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1. Introduction

Let R be a hyperbolic Riemann surface. Among all kinds of compacti-
fications of R we are especially interested in the Martin's and the Kuramochi's
compactifications which are denoted by R*M and R*κ respectively. It was shown
by Z. Kuramochi [6] that there exists a sequence of points on R converging to a
Martin boundary point b and containing two subsequences such that each one
tends to a Kuramochi boundary point and their limit points are distinct. We
shall state this fact that many Kuramochi boundary points lie upon b. He also
showed an example of R in which many boundary points lie upon a Kuramochi
boundary point. Thus, we know there exist no quotient relations between R*M

and R*κ. It would not be too much to say that the difficulties to establish the
relation between R*M and R*κ arise from this fact. In this paper, we shall
study this relationship with the aid of poles.

The notion of poles was introduced by M. Brelot [1] and its importance was
shown by L. Nairn [8] in her study of axiomatic Dirichlet problem. Let kb be
a minimal positive harmonic function corresponding to a minimal Martin boun-
dary point b. Then, there exists at least one point b' in the Kuramochi boundary
for which the reduced function (kb)(b'} is equal to kδ. This point b' is termed
the pole of b in the Kuramochi boundary. If the pole of b isb' only, V is called
the unique pole of b and is denoted by Φ(b). In the present paper, the mapping
Φ will play a central role.

In § 2, the definition and some elementary properties of poles are given. The
poles in the Kuramochi boundary are related intimately to Dirichlet problem in
R*κ, which is stated in Theorem A in §3. From this point of view we may say
many Martin boundary points lie upon a pole in the Kuramochi boundary in
general that is, except a set of harmonic measure zero the Kuramochi boundary
is covered by the Martin boundary. An HD function u has fine boundary values
ύ on the Martin boundary and quasi-continuous extension u* on the Kuramochi
boundary, ύ and u* are connected with each other by Φ, which is stated in
Theorem 4. From this we can also prove Theorem 5, which was partly obtained
by J.L. Doob [4]. In §4 the Kuramochi boundary of some subdomain is studied.
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By using the result of §4, in §5 we can derive a property of canonical potential
which was studied by Y. Kusunoki [7]. In §6 we shall restrict ourselves to the
surface on which MHB(R)=MHD(R). In this Riemann surface, roughly speak-
ing, Φ makes correspond the Martin boundary to the Kuramochi boundary one-
to-one almost everywhere. In the last section, we consider the boundary property
of a sequence of HD functions converging in the Dirichlet norm, which is a con-
sequence of the result of J.L. Doob [4] and ours*.

2. The definition and the elementary properties of poles
in the Kuramochi boundary

Let R be a hyperbolic Riemann surface. In the sequel, we shall use the fol-
lowing notations :

R*M(R*K): the Martin's (Kuramochi's) compactification of R.
AM(ΔK) : the Martin (Kuramochi) boundary of R.
ωM(ωκ) : the harmonic measure on Δ^Δ^).
Δί* : the set of all minimal boundary points in ΔM.
Hf(H*) : the solution of Dirichlet problem corresponding to the bounda-

ry function /(/') on ΔM(Δ*) with respect to R*M(R*K).
Ά(Ά*} : the closure of A which is taken in R*M (R*κ).

To every ieΔf*, there corresponds the minimal positive harmonic function
kb . If the reduced function of kb with respect to a subset A of Δκ is denoted by
(kb)A> (kbΪA is equal to kb or zero and for at least one point i'^Δ^, (kb)^}— kb^.
In this case, the point V is termed the pole of b (of kb) in Δ^, and the set of
poles of b is denoted by iv. As in [5] we see:

Theorem 1. For b^Δ™, the following three sets coincide

(i) the set of poles of b in Δ .̂
(ii) Π {E* £c#, R— E is thin at b}.

