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Introduction. Let L be a hyperbolic system with the diagonal principal
part

M, X, D) 0

( 1 ) L= Dt‘l: :|+(bmlc(t’ X, Dz)) .

0 ‘M, X, D,)

In order to consider the propagation of singularities of solutions of an equation
LU(t)=0, we frequently employ a method of constructing the fundamental
solution E(t, s) and investigating its properties. In Kumano-go-Taniguchi-
Tozaki [11] and Kumano-go-Taniguchi [10] the fundamental solution E(%, s)
of the hyperbolic system _£ has been constructed in the form

(2) B9 =Lt )+ Lt {6, )

o (0 (¢ ty_o
+3 S S Wi, t) Wa(ts, t;) -

X W#(tv-b s)dty_l oo dtl}de (to=0) )

where I4(t, s) and Wy(t, s) are X[ matrices of Fourier integral operators Py(z, s)
defined by Py(t, s)u=§ et p(t s x, E)B(E)dE. The expression (2) is

obtained by constructing, first, an approximate fundamental solution I4(t, s)
and next applying the method of the successive approximation. When we
want to derive some properties of E(¢, s) from (2), it is necessary to estimate
the multi-product

(3) Q~v+1=P1,¢1P2.¢2 P‘V+l,¢v+1



170 K. TaNIGUCHI

of Fourier integral operators P; 4.. In the present paper, we will show an esti-
mate of @,4; and apply it to reduce E(Z, s) of (2) to a finite sum expression
1ort(t -
(4) E(ty S) = Wg(t: s)+vz=2 S S fe S ? Ws,o\,(t, By, ooy by s)dtv—l e dtl
(ty=1)

when the operator (1) is involutive. The expression (4) gives us information
on the propagation of singularities.

Let Sps (—oo<m<<oo, 0=8=<p=1, 8<1) denote a class of symbols p(x, &)
of pseudo-differential operators in R” which is defined in Definition 1.1 of
Chap. 2 in [8], and set S;'=S,"_, for 1/2=p=<1, S;;= U Slsand S™~= QS{”.

The class S5 is a Fréchet space with semi-norms

(m) (@) —(m—P|as|+8|8])
(5)  1plith = max_ sup {| p(x, £)I<E) M
where p{g)(x, £)=0D%p(x, £), Di=(—1)"?0f and <E>=+/T1+[E|% (cf. §1 of
Chap. 2 and (1.13) of Chap. 7 in [8]). Let P (7, ) (0=7<1, 12=5p=<1, =0,
1, 2, -++) be the class of phase functions ¢(x, £) such that J(x, £)=¢(x, £)—x-&
(x-E=mE + - +x,E,) satisfy JGeS,™1% for |a|+|B| =<2 and

(6) =23  sup {|JGE(x &)IKE>- @Dt} <,

|@+BI=2+1 1,&

where a,=max(a, 0) for a real a. We set P, (1)=Py(7, 0). For ¢(x, &)
Py(7) and p(x, £)E S we define a Fourier integral operator Py=p4(X, D,)
with phase function ¢(x, £) and symbol o(Ps)=p(x, &) by

(7)  Pau= Se"‘”("é)p(x, EUE)E  for ueS.

Here, d¢=(2r)""d&, & is the Schwartz space of rapidly decreasing functions
on R" and ﬁ(E)zS e~ "*ty(x)dx is the Fourier transform of u(x). In (7) P, is

a pseudo-differential operator when ¢(x, £)=x+£. In this case we write Py=
pe(X, D,) simply by P=p(X, D,) and we often say that P is a pseudo-differ-
ential operator in S;%. For pi(x, £)€S74 (j=1, 2, ---) we say that {p} is
bounded in {Ss.{} if the set {|p; (,';'f,)z} of semi-norms | pjl(,’:'_’})z is bounded for
any /, and /,.

Concerning the multi-products of Fourier integral operators the following
is shown in Kumano-go-Taniguchi [10] for the case p>1/2Y,

Let ¢(x, &) belong to Py(7;) and let p;(x, E) belong to S}/ (j=1, 2, ---).
Suppose that

1) Their proof is also valid for p=1/2.
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*) ,i T;=7° for some positive constant v° and for [(x, E)=¢(x, E)—x-E the
set {J5&)/7;} is bounded in S;™'* when |a+B| <2.

Then, for any v the multi-product Q.., of (3) is a Fourier integral operator Ovi1,004,
with a phase function @, \(x, ) in Py(c,Tv11) (Tvn=T1+To++++7y4,) for some

constant c, and with a symbol q,.\(x, &) in S+t for My =my+my~+--myyy.  (c.f.
Theorem 2.3 of [10]).

The result we want to show on @,,, of (3) is the following:

Theorem 1. Suppose that ¢;(x, £) belongs to Py(t;, 1,), j=1, 2, -+, and
(*) holds, where 1, is an integer determined only by p and n. Then, for each bounded
set {p;} in {S77} there exists a constant C, such that the set {Cy~"qy+.} is bounded

in {S™+1} if we assume jz=‘,1|mj|<0<>.

Concerning estimates of multi-products (3) Kumano-go-Taniguchi [10] gave
only operator norms in Sobolev spaces, but they did not show estimates of
symbols. To obtain their estimates they used essentially asymptotic expansions
of products of Fourier integral operators, and it seems to us that it is almost
impossible to obtain the estimates including the case p=1/2.

In order to prove Theorem 1 we must employ a method completely differ-
ent from [10]. First we show the fact that there exist pseudo-differential opera-
tors R and R’ in S such that

I¢RI¢* =1,
(8) o
I¢*R 1.1, =1

hold for a phase function ¢(x, &) in Py(7, 1,) if # is small enough, where I,
[resp. I4+] is the Fourier [resp. conjugate Fourier] integral operator with phase
function ¢(x, £) and symbol 1. Then, the multi-product (3) can be written in
the form

(9) { 1) le = P{P} - P\$+1I¢\,+1 ’

ii) Q~v+1 = I@\,HP{’PQ/ P“L
with pseudo-differential operators P} and P}’ in S (j=1, 2, --+). Thus, the
problem to estimate the symbol gy,(, ) of a multi-product Q~y+1=Qy+1,@,, + of
Fourier integral operators is reduced to the problem of obtaining an estimate
of a multi-product of pseudo-differential operators. Therefore, it is the key
point in the proof of Theorem 1 to show the existence of pseudo-differential
operators R and R’ verifying (8). To show their existence, it is necessary
to obtain a sharp estimate of symbols of multi-products of pseudo-differential
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operators. Our theorem concerning multi-products of pseudo-differential
operators is the following.

Theorem 2. Let 0=86=p=1, 8<1 and let pjx, E)eSts j=1,2, .
Consider the multi-product

(10)  Quu=PP, - Py
of P;=p{(X, D,). Denote by q,,(x, &) the symbol of Q... Then, there exists
a constant A determined only by & and n such that M Ef} |m;| <oco and the
boundedness of {p;} in {S7ti} imply the boundedness of {g;“’q,,ﬂ} in {SZ;“}
Wiy py=my o+, with
(1) Co=Amax|p;|77
for ]
(12) = [f(1—8)+1].

Since the (v+1)-st power P**! of a pseudo-differential operator P with
symbol p(x, &) in S, ; satisfies
(13) lo(P*™) 1§21, =Ch.i, (4] p1$21.1.)",
we get immediately

Theorem 3. Assume that p(x, £) in S} 5 satisfies
(14) [pl$h.,<1/4

for the constant A in Theorem 2. Then, the inverse Q of the operator I—P ex-
ists and is a pseudo-differential operator in S ; represented by the Neumann series

S P
v=0

The existence of R and R’ in (8) is derived by applying Theorem 3 to
Iy Is—1I and Islyn—1. Concerning the estimate of multi-products of pseudo-
differential operators Kumano-go obtained in [6] a semi-norm estimate

(15) [ gyl 8?”13) = 011,12\' .

The estimate (15) is effectively used for the construction of the fundamental
solution of a parabolic equation (see, for example, § 4 of Chap. 7 in [8]) and
also used for the L?’-boundedness of a pseudo-differential operator (see [6]).
But the estimate (15) is not sufficient for the proof of the convergence of the

Neumann series 20P”. Hence, we need the estimate (13) sharper than (15).

Using this estimate (13) we prove the convergence of the Neumann series.
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We like to emphasize that by virtue of Theorem 2 the inverse of a pseudo-
differential operator may be obtained only by the symbol calculus when (14)
is satisfied. In [1] Beals has proved that the inverse of a pseudo-differential
operator is also a pseudo-differential operator, but he showed it by a discussion
in Sobolev spaces, not by the symbol calculus. In Appendix of [8] Kumano-go
has given another proof of the convergence of Neumann series by using the
commutator theory and the symbol calculus.

Now, we return to the problem of the reduction of the fundamental
solution E(2, s) of (2) for L to the expression (4). Let M([0, T']; S7((k)))
[resp. M([0, T']; SZ((k)))] be the set of symbols p(¢, x, £) such that p{3)(z, x, &)
[resp. 81 p{&)(t, x, ) for any 7] are bounded in S7~'*! for any t&[0, T'] when
la|+ 18] =k; and we also set M°([0, T']; S3)=M[0, T]; Sy((0))) and
M([0, T1; S7)=M([0, T1; S7((0))) (for details, see Definition 2.4 and Defini-
tion 3.1). In the present paper, we shall consider a system (1) under the
following condition (I) or (II).

(I) The characteristic roots A,(2, x, £) belong to M°([0, T']; Si((2)))N
CY([0, T X R%"¢) and the symbols b,,(¢, x, &) in (1) belong to M°([0, T']; S?).
For any m and k there exists a continuous function a,, ,(f) such that the Poisson
bracket {r—2,, T—A;} of 7—2\,, and T—2, satisfies

(16) {7y TN} = A i) —Ng) -

(II) The characteristic roots A,(¢, x, &) belong to M([0, T7; S: ((3))) and
the symbols b,,(¢, x, £) in (1) belong to M([0, T']; S;). For any m and k
there exist real symbols a,, 4(¢, x, £) and an (2, x, &) with

- { analt, % EYSM(O, 715 SY(D)),
am 1(t, %, E)€M([0, T]; S5)
such that
(18) {T=Am T=N} = (8, X, EYNm— M)+ an a(2, %, E)
holds.

By using Theorem 1 and the commutative law for #-products of phase
functions (Theorem 3.9) we obtain

Theorem 4. Under the condition (1) or (II) the fundamental solution E(t, s)
of (2) can be reduced to the expression (4).

The expression (4) of E(t, s) gives us much information on the propagation of
singularities of the solution of _LU(t)=0. For example, the estimate of sin-
gularities obtained in [13] follows immediately from (4) (see Corollary 4.5).
Concerning the expression (4) of E(t, s) Ludwig-Granoff [12], Hata [2] and
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Nosmas [14] obtained it only for p=1. They constructed it by a method of
solving transport equations. On the other hand, Kumano-go, Taniguchi and
Tozaki have proved in [10]-[11] Theorem 4 without solving transport equa-
tions under a stronger assumption than (I), that is, p=1 and a, () in (16)
are identically zero, and Morimoto [13] has also obtained it under the assump-
tion (I) with p=1 and C=-functions a,,,(¢) in (16). We note that Ichinose
[5] also showed Theorem 4 in the case of /=2, p>1/2 and (I).

Theorem 4 with p<1 makes us possible to treat hyperbolic equations
with characteristic roots which are not necessary C= differentiable. Namely,
with the aid of the approximation theory by [9] the hyperbolic equations can
be reduced to the hyperbolic systems (1) with symbols in the class S5=S7_,
(see [5], for details). The less differentiable the characteristic roots are, the
smaller p (=1/2) we need. For example, we consider a hyperbolic operator
L, in RZ:

(19) L, = D?—ayx)(D,*+D,}),
where a,(x) (k=2) is a C “-function satisfying

{“"(x>=xf"+xﬂ (IxI<1), =2 (lx]22),
0<a,=ayx)=2 (|x|=1)  for some a, .

The operator L, has characteristic roots A.(x, £)=-\/a,(x) | £ | which are C*~'-
class with Lipschitz derivatives of (k—1)-st order for |£| =1. The operator
(19) with k=5 was considered in [9] and (19) with k=4 in [5]. Including
the cases k=2 and 3 we shall show that (19) can be reduced to a system (1)
with symbols in S; for p=1—1/k and investigate the propagation of singu-
larities. For the case k=2 we need p=1/2. Other examples which can be
reduced to the system with p=1/2 are

(200 L= D/—a(x) (D, +a(=)'Dy),
(21) Ly = D?—2a(x,)*D, D,—a(x,)’D, 7,

where a(x,) is a C=-function in R; satisfying

aw)=x (Iml=1), =42  (u=2),
0<a,<la(x)|<2 (lm|Z1)  for somea,.

The reduction of L; (=1, 2, 3) to the system (1) and the information on the
propagation of singularities are given at the end of Section 4.

The outline of the present paper is the following: In Section 1 we shall
study multi-products of pseudo-differential operators. Section 2 is devoted
to the proof of Theorem 1. In Section 3 we shall prove the commutative
law for #-products of phase functions and in Section 4 we shall construct the
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fundamental solution of (1) and prove Theorem 4.

The author would like to thank Prof. H. Kumano-go for his kind sugges-
tions and constant help. The author would like to express his gratitude to
Prof. M. Ikawa for his helpful advice and refinement of this paper, and also
to Prof. K. Shinkai and Prof. N. Ideka for their kind help and encouragements.

1. Multi-products of pseudo-differential operators and Neumann
series. Let (2% Z)=(x" «!, -, x") be a (v+1)-tuple of points x°, ', Y
in R* and EY"'=(&, -, £**') be a (v+1)-tuple of points £, .-+, £'+! in R}

DerFINiTION 1.1. Let 0=8=<p=1, 8<1 and let m,,,=(my, -+, m,4,) be
a real vector. We say that a C~-function p(x°, *, £+, ““)~p(x £ &Y, B2 -ee,

MV+1

x%, VL x¥*) in R®*9” belongs to a multiple symbol class S,,; * when

av+1 ﬂv+1

(1.1) |a o §v+1Dﬁ:D£11 e xv+1p(x° 2, gV+1 ”’H)I
éCa\aﬂ 8° §v+l"ﬁ <§j>mj—91af1<§1>8150| f‘I <Ej; E’I+1>slf”.l<§‘“+1>8l6"“l
B, i o
holds for any (v+41)-tuple @+ =(a!, -, @**) and (v+2)-tuple (8" B**')=

(B BY, -+, B**1) of multi-indices a?, «++, ¢'** and B°, B -+, B! of R", where

CE; ENDy=<E+CED.  For p(a°, &, B+, ""I)ESm"+1 we define semi-norms
|p172) by

(12) | p1™) = maxinf {Cavss oo of (L)},

where the maximum is taken over all (@', B°, 8*+') satisfying |/ | </, (j=1,

) y+1) and lB"' §lz (]:0) 1, ) 1)+1).

