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Abstract
Let G be a finite group, letk be an algebraically closed field of characteristic2

and let� := fg 2 G j g2 = 1Gg. It is shown that for a blockB of kG, the permutation
modulek� has aB-composition factor if and only if the Frobenius-Schur indicator
of the regular character ofB is non-zero or equivalently if and only ifB is real with
a strongly real defect class.

1. Introduction

Let G be a finite group. In this paper we investigate the permutation module ofG acting by conjugation on its involutions, over a field of characteristic 2. This de-
velops the main theme of [10] and [8]. In the former paper G.R.Robinson considered
the projective components of this module. In the latter paper the author showed that
each such component is irreducible and self-dual and belongs to a 2-block of defect
zero. Here we investigate which 2-blocks have a compositionfactor in the involution
module. There are two apparently different ways of characterising such blocks. One
method is local and uses thedefect classesof the block. This gives rise to the defi-
nition of a strongly real 2-block. The other method is global and uses the Frobenius-
Schur indicators of the irreducible characters in the block. Our main result is Theo-
rem 2. The proof of this theorem requires Corollaries 4, 15, 18 and 20.

J.A. Green proved a number of results aboutp-blocks, using the observation that
the group algebra ofG is a module for the groupG � G. Here we shall exploit the
additional fact that the group algebra is a module for the wreath product ofG with a
cyclic group of order 2. This was also an essential tool in [8].

Throughout this paperk will be an algebraically closed field of characteristic 2.
There are various reasons why we limit ourselves to characteristic 2. Our wreath prod-
uct group is an extension ofG�G by a group of order 2. It is thus fairly uninterest-
ing, from the point of view of blocks over a field of characteristic not equal to 2. In
addition, the prime 2 is useful for studying the contragradient operator and real blocks,
as pairing arguments of various kinds can be employed.
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Recall also the following classical result. The Frobenius-Schur indicator�(�) of
a generalized character� of G is the integer (1=jGj)Pg2G �(g2). If � is absolutely
irreducible then�(�) = 0 or 1;�1, depending on whether� is not real-valued, or�
is real-valued and a�-module affords a symmetric, respectively anti-symmetricnon-
degenerateG-invariant bilinear form. Then Frobenius and Schur proved that j�j =P �(�)�(1G), where� := fg 2 G j g2 = 1Gg.

The reader may be interested to know that in odd characteristic, the geometric
type (quadratic or sympletic) of an irreducible self dual module is determined by the
Frobenius-Schur indicator of a real valued character whichcontains the Brauer charac-
ter of the module with odd multiplicity. It is an open problemas to whether there is
an analogous Frobenius-Schur indicator in characteristic2. See [11] for details.

A componentof a module is a direct summand of the module that is indecompos-
able. Following Green, a 2-block ofG is a component ofkG, considered as aG�G-
module in the usual way. For the rest of the paper we useB to denote a 2-block ofG.

A defect classof B is a conjugacy class ofG whose sum appears with non-zero
multiplicity in the block idempotent 1B , and on which the central character!B of B
does not vanish. Defect classes are known to exist and to consist of elements of odd
order.

The irreducible complex characters, Brauer characters andindecomposable mod-
ules ofG are partitioned among its 2-blocks. We use Irr(B), IBr(B) and Pic(B) to de-
note, respectively, the set of irreducible characters, theBrauer characters and the prin-
cipal indecomposable characters ofG that belong toB. We use to indicate the ir-
reducible Brauer character associated to9 2 Pic(B). If M is a G-module,M#H de-
notes the restriction ofM to H � G andM"K denotes the induction ofM to K � G.
Identical notation applies to the restriction and induction of characters. See [9] for any
additional unexplained notation.

The contragradient mapo is defined by
�P�gg�o =

P�gg�1. It is a k-algebra
involutary anti-automorphism ofkG. A block B is said to bereal if Bo = B. A con
jugacy classC of G is said to bereal if it coincides with the classCo of the inverses
of its elements. It is one of the main results of [5] that each 2-block has at least one
defect class that is real.