(iii) Π {£?* G is an open set in R and R — G is thin at b}.

where in the latter two sets closures are taken in R*κ.
From the above theorem we see that the set of poles is connected.
We shall denote by ΔίM the set of all points b, each of which has the unique

pole in Δ .̂ For each ieΔίM, the unique pole of b is denoted by Φ(b). It is
known23

* Added in proof. Prof. Y. Kusunoki has kindly pointed out that some results, in particular

those in §5 and §7, are obtained, by using quite different method, in his article: Y. Kusunoki
and S. Mori: Some remarks on boundary values of harmonic functions with finite Dirichlet

integrals, J. Math. Kyoto Univ. 7 (1968), 315-324.
1) Cf. [1], p. 328, also, [8], p. 256.

2) Cf. [8], th, 33 and cor., p. 260,
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(2. 1) ωM(ΔM-ΔίM) = 0 ,

(2. 2) ω*(Δ*-Φ(ΔίM)) = 0 .

We have also:

Theorem A. For every resolutive function f in Δ^ the function /, defined

as /'°Φ on Δ(M and zero elsewhere, is also resolutive and Ή.ψ=^H*.

This theorem is a consequence of Nairn's theorem ([8], th. 38, p. 267), but in
view of the central role of this theorem in our present paper, we shall give here a

direct proof.

Proof of Theorem A. Let s be an arbitrary subharmonic function, bounded

from above, and lims(a)<f'(b') at each δ'eΔ^. Since by Theorem 1, for any
a-*b'

neighbourhood U' of b' in R*κ, U' Γϊ R is not thin at every point of Φ~l(b')y with
the aid of (2.1) we have s<H^\ Hence, H^<Hf. Similarly Hf<H$,
consequently Hfi=Hf.

REMARK 1. From Nairn's theorem we can derive moreover Hf,—Π^oφ for

an arbitrary boundary function/'.

REMARK 2. If u<=MHB(R)4) and if there exists a set A of dωM-harmonic
measure zero such that the fine boundary values ύ of u are equal on each
Φ~l(a')—A, then the function/' defined as this equal value ύ(ά) at each a'—Φ(a)

and zero elsewhere is resolutive and H^=H^,.

For an ideal boundary component of Kέrekjέrtό-Stoϊlow £, we shall define

(2. 3) Δf = Π GH ,
n—i

(2. 4) Δf = ή GS,
w=l

where {Gn} is a determining sequence of e. They are the boundary components.

Theorem 2. For όeΔf ΠΔf the set of poles όv is contained in Δf.

Proof. We may take the determining sequence {Gn} of e such that

1) R— Gn is a domain,

2) the relative boundary of Gn coincides with the relative boundary of
R-Gn: dGn=9(R-Gn).

Here, if R—Gn Π Gn Π ΔMΦ φ, then R*M—dGn is open and connected. Since

the Martin's compactification is of type S ([2], p. 99), we have R*M—dGn — ΔM

3) Cf. [8], th. 23, p. 245.
4) MHB(.R) is the family of all quasi-bounded HP functions; i.e. the smallest monotone

family of HP functions containing all bounded harmonic functions.
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=(R—Gn)\jGn is connected, which is a contradiction. Therefore R— Gn(~]
Gn Π ΔM=φ. This means, for every Gn and for every point b of Δj*, there exists
a neighbourhood U(b) of i such that U(b)Γ\R^-Gn. Accordingly, R—Gn is
thin at each point of Δf ΠΔ^. Hence, by Theorem 1 δvcGM* and finally

δvcΔf, which completes the proof.

Corollary. Φ(ΔίM Π Δf)=Φ(ΔίM) Π Δf.

REMARK. The correspondence Φ is not one-to-one in general.

3. Dirichlet problem with respect to the Kuramochi's
compactification

In this section we shall consider Dirichlet problem with respect to R*κ. It
is known that the Kuramochi's compactification is a resolutive compactification

([2], p. 167). In this paper, it is fundamental that the family of all Dirichlet
solutions with respect to R*κ is identical with MHD(R)y i.e. the smallest
monotone family of HP functions containing all HD functions. ([2], p. 167).
With resolutive function/' on Δ ,̂ we can associate the harmonic function H1?,.