ReMARK. The multiple symbol class was introduced in Kumano-go [6].
But the semi-norms (1.2) are slightly different from semi-norms (2.4) of [6].
Corresponding the multiple symbol class, the class S;'; in Introduction is
often called a single symbol class.

For _p(xo) fo) ’Ev-}-l, xwl):P(xo, gl’ xla EZ) *tty xv’ Ev"‘ly xv+1) in Sf;+l P(X, D.n
XY Da, -, X", D, X'*1) denotes a pseudo-differential operator P defined by
(13 P) =0~ exp §F (v —v)-£
=1
X_P(xo» gl’ xl, Szy R xv’ Ev+l) xv+l)
Xu(x"*)dxt +oo dx*dE o dETT for ueS,

and o(P)=p(x°, ", £+, x**') is called a symbol of P. Here, the right hand
side of (1.3) is the oscdlatory integral defined in Section 6 of Chap. 1 in [8].
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Throughout this paper, we shall often use the result there. Following Kuma-
no-go [8], we write p(X, D,, X?), p(X, D,, X', D) and p(X, D,, X*, D2, X?)
by p(X, D,, X'), p(X, D,, X', D,/ and p(X, D,, X', D,,, X"), respectively.

For p(«°, &, &, +++, E%, &%, E¥*, ™) in Sy, "“ we write

(14 pulw & 8) = O ([ (s, £, 3t 97, oy
E‘{"?v, x—H’v, g x')dyvd‘w’

called a simplified symbol of p(x°, &, &%, -+, &%, &%, £+, x**1), where
(1.5) = gyi'(ﬂj”‘ﬂjﬂ) — g (¥ —y ) en/ (° = "1 =0),
F'=(" =, ¥ )ERY, 7'=(x", -+, n")ERY and dy* a5 =dy' - dy’dn' - dy’. It

L)
is well-known that p,(x, &, x') belongs to SM (Poyy=my+my++++ +my4;) and

(16) P(X’ D,, XI’ ) XV; Dy, XH‘I) =PL(X’ D,, X,)
(c.f- 82 of Chap. 7 of [8]) .

Now, we begin to prove Theorem 2. It is well-known from (2.6) and
(2.8) of Chap. 7 in [8] that the symbol gy4,(x, &) of the multi-product Q=
P.,P,-.-P,,, has the form

L, vt . .
(L7) gl B = O e Il pfaty™, £y
O°'=7*"=0)
with +r in (1.5). Differentiating ¢,.,(», &) with respect to x and £ we have

al
(18) Qv+l(5) (xy g) Ea B,v+1 ~‘v+11§v+11 Qv+, ((.»"*1,5”“))(90, E)

for
(19) Gv+1,(G3V 1 B"ﬂ))(x E)
= OS~SS- etV I;Il Pjégg(x'i‘yj_l, f-f-?]i)djfvdi]"'

Here’ a\'+l! = al! ot \'+1| BV-H' BI' B’H-l! fOI‘ dv+l = (al, °t a'v+1), I§v+1=
(B, -+, B**) and Zw,p.\H_l means that the summation is taken over all
@+, B+ satisfying a'+++-+a**'=a and B'+---+B""'=p. Note that (1.9)

means
av+1

(110)  Quscavipvom = PGP -+ Py -
Set
(1.11) &= 1-8)(—n/(1-8) (>0)
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for the integer /, in (12). In this section /, and &, always mean the numbers
defined by (12) and (1.11).

Proposition 1.2. Let {m;}and {m}} be sequences satisfying
(1.12) Slzglm,-|<8,,,

(L13)  M'=35m)] <o,
(1.14)  N°=the number of {j; m;>0} <co.

Let Q2,,=PPP$-P%,, for P=p3(X, D,), pS(x, ) S™{T™. Then, there
exist a constant A, independent of M’', N° and v and a constant C depending only
on M', N°, n and 8 (but independent of v) such that the symbol gy.(x, ) of Oy 11

satisfies
(L15) | gn(x &)

<4 max {1 pf 1B ILI 9710 et

n+1

kyterky 11 SNO+1

with [l:0: [M'/(l—b‘)]*, m,,+1=m1+ b ~I—m,,+1 and 171{,+1=m{ + o + m{,+1. Here,
- for a real a we denote by [a]* the smallest integer not less than a.

Admitting this proposition, we apply it to each multi-product (1.10) by set-
ting P§= ]8;’; Take an integer N, satisfying

7=,

(L16) 31 |ml<e,

and set for fixed @ *'=(a, -+, @**') and B*H*=(BY, -+, B**Y)
0 Jj=N,,
M=

m; j>M1
(1.17) . S
i {m,-—Ploz’ler‘IB’l J=N,,
T —plad| 48|87 j>N,.

Then, u;+pj=m;—p|a’|+8|87| and for p§=p, (3} the set {p}} satisfies the
assumption of Proposition 1.2 with {m;} and {m}} replaced by {r;} and {n}},
respectively. 'The number N°in the proposition does not exceed N,+8%|3]|
if we set 8*=[8]*, that is, 8*=0 when §=0 and 8*=1 when 0<6<1. Hence,
we obtain from (1.15)

(118) lQ'v+1 G+t §v+1))(x’ &) |
<C, g4,’ max {H |p]§“’)|(mf— la’l+6|ﬁi|)

n+1,1,4k;1"
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k= (ky, =+, Rys)) EKya(N,+6%| B +1)}
X<E>ﬁy+l-9|¢l+5lﬂ|
=C,p4 ”maxvffl [(m’) ;
=La,p410 =6 Pj n+l+kj|a|,lo+kj(1”+lﬂl)a

kEK, (N,+ |a| + 8] +8%| 8] +1)}
X EYMar Pl () = [(M+pla| +8|B1)/(1—8)]*)

with a constant C, g depending only on « and B, where K, ()= {x=(k,, **,
kyi); k=0, 1, vf‘_fk,-gl}. If we use X34 pvna!Bl/(@ B ) = (v4-1)1#I+1F],
i=1
we obtain from (1.8) and (1.18)
(L19) g &) SCapdo'(v+1)=*F
v+1 ( j)
X max {:I;Ix | 2] n’fl+kjlal,1,,+kj(l”+lﬂl) ;
k€K, n(N,+ |l +181+8* 81+1)}
X<§>ﬁv+l~ﬂlml+81ﬁl .
For any fixed 4>1 we take a constant C, independent of » such that for all »
v+1)=Cs".
Combining this with (1.19) we get
(1.20) [ Gyl g;ﬁ,;:,)

<c, A 15,17
=0y, max 11 IP,- l nalakjly otkj(17 +13)
tEKy (N, +14+1) i=1

(I = L+L,+8*%, , V' = [((M+pl+8L)/(1—8)]%),
if we set A=A,6 and Cﬁ.’z:I mz;l;lc (Cy,6Ca+p1)- Consequently, for the con-
alstyIBISt,
stant C, in (11) the set {Cy *¢y+;} is bounded in {S™*1}. This concludes the
proof of Theorem 2.

RemARk. In Proposition 1.2 the constant 4, depends also on &. But,
when N, in (1.16) satisﬁes__i . |m;| =&,/2, we can take the constant A in
Theorem 2 depending only olxzz::;nd 8.

As a special case of Theorem 2 we have

Corollary 1.3. Let P be a pseudo-differential operator with symbol p(x, &)
in Sy 5. Then, the symbol ¢,y (x, &) of the (v-+1)-st power Q.. =P**' of P
satisfies for any I, and I,
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(1.21) [ gyt 5? ,= Czl,lzcov( | p] 14 11'7,)11+12+s*12+1
(" = lo+-[(pL+1L)/(1—-8)]*, 8* = [3]*)
if v=h+1,+8%L,+1 holds. The constant C,, is determined by
(L.22)  Co=Alp|Phu,
for the constant A in Theorem 2.
Using this corollary we prove Theorem 3. Set

9%, &) = o(P).

Suppose (14). Then, taking account of (1.21) the series i ¢v(x, E) converges to
v=0

a symbol g(x, £) in S} ; because of C,<<1. Since
(g O)I—P) = I—Qvn
(I-P)(2 0) = I-Qun

hold, by tending v in (1.23) to the infinity we see that the pseudo-differential
operator Q=¢(X, D,) is the inverse of I—P.
We note that the symbol g(x, £) has a semi-norm estimate

(1.23)

(124) 19120, =Cppy (max (] p1821ss, 7y 1))'sHarstiatt
(8% = [8]%, T' = I, +[(pli+1)/(1—8)]*)

with a constant C, ,, depending only on 4| P11, L and L,.  In fact, writing
N co
90 B =20 O+ 3} 668 (V=htl+5%)
we obtain (1.24) by applying (1.21) to the second term.
We turn to the proof of Proposition 1.2.

DerFINITION 1.4. For an integer N we say that a symbol p(x, &, x')E S},
belongs to a class SX,';; y when p(x, £, x') satisfies

(1.25)  |0¢DEDE p(x, &, &) | < Cp p,pr<EPm P +OIB+E (1 H-CED | w—u'| )7V .
For p(x, &, x")eSX s, y we define semi-norms |[p|[i",..;; v by
(1.26)  |Iplli™,.15; v = maxinf {C, 5 5 of (1.25)} ,

where the maximum is taken over all (a, B, B') satisfying || </, |B| =<I, and
|B'| =15. Then, SX;; v is a Fréchet space.

Lemma 1.5. Setting
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Ly = (14+<E>? | x—x'|3) (1 —iKEDP(x— ')+ V)

we define for an integer N a mapping Fy from a single symbol class S}'s to a class
SX75in by

(1.27)  Fu(p)(% & %) = (Ls)"p(x, §)  for p(x, §)ES87s,

where V="(0/0E,, -+, 0/0E,) and L' denotes a transposed operator of Ls. Then,
we have

(1 28) { FN(P)(xi gy xl)ESX::S;N )

. ”FN||(P)§T,)12.:2’;N§ Cll,lz,lé,NIPI(IT-)FN,Iz
with a constant C, 1, 15 y independent of m and
(1.29)  Fy(p)X, D,, X') = p(X, D,) .

Proof. From (1.27) we get (1.28) easily. So, we have only to prove
(1.29). For simplicity we denote p™(x, &, x')=Fy(p)(x, & x'). Set Ly=
(14+<E+7®1 1) (1 +icE+7>"y+V,). Then, we have p™(x, £+, x-+y)=
(Ls)Y p(x, E+n). Hence, using Lye™"=¢""»"" we obtain

(P05, &) = 0= [[ e7p® s, E-4n, wy)dyedy
= 0= [ e Ly b, £y

= OS—SS e p(x, E+n)dydy
=px &).
This proves (1.29). Q.E.D.

Lemma 1.6. Let 8 satisfy 0<8<<1. Then, the following hold:
i) Set

I(E £ = (1D E—E' 1) HO-D(CE D E; ED)0D.
Then, we have for p with |p| <1
(1.30)  J(E EREF=CED.
ii) Set
HE &) = (1HEDTPE—E"])UKEDE; EDy).
Then, we have for 6 with 0<0<1

(131) (& EVSCEXRED -0,
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Proof. i) First, we assume |[E—E'| <<&">/2. Then, we get (1/2)<ED=
{E>=Z2¢E'> and get (1.30) immediately. So, we may assume |E—E&'|=<E"D/2.
Then, from <g; £'%=5|E—E'|® we get

JE, ERE ' SCIED T IE—E|)VODEDP [ E—E|aED"
= CI|E—§| KE'=CLED".

Hence, we get (1.30).
il) By the same way as in i), we get (1.31) when |E—&'| <<E'D/2. So,
we may assume |E—E’| =<&'>/2. Then, we have

JE ENVSCEDTPIE-E )T (KEDPIE-E"]?)
=CEDTIZCENE D).
Hence, we get (1.31). Q.E.D.

The following proposition is the first step to the study of multi-products
of pseudo-differential operators.

Proposition 1.7. Let {m;}7., be a sequence of real numbers satisfying (1.12).

Suppose that a multiple symbol p,.,(x°, X, E¥*Y) in Sp+Y, Myy=(my, +++, myyy),
satisfies

(1.32) | Df1 - Dgzpvﬂ(xo’ 2, B
éB:ji[: <Ei>'"ij_1j]; CET; BB ;ljl (14-CEP | ad =1 —xF | )= 0r4D)
for B0, j=1,-v.
Then, for a simplified symbol (py41)1(%, E) of pyai(s’, X, E*Y) an estimate

(133)  |(Po)e( E)| SATBE 1 (iysy = myrt ooty
holds for a constant A, determined only by n, 8 and &,.

Proof. Integrating the oscillatory integral (1.4) for p=p,4, by parts with
respect to ¥* we have

(1.34) (Dv+1)2(%, &) = (rva)u(x, &)
= O~ e ran(w, B w9, o, B, mty”, BN d

for a multiple symbol

(135) o, 2, B = IT (L8> =81
% 1211 (L—iCE D72 (E —EH) o Vi) o pya (2, 27, E74) .
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Expanding (1—iKE/*)-2(g/—£i+1) v, )% by the polynomial thoerem and ap-
plying (1.32) to the derivatives of py.,;, we have
(1.36)  |7yn(x®, 2, YY) | <BA,"Gy(«", %, &+
for a constant 4, depending only on # and 8, where
(1.37)  Gy(=", &, &)

= 11:11514_(;::’)8 | i~ —xd [)~(++D)

X jII=1 {(1H-CEFDTP|E —E7 ) (CETDCET 5 BTV

X KEDMY BV M

Set
(1.38) { L=&—& (<0),

I = (n4+£)/(1—-3)
and set

H(E*) = {I1 9, &) IT gD,
(1.39) ™

B(E) = {1 4, £}

with J(&, €') and J(&, &') in the preceding lemma. Then, since [,=I;4&/(1
—8)=(n+E&,)+8l,+6,/(1—8) we have
(140)  Gy(a%, 2, B+) = jﬂ (1B | it —gd | )=o)
X ﬁ (l-}—(fj*l)’a | &1 —Ei+1) )—(H?")Hv(gv“)ﬁv(?ﬂ) .
j=1
Using Lemma 1.6-1) repeatedly, we have

I(E, ERED™ 1= CKED™ ™ (Imj&| =1),
(&, B)ED 1= CKED™ (Imy)e| 1),

I(E, EEDVHZCKETDNY (6] £1).
Then, we have
(141)  Hy(B")=SCY g DM
Applying Lemma 1.6-ii) with §=n/(n+&,) (<1), we have
(142)  H@*)=SCYIL (B <E )9

=G 1T (<GB ™)
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by virtue of (1.38). Consequently, we have
(143)  Gu(a, 2, B4 T A(HCED o —a )i
X T (G2 | gt
STCADR R

with a constant 4, determined only by n, § and &,. Set

(144 W= = ([ T {(Cetrd? y7—y 1) o0}
X JIZIx {1+ 42D f —pi*i] )0t R0
><<’g'—|—17j+1>_”5} dj"’d&‘i" (yo — 7]\c+1 — 0) .
Then, from (1.34), (1.36) and (1.43) we have
(145)  [(pvsr)e(®, E)| SB(A,A,)" WKEY™ .
Since W, has an estimate
W, =4y S H {IHCE+7 D7 0/ = P ) O D
.§A§"A§”EA3V

77

with constants 44, A% and A4, (=A4A%’) independent of v, we get (1.33) from
(1.45) if we set Ap=4,4,4;. Q.E.D.