A real conjugacy class ofG is said to bestrongly real if it is the trivial class or
if its elements are inverted by involutions. This leads to the following key definition:

DEFINITION 1. A strongly real2-block is a real 2-block that has a strongly real
defect class.

It turns out that ifB is strongly real then each of its real defect classes is strongly
real. This was proved by Gow in [4]. Notice that the principal2-block is strongly real;
the identity class is a strongly real defect class.

We use 1G both for the identity element ofG and its trivial character. The set�
consisting of the involutions inG, together with 1G, forms aG-set under conjugation.
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We denote thekG-module with permutation basis� by k�. Our main result in this
paper is:

Theorem 2. Let B be a 2-block ofG. Then the following are equivalent:
(i) k� has aB-composition factor;
(ii)

P�2Irr(B) �(�)�(1G) > 0;
(iii) B is strongly real.

Let g be an element ofG. There is a unique decomposition ofhgi into a direct
product of a cyclic 2-groupE and a cyclic 20-groupO. So g = g2g20 = g20g2, for someg2 2 E andg20 2 O. We call g2 the 2-part, andg20 the 20-part, of g. Both are uniquely
determined byg.

In our first lemma we compute the multiplicity of an irreducible kG-module as a
composition factor ofk�.

Lemma 3. Let P be an irreduciblekG-module, let P be the projective cover ofP , and let8 2 Pic(G) be principal indecomposable character ofP . ThenP occurs
with multiplicity �(8) as a composition factor ofk�. In particular, �(8) � 0.

Proof. The number of solutions inG to the equationx2 = g, for fixed g 2G, is given by
P�2Irr(G) �(�)�(g). Let g 2 G be 2-regular and letx 2 G satisfyx2 = g. As x2 and x20 commute, we haveg = x2

2x2
20 = x2

20x2
2. So x2

2 = 1G and x2
20 =g20 . It follows that x2 2 �(CG(g)), while x20 = g1=2

20 is uniquely determined. Con-
versely, given any involutiont 2 CG(g), then tg1=2

20 is a solution tox2 = g in G. We
conclude that

P�2Irr(G) �(�)�(g) = j� \ CG(g)j coincides with the Brauer character
of k�. The lemma follows once we note that the virtual Brauer character of the re-
striction of the generalized character

P�2Irr(G) �(�)� to 2-regular elements is given byP92Pic(G) �(9) .

Our Corollary shows that (i)() (ii) in Theorem 2.

Corollary 4. The dimension of the sum of all submodules ofk� that belong toB is given by
P�2Irr(B) �(�)�(1G). In particular

P�2Irr(B) �(�)�(1G) � 0.

Proof. Both statements follow from Lemma 3 and the fact that

X
�2Irr(B)

�(1G)� =
X

92Pic(B)

 (1G)9:

Let P ;P and8 be as in Lemma 3. Suppose thatt 2 �. The Frobenius-Nakayama
reciprocity formula [9, 3.1.27] shows thatP occurs with multiplicityh8CG(t);1CG(t)i as
a composition factor of kCG(t)"G. Then, using the previous lemma, we get
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(c.f. [10, Lemma 1])

�(8) = h8;1Gi +Xt

8CG(t);1CG(t)� ;

where t ranges over a set of representatives for the conjugacy classes of involutions
in G.

We now proceed to the main construction needed for the proof of Theorem 2.
The wreath product groupG o 6 is the semi-direct product ofG � G with the

symmetric group6 on two symbols. Here the conjugation action of the involution � 26 on G � G is given by (g1; g2)� = (g2; g1), for all g1; g2 2 G. We shall use the
notations

g := (g; g) 2 G o6; for each g 2 G; and

X := fx j x 2 Xg � G o6; for each X � G:
We highlight the following crucial fact:

Lemma 5. The centralizer of� in G o6 is G�6.

Let R be a commutative ring. Then the group algebraRG is a right RG o 6-
module. For,RG is a RG�G-module viax � (g1; g2) = g�1

1 xg2, for eachx 2 RG andg1; g2 2 G. The action of� on RG is given by the contragradient involutionx �� = xo.
In more detail we have:

Lemma 6. The RG o6-module RG is isomorphic to the permutation module�RG�6�"Go6 .

