*)>(*+l)log|*|, so |/0Wi<|^| -CM+1) for \x\>\x0\.
We also see that

lim o = lim = 0 β

ι*ι->oo log|jt:| x-*±°° log I x \
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We regularize this function /0, using the following function ps(x).
Let pz(x] be the infinitely differentiable function such that

0 for \x\>6,

. , . . , -for x]<6'

!

+ι / _1 \
exp - }dx = \.

-i M-jcv
Then we can see the following

Lemma 2. The infinitely differentiable function fQ(x}*pz(x) has pro-
perty (1) in Lemma 1, together with each of its derivatives. f(x)*pz(x) has
also property (2).

Proof. I (/0*pe)«>(*) = I \*~

-ξ)pr(ξ}\dξ< Max
£€C-ε,+

£) for
where 0^=

,

So the function (/0*p8)
Cflr:>W has property (1) for any non negative

integer q.
On the other hand, since p ,,

Min
-ε έ€C-ε,+ε

for *

So the behaviour of the function f0*ps for #-»±oo is the same as
that of the function /0, and /0*pε has property (2).

Theorem 1. There exists a function in the space S, which does not
belong to the space SΛ for any #>0.

Proof. /o*/°ε 6 S, since (/0*/og)
C(n(#) satisfies the condition (1). On the

other hand, as stated in § 2, an C°° function φ belongs to the
space SΛ if and only if φ satisfies the following inequality :
\<p"\x) <C^exp { — a\x 1/a}. The function /0*/oε can not satisfy this
condition for # = 0, since the condition (2) holds for f0*pζ.

Corollary. S^S^

Proof. The first relation is a direct consequence of Theorem 1. The
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second relation is obtained from the first relation by Fourier transforms.
The third relation is a direct consequence of

2. Let Siog. y denote the subspace of S which consists of all func-
tions φ of S that satisfy the inequality \φ^9\x)\<Cq exp { — a log^l }
for some positive constant Cqy a. Then S\og,y is a new class which is

not included in any S* . The function f0*ps belongs to this space Sιogf y .
We can introduce also another types of subspaces, replacing the

order Akkk* or Bqqqβ by some increasing functions of k or q.
For example, let Sy denote the subspace of S which consists of all

functions φ of S that satisfy the inequality \xkφ^q\x)\<CqA
kkhΊ .

Then for γ^>l, Sy is also a new class which is not included in any SΛ.
There are some mutual relations between these two sorts of sub-

spaces. For example the space Sιog,2 is included in the space 82, since
the following evaluation holds.

We put \x\l\A\=ξ and kk2/ξk=f(k}. Then (logf)' = 2klogk + k
-logξ, and(log/)" = 21og&+3>0 for k>l. So Min /(*)=/(*<>) exists

*^ι,*:real

and kϋ satisfies 2k0 log k0 + k0 — log|: = 0 for any fixed ξ. Hence ξ is a
monotone increasing function of k0 and grows to infinity if kQ grows to
infinity. On the other hand, we have

= logC,-a

= logCq-a

Since <z>0, there exists k'Q such that, for any kΌ^>kΌ, holds

~ ^o log k0 — kl. For kQ which satisfies l<^0^^ό, we can find suf-
ficiently large number C'q such that the following inequality holds :

P<log C'q-kl log k»-kl = log {Cί/(A0)} .

So we see that there exist positive numbers C'J and C"r such that

Min f(k)
k i> l,ft : real

k ΐ k 2

Min f(k)<,C'q" Min,
k 1> l, k : integer k ~2. 0,ft : integer | X |

This inequality shows Siog

4. Impossibility of countable classification.

1, We show here there exists a fuijction in the space S whose orde^
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of growth is larger than any given set of numbers mkq (ky q = Q, 1, 2, •••)•

Lemma 3. For any set of positive numbers £0, 819 •••, £k-ly bk and <rk,
there exists a function φk(x) € S0 such that (1) the length of carrier of φk is

less than σky (2) <pΓ(*)l<A for r = 0, 1, ••-, k-ly and (3) Max\φ^(x)\>bk.

