

Title	Regular subrings of a polynomial ring. II
Author(s)	Miyanishi, Masayoshi
Citation	Osaka Journal of Mathematics. 1982, 19(4), p. 901-921
Version Type	VoR
URL	https://doi.org/10.18910/8875
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

REGULAR SUBRINGS OF A POLYNOMIAL RING, II

Dedicated to Professor Yozô Matsushima on his sixtieth birthday

MASAYOSHI MIYANISHI

(Received December 26, 1980)

Introduction. This is a continuation of the previous work of the author's [7] on a finitely generated, two-dimensional, regular subring contained in a polynomial ring. Let k be an algebraically closed field of characteristic zero, which we fix as the ground field throughout this article. Let $X=\text{Spec}(A)$ be a nonsingular affine surface defined over k . An A^1 -fibration on X over a curve Y is a surjective morphism $\rho: X \rightarrow Y$ from X to a nonsingular curve Y whose general fibers are isomorphic to the affine line A_k^1 . It is known that every fiber of ρ is supported by a disjoint union of irreducible components, each of which is isomorphic to A_k^1 (cf. [7]). Let $F=\rho^*(P)$ be a fiber of ρ lying over a point P of Y , and write $F=\sum_{i=1}^s n_i C_i$, where C_i is isomorphic to A_k^1 and $n_i > 0$ for every i . We say that F is a *singular fiber of the first kind* (resp. *the second kind*) if $s \geq 2$ and $n_i=1$ for some i (resp. $n_i \geq 2$ for every i). We also say that F is a *multiple fiber of multiplicity μ* if $\mu:=\text{G.C.D.}(n_1, \dots, n_s) > 1$.

Let $R:=k[u_1, \dots, u_r]$ be a polynomial ring of dimension r over k , and let A be a finitely generated, two-dimensional, regular k -subalgebra of R . Let $X:=\text{Spec}(A)$, which is a nonsingular affine rational surface. We know that the group A^* of invertible elements of A coincides with $k^*:=k-(0)$, that X has logarithmic Kodaira dimension $\kappa(X)=-\infty$, and that A is isomorphic to a polynomial ring of dimension 2 over k provided A is a unique factorization domain (cf. [7]). The condition that $\kappa(X)=-\infty$ implies that there exists an A^1 -fibration $\rho: X \rightarrow Y$ over a nonsingular curve Y (cf. Miyanishi-Sugie [8], Fujita [2]). In the present case, since X is dominated by the affine r -space $A_k^r=\text{Spec}(R)$, Y is isomorphic to A_k^1 or the projective line P_k^1 .

The purpose of this paper is to study the converse: When is a nonsingular affine surface X with an A^1 -fibration ρ over A_k^1 or P_k^1 dominated by A_k^r ($r \geq 2$)? If $X=\text{Spec}(A)$ has an A^1 -fibration over A_k^1 , we can give the following criterion (Theorem 3.3):

X is dominated by A_k^r , that is, A is contained in R as a k -subalgebra, if and only if ρ has at most one singular fiber of the second kind.

This is done by solving a Diophantine equation in $k[u_1, \dots, u_r]$ (Theorem 1.2). Meanwhile, if $X = \text{Spec}(A)$ has an A^1 -fibration over \mathbf{P}_k^1 , the situation becomes very much complicated. Namely, in order to discuss the embeddability of A into $k[u_1, \dots, u_r]$ in full generality, we have to know what the solutions of the following Diophantine equation in $k[u_1, \dots, u_r]$ look like:

$$x_1^{a_1} \cdots x_l^{a_l} + y_1^{b_1} \cdots y_m^{b_m} + z_1^{c_1} \cdots z_n^{c_n} = 0,$$

where $a_i \geq 2$, $b_j \geq 2$, $c_s \geq 2$ for every index i ($1 \leq i \leq l$), j ($1 \leq j \leq m$), s ($1 \leq s \leq n$). We only give partial answers to the embeddability problem in terms of multiple fibers of ρ , which are stated as follows:

(1) Assume that A is contained in R as a k -subalgebra. Then the fibration ρ has at most three multiple fibers. If ρ has three multiple fibers, their multiplicities $\{\mu_1, \mu_2, \mu_3\}$ are given, up to permutation, by one of the following triplets: $\{2, 2, n\}$ ($n \geq 2$), $\{2, 3, 3\}$, $\{2, 3, 4\}$ and $\{2, 3, 5\}$ (cf. Theorem 3.5).

(2) Assume, conversely, that ρ satisfies the following two conditions:

(i) ρ has no singular fibers of the second kind except at most three multiple fibers, each of which is supported by a single irreducible component;

(ii) if ρ has three multiple fibers, the set of multiplicities $\{\mu_1, \mu_2, \mu_3\}$ is, up to permutation, one of the triplets given in the assertion (1).

Then A is contained in a polynomial ring as a k -subalgebra (cf. Theorem 3.7).

In order to obtain these results, we consider an affine hypersurface S_{p_1, p_2, p_3} in $\mathbf{A}_k^3 = \text{Spec}(k[x_1, x_2, x_3])$ defined by an equation

$$x_1^{p_1} + x_2^{p_2} + x_3^{p_3} = 0 \quad \text{with } p_1, p_2, p_3 \geq 2,$$

and also a complete intersection $\Sigma_{p_1, p_2, p_3, p_4}$ in $\mathbf{A}_k^4 = \text{Spec}(k[x_1, x_2, x_3, x_4])$ defined by equations

$$x_1^{p_1} + x_2^{p_2} + x_3^{p_3} = 0 \quad \text{and} \quad ax_1^{p_1} + x_2^{p_2} + x_4^{p_4} = 0$$

with $p_1, p_2, p_3, p_4 \geq 2$ and $a \in k - \{0, 1\}$. Indeed, we have to compute $\bar{\kappa}(S_{p_1, p_2, p_3}^*)$, where $S_{p_1, p_2, p_3}^* = S_{p_1, p_2, p_3} - (0)$, and determine when there exists a dominant morphism from \mathbf{A}_k^r to S_{p_1, p_2, p_3}^* or $\Sigma_{p_1, p_2, p_3, p_4}^* := \Sigma_{p_1, p_2, p_3, p_4} - (0)$ (cf. Theorems 2.8 and 2.15).

The terminology and the notations in this article conform to the use in the previous paper [7] and the general current practice. We shall list up the notations in frequent use.

\mathbf{A}_k^r : the affine space of dimension r defined over k ;

\mathbf{P}_k^r : the projective space of dimension r defined over k ;

$\bar{\kappa}(X)$: the logarithmic Kodaira dimension of a nonsingular algebraic variety X ;

A^* : the multiplicative group consisting of the invertible elements of A ;

(a_1, \dots, a_n) (or $G.C.D. (a_1, \dots, a_n)$): the greatest common divisor of positive integers a_1, \dots, a_n ;

L.C.M. (a_1, \dots, a_n): the least common multiple of positive integers a_1, \dots, a_n ;
 $\{a_1, \dots, a_n\}$: an n -tuple of integers;

$D \sim D'$: a divisor D is linearly equivalent to a divisor D' ;

For a dominant morphism $\pi: X \rightarrow C$ and a point P of C , π^*P denotes the (scheme-theoretic) complete inverse image, and $\pi^{-1}(P)$ denotes the set-theoretic inverse image.

1. A Diophantine equation, I

1.1. Let $R := k[u_1, \dots, u_r]$ be a polynomial ring of dimension r over k . Let us consider a Diophantine equation in $(m+n)$ -variables,

$$x_1^{a_1} \cdots x_m^{a_m} - y_1^{b_1} \cdots y_n^{b_n} = 1, \quad \dots \quad (1)$$

where $m, n \geq 1$ and a_i 's and b_j 's are integers larger than 1, and look for its solutions in R . A solution $\{x_i = f_i, y_j = g_j; 1 \leq i \leq m, 1 \leq j \leq n\}$ is called a *constant solution* if $f_i \in k$ and $g_j \in k$ for every i and every j . Otherwise, it is called a *non-constant solution*.

1.2. We shall prove the following

Theorem. *A non-constant solution of the equation (1) in R has one of the following forms:*

(1) $x_i = 0$ for some $1 \leq i \leq m$, $y_j = c_j \in k$ for every $1 \leq j \leq n$, where $c_1^{b_1} \cdots c_n^{b_n} = -1$;

(2) $y_j = 0$ for some $1 \leq j \leq n$, and $x_i = c_i \in k$ for every $1 \leq i \leq m$, where $c_1^{a_1} \cdots c_m^{a_m} = 1$.

The proof will be given in the paragraph 1.3.