But this correspondence is not one-to-one. To remove this inconvenience, we
shall consider two functions which are identical except a set of harmonic

measure zero, to be equivalent. Then, there exists a one-to-one correspondence

between the Banach space L\ΔK\ dωκ)=if J κ\f\dωκ<°°} and MHD(R).

On account of this convention we may assume fr£iLl(Δκ, dωκ) vanishes on
Δ*-Φ(ΔίM).

It was shown by Z. Kuramochi [6], that, as the topological space there are no
quotient relations between R*M and R*κ. But in view of Theorem A, concerning

Dirichlet problem, we may consider R*κ is covered by 7?*M. We shall state

this in

Theorem 3. There exists a mapping T from L\ΔK, dωκ) into Z/(ΔM, dωM)
such that

1) Tis linear.

2) j•'<j;' implies Tf,'<Tf^\

3) II/ΊIHIZ3ΠI.

The mapping T is onto if and only if MHD(R)=MHB(R).

Proof. If we associate with/'eL^Δ^, dωκ) the function / defined as
/'(Φ(ό)) on ΔίM and zero elsewhere, then we have /f jJf=#£. Setting Tf'=/,

we obtain the desired mapping. From

5) This means, of course, the relation "<;" holds except a set of harmonic measure zero.
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MHB = {#f /e L\ΔM, da>M)} ,

MHD = {H$\f'&L\Δκ

9 dωκ)}

we can derive at once the latter half of this theorem.

The image of Ll(Δκ, dωκ) under the above mapping T is a closed subspace of

L\ΔM, dωM). It seems interesting to the author to what closed subspace of

L\ΔM

y dωM) there corresponds the family of resolutive functions on some com-
pactification.

Theorem 4. For u^HD, the quasi-continuous extension u* of u on Δκ

belongs to Ll(Δκ, dωκ) and H£*=u.

Proof. We shall use the same notations as in [2]. In the proof of Constan-
tinescu-Cornea ([2], p. 168) it is assumed that u is bounded, this assumption is

not essential however. For some compact exhaustion {Kn} of R we have

(3. 1) g [(Un+l-Un)V(Un-Un+1)]< + °° ,

and {un} converges uniformly on every compact set in R, where un is the //Z)-part

of Royden's decomposition of a Dirichlet function u—uκ». The functions uκ*
are extended continuously on R*κ, and if uκ* denotes the extended function
again, uκ* is bounded. We have

(3.2)

(3. 3) (un+l—Un)V(un—un+1) =

By (3.1) and (3.3) Σ \uκ*+ι—uκi\ converges dω^-a.e.,*0 therefore {uκ*} con-
verges Jω^-a.e..

On the other hand, the quasi-continuous extension w* of u is defined as

00

w^+Σ (uκί+1—uκί] on ΔK—P

0 on P,

where P is a set of Kuramochi capacity zero. Since ω^(P)=0, we see

w* =

and

lim uκ* = u* dωκ-a.e..
«->00

On account of (3.2), for some fixed

6) a.e. means "almost everywhere", that is "except a set of measure zero".
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u(ά)-un(a) = Hκ

u*n(a) = \ uκ«(b')dω^(b').
JΔ^

Since lim un(ά)=Q, we obtain u(a)= lim I uκ*dω%. In view of (3.1), (3.3)
«->oo »->oo JΔ^

Σl

and from

we have

lim I uκ» dω% == I lim ft*'*
«->°° J Δ"5 JΔ^"-*00

i.e. z^GΞLXΔ*, dωκ) and #£=tt, q.e.d.

According to Theorem 4 and Theorem A we conclude the following theorem,
which was obtained partly by J.L. Doob ([4], th. 6.1).

Theorem 5. Iff is a Dirichlet function, it has a finite fine boundary function
f dωM -almost everywhere on ΔM. Moreover, if /* denotes the quasi-continuous
extension offon Δ^, thenf=f*oφ dωM -almost everywhere.

