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Abstract
Let G be a finite group, lek be an algebraically closed field of characteristic
and letQ :={g € G | g% = 15}. It is shown that for a blocks of kG, the permutation
module k2 has aB-composition factor if and only if the Frobenius-Schur ator
of the regular character @ is non-zero or equivalently if and only B is real with
a strongly real defect class.

1. Introduction

Let G be a finite group. In this paper we investigate the permutatimdule of
G acting by conjugation on its involutions, over a field of cuzeristic 2. This de-
velops the main theme of [10] and [8]. In the former paper QRAbinson considered
the projective components of this module. In the latter pape author showed that
each such component is irreducible and self-dual and bsléoca 2-block of defect
zero. Here we investigate which 2-blocks have a composiié@tor in the involution
module. There are two apparently different ways of chareitg such blocks. One
method is local and uses thaefect classesf the block. This gives rise to the defi-
nition of a strongly real 2-block. The other method is global and uses the Frobenius-
Schur indicators of the irreducible characters in the hld@kr main result is Theo-
rem 2. The proof of this theorem requires Corollaries 4, &5ahd 20.

J.A. Green proved a number of results abgdblocks, using the observation that
the group algebra o is a module for the grougs x G. Here we shall exploit the
additional fact that the group algebra is a module for theattrgoroduct ofG with a
cyclic group of order 2. This was also an essential tool in [8]

Throughout this papek will be an algebraically closed field of characteristic 2.
There are various reasons why we limit ourselves to chaiatite2. Our wreath prod-
uct group is an extension a@f x G by a group of order 2. It is thus fairly uninterest-
ing, from the point of view of blocks over a field of characstid not equal to 2. In
addition, the prime 2 is useful for studying the contrageatlioperator and real blocks,
as pairing arguments of various kinds can be employed.

2000 Mathematics Subject Classification. Primary 20C20pS&dary 20C15.



202 J. MURRAY

Recall also the following classical result. The Froberfietwr indicatorv(y) of
a generalized character of G is the integer (;L|G|)deGx(g2). If x is absolutely
irreducible thenv(x) = 0 or 1, —1, depending on whethey is not real-valued, oty
is real-valued and & -module affords a symmetric, respectively anti-symmeivim-
degenerateG-invariant bilinear form. Then Frobenius and Schur provedt {Q| =
> v(x)x(1g), whereQ = {g € G | g% = 15}.

The reader may be interested to know that in odd charadteriste geometric
type (quadratic or sympletic) of an irreducible self dualdule is determined by the
Frobenius-Schur indicator of a real valued character whimhtains the Brauer charac-
ter of the module with odd multiplicity. It is an open problesms to whether there is
an analogous Frobenius-Schur indicator in characteristiSee [11] for details.

A componenbf a module is a direct summand of the module that is indecempo
able. Following Green, a 2-block @ is a component okG, considered as & x G-
module in the usual way. For the rest of the paper we Rige denote a 2-block ot.

A defect clasof B is a conjugacy class off whose sum appears with non-zero
multiplicity in the block idempotent 4, and on which the central characieg of B
does not vanish. Defect classes are known to exist and tdstasfselements of odd
order.

The irreducible complex characters, Brauer charactersiaticomposable mod-
ules of G are partitioned among its 2-blocks. We use Bix,(1Br(B) and Pic@) to de-
note, respectively, the set of irreducible characters,Braier characters and the prin-
cipal indecomposable characters @fthat belong toB. We usey to indicate the ir-
reducible Brauer character associatedito= Pic(B). If M is a G-module, M |y de-
notes the restriction oM to H < G and M1X denotes the induction aoff to K > G.
Identical notation applies to the restriction and inductaf characters. See [9] for any
additional unexplained notation.

The contragradient map is defined by(} e,g)” = Y a,g7. It is a k-algebra
involutary anti-automorphism ofG. A block B is said to bereal if B° = B. A con
jugacy classC of G is said to bereal if it coincides with the clas€? of the inverses
of its elements. It is one of the main results of [5] that eadbldzk has at least one
defect class that is real.

A real conjugacy class of; is said to bestrongly realif it is the trivial class or
if its elements are inverted by involutions. This leads te fbllowing key definition:

DEeFINITION 1. A strongly real2-block is a real 2-block that has a strongly real
defect class.