1.3. Let $\{x_i = f_i, y_j = g_j\}$ be a non-constant solution such that $f_i \notin k$ and $g_j \notin k$ for some i and j . By reducing the number of variables in the equation (1) if necessary, we may assume that $f_i \notin k$ and $g_j \notin k$ for every $1 \leq i \leq m$ and every $1 \leq j \leq n$.

On the other hand, we may assume that R is a polynomial ring in one variable u . In effect, let $\gamma_1(u), \dots, \gamma_r(u)$ be sufficiently general polynomials in $k[u]$, and let $\varphi_i := f_i(\gamma_1(u), \dots, \gamma_r(u))$ and $\psi_j := g_j(\gamma_1(u), \dots, \gamma_r(u))$. Then $\{x_i = \varphi_i, y_j = \psi_j\}$ is a non-constant solution of the equation (1) in $k[u]$ such that $\varphi_i \notin k$ and $\psi_j \notin k$ for every $1 \leq i \leq m$ and every $1 \leq j \leq n$. Such polynomials $\gamma_1(u), \dots, \gamma_r(u)$ exist because k is an infinite field. If we can show the non-existence of such a solution in $k[u]$, it implies the non-existence of a non-constant solution of (1) in R such that $f_i \notin k$ and $g_j \notin k$ for some i and j . Thus, we may assume that $R = k[u]$.

By replacing again the equation (1) by an equation of the same kind in more unknowns if necessary, we may assume that $f_i = c_i(u - \alpha_i)$ and $g_j = d_j(u_j - \beta_j)$,

where $c_i, \alpha_i, d_j, \beta_j \in k$, and $\alpha_i \neq \alpha_{i'}, \beta_j \neq \beta_{j'}$ whenever $i \neq i'$ and $j \neq j'$. Finally, we obtain a relation in a variable u ,

$$c(u-\alpha_1)^{a_1} \cdots (u-\alpha_m)^{a_m} - d(u-\beta_1)^{b_1} \cdots (u-\beta_n)^{b_n} = 1, \quad \dots \dots \dots (2)$$

where $c, d \in k^*$. We shall show that such identity in u is impossible.

Note that every α_i is distinct from β_1, \dots, β_n and every β_j is distinct from $\alpha_1, \dots, \alpha_m$. By differentiating both hand sides of the equation (2) in u , we obtain a relation,

$$c \prod_{i=1}^m (u-\alpha_i)^{a_i} \cdot \left\{ \sum_{i=1}^m \frac{a_i}{u-\alpha_i} \right\} = d \prod_{j=1}^n (u-\beta_j)^{b_j} \cdot \left\{ \sum_{j=1}^n \frac{b_j}{u-\beta_j} \right\}. \quad \dots \dots \dots (3)$$

Note that we have

$$\deg \left(\prod_{i=1}^m (u-\alpha_i) \cdot \left\{ \sum_{i=1}^m \frac{a_i}{u-\alpha_i} \right\} \right) \leq m-1, \text{ and}$$

$$\deg \left(\prod_{j=1}^n (u-\beta_j) \cdot \left\{ \sum_{j=1}^n \frac{b_j}{u-\beta_j} \right\} \right) \leq n-1.$$

Since $a_i \geq 2$ and $b_j \geq 2$ by assumption, the relation (3) implies that

$$\prod_{j=1}^n (u-\beta_j) \cdot \left\{ \sum_{j=1}^n \frac{b_j}{u-\beta_j} \right\}$$

is divisible by $\prod_{i=1}^m (u-\alpha_i)$. Hence we obtain $m \leq n-1$. Similarly, we have $n \leq m-1$. This is a contradiction. Therefore, we have shown that if $\{x_i = f_i, y_j = g_j\}$ is a non-constant solution of the equation (1), then either $f_i \in k$ for every $1 \leq i \leq m$ or $g_j \in k$ for every $1 \leq j \leq n$.

Suppose that the first case takes place, i.e., $f_i = c_i \in k$ for every $1 \leq i \leq m$. Then $g_j \notin k$ for some j . If $\prod_{i=1}^m c_i^{a_i} \neq 1$, then g_j would be a unit in R ; this is a contradiction. Hence $\prod_{i=1}^m c_i^{a_i} = 1$, and $g_j = 0$ for some j . The other case can be treated in a similar way. Q.E.D.

2. A Diophantine equation, II

2.1. In this section, we shall consider a Diophantine equation

$$x_1^{p_1} + x_2^{p_2} + x_3^{p_3} = 0, \quad \dots \dots \dots (4)$$

where p_1, p_2 and p_3 are integers larger than 1, and look for non-constant solutions in $R := k[u_1, \dots, u_r]$. Let S_{p_1, p_2, p_3} be the affine hypersurface in $A_k^3 := \text{Spec}(k[x_1, x_2, x_3])$ defined by the equation (4), and let $S_{p_1, p_2, p_3}^* := S_{p_1, p_2, p_3} - (0)$, where (0) is the point $(0, 0, 0)$. When there is no fear of confusion, we denote S_{p_1, p_2, p_3} and S_{p_1, p_2, p_3}^* simply by S and S^* , respectively. It is easy to see that S

is a normal surface with the unique singular point (0) . The resolution of singularity of S at the point (0) is completely understood (cf. Orlik-Wagreich [10]). We recall some of the results which we need in our subsequent arguments.

2.2. Let G_m be the multiplicative group scheme defined over k . We need the following:

Lemma. *Let X be a nonsingular quasi-projective surface with an effective separated G_m -action. Assume that X has no fixed points. Let $Y:=X/G_m$ be the quotient variety and let $\pi: X \rightarrow Y$ be the canonical projection. Then we have:*

- (1) Y is a nonsingular curve;
- (2) $\pi^{-1}(y) \cong A_*^1$ for every point $y \in Y$, where A_*^1 is the affine line A_k^1 with one point deleted off;
- (3) π^*y is a multiple fiber with multiplicity μ if and only if the stabilizer group σ_x is a cyclic group of order μ for a point x in $\pi^{-1}(y)$.

Proof. Let x be a point of X . By virtue of Sumihiro [11; Cor. 2], there exists a G_m -stable affine open neighborhood $U:=\text{Spec}(A)$ of x . Let B be the subalgebra of G_m -invariants in A . Then $\bar{U}:=\text{Spec}(B)$ is an affine open neighborhood of $y:=\pi(x)$. Since A is regular, B is normal. Hence Y is a nonsingular curve. It is known by the theory of quotient varieties with respect to reductive group actions (e.g., Mumford [9; Chap. 1]) that $\pi^{-1}(y)$ consists of a single orbit under the stated assumption. Hence the assertion (2) holds.

Consider a G_m -equivariant completion $X \rightarrow Z$, where we may assume that Z is a nonsingular projective surface (cf. Sumihiro [11]). Let $O(x)$ be the orbit through x , and let C be the closure of $O(x)$ in Z . Then C contains a fixed point z . We can find a system of local coordinates (u, v) at z such that $u=0$ defines a branch of C through z and the induced G_m -action on the tangent space $T_{z,z}$ is normalized as $t(\xi, \eta) = (t^\alpha \xi, t^\beta \eta)$, where $t \in k^*$, α and β are integers and $\xi = \partial/\partial u$ and $\eta = \partial/\partial v$. Replacing the G_m -action $(t, z) \mapsto {}^t z$ on Z by a G_m -action $(t, z) \mapsto {}^{t^{-1}} z$ and interchanging the roles of u and v if necessary, we may assume that $\beta > 0$. Since $\hat{\mathcal{O}}_{z,z} \cong k[[u, v]]$, α and β are prime to each other; if $\alpha=0$ then $\beta=1$. Let $y:=\pi(x)$. Then $\hat{\mathcal{O}}_{y,Y} \cong k[[u^\beta v^{-\alpha}]]$, and the orbit $O(x)$ is defined by $u=0$ in a neighborhood of z . Hence the multiplicity of π^*y is β , and the stabilizer group of a point (hence of the point x) of the orbit $O(x)$ is $\mathbb{Z}/\beta\mathbb{Z}$. Hence the assertion (3) holds true. Q.E.D.

