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1. Introduction

This paper is a continuation of the previous one [1]. Its aim is to repre-
sent the space S'(R) of tempered distributions on Ry the space S(R) of rapidly
decreasing functions on R and the Fourier transformation on the space S' (R)
by using a kind of standardization of functions and transformations on a *-finite
subset of a lattice with infinitesimal mesh (see Definition below).

Fix an even infinite integer in *iV—N. Let £ = l / i ϊ and L=*Z •£. Put
X={x<=L\ — Hβ^x<Hβ}. Then, X is a *-finite subset of L of cardinality

W e h a v e Z g X g * i ? . Let

R(X) = {φ: X -> *C (internal)}

and assume that every φ in R(X) is always extended to a function on L with
period H. With this convention, the sum 2 φ{χ) does not depend on

the choice of x 0 G l . When xo=—H/2, we write this sum as Σ φ(x) or, in

short, Σ <?>•

The following definition is due to G. Takeuti.

DEFINITION. For x^X, let S(x)=H for # = 0 and δ(#)=0 for #=#0.

Proposition 1. For x^X,we have

The proof is trivial by the summation formula of finite geometric series.

DEFINITION. For functions φ, ψ in R(x), we define Fourier transform
Fφ, inverse Fourier transform Fφ and the convolution φ*ψ by following
formulas respectiaely:

1) Posthumous manuscript translated and arranged by Norio Adachi, Toru Nakamura and
Masahiko Saito.
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Fφ{x) = Σ εe-™*>φ{y), Fφ(x) = Σ
y->x yex

φ*ψ(x) = Σ εφ(χ-y)ψ{y) •
y<=x

If we consider φ ih R(X) as a vector (φ(r£))0^r<H

2 with H2 rows, then Fou-
rier transformation F is an H2 X if2 matrix

1 (p-2*irs/H2\ j

and the inverse Fourier transformation F is the complex conjugate of this
matrix. We shall use same symbols <p, F and F for above vectors and matrices.

Note that the trace of F multiplied by H is a Gauss sum.

DEFINITION. 1) The external subspace AT{R) of R(X) is ithe set of all
φ&R(X) such that Σ 6φ*f= Σ Sφ(x)*f (x) is finite for every / i n S(R).

2) The external subspace MX{R) of R(X) is the set of all φ<=R(X) such
that J]S\cp\ is finite.

3) The external subspace M(R) of R(X) is the set of all φ^R(X) such
that Σ G\φ\ is finite for every compact subset K of R.

4) Define Γ^(/)=°Σ3 €φ*f for ^ e ^ τ ( i ? ) and f^S(R), where °α is the

standard part of a finite element in *C. Then, Γ̂ , is a linear form on £(i£), i.e.
an element of the algebraic dual £(.#)* of S(R).
We have thus obtained a mapping Γ from AT(R) to cS(i2)*: φ\-*Γφ (φ<=Aτ(R)).
As in Theorem 1 of [1], we can prove that Γ is surjective.

DEFINITION. 1) Define mappings D+ and D_ from R(X) to R(X) by
formulas

D+φ(x) - (φ

2) Define a function λ in R(x) by

and define mappings λ and X from R{X) to

(\φ)(x) — X(x)φ(x),

3) Let T(R) be the smallest (external) subspace of R(X) which includes
Mλ{R) and is stable under D+f D_, λ, X. Namely, a function is in Γ(7?) if and
only if it is a finite sum of functions which are obtained from functions in Mλ{R)
by operating D+y D_, X, X finitely many times succesively. •

In this paper, we shall obtain following results:
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(1) T(R)^AT(R) (a part of Theorem 2).
(2) T{R) is stable under F and F (Theorem 1).
(3) If 9>eΓ(Λ), we have

a) Γ,e<S'(Λ).
b) Γ ^ = ( Γ r ) ' , Γφλ(ή^(2πit)Tφ(t)y Γ-λφ(t)=(-2πit)Γφ(t).
c) ΓF,,=JFTV, ΓF φ =9Ί\, (Theorem 4), where £F is

Fourier transformation on the space S'(R).
(4) The mapping Γ from T(R) to S\R): φ->Tφ is surjective (Theorem 4).

DEFINITION. 1) U(R) is the set of functions φ in R(X) such that φ(x)
is finite for every x G l and that φ(χ)—φ(y) whenever x—y.

2) Q(R) is the set of functions φ in U(R) suh such that iterated operations
of D+y D_, λ, X do not bring φ outside U(R).

3) For a real number ί, let At=max{x^X\x^t}. For a function φ in
Q(Λ), we can define a function v ^ : i?->C by vφ(t)=\φ(Aή) for ίGΛ.

