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EXPONENTIAL ATTRACTOR FOR AN ADSORBATE-INDUCED
PHASE TRANSITION MODEL IN NON SMOOTH DOMAIN
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and ATSUSHI YAGI?
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Abstract
We improve our preceding result obtained in Tsujikawa andi Ya0]. We con-
struct the similar exponential attractors to the same &dserinduced phase transi-
tion model as in [10] but in a convex domain by using the corhgawothing prop-
erty of corresponding nonlinear semigroup. In [10], the donhas been assumed to
have C® regularity to ensure the squeezing property of semigroup.

1. Introduction

We continue a study ([10]) of the Cauchy problem of the follogvsystem

ou
— =aAu+cV - {u(l —u)V — fexx(®)
oy~ adu+cV - {u@—u)Vy (o)} — fe (0. c0).
—gu+h(l—u)
ap .
(1.1) o~ bAp+dp(p+u—1)1-p) in © x (0, 00),
du 9
M _0P - on a2 x (0, 00),
on dn
u(x, 0) =uo(x), p(x,0) = po(x) in Q.

This model has been presented by Hildebrand et al. [5] toritesthe process of pat-
tern formation by a specific kind of molecules adsorbated amatalytic surface under
the influence of adsorbate-induced phase transition. Herdenotes a two-dimensional
bounded metallic surface(x, r) denotes the adsorbate coverage rate of the surface by
the molecules at a positiom € Q and timer > 0, and p(x, ) denotes the structural
state of the surface at € @ andr > 0. In addition,a and b are diffusion constants,
x(p) is a chemical potentialp(p +u — 1)(1 — p) is a phase transition function, and
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g and h are the desorption rate and the adsorption rate of the mekcaspectively.
For the modeling, we refer to [5, 6] (cf. [10, Introduction])

In this paper we assume th& is a bounded, convex af? domain inR?. The
function x(p) is a cubic function of the form

(1.2) x(p) = —p*(3 - 2p)

(as suggested in [5]). The constantsh, ¢, d, f, g,h and « are all given and posi-
tive. The Neumann boundary conditions are imposed:@nd p on the boundary <,
wheren(x) denotes (if it is uniquely determined) the outer normalteea@t a bound-
ary pointx € 2. The initial functions are assumed to satisfy naturally toaditions
0<up<1and0< pg <1 which will in turn implies O<u <1 and 0< p < 1 for
every timer > 0.

We are interested not only in constructing a unique glob&litem of (1.1) for
each pair of initial functionsug, pp but also in investigating asymptotic behavior of
the solution by constructing exponential attractors fa tlynamical system determined
from our Cauchy problem. Exponential attractor the notidrwbich has been intro-
duced by Eden et al. [13] is one of very important limit setghe theory of infinite-
dimensional dynamical systems (see [12, 19]). The expdaleattractor is a compact
set with finite fractal dimension which contains the globttagtor interiorly and at-
tracts every trajectory in an exponential rate. If one exmbial attractor exists, then
there exists a family of them in such a way that in any neighbod of the global
attractor one can find an exponential attractor. The contérgxponential attractor is
richer than that of the global attractor since the globalkator consists of states in fi-
nal stages only and since the pattern formation may ofteneofomed in the process
approaching to a final stage. The exponential attractor lig k@bust, in fact as shown
in [1], it attracts not only every trajectory but also attsaevery approximate solution
to its neighborhood in an exponential rate and continuesao it in the neighborhood
forever. In a certain specific sense the exponential attrad¢pends on a parameter
continuously, see [4], although the global attractor med®#pends upper semi contin-
uously in general. The finiteness of fractal dimension shgasd correspondence to
the slaving principle in the theory of self-organizatiosged Haken [15]), that is in the
process of a self-organization only a finite number of modesaative and the degree
of freedom of the system is reduced to those.

In the preceding paper Tsujikawa and Yagi [10], we consiidiee case when
Q is sufficiently smooth. Indeed, under the assumption tais a boundedc® do-
main in R?, we have constructed an exponential attractor followirg rirethod due to
[13]. In [10, Section 5] we could show that the nonlinear sgnoup S() determined
from the Cauchy problem (1.1) enjoys a crucial conditionechithe squeezing prop-
erty. TheC?® regularity was needed to use the shift property thate H(Q2) together
with 8p/dn = 0 on 92 yields p € H3(RQ) in establishing energy estimates pof (for
example [10, p.329]). Therefore these methods are no loagaitable to the present
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case. Instead of using the squeezing property we will usedhgpact smoothing prop-
erty of S(¢) ((3.2) below) which has recently been introduced by Efendit al. [3] to

construct the exponential attractors for a wide class oflinear diffusion equations
or systems. Following the general strategy devised in thgepdida et al. [2], we
will construct an exponential attractor as before usingy anlweak shift property that
Ap € L) together withdp/on = 0 yields thatp € H?(Q). According to Grisvard
[14], such a shift property is true in convex 6f domains.

The nature of pattern is expected to depend seriously onhhpesof domairt2.
As a matter of fact, we can observe various interesting patelutions by numerical
computations in the case of squame(see [9]).