2.3. Let p_1, p_2 and p_3 be the same as for the equation (4). Let $d:=L.C.M.(p_1, p_2, p_3)$ and define the integers q_i ($1 \leq i \leq 3$) by $d=p_i q_i$. The group scheme G_m acts effectively on S_{p_1, p_2, p_3}^* by

$$t(x_1, x_2, x_3) = (t^{q_1} x_1, t^{q_2} x_2, t^{q_3} x_3).$$

Then S_{p_1, p_2, p_3}^* has no fixed points. Let $C:=S^*/G_m$ and let $\pi: S^* \rightarrow C$ be the

canonical projection. Then we have:

Lemma. (1) *The genus g of C is given by*

$$g = \frac{d^2}{2q_1q_2q_3} - \frac{d}{2} \left\{ \frac{(q_1, q_2)}{q_1q_2} + \frac{(q_2, q_3)}{q_2q_3} + \frac{(q_3, q_1)}{q_3q_1} \right\} + 1.$$

(2) π has no multiple fibers but possibly $\frac{d(q_1, q_2)}{q_1q_2}$ fibers with multiplicity (q_1, q_2) , $\frac{d(q_2, q_3)}{q_2q_3}$ fibers with multiplicity (q_2, q_3) and $\frac{d(q_3, q_1)}{q_3q_1}$ fibers with multiplicity (q_3, q_1) .

Proof. (1) Let T be the hypersurface in $\mathbf{A}_k^3 := \text{Spec}(k[y_1, y_2, y_3])$ defined by $y_1^d + y_2^d + y_3^d = 0$, and let $T^* := T - (0)$. Let $\Phi: T^* \rightarrow S^*$ be the morphism defined by $(x_1, x_2, x_3) \mapsto (y_1^{q_1}, y_2^{q_2}, y_3^{q_3})$. Let G_m act on T^* via $t(y_1, y_2, y_3) = (ty_1, ty_2, ty_3)$. Then Φ is a G_m -equivariant morphism. Let $D := T^*/G_m$. Then Φ induces a surjective morphism $\varphi: D \rightarrow C$ such that $\pi \cdot \Phi = \varphi \cdot \pi'$, where $\pi': T^* \rightarrow D$ is the canonical quotient morphism. Then it is easy to show that $\deg \varphi = q_1q_2q_3$ and the morphism φ ramifies at d points (on D) with ramification index $q_3(q_1, q_2)$, at d points with ramification index $q_2(q_3, q_1)$ and at d points with ramification index $q_1(q_2, q_3)$. Since D has genus $\frac{1}{2}(d-1)(d-2)$, the genus g of C is obtained by the Riemann-Hurwitz formula applied to $\varphi: D \rightarrow C$. The assertion (2) can be verified by means of Lemma 2.2. Q.E.D.

2.4. Let p_i ($1 \leq i \leq 4$) be integers larger than 1. Let $\Sigma_{p_1, p_2, p_3, p_4}$ be the surface in $\mathbf{A}_k^4 := \text{Spec}(k[x_1, x_2, x_3, x_4])$ defined by equations,

$$x_1^{p_1} + x_2^{p_2} + x_3^{p_3} = 0 \quad \text{and} \quad ax_1^{p_1} + x_2^{p_2} + x_4^{p_4} = 0,$$

where $a \in k - \{0, 1\}$. Let $\Sigma_{p_1, p_2, p_3, p_4}^* := \Sigma_{p_1, p_2, p_3, p_4} - (0)$; we denote these objects by Σ and Σ^* if there is no fear of confusion. Then Σ^* is a nonsingular surface with an effective action of the group scheme G_m defined by

$$t(x_1, x_2, x_3, x_4) = (t^{q_1}x_1, t^{q_2}x_2, t^{q_3}x_3, t^{q_4}x_4),$$

where the integers q_i ($1 \leq i \leq 4$) are defined by

$$d = p_i q_i \quad (1 \leq i \leq 4) \quad \text{and} \quad d = L.C.M. (p_1, p_2, p_3, p_4).$$

The G_m -action on Σ^* given above has no fixed points. Let $C := \Sigma^*/G_m$ and let $\pi: \Sigma^* \rightarrow C$ be the canonical quotient morphism. We have the following:

Lemma. (1) *The genus g of C is given by the formula:*

$$g = \frac{d^3}{q_1q_2q_3q_4} - \frac{d^2}{2} \left\{ \frac{(q_1, q_2, q_3)}{q_1q_2q_3} + \frac{(q_1, q_2, q_4)}{q_1q_2q_4} + \frac{(q_1, q_3, q_4)}{q_1q_3q_4} + \frac{(q_2, q_3, q_4)}{q_2q_3q_4} \right\} + 1.$$

(2) π has no multiple fibers but possibly $\frac{d^2(q_1, q_2, q_3)}{q_1q_2q_3}$ fibers with multiplicity (q_1, q_2, q_3) , $\frac{d^2(q_1, q_2, q_4)}{q_1q_2q_4}$ fibers with multiplicity (q_1, q_2, q_4) , $\frac{d^2(q_1, q_3, q_4)}{q_1q_3q_4}$ fibers with multiplicity (q_1, q_3, q_4) and $\frac{d^2(q_2, q_3, q_4)}{q_2q_3q_4}$ fibers with multiplicity (q_2, q_3, q_4) .

Proof. Similar to the proof of Lemma 2.3.

2.5. As an application of Lemma 2.4, we have the following examples:

$\{p_1, p_2, p_3, p_4\}$	$g(\Sigma^*/G_m)$	multiple fibers of $\pi: \Sigma^* \rightarrow C := \Sigma^*/G_m$
$\{2, 2, 2, 2s\}$	1	4 fibers with multiplicity s
$\{2, 2, 2, 2s+1\}$	0	4 fibers with multiplicity $2s+1$
$\{2, 2, 3, 3\}$	2	no multiple fibers
$\{2, 2, 3, 4\}$	0	2 fibers with multiplicity 2 4 fibers with multiplicity 3
$\{2, 2, 3, 5\}$	0	2 fibers with multiplicity 5 2 fibers with multiplicity 3

2.6. From this paragraph on up to 2.14, we shall retain the notations of 2.1. Let $p'_1 := p_1/(q_2, q_3)$, $p'_2 := p_2/(q_1, q_3)$ and $p'_3 := p_3/(q_1, q_2)$; p'_i ($1 \leq i \leq 3$) are integers because, for example, $d = p_1q_1$ and $(q_1, (q_2, q_3)) = 1$ imply that p_1 is divisible by (q_2, q_3) . As an easy application of Lemma 2.3, we know that $g=0$ (resp. $g=1$, resp. $g>1$) if and only if $\frac{1}{p'_1} + \frac{1}{p'_2} + \frac{1}{p'_3} > 1$ (resp. $=1$, resp. <1).

2.7. We have the following:

Lemma. Assume that $p_1 \leq p_2 \leq p_3$ and $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = 1$. Then we have:

- (1) $\{p_1, p_2, p_3\} = \{2, 3, 6\}$, $\{2, 4, 4\}$ or $\{3, 3, 3\}$.
- (2) $C := \Sigma^*/G_m$ is a nonsingular elliptic curve, and $\pi: \Sigma^* \rightarrow C$ has no multiple fibers, i.e., Σ^* is an A_*^1 -bundle over C .

(3) Let $b := d/q_1q_2q_3$. Then $b=1, 2, 3$ for $\{p_1, p_2, p_3\} = \{2, 3, 6\}$, $\{2, 4, 4\}$ and $\{3, 3, 3\}$, respectively. There exists an invertible sheaf \mathcal{L} of degree b over C such that the ruled surface $V := \text{Proj}(\mathcal{O}_C \oplus \mathcal{L})$ over C with the zero section M_0 and the infinity section M_∞ deleted off is isomorphic to Σ^* .

- (4) $\bar{\kappa}(S^*) = 0$.

Proof. (1) follows from a well-known straightforward computation. (2) follows from Lemma 2.3. Since Σ^* is an A_*^1 -bundle over C , Σ^* is obtained from a ruled surface in the way as specified in the assertion (3). Then $(M_0^2) = -b$, $(M_\infty^2) = b$ and $(M_0 \cdot M_\infty) = 0$. The number $b := \deg \mathcal{L}$ is equal to $d/q_1q_2q_3$,

because M_0 is the unique exceptional curve which arises from the minimal resolution of singularity of the point $(0, 0, 0)$ of S (cf. Orlik-Wagreich [10]). Note that the canonical divisor K_V of V is linearly equivalent to $-M_0 - M_\infty$. The boundary divisor of S^* in V is $D := M_0 + M_\infty$. Hence $D + K_V \sim 0$. Therefore, we have $\kappa(S^*) = 0$. Q.E.D.

2.8. We shall prove

Theorem (cf. Iitaka [4]). S_{p_1, p_2, p_3}^* has the logarithmic Kodaira dimension $\kappa(S_{p_1, p_2, p_3}^*) = -\infty, 0, 1$ according as $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} > 1, = 1, < 1$, respectively.

The proof will be given in the paragraphs 2.9~2.11.