We shall obtain following results:
(1) For 1 < ^ < O O , the sum Σ S\φ\p is finite for every φ^Q(R) (Proposi-

tion 10). X

(2) Q(R) is stable under D+y D_, λ, X, ί1, F and closed under multiplica-
tion (i.e. φ, Ψ^LQ(R) implies φψ^Q(R)) (Theorem 6).

(3) If φ(ΞQ(R), then vφ(=S(R) and Γφ=Tvφ, where Tvφ is the distribu-
tion on R defined by vφ. Namely, if we denote by μ Lebesgue measure on R,

then Γ9(t)=[ vφfdμ forf&S(R).
JR

(4) For <pξΞQ(R), we have (Theorem 7)

(5) If htΞS(R), then */*|X belongs to Q(R) and V(*A|X)=h (Theorem 8).
In particular, the map: φ\-*vφ from Q(R) to S(R) is surjective.

2. Fourier analysis on

Fourier analysis on R(X) is essentially that of a finite cyclic group inter-
preted in the universe of internal sets. Proposition 1 writes δ=Fl=jPl , where
1 is the constant function on X with value 1.

Proposition 2. Write lR(X) the identity map of R(X) and lei φy ψ be in

a) F is unitary, symmetric and F^=\RU). We have FF=FF=1R(X) and

*Σj£φψ = ^ΣjSF<p FΛlr. The eigenvalues of F are 1, — 1, — /, and i with multi-

plicity H2/4+ly H2/4, H2j4 and H2\\ - 1 respectively.
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b) ^>*δ=δ*£>=9>,

c) Σ 8(x—n)= Σ <?*ixn

d) Let φ be a function in R(X) with period 1. If we put cn= Σ Sφ{x)

e~2*ixn

s then we have φ(x)= Σ cne
2*ixn.

e) 4̂ function φ in R(X) is non-negative real valued if and only if we have

for every ψ in R(X).

Proof of a). H being even, H2 is a multiple of 4 and therefore the results
on Gauss sum imply that the trace of F is 1—i (see [2] for example). Let Nl9

N2, N3 and NA be the multiplicity of eigenvalues 1, —1, —i and i respectively.
Then we have Nι—N2—iNz+iNi=^\—i. Let r, s<=*Z with O^r, s < i ϊ 2 and let

0, otherwise.

Then F2=(artS)0grtS<H? and the multiplicity of the eigenvalues 1 and —1 of F2

is H2β+ί and H2β - 1 respectively. So we have Nx-\-N2^H2β + \ and
Nz+NA=H2β — 1 , and we get the result.

We omit the proof of the remaining parts, which is classical.

Proposition 3. a) For φ^R(X), we have FD+φ==\Fφi FD_φ =
—XFφ, F(\φ)=D^Fφ and F(λ<p)—D+F<p.

b) For x^X with \x\^Hβ> we have 4\x\^\\x(x)\^2π\x\.

Proof, a) Direct calculation.
9

b) If α e * β and |α |^τr/2, then we know that — \a\ ^ | s inα| ^ \a\.

Hence π

π

7tSX

πβ

sin (π£x)

π£

πSx

Multiplying these inequalities by 2π9 we have

^sinjπSx) ,„,

3. Fourier transformation on the space MT(R)

DEFINITION. Let MT{R) be the set of functions φ in R(X) such that

Σ £ 2 / is finite for some standard integer
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From inequalities of Proposition 3 b), the condition on φ is equivalent to

the condition that Σ S—' φ^X>'— is finite for some /eiV.

x ( l+M 2 ) '
We have Mλ(R)^MΊ(R) by definition. Put ψ== 2L_ for φ^Mτ(R).

(1+ \x\ )
Σ Sl'Ψ'l being finite, we have ψ^M^R).

We have Mr(i?)c:M(i2). In fact, if φ^Mτ(R) and K is a compact subset
of R, then

= Σ

(1+ |Λ?|

the last quantity is finite for some / eiV by definition of MT(R).

Proposition 4. W^ have Mτ(R)dAτ(R), and if φ^Mτ(R), then
S\R) andPφ=

Proof. ljttφ^Mτ(R) and f^S(R). Then there exists an integer

such that Σ £ — — is finite. We have therefore

& (l+M2)'

Hence ^e^fΓ(Λ) and Γ f e ^ Λ ) . Pφ(=3)'(0\R) follows from φ<=M(R).

Let μ be Lebesque measure on 72.