It turns out that ifB is strongly real then each of its real defect classes is glyon
real. This was proved by Gow in [4]. Notice that the princigablock is strongly real;
the identity class is a strongly real defect class.

We use % both for the identity element off and its trivial character. The s&l
consisting of the involutions i, together with &, forms aG-set under conjugation.
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We denote theékG-module with permutation basi® by k€. Our main result in this
paper is:

Theorem 2. Let B be a2-block of G. Then the following are equivalent
(i) k2 has aB-composition factar

(i) >, ey v x(Ls) > 0;
(iii) B is strongly real

Let ¢ be an element of5. There is a unique decomposition ¢f) into a direct
product of a cyclic 2-grougE and a cyclic 2group O. S0 g = gog> = g2 g2, for some
g2 € E andgy € O. We call g, the 2-part, ang;» the 2-part, of g. Both are uniquely
determined byg.

In our first lemma we compute the multiplicity of an irreddeilkG-module as a
composition factor ok<.

_ Lemma3. Let P be an irreduciblekG-module let P be the projective cover of
P, and let ® € Pic(G) be principal indecomposable character &. Then P occurs
with multiplicity v(®) as a composition factor of2. In particular, v(®) > 0.

Proof. The number of solutions iG to the equationx? = g, for fixed g €
G, is given byZXem(Gw(x)x(g)- Let g € G be 2-regular and lek € G satisfy
x? = g. As x, and xp commute, we havg = x2x3 = x2x3. So x5 = 15 and x3 =

gz. It follows that x, € Q(Cg(g)), while xoy = g;,/z is uniquely determined. Con-

versely, given any involution € Cg(g), then tg%/z is a solution tox? = g in G. We
conclude thatZXE,rr(G) v(x)x(g) = 12N Cs(g)l coinci(_jes with the Brauer character
of k2. The lemma follows once we note that the virtual Brauer attaraof the re-

striction of the generalized charact@jxel,r((;) v(x)x to 2-regular elements is given by
lelePic(G) V(W)Y O

Our Corollary shows that (ix= (ii) in Theorem 2.

Corollary 4. The dimension of the sum of all submodulest@f that belong to
B is given by} iz v(X)x(16). In particular }°, 5 v(x)x(16) = 0.

Proof. Both statements follow from Lemma 3 and the fact that

D xlex= ) v(le)v. O

x€lrr(B) WePic(B)

Let P, P and ® be as in Lemma 3. Suppose that 2. The Frobenius-Nakayama
reciprocity formula [9, 3.1.27] shows thd occurs with multiplicity (®c, ¢y, 1c,)) as
a composition factor ofkc,;)1¢. Then, using the previous lemma, we get
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(c.f. [10, Lemma 1])

v(®) = (P, 16) + Z (o) Leory)
t

where ¢t ranges over a set of representatives for the conjugacyedask involutions
in G.
We now proceed to the main construction needed for the prbdheorem 2.
The wreath product grougr : X is the semi-direct product of; x G with the
symmetric groupX on two symbols. Here the conjugation action of the involutioe
¥ on G x G is given by 1, g2)° = (g2, g1), for all g1, g2 € G. We shall use the
notations

=(g,g)€G:%, foreach geG, and
={

g:
X={x|xeX}CG:x, foreach XCG.

We highlight the following crucial fact:
Lemma 5. The centralizer obr in G: ¥ is G x X.

Let R be a commutative ring. Then the group algel®& is a right RG : Z-
module. For,RG is a RG x G-module viax - (g1, g2) = gl_lxgz, for eachx € RG and
g1, &2 € G. The action ofo on RG is given by the contragradient involutiono = x°.
In more detail we have:

Lemma 6. The RG:X-module RG is isomorphic to the permutation module
(Rgxx) 19,

Proof. The elements o& form an RG @ X-invariant basis ofRG. Moreover if
81,82 € G, thengy = g1 - (g1, 82). SO G is a transitiveG : X-set. The stabilizer of
1 € RGin G ¥ is G x X. The lemma follows from these facts. O

Suppose thaf is a block algebra oRG. SetE* := E+E°. ThenE* is an RGZ-
submodule ofRG. If E # E°, we haveE* = E46%. If E = E°, it is still useful to
distinguish between th&_G x G-module E and the RG : X-module E*, even though
the underlyingR-modules are the same.

