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Abstract 

 

 

Guided waves propagating in a pipe consist of many modes with different velocities and 

dispersions. To analyze these complex guided waves through a normal mode expansion 

technique that is the fundamental theory on guided waves, we must first extract guided 

wave modes from received signals. In this study, we develop a mode extraction technique 

in which many received signals at different circumferential positions can be processed 

based on the fact that guided wave modes have different displacement distributions in the 

circumferential direction. After discussing the relevant theory, we verify our mode 

extraction technique experimentally using eight signals at eight different circumferential 

positions. Moreover, we show that the circumferential position of an excitation transducer, 

as well as the distance between an excitation transducer and a receiver in a pitch-catch 

configuration can be identified using the mode extraction technique. 
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INTRODUCTION 

Acoustic signals can be detected dozens of meters away by applying vibration to the 

surface of pipes and elongated structures, such as railroad rails and I-beams, using impact 

hummers or ultrasonic transducers. This is possible because a group of acoustic energy 

waves propagates with no outward spreading, unlike bulk waves. Called “guided waves,” 

these acoustic waves have attracted attention recently as a means for rapid, nondestructive 

evaluation (NDE) of large structures. 

Subsequent to the theoretical studies published by Gazis[1], considerable research 

has been done on guided wave propagation within pipes. Since the 1990’s, as demand has 

grown for a practical and fast method of conducting pipe inspections, a number of intensive 

studies on guided-wave NDE[2]-[7] have been done based on the achievements in plate 

inspection with Lamb waves[8]-[10]. However, as these systems are used increasingly in an 

ever-wider range of applications such as inspection of buried or meandering pipes (with or 

without defects and branches), various problems associated with guided waves have 

become apparent. For example, guided waves become greatly distorted in elbow regions, 

making it very difficult to detect defects beyond elbows. And, because wave propagation in 

a pipe is very complex due to dispersion and its multimodal nature, various signal-

processing techniques are required to understand it correctly. In many cases, defect 

resolution with guided waves is not sufficient to meet the practical demands of pipe 

inspection. 

To solve these problems, detected signals must first of all be strictly verified against 

guided wave theory. However, detected signals normally consist of a superposition of many 

modes having different velocities and dispersion characteristics. And a guided wave in a 
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pipe, made up of modes with different displacement distributions in both the 

circumferential and thickness directions, has a more complex wave propagation than does a 

Lamb wave. 

In this study, the authors develop a mode extraction technique for guided waves in a 

pipe. We first present a theoretical explanation of the technique. We then verify the theory 

experimentally for eight signals at eight different circumferential positions. In addition, the 

circumferential position of an excitation transducer, as well as the distance between an 

excitation transducer and a receiver, is determined using the mode extraction technique. 

 

NORMAL MODE EXPANSION TECHNIQUE, DISPERSION CURVES 

AND WAVE STRUCTURES OF GUIDED WAVES 

Before describing the mode extraction technique developed in this study, theories 

necessary for modal analysis of guided waves are briefly described. According to the 

normal mode expansion technique[1], [2], [11], [12] or semi-analytical finite element 

method[13], displacement at any of the points (r, θ, z) can be expressed using the 

orthogonal functions )exp( θin  and )exp( ziknm  for a harmonic wave )exp( tiω−  as 

( ) ( )∑ ∑
+∞

−∞=

+∞

=

−+=
n m

nmnmnm tizikinrNtzru
1

)exp(,,, ωθαθ ,

  

(1) 

where integer n denotes the circumferential order, and nmk , ( )rNnm  and nmα  are the wave 

number, function of the displacement distribution in the thickness direction and amplitude 

for the mth mode in the nth family, respectively. Similar to a Lamb wave, as mode number 

m increases, displacement distribution in the thickness direction ( )rNnm  becomes more 

complicated, and the resonant wave number nmk  has smaller real or complex values and a 
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larger imaginary part. The complex wave number indicates a non-propagating mode that 

does not affect waveforms at receiving points sufficiently far from the source or reflective 

object. Therefore, the summation of an infinite number of m in Eq. (1) approximates to the 

summation of the first few propagating modes. 