2.9. Let V be a nonsingular projective surface with a surjective morphism $\varphi: V \rightarrow C := S^*/G_m$ satisfying the following conditions:

- (i) V contains S_{p_1, p_2, p_3}^* as a dense open set, and $\varphi|_{S^*} = \pi: S^* \rightarrow C$;
- (ii) $V - S^*$ contains no exceptional curves of the first kind which are contained in fibers of φ .

It is clear that general fibers of φ are isomorphic to \mathbf{P}_k^1 . The resolution of singularity of S_{p_1, p_2, p_3} at the unique singular point $(0) = (0, 0, 0)$ is described in detail in Orlik-Wagreich [10]. We recall some of the necessary results. The morphism $\pi: S^* \rightarrow C$ has multiple fibers if one of (q_1, q_2) , (q_2, q_3) and (q_3, q_1) is larger than 1. If $(q_1, q_2) > 1$, there are $d(q_1, q_2)/q_1 q_2$ fibers of multiplicity (q_1, q_2) (cf. Lemma 2.3). For a multiple fiber F of multiplicity (q_1, q_2) , set $\alpha := (q_1, q_2)$ and determine an integer β uniquely by the condition that $q_3 \beta \equiv 1 \pmod{\alpha}$ and $0 < \beta < \alpha$. Define positive integers $b_1, \dots, b_s \geq 2$ by writing $\alpha/(\alpha - \beta)$ in the form of a continued fraction

$$\frac{\alpha}{\alpha - \beta} = b_1 - \frac{1}{b_2 - \frac{1}{\ddots - \frac{1}{b_s}}},$$

which we write in the form $\alpha/(\alpha - \beta) = [b_1, \dots, b_s]$. For multiple fibers of multiplicity (q_2, q_3) or (q_3, q_1) , we determine the corresponding integers $\alpha, \beta, b_1, \dots, b_s$ etc. Let N be the number of the multiple fibers of π . Let

$$b := \frac{d}{q_1 q_2 q_3} - \sum_{i=1}^N \frac{\beta_i}{\alpha_i},$$

where $\{\alpha_i, \beta_i\}$ ranges over all pairs of integers which are determined for all multiple fibers of π in the above-mentioned fashion. Let g be the genus of C . Then the dual graph of the exceptional curves which arise from the resolution

of singularity of the point (0) of S_{p_1, p_2, p_3} has a vertex with weight $-b-N$ (corresponding to a nonsingular curve of genus g) and has N branches, each of which is a linear chain of nonsingular rational curves as exhibited in the following figure:

2.10. The fibration $\varphi: V \rightarrow C$ has two cross-sections M'_0 and M'_∞ and N singular fibers Φ_1, \dots, Φ_N such that:

- (i) M'_0 and M'_∞ are nonsingular curves of genus g ; $(M'_0)^2 = -b-N$ and $(M'_\infty)^2 = b$;
- (ii) Let Φ be a singular fiber of φ ; then $\Phi \cap S^* = \alpha F$ with $F \cong A_*^1$, i.e., a multiple fiber of multiplicity $\alpha > 1$; the component \bar{F} of Φ (=the closure of F in V) is connected to the cross-section M'_0 by s components as exhibited in

$$\overbrace{\dots}^F -b_s -b_{s-1} \dots -b_1 M'_0.$$

By assumption, $\Phi - F$ contains no exceptional curves of the first kind. Hence \bar{F} is the unique exceptional curve of the first kind contained in the singular fiber Φ . Then it is easily ascertained that the dual graph of the fiber Φ is a linear chain. It looks like the one given in Miyanishi [6; p. 95]. To fix the notations, we represent it in the next page. The upper half of the chain between E_0 and $E(a, m_a)$ (with $E(a, m_a)$ excluded) corresponds to the chain

$$\overbrace{\dots}^{-b_s} -b_{s-1} \dots -b_1.$$

Hence we have $\frac{\alpha}{\alpha-\beta} = [b_1, \dots, b_s]$

$$= \begin{cases} [m_1+1, \underbrace{2, \dots, 2}_{m_2-1}, m_3+2, 2, \dots, 2, m_{a-1}+2, \underbrace{2, \dots, 2}_{m_a-1}] & \text{if } a \text{ is even} \\ [m_1+1, \underbrace{2, \dots, 2}_{m_2-1}, m_3+2, 2, \dots, 2, m_{a-2}+2, \underbrace{2, \dots, 2}_{m_{a-1}-1}, m_a+1] & \text{if } a \text{ is odd} \end{cases}$$

Note that α is the multiplicity of \bar{F} in the fiber Φ . This is clear because $\Phi \cap S^* = \alpha F$. We can check this fact as follows. The multiplicity $\mu(i, j)$ ($1 \leq i \leq a$; $1 \leq j \leq m_i$) of the component $E(i, j)$ in Φ is given by the function

$\mu(i, j)$ defined inductively by:

$$\begin{aligned}\mu(0, m_0) &:= 1, \mu(1, j) = j \quad \text{for } 1 \leq j \leq m_1, \\ \mu(i, 1) &= \mu(i-1, m_{i-1}) + \mu(i-2, m_{i-2}) \quad \text{for } 1 < i \leq a, \\ \mu(i, j) &= \mu(i, j-1) + \mu(i-1, m_{i-1}) \quad \text{for } 1 < j \leq m_i.\end{aligned}$$

On the other hand, the integer α is regained by the method as indicated in the appendix of [10; p. 76] from the above development of $\alpha/(\alpha-\beta)$ into a continued fraction.

2.11. Note that $V-S^*$ consists of nonsingular components crossing normally. It is also easy to see that there exists a unique contraction $\sigma: V \rightarrow V_0$, where

- (i) $\varphi_0: V_0 \rightarrow C$ is a relatively minimal ruled surface;
- (ii) Let $M_0 := \sigma_* M'_0$ and $M_\infty := \sigma_* M'_\infty$; Then $(M_0^2) = -(b+N)$ and $(M_\infty^2) = b+N$.

The canonical divisor K_{V_0} is given by

$$K_{V_0} \sim -M_0 - M_\infty + \varphi_0^*(K_C) \quad \text{and} \quad M_\infty \sim M_0 + \varphi_0^*(\delta),$$

where K_C is the canonical divisor of C and δ is a divisor on C with $\deg(\delta) = b+N$. In effect, $V_0 \cong \text{Proj}(\mathcal{O}_C \oplus \mathcal{O}_C(\delta))$, and M_0 and M_∞ correspond to the zero section and the infinite section of V_0 , respectively.

Each irreducible component $E(i, j)$ of the singular fiber has the contribution $k(i, j)$ in the canonical divisor K_V determined inductively as follows:

$$\begin{aligned}k(0, m_0) &:= 0, k(1, j) = j \quad \text{for } 1 \leq j \leq m_1, \\ k(i, 1) &= k(i-1, m_{i-1}) + k(i-2, m_{i-2}) + 1 \quad \text{for } 1 < i \leq a, \\ k(i, j) &= k(i, j-1) + k(i-1, m_{i-1}) + 1 \quad \text{for } 1 < j \leq m_i.\end{aligned}$$

On the other hand, $E(i, j)$ has multiplicity $n(i, j)$ in $\sigma^*(M_\infty)$, which is determined by

$$\begin{aligned}n(0, m_0) &:= 0, n(1, j) = 1 \quad \text{for } 1 \leq j \leq m_1, \\ n(i, 1) &= n(i-1, m_{i-1}) + n(i-2, m_{i-2}) \quad \text{for } 1 < i \leq a, \\ n(i, j) &= n(i, j-1) + n(i-1, m_{i-1}) \quad \text{for } 1 < j \leq m_i.\end{aligned}$$

Let D be the reduced effective divisor such that $\text{Supp}(D) = V-S^*$. Then it is straightforward to show that the coefficient $\nu(i, j)$ of $E(i, j)$ in $D+K_V-\Phi$ is given by,

$$\nu(i, j) = \begin{cases} 0 & \text{if } (i, j) \neq (a, m_a) \\ -1 & \text{if } (i, j) = (a, m_a). \end{cases}$$

Therefore we have:

$$\begin{aligned} D+K_V &\sim \sum_{i=1}^N \Phi_i - \sum_{i=1}^N \bar{F}_i + \varphi^*(K_C) \\ &\geq \sum_{i=1}^N \left(1 - \frac{1}{\alpha_i}\right) \Phi_i + \varphi^*(K_C), \end{aligned}$$

where α_i is the multiplicity of \bar{F}_i in Φ_i . Let

$$A := \left(\sum_{i=1}^N \left(1 - \frac{1}{\alpha_i}\right) \Phi_i + \varphi^*(K_C) \cdot M'_0 \right).$$