We fix a C'=-function X,(£) satisfying
0=%x,=1, X&) =1 (IE|=1/4), X(8)=0 (I£1=1/2).

Set for p;(x, £, x')E Sp 4 j=1, 2, and €€(0, 1]

(1.46) { qo(x, &, x', &', &) = pu(x, &, x")X(E, E')pox, &', &),
' qi(x, &, &', B, &) = pi(x, E, x")XS(E, ENp(w', E', x)
and
(147)  (qi(w))(x, & «', &', &) = {—i|E—E"|"2(E—E") V. qi(x, &, &', &', &

(:u‘ = O) 1’ "')’

where X3(, £') = X,(E—E")/(&E")) and Xi(E, E)=1—X4(£, E). We define
for pseudo-differential operators P;=p (X, D,, X'), j=1, 2, the products P,[J}P,
(k=0y 1) and PlDi,}bpz, (I[,:O’ 1’ ...) by
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(148) { P,[;P, = q;(X, D,, X', D,, X”), k=01,
' P wP, = (¢(w))(X, D,y X', Dty X),  p=0,1, .

We also denote for P;=p;(X, D,, X'), j=1, 2, the pseudo-differential operator
with symbol py(x, &, x")p,(x, &, x) by P,®P,. Then, we have obtained the
following results in Section 2 of [16].

Proposition 1.8. i) It holds that

(149) Pl-Pz =P1D§P2+Pl|:|fP2,
(1.50) P,OJiuP,=P,[]iP, (=0,1, ).

i) Let py(x, &, x') belong to SX . ; (j=1, 2). Set for real numbers s,
$, and s,

05 = (POA)H(A°®P,),
0} = (POAM}(A=GPR,),
Qi(s) = (POA™M I} w(AZOP,),

where A°=<D,>". Then, gi(x, &, %', &', ¥")=0(Q}), k=0,1 and (gi(u))(x,
E &, &', &")=0(Q(n)) satisfy for any B, B', B” with |B'|<l, |B| <1 and
18" =1

(L51) | DEDEDE g, &, ', F, )]

< {(1+&)" Al w2172 v}

XCEImHIPICE P ICE P
X (LB lw—a’ )™ Ma(1H-CE D |~ )72,
(1.52) | DIDEDE/gi(x &, &', &', #)

< {21l ol

X B B ICE P e
X (1K [a—a'|) (14D [ —a )M,
(153) | DEDEDEAGi(m)(x, &, ', ', #)|

< {Cu I 1At v}

X (EDMHBIBICE E’>8IB’I<E'>m2+8|BUI
X(IHCEX [ a—a" | ) My(14-<KEDP [ &' — x| ) 772

when p 2= (5144-5,+)/(1—3).

REMARK. A product P,®P, is:denoted as P,®P, in [16] and a slightly
different estimates are derived there, but (1.51)~(1.53) follow by their proof.
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Now, we are prepared to prove Proposition 1.2. We devide the proof
into four steps.

I) Let F,., be a mapping from S35 to SXs; 4.1 defined in Lemma 1.5
with N=n-+1. Denote for simplicity

(1.54)  pi(x, & ') = Fprs(p7)(%, E, x")  for j=v.

From Lemma 1.5 we note that pj(x, £, x’) belongs to SX)" +”':’; and satisfies

(155) WIS €l p2 1 S5
for a constant C,, ;; independent of j. From (1.54) and (1.29) we can write
(1.56)  QF,, = P{P} - PLP%,,.
Set
K, = {x= (ky, ky, -, k\); k;=0, 1} .

Then, from (1.49) we have
(157) Q% =3 QraoA™"
for
(158)  Quiieo = PiOI5, P35, -+ 05 PUT5 PonA ™™,

II) Set k°=#3=(0, 0, -, 0)€ K, and consider Qy4, (0 in (1.58). We set
Y (% B &) = pi(x, £, )™ (€SXpiw)  (IS5S0),
Pl ) = plus(x, EXE ™1 (e Smy) -

Then, we can write Oy, (% in the form

Quir i = (PYOA™) YA ™OPY @A™)[; -+
O A ™-1@P) @A)y (A ™@Py,,

(1.59) {

Let gyi1,60(x°, 2, ') be the multiple symbol corresponding to Q,., (% and
set

(1L60)  Bunr = (1 o I8 s TL12H I s o] £ 1
Then, applying (1.51) we obtain for |8/| </, (j=1, -+, »),
(1.61) | D& -+ DBgyiy (2%, B, B+

é&n,(&)i{i <§i>"'jjf;[l CEIs BT 8 ,tll (LGB a1 — i )41
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that is, gy+1,0)(%° %y, £+ satisfies (1.32) with B=B,4, . Hence, we can
apply Proposition 1.7 to obtain

(1.62)  [(gvr1,6) (% E)| SAo"Buas, (<KEI™+1 .
IIT) Next, we consider
(1.63) Qv = PiOE P55, ++ (05, _ P05 Py A ™™
for = (ky, -, k) FxS.
Set for ¢<s’
Oviro: o = PlAPLaOh,,, Ok Pl (Pl = PE AR

For j with j<v and k;=1 we set 0=0,(j)=max {j'; 0=j'<j, k;=1} (k,=1)
and consider the part Oy (o;e+1,j+41- Using (1.59) we write it in the form
Ovi1,0 5 041,41 = (Pg +1@A~ﬁ‘,’“)|:|5(A ml“@P;iz@A’"o»rz)Do
(A~ @PY®A™) 5P}, ,
where m/=mp4y, =mpy+---+m] (0+1=:<j). In the case of m}=mj,, ;<0,
applying (1.51) and (1.52), we have

m;,m m
(1.64) I(Iv+1,(u):0+l,j+llt()l?:“’ MMt M)
(m;+l+mj+1)

§(1+8)M'“"’“’L=1;I+ PUISTE  willpF el T (s, <00
In the case of m;>0 we write by using (1.50)

Ovir s v o1 = (PUAO AT ) TT(A @ P, @ A" +3) T --
O(A_m:"l@Pf’@Aml“)D1,p-°P;‘+1

with uO=[M’/(1—8)]*. Then, from (1.51) and (1.53) we have

’
"')mjymj-fl'l' mj+1)

(1'65) |9v+1 (x) 5 0+1 ,+1|o i

< M/ (j-0-1) =t 101(m)
=C'a.”‘o,e(1+8) L=]-;!:+1 “Pt ”0 lo,los n+l
(mjey+misq) —
Xllpfi,“((’"k)lo+l* watlDhaallo, s vt e (M4+1,;>0) .

For j°=max {j; k;=1} we write Qy11¢0; ,v+1 in the form

Qv+1 )5 O v+1 = (P/ OAmJO)Dl I"O(A_ ’0©P,°+ @AE;O-H)DS e
O(A-mv 1@P//®Am )DO(A-M“@P;{H)

( (P"@A’"v)[:h “o(Aﬁ{:@PHI if ]‘0 — y) .
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Then, the multiple symbol qv+1,(x);j°,V+l(xj0—l’ Ejo, ey &7y E¥) of Ovi1,005 2041
satisfies

(m,m vy Mytq)
qu+1 ;2 o yv41l0,10

< Co 0,14 =3 P41 4 s
(1.66) X BpallT8 1 nznpf'ns";:?,., wer | PU 1§ if o<,

m
|¢Iw+1 ) 5 vv+1|( vy +1)

<o LDV i man | P | T8 (0= ).

Now, we set

j

T(x) = {j; 1Sj<v, k; =1, 2] m!>0tU{;j%.

‘=9K(j)

Then, from the definition of N° and the relation

T()C{j; k=1, m>0 U{j;kj=1, k= =k;.;,=0,
mg+,>>0 for some 6<<j} U {;%

the number / of the elements in I'(«x) does not exceed N°+1. Set
(k) = { Jo» "'?jl} (1h<p2<<Ji :]'0)
and write the multi-product Qy, (o of (1.63) in the form

Qv+1,(x) = Pflel éD:z Dijl-1P;1Di,F°P§1+1D:j1+1
—m
S 2 Y R i A G 2

Then, using the discussions in the preceding paragraph and Proposition 1.8-ii),
we get the following: There exists a constant C, depending on M’, N° and
& (but independent of ») such that the multiple symbol g, (o(2°, %, £'*") of
Oy41 (o satisfies (1.32) with B replaced by

(1'67) Bv+1 L) = e(1+8)M/y”p”“0 0, Ia+sllb° +1
X 11 D5 1L e, 0,105 005 met | P 1§25 0.

Here, s;=0 for j&T'(x) and s;=1 for j&T'(x). Hence, by Proposition 1.7 we
get

(168) I(QV+1,(:<))L(x, f) | §AOVB.“+1,(K)<E>5V+1 .
IV) From (1.57) we have

4 (%, &) =x§y(q”+1"~’)L(x' EXEY™
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Hence, we obtain from (1.62) and (1.68)
(1'69) Iq’t?-l-l(x! E) l §(2Ao)v {};%X Bv+1,(x)<&>av +1+i;+1 .

On the other hand, (1.59) and (1.55) imply

”P;IHO 0, lo+:w° =C|p? |(m1+m1)
BY I wer <A, p3 157D
125 S s wir S CAL 5 1S5
”Pf’”o 15+A° 1gs00; ne1= CA,| p5 lfffif,,"i’}o C=<j<»),
(My+1+myey)

| poial g”}::QoSCI Dyerl oty s po

(1.70)

for a constant 4, independent of M’ and » and a constant C independent of
v. Hence, from (1.60) and (1.67) we have for any K,

B oS C.CH0 A1+ | p7 | 115

Mir1+m Mmir1+m
0| p2al T f“’ T | po | Pysptmin)
JET I‘(K)

(T(<) = &) -

For any fixed o>1 we take E=§&,- (0, 1] satisfying
(1+&" <o .
Then, there exists a constant C° independent of » such that

1
(171)  Bunw=C°(de) max {| pllﬁ'fi“”l)ﬂzl po |ty

byt tky 4 SNO+1

Consequently, setting 4,=204,4,, we get (1.15) from (1.69) and (1.71). This
concludes the proof of Proposition 1.2.

2. Multi-products of Fourier integral operators. Throughout this
section we denote by I, the Fourier integral operator with phase function
¢(x, )€ Py(7) and symbol 1. Following [7] we define for ¢(x, £) € Py(7) the
conjugate Fourier integral operator Iy« (with symbol 1) by

(2.1) (Lowus) (%) = OS—SS et Oy )dx'dE  for usS.
Set for ¢(x, £)E Py(7)
V(e £ ) = [ V.9 +0(e—), £)a0),

(2.2) ~ 1
eb(E, ), ) = | Vig(w', +-0(—g)a0
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We employ the following lemma, which is a slightly different version of Pro-
position 1.5 of Chap. 10 in [8], but it can be proved by a similar way.

Lemma 2.1. Let ¢(x, £) belong to Py(7), 0=7<1, 12=p=1. Then,
we have the following:
i) The equation =Y p(x, &, x') has the unique solution E=V ,p~(x, 5, x")
and it satisfies
a) |E—ql=mn>  with &=V, (x, 9, «),
(23) 1 b) CKp=<V,p7!(x, 2’ D=C<m>,
c) |02DEDEY b7 H(x, 7, &) éCw,s’ﬂ,<’7>1~lwl+(1—P)(la+ﬁ+ﬂ'l—1)
(la+B+RB'1Z1).
ii) The equation y' =V (E, x’, £') has the unique solution x'=Vp(&,y", £")
and 1t satisfies

a) |VE¢_1(§) y') E')*_’V'léc,
(2.4) b) |9:yDyVipI(E, ', E)
S Co o pr<E; E DO PMata 817D (leta'+8'121),
¢) 1030 DYAX(E—E)ED)Ved™(E, ¥, £}
S Cy o p<ED IO 1HA R+ (gL' 48| 21),
where KE; ED=LE>HLED (=<&; E)) and X is a C~-function satisfying
(2.5)  0=x<1, X=1 (|£|=2/5), X=0 (|£]|=1/2).

Moreover, if {py}yer is bounded in P,(), we can take the constants C, C, g g’
and Cy o g tn (2.3) and (2.4) independent of YET.

ReMARK 1. In the lemma and in what follows, we say that for ¢yEPy(7)
[resp. pyE Py(7, I)] the set {py}yer is bounded in Py(7) [resp. Lo(T, 1)] if the
corresponding set {||Jyll;/}yer of semi-norms || /4l of (6) in Introduction is
bounded for any I'=0, 1, 2, ---.

ReEMARK 2. Throughout this section we denote by X(&) a C~-function
satisfying (2.5).

Now, we show the existence of pseudo-differential operators R and R’
satisfying (8).

Proposition 2.2. There exist a constant * (<1) and an integer 1, such that
for a phase function ¢(x, £) in Py(¥, 1,) we can find pseudo-differential operators
R and R’ in S) satisfying

(2.6)  IpI,R = RIgl, =1,
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(27) IR =Ry =1

and

) IRIp=1,
(2.8) {f’ P
ll) I¢*RI4,=I.

If the set {¢py}yer is bounded in P,7,1,), the corresponding sets {a(Ry)}yer and
{o(R$)}yer are bounded in S;.

Proof. The property (2.8) follows immediately from (2.6) and (2.7).
The existence of R’ satisfying (2.7) is proved in Theorem 6.1 of Chap. 10 in
[8]- So, it remains to prove the existence of R satisfying (2.6).

Set P=1I4Is. Then, we have

29)  p(x, &) (= o(P) = os—SS o~ idx' dE
with Yr=xE—p(x’, E)+p(x’, E')—x-E'. Set

- , N _6~ ng-1
(2.10)  B(E, ', E) = {Idetax%qb(f, w, &) }w=Vg¢“(5,x’, 0’

where for a vector f=(f,, -+, f,) of functions f,(x, ) gif is <8f,-/6x,, %_{1, " Z)
X ’ ’

In what follows we also use 6% f =<6fj/6f,, I]z—‘u’ o :) Since 4 is written as

P=(x—Vp(&, x’, E')) - (E—E"), by a change of the variables y=V;¢(&, x’, £')—x,
n=E—E’, we have from (2.9)-(2.10)

@11)  plx, €)= 0, ([ e B +na+y, )dyan .
Here, the oscillatory integral in (2.11) is well-defined because of
|07 DSB(E +n, x4y, E') | SCo gl ***'  for any fixed x and &’
with §=1—p (<1). Set
(2.12)  g(&, ', E') = P(E, x', E")—1.