This paper is organized as follows. In Section 3 we review geaeral methods
for constructing exponential attractors for abstract palia evolution equations stud-
ied in [2]. Section 4 is devoted to constructing local s@n§ to our problem (1.1)
and Section 5 to establishing a priori and absorbing estisnédr any local solution.
Finally in Section 6 we shall construct an exponential attra

Notation. Let X be a Banach space with norfin ||x. Let X be a subset o,
then X is a metric space with the induced distanti¢/, V) = ||U — V| x (U,V € X).
For U € X and a setB C X, d(U, B) is defined byd(U, B) = infycpd(U, V). For
two setsBi, B, C X, their distancei(B1, B>) is defined byd(B1, B2) = maxh(By, B2),
h(B>, B1)}, whereh(By, Bo) denotes the Hausdorff pseudodistance given by

(1.3) h(B1, By) = supd(U, By) = sup inf d(U, V).

UeB, UeB, VEB2

For two Banach spaceX¥ and Y, £(X,Y) denotes the space of bounded linear
operators fromX into ¥ which is equipped with the uniform operator not|| z(x ).
When X =Y, £(X, X) is abbreviated a£(X).

Let X be a Banach space and letbe an interval.C(I; X), C°(I; X) (0 < 6 <
1) andC*(Z; X) denote the space of-valued continuous functions, dttler continuous
functions with exponen#, and continuously differentiable functions equipped vile
usual function norms, respectively.

We shall use a universal notatiafi to denote varying positive constants which
are determined by the initial constanisb, c,d, f, g, h, anda and by the domairf2
and the functiony(p). It may therefore change from occurrence to occurrence If
depends also on some parameter, sait will be denoted byC,.

2. Preliminary

Throughout this sectionQ is a bounded,C? or convex domain in the plane.
As well known, a bounded convex domain has a Lipschitz bogndaf. [14,
Corollary 1.2.2.3)).

For 0 < s < 2, H*(Q2) denotes the Sobolev space, its norm being denoted by
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|l - llgs (see [14, Chap. 1] and [20]). For € s < s < s1 < 2, H*(R2) coincides with

the complex interpolation spacéff°(2), H*1(2)]o, wheres = (1 — 6)so + 651, and the
estimate

2.1) I llas < Cll- el 1

holds. When 0< s < 1, H*(®2) C L?(R2), where ¥p = (1 — 5)/2, with continuous
embedding

(2.2) -l < Cll - s

Whens =1, HY(Q) c L(Q) for any finite 2< ¢ < oo with the estimate
(2.3) - llze < Cogll - IGO0 - 1507,
where 1< p < ¢ < co. Whens > 1, H*(Q) C C () with continuous embedding

(2.4) I -lle = Cll - llas-

These results are well known whe® is the whole planeR? or a bounded smooth
domain (see [20]). The results can then be generalized t@daheex domain with the
aid of the extension theorem due to Stein [17, Chap. VI, Témob].

For any O< 6 < 1, it holds that

(2.5) luv]|gro < Collullgro||vlgro, u,ve HY(Q).
This is verified directly by remembering the definition of 8y norm || - || g

(cf. [14, Chap. 1]) and by noting (2.4).
We next consider a sesquilinear form given by

a(u,v)=/ Vu~Vﬁdx+/uﬁdx, u,veHl(Q)
Q Q

on the product spac&(Q) x HX(Q). From this form we can define realizatioh of

the Laplace operatorA+1 in L?(Q2) under the Neumann boundary conditions on the
boundaryd(2, see Lions and Magenes [16, Chap. 2, No. 9]. The realizatiois a
positive definite self-adjoint operator @f?(%2). Its domain is characterized by

(2.6) D(A) = H3(Q) = {u € HY(Q); g—z =0 on asz} ,

and the following estimate

2.7) lullgz < CllAullz2,  u € D(A)
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holds. These characterization and estimate are verifiedsbygithe a priori estimates
for elliptic operators wherf2 is a bounded’? domain. For the convex domain, these
are then shown by the fact that the constant appearing in 2@ends essentially only
on the negative part of the curvature @2, see [14, Theorem 3.2.1.3].

For & > 0, we consider the fractional powet’ of A. As shown in [7, Sec. 2],
we can characterize for Q6 < 1, 6 # 3/4, its domain in the form

3
) H?(Q), when 0< 6 < 2

(28  Dla)= 2 260y O 3
HY(RQ)=queH (Q),%:Oonasz , WhenZ<9§1.

For 1< 6 < 2,6 #7/4, sinceu € D(A?) if and only if u € D(A) with Au € D(A?™Y),
its domain is given by

7
{ue H3(Q); Aue HD(Q)}, when 1<6 < -
(2.9) D(A")=HF(Q)= !
{u € HA(Q); Au e H§<“’*1>(sz)} . whenZ <=2

3. General strategy

Let X be a Banach space with norfn- | x. Let X be a subset ofX, X being
a metric space with the distane - , -) induced from|| - ||x. A family of nonlinear
operatorsS(t), 0 <t < oo, from X into itself is called a continuous semigroup dnh
if S(0) =1 (identity onX), S(r +s) = S(#)S(s) for 0 < ¢, s < oo, and if

(3.1) G(t,Up) = S(t)Up is a continuous mapping from [Bo) x X into X.

Let S() be a continuous semigroup oki. Then the set of all¥-valued continuous
functions S( - )Up, Ug € X, on [0, 00) is called a dynamical system determined by the
semigroupS(¢) on the phase spac¥ in the universal spac&. The system is denoted
by (S(r), X, X).