Proof. The elements ofG form an RG o 6-invariant basis ofRG. Moreover ifg1; g2 2 G, then g2 = g1 � (g1; g2). So G is a transitiveG o 6-set. The stabilizer of
1G 2 RG in G o6 is G�6. The lemma follows from these facts.

Suppose thatE is a block algebra ofRG. SetE� := E+Eo. ThenE� is anRGo6-
submodule ofRG. If E 6= Eo, we haveE� = E"Go6 . If E = Eo, it is still useful to
distinguish between theRG � G-moduleE and theRG o 6-moduleE�, even though
the underlyingR-modules are the same.

Lemma 7. Let E1; : : : ; Er be the real blocks andEr+1; Eor+1; : : : ; Er+s; Eor+s be
the nonreal blocks ofRG. Then there is a unique indecomposable decomposition ofRG as RG o6-module:

RG = E�
1 � � � � � E�r+s :
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Proof. This follows from the indecomposable decompositionof RG into a direct
sum of its blocks algebras, asR(G�G)-module.

As a particular case, consider whenR = C. Let � 2 Irr(G) and letM be a CG-
module that affords� . We useE(�) to denote the corresponding Wedderburn compo-
nent EndC(M) of CG. Clearly E(�) has G�G-character � 
 � : (g1; g2) !��g�1

1

��(g2), for g1; g2 2 G. Suppose now that� = � is real valued. Then� 
 � =�
� has two (irreducible) extensions toGo6. These will be denoted by�+1 and��1.
Here if " 2 f�1g then � "(g1; g2)� = "�(g1g2), for all g1; g2 2 G. When � 6= � , the
next lemma shows why it is useful to denote the inducedG o6-character (� 
�)"Go6
by �0.

Lemma 8. Let � be an irreducible character ofG and letE(�)� be the corre-
spondingG o6-component ofCG. ThenE(�)� has character��(�).

Proof. This is obvious when�(�) = 0. So we may assume that� = � . Then


��1#G�6;1G�6 � =
1

2jGj
X
g2G

�� �g�1��(g)� � �g2�� =
1� �(�)

2
:

The result now follows from Lemma 6 and Frobenius reciprocity.

Recall the following result [7, Theorem 1] of Green. A modernproof is
[9, 5.10.8].

Lemma 9. Let D be a defect group ofB. ThenB has vertexD, as indecompos-
able k(G�G)-module.

We use this to make a preliminary observation about the vertices of the compo-
nentB� of theG o6-modulekG. This will be refined in Proposition 14.

Lemma 10. Let D be a defect group ofB. If B is not real thenD is a vertex
of B�; if B is real then there existse 2 NG(D), with e2 2 D, such thatDhe� i is a
vertex ofB�.

Proof. Suppose first thatB is not real. SoB� = B"Go6 . It then follows from
Lemma 9 thatB� has vertexD.

Suppose then thatB is real. Lemma 6 shows thatB� is G � 6-projective. We
choose a vertexV of B� so thatV � G � 6. Now B� is a quasi-permutation mod-
ule, G � G is a normal subgroup ofG o 6, and B�#G�G = B is indecomposable.
A variant of Lemma 9.7 of [2] then implies thatV \ (G � G) = V \ G is a vertex
of B. Using Lemma 9, we may chooseD so thatV \ G = D. As G o 6=G � G is
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a 2-group, and asB�#G�G is indecomposable, Green’s indecomposability theorem [6,
Theorem 8], implies thatV � (G�G). The last statement of the lemma follows from
this.

It is easy to compute the stabilizer subgroup of an elementg of the G o 6-setG
in the groupG�6. This subgroup will be denotedCG�6(g). We hope that the reader
will not confuse this group withCG�6(g) = CG(g)�6.

Lemma 11. Let g 2 G. If g is not G-conjugate tog�1, thenCG�6(g) = CG(g).
If gt = g�1, for t 2 G, thenCG�6(g) = CG(g)h t� i.

