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ON THE DILATATION IN FINSLER SPACES

To Prof. K. Shoda in celebration of his 60th birthday

By

Mimnoru KURITA

It is well known that a dilatation in the euclidean space, defined as
a parallel translation of a plane element to the orthogonal direction by
constant length, is a contact transformation. In the present paper we
consider a contact structure in Finsler space and prove that a dilatation
defined on it is also a contact transformation. Moreover it is proved
here that a dilatation on the Riemannian manifold of constant curvature
preserves a Riemannian metric constructed appropriately on the dual
tangent bundle of the manifold. A greater part of this paper is not
essentially new, but is a reproduction of classical results, mainly due to
E. Cartan, from a modern geometrical point of view.

§1. Contact structure and e-curves

1. We take an m-dimensional differentiable manifold M with local co-
ordinates x', ---, #” and a 2-form

@ =} a;dxi \dx’ (a:; = —aj) (1)

on it. Throughout the paper we assume differentiability C*. Then we
have ([6] p. 138)

Theorem. I[f there exists an affine connection without torsion for
which a tensor field (a;;) is parallel, then we have da=0.

Conversely, if da=0, there exists locally an affine connection without
torsion for which (a;;) is parallel. Moreover such a connection exists globally
when the dimension of the manifold is even and the rank of & is maximal.

2. We take a 2n—1-dimensional differentiable manifold M with a closed
2-form « of a maximal rank 2r—2. Especially, if ¢=do (exact) and
oAa”* =0, M is called to have a contact structure. We consider a
differential equation i(X)@=0 which holds for all vector fields X. When
a is expressed as (1), i(X)a=0 reduces to
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a;;dx’ =0 (¢, 7=1, -+, 2n-1). (2)
As the rank of (a;;) is 2n—2 these can also be written as
dx' _dx* _  _dx"!
A
with certain functions c', ---, ¢®~'. This defines curves on M, which we

call e-curves. Then we have

Theorem 1. An e-curve x=x() is a path of an affine connection
for which (a;;) is parallel. Conversely, if a curve is a path of an affine
connection for which (a;;) is parallel and satisfies an initial condition
<a,.,-(1—x]> =0, it is an e-curve.

dt /t=o

Proof. For an e-curve x=x(f) we have a;;dx’/dt=0, and if we put
dxi[dt=vi, we get a;;v"=0. By covariant differentiation Da;;/dt v’ +
a;;Dv’|dt=0. Hence a;;Dv’/dt=0. As the rank of (g;;) is maximal, we
have Dvi/dt=Fkv’, and so the curve x(¢) is a path.

Conversely, if a curve x=x(¢) is a path, we have Dv’/dt=Fkvi for
vi=dxi/dt. As (a;;) is parallel we have D(a;;v’)/dt=ka;;v’ and by the
assumption (@;;v"),-,=0 we have always @;;°=0 and so it is an e-curve.

An e-curve is important in our investigation, but affine connections
considered above are unnecessary for our later discussion.

3. We consider a two-dimensional submanifold S of M generated by a
one-parametric family of e-curves with a parameter &, We denote by ¢
a parameter on each e-curve. Then 2-form « restricted to S is

& = aydxindy = 2a, 2% X genat .
ot o€
Along e-curves we have a;;dx’=0 and so «;;0x’/ot=0. Hence a=0.

Thus we get

Theorem 2. M is a differentiable manifold with a closed 2-form «
of maximal vrank. Then the 2-form & vanishes on a two-dimensional sub-
manifold S generated by a ome-parametric family of e-curves. If d=do

and ¢ bounds a simply connected region on S, we have S »=0,

§2. Finsler space and contact structure

1. M is an n-dimensional differentiable manifold with local coordinates
x=(x', --+, x") for a point on M. Local coordinates on the tangent bundle
T(M) of M are given by (x, y) with y= (3, ---, »") which are vector
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components in the tangent space at x. Finsler space is a manifold M
with a function F on T(M) such that F=F(x, y) is linear in y and
moreover

o°F \ _ .
rank(ayiayj> =n-—1. G, j=1, -, n) (3)
By linearity we have
»oF _F, (4)
oyt