In Eq. (1) the term )exp( θin , a function with circumferential order n, denotes a 

displacement distribution in the circumferential direction of the nth family. Here, n=0 

means a uniform distribution in the circumferential direction, and n=+1 represents the 

distribution shown in Fig. 1 having maximum and minimum displacements on opposite 

sides of a pipe cross-section and zero displacements at 90o from the maximum and 

minimum points. In Fig. 1, bold arrows and thin arrows indicate the displacements in the 

plus and minus directions, respectively. The modes with n=0 and n≠0 are generally called 

axisymmetric and non-axisymmetric modes. The distribution of non-axisymmetric modes 

changes with time, as shown schematically in Fig. 2, where the displacement distribution is 

represented by bold lines at standard time ωt=0, and by solid, dashed and dotted lines at 

ωt=π/2, π and  3π/2, respectively. In the figure, n=-1 indicates rotation opposite to n=+1 (-θ 

direction). Similarly, Fig. 2(b) shows the displacement distributions for n=+2 and -2. As the 

absolute value of n increases, the displacement distribution in the circumferential direction 

becomes complex, and positive and negative circumferential orders indicate +θ and -

θ  rotations of displacement distribution, respectively. 

An infinite number of resonant wave numbers nmk  ( ∞+= 2,1m ) can be 

obtained from the resonant condition for a circumferential order n. Some wave numbers 

nmk  are real values that imply propagating modes, and other nmk  are complex values that 

imply non-propagating modes. Normally, only propagating modes are used in guided-wave 

FIG.1 

FIG.2 
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NDE. After calculating the wave numbers, we can obtain phase velocities from 

nmnm kc ω=  and group velocities from the slope of phase velocities. Then, phase and 

group velocity dispersion curves are obtained by plotting solutions at each frequency step 

(Fig. 3). The dispersion curves give fundamental information for guided-wave NDE[13]. 

These curves are conventionally denoted by T(n,m), L(0,m) and F(n,m). The n and m within 

parentheses correspond to the circumferential order n and the mode number m, respectively, 

in Eq. (1). It should be noted, however, that different nomenclature may be adopted in other 

literature for the modes of guided waves. In this paper, we use the notation from a detailed 

discussion on the subject by Nishino et al[14]. . Since modes of plus and minus n are 

symmetrical with respect to the pipe axis, they have the same phase and group velocities. 

Although these modes with plus and minus n have generally been considered the same 

mode, we regard them as different modes for a strictly theoretical treatment and refer to 

them as the +nth and –nth circumferential modes. 

 

THEORY OF CIRCUMFERENTIAL MODE EXTRACTION 

Axisymmetric modes with the same phase in the circumferential direction can be 

extracted by summing up signals in receiving sensors located in the circumferential 

direction at regular intervals. Other modes with non-uniform phases varying in the 

circumferential direction become zero in the resulting signals. This is due to the 

orthogonality of exp(inθ). Similarly, non-axisymmetric modes can be extracted by using 

the orthogonality of exp(inθ). 

For example, let us consider mode extraction for n=+1, which moves with the 

displacement distribution shown in Fig. 2 (a). We assume that receiving sensors are located 

FIG.3 
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at the four circumferential positions (upper, lower, right and left sides) in Fig. 2. Since the 

component of an n=+1 mode in signals detected at the right and left sides have opposite 

phases, their difference yields large signals of the n=+1 mode. Similarly, the difference of 

signals at the upper and lower positions yield large signals of the n=+1 mode. Thus, non-

axisymmetric modes can be extracted by summing up the signals detected at many 

circumferential positions having the appropriate weight functions. However, since other 

unwanted modes may be superposed in these signals, a more detailed theoretical basis for 

the mode extraction technique is required for further modal analysis. This sention describes 

a mode extraction theory that uses the orthogonality of exponential functions. 

From Eq. (1), a complex displacement at an arbitrary circumferential position θ 

can be expressed by the complex amplitude of nth circumferential order An and orthogonal 

function )exp( θin  as 

( ) ∑
+∞

−∞=

=
n

n inAu )exp( θθ .     (2) 

Received signals at a small region of θdr0  on the outer surface of a pipe (outer diameter = 

2r0) are given by 

∑
+∞

−∞=

=
n

n drinAdu θθ 0)exp( .     (3) 

Multiplying exp(-inEθ) as a weight function in Eq. (3), and then integrating this with 

respect to θ , gives the waveforms 

( ){ }
EE n

n
Enn

ext ArdrnniAu 0

2

0 0 2exp πθθ
π

=−= ∫ ∑
+∞

−∞=

.  (4) 
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That is, if an infinite number of infinitesimal sensors are placed on the surface of a pipe, the 

summation of these waveforms with weight function )exp( θEin−  gives extracted 

waveforms of the nEth circumferential mode. 