Lemma 7. Let Eq,..., E. be the real blocks andE,.1, E¢,,, ..., E.+, E?,, be
the nonreal blocks olRG. Then there is a unique indecomposable decomposition of
RG as RG  £-module
RG=E{ @ ---®E;

rts*
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Proof. This follows from the indecomposable decomposittbrRG into a direct
sum of its blocks algebras, &(G x G)-module. ]

As a particular case, consider whéh= C. Let x € Irr(G) and letM be aCG-
module that affordsy. We useE(x) to denote the corresponding Wedderburn compo-
nent Eng(M) of CG. Clearly E(x) has G x G-charactery ® x: (g1,g2) —

x (871 x(g2), for g1, g> € G. Suppose now thag = is real valued. Thery ® x =
x®x has two (irreducible) extensions & X. These will be denoted by ** and x .
Here if ¢ € {£1} then x®(g1, g2)0 = ex(g182), for all g1, g, € G. Wheny # x, the
next lemma shows why it is useful to denote the inducedz-character § ® x)1¢=

by x°.

Lemma 8. Let x be an irreducible character oG and let E(x)* be the corre-
spondingG : -component ofCG. Then E(x)* has charactery*®).

Proof. This is obvious whem(x) = 0. So we may assume that=7%. Then

1 _ 1+v(y)
(x* o, Loxs) = Tl D (x (M x() £ x(g2) = —
geG
The result now follows from Lemma 6 and Frobenius recipgocit Ul

Recall the following result [7, Theorem 1] of Green. A modepioof is
[9, 5.10.8].

Lemma 9. Let D be a defect group oB. Then B has vertexD, as indecompos-
able k(G x G)-module

We use this to make a preliminary observation about the cestof the compo-
nent B* of the G : X-modulekG. This will be refined in Proposition 14.

Lemma 10. Let D be a defect group oB. If B is not real thenD is a vertex
of B*; if B is real then there exists8 € Ng(D), with ¢? € D, such thatD(eo) is a
vertex of B*.

Proof. Suppose first thaB is not real. SoB* = B1%=, It then follows from
Lemma 9 thatB* has vertexD.

Suppose then thaB is real. Lemma 6 shows tha&* is G x X-projective. We
choose a verte¥’ of B* so thatV < G x . Now B* is a quasi-permutation mod-
ule, G x G is a normal subgroup o6 : £, and B*|s«xc = B is indecomposable.
A variant of Lemma 9.7 of [2] then implies that N (G x G) = V N G is a vertex
of B. Using Lemma 9, we may choose so thatV NG =D. AsG:2/G x G is
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a 2-group, and a8*|sxg is indecomposable, Green'’s indecomposability theorem [6,
Theorem 8], implies tha¥ « (G x G). The last statement of the lemma follows from
this. ]

It is easy to compute the stabilizer subgroup of an elengeof the G : X-setG
in the groupG x X. This subgroup will be denotedg.x(g). We hope that the reader
will not confuse this group withCsxx(g) = Cs(g) x Z.

Lemma 11. Letg € G. If g is not G-conjugate tog 1, then Cg,x(g) = Cs(g).
If g =g1, for t € G, then Csxx(g) = Cs(g)(t0).

Proof. These statements follow from the fact tQato = g~*. O

For H < G and M a kG-module, letM* denote the sum of all the triviak -
submodules oV | ;. The relative trace map §r M — M is defined by Tf,(m) =
> m-g, for m e M. Here g ranges over any set of representatives for the right cosets
of H in G. We write T (M), instead of Tf,(M*), for the image of the trace map
on M7,

The reader is warned tha* is generally not aG x X-algebra, in the sense of
Green [7]. In particular, there is no Mackey-type decompmsif a product of the

form Trg” > (a) Tr™ ™ (b), for X, Y < G x . However, we do have the following use-
ful result.

Lemma 12. Let A be ak-algebra and akG-module such that each element@®f
acts onA as ak-algebra automorphism or as kalgebra anti-automorphisnSuppose
also that A® is contained in the centr&(A) of A. Then A® a subalgebra ofZ(A).
Also Tr%(A) is an ideal of AY, for eachH < G.