In the Finsler space a length of a curve x=x(¢f) (/,<¢<t,) is defined by

s = StzF(x, @> dt.

t dt
We consider the dual tangent bundle “T(M) of M and denote the local
coordinates by (x, z) with z=(z,, ---, 2,) dual to y=(3}, ---, »"). Next
we put
oF
i = —— 5
n=55 (5)

and define a mapping @: T(M)—°T(M) by (x,y)—(x, p) with p=
(piy =+ Pw). It can be verified that the mapping is globally defined.
We put

N = @o(T(M)) . (6)

N can be obtained explicitly in the following manner. By virtue of (3)
we can assume det (°F/20y*2y*)==0 (a, b=1, ---, n—1) at a point (%, »)
without loss of generality. Hence in a neighborhood of a point (x, y) in
T(M) we get from (5)

ya:fa(x; pu"‘»Pn—uJ’”) (6121, "',71"1),
and when we put these into p,=0F/0y”", we obtain
p,,:g(x; b, "'»pn—l)’ (7)

because we have det (0p;/2y’)=det (6°F/0y*9y’)) =0 and there exists a
functional relation between x, p. Thus N=¢@(T(M)) is a submanifold of
“T(M). Generally we call p-manifold in T(M) the submanifold which
can be locally expressed as

G(x,p) =0 (grad,G==0). (8)
Then N=@(T(M)) is a p-manifold by virtue of (7).
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ExampLE. As to Riemannian metric we have F(x, y)=+/g (x)y'y
and so

p: =OF/oy' = g;;¥’|F, G(x,p) =87pip;—1=0 (9)

with (g#) inversive to (g;;).

We prepare matters necessary for our later discussion. When we
put p;=0F/2yi =+i(x, y), we have naturally G(x, p)=0, and by differentia-
ting with respect to y* we get G»;0p;/9y’=0, since Op;/9y;=0p;/oy;.
On the other hand F(x, y) is linear in y and so p,(x, y) is homogeneous
of degree 0 in 3. Hence we have 379p;/9y’=0. As the rank of a matrix
(0p;/2y)=(F 2y 2y?) is n—1, we get

¥ = AGy, (G=1,-,n (10)
and hence
)\'piGi’,' =yip; = J".aF. =F. (11)
oyt

Next we take a curve c:x=x(f) on M. Then a curve ¢’ is defined
in T(M) by (x, £) and by the mapping ¢ : (x, £)—(x, p) a curve ¢’ =p(c’)
is defined in N. We call the curve ¢’ a /ift of a curve ¢ on M. Here
we have by virtue of (4)

pidxi = %""_(x, Diidt = Fx, £)dt .
yl

Hence p;dxf for a lift ¢”” is an arc-element of a curve ¢ on M.

2. On the dual tangent bundle “T(M) with local coordinates (x, z) 1-form
2;dx* can be defined globally. We restrict this to the p-manifold N and
we get
o = p;dxi . 12)
Hence
a =do =dp;Ndxt. (13)
o defines a contact structure on N with exception of certain points. In
fact, by (12) and (13)
oA (do)* ' = (=1 PP(p—1)! da'A - Adx”
A (S (=LY pudpyn - Adpin - Ndp,)

where a?),- means a lack of a term dp;. In case G»,==0 we have by (8)

dpy = — o Gudri+Go,dpy)  (i=1,m5 a=1,n=1) (19
P”
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and so

o A (do)*t = (—1)*=Dm-r(y 1)1 %Gﬁdxl A oo NdX*AdP A - Ndp,_, .

n

By (11) this vanishes only for y such that F(x, y)=0. Thus we get

Theorem 3. o=p,;dxi defines a contact structure on N except for
points (x, p) corresponding to such (x,y) that F(x, y)=0 holds.

By the discussion in section 1 an e-curve is introduced on N according

to the 2-form «. An e-curve is a solution of the equation i<§)a=0,
x‘

i<aa >0£=O, which we will write explicitly in the case where N is given by

a

G(x,p) =0. (15)
We assume Gp,==0 without loss of generality. Then we have by (14)

1

a =dp;Ndx' = dp, N dx“—G (G idxi+Gp,dp,) N dx" .