Note that α_i has one of the values (q_1, q_2) , (q_2, q_3) and (q_3, q_1) (cf. 2.9) and that A is, in effect, equal to

$$\left(\sum_{P \in \sigma} \left(1 - \frac{1}{\alpha_P}\right) \varphi^*(P) + \varphi^*(K_C) \cdot M'_0 \right),$$

where $\pi^*(P) = \alpha_P F_P$ with $F_P \cong \mathbf{A}_*^1$. Then we can calculate A as follows:

$$\begin{aligned} A &= \frac{d(q_1, q_2)}{q_1 q_2} + \frac{d(q_2, q_3)}{q_2 q_3} + \frac{d(q_3, q_1)}{q_3 q_1} - \frac{d(q_1, q_2)}{q_1 q_2} \cdot \frac{1}{(q_1, q_2)} \\ &\quad - \frac{d(q_2, q_3)}{q_2 q_3} \cdot \frac{1}{(q_2, q_3)} - \frac{d(q_3, q_1)}{q_3 q_1} \cdot \frac{1}{(q_3, q_1)} + 2g - 2 \\ &= \frac{d^2}{q_1 q_2 q_3} \left(1 - \frac{1}{p_1} - \frac{1}{p_2} - \frac{1}{p_3}\right). \end{aligned}$$

We have clearly $\bar{\kappa}(S^*) = 1$ if $A > 0$, because $D+K_V$ is linearly equivalent to a divisor supported by fibers and the components contained in fibers of φ . If $A = 0$ we have $\bar{\kappa}(S^*) = 0$ (cf. 2.7). If $A < 0$, i.e., $1 < \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3}$, we have the following under an additional assumption $2 \leq p_1 \leq p_2 \leq p_3$: $\{p_1, p_2, p_3\} = \{2, 2, n\}$ ($n \geq 2$), $\{2, 3, 3\}$, $\{2, 3, 4\}$ or $\{2, 3, 5\}$. In each of the above four cases for $A < 0$, the foregoing arguments of evaluating $D+K_V$ shows that $\bar{\kappa}(S^*) = -\infty$; note that if $A < 0$ then $g = 0$. This completes the proof of Theorem 2.8.

2.12. If $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} > 1$, the surface S_{p_1, p_2, p_3} is the quotient variety of \mathbf{A}_k^2 with respect to a linear action of a Kleinian subgroup G of $GL(2, k)$ (cf. Brieskorn [1]). In effect, G acts freely on $\mathbf{A}_k^2 - (0)$. Hence there exists an étale finite morphism $\rho: \mathbf{A}_k^2 - (0) \rightarrow S^*$, and $\mathbf{A}_k^2 - (0)$ is algebraically simply connected.

Suppose that the ground field k is the field \mathbf{C} of complex numbers. Let U be the universal covering space of S_{p_1, p_2, p_3}^* . Then it is known^(*) that:

(*) This was communicated by Dr. A. Fujiki.

$$\begin{aligned}
 U \cong \mathbf{C}^2 - (0) &\Leftrightarrow 1 < \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \\
 U \cong \mathbf{C}^2 &\Leftrightarrow 1 = \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \\
 U \cong \mathbf{C} \times D &\Leftrightarrow 1 > \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3},
 \end{aligned}$$

where D is a unit disc.

2.13. For later use, we shall prove:

Lemma. Suppose that $\bar{\kappa}(S_{p_1, p_2, p_3}^*) > 0$ and $C \cong \mathbf{P}_k^1$. Then $\pi: S^* \rightarrow C$ has three or more multiple fibers.

Proof. We have the inequalities,

$$\frac{(q_2, q_3)}{p_1} + \frac{(q_3, q_1)}{p_2} + \frac{(q_1, q_2)}{p_3} > 1 > \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3},$$

(cf. 2.6 and 2.8). Hence it is impossible that $(q_2, q_3) = (q_3, q_1) = (q_1, q_2) = 1$. If $(q_2, q_3) > 1$, $(q_3, q_1) > 1$ and $(q_1, q_2) > 1$, π has three or more multiple fibers. We shall consider the cases where one or two of (q_2, q_3) , (q_3, q_1) and (q_1, q_2) equal 1. Assume first that $(q_2, q_3) = 1$, $(q_3, q_1) > 1$ and $(q_1, q_2) > 1$. Suppose that $d(q_3, q_1)/q_3 q_1 = d(q_1, q_2)/q_1 q_2 = 1$. Then $q_3 = p_1(q_1, q_3)$ and $q_2 = p_1(q_1, q_2)$. Hence (q_2, q_3) is divisible by p_1 . Since $p_1 > 1$, this contradicts the assumption that $(q_2, q_3) = 1$. Hence $\frac{d(q_3, q_1)}{q_3 q_1} > 1$ or $\frac{d(q_1, q_2)}{q_1 q_2} > 1$. Thus π has three or more multiple fibers.

Consider next the case where $(q_2, q_3) = (q_3, q_1) = 1$ and $(q_1, q_2) > 1$. Then the above inequalities imply that $(q_1, q_2) > p_3$. Hence $q_3(q_1, q_2) > d$, and

$$1 \geq \frac{(q_1, q_2)}{q_2} > \frac{d}{q_2 q_3}.$$

However, since $(q_2, q_3) = 1$, d is divisible by $q_2 q_3$. This is a contradiction. Thus this case does not occur. The other cases can be treated in a similar fashion.

Q.E.D.

2.14. We shall prove the following:

Theorem. (1) If $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \leq 1$, then there are no non-constant morphisms from \mathbf{A}_k^2 to S_{p_1, p_2, p_3}^* .
(2) If $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} > 1$, then there are dominant morphisms from \mathbf{A}_k^2 to S_{p_1, p_2, p_3}^* .

Proof. (1) If $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = 1$, S^* is an \mathbf{A}_k^1 -bundle over a nonsingular

elliptic curve C . Thus, if $f: A'_k \rightarrow S^*$ is a non-constant morphism, $f(A'_k)$ is contained in a fiber of π , which is isomorphic to A_*^1 . This is impossible. So, we may assume that $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} < 1$, i.e., $\bar{\kappa}(S^*) > 0$. Let $f: A'_k \rightarrow S^*$ be a non-constant morphism if such a morphism exists at all. If f is dominant, we may assume without loss of generality that $r=2$. Then we have

$$-\infty = \bar{\kappa}(A'_k) \geq \bar{\kappa}(S^*) = 1,$$

which is impossible. Hence $f(A'_k)$ is a rational curve with at most one place at infinity, and $f(A'_k)$ is not contained in any fiber of π . Thus we have a dominant morphism

$$\psi = \pi \circ f: A'_k \rightarrow S^* \rightarrow C.$$

Hence C is isomorphic to P_k^1 , and $\psi(A'_k)$ is isomorphic to A_k^1 or P_k^1 . Consider first the case where $\psi(A'_k) \cong A_k^1$. By 2.13, there exist points P, Q of C such that $P, Q \in \psi(A'_k)$ and that π^*P and π^*Q are multiple fibers of multiplicity μ and ν , respectively. Choose an inhomogeneous coordinate t of A_k^1 such that P and Q are defined by $t=0$ and $t=1$, respectively. Then there exist non-constant polynomials g and h in $R := k[u_1, \dots, u_r]$ such that $\psi^*(t) = g^\mu$ and $\psi^*(t-1) = h^\nu$. This implies that $\{x=g, y=h\}$ is a solution of the Diophantine equation

$$x^\mu - y^\nu = 1.$$

This contradicts Theorem 1.2. Consider next the case where $\psi(A'_k) \cong P_k^1$. In order to prove, by *reductio ad absurdum*, the non-existence of such a non-constant morphism as ψ , we may assume, by embedding the ground field k into the field C of complex numbers in a suitable way, that $k=C$. Restricting ψ onto a suitable line A_C^1 in A'_C , we may assume that $r=1$. Then the Nevanlinna theory (cf. Hayman [3]) implies that

$$\sum_{i=1}^N \left(1 - \frac{1}{\alpha_i}\right) - 2 \leq 0,$$

where N is the number of multiple fibers of π and α_i 's are multiplicities. The left-hand side of the above inequality is, in effect, equal to A in 2.11. Hence we have $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \geq 1$. This is a contradiction. Thus there are no non-constant morphisms $f: A'_k \rightarrow S^*$ provided $\bar{\kappa}(S^*) \geq 0$.