Since g—?_v“b:E_'—aivE J (E is an identity matrix), g(&, x’, £&') has the form
x x

2.13) (&, o', ) = [{1—det <E+g’;vej<s, w, &)} /det (E

) '
+5;V5 JE& w0, ENly=5,0-1¢,5,¢) -
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Fix a constant #' satisfying 0<#'<<1. Then, if ¢(x, £) belongs to Py, I),
we can prove by applying Lemma 2.1-i) to Vi Y&, «’, £) that the symbol
g(E, x', £') satisfies

i) |83y DG(E, «', E')|
S Ciaw gl JIIKE; EDEPI+aF1 (g ra’'+B'| <),
i) |050g DI {X((E—E")KED)E, «', E)}
SCy gl JIICE DI+ 1TA Dok’ (| ' B7| <)

with a constant C;/ 4 4 g depending on #'.  Write the simplified symbol g(x, &)
of g(&, x', £') as

(215) g ) = O | e XiaCeD)a(E"+n, 503, 8yt
+Os— SS e"'iy-"l(l——X(n/<§’>))q(§/+n, x+y’ g')dydn

and use (2.14)-ii) to the first term of (2.15) and (2.14)-i) to the second term
of (2.15). Then, we can find a constant 45 (depending on #') and an integer
1, such that we have for /,=[n/p+1]

(2.16)  1gl2,=4slJlIr,
if ¢(x, £) belongs to P,(¥’,1,). Take a constant #(<#’) satisfying
(217)  T<1/(A4y)

(2.14)

with a constant 4 in Theorem 2. Then, g(x, &) satisfies (14) and by means
of Theorem 3 the inverse R of the operator p(X, D,)=I+¢(X, D,) is obtained
with the form R=r(X, D,) for a symbol r(x, £) in S;. This R satisfies (2.6).
Finally, from the above discussions we obtain the last statement of the proposi-
tion. Q.E.D.

From now on, for p(x, £) €S;* we shall use the semi-norms

(218)  [pIf = max sup {|pGix, £)|<E>mcnaramere)

instead of using (5).

Proposition 2.3. Let ¢(x, &) belong to Py¥,1,) for the constant ¥ and
the integer 1, in Proposition 2.2. Let p(x, £) belong to Si(— oo <m< 00, Y5 <p=<1).
Then, we have the following:

i) There exist pseudo-differential operators P;=p;X, D,), j=1,2, in Sy
such that

(219) Py=PI,,
(220) Py = I,P,
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and estimates
(2.21) |p; 1§ =C| pl§» G=1,2)

hold for any 1, where C, is a constant depending only on m, p, | and ||]J||;» (for
some 1”) and ' is an integer depending only on m, p and 1.
ii) There exist pseudo-differential operators P;=p X, D,), j=1,2,3,4, in
Sy such that we have
(222) Ply=1:P,, I4P =P,
(2.23) PI¢# == I¢*P3 ) I¢$P = P4I¢,
and the symbols pi(x,£), j=1,2,3,4, have the semi-norm estimates similar to
(2.21).
Proof. i) Set
{ P1=P¢I¢#R/,
P 2 — RI ¢¢P ¢
with pseudo-differential operators R and R’ constructed in Proposition 2.2.
Note that from Theorem 1.6 and Theorem 1.7 of Chap. 10 in [8] the operators
P, and P, are pseudo-differential operators in S}’. From (2.8) they satisfy
(2.19) and (2.20). If we go over the proof carefully once again, we obtain
(2.21).
i) Set
P1=RI¢"‘PI¢) P2=I¢PI¢*R’)
P, = R'I,Ply, P,= Iu+PIR.
Then, as in i) we see that P;, j=1, 2, 3, 4, are pseudo-differential operators in

Sy and they satisfy (2.22), (2.23), and the last statement of ii). Q.E.D.

In order to study products of Fourier integral operators, we shall review
some results of multi-products of phase functions. Proofs are found in Section
1 of [11] or Section 5 of Chap. 10 in [8]. First, we introduce

DErFINITION 2.4. For —oco<m< oo, 1/2=<p=1 and an integer £ we define
a class S;'((k)) by the set of symbols p(x, £)= S’ satisfying

224 PR(x ST for lal+IB8I<k.
The class S;'((k)) is a Fréchet space with semi-norms

(225) Il = max sup {Ip3x, £)E>-nlerra-esn-bo}

Now, we begin with
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Proposition 2.5. 1) Let 7, be a constant satisfying 0 <7,<<1/3. Let

(%, E) belong to Py(7)), j=1, 2, =+, v+1, -++, and suppose that é T;=7,. Then,
the equation =

x = Vepi(x' ™, &),
B = Vappul®, %), j=1,0 (P=xE"=F)
has the unique C*-solution {Xj, B} ;_.(x, ).
i) Setting J(x,E)=o(x, E)—x-E, we assume, furthermore, that the set

{J;/m} is bounded in S;((k+2)) with some k=0. Then, the sets {Xi};. and
{Ei} ;. are bounded in S)((k+1)) and Si((k+1)), respectively.

(2.26)

RemaArk. In [11] and [8] only the case k=0 is considered, but we can
prove the proposition similarly for the case k=1.

For any fixed v we define
(227)  Dyyy(x, &) = ,2=1 (pAXi™, B —XI-Ed+duvn(X3, E) (X3 =14).
Then, if ¢;€P,(1;, 1), setting ﬁ,ﬂ(x, E)=Dy (%, E)—x-£ it follows that

(2-28) ”]vﬂ”léca,ﬁwl (Tyr = '7'1+7'2+“‘+7'v+1)

for a constant ¢, ; determined only by n, p, 7; and /. Taking account of this
we have

Proposition 2.6. Let ¢;(x, £) belong to Py(t;,1) and assume that the set
Uit} (J % E)=pj(x, E)—x+E) is bounded in S;((k+2)) (k=0). Then, if
CoTv1<<l, the function ®,.\(x, E) of (2.27) is a phase function in Py(c, Tvs1, )
and the set {Jys1[Tyi} s bounded in S)(k+2)), where J =Py —x-E.

Setting ¢,=c¢,,, we take a constant 7, satisfying 0=7,<7; and ¢,7,<1.
Then, applying the above proposition with /=0, the following is justified.

DEerINITION 2.7. Let 7, be the constant above. For phase functions
b0, EYEPo(7)), j=1,2, =, v+1, with 37, <7, we define the multi(-4)-
j=1

product ®yyy(x, E) = Pp1# Po BB prra (%, E) (€ Lo(coT41)) of Pl E), alx, E),
oo, by, £) by (2.27).

We return to products of Fourier integral operators.

Proposition 2.8. i) Let ¢;(x, &) belong to Py(7)), j=1,2, n+7,=7,
and let {X, B} ={X1, Ei}(x, £) be the solution of (2.26) with v=1. Set

(229)  D(x, E)=di#da(x, £) = hu(w, B)— X -E+¢y(X, £)
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and
(230) p(x, &) = O,— (| evan'a
with
Y=Y(x, x'5 £, §) = du(w, E)—x"-E+ (%', E')—D(x, £') .
Then, we have p(x, £)E Sy and
@31) I, Iy, =Ps.

i) Let {p1y}yer and {p,y}yer be bounded sets in Py(t,) and assume that
for any YET the pair {p,y, po4} satisfies the condition in i). Then, for the
symbol py(x, E) defined from the pair {P, .y, bsy} the set {py}yer is bounded in S;.

ReMARk. In [4] Hormander gave this proposition in the generalized form.
Here, we shall give the simplified version of the proof studied in [10].

Proof. We devide the proof into two steps.
I) From the definition of /4 and I, we have

(2.32) I, Ipu=0,— m i b0 Er b E N ) A d’ dE
Substituting (2.30) into (2.32),
Loy o = | 9 p(a, EOUE ) E'

holds. This is nothing but (2.31).
Now, we set

(2.33)  Xu(§ &)= 1-X(E—E)KED)

and consider
(2.34)  pu(x, &)= O,— H VX (E, E')dx' dE
= Os_ gs e—ix’-fﬁw(x/’ E; x, El)dx/dg ,

where
5&0(“;,’ E; x1 El) = ei(¢l(z,5)+¢2(x’.‘g")—‘N*ﬁ’»xw(f’ EI) *

Considering x and £’ as parameters, the symbol 8(D8p..(x’, ; x, £’) belongs to
Afla defined in §6 of Chap. 1 of [8]. Hence, applying Theorem 6.6 of
Chap. 1 of [8] we obtain

235)  p8(x, E) = O,— SS e QL DEP. (', E; x, E')dx'dE .
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Set
4 ’ -3 ’ wly_ ’
p“’,((d,ﬁ))(x N g; x’ El) —a '(¢1<x'§)+¢2(‘ )S) @(I:E ))az,Dgﬁm(x” E; x’ s') .

Then, we have

(236) P, &) = O, {[ B wmn(’, & x, E)an"aE

From |V§ {(;bl(xi ‘E) + ¢2(x” g,) - Q(x’ EI)} | g C<x— x’> and lV: {951 (x) g) +
ba(x’, E"Y—D(x, E")} | SCLE; £ we have

(237) |0 DB capn(®', E; %, E')| SCy g ar pr{x—a"DICE; EDIPICEHA-PIET
Since we have |E—£'| =(2/5)<E"> on supp X..(£,£’), we obtain on supp Pe (s s

|Vx"‘l"l = I —§+V1¢2(x” E')I
Z|E—E'| —7<ED

1 ol g,
|E—8| 26D

>
6

Moreover, we can prove

1+ Ve | 2Cx—x">

with some positive constant C. Set

{ 1= —llvx"l"l —sz"‘l"'vx’ )
L, = (14+ Vel |2 (1 =iV Ve)

and write
Do, &) = || ML YL eBr '

for a fixed l,>n- || and large ;. Then, we get for any N
(238) 1P £ SCuasCED,
that is, we have
(239)  pu(x, E)ES™.

I0) For Xo(E, &')=X((E—E")/<E) we consider
(240)  pol, &) = O,— ([ e¥xole, £)dw'at .

Using a change of the variables: x'=X(x, £")+y, E=E(x, £')+», we write

241) Py, &) = O,— SS TN R (e 3 Edyey .
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Here,

(242)  Xo(n; x, £) = X((E(x, &)+2—E)[KED)
and

(243) =Py, n; % E) = —P(x, X(x, E)+y; Elx, E)+n, £)
=Yn— {¢1(x, E+4n)—X p—ay(x, E)}
—{P(X+y, E)—y-E—¢o(X, E)} .

Since {X, E} is the solution of (2.26) with »=1, we have
X—slSnss  |E-ElSTOST®.

Hence, we have from the definition of X,=%¥(5; , &)
|E+0n—| <01 Etn—E| +(1—0)[E—E| S <>,

(2.44) 1 _ N
—2—<E>§<f=+eﬂ>§2<f> 0=6=<1) on supp X, .

Taking account of (2.26) for =1 we have
. 1o =
Vil =y—({, 2vesis B+6m)d0) 0,
0 0E
- 1g
Vb =n—({, 2v.J(x+65, 8)d0)y.
00x
Then, from (2.44) we have

IV, = |y ] — 278> ] 2 |y1—§<f>-1|n|,

IV, 2 ] —mo<ED |y = Inl—%<£>lyl on supp %,
and get

(245 EFIVFIHIVF 2L COIVF + T2 KOy + 1)
on supp X, .

On the other hand, we rewrite v in the form

(246) =y n—Byn—B'y-y

with
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‘ 1
B — Blz; % £) = | (1-6) 2:](x, E+62)d0,
(2.47) ° o
* 1
B = B'(y; x, £) — S (1—6)2 v, J(X+0y, £)d6.
0 ox
Then, as in the first step, we have

248) 1w, &) = O,— ([ e agDeseemrerox Y dydy

= Os— SS e—’ﬁﬁo,((«,ﬂ))(y) 75 X, E)dyd'ﬂ

with
(249) Do aen(ys n; % E) = e I ETTHE yNGEDE(( BT NY )
lac+ Bl
= P Chr 3#, 3
k=0 o/ talt ... tab=q T
Bit . Bh=p

¢ j j j / o~
x 11 {(9¢'D¥'Byy-1+(0¢' DY’ B )y-y} 8% %o .
This expression (2.49) yields

(2.50)  18YD¥ Bo,wen(¥s 13 %, E)|
S Cy o 5 pKEY™IHIHA=PAHAITRAE 1 ~10) {1 L (EDS1ED| y] 4[]} 2o+

in view of the fact that the symbols B and B’ in (2.47) have the orders —1 and
1, respectively, with respect to £. We set

Ly = (14-EKEP VP |2+ 1V, 12) !
X (1+KED T KEP V-V, +-V e V,))

and write (2.48) in the form

26 ) = || e (LsY Bo (9, 73 5, Mty
for I=2n+1+42(|a+RB)|. Then, we have
(251) | po{B(#,E)| S Cy p<ED I A PNt

Consequently, we have
(2.52)  poES?

and combining this with (2.39) we obtain

253)  p(x E)ES?
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for p(x, ) in (2.30). Finally, we get ii) if we go over the proof carefully once
again. Q.E.D.

Now, we apply Proposition 2.3-i) to the Fourier integral operator Py in
(2.31). Then, we have

Corollary 2.9. Let ¢ (x,£) belong to Py(7;), j=1,2, 11+ 7,=7, and
assume that the phase function ®(x, ) defined by (2.29) belongs to P(%,1,) for
the constant & and the integer I, in Proposition 2.2. Then, there exist symbols
pi(x, ), j=1, 2, in S, such that for P;=p (X, D,)

2.54) I, I, = Pl = L,P,
holds.

REMARK 1. Let ¢, 1, be the constant defined in Proposition 2.6 with /= 1,
Then, if ¢ ;(x, £) in Corollary 2.9 belongs to Py(7,,1,),j=1, 2, and 7,+7,<%/c, 1,
holds, the phase function ®(x, &) of (2.29) belongs to Py(7, 1,).

REMARK 2. Let {¢;y}yer and {¢;s}yer be bounded sets in Py(7,) and
assume that for any ¥ €T the pair {¢,y, ¢y} satisfies the condition in the
corollary. Then, for the symbols p, 4(x, £) and p, 4(x, &) defined from the pair
{p11 P29} the sets {p13}yer and {p, y}yer are bounded in Sp.

Lemma 2.10. Let ¢;(x, ) belong to Py(7;,1,),j=1,2, with 7,+7,=7,,
7, <7 satisfying D(x, E)= 1 # dy(x, E)EP(T, 1,) for the constant * and the integer
I, in Proposition 2.2, and let p(x, &) belong to S". Then, there exist pseudo-
differential operators P' and P” in S} such that

(2.55) Iy Py,=P'I,
and

(2.56) Py Iy, = I,P".
Moreover, estimates

"m<c (f;ﬂ)’
(2.57) { Ip,,ll =Clpl}
[p”1fm=<C|p| P

hold for a constant C, depending only on m, p, I and {|| J;|l;?} ;=1 (for some 1)
and an integer I' depending only on m, p and .