Py
[0 .{ O
Hence we get from 1<___>a=0 and i )cx:O
oxt ODa
de’ _ .. _4x" _ dp, _ ... _ dba (16)
Go, Gy, —G. —G,»

This is a differential equation of an e-curve on N. Along the solutions
G(x, p) is constant and when an initial condition x(0), p(0) satisfies the
relation G(x(0), p(0))=0, we have always G(x, p)=0, and the solution is
an e-curve on N.

We project an e-curve e: x=x(t), p=p(t) onto a curve E: x=x(¢)
on M. Then we have dx’/dt=mGs(x, p) by virtue of (16) and if y is
such that (x, y) is mapped on (x, p) by @, we have y'=AG»/(x, p) by (10).
Hence dxi/dt=m\"y", and p of the curve e corresponds to dx/dt of E.

Now we can prove the following theorem due to E. Cartan. (cf. [3]
p. 187)

Theorem 4. M is a Finsler space and N is the p-manifold constructed
over M. If we project any e-curve on N onto M, we get an extremal of
the Finsler space M. Conversely all the extremals of M can be obtained
in this way.

Proof. We take an e-curve ¢ on N and two points ¢ and b on c,
whose projections on M are a curve C and two points A and B. We
connect the two points A and B by a one-parametric family of curves
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C.: x=x(t,8) (t,=<t<t,) and we assume C,=C for €=0. We lift these
curves C, to ¢, on N, which can be expressed as x=x(¢, &) and p=p(t, &).
We denote differential for the variable # by df and that of & by 6§,
which are independent. Then we have for do=dp;A dx’

d((8))—8((d)) = dp:dx* —8p,dx’ . a7
This formula, due to E. Cartan, is now justified in modern theory as
d(@(E)T)—d(@(T)XE) = ap(T)dx(E)—dp(E)dx(T)

by taking T=09/ot, E=9/06. We use an old style for the sake of brevity
and we get

8o(d) = do(8)—(dp;x —8p,dx’) .
Along an e-curve ¢ we have dp;= —\G,:dt, dx* =\G»,dt and hence
dp;0xi —6p;dx* = —NO6Gdt =0,

as G vanishes always. Moreover the points A, B corresponding to #, and
t, are fixed each and so «(6)=0 for ¢=#,,¢,. Thus we have BSco(d)=0

along the curve c¢. As o(d) is an arc-elements along the curves C on M
the curve C is an extremal.

As e-curves can be taken in such a way that their projection on M
passes through any point x on M and its tangent at x takes any direction
when we take an initial condition for an e-curve suitably. Hence any
extremal on M is a projection of an e-curve.

As an application of Theorem 4 we can prove Jacobi’s enveloping
theorem by the use of Stokes’s theorem. We take a point x on a curve
x=x() and a direction represented by (x,y). This direction is called
transversal to the curve at the point if p;dx?/dt=0 for p corresponding
to y by the mapping ¢: (%, ¥)—(x, p). We take a one-parametric family
of extremals having contact with a curve C and a curve T transversal
to the extremals. For two extremals of the family points of contact
with C are A, B and the points of intersection with T are A’, B’ respec-
tively. Then Jacobi’s enveloping theorem asserts

AA—BB=BA,

where A’A, B'B mean the length on extremals and BA that of C. This
can be proved as follows under the assumption that the region D bounded
by the curves A’ABB’A and generated by the extremals is homeomor-
phic to a simply connected domain on a plane.

We take tangent vectors (x, £) at each point x of the extremals of
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the family in question, and p=p(x) such that ¢@: (x, £)—(x, p). Then
w=p;dx* is a 1-form on our Finsler space. We lift the region D to
“T(M) and apply Theorem 2. Then we have

0:5 do =S ) w—i—g w—l—g ,co+g . o=AA-BA-BB,
D A'A AB BB’ B'A

which was to be proved.