In actual situations, receiving sensors are not infinitesimal as r0dθ, and the number 

of receiving points is also finite. Assuming N receiving positions in the circumferential 

direction at regular intervals as 

( )12
−= k

Nk
πθ ,       (5) 

and a displacement is detected in the region with an aperture of Nπθ 20 = , then the 

received signals at kθθ =  and Rzz =  are 

( ) ( )∫
+

−
=

2

2 0
0

0

,,,,
θθ

θθ
θθθ k

k

drtzutzu RRk
R  

= ( ) )exp(00 tizikinfr
n

Rnknn ωθθα −+∑
+∞

−∞=

,   (6) 

where 

( ) ( )






=
n
nfn 2sin2 0

0

0 θ
θ

θ  
0
0

≠
=

nfor
nfor

.    (7) 

Here, ( )0θnf  has a constant value 0θ  for n=0, and varies with the aperture of sensors 0θ  for 

0≠n . Fig. 4 shows ( ) 00 /θθnf  versus n for five representative apertures of sensors 0θ . For 

all apertures 0θ , the maximum value of ( ) 00 /θθnf  is 1.00 at n=0. When satisfying 

02sin 0 =θn , that is, 

πθ
n
l2

0 =    nl 3,2,1= ,     (8) 

FIG.4 
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then ( )0θnf  becomes zero. An axisymmetric mode with a circumferential order of zero is 

always detected at receiving sensors of any aperture, while non-axisymmetric modes with 

0≠n  may not be superposed in detected signals. Generally speaking, those receiving 

sensors with smaller apertures can detect higher nth order modes. 

Similarly to Eq. (4), multiplying weight function )exp( kEin θ−  and summing with 

respect to k gives 

( )∑ ∑
=

+∞

−∞=

−−+=
N

k
kE

n
Rnknnn

ext intizikinfrtu E

1
00 )exp()exp()( θωθθα ] 

( ) ( ){ }∑ ∑
+∞

−∞= =








−−=

n

N

k
kERnnn nnitizikfr

1
00 exp)exp( θωθα  (9) 

where 

( ){ }




=−∑
= N

nni
N

k
kE

0
exp

1
θ   

Nlnnat
Nlnnat

E

E

±=
±≠

 3,2,1,0 ±±±=l   

          (10) 

These equations indicate that the modes with circumferential order Nlnn E ±=  are 

superposed in the resulting waveforms En
extu  together with target mode n=nE. For example, 

let us consider the case in which there are eight receiving positions (N=8). For extraction 

target modes 3,2,1,0 ±±±=En , the unwanted detectable modes are higher order than the 

target nE. But for 4±=En , modes with the opposite sign n= 4  are included in the extracted 

signals, and for 5±=En , the lower mode of n=-3 can be detected. 

Usually, higher order modes are small in received signals due to strong dispersion 

and cutoff frequencies. Also, function fn(θ0) acts to lessen the higher order modes. 
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Therefore, it can be concluded that this mode extraction technique is useful for 12/ −≤ NnE , 

and Eq. (9) can be rewritten, under the condition of 12/ −≤ NnE ,  as the approximation 

( ) ( ) )exp(00 tizikfrtu Rnnnn
ext

EEEE ωθα −≈ .     (11) 

 

EXPERIMENT 

Mode extraction tests are conducted for an aluminum pipe with an outer diameter 

of 111 mm and thickness of 3.5 mm. The dispersion curves for the pipe are shown in Fig. 3. 

EMATs are used to excite and receive ultrasonic energy in a pitch-catch configuration. Two 

EMATs are located one meter in from either pipe end and two meters apart from one 

another, as shown in Fig. 5. An excitation EMAT is fixed at a circumferential position of 0o 

using two different skew angles of 0o and –45o. A receiving EMAT is placed at eight 

different circumferential positions (0o, 45o, 90o, 135o, 180o, 225o, 270o, 335o), in turn. The 

EMATs consist of two permanent magnets (NEOMAX, NEOMAT Co. Ltd., 15 mm x 6 

mm x 10 mm) and sheet coils fabricated by a printed-circuit technique. The EMATs are 

flexible to fit the curvature of the pipe. The sheet coil and permanent magnets of the 

EMATs are arranged to excite and receive shear horizontal waves by Lorents forces. These 

transducers, then, generate and receive vibration mainly in the circumferential direction[15]. 