We are concerned with the case whe¥eis a compact set ok. From the com-
pactness, it is immediately seen that the set

A= () s@x

O0<r<oo

is a global attractor of {(¢), X, X). That is, A is a compact set ok, A is an in-
variant set ofS(z) (this means thatS().A = A for everyr > 0), and.A attractsX” in
the sense thak(S(r)X, A) converges to 0 as — oo, whereh( -, -) is the Hausdorff
pseudodistance defined by (1.3).

The exponential attractor is then defined as follows (seenkdeal. [13]). A sub-
set M C X is called an exponential attractor of(f), X, X) if
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(1) M contains the global attractod;

(2) M is a compact subset of with finite fractal dimension;

(3) M is a positively invariant set of(¢t), namely S(z)M c M for everyt > 0;
(4) M attracts the whole spac® exponentially in the sense that

h(S@EHX, M) <Ce™, 0<t<oo

with some exponent > 0 and a constan€ > O.

Concerning construction of exponential attractors we gmresa method due to
Efendiev et al. [3]. We assume the following two conditioffhere exists another
Banach spac&Z C X with a compact embedding such that the operaifi) with
some fixedr* > O satisfies a compact Lipschitz condition of the form

(3-2) 1S(t*)Uo — S(t*)Vollz < L1llUo — Vollx, Up, Vo€ X

with a constantL; > 0. The mappingG(t, Ug) = S(t)Uy from [0, t*] x X into X
satisfies the usual Lipschitz condition

(33) ”G(t’ UO) - G(S’ VO)”X =< L2{|t _S| + ”UO_ VO”X}’ t,s € [07 t*]’ UO’ VO S

According to [3, Proposition 1] and to [13, Theorem 3.1], wavéd the following
result.

Theorem 3.1. Let S(t*) satisfy(3.2) with some Banach spacé embedded com-
pactly in X and let G satisfy (3.3). Then an exponential attractotM is constructed
for the dynamical systerf(z), X, X).

We also observe that if there exists one exponential atirdot (S(¢), X, X), then
there exists a family of exponential attractors in such a wet in any neighborhood
of the global attractord there exists an exponential attractor. In fact we can easily
verify the following theorem from the definition of exponettattractor.

Theorem 3.2. Let G satisfy (3.3). If M is an exponential attractorthen so is
S(t)M for every timet > 0 and, as ¢t — oo, d(S(t)M, A) converges td0, where
d(-, -) is the distance of sets

In the second half of this section we shall review a generalteggy for applying
Theorem 3.1 to the dynamical systems which are determinmd the Cauchy prob-
lems of abstract parabolic evolution equations. This hanbebtained essentially in
our previous paper [2].
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Let X be a Banach space. We consider the Cauchy problem for araetbptira-
bolic evolution equation
dUu
— +A(U)U = F(U), 0<t < o0,
(3.4) dt
U(O) =Up

in X. For eachU € Z, A(U) is a densely defined closed linear operatorXinwith a
constant domairD(A(U)) = D, whereZ C X is a second Banach space with continu-
ous embedding. The operatéris a nonlinear operator fror¥ into X, whereW C Z
with continuous embedding.

Basic assumptions. For U =0, we assume thai(0) is a sectorial operator of
with angle less tham/2, i.e.

0(A(0) c X, ={r € C; |argr| < w}
with 0 < w < /2, and
J0-— AO) | py < M/, 2 ¢ T,

with some constanM > 1. The spacéD is then equipped with the graph norin||p =
1AQ0) - Ilx-

We assume also that, for every<0 R < oo, there exists a humbérz > O such
that the operatorsiz(U) = A(U) + kg are sectorial operators of for all U € Kg =
{U € Z; |U|lz < R}. More precisely, the spectral se{Ag(U)) is contained in an
open sectorial domain

oc(Ar(U)) Cc X, ={re€C; |argr] <w}, U € Kp
with angle O< w < /2, and the resolvent satisfies
(3.5) |0- = ARU) ] iy < Mr/IA, % ¢ T, U €K

with some constanM > 1 dependent orR. We assume also thatg(U) satisfies the
Lipschitz condition

(3.6)  |Ar(U){AR(U) Tt — AR(V) ) < NgllU=Vl]y, U,V eKg

I cco

with some constaniV; > 0 dependent orR, whereY is another Banach space such
that Z C Y € X with continuous embeddings.
For the nonlinear operataF: W — X, we assume the Lipschitz condition
(3.7) IFU) = F(WV)lix < e(lUllz+11VIlz)
<{IU = Vilw +UIUllw +IVIWIU = Viiz}. U.VeWw
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with some increasing continuous functigr - ).

For the spacesV c Z Cc Y C X, we assume that there exist exponents<O
oo < Bo < mo < 1 such thatD(A(0)) C Y, D(A(0)) C Z, D(A(0)©) C W with
continuous embedding

|U], < D1|A@Q)U|,, U eDA©O)),
(3.8) |U|, < D2 AU, . U e DAO)>),
[Tl = Ds[a©" Tl U eD(a©™)

respectively.
Let yp be any exponent such théf < 35 < 1. Then the domain

(3.9) Dy, = D(A(0)")

can be taken as a space of initial values. The sgageis equipped with the graph
norm | - Ip, = [lA(0)® - lIx.

Local solutions. By [2, Theorem 1 and Corollary 1] (see [11] also), we can con-
struct local solutions to (3.4).