Proof. We construct inductively the required functions. For k=ί
its construction is easy.

Now let £0, ••• , £ f c _ 2 , Sk_19 bk and σk be a set of given numbers.
Assume by way of induction that there exists a function φk-λ which

satisfies |^Γ-ιl<^+ι (r = 0, 1, — , Jfe-2), Max l^ϊ1' (*)!>&*, and whose

carrier is contained in [0, σ-^/2].

Let f1(x) = φk-1(x) — φk-ι(σk — x} Then /;(#) is of class Co and satisfies

Let ft(x)=[*f1(S)dξ. Then /.(ΛΓ) is also of class C? and |/?'(jr)|
Jo

If l/2(*)l<Ξ£o» we put φb(x)=Mx) Then <PA(Λ;) satisfies all the
required condition.

If Max|/2(*)|>60) we put /JU) = e0/ϊ(jc)/Max|/ί(Λ)|, and
Λ ΛΓ

Λ = ̂ 0/Max|/2(Λ;) . Then obviously |/S(Λ:)|<^, and #<!. Now we take
number λ that satisfies inequality λ*+1>l/tf>λ*^>l, and put φk(x)—

Then we can see φΐ\x) = \y^\\x) = \rα f^(\χ). So,

for r = 0,

<λr^r<<sr /^r r - 1, - , k-l ,

( >\kαbk>bk for r = k.

For the sake of simplicity we have constructed here the required

function φk(x} on [0, σk ]. But this process does not depend on the inter-
val and we can construct φk(x) on any required interval (of length σk).

Theorem 2. There exists α function φ(x) such that φ(x) € S0 and
φ(xγeS°°. There exists also a function ψ (jc) such that ψ(x) G S° and

^(xWS~

Proof. We use the sequence of intervals {/J

Iq = {x 3/2g+2<x<l/2g} ,

and define the sequence of functions (φg(x)} as follows,
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We take a function φQ(x) 6 CQ with carrier in I0 which satisfies the

inequality | φ0(x) \ <1. Next taking Max | φ0(x) \ /22 as £0,
 e as ^i in Lemma

3, we construct φ^x) which satisfies the conditions of Lemma 3 and
whose carrier is contained in 7X.

Similarly we can define sucessesively φq(x) (q = 2, 3, 4, •••), using
φr(x) (7=0, 1, 2, ••• , q — 1) which satisfies following three conditions stated
in Lemma 3.
(1) the carrier of φr(x) is contained in ΐr,
(2) we take{0*2} as {bk} in Lemma 3,

(3) we take {£,.,}= Max φ?>(x)\ 22cr-<n, for 0<r<?.
X

Now the series Σ Φg(x) converges and defines <p(x).
q = Q

φ(x) is obviously infinitely differentiable, in any interval Ir. At the
origin φ(x) is also infinitely differentiable, since for #>0, and #>r, the
graph of φ^\x) is contained between the parabollas \y\ =drx

2, where dr

satisfies Max|^ r )WI =dr(3/2r+2γ.
X

Hence φ(x) is of class Co on the whole straight line. However φ(x)
can not belong to the space S°°, since Max|^c^XΛ:)|>Max|^(qQ)Λ:)|>^2

X X

for any q.
The latter half of theorem is proved if we take the Fourier trans-

form of φ(x) as ty(x).

Theorem 3. The "S type" space having only upper index cannot

coincide with any "S type" space having lower index or both indices except
trivial spaces indicated in § 2, 4.

Especially we have S^ΦS^, SβΦSί,

Corollary.

Proof. By Lemma 3, φ^S^S^S^S and <p^SOSβ^S£, for
any 0</3<cχD, 0<><oo.

By Fourier transforms we obtain

and ΦZS-^S^SZ for any 0</3<oo, 0<α:<oo .

Hence theorem 3 and the corollary hold.

Remark. The corollary to Theorem 1, i.e., SΦS°°, SΦS^, SΦSΞ
can also be proved similarly by virtue of Lemma 3.