Proof. These statements follow from the fact thatg � � = g�1.

For H � G andM a kG-module, letMH denote the sum of all the trivialH -
submodules ofM#H . The relative trace map TrGH : MH ! MG is defined by TrGH (m) =Pm�g, for m 2 MH . Hereg ranges over any set of representatives for the right cosets
of H in G. We write TrGH (M), instead of TrGH (MH ), for the image of the trace map
on MH .

The reader is warned thatB� is generally not aG � 6-algebra, in the sense of
Green [7]. In particular, there is no Mackey-type decomposition of a product of the
form TrG�6X (a) TrG�6Y (b), for X; Y � G�6. However, we do have the following use-
ful result.

Lemma 12. Let A be ak-algebra and akG-module such that each element ofG
acts onA as ak-algebra automorphism or as ak-algebra anti-automorphism. Suppose
also thatAG is contained in the centreZ(A) of A. ThenAG a subalgebra ofZ(A).
Also TrGH (A) is an ideal ofAG, for eachH � G.

Proof. Write theG-action onA in exponential form. It is obvious that TrGH (A)
is a k-subspace ofA. Let a 2 A, z 2 AG and g 2 G. Suppose thatg acts as ak-algebra anti-automorphism. Thenagz =

�zg�1a�g = (za)g = (az)g. Similarly agz =
(az)g, if g acts as ak-algebra automorphism. It follows that the mapa ! az is akG-endomorphism ofA. In particular, if a 2 AH , then TrGH (a)z = TrGH (az). TakingH = G, we get thatAG is a subalgebra ofZ(A). More generally, we can conclude
that TrGH (A) is an ideal ofAG.

We will apply this Lemma to the algebraB� and the groupG � 6. Denote byZ�(kG) the � -fixed point subalgebra ofZ(kG). It has k-basis f(C [ Co)+g, whereC
ranges over the conjugacy classes ofG. Note thatZ(kG) = kGG andZ�(kG) = kGG�6 .



2-BLOCKS AND THE FROBENIUS-SCHUR INDICATOR 207

Corollary 13. Let P be a 2-subgroup ofG and let q 2 NG(P ) with q2 2 P .
Then
(i) Tr G�6P (kG) is an ideal ofZ�(kG) with k-basis f(X [ Xo)+g. Here X ranges over
the set of non-real conjugacy classes ofG such thatP contains a Sylow2-subgroup
of CG(x), for somex 2 X.
(ii) Tr G�6P hq� i(kG) is an ideal ofZ�(kG) with k-basis f(X [ Xo)+g [ fY +g. Here X has

the same meaning as in(i), while Y ranges over the the set of real conjugacy classes
of G such thatP contains a Sylow2-subgroup ofCG(y), and ypq = y�1, for somey 2 Y and p 2 P .

Proof. Lemma 12 implies that both TrG�6P (kG) and TrG�6P hq� i(kG) are ideals
of Z�(kG).

In general, suppose thatG is a finite group,H is a subgroup ofG, andM is a
permutationkG-module. Then it is well know that thek-space TrGH (M) has basis of
the form fO+g. HereO ranges over theG-orbits on the permutation basis such thatH contains a Sylow 2-subgroup of the stabilizer subgroup of some element ofO inG. The Corollary follows by applying this, and Lemma 11, to thegroupG � 6, its
subgroupsP andP hq� i and the modulekG.