Proof. Write theG-action on A in exponential form. It is obvious that §(A)
is a k-subspace ofd. Leta € A, z € AY andg € G. Suppose thag acts as a
k-algebra anti-automorphism. Therfz = (zgfla)g = (za)® = (az)®. Similarly a8z =
(az)8, if g acts as ak-algebra automorphism. It follows that the map— az is a
kG-endomorphism ofA. In particular, ifa € A", then Tf (a)z = Tr%(az). Taking
H = G, we get thatA® is a subalgebra ofZ(A). More generally, we can conclude
that Tr%(A) is an ideal ofA“. O

We will apply this Lemma to the algebr&* and the groupG x X. Denote by
Z*(kG) the o-fixed point subalgebra of (kG). It has k-basis{(C U C°)*}, whereC
ranges over the conjugacy classesGofNote thatZ(kG) = kGE and Z*(kG) = kGE*>,
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Corollary 13. Let P be a 2-subgroup ofG and letg € Ng(P) with ¢ € P.
Then
0] Trgxz(kG) is an ideal of Z*(kG) with k-basis {(X U X°)*}. Here X ranges over
the set of non-real conjugacy classes @fsuch thatP contains a Sylow2-subgroup
of Cs(x), for somex € X.
(i) Trpoy(kG) is an ideal of Z*(kG) with k-basis {(X U X°)*} U {¥*}. Here X has
the same meaning as ffi), while ¥ ranges over the the set of real conjugacy classes
of G such thatP contains a Sylow2-subgroup ofCg(y), and y?? = y~L, for some
yeYandp e P.

Proof. Lemma 12 implies that both §f”(kG) and Trg—(xqf)(kG) are ideals
of Z*(kG). a o

In general, suppose that is a finite group,H is a subgroup ofG, and M is a
permutationkG-module. Then it is well know that thé-space Tf,(M) has basis of
the form {O*}. Here O ranges over thes-orbits on the permutation basis such that
H contains a Sylow 2-subgroup of the stabilizer subgroup eofes@lement ofO in
G. The Corollary follows by applying this, and Lemma 11, to t@up G x X, its
subgroupsP and P(go) and the moduleG. O

If g is an element ofG, its extended centraliser is the following subgroupaf
Ci(g) = {x eG | gh=gor g_l}.
We can now identify the vertices a#*.

Proposition 14. Suppose thaB is real. Then B has a real defect clasdet ¢ €
G belong to a real defect class &, let D be a Sylow2-subgroup ofCg(c) and let
D{(e) be a Sylow2-subgroup ofC(c). Thenls € Trgxz(kG), for E<G x X if and

only if D(eo) <g E. Also D{eo) is a vertex ofB*.

Proof. To show thaB has a real defect class, we repeat the original argument of
Gow, from [4, Lemma 1.2], for the convenience of the readeritéVlz = > Ax K™,
where K runs over the conjugacy classes @fand A € k, for each clask. Then

lk = a)B(lB) = Z)\.KCUB(K+).

Now Agx = Agx. and wp(K*) = wp(K°*), as B is real. It follows that the contribution
of a nonreal clask and its inverse clask’ to the above sum is)k wp(K*) = Q.
So there must exist a real clags such thaticwp(C*) # 0. Each suchC is a real
defect class ofB.

Now fix a real defect clas€ of B. SoAc # Ok, using the notation of the previous

paragraph. Suppose thag le TrEQXZ(kG), where E < G x . Then Corollary 13
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implies that there exists € C and D a Sylow 2-subgroup o€s(c) and D(e) a Sylow
2-subgroup ofC¢;(c), such thatD(eo) < E.
Mackey’'s Theorem implies thatBf¢)S** C ZTrgrf(zgxz)(kG). Here P ranges

over the vertices ofB*. Corollary 13 implies that each subspacegm“@xz)(kG) is
an ideal of Z*(kG). But 1z is a primitive idempotent inZ*(kG). So by Rosenberg’s
lemma [9, 5.1.1], there exists a vert® of B* such that } € Tr%ﬁxz(kG).

The last two paragraphs imply thd(eoc) <g V. But |Q(go*)|7= V], as a con-
sequence of Lemma 10. It follows thag X Trﬁéﬁ(kG), and also thatD(ec) is a

vertex of B*. O
Our Corollary shows that (ii)=- (iii) in Theorem 2.

Corollary 15. Suppose that there existse G such thatzxem(B) v()x(g) > 0.
Then B is real. Let D(eo) be a vertex ofB*. Then there existd € D such thatg,
is G-conjugate to(de)?. In particular, if g can be chosen to b2-regular, then B is
strongly real

Proof. WhenB is the principal 2-block ofG, the result is true. So assume other-
wise. The hypothesis implies tha&t is real, as it forces(x) # 0, for somey e Irr(B).