(2) We may assume that $p_1 \leq p_2 \leq p_3$. Then $\{p_1, p_2, p_3\}$ is one of the following triplets: $\{2, 2, n\}$ ($n \geq 2$), $\{2, 3, 3\}$, $\{2, 3, 4\}$, $\{2, 3, 5\}$. Except in the case where $\{p_1, p_2, p_3\} = \{2, 3, 5\}$, one can easily find a solution $\{x_1=f_1, x_2=f_2, x_3=f_3\}$ of the equation

$$x_1^{p_1} + x_2^{p_2} + x_3^{p_3} = 0$$

in a polynomial ring $R:=k[u_1, \dots, u_r]$ such that the subvarieties $\{f_i=0\}$ ($1 \leq i \leq 3$) have no common points in A_k^r and that $\text{trans. deg}_k k(f_1, f_2, f_3)=2$. Then the assignment $x_i \mapsto f_i$ ($1 \leq i \leq 3$) gives rise to a dominant morphism $f: A_k^r \rightarrow S^*$. For example, if $\{p_1, p_2, p_3\}=\{2, 2, 2\}$, such a solution is given by

$$x_1 = \frac{\xi^2 + \eta^2}{2}, \quad x_2 = \frac{\xi^2 - \eta^2}{2\sqrt{-1}}, \quad x_3 = \sqrt{-1} \cdot \xi\eta,$$

where ξ, η are polynomials in R such that $\{\xi=0\}$ and $\{\eta=0\}$ have no common points in A_k^r and that $\text{trans. deg}_k k(\xi, \eta)=2$. The case where $\{p_1, p_2, p_3\}=\{2, 3, 5\}$ seems more subtle. (*) We look for a dominant morphism $f: A_k^2 \rightarrow S^*$. Since A_k^2 is algebraically simply connected, such a morphism f (if it exists at all) is factored by a dominant morphism $\tilde{f}: A_k^2 \rightarrow A_k^2 - (0)$ such that $f=\rho \cdot \tilde{f}$ (cf. 2.12). Conversely, if a dominant morphism \tilde{f} is given, $f:=\rho \cdot \tilde{f}$ is a required dominant morphism. Hence we have only to find a dominant morphism $\tilde{f}: A_k^2 \rightarrow A_k^2 - (0)$. Such a morphism \tilde{f} exists because a dominant morphism $f: A_k^2 \rightarrow S_{2,2,2}^*$ provides one. Note that this argument works also for the other cases. Q.E.D.

2.15. We shall prove:

Theorem. *Let $\Sigma_{p_1, p_2, p_3, p_4}^*$ be the nonsingular surface defined in 2.4. Assume that $\{p_1, p_2, p_3, p_4\}$ is one of the following quadruplets: $\{2, 2, 2, 2s+1\}$ ($s \geq 1$), $\{2, 2, 3, 4\}$, $\{2, 2, 3, 5\}$, i.e., those in the examples in 2.5 with $g(\Sigma^*/G_m)=0$. Then there are no non-constant morphisms from A_k^r to $\Sigma_{p_1, p_2, p_3, p_4}^*$.*

Proof. We only consider the case where $\{p_1, p_2, p_3, p_4\}=\{2, 2, 2, 3\}$. The other cases can be treated in a similar fashion. Suppose that $f: A_k^r \rightarrow \Sigma^*$ is a non-constant morphism. With the notations of 2.4, C is then isomorphic to \mathbf{P}_k^1 . Let $\psi:=\pi \cdot f$. Then $\psi(A_k^r)$ is isomorphic to A_k^1 or \mathbf{P}_k^1 . The case where $\psi(A_k^r) \cong A_k^1$ is impossible because π has four multiple fibers of multiplicity 3 (cf. 2.5 and the proof of Theorem 2.14). Hence $\psi(A_k^r) \cong \mathbf{P}_k^1$. Let $3F_i$ ($1 \leq i \leq 4$) be the multiple fibers of π . Then $f^*(F_i)$ is defined by $f_i=0$ with $f_i \in R:=k[u_1, \dots, u_r]$. Since $3F_1 \sim 3F_2 \sim 3F_3$, for example, we have a relation

$$f_3^3 = f_2^3 + bf_1^3, \text{ where } b \in k^*.$$

Since $f^*(F_1) \cap f^*(F_2) \cap f^*(F_3)=\phi$, we can define a non-constant morphism

$$g: A_k^r \rightarrow S_{3,3,3}^* \subset \text{Spec}(k[x_1, x_2, x_3]/(x_1^3 + x_2^3 + x_3^3))$$

by $g^*(x_1)=b^{1/3}f_1$, $g^*(x_2)=f_2$ and $g^*(x_3)=-f_3$. This is impossible because $S_{3,3,3}^*/G_m$ is an elliptic curve. Q.E.D.

(*) For the following argument, the author owes Dr. A. Fujiki.

3. Regular subrings in a polynomial ring

3.1. Let A be a finitely generated, two-dimensional, regular k -algebra contained in a polynomial ring $R:=k[u_1, \dots, u_r]$ of dimension r . Let $X:=\text{Spec}(A)$ and let $A'_k:=\text{Spec}(R)$. Then the inclusion $A \hookrightarrow R$ gives rise to a dominant morphism $f: A'_k \rightarrow X$. By restricting f onto a linear plane L in A'_k which meets general fibers of f in finitely many points, we have a dominant morphism $f_L: L \cong A'_k \rightarrow X$. This implies that A is a k -subalgebra of the two-dimensional polynomial ring. Thus we may assume without loss of generality that $r=2$.

Since $f: A'_k \rightarrow X$ is generically finite, we have $\bar{\kappa}(X) = -\infty$, which follows from the inequality of logarithmic Kodaira dimensions,

$$\bar{\kappa}(X) \leq \bar{\kappa}(A'_k) = -\infty.$$

This implies that X contains a cylinderlike open set $U \cong U_0 \times A'_k$, where U_0 is an affine curve (cf. Miyanishi-Sugie [8]; Fujita [2]). The projection $p: U \rightarrow U_0$ is induced from a dominant morphism $\rho: X \rightarrow P_k^1$, where U_0 is an open set of P_k^1 . Then $\rho(X) \cong A'_k$ or $\rho(X) = P_k^1$. Indeed, if $P_k^1 - \rho(X)$ consists of more than one point, we may write $\rho(X) = \text{Spec}(k[t, h(t)^{-1}])$, where t is an inhomogeneous coordinate of P_k^1 and $h(t) \in k[t] - k$; then $k[t, h(t)^{-1}]$ is a k -subalgebra of A (and, hence, of $k[u_1, u_2]$); this contradicts the fact that $A^* = k^*$.

Summing up, we have the following:

Lemma. *Let $X:=\text{Spec}(A)$ be a nonsingular affine surface. Then A is contained in a polynomial ring as a k -subalgebra if and only if there exists a dominant morphism $f: A'_k \rightarrow X$. In this case, we have:*

- (1) $A^* = k^*$;
- (2) *There exists an A^1 -fibration $\rho: X \rightarrow Y$, where $Y \cong A'_k$ or P_k^1 ;*
- (3) *Every fiber of ρ is supported by a disjoint union of irreducible curves, each of which is isomorphic to A'_k .*

For the last assertion, see Miyanishi [7].

3.2. A fiber $\rho^*(P)$ of ρ is a *singular fiber* if either $\rho^{-1}(P)$ is reducible or $\rho^*(P)$ is irreducible and non-reduced. Write $\rho^*(P) = \sum_{i=1}^s n_i C_i$, where $C_i \cong A'_k$ and $n_i > 0$. $\rho^*(P)$ is called a *singular fiber of the first kind* if $s \geq 2$ and $n_i = 1$ for some i ; $\rho^*(P)$ is called a *singular fiber of the second kind* if $n_i \geq 2$ for every i . Let $\mu := G.C.D. (n_1, \dots, n_s)$. If $\mu > 1$, the fiber $\rho^*(P)$ is called a *multiple fiber* and μ is called the *multiplicity*.

3.3. We shall prove:

Theorem. *Let $X:=\text{Spec}(A)$ be a nonsingular surface with an A^1 -fibration $\rho: X \rightarrow Y$, where $Y \cong A'_k$. Then A is contained in a polynomial ring as a k -sub-*

algebra if and only if ρ has at most one singular fiber of the second kind.