Hamiltonian function H in the classical theory can be derived as
follows. As F(x,y) is linear in y we can put F(x, y)=y"L(x, z), where
z=(2", .=+, 2*") and 2°=y»"/y" (a=1, -+, n—1). Then we have

_oF _; oL

_oF _oL _OoF
oy 97"

— S.a pn

P oy°  2z%’

On account of the relation (3) we have det (9°L/0z°02%)==0 without loss
of generality and we get z°=+v"“(x, p’) and hence

D = L(x, ¥r(x, p)) —¥°(%, )P,

where p'=(p,, -*, p,-). This is the equation (7) in explicit form. The
second side of the above equation is —H(x, p) and we get

® = p,dx"+p,dx" = p,dx"—Hdx".

§3. Dilatation in Finsler spaces

1. We take a plane element dual to a tangent of an extremal in Finsler
space M and translate it along the extremal by constant length. We
call this translation a dilatation in Finsler space. On the other hand a
homogeneous contact transformation is defined in a space with a contact
structure as a transformation preserving the fundamental 1-form o =p;dx*.
Then we have the following theorem.

Theorem 5. A dilatation in Finsler space M induces a homogeneous
contact transformation on the corrvesponding p-manifold N.

Proof. A dilatation in M induces on N such a translation T of a
point (x, p) to a point (X, p) along an e-curve that Scozg p;dx* =const.

We take a segment AB of a curve in N and translate it to AB by T.
Then we get a region generated by e-curves and bounded by ABBAA,
and we get by Theorem 2

JRN RS I )
AB BB BA AA
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By the definition of dilatation we have S _ng _o, and so
AA BB

SABCO - S,ZECO' (18)

As AB is arbitrary we get
p:dxt = p,dx*, (19)

which was to be proved.

Theorem 5 is not essentially new, but it puts a new light from a
geometric point of view upon a classical result, where ®=p,dx’ is a
relative invariant and de=dp;Adxi an absolute one. Here we have
proved that o is itself invariant for dilatation.

Theorem 5 has a following application. We define a measure element
in N, namely that of plane elements (x, p) in Finsler space M, by

__1
(n—1)!

Substituting o =p;dx; we get

dV (_l)n(n-l)/2 ® A (dco)n——l .

AV = dx' N Ndx"A (23 (=17 pudp, A ---/\é:o,./\ -~ Ndp,)
By virtue of Theorem 5 we get

Theorem 6. A measure Sd V' for plane elements in a Finsler space
is invariant for a dilatation.

In a Riemannian space with a metric ds*=g;;dx'dx’ we have as a
volume element of points

dv = gdx'N - Ndx" (&= Vdet(g;)) -

By 9) p=(p,, -+, p,) are covariant components of a unit vector and we
can define a measure of unit vectors by

do = g3 (~1)" p;Dp,A - A Dp; A -+ A Dp,.
where Dp; means a covariant differential of p. Then we have
dV =dvondo

by virtue of the relation Dp;,=dp; (mod dx’, ---,dx"). In this case we can
consider a dilatation as a translation of a tangent unit vector along a
geodesic by constant length, which we call a geodesic flow. The invari-

ance of Sd V for a geodesic flow is fundamental in the ergodic theory
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and has been treated by several authors. (cf. for example [4] [5])

2. As to Riemannian manifold of constant curvature, not only a volume
element but also a Riemannian metric is invariant for a geodesic flow.
We take rectangular frames on the tangent spaces of M and represent
the Riemannian metric as