The active width of the EMATs in the circumferential direction is one eighth of the 

circumference. A two-channel signal generator (NF corporation, WF1944A) generates 50-

kHz, 4-cycle tone-burst waves, which are then magnified to 32 dB by power amplifiers (NF 

corporation, HSA4051). The received signals are amplified 40 dB by a preamplifier and 

recorded after 10 signal averagings. 

FIG.5 



 11 

Fig. 6 shows signals detected at eight different circumferential positions using an 

excitation EMAT at a skew angle of 0o. These signals give no information whatsoever on 

guided wave modes. Fig. 7 shows the waveforms extracted from the signals of Fig. 6 using 

Eq. (9). Because Eq.(9) treats measured signals as complex values, this equation cannot, in 

fact, be applied directly to real measured signals. 

Multiplying the measured signals with real values k
measu  (k=1,..,N) by 

)exp( kEin θ−  and summing gives the following waveforms. 

)exp(
1

, θE

N

k
k

measmeasext inuu −= ∑
=

 

∑ ∑

∑ ∑

= =

−−

= =

−
+

+
=

−+−=

N

k

N

k

inin

k
meas

inin

k
meas

N

k

N

k
Ek

meas
Ek

meas

i
eeuieeu

nuinu

EEEE

1 1

1 1

22

)sin()cos(

θθθθ

θθ
   (12) 

Waveforms measextu , , obtained through a mode extraction process applied to real 

measured signals, yields complex waveforms. In Eq. (12), the real part of measextu ,  means 

the sum of the extracted waveforms of n=+nE and n=-nE, and the imaginary part shows the 

difference between the extracted waveforms of n=+nE and n=-nE. The imaginary unit i 

indicates a phase shift of π/2. Thus, the sum of the real part of Eq. (12), and the waveforms 

of the imaginary part, phase–shifted by π/2, results in the extracted waveforms of n=+nE 

(which were shown in Fig. 7). To shift the phase back by π/2 in the imaginary part, the 

waveforms of the imaginary part are advanced T/4 in time, where T is the period of the 

center frequency 50 kHz (31.25 µs). 

In Fig. 7, large waveforms are obtained at the moment corresponding to the group 

velocities of the target circumferential orders, respectively. In 2±=En , F( ± 2,2) modes 

FIG.6 

FIG.7 
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dominated by longitudinal vibration are detected together with shear horizontal modes 

T( ± 2,1). F( ± 2,2) appear about at 500-650µs, implying that the F( ± 2,2) modes have larger 

group velocities than T( ± 2,1) as seen in the dispersion curves of Fig. 3. Also, similar 

waveforms are obtained for the same absolute value of nE. This is because the excitation 

EMAT emits ultrasonic energy symmetrically, and the amplitudes of plus and minus modes 

become the same. 

Next, let us consider the case in which asymmetrical waves are excited in a pipe 

by skewing the excitation EMAT. The skew angle is –45o, as shown in Fig. 5. Fig. 8 shows 

the extracted waveforms for target modes nE (nE=-3 to +3). These signals have apparently 

different waveforms for ± signs, unlike those of Fig. 7. The T(-2,1) and T(-3,1) modes are 

larger than those of T(+2,1) and T(+3,1), respectively, indicating that waves rotating in the 

–θ direction are dominant. On the contrary, a waveform with a plus sign of flexural mode 

F(+2,2) is larger than one with a minus sign, showing that longitudinal waves largely 

propagate in the +θ direction due to skew of the EMAT. 

 

IDENTIFICATION OF THE CIRCUMFERENCIAL POSITION OF A 

POINT SOURCE BY THE MODE EXTRACTION TECHNIQUE 

The guided wave modes used in NDE are propagating modes that have real wave 

numbers. They can propagate above the cut-off frequency given for axisymmetric torsional 

modes T(0,m) as 

)1(
2

−= m
d

cf T
c        (13) 

FIG.8 
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where cT is the transverse wave velocity and d is the thickness of the pipe. Considering 

torsional modes with 2≥m , the cutoff frequency exceeds the 20-200 kHz frequency region 

generally used in guided-wave NDE. For example, the cutoff frequency of a T(0,2) mode 

for an aluminum pipe used in this study is 440=cf kHz. Therefore, we can assume that 

modes with m=1 can exist. Displacements on the pipe surface, as described in Eq. (1), can 

be rewritten by retaining the terms of m=1 as 

( ) ( )∑
+∞

−∞=

−+=
n

nn tizikintzu ωθαθ exp,, .    (14) 