2f Now we turn to the problem of characterization of subspaces by
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orders mk<q of growth of functions and their derivatives.

Any φ(x) in S satisfies the inequalities \xkφ™\x)\<mktg for
some sequence of numbers {mk>q} (k, q = 0, 1, 2, •••). The sequences {mkq}
for the functions in the classes Sa, Sβ and S% are of the forms

mkg = Cq(A + δ)*kk*9 fnM = Ck(B+p)*q*β and mkg = C(A + δ)*(B+p)'kk*4<* re-
spectively.

We have seen in § 3 that these orders are too low to classify the
space S and there exist higher orders of growth, for example mkq = CqA

kkk^.
In the proof of Theorem 2 in this paragraph, we have seen also that
there exist functions such that mQq~>eq2 and mko^ek2. Further, we can see
the following

Theorem 4. There exists a function that has increasing order of
growth mkq with arbitrary rapidity of q or k in S, SΛ or Sβ.

As a corollary to this theorem we have

Theorem 5. Elements of S, Sa or Sβ cannot be classified into any set

of countable classes Cy (<y = l, 2, •••) such that CΊ={φ\ \xkφ^\x)\<fy(ky Q)}
and S = VΛC y , SΛ = \J,C, or Sβ = \JyC,.

Proof. In the proof of Theorem 2, we used Lemma 3 selecting {ek2}
as the sequence {bk}. But, obviously, we can discuss analogously replac-
ing {ek2} by any sequence {bk}. Then the constructed function and its
Fourier transform satisfy the condition of Theorem 4.

Especially, if we choose bq^>fq (0, #), (#=0, 1, 2 •••) then the con-
structed function φ belongs to S and to SΛ but not to \JyC^. Hence
Theorem 5 holds.

§ 5. Some Fourier invariant functional spaces.

1. We shall apply our results to the theory of Fourier transforms
of functionals.

According to the theory of distributions of L. Schwartz, the Fourier
transform of any tempered distribution (element of the space Sx) is
defined as another tempered distribution.

Now the question arises whether the space S' is the furthest Fourier
invariant space or not, i.e., whether there is any space that includes the
space S' and is invariant under Fourier transforms or not [3].

H. Yamagata [9], using Theorem 2 of the present paper, showed

that the space Df'f\Zf (where Zf means the Fourier transform of the
space D') is the Fourier invariant distribution space which includes the
space S' and is not equal to Sr.
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Here, also using our results, we show that there are some larger
Fourier invariant functional spaces which include S'. We show also
these spaces are dual spaces of some subspaces of S.

Let /o be the function given in Lemma 1, and let /i be the function
/;(*) = 1//0(*), i.e.,

|)γ} for \x\>e
fι\X) - i , , ̂

e for \x\<^e .

Then the function fl is continuous in (— ̂ , oo), and has following pro-
perties.

(1) /! is a rapidly increasing function, i.e., for any positive integer
«, limfί(x)/\x\n=oo.

ΛΓ->+oo

(2) The order of increase as an exponential type function is 0, i.e.,

lim (log I o g f 1 ( x ) ) / l o g \ x \ = 0 .
X-ϊ + oo

Proof. By similar calculation in the proof Lemma 1, we obtain
these results.

Lemma 4. Any times primitive of fλ(x) satisfies also the property (1).

Proof. This is trivial from property (1) and /i(#)>0.

Lemma 5. /x does not belong to the space S f .

Proof. Assume that f, € S'. Then f, is expressed as f1 = Dg(P(x}f(x))>

where P(x) is a polynomial and f(x} is a bounded continuous function
(L. Schwartz [1]). So P(x)f(x) = O(xn) for some n.

On the other hand P(x)f(x) is a some times primitive of fλ and so
has the property (1) by Lemma 4. This contradicts the fact that

q.e.d.

Lemma 6. // the sequence φv(x) is convergent in the space
then φ^(x) is convergent in (D).