Lemma 1. Put R+= {t ^R \ t^>0} and let hbe a continuous, integrable and

decreasing (in wider sense) function on R+ with values in R+. Then we have

i) For Nv ΛΓ2G*ΛΓ with N2^

Σ e*A0ΐ)^Σ ε*h(jε) ^ \ + hdμ.

ii) For N e= *iV-iV, Σ ^*^(i^) — ^ .
y=i JR+

Proof, i) Obvious.

ii) Put α(fi)=Σ ε*A(i) for «G*iV. Then, α: *iV-^*/? is internal and

hdμ. We claim that there exists an infinite natural number L such

R+
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that *°a(n)^a(n) for all n^L. In fact, let A be the set of all ι»e*JV such that
n\*°a(n)—a(n)\ ^ 1 for all n^m. If n is finite, then *°a(ή)=°a(n)^a(n), so
NaA. T h e set A being internal, it contains an infinite element L.

Write / = I hdμ. Then, a(n)^=Λ hdμ and lim °a(n) = /. Therefore we
J Λ + JO »->~

have *°α(iV)^/ for all N^*N—N. If in paticular iV^L, we have a(N)~
*°a(N)—I. On the other hand, if N>L> we have a(L)^a(N)^I by i), hence
a(N) — I. These two relations imply the desired result.

Proposition 5. i) For every integer l^N,zoe have (1 + | λ | 2 ) " ' e Mλ(R).
ii) // φ eMX/?), ίΛ̂ ii J?V, F,, eM Γ (Λ).

Proof, i) By Proposition 3, it suffices to show (1 + \xI2)"1

Writing A(ί) = ( l + | ί | 2 ) " 1 » w e h a v e **(«) = (1+ k Γ ) ' 1 for *ejf, Lemma 1

implies Σ S*h(j£)~\ (l+\t\2γιdμ{t\ so Σ £*Λ(Λ:) is finite.

ii) Let φ^Mx{R) and 9>^0. Then Fφ(0)=ΣSφ is finite and |Fφ(x) \ ^

Έl6\e-*cixy\φ(y) = 'Σεφ{y)=-Fφ(Q). For general φξΞM^R), write © =

(9?!—φ2)
Jt-i(φ3—<p4) where ^ , ^ 0 and φi^M(R). Then we have | i V ( # ) | ^

4 4
yΣ\Fφi(x)\^^ΣFφi(0)y so Fφ(x) is finite. Combining with i), we have
ί = l ί = l

(Fφ)(ί+ I λ 12Yl^Mx{R) and therefore Fφ<=Mτ(R). Same for

Theorem 1. The space T(R) is stable under operations D+, D__, λ, X, ί1

F.

Proof. By definition, T(R) is stable under D+, D_, λ, and X. Using loose
notations, A stands for D± and B stands for λ and X. Let ψ^Mx(R) and
<p=AmiBni ••• Am*Bnkψ. Then F ^ = ± S * 1 - 4 l l ί — BmAnkFψ. Fψ is in MT(R),
so in T^R). We have therefore F ^ e Γ(i2). By the definition of T(i2), we get
the result.

For a function of on R and for x, h in R> we put

(Δ+/X*) = / ( * + * ) - / ( * ) and (A.f){x)=f(x)-f(x-h).

Lemma 2. 7/ a function f on R has bounded derivative of every degree,
then we have

I ((Δ+Δ_)"/ ){x)-tf«fv\x) I ̂  IA12«+2 sup |

Proof. By Taylor's theorem and induction.

Lemma 3. Letf be in S(R). Then,
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i) *f\X^M1(R) (we shall write */ for *f\X if there is no danger of con-
fusion).

ii) Fro every l(=Ny there is c(=R such that (1+ | λ | 2 y | F * / | ^c.
iii) (l+\Λ\2)ι\F*f-*(ZFf)\^0for every l(=N.

Proof, i) By Proposition 5, (1+ \x\2γι^Mλ{R) for every ZeiV. As/is
in S(R), there exists c(ΞR such that (1+ 11 \2)1 \ f(t) \ ̂ c for all t^R. Therefore
we have (1+ M 2 ) ' | */(tf)| ^C for all ^ ί , which implies xf

ii) Proposition 3 implies

\\\>*(F*f) = (-ί)«F{(D+D_y*f}

for k&N and we have

I "\ I 2k I 77*/ I <r" I Z ? * / ^ ) I _L I Ί7{%4

| λ | * | i*vl ^ I-** / l + l^( /

which is finite by (i) and the fact/(2Λ)ec5(/2).