Proof. We prove (2.55). Then, we can prove (2.56) similarly. From
Proposition 2.3-i) there exists a pseudo-differential operator P, in S} satisfying

P, =PI, .
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Next, we apply Proposition 2.3-ii) to find a pseudo-differential operator P,
in S} satisfying

Iy P, = P, .
Then, we have

I4 Py, = Pply Iy, .
Use Corollary 2.9 to find a pseudo-differential operator R° in Sj satisfying

Iy Iy, = R°I, .

Then, setting P'=P,R°, we get (2.55). If we go over the proof once again,
we can prove the last statement. Q.E.D.

Now, we prove Theorem 1. We take the integer /, in Proposition 2.2
as the one in Theorem 1. Define

(2.58) 7" =min(7,/c, ¥[e, 1)

with the constants 7,, ¢, (=¢,,), ¥ and ¢, 1, introduced in Definition 2.7, Pro-
position 2.2 and Proposition 2.6. Then, if phase functions ¢,(x, £)€ Py(7;, 1,)
satisfy (*) in Introduction, we have for multi-products ®;=¢#p,#---§;

D, EPy(1,), D= D8 EPY(T, Zo) (®1=¢1)

from (1.30) of [11] and Proposition 2.6. Using this we prove (9)-i) for the
multi-product

Qv+1 = P1,¢1P2,¢2"‘Pv+1,¢.,+1

with P; 4. =p;+,(X, D,) for pi(x, )€ Sy . First, we apply Proposition 2.3-i).
Then, there exists a pseudo-differential operator P{ in S;* such that

(259) P1’¢1 = P1’1¢1 .

For j with j=2 we apply Lemma 2.10. Then, there exists a pseudo-differential
operator P} in S;"/ such that

(260) Io;, P4, =Pils; (P1=¢).

Combining (2.59) and (2.60), we get

(2.61) Qv = Pi(L,P2,45)Ps,0,° Pyir gy,
= PfPé(I¢2P3,¢3)P4,¢4"'Pv+1,¢v+1

= P{P}P(Lo,Pyi16,4,)
= P1,P§"‘P~:P~:+1I@v+1 .
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This proves (9)-i). Similarly, we can prove (9)-ii).
From the above discussion the boundedness of the sequence {m;} implies

la(PY) "< Cylp; 1§77,

2.62 {
EE - Vienimoscipl

with a constant C; and an integer [’ independent of j. This comes from the
fact that Pj and P}’ are determined only by P; 4, and {¢;};ii. Combining
(9) and (2.62) with Theorem 2 we get Theorem 1. This concludes the proof
of Theorem 1.

The asymptotic expansion for the symbol gy(x, £) of multi-products (3)
was discussed in the proof of Theorem 2.4 in [10]. Here, we give its well-
arranged form, which is not used in the following but which is derived directly
from the discussions of the proof of Theorem 1.

Theorem 2.11. Let ¢;(x, &) belong to Py(7;) and p(x, E) belong to SJi
for 1/2<p=1 verifying the assumptions in Theorem 1. Let {Xi, Ei}}_, be the
solution of (2.26). Then, the symbol q,\(x, &) of the multi-product (3) of Fourier
integral operators P; g, =p; 4 (X, D,) satisfies

(263)  gualn O~ 3 (x, Ep(x, ENpIXL, )

E=0 3|+ 1BV Is2k hav.BY
v - et
X pulavin(X3 7Y B )pvraen(Xs, &)

in the sense of Definition 1.6 of Chap. 2 in [8], where 7} %5 5(%, ) belong to S7*:3"-B™
with m(k, &%, B)=—(2p—1)k+ 18" | —(1—p)(|@" |+ [B°]) and |@"| = |a?| +--
+ lavl ) lﬁ”l: 'ﬁll +"'+ lﬁvl for av:(al> ) av)7 BV:(lel, °tty ﬁv)

Proof. From the proof of Theorem 1 the pseudo-differential operators P}
(j=1, 2, +++, ») in (2.59)—(2.60) have the forms

P{ =P, 4 I#R],
(2.64) { 1 =1y, (P;¢,Lpx_ RD)Ips_ RY 257
Pi=1Iy, (Pjs; L5 7 o} % R=j=v)

with some pseudo-differential operators R} and R}’ in S,, where ®;=¢,, ;=
P fp. B #d;(j=2). For j=vr4-1, applying Proposition 2.3-i), we write

(2.65) Py+1'¢>v+1 = I¢~U+1P1{{}-1
with
Vi = Rv+11¢§+1Pv+1,¢u+1 (O'(R\,+1)ES£) .

Then, with the aid of Iy Iy,, =Rols,,, by Corollary 2.9 the multi-product Q,.,
of (3) has the form
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(2-66) Qv+1 = P{Pé'°'P\/aR0I°w+1P$'/"1 .

Here, R, is a pseudo-differential operator in Sj.

Denote for a phase function ¢(x, &) € Py(7) the inverses of &=V, ¢(x, 1)
and x=Vp(y, &) by 2=V, Y(x, &) and y=Vdp (, &), respectively. We note
that V,p ' (x, &)= V,¢ (x, &, x) and Vip (x, &)= Ve (&, x, &) hold. Using
Theorem 1.6, Theorem 1.7 and Theorem 2.1 of Chap. 10 in [8] we have from
(2.64) and (2.65)

2.67) (% E)~3) 3T rpu(®E PO, Vi, £)) s

%=0 |@[<2k

(2.68)  pil(x, &) "’i 2 7inas(® EDiB(VeD;i(%, 1), V.7 (ViDji(,

k=0 |®@+Bls2k

), 71)177=V,q>;31(5,x) (2=j=v),
(2.69)  pili(x, E)~ k2=o léﬂhﬂ,k,ﬂ(x’ E)pvrrp(Vepvii(x, £), &)
with symbols

rl,k,aES;(zp_l)Hpm ,
(270) 1 7j40pE S IA-CR (< <),

—(2p-1)k—-(1-
Pyrip p € Sy @ Di=A-PAL

On the other hand, we can prove by the same method as the discussions in
Section 1 of [11]

(271)  Vapi'(x, VDo, £)) = Ei(x, £),
V. 27l1(%, V. Pyii(%, £)) = By (x, £),
(2.72) Vi@ (x, BT = X{\(x, £),
V.HP (XL BT =Eix, §) (25i=v),
(2.73)  Vipiti(VeDusa (%, ), §) = X, £) .
Consequently, applying Theorem 2.5 of Chap. 7 in [8], we can derive (2.63)
from (2.66)—(2.69), (2.71)-(2.73) and (2.4-i) and (2.23-i) of Chap. 10 in [8].
Q.E.D.

3. Commutative law for #-products of phase functions. Let
o;(t, 55 %, E) (=1, 2) be the phase function defined by an eikonal equation

op/ot—n(t, x, V.p) =0 on [0, T7,
¢|l=s = x’f

for A(t, x, E)=N(2, x, §) (real symbol of order one), and let I, (2, 5) be the Fourier
integral operator with phase function ¢, s; x, £) and symbol 1. What we

(3.1) {



202 K. TANIGUCHI

want to study is the following problem: When do I (2, s) and Iy(¢, s) com-
mute, or in a wider sense, when is the product Iy,(z, )14 (0, s) is equal to
14 (t, w)Is,(w, 5)R for an appropriate constant » and a pseudo-differential operator
R? The positive answer of this problem suggests the possibility of the reduc-
tion of the infinite sum expression (2) for the fundamental solution to the finite
sum expression (4), that is, the possibility of the proof of Theorem 4. If the

Poisson bracket
{7—7\'1, 7—7\'2} = 67\1/61—67\'2/3t+V57\1'V,XZ—V,M'VEXZ

of 7—X, and 7—X, (7 is the dual variable of ¢) is identically zero, Kumano-go-
Taniguchi-Tozaki [11] proved

(3:2)  (alt, Ot a6, 9))(x, &) = (Dt 1—O+5)Hpy(t— 0+, 5))(, &),
which implies
(3.3) Ly(t, 0)14(0, s) = Iy (2, t—0+5)4,(t—64s, 5)R

on account of (2.54). In this way the above problem is reduced to the problem
of the commutative law for phase functions. In the present paper, we shall
show their commutative law under the condition

(B4 {2, TN} = a(t, x, E) (M—A,)+a'(t, x, §)

where a(t, x, £) and a’(t, x, £) are real symbols of order zero.

For the further study, we shall review the properties with additional re-
sults for the phase function ¢(2,s; x, &) defined by an eikonal equation (3.1).
We note that (3.1) corresponds to a hyperbolic operator

(35) L,=D—\t X,D,) on [0,T],

where D,=—18,, 8,=0/dt. 'To begin with, we introduce the following defini-
tion.

DEFINITION 3.1, Let Z be a subset of Euclidean space RZ and let F(C S;,)
be a Fréchet space of symbol class of pseudo-differential operators (for example,
F=S8";, S’ or S}((k))). We say that a C’'-function p(Z, x, &) in ZX R:X R

belongs to a class M'(Z; F) when 0:DZp(Z, x, £) is a C'-function for any «, 3,
p(E, %, E) belongs to F for any f€Z and the set {(8/3%)'p(Z, x, E)} ez is a

bounded set in F for any ¥ with |7| =<l We set M(Z; F)=ﬁ MY Z; F) and
1=0

use the expression “{py(Z, %, £)} 4o is bounded in M'(Z; F) [resp. in M(Z; F)]”
if the set {(8/0%)"po(Z, %, £)} 7 <z pce is a bounded set in F for any 4 satisfying
|#] <[ [resp. |7]<oc]. For an integer k£ and p&[1/2, 1] we also set
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H(Z; Sp5 k) = () MUZ; SP(R—D)N 0 MI(Z; Spe-aih),

We consider the Hamilton equation corresponding to (3.1):

dg _ _ dp _
(36) { dt Vg)\(t, 9, P) ’ dr sz(t’ q, P) ’
{q’ P}’ lt=s =— {J’, 77} .

Then, we have

Lemma 3.2. i) Let \(¢,x, &) belong to M°([0, TT; Si((k+2))) (k= 0).
Then, the solution {q, p}(t, s; ¥, n) of (3.6) satisfies for a small T\(<T)

5 { {lg—y)/It—sI}  is bounded in  SY(k-+1)),
' {(p—n)/1t—sl} is bounded in  S;((k+1))
0=Zs, t=T, s=*1),
and
o) { gy MYZ(T); SY(k-+1)) N MUZ(T; SK(AY)
peMYZ(Ty); SK(h+1) N MAZ(TY); SK(A)) ,

where Z(T)={(¢,5); 0=t, s<T}.

i) We assume, furthermore, that \(t, x, ) belongs to M([0, T]; S3((k-+2))).
Then, q(t,s;y,7)—y belongs to M(Z(T)); S3; k-+1) and p(t, s; y, n) belongs to
M(Z(T)); Sa; k+1).

Proof. By the similar way as in the proof of Lemma 3.1 in [7] we can
prove (3.7) and
pEMZ(T)); Sp((k+1)))
for a small T, (=T). Consider the equation (3.6) and

0 0
[8—9(1» 5 77) _Q(t75;y’ 77)
|9y

D
S

0,q(t, 55 ¥, n)}

VEK(S’ 2 77)
(39 [aspa,s;y, ) [ }

: 0 —VAG, 3,
é—;b(t,s;y, n) —p(t, $; 9, 1) VA(s, ¥, m)
'y o

Then, from (3.8)" we get (3.8). For the proof of ii) we differentiate the equa-
tions in (3.6) and (3.9) with respect to ¢ and s. Then, using (3.8) we get ii)
inductively. Q.E.D.

Let & be 0<&=1. Then, from (3.7) we can find a constant T, (ZT))
such that
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(3.10)

iq—EHgl—el for 0<s,t<T,

holds, where E is the identity matrix and ||W¥]| is a matrix norm Elw,ﬂ of a
matrix W=(w;). We fix such a T,. Then, we have

Lemma 3.3. Let A\(¢, x,E) belong to M°([0, T]; S3((k+2))). Then, for
the above q(t,s;y,n) the equation x=q(t,s;y,&) has the unique solution y=

Y(t, 3 %, £) satisfying
(3.11) { Y(2, s; % E)—xe MAZ(T,); Sa((k+1))) N MYZ(T3); Sa((R))) »

' {(Y—=)/|t—s|} is bounded in SJ((k+1)) 0=s, t=T,, s=*t).
Furthermore, if we assume A\(t, x, £).€ M([0, T1; Si((k+2))), Y(,s; x, E)—«
belongs to M(Z(T,); Sy; k+1).

We can prove this lemma by the similar way as the one in Lemma 3.2
of [7].

Proposition 3.4. Let A\(t,x, ) belong to M([0, T]; S;(k+2))) and let
{0, 0}, 55 3,1) and Y(t,5;%,§) be the symbols constructed in Lemma 3.2 and
Lemma 3.3. We put

(3.12)  ult, s;5,m) =yen+ $t (A—E-Ver} (o, 4 53 3, 1), (o 53 3, m))do
and define

G139 9,55 3 &) =ult 5 ¥, 53 %, 8), ).

Then, ¢(t, s; x, E) is a solution of (3.1) and satisfies

3.14) V(2,53 %, )= Y(¢, 55 %, E),
(3.15)  V.o(2, s; x, E) = p(¢, 55 Y(2, 55 %, E), E),
(316) 6s¢(t’ $5 X, E) = _7"(3’ V;(ﬁ(t, §5 X, E)’ E) .

For any [(=0) there exists a constant T, such that, if ¢, ,T,<1, ¢(t,s; x, E) be-
longs to LT, |t—s|,1) and {J(t,s)/|t—s|} is bounded in Si((k-+2)) for 0=t¢,
s<T,, t=s, where J(t,s;x, E)=¢(t, s; x, E)—x-E. We assume, furthermore, that
(2, x, E) belongs to M([0, T]; Sy((R+2))). Then, J(t, s; x, &) belongs to
M(Z(T,); Si; k+2).

If we follow the proofs of Theorem 3.1 in [7] and Proposition 2.2 in [11],
we obtain the above proposition.

Take A2, x, &), j=1, 2, ---, v+1, -+, as A(2, x, ) of (3.5) and let o, 5)=
¢;(t, s; x, £) be the solution of (3.1) corresponding to A;. Assume that
{\;(t, %, E)}7-1 is bounded in M°([0, T]; S3((2))). Then, by Proposition 3.4
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there exists a constant ¢ independent of j such that
(3.17) (¢, 55 x, )P (€|t—s]).

Take a constant T, satisfying To=7,/C for the constant 7, in Definition 2.7.
Then, the multi-product

(18) Dty I %, £) = (dilter 1) 8 dalts, L) H Fdva(tr o)), £)

(ZV-H == (th tZ) °*%y tv+1))
is well-defined for (¢, **) €A, 41(To)= {(ts, £*1); 0=ty s St, =< - <H =1, < To}.
In the following, we denote (3.18) simply by @,.,(t, £***) or ®,4; unless other-

wise specified. Corresponding to (3.18) we denote by {Xi, Ei}}j_i(fs, £"**; %, £)
for (t,, ') €A, 41(T,) the solution of

X = Vt¢j(tj—b tj; xi_lx EJ) ’
gj == Vx¢j+1(tjs tj+l, xis §j+l) ) ]: 1) e,V (xo = X, E.H-l = E)
and we also write Xi(t,, £***; x, £) and Ei(t,, I**; x, £) simply by X and Ei.