If g is an element ofG, its extended centraliser is the following subgroup ofG:

C�G(g) :=
�x 2 G �� gx = g or g�1	 :

We can now identify the vertices ofB�.
Proposition 14. Suppose thatB is real. ThenB has a real defect class. Let 
 2G belong to a real defect class ofB, let D be a Sylow2-subgroup ofCG(
) and letDhei be a Sylow2-subgroup ofC�G(
). Then1B 2 TrG�6E (kG), for E � G�6 if and

only if Dhe� i �G E. AlsoDhe� i is a vertex ofB�.
Proof. To show thatB has a real defect class, we repeat the original argument of

Gow, from [4, Lemma 1.2], for the convenience of the reader. Write 1B =
P�KK+,

whereK runs over the conjugacy classes ofG and �K 2 k, for each classK. Then

1k = !B(1B) =
X �K!B(K+):

Now �K = �Ko and !B(K+) = !B(Ko+), asB is real. It follows that the contribution
of a nonreal classK and its inverse classKo to the above sum is 2�K!B(K+) = 0k.
So there must exist a real classC such that�C!B(C+) 6= 0k. Each suchC is a real
defect class ofB.

Now fix a real defect classC of B. So �C 6= 0k, using the notation of the previous
paragraph. Suppose that 1B 2 TrG�6E (kG), whereE � G � 6. Then Corollary 13
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implies that there exists
 2 C andD a Sylow 2-subgroup ofCG(
) andDhei a Sylow
2-subgroup ofC�G(
), such thatDhe� i � E.

Mackey’s Theorem implies that (B�)G�6 � P
TrG�6P\(G�6)(kG). Here P ranges

over the vertices ofB�. Corollary 13 implies that each subspace TrG�6P\(G�6)(kG) is
an ideal ofZ�(kG). But 1B is a primitive idempotent inZ�(kG). So by Rosenberg’s
lemma [9, 5.1.1], there exists a vertexV of B� such that 1B 2 TrG�6V\G�6(kG).

The last two paragraphs imply thatDhe� i �G V . But jDhe� ij = jV j, as a con-

sequence of Lemma 10. It follows that 1B 2 TrG�6Dhe� i(kG), and also thatDhe� i is a
vertex ofB�.

Our Corollary shows that (ii)=⇒ (iii) in Theorem 2.

Corollary 15. Suppose that there existsg 2 G such that
P�2Irr(B) �(�)�(g) > 0.

ThenB is real. Let Dhe� i be a vertex ofB�. Then there existsd 2 D such thatg2

is G-conjugate to(de)2. In particular, if g can be chosen to be2-regular, then B is
strongly real.

Proof. WhenB is the principal 2-block ofG, the result is true. So assume other-
wise. The hypothesis implies thatB is real, as it forces�(�) 6= 0, for some� 2 Irr(B).

Let (R;F; k) be a 2-modular system forG. Suppose thatB̂ is the block alge-
bra of RG such thatB = B̂=J (R)B̂. Then Lemma 8 shows that theG o 6-character
of B̂� is �B :=

P�2Irr(B) � �(�). Now B̂� and B� have the same vertices, as both are

trivial source modules [9, 4.8.9]. SoDhe� i is a vertex of B̂�. As �B ((1G; g)� ) =P�2Irr(B) �(�)�(g), the hypothesis is that�B ((1G; g)� ) 6= 0. It then follows from a

theorem of Green [9, 4.7.4] that the 2-part of (1G; g)� is contained in a vertex of̂B�.
But ((1G; g)� )2 = (1G; g2)

�g�1=2
20 ; g1=2

20 �� and
��g�1=2

20 ; g1=2
20 �� �(1G;g20 ) = � . In particular

((1G; g)� )2 is G o 6-conjugate to (1G; g2)� . So there existsg1; g2 2 G and d 2 D
such that (1G; g2)� = (de� )(g1;g2) =

�g�1
1 deg2; g�1

2 deg1
�� . This givesg�1

2 = g�1
1 de, and

hence alsog2 = [(de)2]g1.
Suppose thatg2 = 1G. Then (de)2 = 1G. So de is an involution that belongs

to DheinD. Then, using Proposition 14, we see that each real defect class of B is
strongly real, whenceB is strongly real.

Let K be a field and let� be a field automorphism of ofK. Suppose that
 is aK-representation ofG. Then we may form the representation
 � of G by applying �
to the matrix entries in
 (g), for eachg 2 G. If M is theKG-module corresponding
to 
 , we let M� denote theKG-module corresponding to
 � . This construction also
applies if � is an automorphism of a subfieldK0 of K, and
 is realisable overK0.