Now, assuming that an excitation transducer is placed at θ=θS and z=zS, then the 

displacement at z=zS is expressed using a delta function as 

( ) ( ) ( )tiAtzu SS ωθθδ
π

θ −−= exp
2

,,      (15) 

where A is an arbitrary constant. From Eqs. (14) and (15), 

( )S
n

Snn
Azikin θθδ
π

θα −=+∑
+∞

−∞= 2
)exp(     (16) 

is obtained. Multiplying by )exp( θni ′−  in Eq. (16) and integrating with respect to θ gives 

)exp( SSnn nizikA θα ′−−= ′′ .     (17) 

Using this relationship, displacement at an arbitrary point is given by rewriting Eq. (14) as, 

( ) ( ) ( ){ }∑
+∞

−∞=

−−+−=
n

SnS tizzikinAtzu ωθθθ exp,, .   (18) 

As shown in the previous section, received signals for a transducer of aperture 0θ  at θ=θk 

and z=zR are obtained by integrating with respect to θ as 

( ) ( ) ( ) ( ){ }∑
+∞

−∞=

−−+−=
n

SRnSknRkR tizzikinfAtzu ωθθθθ exp,, 0 . (19) 
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Let us now consider the single mode extraction of a target mode nE as in the previous 

section. Summing all uR with weight function ( )kEin θ−exp  gives the following 

approximated equation of an extracted waveform n = nE: 

( ) ( ){ }tizzikinAfu SRnSEnn
ext

EEE ωθθ −−+−≈ exp0 .   (20) 

Exact solutions are expressed as a summation with respect to n, but for a large number of 

receiving points N and small target mode number nE, the waveforms of extraction target nE 

can be approximated as Eq. (20). 

In guided-wave NDE, the distance between a source and the receiving points has 

often been obtained by finding the arrival time of an extracted T(0,1) mode. Here, we 

consider finding the circumferential position θS. First, the phases of nE=0 and nE=+1 are 

compared. The time of maximum amplitudes are t0 and t+1, respectively. Since the phases at 

these moments are the same, the following equation is satisfied as 

ltzzktzzk SRSSR πωθω 2)()( 1100 +−−+−=−− +    (21) 

where l is an integer. Rearranging Eq. (21) gives 

( )( ) ( ) lttzzkk SRS πωθ 20101 +−−−−= + .    (22) 

Here, 01 kk −  is calculated by theoretical dispersion curves, and SR zz −  is calculated by 

extracted waveforms of T(0,1) and group velocity of T(0,1). Also, 01 tt −+  is obtained by 

the time difference between extracted waves of T(+1,1) and T(0,1). Substituting these 

values into Eq. (22) gives a circumferential position of the source Sθ . 

For example, in the extracted waveforms of Fig. 7 (a zoomed-in view of these 

waveforms is shown in Fig. 9), 01 tt −+ =32.0[µs] and SR zz − =630[µs]x3080[m/s]=1.94[m], 

in which 630 [µs] is the arrival time of a T(0,1) mode. Then, theoretical dispersion curves 

FIG.9 
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give 



















−=−

01
01

11
cc

kk ω = -1.63[1/m] where c1 and c0 are the phase velocities of T(±

1,1) and T(0,1) modes at 50 kHz. Substituting these values into Eq. (22) gives 37−=Sθ . 

Since the correct answer is 0o, it is clear that comparing the phases of T(0,1) and T(+1,1) 

does not yield a good answer. This is due to a large possible error in the term of 
01

11
cc

− . 

The phase velocity of a non-dispersive T(0,1) mode can be easily determined as 

30800 =c [m/s], but the phase velocity of a dispersive T(+1,1) can only be determined with 

some error, about 20± m/s for example. If a T(+1,1) mode varies in the region of 

3130 20± m/s, then the resulting Sθ  varies from –108o to 35o. 

Therefore, let us consider a comparison of the phases of T(+1,1) and T(-1,1) modes. 

Assuming that t+1 and t-1 denote the time of maximum amplitude in the extracted T(+1,1) 

and T(-1,1) waveforms, respectively, then the phases at these moments are 

ltzzktzzk SRSSRS πωθωθ 2)()( 1111 −−−+=−−+− −−++   (23) 

where l is an integer. Considering 111 −+ == kkk , Eq. (23) becomes 

( ) lttS πωθ +−= +− 11        (24) 

which indicates that the circumferential position Sθ  can be limited to two candidates. Since 

Eq. (24) does not contain wave number k1, which may have large error, the circumferential 

position of a source Sθ  can be determined more accurately than Eq. (23). In the case of Fig. 