Concerning the multi-products (3.18) the following is obtained by Kumano-
go—Taniguchi-Tozaki [11].

(3.19)

Proposition 3.5. 1) ®@,.,=Dy4(t, £**; x, £) satisfies
6t0¢1l+1 = 7\-1(toa X, qu)vﬂ) )
(3'20) at}¢v+l = 7\'j+1(tj) X%) E{;)—Xj(tj) len E::/ ) ]= 1) eV,
04y Pvi1 = — Mty V@i, ).
ii) The following holds.
¢1(t) S)#¢z(3‘, s) = d’l(t; S) ’
¢l(t’ t)#d’z(t» S) = ¢2(t’ S) .

Proposition 3.6. Assume that the set {\;}7., is bounded in M([O, T]; S;
((5+2))). Then, we have the following:
i) For the solution {Xi, Ei}(t,, £'**; x, £) of (3.19) we have

(3.21)

FV+1

(O], FosnyXi} ;v is bounded in SY(k+1-1)) for || =I<k+1,

622) {6@;}\,“))({} ;v 15 bounded in S{-P-*"D for |9 =I=k+2,

FV+1

(], ForyEl} ;v is bounded in SN(k+1-D) for || =I<k+1,

FV+1

(O], FossyEl} 1,0 is bounded in Sy O-PHD  for || =1Zk+2,

=V +1

where ]y, fusyy= 0)207 070127 and |§*4| =Y+ -+ Vous for (v+2)-tuple
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T =o» V1> ***» Vv1)-
ii) Set

]v+1(to» PH; X, f) = ¢v+l(to» PH; Xy E)*x’f .

Then, we have

52 {0, 7oy Joui} is bounded in SY(k+2—1)  for |5+ | =I<k}2,
* ) FV+1
{6&0,5v+1)f,,+1} is bounded in S,TA~PUED  for |FVT =1=k+3.

Proof. Since {A;} is bounded in M([0, T';S;((k+2))), the following
holds by virtue of Proposition 3.4:

{ {2, 55 %, &)/ |t—51}oss<ssr, is bounded in Sy(k+2)),
{818Y J (2, 55 %, E)}osssisr, 15 bounded in
ST A (kg 2—1-1'),)),

where Ji(t, s; x, E)=¢ (¢, s; x, £)—x-E. Hence, we obtain (3.22) and (3.23)
with #**'=0 by Proposition 2.6. Concerning the derivatives of X and Ej
with respect to (%, £**') we follow the proof of Theorem 1.7’ of [11]. Then,
we get (3.22) for any §**'.  Using this and (3.20) we get (3.23) from the bound-

edness of {\;}. Q.E.D.

For the above \;, \,, +*+, we consider the solution {¢’, p’} (¢, s; ¥, n) of the
Hamilton equation (3.6) corresponding to \;, and define for the point (y, n)&€
RiX Ry and (4, £**)eX,.(T,) the trajectory {G..j, Di...j}(te by =+, tjoy, 05
¥, ) ((;=o=t;.;) by

{ql) 51}(t0) 0'; y) 77) == {‘]1: Pl} (‘T’ to; y) 77) (tléaéto)
{ql,n-,jy ﬁl,w,j} (tm tl) "t tj—l) gy, 7])
= {qj» Pj} (o) tj-13 {ql,m,j-l; 51,-~-,j—1} (2o 21y ***5 Ej-15 0 7))

(t,Sost), j22.

(3.24)

Proposition 3.7. Let {Xi, Ei}}_\(t, I'*'; x, E) be the solution of (3.19).
Then, we have
(3 25) { ql(tl’ tO; x’ chD‘u+1(t0) Z."U+l; x’ E)) = X'}:(to, Z’V-{-l; x’ g) ’
. Pl(th ty; X, qu)v+1(t0) ZH‘I; X, E) = Eill(to} PH; X, E) .
(3 26) { qj(tj’ tj—l; X'{;_l) Ei-—l == X\IJ ’
' Pyt XiTLEITY=68] (2<j<v)

and for any j <v



MUuLTI-PRODUCTS OF FOURIER INTEGRAL OPERATORS 207
(327)1 {ql,m,ja 51,-“,]} (tO) tl, R tj; X, qu)vﬂ(to: f‘V+l; X, E))
= {X{, B} (b, 15 %, E).
Proof. From Lemma 3.3, (3.14) and (3.15) we get for any j
{ qi(t’ $5 V5¢j(t) $5 X, E)’ E) =X,

P, 53 Vep,(t, 53 %, £), £) = V.2, 53 %, ).
Hence, by the uniqueness of the initial value problem (3.6) for A=x; we get
qj(sv t; x, Vx¢‘j(t’ §5 X, 5)) = v&'ﬂbj(t) s X, 5) )
pj(s) t; x, Vx(l)j(t’ §5 X, E)) = E

From (1.25) of [11] we have V. ®@,.,=V.¢.(t, t;; %, E;). Using this with (3.28),
and (3.19) we obtain

(3.28), {

ql(tl» to; X, qu)‘u+l) == ql(tly to; X, Vx‘;bl(tm tl; X, Ev))
= VE¢1(t0’ t, x, E\la = X\Ic )

P (tl’ tO’ x V <pv+l) —P (tl’ to» .X' de)l(t()’ tl! x’ '—'v)) - '-'y .

Hence, we get (3.25). Next, we use
Vx¢i(ti—l’ t;3 X] Y ":'V) = '-'j -

in (3.19). Then, we get from (3.28); and (3.19)

q (tp i- 17 X1]: l» :'ia l) = q (tn t; 1, X Vx‘;bj(tj—l) tj; X*{a l) Elj;))

- V5¢ (tj 1y ;7 X{c_la E{;) = X'IJI ’
Pj(tj, tj—l; X] 1» :{: = (tp i 1’ X;’: 1) Vx¢j(t] -1y ;, X] 1) ‘—’v))

Hence, we get (3.26).
We prove (3.27); by the induction. Since (3.27), is (3.25), we suppose
(3.27); and prove (3.27),;,. From (3.27); and (3.26) we have
{gl,-»,jJrly Z’l,.-~,j+1} (to, by ooy by Ly X, qu)v+l)
= {qj+l Pj+l}(t1+l’ I {41 N1 ﬁl,-'-,j} (t07 Ly, o0y tj; X, qu)v-H))
{q1+1 pj+l}(tj+1: ;’ Xiy :1];

= X Y

Hence, we obtain (3.27) ;. Q.E.D.

From Proposition 3.6 and Proposition 3.7 we get the following proposition.

Proposition 3.8. Assume that the set {\;} is bounded in M([0, T];
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Si(k+2))). Then, we have for the trajectory {G,.; Dr..;} (tw 7% a3 3, 1)
defined by (3.24)

74
{6&0’ ?f‘l,g)al,---,j}j, (to, ?j‘la G)
is bounded in S%((k+1—1)) for |¥|=I<k+1,

7]
00, 711, 0.}, o F13,0)

(3.29) is bounded in S0V for |§7| = Izk+2,

7i
{a(to"?j_1’0)51'".’].}].’(tOv?j-13a)
is bounded in S}((k+1—1)) for |5| = 1<k+1,
#i
{G(to, £i-, o)ﬁl.-".j}j,(to, fi-1,g)
is bounded in Sy~ for |§| = Izk+2.

Now, we turn to study the commutative law for #-products of phase
functions. Let {\;}7.1 be a bounded set of real symbols A (2, x, &) in M([0, T'];
S5((3))) and let ¢ (2, s; x, E)EPy(¢|t—s|) be the phase function corresponding
to Aj(t, », £). For the multi-product (3.18) we commute ¢; and ¢;,, and denote

(3.30)  Dyuy; it 11 %, E) = (dultoy L)H+Hepjr(2 -2 t-1)
$bj1(tj-1, 1))BD,(2)s 2101 ) 8D jea(tjnns Ljv2) B HDvna(ts, tran))(, E)
for (t, M EA,(To) .

We put an assumption: There exist real symbols a,(2, x, £) in M([0, T']; S5((1)))
and aj(¢, x, £) in M([0, T']; S?) such that

(3'31) {T‘—)"i: T_Xj+1} = aj(t’ X, E)(?\.j—hj+1)-|—(l§(t, X, E) .
Then, we have

Theorem 3.9, Let {\(t, x, £)} ;-1 be a bounded set in M([0, T]; S3((3)))
and let (1, s; x, £)E Py(C|t—s|) (with some T) be the phase function corresponding
to N;. We assume that (3.31) holds and that the sets {a;} and {aj} are bounded
in M([0, T]; So((1))) and M([0, T]; S3), respectively. For any v, j (<v) and
(toy ) EA1(To) (for some T,) we consider the multi-products P,.i(ty, I*+)
and D4y ; j(ty, 1) of (3.18) and (3.30). Then, there exists a constant T inde-
pendent of v such that the following hold :

I) We can find for any v and j(<v) a symbol Q, (t, I**'; x, ) in
M(&,.(T%); S3; 1) such that it satisfies

2) The idea of the proof is found in Section 1 of [10], where the theorem is proved for the
case of amp=ans=0. In [13] Morimoto proved this theorem in the case of am:(t, x, &)=

ami(t) and ap (2, %, £)=0.
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(3:32)  t;=Qy j(t, ' x, E)<t;,,

(3'33) Qv,;‘lt;=t,-_1 =tjn, Qv,jltj=t,'+1 =1,

and

(3.34)  Duir; f(te Ly oty tjony By Ejgg, 0y g X, E)

== q)v+1(t0) by, o0y tj—].) Qv,j(toa f'U+l; X, E)) tj+1) cory by X E)

+1I"V,j(t0: i‘v+1; x’ g)

with some \r, (t, £*7, x, E) satisfying

(3:35) Aty T x, E)EM(A,1(T5); SJ; 0)

and

(3.36) Yy, ;=0 if a;j=0.

IT) It holds that

W v,j(tFv+1) 15 bounded in Sa((1),

FV+1

{660, Frany, ,-}V’ it is bounded in S }~"0-D

for |90l =121,
{6z:r§l’v+l)‘!"\’.i}u,j,(to,[vu) s bounded in S‘El—p)l

for |5 =1.

(3.37)

We can find a constant A independent of v such that we have
(3.38) 18,0y, ;+1| =A4e(ty—ty41) -

ReMarRk. In [10] and [13] the commutative law for multi-#-products
follows from the commutative law for #-products between two phase functions,
since {Q, ;} are determined only by (¢, #**!). In our case we emphasize that
we cannot apply the above method because {Q, ;} depend also on x and &.

We begin the proof with finding Q. (%, ***; x, £) satisfying (3.32)—(3.34).
To simplify the notation below, we use (¢, 8, ) or (¢, w, 5) instead of (¢;_, t;, £;41)
and write
¢'u+1(t) , S) = ¢\o+1(t’ , S; Z.'(},V+1’ xa E)
= q)v+1(t0) % tj—z; t, w, s, tj+21 sty By X, g) 3
q)'v+l;j(t) 0; S) = CI)V+1 ;j(t) 0’ S5 i(},\‘+l, X, E)

= q)‘v+1=j(t0) °*% tj—Z) t, 6: S tj+2’ coey byys X, g) ’

where £3" 1 =(ty, -+, tj-p, tjtz, ***, ty41) When v=2. Now, we set
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(3:39) Y= j(t, 0, 5) = Byur; [, 0, ) —Dys(t, Q, 5)

and seek the symbol Q=Q(¢, 0, s; £, x, &) (=Qu j(t, ***s tjzr t, O, 8, Ljag, *+°,
ty11; %, £)) such that 4 belongs to M(S§; 0) and Q satisfies
(3.32)"  s=Qf(, 0, 5)<t,
(3.33) Q¢ t,s)=s, Qs 5)=t.
Here, we suppress the domain of (fy, -, %5, t, 0, s, tj4z, = t,,+1) and write
M(S;; 0) instead of writing M({0=<t,,; <+ <t;,,<s<O=<t<t; ,<--<t,<To};
S§?2;0). In the following we also suppress domains of z,, --- vty 8,0, 0, S,
243, ***, ty4; and use the notation M(S™; k) if no confusion occurs.

Let {X%, Edbioi={XE Bt o, 55 2, &, £) be the solution of

x* = Vepu(ty-r, ty; ¥* 7, EY),
(3.40) B = Vbrrr(te tears xt, f“l) , k=1, v
(=%, =& t; =t t;=0, tj=21)
and let {X*, B}y, = (X% B2, 6, s; F97H, «, £) be the solution of
¥t = Viedu(te-1, ts x*, Ek) (1=k=v, k=%, j+1),
& = Vit t;; #°7 &),
X = Vg (t, L ¥, £,
G4V 8 = Vaguulty ts 4, B (1hsv, k%j—1,5),
EF™ = V.pinltio, ty; 67, E),
B = V.di(t)s tja, ¥/, EFY)
=x, BN =E; t;., =1 t; =0, t;,=5).

For convenience, we set

{ )\,o(t,x,f):(),
= X?, =X, Eg = qu)wl(t, w, 3) ’ é?. = V,(I)wl;j(t, 0: 3) .

Then, we have from (3.20)
(3.4‘2) at’\ll’ - (6;1 1@\.4.1 j)(t, 0, s)—“(atj_1¢y+1)(t, Q, s)—6w¢y+1(t, Q, S)@,Q
= Nt X374 BiTY)—a; (8, X7 B
- {)‘J(t XJ 17 E; 1) 7\‘.1"‘1(t) X;,: la Ei 1)} lo=Q
—6w¢y+1(t, Q, S)atﬂ .
When j 22, we use the trajectory {Z,... ;-1 Bi... j-1} (o o - £j-2 £ 3, 7) defined
by (3.24). Then, we have from Proposition 3.7
(3 43) { {ql,m,j—l) 5l,~~~,j—1} (to, fi-2’ t; x, qu>v+1) = {Xf« L ﬂfa 1}
’ {ql,‘“,i—b ﬁl,m,j*l} (to’ Zj_z) t; X, Vx®’v+1;j) = {X{, l) Z{’, 1}
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Hence, if we set

{ M(t; 2, 8) = M2, 2, 8),

Ni(t; to, 7% 2, 8) = {Nj—Nja} (6 4Gy, jon B, i} (B
0 0)  (722)

X; belongs to M(S;; 2) from Proposition 3.8 and satisfies

i‘j(t; to, ij_z) X, vx¢\a+l) = {xj+1—xj—l} (t) X\{_17 Ei—l ’
5\'j(t; Lo, ij-z, X, V:¢’v+1;j) = {7\'j+1_7\'j—1} (t, X\{—ly éi_l
(¢t =1t  for j=1).