Let (R, F, k) be a 2-modular system fof. Suppose tha#3 is the block alge-
bra of RG such thatB = B/J(R)B. Then Lemma 8 shows that th& : =-character
of B*is xp = 3 cumm x"™. Now B* and B* have the same vertices, as both are
trivial source modules [9, 4.8.9]. S®(eo) is a vertex of B*. As x8((1g, g)o) =
erm(B) v(x)x(g), the hypothesis is thayz((1s, g)o) # 0. It then follows from a
theorem of Green [9, 4.7.4] that the 2-part of;(})o is contained in a vertex oB*.
But (16, 8)0), = (16, £2)(g5 ", &5/°)o and ((ggl/z,g;/z)a)(lc'gz') = 0. In particular
((1, g)o), is G @ Z-conjugate to (&, g2)o. So there existg1,82, € G andd € D
such that (%, g2)o = (deo )& = (gl_ldegz, gz_ldegl)a. This giveng‘l = gl_lde, and
hence alsqg, = [(de)?]*.

Suppose thag, = 1;. Then @e)?> = 1;. So de is an involution that belongs
to D{e)\D. Then, using Proposition 14, we see that each real defest @& B is
strongly real, whenceB is strongly real. U

Let K be a field and letr be a field automorphism of oK. Suppose thay is a
K -representation of5. Then we may form the representatipri of G by applyingt
to the matrix entries iry(g), for eachg € G. If M is the KG-module corresponding
to y, we let M* denote theK G-module corresponding te®. This construction also
applies if r is an automorphism of a subfielkly of K, and y is realisable oveKy.

We use this to define the Frobenius twist of a module or charathe Frobenius
automorphism Fr ok is given by — A2, for A € k. Every C-representation o6 can
be realized overQ(¢), where¢ is a primitive |G|"* root of unity. There is a Galois
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automorphism Fr ofQ(¢) given by ¢ — ¢¢2, for ¢ € Q(¢). If M is a G-module,
with Brauer or ordinary charactey, the Frobenius twist modul@/™ has character
x™: g — x(g382), for eachg in the domain of definition ofy.

Note that{x™ | x e Irr(B)} is the set of irreducible characters in a 2-bloBk’
of G. If M is an indecomposableG-module, thenM belongs toB if and only if M
belongs toBF".

We identify G and G and let B be the 2-block ofG corresponding taB. There
is a unique 2-block ofG x ¥ that coversB. We denote this block byB x X. Clearly
(BxZ)f=BTx x.

Lemma 16. The Brauer induced bIockﬁF’ X E)GZE is defined It is the unique
2-block of G :  that covers the bloclB ® B of G x G.

Proof. LetD be a defect group oB. ThenD x ¥ is a defect group oB™ x .
SinceCgx(DxX) = Cg(D)x T is contained inG x X, the induced block B™ x E)GZE
is defined [9, 5.3.6].

Let B®2 be the unique 2-block of; : ¥ that covers the 2-bloclB ® B of G x G.
So x** belongs toB®?, whenevery e Irr(B).

Now Cgx(0) =G x X. Each Brauer character @f x ¥ can be identified with a
Brauer character of;. Using Brauer's second main theorem [9, 5.4.2], we have

(1) x*(go)= Y. dS,0(e). forall geG of odd order,
felBr(G)

where thedy , are algebraic integers with the property tlagt, = 0, unlessy belongs

to a 2-block B, of G such that( By x E)GZE: B®2. On the other hand, the definition
gives

2) X“(gcr) =x (gz) =xM(g) = Z dyrg0(g), forall geG of odd order.
0€lBr(G)

But the irreducible Brauer characters 6f are linearly independent on the 2-regular
classes ofG. So (1) and (2) imply thatly , = d, 4, for all 6 € IBr(G). As dyry 70,

for somed e IBr(B™), we conclude thaf B™" x E)Gzz = B®?, O
The following lemma is a key step in the proof of Theorem 2.