7, 5.011 −=− +− tt µs gives the two candidates θS=-9o, 172o. One of these, –9o, is closer to 

the correct answer 0o than the –37o obtained using the phase difference between T(0,1) and 

T(+1,1) in Eq. (22). 
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When considering waves reflected from a defect, the defect can be regarded as an 

excitation point of various modes. Therefore, using the mode extraction technique, we can 

estimate the symmetry of the defect from plus and minus modes, and we can also determine 

the circumferential position of the defect by comparing phases in the extracted waveforms. 

 

CONCLUSIONS 

 In this study, we developed a circumferential mode extraction technique necessary 

for characterizing defects using guided waves. We described the mode extraction technique 

theoretically as the separation of circumferential modes by detecting signals at many 

different circumferential positions and multiplying by the appropriate weight functions. Up 

to 12 −± N  circumferential order modes can be extracted using N signals detected at N 

different circumferential positions. 

 We verified the circumferential mode extraction theory experimentally using 

EMATs with pitch-catch testing. By skewing the excitation EMAT, the amplitudes of 

modes rotating in the plus and minus directions were found to differ indicating that 

asymmetrical guided waves were excited. 

 Two methods for identifying the circumferential position of a source were described. 

One uses the phase difference between T(0,1) and T(+1,1), and the other uses the phase 

difference between T(-1,1) and T(+1,1). The former method gives one circumferential 

position with large error, and the latter method gives two candidate circumferential 

positions with higher accuracy. 

 The mode extraction technique presented in this study can be used in defect 

characterization by applying the technique to reflected waves from a defect. 
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Figure Captions 

FIG. 1. Displacement distribution for n= ± 1 at ωt=0.  

FIG. 2. Displacement distribution in the circumferential direction for the families of ± 1 

and ± 2 at ωt=0, π/2, π, 3π/2. 

FIG. 3. Group velocity dispersion curves for an aluminum pipe. 

(Outer diameter=111.0mm, thickness=3.5mm, cL=6260m/s, cT=3080m/s) 

FIG. 4. ( ) 00 θθnf  versus circumferential order n for various widths of the sensor. 

FIG. 5. EMATs and pipe arrangement. 

An excitation EMAT is fixed at the circumferential position of 0o, with two different skew 

angles of 0o and –45o. Received signals are detected at eight different circumferential 

positions with an EMAT. 

FIG. 6 Received signals at eight different circumferential positions. 

FIG. 7 Extracted waveforms from the signals shown in Fig. 6. 

The incident wave is emitted in the pipe axis direction. nE indicates the extraction target 

families. 

FIG. 8 Extracted waveforms. 

The incident wave is emitted at a skew angle of minus 45o to the pipe axis. nE indicates the 

extraction target families. 

FIG. 9 Zoomed-in view of the waveforms in Fig. 7 for nE=0 and 1±  
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FIG.3 
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(a) Torsional modes 
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(b) Longitudinal and flexural modes 
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FIG.4 
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FIG.5 
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FIG.6 
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FIG.7 
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FIG.8 
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FIG.9 

Hayashi 
 
 
 
 
 

650 700 75

nE= 0

nE=-1

nE=+1

Time [µs]

N
or

m
al

iz
ed

 A
m

pl
itu

de
 [-

]

t+1=685.4µs

t-1=685.9µst0=653.9µs

 


	Abstract
	NORMAL MODE EXPANSION TECHNIQUE, DISPERSION CURVES AND WAVE STRUCTURES OF GUIDED WAVES
	FIG.1
	FIG.2
	THEORY OF CIRCUMFERENTIAL MODE EXTRACTION
	FIG.3
	FIG.4
	EXPERIMENT
	FIG.5
	FIG.6
	FIG.7
	IDENTIFICATION OF THE CIRCUMFERENCIAL POSITION OF A POINT SOURCE BY THE MODE EXTRACTION TECHNIQUE
	FIG.8
	FIG.9
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	References
	Figure Captions
	Figures.pdf
	Hayashi
	Hayashi
	(b)
	FIG.3
	Hayashi
	Hayashi
	Hayashi
	Hayashi
	Hayashi
	Hayashi
	Hayashi