Choose new exponents, 8, y,n in such a way thatygy < o« < g < B < o <
n <landB < y < y < 1. Then, for each O< R < oo, the family of linear
operatorsAg(U), U € Ky, is readily observed to satisfy all the structural assunmgtio
[2, (3.2), (3.3) and (3.5)]. In particular, the continuouskedding [2, (3.5)] is verified
from (3.8) as follows. Since

DAY |, < |Ar(W)U | < D |AQ)U |, UeD, Uekg
with a suitable constanbi > 0 dependent ok due to (3.6), we have
|AQy°U |, < Dy |ArU)U|,. U eD(ArU)), U € Kg,
|A©YU|, < Dor |Ax(U)PU |y, U e D(ARU)P), U € K,
|A©Y*T |, < Dar |Ar(U)'U| ., U e D(ARU)"), U € Kg

with suitable constantﬁ,-'R >0 (i =1, 2,3). In the present case the nonlinear operator
F satisfies only a very weaker Lipschitz condition (3.7) than (3.4)]. But by (3.8),
we verify that

IFU) — F(V)lIx < ¢ (|A©U |, + |AQF°V] )
x {I1AQ)*(U — V)lIx
+(1AQ)*U Ix +1AQ)°V [Ix) |AQY*(U — V)] ,}.
U,V e D(A(0)™).
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This then shows that we can use similar techniques devisedeirproof of [8, Theo-
rem 3.1] for handling the semilinear term in (3.4).
For each O< r < oo, consider the set of initial values

B, ={Uo € Dy, ; IUollp,, < r}.

For a suitable 6< R < 0o, we haveB, C Ki. And Uy € B, implies Uy € D(A(0)?) C
D(Ag(Up)”) with the estimate

I1Ar(Uo)" Uollx = D, |AQQ)°Uolix < Dyr,

where D, > 0 is some constant depending only onThis shows that iUy € B,, then
U, satisfies the compatibility condition [2, (3.20)] (and al8o (In)]).

Therefore, by [2, Theorem 1 and Corollary 1] and [8, Theoret],3ve obtain
the following result.

Theorem 3.3. Under (3.5), (3.6), (3.7)and (3.8), for any initial value Uy € B,,
0 < r < o0, there exists a unique local solution {8.4) in the function space

U e #(0, T,]; Z) N C"~*([0, T,]; Y) N CY((O, T]; X),
77U € C([0, T,]; D), A(U)'U €C([0, T,]; X),

here T, > 0 depends only om and is uniform inUy € B, .

Dynamical system. In order to obtain the global solutions to (3.4), we have to
establish a priori estimates for all local solutions. Weehassume that there exists an
increasing continuous functiop( -) > 0 such that for any initial value&y € D,,, the
estimate

(3.10) IUOIp, = p(IVolp,). 0=<i1=Ty

holds for all local solutions with the initial conditioti (0) = Up. Then by Theorem 3.3,

any local solution can be extended as local solution over adfitime length

TP<HU0”D ) > 0 depending only on the initial value. Hence, (3.4) possessligue
Y0

global solutionU(z; Up) on the interval [0c0).
For each O< r < oo, let B, be the closed ball oD,, defined above. We are then
led to define a phase spadé and a nonlinear semigrouf(z) by setting

X = | J U@ Uo); 0=t < oo

Up€eB,
and

SHUo=U(t;Up), Upe &,
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where U (t; Up) denotes the global solution of (3.4) witty € X,. Then S(¢) is a non-
linear semigroup acting of’x.

In view of (3.10), we verify thatXy is a bounded set of,,. Indeed, &, C
EDVO(O;p(r)). We can then appeal to [2, Theorem 2] in order to verify téd) is
Lipschitz continuous from Xk, dx), the metric space equipped with the distance in-
duced fromX, into X. More precisely, there is a number> 0 such that

(3.11)  IIS(t)Uo — S(1)Vollx < L"IlUo — Volix, Uo, Vo € &;, 1 €[(n — 1)z, n7]

holds for any integen > 1 with some constanL. > 0. Indeed, whem = 1, this is
verified directly from [2, Theorem 2]. Assume that (3.11) riget for n. Fornt <t <
(n + L), we can writeS(¢) = S(r — nt)S(nt); then (3.11) forn + 1 is readily verified
(note thatS(nt)Xr C Xg). Moreover from this we can conclude that the mapping
G(t, Ug) = S(t)Up is continuous from [Doo) x (X, dx) into X.

In this way, under (3.10), we have constructed a dynamicstesy (§(z), X,, X)
determined from the problem (3.4). Sinc&. D B,, it is obvious thatD, =

U0<r<oo X" :

Absorbing and positively invariant compact set. In this part, we add the fun-
damental assumptions

X is a reflexive Banach space
(3.12) { P

Z is compactly embedded ix.

Then, sinceA(0) is an isomorphism fronD,, onto X, D, is also reflexive. Simi-
larly, sinceD,, = D(A(0y*) c D(A(0)y*) c Z continuously,D,, is also embedded
compactly inX. Therefore, (3.12) yields that any bounded ball®j, is a compact
set of X.

We assume also that there exists a numBer O for which the following asser-
tion is valid. For any bounded sét of D, there is a timez such that

(3.13) supsup||S(t)Uollp,. < C.