(3.44) {

Define the symbol A (w)=Aj(w; t, 0, 5, £9*+, x, ) in M(Ss; 1) by

1 N ~ . ~
(3'45) Aj(w) = govlj)\'j(t; to, tl~2> X, G'qu)vﬂ:j(t, 0, s; t?'VH; X, E)
+(1=)V, Dvis(t, @ , 53 I, x, E))do .
Then, we can write
(346) i‘j(t; tO) fi_z; X, Vx¢v+l;j(t) 0) S)) = i'j(t; t(!) ij_z, xa vz¢’v+l(t’ , S))
+Aj(w)'(vx¢'v+1 ; j(t, 0, 5)—V. Pyt o, 9)) -

From (3.39) we have
(347) Vz"l' = vxq)‘u+l:j(t’ 0) S)“V,,@y-n(t, Q) s)—-6,,,<1>,,+1(t, ‘Q‘) S)Vxﬂ .
Hence, from (3.42), (3.44), (3.46) and (3.47) we have
(348) at‘l" = i’j(t; tO) fj—Z’ x’ Vz¢v+l H j(t’ 0) s))—i'j(t; tO) i.'j-Z’ xa Vx®v+l(t) Qa S))

—'6m®y+l(t’ Q’ s)atﬂ_ {7\']'—7\';‘+1} (ty X'{_l’ E£-1)|w=n

= A]-(Q)'Vg[/'——amq)wl(t, Q, S) [B,Q—A](Q)'V,Q]
- {7\’1'_7\‘1'+1} (t’ X{a'_l’ E\j;_l)lamn .

Let {¢’, p’} (¢, s; , 1) be the solution of (3.6) with \ replaced by A; and set

Ao(es 59, 1) (=NF(os 5 3, )= {Nj—Njua} (o, ¢, 2} (o, 259, 7). Then, as
the proof of Corollary of Theorem 2.3 in [11] we get from (3.31)

d:_ = {7_7\';'7 7_7\';‘+1} (0‘, {qi’ P)} (a'a t; ), 77))

(3.49)
= ai(a') {qj’ PJ} (o5 t5 3, 7)A°(a, E; 3, 1) taj(o, ({qj’ PJ} (0,23, m))
and the solution A°(a, ; ¥, ) of (3.49) has the form
(3.50)  A°(a, 25 3, 7)
=A%, £33, 1) CXPSwaj(G's ¢, 7} (o', £ 3, m))do’
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+{ (exp [ aio”, 46, 9} (o", 133, m)do”)
xaj(a’, ¢, P’} (a', 1 3, m))do” .
From (3.25)—(3.26) and (3.20) we get
{ gty i X3 BT = XY,
P, b XITL BT =B
and
(3.51)  A°(tj tjon; X7 BT = {0} (2 X, BY) = —0.8vn
with ;= and ¢;_;=¢. Set
(3.52)  ajw) = ajw;t, s, IP x, )
= exp [ o', g, P} (o', 15 X BN Ao (SBU(SE; 1)
and
(3.53)  alw) = alw; t, s, ErVH, x, E)
= (L ( afo”, 1,93 (0", 15 XU, BIN) o)
Xajo', {¢, p'} (o', t; Xi7Y, Bi)do' (€ M(Sp; 0)).
Then, we obtain from (3.48), (3.51) and (3.50) with o=t¢, y=X{! and 5=

=i-1

By

(3.54) 0 = Aj(Q)VAr—ai(2)
—8,®,u(t, Q, 9)[0,0—A Q) V.Q—a,(Q)].

Consider the equation with respect to Q:
(3.55)  8,0—A,Q) V.Q—a,(Q) =0
with the initial condition
(3.56) Quop=s.

Since (3.55) is a quasi-linear equation, we may solve the ordinary differential
equation

‘fi—f — A2t 0,5, B 7, B,

(3.57) Z_f = af2; t, s, £, 7, E),

Plice=13, Byp=>5.
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Lemma 3.10. There exists a constant TG such that the equation (3.57)
has a solution {7,2} (¢, 0, s; 13, x, £) in M(S3; 1) for (¢, 0, s; £3**) with 0<
sSO<t<TY (and t,=T4) and {7, 2} satisfy
S22, 0, 55 87, y, E)=t,
2(t,s,5)=1

(3.58) {

and

659 | a% P—E|S41—9)

with a constant A, independent of v.
Admitting this lemma for a moment, we continue the proof of the theorem.
Take To(=T4¢') such that T64,<1. Then, from (3.59) the equation
(3.60) 7t 0,s; ", YV, E) =«
has a solution (¢, 6, s; t2**, x, £) satisfying
(3.61) Y, 0, s; E9VHY, «, E)—x= M(S); 1)
when 0=s<0=<t=<T56. In the following the inequality 0=s<0=<¢=<TY} always
holds. Set
(3.62) Q¢ 0, s; 1, x, &) = 2(8, 0, s; 1, V{4, O, 55 871, x, E), E).

Then, Q(t, 0, s) is a solution of (3.55)«(3.56). From (3.56) and (3.58) Q(¢, 6, s)
satisfies (3.32)'—(3.33)".

For the solution Q(¢, 8, s) of (3.55)—(3.56) the equation (3.54) is reduced
to the equation

(3.63) 0 = A{Q)-Vab—a)(Q).

On the other hand, the equation

(3.64) A =0

holds, since we have from (3.33)" and (3.21)

(0, 0, 5) = ®y1y;4(0, 0, 5)—Dy14(0, s, 5)
= ¢v+1:j(to, ceey tig, 0,90, s, Livay **y tv+1)
‘_CI)v+1(to> o tig 0,8, Livay oy yi1)
= $i(to, 1) B Bj-1(tj-2, O) 8 {;4:(0, O)H,(0, o)}
BDjrals, tisa) ¥ - Bpvaa(ts, tur)
— it 1) B bj-a(ti-z, O)8 {$(0, ) bjna(s, 5)}

B3P x2S, tira)B o Pyt trd)
=0.
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Hence, if we set B;(t, 0, s; £, x, E)=ai(QUt, 6, s; £, x, E); ¢, 5, £+, =, E),
the symbol 4 can be written in the form

(365) ‘P' = - S:Bi(a’ 0’ S5 f?'w-l’ 7(0‘, 0! 55 ZI?.V+1’ Y(t’ 0; s f(}.‘v+1’ X, E)a E); E) da' ’

where 7 and Y are defined by Lemma 3.10 and (3.60). Hence, 4+ belongs to
M(S}, 0) and is identically zero when a;=0. Consequently, we have proved I)
in the theorem. From the above discussions we also get (3.37).

For the proof of (3.38) we set Qy(¢, 0, $)=0,Q(¢, 6, s; £3*, x, £). Then,
from (3.55)

(3.66)  0,04(2, 0, 5) = A}(Q)-V.Q+ B2, 6, 5)
holds with
Bi(t, 0, )=Bi(t, 0, 53 £, x, ) = 8o(A(€)) - V.Q+8e( (1)) -
On the other hand, writing
(3.67)  Q(t, 6,5) = s—f—S:{A,-(Q(a, 8, 5); o, 0, s, I, x, £)-V,Q(c, 6, 5)
+a(Qo, 6, 5); o, 5, £V, x, E)}do

we have
(3.68) (B, 8, s) = —a(s; 0, s, BV, x, E) = —exps‘:ajdo-,
since V,Q(0, 0, s)=0 from (3.67). Hence, as in (3.65) we can write
(3.69)  ult, 0, 5) = 00, 6, )+ Bi(a 0, 53 B3>, #(o, 6, 53 87,
Y, 0, 53 837, x, £), £), £)do
and get (3.38) from (3.68)—(3.69). This completes the proof of Theorem 3.9.
Remark. If aj(t, x, £) is identically zero, the solution Q of (3.55)—(3.56) is
Q=1t—0+s.
This corresponds to the result in Theorem 1.10 of [10].

Proof of Lemma 3.10. We solve (3.57) by the Picard’s method of succes-
sive approximation. For simplicity we suppress the dependence of Z3**! and j
and write A(w; ¢, 6, 5, x, £) and a(w; ¢, s, x, £) instead of writing Aj(w; ¢, 6, s,
19" %, £) and aj(w;t, s, £, «, ). Define {#F), 20} (5)= {#™, 2} (4, 0,
s; x, £), N=0, 1, 2, .-+, by

(3.70)  FOE) =y, ZO(t) = t—0+s,
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PO = y— | AEN(@); 0, 6,5, 7 o), E)do,
(3.71) ’
200(8) = 5 +{ a@(0); 0, 5, 7(a), E)do .
In order for {#¥*), 2(NtHY(¢) to be well-defined, we must prove
(3.72) s=<2W)(t, 0, s; x, E)<t .
But, (3.72) is derived from 2N)(¢, ¢, s)=s,
BTy —2=02M =0,
and
B.74)y ZM(t, s, 5)=1¢.
Hence, we shall prove (3.73)y, (3.74)y and °
(3.75)y  |0,7M| <Ay with some Ay>>0 (independent of v)

by the induction. From (3.52) a(t; ¢, s, x, £)=1 holds. Hence, using (3.74)y-,
we get (3.74)y. In fact, we have
2Nt s, 5) = s—f—Sta(z(N‘l)(a', 5, 8); a, 8, PN V(g), E)do

= s—l—S:do- =t.

Now, we prove (3.73)y. Since A, a=M(S]; 1) and |a(w; ¢, 5, x, E)—1|=C,
X (t—w), we have
10,2041
= | —{a(s;8,s,y,E)—1} +S;6" {a(Z¥ Y (a,0,s5);0,5, 7Y a,0,s),E)}do |
= C(0—9)+Cy(t—0)

by using (3.73)y-; and (3.75)y-;. Hence, if T is small enough, we obtain
|82 +1] =1

and (3.73)y when 0=s<0=<:<T¢. Similarly, we can prove (3.75)y by using
(3.73)y-1 and (3.75)y-;. Consequently, by the induction the functions {#®,
ZMY (¢, 0, 53 y, ) are well-defined and satisfy (3.72) and (3.73),—(3.75)y for
0=<s=<0=<t<Ty if Ty is small enough.

As usual we can prove

|z _ 2| < CN(t—@)V N,
| PN+ __ 20| < CV(t—G)V [N

(3.76) «}
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with a constant C independent of IN. Hence, we obtain the desired symbols
2(t, 0, s; v, E) and 7(¢, 0, s; y, £) as limits of {Z™} and {#*}. From (3.72)
and (3.74)y we get (3.58). Moreover, we can easily prove 2€M(Sp; 1), 7€
M(S7; 1) and (3.59). Q.E.D.

Remark. If a,(t, x, £) in (3.31) are functions of only #, we can relax the
conditions in Theorem 3.9 as the following: Assume A(¢, x, £)eM°([0, T];
Sa((2)) N CY([0, T]x R*) and

{T—Nj TN} = ai(t) V—rj)tai(t, x, E)

with C°functions a;(#) and symbols a(¢, x, £) in M°([0, T]; S%). Then, for
the function Q, ; determined by

Q,,; = a5'(a;(tj-1)—a,(t;)+at;+)) (cf. (2.20) of [13])

with aj(t)zs(expgaj(t)dt)dt the results (3.34)—(3.35) holds. In fact, we first

prove (3.34)—(3.35) for =1 by the method of proving Theorem 3.9. Then,
the result (3.34)—(3.35) for any » will be derived by the method of proving
Theorem 1.7 and Theorem 1.8’ in [11]. It seems to us that we cannot prove
(3.35) directly from (3.63)—~(3.64) when »=2 and ;& M([0, T; S((2))), since
Afw) of (3.45) may not belong to M(Sh; 1) when »=2.

4. Fundamental solutions for hyperbolic systems. In this section
we prove Theorem 4 by using Theorem 1 and Theorem 3.9. First, we con-
struct the fundamental solution E(%, s) of the Cauchy problem

LU =0 onl0, T,

(4.1) 0 — U,

for the hyperbolic operator .L of (1). Let ¢,(¢, s)=u(2, s; x, £) be the phase
function corresponding to A,(¢, %, £). Set My={u=(my, -+, m,); m;=1, -, I}
(»=1, 2, +++) and denote

(4'2) q)v,(l-")(ty By oty Loy S5 X, g)
== (¢ml(t) tl)#¢m2(t1) tz)# o #d)m«,_l(tv—b tv—l)# q&mv(t‘u—l’ S)) (x; E)

for p=(my, +++, m\)EM, when v=2. Set

I¢](t, 5) 0

. } (@ (& 5)) = 1).
0 I¢l(t, S)

(4.3) a@g:{

Then, we have
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Proposition 4.1. Let 112<p=<1. Assume that \,(¢, x, &) in (1) belong to
M([0, T7; Sy(2)) and b,u(t, x, £) in (1) belong to M°([0, T1; Sp). Then, the
fundamental solution E(t, s) of the Cauchy problem (4.1) for the hyperbolic system
(1) can be represented in the form

(44)  E@, 5) = L, s)+ S:I,,,(t, 6) {,,.2; W ou(0, s)+§z p3] Sjil

v

tv—z
S W\l,(l"),@y,(y,)(o) tyy vy Byoys s)dt‘u—la B dtl} dé

s

(to=0;0=s=t<T,)

for some T,, and w,(t, s; x, E)=0c (W, 4, (¢, 5)) and w,(t, Y sy x, E)=
o(Wy,w,04,uy (& 171, 5)) (B "1 =(ty, +++, ty_y)) satisfy the following: There exists a
constant C, independent of v such that the set {w,} U {Cp™"w, )} is bounded in S5.
Moreover, if \,(t, x, E) belong to M([0, T1; SK(2))) and b,(t, x, &) belong to
M([0, T]; S9), then, setting M(Z; S3) :ﬁoMk(Z; S{=Ph (= M(Z; S3; 0)),
the symbols w,(t, s; x, ) and w, (u)(¢, Y 55 %, E) (022, wEM,) in (4.4) belong
to M(A(T,); SY) and M(A,_(T,); S3), respectively, and there exists a constant
C, independent of v such that for any §°=(Y,, Y1, ***, Vs) With Yo+ -+ +v,=Fk the
set {Co™ 0], 7u-1 gy} is bounded in S{P%. Here, AT,)={(t, 5); 0<s=<t=<T,}
and A(T,)={(t 1, s); 0=s=t, < -+ <4, <t<T,} (v21).

ReEMARK. By virtue of Theorem 1 we can take smoothing operators in
Sobolev spaces away from the expression (3.17) in [10].

Proof. We fix a constant T, such that 7,<T, and T,<7°/¢,7,. Here,
T, is the constant in Section 3, 7° is the constant defined by (2.58) and ¢, 7,
is the constant in Proposition 3.4 for /=], (the integer defined in Proposition
2.2). Operate L to (4.3). Then, we have

(4.5) LI(t, s) = Ry(t; 5)
for

(46)  Rylt, ) = 2} Rus(t:9),

where R, 4 (2, 5) is a matrix of Fourier integral operators with phase function
Pu(t, s; x, ) and its symbol 7,,(t, s; x, £) belongs to M°(A(T,); S;) (c.f. Theorem
2.2 of Chap. 10in [8]). From (4.5) we see that the fundamental solution E(Z, s)
for L, as the continuous operator from the Sobolev space H, into itself for any
fixed real o, is constructed in the form

47)  E@ )= I, s)+g'1¢(t, e)g W0, 5)d6 .
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Here, {W,(t, 5)} ;-1 are defined by
Wi(t, 5) = —iRy(t, 5)

(4.8) { ¢
Woult, ) = | Wi, O)W,(6, $)d6, »=1,2, .