Proof. As stated in § 2, if {φv(x}} is convergent in Sg, then
CSg l for suitable A^>0, #>0, and the carriers of φ^ are contained in
the interval [ — A A], and {φv(x}} is convergent in Sg l where the norm
in Sg i is given by

| |9> | | β p = suj>\x*φ«\x)\/(A + S)*(B+Pγ<ι«, (S, p = l, 1/2, -.).
k,q,x

If {φ^} converges to 0, then the sequence {φ^\x)} uniformely (in
x) converges to 0, and its carrier is contained in a compact set. Hence,
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{φ^} is convergent in (D).

Lemma 7. The space Όf is contained in the space (Sg)'.

Proof. This is an immediate result of Lemma 6.

Lemma 8. /; belongs to the space (Sg)' for any

Proof. Since /i(jr) is a locally summable function,

Lemma 9. /; belongs to the space (S2)' for any <*

Proof. Let φ(x) be a function of S# , then, as stated in § 2, <p(#) is
continued analytically for all complex values z = x + iy, and φ(z) satisfies
the following inequality : | φ(x + iy) \ <C C exp { — a \ x \ 1/α> + b \ y \ } .

So, we see that the order of exponential decrease of the function
fι(x)φ(x) is 1/tf by virtue of property (2), and <C/ι> 9θ converges.

Let (φ^(x)} be a convergent sequence in SJ, then, as stated in §2,
there exist A and B such that {φ^} CSS l and {φ^} converges in the norm
in SJ;*. The element φ^ of S«;̂  is an entire function which satisfies
the above inequality where a is a fixed number indepent of v.

So /!<pv(#) are also functions which belong to a fixed exponential
type (a) of decreasing order 1/<X

Since inf &**/ |f |*<Cexp (-°L ξ\^} for α>0 [5, P. 204], it
k \ 0 /

follows that

c(B+Pγ
where a=oί/eA1/Λ. Hence it follows that

x "!•
The constants A, C7, δ, ,̂ Λ do not depend on v, and so, if 1 1 φ^ \ 1-^0, then

Theorem 6. For
(1) (S?)//Λ\(Sβ)/ /5 <2 linear functional space which is invariant under

Fourier transform.
(2) The space (Sg)/A(Sβ)/ contains the space S f .

(3) (SgyΛWΛCST

Proof. (1) Since S§ = S£ and the topology is preserved under this

transform, we see (Sgj' = (S{l)'.
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(2) Since SgCS, SβCS> and both t°Pol°gies of Sg and S°β are finer
than that of S, we have this conclusion.

(3) We obtain this from Lemma 5, 8, 9.

Remark. We can also see that (SgyA(S?y^£'AZ', from Lemma 7.

2. We study next some properties of the space (
We consider the linear sum (Sg + Sβ) of the spaces Sg and S°β . Since

S£ consists of entire functions and Sg consists of C°° functions with
compact carriers, there is no common element between these two spaces
other than the function φ(χ) = Q. So the linear sum (Sg + Sβ) is the direct
sum of two spaces. We define the neighborhood system in this space
by the linear sum of the neighborhood of each space.

Now let (Sg + Sgy be the dual space of the space (Sg + Sg). Then
we can see the following.

Theorem 7. (Sg + Sgy = (Sg)'A(Sg)'.

Proof. The sequence {φ^} in the space (Sg + S£) converges to φ if
and only if {^Vl} > converges to φ1 in Sg and {φV2} converges to φ2 in S°β

and φ = φ1 + φ2 are unique expressions and <pV l, <p t GSg,

So any element T of the space (Sg)/A(Sβ)/ is consistently identified
with the element f of (Sg + Sg)7 in the following way:

Conversely any element T of (Sg + Sβ)x is identified with an element T

of (Sg)/A(Sβ)/ in the following way :

V l > 1 ^<,^ V l > and <T,^V2>2 = <?,<pV2>, q.e.d.

Since the spaces Sg and Sβ are complete Montel spaces as refered
in §2, the space (Sg + Sβ) becomes also complete Montel space.

Hence from Theorem 7 we obtain the following

Corollary. The space (Sg)/A(Sβ)/ with bounded convergence topology
is a Reflexive montel space.

(Received September 15, 1961)
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