UpeB t=1p ©
Using this constant’, we define the closed ball
B=B""(0;C).
In terms of dynamical system# is an absorbing set, namely for any bounded Bet

of D,, there exists a timez such thatS(r)B C B for everyt > rz. As noticed above,
under (3.12),B is a compact set ok.
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Finally we set

(3.14) x=J soB= ] s

0<t<oo O<t<tp

Note that, asB is one of bounded sets @,,, S(¢)B itself is absorbed by3 for every

t > tg. Furthermore, since¥ is an image of [0tz] x B by the continuous mapping
G(t,U) = S(t)U, and since [0rz] x B is a compact set of [@0) x X, X is also a
compact set ofX. By definition, X is a positively invariant set of(¢). Since X >
B, X is also an absorbing set. Therefor®, is an absorbing and positively invariant
compact set.

Under (3.12) and (3.13) we have thus verified that the Xetlefined by (3.14)
is an absorbing and positively invariant compact set. Is ggnse, the asymptotic be-
havior of any dynamical systenS(), X, X) is reduced to that of a new dynamical
system §(¢), X, X) with the compact phase spadé

Exponential attractors. We next construct exponential attractors for the dynam-
ical system £(¢), X, X). But it is not possible to apply Theorem 3.1 directly, bes=au
S(r) may not satisfy the Lipschitz condition (3.3). So we needntimoduce an auxil-
iary phase space.

Since X' is a bounded set dD,,, X C By with a suitable O< R < oco. We can
then apply Theorem 3.3 in order to obtain that

IAR(S(t)Uo)S(t)Uollx < Cxt”™, O0<t<Ty, Uge X

with a sufficiently small timeTy > 0 and a suitable constadty > 0. We now con-
sider the set

X = S(Tv)X C X.

By the similar arguments as above, this set is seen to be arbétg and positively
invariant compact set. In additioty’ ¢ D with the estimate
1Tl = IS(Tx)Vollp

= [AQAR(S(Tx)U0) || 15y 14-(S(Tx) U0)S(Tx) Vol x

<CxTL Y U=8Tx)Upe X, Upe X.
Therefore,(S(7), X, X) is reduced to the new syste(S(t), X, X) in which the phase
spaceX is a compact set ok and is a bounded set @p.

We are now ready to apply Theorem 3.1 to the syst&fn) (X, X). We use again

[2, Theorem 2] to conclude that, for a sufficiently small timie> O, the operatoS(¢*)
from X into Z fulfills the compact Lipschitz condition (3.2). Similarlpy (3.11),

I1S(t)Uo — S(1)Vollx < CxllUo— Vollx, O0<t<t*, Uy VoeX
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with some constan€ 3 > 0. In the meantime, we have

I1S(#)Vo — S(s)Vollx =

/ (F(S()Ve) — A(S()Vo)S(r) Vol dt

X
< Czx(t —s) sup [IS@)Vollp < Cx(t — s),
O<t<t*

O<s<t<t* VoelX.

Hence the condition (3.3) is also fulfiled. Thus by Theorega$ and 3.2, a family
of exponential attractors.{ are constructed fo(S(r), X, X). It is immediate to verify
that any exponential attractor ¢8(s), X', X) is that of §(r), X, X).

4. Local solutions

To formulate the phase transition system (1.1) as an absttaation of the form
(3.4), we set the underlying space as

(4.1) X = {(;;) cue L?Q) andp e HI?,(Q)} ,
where Hﬁ(Q) is the space given by (2.6). In additioH, is set asY = X and Z as
(4.2) Z= {(’;) ue HY2(Q) andp e H?V/Z(sz)},

whererv/Z(SZ) is the space given by (2.9).
For eachU = (};) € Z, a linear operatorA(U) is defined by

~ ([ A 0\ /[ ~ (U
(4.3) AU)U = <321(U) AZ) (5> , U= <5) e D(A(U)).

Here, Ay = —aA + g is a self-adjoint operator oL.2(2) with D(A;) = H2(R) and
Ay =—bA+d is also a self-adjoint operator df?(Q2) with D(Az) = H3(R), but A; is
at present considered as an operator fraffi(Q2) = D (A3) to H3(R) = D(A,). And
for eachU = (Z) € Z, B (U) is a bounded linear operator fromﬁ,(sz) into itself
defined by

Boy(U)i =dp(p — 1), # e H2(S).
Due to (2.5),B»1(U) satisfies the estimate

(4.4)  1BaU)illgz < Cllplmz(llplligz + Dllillgz < CIUNx(1Ullx + D) el gz -



ATTRACTOR FORPHASE TRANSITION MODEL 227

Thus, A(U)'s are all linear operators aX with constant domain
D(A(U)) =D = {(%) e H2(Q) and e H;‘,(Q)} , UeZz.

Obviously,

(A1 O
A@0) = ( : A)
is a positive definite self-adjoint operator &f.
The nonlinear operatof in (3.4) is given by

eV - {u(l —u)Vy(p)) — fe** Py +h(1— u)) U = (u) cw

@9 FO= < dp*(2—p) p

Here, W is a fourth space which is defined by

(4.6) W = {(Z) ue H () andp e H?VS(Q)}

with an arbitrarily fixed exponent & ¢ < 1/2.

Then the problem (1.1) is rewritten in the form (3.4) in thederlying Banach
spaceX.

It is not difficult to verify that all the structural assummtis (3.5)—(3.8) are ful-
filled by Ag(U), U € Kg and F.

In fact, for A ¢ (0, o©), we see that

(L — A))U = F, UZ(Z)GZ, 17:(§>6D, Fz(

T

)ex

if and only if
i=(—A)f,
5= — A2) i + Ba(U)(x — A1) 1F} .