Proof. Let f=u-\-fQ be the Royden's decomposition of/, where
and/, is a Dirichlet potential, u has a finite fine boundary function /rfωM-a.e.
on ΔM and H™=uΌ. Since |/0 | is dominated by a potential, /0 has a fine

boundary value zero rfωM-a.e.8). Since a quasi-continuous extension of a
Dirichlet potential is zero quasi-every where on Δ^ ([2], Satz 17. 10), f*=u*
rfω^-a.e. and by Theorem 4, u=H^*. Applying Theorem A we have H™oφ=
H¥. This implies the conclusion of our theorem.

4. Kuramochi boundary of subdomains

In this section we shall consider the Kuramochi boundary of a special sub-
domain, that is, a connected component of the complement of some compact set.

In the sequel, let S be a domain not relatively compact, and let its relative
boundary be compact and sufficiently smooth (for instance, it consists of a finite
number of piecewise analytic curves).

We shall fix a closed disc K0 in S and consider the Kuramochi's compactifi-
cations of R and S with respect to K0. Let us denote by ga, gaS) the Neumann
functions of R—K0 and S—K0 respectively.

7) Cf. [3], th. 4.1, th. 4.3, pp. 296-7.
8) Cf. [3], th. 4.2, p. 297.



MAPPING OF MARTIN BOURNDARY 291

For a^S we have

(4. 1) g^ = ga-W

where w is harmonic in 5, and except possibly a finite number of points,

^ = ?& on dS. Let {Kn} be a compact exhaustion of R. We obtain
dn dn

(4.2) DW

where ΐ>[w] is the Dirichlet integral of w over S0=S—K0. In fact, let / be a
function in C°°(5) such that /=0 on Kn Π S and /=«; on S—Km (m>n). Since
for sufficiently large n wκ*f}S=ww:> in each component of S0—Kn, (dw, dfySQ=Q.
And <dw, dfySQ=(dw, dfys_Kn=lim<dw, df\Km-Kn^s. On the other hand,

by Green's formula we have

Lemma 1. Let S be a non-compact domain of R whose relative boundary dS

consists of a finite number of piecewise analytic curves. For w=:ga~gaS^ and for a

closed subset F of S such that Q(R—F) is compact and (S—F)Γi(dS(jK0) = φy

we have WF=W.

Proof. If a&S—F, our lemma is derived immediately from the proper-

ties of ga and gas\ Assume now a^S—F and set WI=WF. We can find a
closed set F^ such that F dFl and wFl=zv. Since (WF)FI=WF the maximum
and the minimum of w—zu1 in S—F,^ are attained at some points of d(S—F1)

respectively. Hence, the harmonic function w—w1 has its maximum and
minimum in S—F at some points of d(S—F), while w—zv1=0 on d(S—F), this
implies w = wl = wF

y which completes the proof.

Theorem 6. Let S be a non-compact domain of R whose relative boundary
QS consists of a finite number of piecewise analytic curves. The Kuramochfs

compactificatίon S*κ of S is homeomorphίc to S*, where S* is the closure of S in

R*κ.

Proof. Concerning the relative boundary dS, the statement of our theorem

is evident. Let {an} be a sequence of points of S converging to a boundary
point δeΔ^. Since {gan$ converges uniformly to^ on 35, {dgajdn} also con-

verges uniformly to dgb/dn on QS. If we set Wn=gan—gaSn> {w^ converges

9) In this and in the following, d/dn always denotes the outer normal derivative with
respect to the related domain.

10) About the definition of wκ" r\s see [2], p. 155.
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uniformly on each compact set in S. To see this, we consider Dirichlet integrals

(4.3) DK,-<|=( («>,-B>.)8(B'-~B'»)<fc
Jθs dn

m
Qn

Since wn are uniformly bounded on 95, (4. 3) implies D [wm — wn] — > 0 as
my n-^oo. Combining this with wn=0 on dK0, we see at once {wn} converges to
wQ uniformly on each compact set of S. This means {an} is at the same time
a determining sequence of some boundary point δ'eS*^ — (S U 35).

Conversely, let {an} be a sequence of points in 5 converging to b'^S*κ—
(5 U 95) in the topology of 5* .̂ Suppose that there exist two subsequences
{an /}, [an //} such that [an /} converges to ^eΔ^ and [an //} converges to

another point b2^Δκ. As above, {wn /}, {wn //} converge to w', w" respectively.