We use this to define the Frobenius twist of a module or character. The Frobenius
automorphism Fr ofk is given by�! �2, for � 2 k. Every C-representation ofG can
be realized overQ(� ), where � is a primitive jGjth root of unity. There is a Galois
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automorphism Fr ofQ(� ) given by � ! �2� 2
20 , for � 2 Q(� ). If M is a G-module,

with Brauer or ordinary character� , the Frobenius twist moduleMFr has character�Fr : g! ��g2
20g2

�
, for eachg in the domain of definition of� .

Note that
��Fr

�� � 2 Irr(B)
	

is the set of irreducible characters in a 2-blockBFr

of G. If M is an indecomposablekG-module, thenM belongs toB if and only if MFr

belongs toBFr.

We identify G andG and letB be the 2-block ofG corresponding toB. There
is a unique 2-block ofG�6 that coversB. We denote this block byB �6. Clearly
(B �6)Fr = BFr �6.

Lemma 16. The Brauer induced block
�BFr � 6�Go6 is defined. It is the unique

2-block ofG o6 that covers the blockB 
 B of G�G.

Proof. LetD be a defect group ofB. ThenD�6 is a defect group ofBFr�6.
SinceCGo6(D�6) = CG(D)�6 is contained inG�6, the induced block

�BFr�6�Go6
is defined [9, 5.3.6].

Let B
2 be the unique 2-block ofG o6 that covers the 2-blockB 
B of G�G.
So �+1 belongs toB
2, whenever� 2 Irr(B).

Now CGo6(� ) = G�6. Each Brauer character ofG�6 can be identified with a
Brauer character ofG. Using Brauer’s second main theorem [9, 5.4.2], we have

(1) �+1�g� � =
X

�2IBr(G )

d��;��(g); for all g 2 G of odd order,

where thed��;� are algebraic integers with the property thatd��;� = 0, unless� belongs

to a 2-blockB1 of G such that
�B1 � 6�Go6= B
2. On the other hand, the definition

gives

(2) �+1�g� � = � �g2� = �Fr(g) =
X

�2IBr(G )

d�Fr;��(g); for all g 2 G of odd order.

But the irreducible Brauer characters ofG are linearly independent on the 2-regular
classes ofG. So (1) and (2) imply thatd��;� = d�Fr;� , for all � 2 IBr(G ). As d�Fr;� 6= 0,

for some� 2 IBr
�BFr

�
, we conclude that

�BFr�6�Go6 = B
2.

The following lemma is a key step in the proof of Theorem 2.

Lemma 17. Restriction#G�6G establishes a multiplicity preserving bijection be-
tween the components ofB�#G�6 that have a vertex containing6 and the compo-
nents ofk� that belong toBFr.
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Proof. Let M be a component ofB�#G�6 that has a vertexV containing6.
Then 6 is contained in the kernel ofM, asM is a trivial source module. ThusM
coincides with the inflation of the indecomposableG-moduleM#G to G � 6. In ad-
dition, M#G has a vertexV =6.

The orbits ofG�6 on theG o6-setG are fC [Co j C a conjugacy class ofGg.
Lemma 6 and Mackey’s theorem imply that

kG#G�6 =
X
C;Co k(C [ Co):

Also k(C[Co) = kCG�6 (
)"G�6 , for each
 2 C[Co. Now Lemma 11 implies that6 �CG�6(
) if and only if 
 2 �. Then by the Krull-Schmidt theoremM is a component
of kCG�6 (t)"G�6 , for somet 2 �. But

�kCG�6 (t)"G�6�#G = kCG(t)"G. We conclude thatM#G is a component ofk�.
Let B1 be the 2-block ofG such thatB1

Fr�6 containsM. As 6 � V , Lemma 5
forcesCGo6(V ) � G � 6. So by a Theorem of Nagao-Green [9, 5.3.12], the induced

block
�B1

Fr � 6�Go6 containsB�. But
�B1

Fr � 6�Go6 = B
2
1 , by Lemma 16. SoB�

belongs toB
2
1 . This forces theG � G-moduleB to belong toB1 
 B1. It follows

easily thatB = B1.
We can reverse the above argument to show that ifN is a BFr-component ofk�,

then the inflation ofN to G � 6 is a component ofB�#G�6 that has a vertex con-
taining 6.