In view of (4.4), we conclude that (3.5) holds for eackk R < oo with an arbitrarily
fixed 0< w < /2 if kg > 0 is chosen suitably.
Let nextU, V € K with U =(}) andV = (¢). Then, since

AR(U)ARU) ™ — Ag(V) ™Y F = {Ar(V) — AR(U)AR(V)TF

_ 0 0 i~ N
= (B21(U) — BZl(V) O) AR(V) F, FeX,
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(3.6) is reduced to the condition

I{o(o — 1) — £(¢ — Willgz < Crllp — Cllwz Nl g2, P € HA(Q).

But this is also verified immediately by (2.5).
Let us now verify the condition (3.7). Fay = () € W, we see that

V- {u(l—u)Vx(p)} = V{u(l —u)} - V(o) +u(l —u)Ax(p),

and

4.7) Vx(p)=x'(p)Ve and Ax(p)=x"(0)IVol*+x'(p)Ap.
From (1.2) it then follows that
Vo A{u(l — u)Vx (o)}
=6(1—2u)p(1— p)Vu - Vo +6u(l — u)(20 — 1)|Vp|? + 6u(l — u)p(p — 1)Ap.
While, by (2.2) and (2.4),
(1 —2u)p(l — p)Vu - Vpll 2
< C(llulizs + Dllplle(llpllie + DIVull g2 IV pll paa-2)
< Cllull oz + Dol e (ol e + Dlluell gz Nl p | geszse < CIUNZ Uz + 1PIU Nlw-

Similarly,

|u(@ —u)(2p — DIVoP?| .
< Cllull=(llulize + 1)(lpllix + DIVoll5s
< Cllull g (lull gz + D) (ol e + Dl N300 < CIUIEAIUZ + 11U [l

Finally,

lu( — u)p(p — 1)Apli 2 < Cllulla(llull e + Dlipllz=(llollz + Dl Apll L
< Cllullgrz(llull gz + Dll ol g (ol g + Dol
< CIUIEWIUIlZ + 121U | w-

From these calculations we conclude that

IV - {u(L — u)Vx(p)} — V - (v(L — )V ()}l 2
<Cc(IUl3+1vI%+1)

) {IU = Viw +Ullw + IVIWIU = Viz}, U=<u)’ V:<U)EW'
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In addition, by a direct calculation,

2Py — Xy, 2

(PP 8 o+l
< COPRSHIENE ) (]| 2 + [[0ll 2 + 1) {1 — vll 2 + 1o — £l

3 3 u v
< CUVIEWVIED (U, + VI + DU = Vz, U= (p) , V= (§> ew.

And, by (2.5),

|0%2 = p) = 22— &) ;1o < C (1ol + 18132 + 1) llp — Cllare
<C(IUIZ+IVIZ+2) U = V]z,

=) ()

In this way we have verified thak fulfils the condition (3.7).

As for exponents 0< ap < fo < yo < 1 andpfy < 1o < 1, we takeag = O,
Bo=1/4, yo=1/2 andng = 1 — (¢/2). ThenZ = D(A(0)*) and W = D(A(0)™) with
norm equivalence. The space of initial values is then given b

(4.8) D,, = D (A(0)?) = {(%) (i e HY(Q) and € H?v(Q)} :

We take also exponents Q@ @« < 8 <y <l andg < n < 1 in such a way that
O<a<1l/4<B<y<l/2and 1-(¢/2) < n < 1.

Then, by virtue of Theorem 3.3, for any initial functidily = (1), whereuo €
HYQ) and pg € H;"V(Q), there exists a unique local solution to (1.1) in the fumrcti
space:

(4.9)
u € C"H([0, Ty, ; HY2(2)) N CH(O, Typ; L3(R)), 1777w € C([0, Ty, ]; HZ(R)),
p € CrR(I0, Ty HyA(€2)) N CH(O, Tl HE(Q)), 1477 p € C(0, Tugs Hi ().

Here, Ty, > 0 is determined by the nor\Uollp,, = lluoll s + llooll3¢2, alone.

We shall conclude this section with showing that<Oup < 1 and 0< pg < 1
imply 0 <u <1 and 0< p < 1 for any local solution in the function space (4.9). So
let ug € HY(Q) and po € H3,(Q) be initial functions with the conditions & uo < 1
and 0< pg < 1. Letu, p be any local solution to (1.1) such that
(4.10)

ueC’ ([0, T, .1 HY3(2)) NC* (O, T )1 LAR)),  t*7ueC ([0, T, ] H3 (%)),
peCr (10, Tl HH)) NCH (0. T T HR(R) . 7 e (10, T ] ().

Since the complex conjugaie p of u, p is also a solution to (1.1), the uniqueness of
solution yields that: =% and p =p, namelyu and p are real valued functions.
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Let us regard: as a solution to the linear problem

9 :
8_btt =alAu—gu+x(x,t)-Vu+ F(x,t)u+h in Qx(0,7T,,),

(4.11) u_y on 9Q x (0, T,.,),
on
u(0) = ug in Q

in L2(), where

x(x, 1) =c(l—2u)Vx(p) = 6cp(p — 1)(1—2u)Vp,
F(x,1)=c(1—u)Ax(p) — fex?) —p.

We here observe from (4.10) that

Ix (e, ) - Vidll 2 < Cllpllz=(llplie + Dlullzs + DIV ol paa-2) [ Vidll L2
< Clipli3(lpll sz + D)l gz + DIVE] -

<Cu, HAi‘” 2zl oweD (Ai‘(” 2)) .