Moreover, we have gbl—gb2 = w'—w" in 5. By the preceding lemma, for suf-
ficiently large compact subset K of R we have (w'— w")Kf}S= w'— w", whereas
(gbι — gb^κ^Sτ*r£bl~~ £b# which leads us to a contradiction. From this we can
easily complete the proof.

The homeomorphic mapping from S* onto 5* ,̂ thus established, will be
denoted by /.

Corollary. If P is a subset of S*— R fulfilling ωκ(P)=Q, then the harmonic
measure of I(P) with respect to S*κ is also zero.

Proof. Let s be a superharmonic function on R, bounded from below and
lim s(a)>XP(b) at every όeΔ^, where %F is the characteristic function of Pn).
α->6

It follows immediately ί>0 and the restriction of s on 5 belongs to the family
defining the upper solution #ζ^** with respect to 5* .̂ Hence, Q<H£^*

<H£p=Q, which completes the proof.

5. Functions of the class ΉD(R - K)

In this section, let K be a fixed compact set and let u be in HD(R—K)y i.e.
u is a harmonic function with finite Dirichlet integral in each component of
R—K. We shall assume further that d(R—K) consists of a finite number of
piecewise analytic curves12). For definiteness, we shall fix one component 5 of
R — K and consider it a Riemann surface. The Kuramochi boundary of 5 is
divided into two parts. One of them is homeomorphic to a part of d(R—K)

11) That is, XP = \ on P and o elsewhere.
12) It would be easily seen that in the following theorem this restriction is harmless.
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and will be denoted by dS again. The remaining part of the Kuramochi boun-

dary of S is important for our purpose and is denoted by Δfl). By Theorem 6,

Δfs) is homeomorphic to S*— (S U dS).

Lemma 2. If we denote the quasi-continuous extension of u on S* (with

respect to R) by u* and set ύ=u*°I~l then Hj*=u in S, where H%* is the Dirichlet

solution with respect to S*κ .

Proof. If we remark the following, the proof would be quite same as that
of Theorem 4. Let u—uκ»"s=f}l

s:>+u!ίί

sn^ be the Royden's decomposition

in S, i.e. /£S) is a Dirichlet potential in S and u^^HD(S). Since S*-S
is homeomorphic to S*K—S, uκ* can be extended continuously to the
Kuramochi boundary of S. Denoting this extended function by u$} , we have
also u—u^=Hs*Kn and u—Hs* Kn. ι/f& converges rfωfsj-a.e.1^. By Theorem

U iιmu

4, u*=lim uκn rfω^-a.e. and by Corollary to Theorem 6, ύ=u*°I~l=\in\ uκ*°I~l

In his paper [7], Y. Kusunoki investigated the properties of canonical
potentials : a canonical potential has a constant quasi-continuous extension quasi-

every where on each Kuramochi boundary component Δf. Concerning this, we get

Theorem 7. Every canonical potential has a constant fine limit almost every-

where on each Martin boundary component Δ^.

Proof. A canonical potential u belongs to HD(R—K), where K is compact

and may be assumed that d(R—K) consists of a finite number of piecewise
analytic curves. In each component S of R—K, u is a solution of Dirichlet
problem /f |* and by the preceding lemma, we can assume u is constant on each

boundary component. According to Theorem A, ύ is considered as a Dirichlet

solution corresponding to the boundary function φ with respect to the Martin's
compactification of S. The Martin boundary of S is divided into two parts,

one of which is homeomorphic to dS. By the Corollary to Theorem 2 we can
assume φ is constant on each boundary component of the remaining part.
Hence, u has a constant fine limit almost everywhere on each Martin boundary
component not homeomorphic to dS. Above reasoning is accomplished related
to the Riemann surface S, nevertheless, as is known1*0 the same conclusion
remains valid for R. Thus, the theorem is proved.

13) uκn has the same meaning as in the proof of Theorem 4, that is, {Kn} is an exhaustion
of R and not of S.