Corollaries 4 and 15 give the implication (i)=⇒ (iii) of Theorem 2. Our next
result gives a direct proof of this and also produces some information on the vertices
of the components ofk�.

Corollary 18. Suppose that some component ofk� belongs toB. Then B is
strongly real. More precisely, let 
 2 G belongs to a real defect class ofB, let D
be a Sylow2-subgroup ofCG(
), and letE be a Sylow2-subgroup ofC�G(
) that con-
tains D. Suppose thatN is a component ofk� that belongs toB. Then there existst 2 � \ (EnD) such thatN has a vertexV � CD(t).

Proof. ClearlyNFr is also a component ofk�. Also V is a vertex ofNFr, asG-
module. LetM be the inflation ofNFr to G�6. Then Lemma 17 implies thatM is a
component ofB�#G�6 . Now M has vertexV �6. As M is a component ofB�#G�6 ,
it follows that some vertex ofB� containsV �6.

We established in Proposition 14 thatDhe� i is a vertex ofB�. Then by the pre-
vious paragraph there exists (g1; g2) 2 G � G such that (V � 6)(g1;g2) � Dhe� i. In

particular� (g1;g2) =
�g�1

1 g2; �g�1
1 g2

��1�� belongs toDhe� i. Choosed 2 D such thatde = g�1
1 g2. Then t := de belongs to�. SoE = Dhti splits overD. In particularB is

strongly real. AlsoV (g1;g2) � CD( t� ). So V �G CD(t).
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An important special case is that of a real 2-block of defect zero. The next result
was proved by R. Gow (in unpublished work), unifying resultsin [4] and [10]. Gow’s
proof used a pairing argument on L.L. Scott’s ‘orbital characters’ defined with respect
to the involution module. Our proof uses Alperin-Scott modules.

Theorem 19. Suppose thatB is a real 2-block of defect0. Let � be the unique
irreducible character inB. Then �(�) = +1. Let C be a real defect class ofB and
let t 2 �. Then h�#CG(t);1CG(t)i = 1 or 0, depending on whether or nott inverts an
element ofC.

Proof. Note that� is the unique principal indecomposable character inB. The
fact that �(�) = +1 appears in [10] and independently in several other places. Here
it is a simple consequence of Lemma 3. It also follows from that lemma that theG-
character ofC� contains� with multiplicity 1.

Let 
 2 C and let t 2 � be such that
t = 
�1. The proof will be completed by
showing thath�#CG(t);1CG(t)i 6= 0.

Now Z(B�) = (B�)G�6 is spanned by 1B . Also B� has a trivial source. SoB�#G�6 has a unique Scott component, and this component has socle spanned by 1B .

Proposition 14 implies that 1B 2 TrG�6E (kG), for E � G�6 if and only if h t� i �G E.
It follows that the Scott component ofB�#G�6 has vertexh t� i.

An easy calculation shows thatCG(t)�6 coincides with the normalizer ofh t� i in
both CG(t) o6 andG�6. The Green correspondence preserves Scott modules. Then,
using a result of D. Burry [9, 4.4.7], and the previous paragraph, the Scott moduleS(CG(t) o 6; h t� i) has multiplicity 1 as a component ofB�#CG(t)o6 . The restriction ofS(CG(t) o6; h t� i) to CG(t)�CG(t) has a projective Scott component. We deduce thatB#CG(t)�CG(t) has a Scott component.

Let B̂ be a lift of B to a G � G-module over a field of characteristic 0. ThenB̂ has character� 
 � . Thus h(� 
 �)#CG(t)�CG(t);1CG(t)�CG(t)i is the number of Scott
components ofB#CG(t)�CG(t). But this inner product is

X

1;
22CG(t)�

�
�1
1

��(
2) =

�#CG(t);1CG(t)�2 :

It then follows from the previous paragraph thath�#CG(t);1CG(t)i 6= 0.