L2

In addition, from (4.10),
HXCra 1) = XG0} - Ve < Cuple =5y~ |47 %] . i e D (a7 ¢2).

Similarly we observe from (4.7) and (4.10) that

IF (e, 0)idllzz < C[(lullzs + D{(Uloll~ + DIVolZs
+ (o~ + Dl Apllps} +e 11 + 1] i o

< C{Ulull e + 1) (ol + 1) lpllaerz + €100z + 1} |l e

< Cop |40 L we(ate),
and

1FGe 1) = F )iz < Coplt =77 | A7 7D (A7),
L

We can then appeal to the theory of linear abstract evoluiguations. According to
[18, Chap. 5, Theorem 2.3], there exists a unique solutiothefproblem (4.11) such

that

ueC(0,T,,1; HA()) N C*((0, T, ,]; LAR)) N C ([0, T,,.,]; LA(<2)) .
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We further consider approximate linear problems

d .

% =aluy — gug + X (x, 1) - Vug + Fe(x, Due +hin  x (0, T, ),
Buk

— =0 on a2 x (0, Ty, ).
on

uk(0) =uo in Q

for k=1,2,3,.... Here,

Xk(xv t) = q)k(X(x’ l)),
Fi(x, 1) = Q(F (x, 1)),

and ®,(x), x € R?, and ®;(F), F € R, are both cutoff functions such tha.(x) =
0 for |lxIl = k and ®(F) = 0 for |F| > k. Then the solutions;, converges to the
solutionu of (4.11) inC([0, 7,.,]; L*(2)) ask — oo. In the meantime we can easily
verify by the truncation method (see [10, Theorem 3.3]) that- 0 impliesu,(t) > 0
for every k. As a consequence we conclude thét) > 0.

In a similar way we conclude also thag > 0 implies p(¢) > 0.

The estimates:(r) < 1 and p(r) < 1 are also verified in an analogous way. In
fact it is sufficient to notice thatv =1 —u and & = 1 — p satisfy the following linear
equations

a
E)_L: =aAw — hw — ¢V - {wuVx(p)} + fe*Pu + gu,
0

a—f =bAE —dp(p +u —1)§

respectively. Fromw(0) = 1—ug > 0 and&(0) = 1— pp > 0 it follows that w(z) > 0
and£(r) > 0. Note thatfe®*®y + gu > 0 is already known. We have hence verified
thatu(r) <1 andp(?) < 1.

Thus, if Up = (%) € Dy with 0 < up < 1 and 0< pp < 1, then any local

u

solutionU = () in the space (4.10) satisfies
(4.12) O<u(r)<1 and 0<p(r)<1l, 0<t=<T,,.

5. Global solutions
Let the initial functions satisfy
uo € HY(Q) and ppe Hy(R) with 0<up<1 and 0<pp<1.

And let u, p be any local solution to (1.1) in the function space (4.10).
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We can then verify the following a priori estimate

(5.1) Nu(@)lms + 11p@) I3z < p (luollgr +lpoll3z), 0=t =Ty,

with some continuous increasing functigif-) which is independent of, p. This esti-
mate will be established by several steps. Throughout thefpwe shall use universal
notationss and p(-) to denote varying positive exponents and varying contisuim-
creasing functions which are determined by the constansc, d, f, g, h, anda and
by © and x(p). They may therefore change from occurrence to occurrence.

We write

u
— =adu—gu+cV-{u(l—u)Vx(p)}+ Pu, p),
ot

(5.2) ;

0

i bAp —dp+ Q(u, p),

where

P(u, p) = —fe P + h(1 —u),
Ou, p)=dp(u+p—1)(1- p)+dp.
As shown by (4.12), we already know that<Qu(t) < 1 and 0< p(t) < 1 for
every 0<t <T,,.

Step 1. Multiply the second equation of (5.2) bp and integrate the product
in . Then, noting (4.12), we have

1d 2 2 2
= | \VplPdx+b | 1AplPdx +d | |Vp2dx
2d[ Q Q Q
b
=~ [ 0w p)apdx = J1ap1% .
Q
Therefore,
d 2 2 2
— | |Vpl¢dx+b | |Ap|dx+2d | |Vp|°dx <C.
dt Q Q Q
Solving this in [, [Vp|?dx, we obtain that
/ IVp(0)|?dx < e || poll5: + C.
Q

Hence, in view of (4.12),

(5.3) oI5 < C [e7"lpoll5 +1], 0<t<T,.,.
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STEP 2. Multiply the first equation of (5.2) by and integrate the product if2.
Then,

1d
27 udx+a/|Vu| dx+g/u dx

:—c/ u(l—u)Vx(,o)-Vudx+/ P(u, p)udx
Q Q
a
< cf(wm Vol + 1)dx < 51Vl +C {IVplZ. +1}
Q

By using (5.3), we have

d
7 u dx+af V| dx+2g/u dx<C{||p0||H1+1}

In the meantime, multiply the second equation of (5.2) Mp and integrate the
product in2. Then,

1d
——f |A,o|2dx+b/ |VA,0|2dx+d/ |Ap|?dx
b
—/ VO, p) - VApdx < SIIVApIG. + C {IVulz + 1V ollZ:} -
Q

By (5.3) it follows that

d
E/ |Ap|2dx+bf |VAp|2dx+2d/ |ApPdx < C|VulZ2 + C {llpoll s + 1} -
Q Q Q

We join this with the inequality obtained above to obtainttha

d
d—f (u*+14pP%) dx +6/ (u?+14p%) dx < C {llpolZ + 1}
tJa o
Solving this, we conclude that

xu@)IZ2 + 1o@ONF2 < C [e™ {luoll72 + looll52} + looll3: + 1]

< Ce™llpoll3 +lpoll3s + 1], 0<t<T,,.