Lemma 17. Restriction ¢%XE establishes a multiplicity preserving bijection be-
tween the components @&*|.x that have a vertex containin@ and the compo-
nents ofkQ that belong toB™".
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Proof. Let M be a component oB*|s«x that has a vertexy containing x.
Then X is contained in the kernel oM, as M is a trivial source module. Thus/
coincides with the inflation of the indecomposalgfemodule M |¢ to G x Z. In ad-
dition, M| has a vertexV/X.

The orbits of G x £ on theG:Z-setG are {CUC? | C a conjugacy class of7}.
Lemma 6 and Mackey'’s theorem imply that

kGlgys = Y k(CUCY).
C,ce

Also k(CucC?) = kchz(C)TQXE, for eachc € CUC?. Now Lemma 11 implies thakE <
Cgxx(c) if and only if ¢ € Q. Then by the Krull-Schmidt theorem is a component
of ke, (1 E*E, for somer € Q. But (kg s () 1€ F) b6 = kg 1€ We conclude that
M| is a component okS2.

Let B, be the 2-block ofG such thatﬁ”x ¥ containsM. As X <V, Lemma 5
forces Cg,2(V) < G x X. So by a Theorem of Nagao-Green [9, 5.3.12], the induced
block (B:F" x £)“'* containsB*. But (B, x £)°* = B#2, by Lemma 16. SaB*
belongs toB?z. This forces theG x G-module B to belong toB; ® B;. It follows
easily thatB = B;.

We can reverse the above argument to show thaf is a B™-component ofk<,
then the inflation ofN to G x X is a component oB*| .5 that has a vertex con-
taining X. O

Corollaries 4 and 15 give the implication (i}= (iii) of Theorem 2. Our next
result gives a direct proof of this and also produces somernmdtion on the vertices
of the components of<Q.

Corollary 18. Suppose that some componentis§t belongs toB. Then B is
strongly real More precisely let ¢ € G belongs to a real defect class &, let D
be a Sylow2-subgroup ofCg(c), and let E be a Sylow2-subgroup ofC¢(c) that con-
tains D. Suppose thatV is a component ok that belongs toB. Then there exists
t € QN (E\D) such thatN has a vertexV < Cp(z).

Proof. ClearlyN™ is also a component dfQ. Also V is a vertex of N, as G-
module. LetM be the inflation ofNF" to G x . Then Lemma 17 implies tha¥ is a
component ofB*|g«x. Now M has vertexV x . As M is a component oB*| s,
it follows that some vertex oB* containsV x X.

We established in Proposition 14 thBt(eo) is a vertex of B*. Then by the pre-
vious paragraph there existgi(g2) € G x G such that ¢ x )88 < D(es). In
particular o €182 = (g, g, (g;lgg)*l)o belongs toD(eo). Choosed € D such that
de = gl‘lgg. Thent ;= de belongs toQ2. So E = D{t) splits overD. In particularB is
strongly real. AlsoV 18 < Cp(ta). SOV <¢ Cp(t). O
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An important special case is that of a real 2-block of defexbzThe next result
was proved by R. Gow (in unpublished work), unifying resuftg4] and [10]. Gow'’s
proof used a pairing argument on L.L. Scott’s ‘orbital cltaeas’ defined with respect
to the involution module. Our proof uses Alperin-Scott miedu

Theorem 19. Suppose thaB is a real 2-block of defecD. Let x be the unique
irreducible character inB. Thenv(x) = +1. Let C be a real defect class oB and
let + € Q. Then (xlc,), leg)) = 1 or 0, depending on whether or netinverts an
element ofC.

Proof. Note thaty is the unique principal indecomposable characteBinThe
fact thatv(x) = +1 appears in [10] and independently in several otheregslatiere
it is a simple consequence of Lemma 3. It also follows front feenma that theG-
character ofCQ containsy with multiplicity 1.

Let ¢ € C and letr € Q be such that’ = ¢~1. The proof will be completed by
showing that{x | ¢, les@) 7 0.

Now Z(B*) = (B*)9*% is spanned by 4 Also B* has a trivial source. So
B*|gxx has a unique Scott component, and this component has sau@esp by }.
Proposition 14 implies thatle Trgxz(kG), for E < GxX if and only if (to) <¢ E.

It follows that the Scott component &*|s«x has vertex(ro).

An easy calculation shows thél;(r) x X coincides with the normalizer dfto) in
both Cs(#): = and G x X. The Green correspondence preserves Scott modules. Then,
using a result of D. Burry [9, 4.4.7], and the previous paagdr the Scott module
S(Cg(t) 1 Z; (to)) has multiplicity 1 as a component d&*|c,.x. The restriction of
S(Cg(t): Z; (to)) to C(t) x Cg(t) has a projective Scott component. We deduce that
Blcmxcsr) has a Scott component.