with 1-forms ;. Connection forms of the Riemannian connection are
given by ,; in such a way that
do; = 0;Noj; (0;; = —®j), (21)
and curvature forms are given by
Adw;;— @ N oy = FR;jp@p N @y, (Rijen = — Rijne) (22)
We take geodesics and denote by 6 a differential along the geodesics
and by s an arc-length along them. We put
mi(g) = v,0s, wji(s) = Ejiss .
When we take a differential d independent of 6 we have by (21)
do,(8)—dw(d) = ®;(d )o ji(B) - “’j(s) @;{(d)
and putting
0,d) = 0;, 0,(d) =, Dv;=dv;,+v;0;
we get
8(’3,' = (_mjgj;+DU;)BS . (23)
As (v;) is a unit tangent vector along a geodesic,
81}; = —v_,-f_,-,-ss . (24)
By virtue of (22)
dwij(g)—swij(d)-wik(d) wkj(8)+wik(8) @,;(d) = Rijkh“’k(d) @,(8) .
and so
8w;;/0s = d&;;—@;pEp; +Eip@p;— Rijen®@ps -
Now
3(Dv;) = &(dv;)+0v;@;;+v; 8w
and as 8(dv;)=d(v;) we get
8(Dl’i)/‘ss = d(_vj‘fji)_vk‘fkjwji+”j(d§ji—C"jkfki+§j/z“’ki‘Rjikh“’kvh)
= “‘vagji_‘ijj;khwkvh . (25)
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Thus we have on account of (23)
8 .
1 2 (Sed) = Sloin = Doyeoy (26)
and by (25)

196 2
?g‘(z' (Dv;)*) = —0; R;i,040, Dv; .
Here we assume that M is of constant curvature K and then we get for
a unit vector (v;)
R;ipnv;v, = —K(Sjksih_sjhaik)vjvh = K(8;,—v;v4)
and so

g_S@ (Dv)) = — K Dvjo; + K0, Dv)wy@g) = —KDvso;.  (27)
From (26) and (27) we get
S(K 02+ 3 (DoY) = 0.

1
2

This can be stated as follows.

Theorem 7. On a Riemannian manifold M of constant curvature K
we denote a square of an arc-element by ds® and 21 (Dv;)* by do*, where

Dv; means a covariant differential of a unit vector v on M. Then Kds*+do®
is an invariant of a geodesic flow.

This theorem has elementary applications in the non-euclidean geo-
metry, but the author is not aware how it effects on the ergodic theory.

§4. Certain contact transformations

1. A homogeneous contact transformation f on “T(M) is a mapping
(x, 2)— (%, Z) such that z;dxi=z;dx’. If it maps p-manifold N into itself
and (x, p) is mapped on (%, p), we have

p:dx’ = p,dx*, hence dp;Adx'=dp;Ndx.
If we take coordinates &, ---, &""! on N, this can be written as
,6(E)dE N dEP = a4 (E)dE” NdEP . (a,B8=1, --,2n—1)
If the induced mapping E_—>§_is regular, namely det (9E”/9&%)==0, equa-
tions a,(§)d&°=0 and a,4(E)dE# =0 are equivalent. In fact

aws@% g‘—?’ — ays(®), hence aﬂ@mzzﬁg—gj = ay(5)dE .
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This shows that e-curves are mapped on e-curves and we get

Theorem 8. [If a homogenecous contact transformation on “T(M) maps
p-manifold N on itself and the induced mapping is regular, it maps
extremals on extremals on M.

Dilatation maps extremals on themselves, but it maps each extremals
on itself. We give here a more general example. A one-parametric
family of contact transformations can be given by solving an ordinary
differential equation

oxi = Uss 5, — —Us; 28)
op ox?

where £ is a parameter. If U satisfies an equation
Ginpi——GpiUxi =0 (29)

we have 6G=0. If G(x, p)=0 is satisfied for an initial condition, it is
always satisfied and we get a one parametric family of homogeneous
transformations preserving extremals. In the euclidean case we have
F=+/31(y7 and we get by (9) G(x, p)=>] pi—1=0. Then (29) reduces

to p;0U/ox* =0, whose general solution is given by
U= (p(plxz_ple’ p1x3—p3x1, Tty Plx"‘anly Dy s pn)
with an arbitrary function .

2. When a homogeneous contact transformation (x, p)— (%, p) in the
euclidean space is such that

b= f(9),

it preverves hyperplanes. In fact for a plane element (x, p) on a
hyperplane p is constant and also p,dx*=0. Hence p,dx’=0, and as
p=const, we get p,xi=const. Thus the plane element (x, p) is also on
a fixed hyperplane. Laguerre transformation affords an example of
transformations here considered.

NaGcoyA UNIVERSITY
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