14) tt^cs) denotes harmonic measure with respect to the Kuramochi's compactification
.
15) Cf. [8], th. 15, p. 224.
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6. Surfaces on which MHB(A)=MHD(A)

On account of Theorem A, we see that if the mapping Φ, defined in §2, is

one-to-υne except a set of ί/ωM-harmonic measure zero, then MHB(R)=MHD

(R). The converse of this is also valid. Before proving this, we shall investigate

a special case in which Δ^ contains at least one point with positive harmonic

measure.

Theorem 8. (i) // ωM({δ})>0 for έeΔΊM, then ωκ({Φ(b)})>Q. (ii)

Under the condition MHB(R)=MHD(R\ if ωκ({b'})>0 for b'ϊΞΔκ then there

exists one and only one b^ΔΪ1 such that Φ(b)=b' and ωM({ό})>0.

Proof, (i) Since b^Φ'l(Φ(b)) and έeΔ(M, we have ωM(Φ~l(Φ(b)))>0.
Hence, H* =H™ φ ))}>0, where XE denotes the characteristic function

of E. This means ω*({Φ(i)})>0.

(ii) Suppose that no point of Φ"1^') is of harmonic measure positive.
Then there exist two measurable subsets E19 E2 of Φ"1^) such that

(6.1) E1ΠE2 = φ9

(6.2) ωM(£,.)>0 (i=l,2).

From the assumption MHB(R)=MHD(R) we have H™E=H?. (ί = l, 2) for
some function /,-. By (6. 2), H%> 0. Since

we have %{fe/}>// rfω^-a.e.. Hence, /i = c f .X { 6 /j, ct>0 (ί= 1, 2). By (6.1)

H^Ei/\H^E2=\ min (%^, /X,E2)dωM=Q; this implies min (cί9 c2)=Q, which is a
v Δ

contradiction. Thus, there exists at least one b^Φ~l(b') with positive harmonic
measure. To prove the uniqueness of such i, suppose there exist two distinct
points bly b2 such that Φ(i1)^Φ(i2)=i/, and ωM({£, })>0 (ί=l, 2). As above,

H^( ,=CiHK

%l lλ for some positive number cέ (ί=l, 2), but 0=H^( ,/\H*ί( .
i f t j ) \b 5 \bιi {b^i

—min (cly c2) H*ξ. , which is a contradiction, and the theorem follows.

Since in the statement (i) of Theorem 8 we have not assumed MHB(R)=

MHD(R), we have the following corollary which was obtained by Constantinescu-

Cornea ([2], Folgesatz, 11.2, p. 123).

Corollary. UHB c UHD .

Lemma 3. Suppose MHB(R)=MHD(R). For every dωM -measurable set

A on ΔM we can find a dωκ -measurable set A' such that
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2)

3) ω"(A-Φ-l(A'))=Q.

Proof. In view of our assumption, we can find Jω^-measurable set
A' fulfilling H%=H%. We shall show ωκ(A'-Φ(A))=0. Actually, since

HA^HA and since, by the Remark 1 in §2, H^^Φ^A^=HJ^-^A^_ΦCA^
_ A we have

0<H%_Φ,A,<H%ΛH»*M_A = 0 .

This enables us to select A' in the subset of Φ(A). Next, if there exists dωM-
measurable set P of positive harmonic measure fulfilling Pc.A — Φ~1(A')9 then
by what we have proved, we can find a rfω^-measurable set P', such that
P'CΦ(P) and 0<H¥ = H$>. From H¥<H%=H% and Φ(P)n^' = φ,
it is derived that 0<H^< H%/\H$' = Q. This contradiction tells us
ωM(A— Φ~1(Af))=09 and we obtain the assertion of our lemma.

Theorem 9. In order to be MHB(R)=MHD(R), it is necessary and sufficient
that except a set E of dωM -harmonic measure zero on ΔM, Φ defines a one-to-one
mapping from ΔίM— E to its image.