Set
Wa(t, $; %, E) = —ir,(t, s; 6, &) (m=1,-,1).

Then, W,(z, s) for v=2 can be written in the form
tet t,_
W,,(t, §) = S g IS 2W(")(t, by ooy By, S)dty_y e dty (to=1),

4.9) {
W(u)(t: tyy 00y tv—b S) :y.gt Wm,,¢m1(t7 tl)Wm2,¢mz(tl) tz)“' Wmv,'bm,,(tv—l; 3)
vy

with W, 4 (2, $)=w, 4, (t, s; X, D,). Consequently, we get the first assertion
of the theorem by applying Theorem 1.

Next, we assume A, & M([0, T7; S3((2))) and b,,=M([0, T]; Sb). Then,
the symbols 7,(t, s; x, &) in (4.6) belong to M(A,(T,); S3). Consequently, we
get the second assertion of the theorem, when we use the expression (4.9),
Proposition 3.6 and the discussions in Section 2. Q.E.D.

Now, we prove Theorem 4. First, we assume the condition (I). Since
the expression (4.4) holds including the case p=1/2, by the method of proving
Theorem 3 in [13] we can prove Theorem 4 under the condition (I) not only
in the case of 1/2<<p=1 but also in the case of p=1/2. We note that in Theo-
rem 3 of [13] only the case p=1 was treated. Next, we consider Theorem 4
under the condition (II). For the proof we prepare the following three pro-
positions.

First, we shall restate Theorem 3.9 in our use. For p=(my, -, m;, m;,,
.-+, m,)E M, we change the order of m; and m;,, and set u(j)=(m, -+, m;_,,
My, Mj, Mjsg, =+, my). We note that ®, (2, £, §)=D, w(t, 7, s; x, £)
and @, i (L 7Y =Dy uin(t, 17 55 &, £) have the forms @, (2, 27, 5)
:¢m1(t’ t)§- #d)mj(ti—l’ tj)#¢fﬂ,-+1(tj’ ti) - B dm (-1, §) and Dy, wiin (2, £, 5)
=, (b 1) B B uy(tim1s ) B Dy (ts L)) $ - my(ts-1, 8).  Then, from Theo-
rem 3.9 we obtain

Proposition 4.2. Let \,(t, x, £), m=1, -+, I, belong to M([0, T1; S3((3)))-
Assume for any m and k the equation (18) holds with a,, i(t, x, £) and a}, (2, x, &)
in (17). Then, if we take a sufficiently small constant T{ (independent of v),
there exist symbols Q, wwy j(t, 17, 53 %, E) in M(Ay_(T5); Sp; 1) and Ay uy (2, 72,
s; x, &) in M(Av-i(T); Sy) for any v (Z2), j (Sv—1) and pE M, such that they
satisfy
4.10) £SOy it BT 550, )t (o=t t, =),
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(4-11) QV,(F),jllj=tj_1 = tj4, Qv,(l"),jlt,'=tj+1 =tj-1,

(412) (I)'v,(l"(i))(t) by, e, tj—la tjy tj+1y ceey By, S5 X, E)
= q)v,(ll-)(t, tly RS} tj—l) Qv,(lb),j(ta fv_l) §5 X, g), tj+1r cery Byoy, S5 X, g)
+1I"u,(l"),j(t) i."v—l’ §5 X, E) [}
{Qy 4,;} is bounded in S; ,
(4.13) {07 1v-1 9,3} is bounded in SI"¢D for |7| = k=1,
O] sy Vo0, 5 bounded in SE=* for |5 = k
and
(4.14) |atjﬂv,(ﬂ-),j+1 | < Ae(t—s)
for a constant Ag independent of v.

Proposition 4.3. In Proposition 4.2 we assume, furthermore, that the con-
stant T satisfies A, T6=1/2. Then, the equation

(415) ® = Qv,(ﬂ'),i(t) by vvey ey 0’ Liyry o0y by, S5 X, g) (1§]§D——1)

has the inverse 0=0, ) j(t, ti, =+, ti—1, ©, tity, oy byoy, §; %, E) satisfying ¢, =<
Oy, w),j=t;-, and

{8y ), ;} is bounded in S3((1)),

{0, 7-1,9Os,,;} 15 bounded in S¢-"¢  for || = k=1.

(4.16) {

Proof. Set

J = {G(t) tl) R tj—ls , tj+17 ceey byyy Sy X, g)ecwr

tj+1§@§tj—1’ @|w=t]-_1 = L4 @|w=tj+1 =1ty —2§am@§0} ’

and consider a mapping I'=T', () ;: AD0—->G=T(0)E A defined by
(4'17) G= G(t’ tl’ °tty tj—l) W, tj+1’ "ty tV—ly §5 X, E)
= —m+Qv,(lh),j(t) ty oy tj—l’ 9) tj+17 ey By, S5 X, g)_l'"@
(ty=1, t, =>5).
Since t;.,<O=t;; for ®€ ] the mapping T' is well-defined. From (4.11),
(4.14) and A4,T5=1/2 we get for G=T(B) with @ A
G|m=tj_1 = _tj—l+QV,(H),j(t’ °tty tj-l) ®|w=tj_1> tj+1, "t s)+®|w=tj—1

_tj-l+\Q'v,(M-),j(t) AT FEST FESH FYSTORLLN s)+tj+1

= i1,

I
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(4.18) G|w=tj+1 = —tin+Qvw (t, =, iy, @lw—t,ﬂ’ Liviy %y S)+®lw=t,~+1
) _tj+l+‘9"u (®) ;(t J 1 t;-l) j+1 S)—f—t, -1
= tj—l ’
IawG-l—ll = I {6”0\4,(!“) j+1}aw®|
< A6T0-2<% 2=1
and
(4‘-19) tip = Glm=t}_l~§G§ G|u=tj+1 =tj
by 0,G=<0. This shows that the mapping I': A— 4 is into. We define a
sequence {8} 35 in A by
80 = tia—o+titjg,
8w = 1(ew).
Then, from (4.14) and 4;T5=<1/2 we get for some constant C' independent of
N
l@(N+1)_@(N)I gCZ—N .
Consequently, we can find the desired solution ©®=®, (s ; of (4.15) as the

limit of the sequence {@@}3%.,. Consider the equation (4.15). Then, we
get (4.16) by the usual method. Q.E.D.

Proposition 4.4. Let p(t, 177, s; x, £) belong to M(A,_(T); Sp) and let
{®x(t, 271, 53 %, E)} 71 and {gu(2, f” 155 x, E)}N=1 be sequences in M(A,-(T);
Sy 1) and M(Av «(T); Sp), respectively. Assume

{©n} is bounded in S3(1)),
(4.20) {0, 7-1,9On} is bounded in S{~"¢Y  for |§| = k21,

{3(?;,9-1’3) gn} is bounded in S-"* for |9 =k.
For a fixed sequence {jy}5-1 (1= jy=<v—1), we set inductively

(421)  pult, 7, 55 4, E)
=PN—l(t) ty, *oy th—ly @N(ty fV—l, §5 X%, g); th+1) coey by

$; 0, E)gn(t, P74 550, E) (Ppo=1pita=1, b, =5).
Then, for any k there exists a constant C, independent of N and v such that

(#22) sl =CMIplle",

h 0) __ x x 6 vt (1— P)k')
where || pll§ Toonax, Ima |8 7v-1,6) 1457
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We can prove this proposition by the induction.

Using these propositions and the discussions for the proof of Theorem
3 in [13] we can reduce (4.4) to the finite sum expression

(+23)  E(t, ) =2 Wt 9)

1 ety (hy_, o _—
+2 2 S S '"S W’U,(I"),@y’(p)(t’ t ’ s)dt\‘—l °ee dtl

V=2 pe MgYsvs s
(b =1t 0=s=<t<T,
with some T, (< T%) and symbols o(W, w,e, ) in M(Avo(T,); Sp) (1=v=1),
where My ={p=(my, -+, m,)EM,; m<<m,<---<m} (2<v=l). This proves
Theorem 4.

Remark. When we use the remark at the end of Section 3, we can prove
Theorem 4 under the condition (I) with (16) replaced by

(16)’ {T—Nm TN} = a4 j(&) Am— i) +am 42, x, E) .

Here, a,, 4(t) are continuous functions of ¢ and a «(¢, x, £) are symbols in M°
([0, T]; S5). This result contains the one studied in [5]. In [5] Ichinose
proved this when a,, 4(f)=0 and /=2. But, he did not discuss the convergence
of the symbols (W, (e, ,) derived from the successive approximation.

As a corollary of Theorem 4 we get immediately from the expression (4.23)
and Theorem 3.14 of Chap. 10 of [8]

Corollary 4.5. In Theorem 4 we assume, furthermore, that the symbols

Am(2, %, &) are homogeneous for large |E|. Then, for the solution U(t) of the Cauchy
problem (4.1) we have

(4.24) WF(U(t)) c Conic hull of T,
for the wave front set WF(U(t)):mLélWF(u,,,(t)) of U(t)="(uy(2), +++, u,t)), which
is defined in [4].

In (4.24) T'; is defined by

(425) Ft = {{le,---,mw Pml,»-,mv} (t) By o by Y ’7); (ml’ ) mV)EM’?’
v=1 1, 0=Z¢t,=< - <4, =<t, (y, n)EWF(U,)
for large |9|} (t,=1)

for the trajectory {gm, ...my> Pmymt (& By =5 tvors ¥, ) (M, =+, my)E M?) de-
termined by the following: Let {g,,, P} (t; ¥, 7) be the solution of
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(4'26) Z—g = —_V§7\‘Mv(t’ 9, p), %) = V,?\.m,(i, 9 P)s {91 P}It=o = {y; ’7} .

Then, {gm,,..ny> Pmpm} (& Ly =+ B3 ¥, 1) is defined as the solution of

dq dp
—= = — Vi, t, q, p), - =V Au(t q D),
(427) dt H k( q P) di VA k( q P)

{q’ P} lt=ty — {quu."‘,mv’ Pmkn»"'.mv} (tk? ey by Y ’7)
(1=k=v—1).

In [13] Morimoto has obtained Corollary 4.5 by a different method. In
the condition of Corollary 4.5 the symbols A,(2, x, £) belong to M([0, T; Si o).
But using the discussions in Section 3 of [5] we can prove the property: As-
sume that there exist continuous functions A,,(Z, x, &), m=1, .-, I, which have
Lipschitz continuous derivatives with respect to x and £ for |£| =1, are homo-
geneous of order 1 with respect to £ and satisfy for some r<C1

(4.28)  [0¢DiAm—Ny) | SCLE T (la+BI <1, |E]21).

Then, the property (4.25) holds with (2, x, ) replaced by (2, x, £) in (4.26)—
(4.27). Here, we need not assume the homogeneity of A,(, x, £).

Finally, we shall study examples in Introduction. First, we consider (19).
The characteristic roots are A.(x, £)=-+/a,(x)|E|, which are C* '-class with
Lipschitz continuous derivatives of (k—1)-st order for |[£|=1. We approxi-
mate A (x, £) and A_(%, &) by \y(x, E)=(ay(x) | E|?+1)2 and Ay(x, )= —(ax(x) | E|*
+1)"% respectively. Then, setting p=1—1/k, A (x, £) and A,(x, £) belong to
S3((R)) (c.f. §4 of [3]) and we can find pseudo-differential operators B and B’
in S such that (19) has the form

(429) L, = (D—n(X, D,)+B) (D—n(X, D,)—B)+B'.

Hence, the study for the operator (19) is reduced to the study for the system
L, of the form

7"I(AX" Dx) 0 —B -—1
0 xz(X,D,)]+[ B BJ

Since the system (4.30) is involutive, that is,

(4.30) L= D,—[

4.31)  {r—r, T2} =0

holds, the fundamental solution of (19) is constructed in the form

t
(432)  Wa(t )+ What, )+ Whae(t, 0, 5)d6

We note that in the case of £=3 we can apply the approximation theory in



MuL11-PRODUCTS OF FOURIER INTEGRAL OPERATORS 223

[9] in order to reduce (19) to (4.30) with p=(k—1)/(k+1).
Next, we consider (20). The characteristic roots are A.(x, £)=-a(x,)

X (&% +a(x,)’E2) 2, which are of C'-class with Lipschitz continuous derivatives.
Set

(4.33)  nlx, &) = {E +a(x)E <}

and approximate A, (x, £) and n_(x, &) by N(x, E)=a(x)u(x, &) and Ay(x, &)=
—a(%)p(x, £). Then, we can prove by the method of [15] that A,(x, &), m=
1,2, belong to S1,:((2)) and that (20) can be reduced to the system (4.30) with
appropriate pseudo-differential operators B and B’ in S},,. In this case we also
have (4.31) and the fundamental solution of (20) can be constructed in the
form (4.32). For the operator (21) its characteristic roots are A.(x, £)=a(x,)*%,
Fa(x,)(E2+a(x,)E2)Y of class C®. Hence, if we approximate A.(x, £) and
A_(x, &) by n(x, E):a(x1)2§l+a(xl)2#(x) £) and ny(x, ’g’):a(xl)zgl—a(xl)z,u,(x, &)
with the aid of u(x, £) in (4.33), the symbols \,(x, &) belong to Si((3)) and
satisfy

(4.34) {T—N, TN} = ap,(x, ) (M—2Ay)

with a symbol @, ,(x, £) in S3,((1)). The operator (21) can also be reduced
to a system (4.30) with pseudo-differential operators B and B’ in S{;,. Hence,
the fundamental solution of (21) can be obtained in the form (4.32).

In three examples (19), (20) and (21) the characteristic roots A.(x, &) and
the corresponding approximated symbols \,(x, &), m=1, 2, satisfy (4.28) with
Al=MN\4, AM2=A_ and x=1/2. Hence, from the statement after Corollary 4.5
we get
(4.35)  WF(u(t)) C Conic hull of T,
for the solution u(t) of

{ Lu(t)=0,
u(0) = uy, 0u(0) = uy,
where T\()={{Q, P} (¢, s; 5, 7); 0=s=¢, (v, )€ WF(u,) U WF(w,) for large ||}

for the trajectory {Q, P} (¢, s; v, n) defined by the following: Let {g, p} (¢;, 1)
be the solution of

dt dt
{‘1, P}lt=0 = {y’ 77} .
Then, {Q, P} (¢, s; ¥, 7) is defined as the solution of

{ Y o tgr L=val,ap),

dt

{ 9Q _ vt 0,P), ‘fl—f — Vot O, P),
{Q’ P}|t=s = {q9 P} (s> 2 ’7) .
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