Let B be a lift of B to a G x G-module over a field of characteristic 0. Then
B has characteff ® x. Thus (X ® x)cemxco()» Leotyxco) iS the number of Scott
components 0B | c,xxcs)- But this inner product is

Yo k(@Y x(e2) = (xdeow Les) -

c1,c2€Cq(t)

It then follows from the previous paragraph th@tlc, (), 1co¢)) 7 O. ]

We can now prove that (iii)=- (ii) in Theorem 2. This completes the proof of
that theorem.

Corollary 20. Suppose thaB is strongly real Then erlrr(B) v(x)x(1s) > 0.

Proof. Letc € G belong to a real defect clags of B. Thenc is strongly real.
Fix a Sylow 2-subgroup of Cs(c) and a Sylow 2-subgrou@g of Ck(c) that contains
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D. Write E = D{t), wheret € Q.

We need a version of Brauer’s first main theorem. DMete the normalizer oD
in G and letb be the Brauer correspondent Bf with respect to G, N, D). Now b is
a real 2-block ofN, as ¢°)° = (b°)° = B, andb is the unique block okN such that
b =B. If 15 =Y g AxK*, then 3 =) . Ax(K N Cg(D))*. Here K ranges over the
classes ofG. Also wp(K*) = w, (K N Cg(D))*), for each conjugacy clask of G. It
follows that Cy := C N Cg(D) is a real defect class df.

SetN := N/D and letu be the naturak-algebra projectiork N — kN. Let C
be the conjugacy class df that containsc = Dc. Then u(C3) = ¢’ by [9, 5.8.9].
It follows that 1(1,) # 0. Write n(1,) =Y i-; 15, wherepa, ..., B, are distinct blocks
of N. As 1,, = 1,, it follows that there is a permutation of {1,...,s} such that
B¢ =B, fori=1,...,5. If i #it, an easy argument shows that1s, is supported
on the non-real classes of. But C is a real class oV whose sum appears with non-
zero multiplicity in «(1,). We deduce that there existssuch thatg; is a real 2-block
of N andC" appears with non-zero multiplicity ingl Setg := g;.

Now B has a trivial defect group, by [9, 5.8.7 (ii)], anGy(c) is odd, by [9,
5.8.9 (ii)]. It follows that C is a real defect class of. Let x be the unique irre-
ducible character in8. Now 7 is an involution in N that inverts an element of.
So by Theorem 19 we havéc, ). 1c, 7)) = 1. The preimage ofCy (7) in N is
Cy(Dt) = {n € N | t" € Dt}. Inflating x to N, we get(xc,(:), ley)) = 1. But
Cn(t) < Cn(Dt). SO {xcy) Leyw) 7 0. Let M be the unique irreduciblg-module.
Then we have just shown that is a h-composition factor ofkc,1". We deduce
from Lemma 17 thab*|y.x has a component with a vertex that contaiis

J.L. Alperin proved in [1] thath is a component ofB| yxy. SO b* is a compo-
nent of B*| yxy. This and the previous paragraph show ti&it| y.» has a compo-
nent with a vertex that contains. Applying Lemma 17, we deduce thaf2 has aB-
composition factor. We conclude from Corollary 4 tHat, .. v(x)x(1c) > 0. U

We conclude our paper with a small application of Theorem 2.GRw proved
the following result in [3, 5.6]:

Proposition 21. Let B be a real2-block let ¢ € G belong to a real defect class
of B, let D be a Sylow2-subgroup ofCg(c) and let D{e) be a Sylow2-subgroup of
CX(c). ThenB contains a real-valued irreducible character of heightind Frobenius-
Schur indicator—1 if and only if D{e)/D’ does not split oveD/D’.

It is known that each real 2-block has a real-valued irrdalacicharacter of
Frobenius-Schur indicator +1. So Theorem 2 and Propositbrrombine to give:

Corollary 22. Let B, D and D{(e) be as inProposition 21 Suppose thaD(e)/D’
splits overD/D’ but D{e) does not split overD. Then B contains a real-valued irre-
ducible character of height greater th& and Frobenius-Schur indicator1.
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