Proof. Let {Gn} be a countable base for ΔM. For a e ΔM we write
®a={Gj a^Gj}. For every Gn the set in Δ^ described in the preceding lemma
is denoted by B(GH). Since H^n=H^G^ we have ωκ (B(Gm) ft B(GM)) = Q
whenever Gm Γ\Gn=φ. We set

;Φ(a)ϊΞ Π
Gye

and

where the union ranges over all suffices m, n such that GmΓ\Gn = φ. We set
also X'=Φ(X) and E=Φ'1(E'). We shall remark ω*(ΔM-X)=ωκ(Δκ-X').
In fact, if a<=ΔΊM-X, then a' = Φ(a)& Π B(Gj), that is, ar

for some Gyoe©β; this means a^GjQ—Φ~l(B(GjQ)). In other words,

ΔίM— JΓc U {GM— Φ'X^Gn))} and by the preceding lemma, the latter set is
w=l

of JωM-measure zero. Next, since φ-^Δ^— A"')=ΔίM— φ-1(^/)cΔM~ ̂  we

have ωκ(Δκ—X')=Q. If we have α'eΦ(α1)=Φ(α2) for distinct points al , #2e
JT— Jϊ, then β'e( Π B(Gj))Γ\( Π P(Gy')) and α'^B'. On the other

16) It is denoted by H% the solution Hf^ for brevity, and in the following we shalj
μse this notation throughout,
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hand, we find Gk, G/ such that Gk^®aι and G/e©Λ2 and G^ΓlG/—φ. Then
a'^B(Gk)ΓlB(Gι), consequently a'^E', which is a contradiction. Hence, we

see that the mapping Φ gives a one-to-one correspondence from X—E onto

X'—E' and that the complements of these sets are of harmonic measure zero
respectively. Since, as is stated at the beginning of this section, the converse is

trivial we can complete the proof.

We shall use the terminology "canonical domain*' as follows: a canonical
domain is relatively compact domain whose boundary is composed of a finite num-

ber of piecewise analytic curves.

Theorem 10. In order that the condition MHB(R)=MHD(R) be satisfied,

it is necessary and sufficient that for every canonical domain Rl each component S

of R-R, satisfies the condition MHB(S)=MHD(S).

Proof. Let S be one of the component ofR—R^ The Martin (Kuramochi)

boundary of S is decomposed into two parts, one of which is homeomorphic to

a simple curve of dRΛ. The remaining part will be denoted by Δ^Δ^). It is

well-known that ΔM is homeomorphic to a subset of ΔM and by Theorem 6, Δ^

is also homeomorphic to a subset of Δ^. If MHB(R)—MHD(R), then in virtue

of Theorem 9, we see that except a set of harmonic measure zero, Φ makes
correspond ΔM to Δ^ one-to-one manner. This is also true for between ΔM and

Δ*. Thus, we have MHB(S)=MHD(S). Next, assume that MHB^MHD

holds for each component. Let u^MHB(R). The restriction of u on each

component, S say, is a function in MHB(S) and also in MHD(S). This means

fine boundary values ύ of u take equal value on Φ~1(a/), from which we conclude

u^MHD(R) and complete the proof.

7. Convergence in the Dirichlet norm

In [4], J.L. Doob proved that for u^HD if we denote by u' the fine

boundary values of u at ΔM, then we have

(7.1)

where c is a constant not depending on u, and D[z/] is the Dirichlet integral of u

over R. With regard to this theorem, we can get a relation of boundary

functions correspoding to HD functions which converges in the Dirichlet norm.

Theorem 11. Let un, u<=HD (n=\, 2, •••) and lim Ό[un—u]=Q. Let ύn

and ύ be the quasi-continuous extensions of un and u respectively. Then, there exists

a subsequence [ύn^ of \un} converging to ϋ dcoκ-%.e..
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Proof. Without loss of generality, we can assume u=0. Let un' be the fine

boundary values of un on ΔM. We have un'=ύnoφ dωM-a.e.. Consequently

\un'\
2= \ύn\

2oφ </ωM-a.e.. This implies H^2 = H^2. By the preliminary

remark,

Hence, there exists a subsequence {ύn^ which converges to zero Jω^-a.e.. Thus,

we obtain the theorem.
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