We can now prove that (iii)=⇒ (ii) in Theorem 2. This completes the proof of
that theorem.

Corollary 20. Suppose thatB is strongly real. Then
P�2Irr(B) �(�)�(1G) > 0.

Proof. Let 
 2 G belong to a real defect classC of B. Then 
 is strongly real.
Fix a Sylow 2-subgroupD of CG(
) and a Sylow 2-subgroupE of C�G(
) that contains
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D. Write E = Dhti, where t 2 �.
We need a version of Brauer’s first main theorem. LetN be the normalizer ofD

in G and letb be the Brauer correspondent ofB with respect to (G;N;D). Now b is
a real 2-block ofN , as (bo)G = (bG)o = B, andb is the unique block ofkN such thatbG = B. If 1B =

PK �KK+, then 1b =
PK �K (K \ CG(D))+. HereK ranges over the

classes ofG. Also !B(K+) = !b ((K \ CG(D))+), for each conjugacy classK of G. It
follows thatC1 := C \ CG(D) is a real defect class ofb.

Set N := N=D and let� be the naturalk-algebra projectionkN ! kN . Let C
be the conjugacy class ofN that contains
 = D
. Then�(C+

1 ) = C +
, by [9, 5.8.9].

It follows that �(1b) 6= 0. Write �(1b) =
Psi=1 1�i , where�1; : : : ; �s are distinct blocks

of N . As 1bo = 1b, it follows that there is a permutation� of f1; : : : ; sg such that�oi = �i� , for i = 1; : : : ; s. If i 6= i� , an easy argument shows that 1�i +1�i� is supported
on the non-real classes ofN . But C is a real class ofN whose sum appears with non-
zero multiplicity in �(1b). We deduce that there existsi such that�i is a real 2-block
of N andC +

appears with non-zero multiplicity in 1�i . Set� := �i .
Now � has a trivial defect group, by [9, 5.8.7 (ii)], andCN (
 ) is odd, by [9,

5.8.9 (ii)]. It follows that C is a real defect class of�. Let � be the unique irre-
ducible character in�. Now t is an involution inN that inverts an element ofC.
So by Theorem 19 we have


�CN ( t );1CN ( t )� = 1. The preimage ofCN ( t ) in N isCN (Dt) := fn 2 N j tn 2 Dtg. Inflating � to N , we get h�CN (Dt);1CN (Dt)i = 1. ButCN (t) � CN (Dt). So h�CN (t);1CN (t)i 6= 0. Let M be the unique irreducible�-module.
Then we have just shown thatM is a b-composition factor ofkCN (t)"N . We deduce
from Lemma 17 thatb�#N�6 has a component with a vertex that contains6.

J.L. Alperin proved in [1] thatb is a component ofB#N�N . So b� is a compo-
nent of B�#N�N . This and the previous paragraph show thatB�#N�6 has a compo-
nent with a vertex that contains6. Applying Lemma 17, we deduce thatk� has aB-
composition factor. We conclude from Corollary 4 that

P�2Irr(B) �(�)�(1G) > 0.

We conclude our paper with a small application of Theorem 2. R. Gow proved
the following result in [3, 5.6]:

Proposition 21. Let B be a real2-block, let 
 2 G belong to a real defect class
of B, let D be a Sylow2-subgroup ofCG(
) and letDhei be a Sylow2-subgroup ofC�G(
). ThenB contains a real-valued irreducible character of height0 and Frobenius-
Schur indicator�1 if and only ifDhei=D0 does not split overD=D0.

It is known that each real 2-block has a real-valued irreducible character of
Frobenius-Schur indicator +1. So Theorem 2 and Proposition21 combine to give:

Corollary 22. Let B;D andDhei be as inProposition 21.Suppose thatDhei=D0
splits overD=D0 but Dhei does not split overD. ThenB contains a real-valued irre-
ducible character of height greater that0 and Frobenius-Schur indicator�1.
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