Proof. (I) Let $f: A_k^2 \rightarrow X$ be a dominant morphism. Then note that $\rho \circ f(A_k^2) = Y$. Suppose that ρ has two singular fibers of the second kind $\rho^*(P)$ and $\rho^*(Q)$. Then $f^* \rho^*(P)$ and $f^* \rho^*(Q)$ are defined by the equations

$$g_1^{a_1} \cdots g_m^{a_m} = 0 \quad \text{and} \quad h_1^{b_1} \cdots h_n^{b_n} = 0$$

respectively, where g_1, \dots, g_m and h_1, \dots, h_n are non-constant polynomials in $k[u_1, u_2]$ and where $a_i \geq 2$ ($1 \leq i \leq m$) and $b_j \geq 2$ ($1 \leq j \leq n$). We may choose an inhomogeneous coordinate t of $Y := \text{Spec}(k[t])$ in such a way that the points P and Q are defined by $t=0$ and $t=1$, respectively. Then we have a relation

$$g_1^{a_1} \cdots g_m^{a_m} - h_1^{b_1} \cdots h_n^{b_n} = 1.$$

This is impossible by virtue of Theorem 1.2. Therefore ρ has at most one singular fiber of the second kind provided A is contained in a polynomial ring as a k -subalgebra.

(II) We shall prove the “if” part of the theorem. Let $\rho^*(P) = \sum_{i=1}^s n_i C_i$ be a singular fiber of the first kind. We shall show that after replacing X by a suitable affine open set with an A^1 -fibration similar to that for X , $\rho^*(P)$ can be assumed to be an irreducible and reduced fiber. For this purpose, embed X into a nonsingular projective surface V as a dense open set. Then $V - X$ consists only of components of codimension 1. Since X is affine, there exists an effective ample divisor D on V such that $\text{Supp}(D) = V - X$. For $\rho^*(P) = \sum_{i=1}^s n_i C_i$, suppose that $n_1 = 1$. Then there exists an ample divisor D' on V such that $\text{Supp}(D') = (V - X) \cup \bigcup_{i=2}^s \bar{C}_i$, where \bar{C}_i is the closure of C_i in V . Replace X by $X' := X - \text{Supp}(D')$. Then X' is an affine open set of X and $\rho' := \rho|_{X'}: X' \rightarrow Y$ is an A^1 -fibration over Y for which the fiber $\rho'^*(P)$ is irreducible and reduced.

Performing this operation to all singular fibers of the first kind of ρ , we may assume that ρ has no singular fibers of the first kind. Let $\rho^*(P)$ denote anew a singular fiber of the second kind if such a fiber exists at all. If $\rho^*(P)$ is reducible, we may delete all irreducible components but one by replacing X by a smaller affine open set with an A^1 -fibration over Y similar to that for X . Hence we may assume that $\rho^*(P)$ is an irreducible multiple fiber, i.e., $\rho^*(P) = nC$ with $C \cong A_k^1$ and $n \geq 2$.

Write $Y := \text{Spec}(k[t])$, and assume that the point P is defined by $t=0$. Let $Z := \text{Spec}(k[\tau]) \rightarrow Y$ be the morphism defined by $t=\tau^n$, which is a finite covering ramifying totally over P . Let W be the normalization of $X \times_Y Z$. Then W is a nonsingular affine surface, and the canonical surjective morphism

$\sigma: W \rightarrow Z$ is an A^1 -fibration over Z . This can be seen as follows. Let x be a point of X lying over the point P , and find a system of local coordinates (ξ, η) around x such that the curve C is defined by $\xi=0$. Then we have a relation $\xi^n=at$, where a is a unit in $O_{x,X}$. Then ξ/τ is regular at every point \tilde{x} of W lying over x . Analytically, W around \tilde{x} is defined as a hypersurface $(\xi/\tau)^n=a$ in the $(\xi/\tau, \tau, \eta)$ -space. By the Jacobian criterion of smoothness, W is nonsingular at every point of W lying over $X-\rho^{-1}(P)$. Hence W is nonsingular. By construction, general fibers of σ are isomorphic to A_k^1 . Let \tilde{P} be the point of Z lying over P . Every fiber of σ except the fiber $\sigma^*\tilde{P}$ is irreducible and reduced, while $\sigma^*\tilde{P}$ is reduced and reducible with n irreducible components. Let W' be an affine open set of W obtained by deleting all components of $\sigma^*\tilde{P}$ except one. Then $\sigma':=\sigma|_{W'}: W' \rightarrow Z$ is an A^1 -bundle over $Z \cong A_k^1$, whence W' is isomorphic to A_k^2 (cf. Kambayashi-Miyanishi [5]). Let f be the composite of the natural morphisms

$$f: A_k^2 \cong W' \hookrightarrow W \rightarrow X \underset{Y}{\times} Z \rightarrow X.$$

Since f is apparently a dominant morphism, A is contained in a polynomial ring as a k -subalgebra. Q.E.D.

3.4. Corollary. *Let X be a nonsingular affine surface which satisfies the condition in Theorem 3.3. Then the torsion part $\text{Pic}(X)_{\text{tor}}$ of the Picard group of X is a cyclic group.*

Proof. Let $\rho: X \rightarrow Y$ be the A^1 -fibration as in Theorem 3.3. Let ρ^*P_i ($0 \leq i \leq m$) exhaust all singular fibers of ρ ; if there exists a singular fiber of the second kind, we let ρ^*P_0 denote it. Write $\rho^*P_i = \sum_{1 \leq j \leq s_i} n_{ij} C_{ij}$, where $C_{ij} \cong A_k^1$ and $n_{ij} > 0$. Then, since $Y \cong A_k^1$, the Picard group $\text{Pic}(X)$ of X is an abelian group with the following generators and relations:

$$\{\xi_{ij} \mid 0 \leq i \leq m, 1 \leq j \leq s_i\} \quad \text{and} \quad \sum_{1 \leq j \leq s_i} n_{ij} \xi_{ij} = 0 \quad \text{for } 0 \leq i \leq m.$$

It is then clear that $\text{Pic}(X) \cong \prod_{i=0}^m G_i$, where G_i is an abelian group with generators and relations given as above with i fixed and with $1 \leq j \leq s_i$. Since $(n_{i1}, \dots, n_{is_i}) = 1$ for $i \geq 1$ by assumption, we have $G_i \cong \mathbb{Z}^{\oplus(s_i-1)}$. Let $\mu = (n_{01}, \dots, n_{0s_0})$. Then $G_0 \cong \mathbb{Z}/\mu\mathbb{Z} \oplus \mathbb{Z}^{\oplus(s_0-1)}$. Hence we have $\text{Pic}(X)_{\text{tor}} \cong \mathbb{Z}/\mu\mathbb{Z}$. Q.E.D.

3.5. We shall prove:

Theorem. *Let $X := \text{Spec}(A)$ be a nonsingular affine surface with an A^1 -fibration $\rho: X \rightarrow Y$, where $Y \cong P_k^1$. Assume that A is contained in a polynomial ring as a k -subalgebra. Then the fibration ρ has at most three multiple fibers. If*

ρ has three multiple fibers, their multiplicities $\{\mu_1, \mu_2, \mu_3\}$ are given, up to permutation, by one of the following triplets: $\{2, 2, n\}$ ($n \geq 2$), $\{2, 3, 3\}$, $\{2, 3, 4\}$ and $\{2, 3, 5\}$.

Proof. Suppose that ρ has three or more multiple fibers. Let $\rho^*P_i = \mu_i F_i$ ($1 \leq i \leq 3$) be a multiple fiber of multiplicity $\mu_i > 1$. Let $f: \mathbf{A}_k^2 \rightarrow X$ be a dominant morphism as in 3.1. Then $\rho \cdot f(\mathbf{A}_k^2) \cong \mathbf{A}_k^1$ or $\rho \cdot f(\mathbf{A}_k^2) = Y$. If $\rho \cdot f(\mathbf{A}_k^2) \cong \mathbf{A}_k^1$, we may assume that $P_1, P_2 \in \rho \cdot f(\mathbf{A}_k^2)$. However, this assumption leads to a contradiction by the argument in the step (I) of the proof of Theorem 3.3. Hence $\rho \cdot f(\mathbf{A}_k^2) = Y$. Then f^*F_i ($1 \leq i \leq 3$) is defined by an equation $f_i = 0$, where f_i is a non-constant polynomial in $k[u_1, u_2]$. Since $\mu_1 f^*F_1 \sim \mu_2 f^*F_2 \sim \mu_3 f^*F_3$ (linear equivalence), we have

$$\frac{f_3^{\mu_3}}{f_1^{\mu_1}} = a \frac{f_2^{\mu_2}}{f_1^{\mu_1}} + b,$$

where $a, b \in k^*$. Without loss of generality, we may assume that $a = b = -1$. Namely, we have a relation

$$f_1^{\mu_1} + f_2^{\mu_2} + f_3^{\mu_3} = 0.$$

Note that $f^*(F_i) \cap f^*(F_j) = \emptyset$ whenever $i \neq j$. The assignment $x_i \mapsto f_i$ defines a non-constant morphism

$$\psi: \mathbf{A}_k^2 \rightarrow S_{\mu_1, \mu_2, \mu_3}^* \subset \text{Spec}(k[x_1, x_2, x_3]/(x_1^{\mu_1} + x_2^{\mu_2} + x_3^{\mu_3})).$$

Hence $\{\mu_1, \mu_2, \mu_3\}$ is, up to permutation, one of the following triplets: $\{2, 2, n\}$ ($n \geq 2$), $\{2, 3, 3\}$, $\{2, 3, 4\}$ and $\{2, 3, 5\}$ (cf. 2.14).