(5.4)

STep 3. Multiply the first equation of (5.2) byau and integrate the product in
Q. Then, after some estimation,

1d
——f |Vu|?dx +a/ |Au|2dx+g/ |Vu|?dx

<4 [1autasec [ 19w 0w P o as
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By a direct calculation (see (4.7)), we verify that
IV - {u(1 — u)Vx(p)}1? < C (14p1? + |Vpl* + [Vul?|Vp|?).

Moreover, by (2.3) and (5.4),

. 1% P X = ,OHZ IoHl = p\lpollH2),

(5.5) (1ap2 +|Vpl*) dx < C (Ipl22 + IV oll%:) < p (ool u2)
Q

and by (2.7),

f IVul?|Vpl2dx < C|Vull?IVpl2s < Cllull i3 1ul 21V o112,

(5.6) @

< <l AulZ, + C{llpolly + 1.

R

Therefore we obtain that
d 2 a 2 2
— | |Vuldx + = | [Au|*dx +2g [ |Vul“dx < p(|l poll #2)
dt Q 2 Q Q

In the meantime, we observe in view of (4.10) that

d )
—/ |VA,0|2dx:—2/ —Ap ) A%pdx.
dt Jg o \ a1

Take the product of the second equation of (5.2) operated land A%p, and integrate
the product inQ2. Then,

1d
2dt
b
:—/ AQ(u, p)A?pdx < —/ |A2p|2dx+C/ |AQ(u, p)|?dx.
Q 2 Q Q

/|VAp|2dx+b/ |A2p|2dx+d/ |VAp|?dx
Q Q Q

By a direct calculation, we verify that
1AQ(u, p)I* < C (|Aul®+|Apl> + |Vul*|Vpl* +|Vpl*).
Therefore, by using (5.5) and (5.6) again, we obtain that
d 2 2 12 2 2
G [vankasss [ 1a%pRax 2 [ 1vapPax < Clau+ plool )

This together with the inequality obtained above then et

d
E/ (|W|2+|VAp|2)dx+8/ (IVul2+ 1V 4pP) dx < p(lol ).
Q Q
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As a consequence, it follows that
(B.7) Nu@Z:+ oMl < Ce™® {lluoll?: + llpoll5z} + pleollmz), 0 <t <T,,.

We have thus established the desired a priori estimate, (Bathely (3.10).
As a consequence we conclude that for any pair of initial fions in the space

D120 = {<ZO> s uo € HY(Q) and po € H3,(R2)
(5.8) 0
with 0<ug <1 and 0< pg < 1},

the problem (1.1) possesses a unique global solution in uhetibn space (4.10) in
which T, , can be any finite time, and 8 u(r) < 1 and 0< p(z) < 1 hold for every
O0<t <oo.

6. Exponential attractors

Following the strategy described in Section 3 we shall defirdynamical system
from our problem (1.1) and shall construct exponentialaators.

As the global solution of (1.1) is constructed for every pairinitial functions in
the spaceDy 20,11 (given by (5.8)) and the solution takes its values in the spae
can define a nonlinear semigroujfr) acting onDy2;0,1). Furthermore we can verify
the absorbing estimate (3.13). In fact, let- 0 be any number. Letg and pp be in
D1/2;j0,11 With lugllmr + llpoll2z < r. Then from~(5.3) there exits a time > 0 such
that || p(t)||lgx < C + 1 for everyt > t,, where C is the constant appearing in (5.3).
Then, applying (5.4) with initial timeg, and with initial functionsu(z,) and p(z,), we
observe that there exists a time> . such that||u(¢)|.2 + o) g2 < C +2 for every
t > t/. By the similar argument we observe from (5.7) that therestexa timer, > ¢/
such that||u ()| g2 + o) |lnez < C +3 for everyr > t”. We have therefore verified that

sup sup<C+3.
U[)EDl/z;[O.l] [ZI;/

IUslipy, <7

This then shows that the set
Uuo ~
B= {(p()) € D12;0.115 lluollar + loolls < C + 3}

is an absorbing set of the semigrodfr).
The rest of arguments is quite the same as in Section 3B Aself is absorbed
by B, there exists a timeg > 0 such thatS(z)B c B for everyt > tgz. Then X =
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Uo<r<is S(t)B is an absorbing and positively invariant set{t) which is also a com-
pact set of the underlying spacé (given by (4.1)). Hence, (), X, X) is a dynami-
cal system determined from (1.1) with compact phase spacaddlition the compact
perturbation property (3.1) and the Lipschitz condition2j3are verified if the phase
spaceX’ is replaced by a new one of the fordi = S(T~) with a suitableTy > O.
Thus we have accomplished construction of exponentishcitirs for(S(t), X, X) and
therefore for §(¢), X, X).

Theorem 6.1. Let Q be a two-dimensional boundedonvex orC? domain Then
the dynamical systerts(r), X, X) defined from(1.1) possesses a family of exponential
attractors
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