Suppose that ρ has four multiple fibers $\rho^*P_i = \mu_i F_i$ with multiplicity μ_i ($1 \leq i \leq 4$). Let f^*F_i be defined by $f_i = 0$, where f_i is a non-constant polynomial in $k[u_1, u_2]$. Then we obtain relations of the following form:

$$\begin{aligned} f_1^{\mu_1} + f_2^{\mu_2} + f_3^{\mu_3} &= 0 \\ af_1^{\mu_1} + f_2^{\mu_2} + f_4^{\mu_4} &= 0, \end{aligned}$$

where $a \in k - \{0, 1\}$. In view of the above observations on possible multiplicities of three multiple fibers of ρ , we know that $\{\mu_1, \mu_2, \mu_3, \mu_4\}$ is, up to permutation, one of the following quadruplets: $\{2, 2, 2, n\}$ ($n \geq 2$), $\{2, 2, 3, 3\}$, $\{2, 2, 3, 4\}$ and $\{2, 2, 3, 5\}$. The induced relations provide a non-constant morphism

$$\psi: \mathbf{A}_k^2 \rightarrow \sum_{\mu_1, \mu_2, \mu_3, \mu_4}^*.$$

This is impossible by 2.5 and 2.15. Q.E.D.

3.6. Corollary. *Let X be the same surface as in 3.5. Then $\text{Pic}(X)_{\text{tor}}$ has at most two cyclic components. If $\text{Pic}(X)_{\text{tor}}$ has two cyclic components, it is of the form:*

$$\mathrm{Pic}(X)_{\mathrm{tor}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2s\mathbb{Z} \quad (s \geq 1).$$

Proof. An argument similar to that in Corollary 3.4.

3.7. We shall prove:

Theorem. *Let $X := \mathrm{Spec}(A)$ be a nonsingular affine surface with an A^1 -fibration $\rho: X \rightarrow Y$, where $Y \cong \mathbf{P}_k^1$. Assume that ρ satisfies the following conditions:*

- (1) *ρ has no singular fibers of the second kind but at most three multiple fibers with a single irreducible component;*
- (2) *if ρ has three multiple fibers, the set of multiplicities $\{\mu_1, \mu_2, \mu_3\}$ is one of the following triplets: $\{2, 2, n\}$ ($n \geq 2$), $\{2, 3, 3\}$, $\{2, 3, 4\}$ and $\{2, 3, 5\}$.*

Then A is contained in a polynomial ring as a k -subalgebra.

Proof. (I) By performing the same operation as we did in the second step of the proof of Theorem 3.3, we may assume that ρ has no singular fibers of the first kind. Suppose that ρ has at most two multiple fibers. Let P be a point of Y such that ρ^*P is a multiple fiber (if such a fiber exists at all), and let $X' := X - \rho^{-1}(P)$. Then the nonsingular affine surface X' with an A^1 -fibration $\rho' := \rho|_{X'}$ over $Y' := Y - \{P\}$ has at most one singular fiber of the second kind. By Theorem 3.3, there exist a dominant morphism $\mathbf{A}_k^2 \rightarrow X'$, and hence a dominant morphism $\mathbf{A}_k^2 \rightarrow X$. Therefore A is contained in a polynomial ring as a k -subalgebra.

(II) Suppose that ρ has three multiple fibers $\rho^*P_i = \mu_i F_i$ ($1 \leq i \leq 3$) with multiplicity μ_i . We consider first the case where $\{\mu_1, \mu_2, \mu_3\} = \{2, 2, n\}$ ($n \geq 2$). Let $Y' \rightarrow Y$ be a double covering of Y which ramifies over the points P_1 and P_2 ; then $Y' \cong \mathbf{P}_k^1$. Let X' be the normalization of $X \times_{Y'} Y'$ and let $\rho': X' \rightarrow Y'$ be

the natural projection. Then X' is a nonsingular affine surface and ρ' is an A^1 -fibration over Y' (cf. the proof of Theorem 3.3). Moreover, $\rho'^*P'_i$ ($i = 1, 2$) is a reduced singular fiber with two irreducible components, P'_i being the unique point of Y' lying over P_i , and $\rho'^*Q'_i$ ($i = 1, 2$) is a multiple fiber of multiplicity n with single irreducible component, Q'_1 and Q'_2 being two points of Y' lying over P_3 . Replacing X' by an affine open set, we may assume that ρ' has no singular fibers of the first kind. Let $Y'' \rightarrow Y'$ be an n -ple covering which ramifies totally over Q'_1 and Q'_2 , let X'' be the normalization of $X' \times_{Y'} Y''$,

and let $\rho'': X'' \rightarrow Y''$ be the natural projection. Then X'' is a nonsingular affine surface and ρ'' is an A^1 -fibration over $Y'' \cong \mathbf{P}_k^1$. The fibration ρ'' has two reduced singular fibers $\rho''^*Q'_i$ ($i = 1, 2$) with n irreducible components, where Q'_i ($i = 1, 2$) is the unique point of Y'' lying over Q_i . Then, by virtue of the step (I), there exist a dominant morphism $\mathbf{A}_k^2 \rightarrow X''$, and hence a dominant morphism $\mathbf{A}_k^2 \rightarrow X$. Therefore, A is contained in a polynomial ring as a k -subalgebra.

(III) The other cases except the last one can be treated in a similar fashion, that is, by choosing suitable multiple coverings $P_k^1 \rightarrow P_k^1$ and then taking the normalizations of the fiber products with respect to such multiple coverings. The following diagram will indicate roughly the necessary steps:

$$\begin{array}{ccc} \{2, 3, 3\} & \xrightarrow{\substack{\text{triple} \\ \text{covering}}} & \{2, 2, 2\} \rightarrow \text{the former case,} \\ \{2, 3, 4\} & \xrightarrow{\substack{\text{double} \\ \text{covering}}} & \{2, 3, 3\} \rightarrow \text{the former case.} \end{array}$$

(IV) In the case where $\{\mu_1, \mu_2, \mu_3\} = \{2, 3, 5\}$, we know by the theory of Kleinian singularities that there exists a ramified covering $\tau: Y' \rightarrow Y$ of degree 60 with 30 points over P_1 with ramification index 2, 20 points over P_2 with ramification index 3 and 12 points over P_3 with ramification index 5, where $Y' \cong P_k^1$. Let X' be the normalization of $X \times_{Y'} Y'$ and $\rho': X' \rightarrow Y'$ be the natural A^1 -fibration. Then ρ' has no multiple fibers of the second kind. So, we are done. Q.E.D.

References

- [1] E. Brieskorn: *Rationale Singularitäten komplexer Flächen*, Invent. Math. **4** (1968), 336–358.
- [2] T. Fujita: *On Zariski problem*, Proc. Japan Acad. **55** (1979), 106–110.
- [3] W.H. Hayman: *Meromorphic functions*, Oxford, Clarendon Press, 1964.
- [4] S. Iitaka: *Homogeneous Lüroth theorem, and logarithmic classification of algebraic surfaces*, Proc. of Kinosaki Symposium on Algebraic Geometry, 1977 (in Japanese).
- [5] T. Kambayashi and M. Miyanishi: *On flat fibrations by the affine line*, Illinois J. Math. **22** (1978), 662–671.
- [6] M. Miyanishi: *Lectures on curves on rational and unirational surfaces*, Tata Institute of Fundamental Research, Vol. 60, Berlin-Heidelberg-New York, Springer Verlag, 1978.
- [7] M. Miyanishi: *Regular subrings of a polynomial ring*, Osaka J. Math. **17** (1980), 329–338.
- [8] M. Miyanishi and T. Sugie: *Affine surfaces containing cylinderlike open sets*, J. Math. Kyoto Univ. **20** (1980), 11–42.
- [9] D. Mumford: *Geometric invariant theory*, Berlin-Heidelberg-New York, Springer Verlag, 1965.
- [10] P. Orlik and P. Wagreich: *Algebraic surfaces with k^* -action*, Acta Math. **138** (1977), 43–81.
- [11] H. Sumihiro: *Equivariant completion*, J. Math. Kyoto Univ. **14** (1974), 1–28.