I F(*f^-(D+D_γ*f) I ^ Σ S I */(2A)( y)-(D+D.γ*f(y) \

2k
•—£ 2 sup I / ( 2*+ 2 ) I (see Lemma 2)
4!

iii) For every leN, there exists c<=i2 such that (1+1 X(x) 12)/+11 (F*f)(x) \
Sc and (1+1 \(x) 1 2 ) m | *(3"/)(Λ;) | ^ c for all n i ε l We have therefore

If X^LX is infinite, then ^/8|Λ?|2 is infinitesimal and we get the result.
If x G l is finite, (1+ \\{x)\2)1 is finite by the inequality \\{x)\ ^

Hence it suffices for us to show that |(iΓ*/)(^)-*(2Γ/)(Λ;)|^0.
Let e>0 and take meiV such that Σf( l+ |Λ? | 2 )" W is finite. Choose a

function g^D(R) such that

sup

and ί

Let t=ox&R. Then we have
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and therefore

We shall evaluate the right-hand side of the inequality

I (F*f)(x)-*(Sf)(x) I g I (F*f)(x)-(F*g)(x) |

+ \*{Sf)(X)-*(Sg)(x)\.

The first term = | Σ 6e-*"*>(*f(x)—*g(x)) \

^ε(l+\x\Y»> sup {(l+\t\T\f{t)

The third term^ | *(Sf)(x)-(Sf)(t) \ + | (&f)(t)-(βg)(t) |

+ \*<βg){*)-φg)(t)\'

The first and third summands are infinitesimal and the second summand is
Puti£=Supp(g). Then,

the second term = \(F*g)(x)—

6e-"«»*g(y)\

Iίk^m+1,

the first summand = | Σ fi(β"ϊβ'iW-«"1"")(l +1J12)"*(1 + IJ12)k*g(y) I

( 1 + l l )

u p

where σ, τE*J? and 0<σ, τ < l . The second and third summand being in-
finitesimal, the second term is ^e.

Combining these results, we have

= Ae .

The positive number e being arbitrary, we have |(.F*/)(#)—*(ΞFf)(x)\ — Q.
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Proposition 6. i) If φ <= MT(R), then Fφ <= AT(R).
ii) // φϊΞMτ{R) and feS(Λ), then Σ 6{Fφ)*f^Σεφ*{3f). In other

words, ΓF,(/)=ΓV(3-/).

Proof. Note that Σ £(*>)*/= Σ Sφ(F*f).
X X I I

i) Take a standard integer / so that Σ S Π4-M\ I2V ^s ^ n ^ t e -^or e v e r y

/ in S(R), we have

This is finite by Lemma 3 ii) and therefore Fφ^Aτ(R).

ii) Take ZeiV so that Σ £ 12 / *s ^ n ^ t e ^or e v e 3 T / m £(R)> w e

z (1+ | x | )
have

= \Σεφ(F*f-*(Hf))\Σ

- \ψε

Lemma 3 iii) implies

for every positive d^R, which is our claim.

4. Spaces T{R) and S'(R)

Proposition 7. L ί̂ >̂ be a function in R(X). Then the following two con-
ditions on φ are mutually equivalent:

i) Σ £m+1 -^ is finite for some m and I in N.

ii) Σ €k+1
 2 r is finite for some k and r in N.

Proof. i)«ii,

i i )^ i ) If A+1^2wi and r^2l, then we have S2a^£"+1 and
( l + | λ | 2 ) " r . Hence we have
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m+1 1^1 ^ <H2

(1+lλl2)
2 ) 2 '

DEFINITION. ZT(R) is the set of functions φ in R(X) which satisfy mutual-
ly equivalent conditions in Proposition 7. Clearly MT{R)GLZT{R).

Lemma 4. For n^N,n^l,we have

D\\(x) = *
c

D1\(X) - (~

Proof. Direct calculation for n— 1 and induction on n.

Proposition 8. The space ZT(R) is stable under operations D+, D_, λ, X, F
F and under the multiplication of functions.

Proof 1° V ctt+2 \£>±<P\ _ V μm+i\φ(x±e)-φ(x)\

+ 1 \φ\

m+i \φ\

)'\ i+\x(χ)\2

ά ¥ + 5 i u i ¥ ~ ( + ) ?
This means D±<p e ZT(R) for ^ZT(R). Here, we used the inequality

: 2

\xφ\

which implies Xφ^Zτ(R) for <p^Zτ(R). Same for [
3° Take r ̂ N so that Σ 5(1+ | λ 12)~r is finite. We shall show

^ek+2r+2JFφ\^{£Hπ2yΣ{

From inequalities
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we have

„ k+2r+2 \Fφ\

( H l λ l 2 ) ' - i

On the other hand, from | X(y) | ^2τr | j ' | ^nH, we have

Combining these, we have

Now, if ^ G Z Γ ( J ? ) , Proposition 7 implies the existence of k, r^N such that

f Γ ' f 1 is finite So, by the above inequality, Σ£*+2 '+ 2

 M f ^ l ' is
) x U | λ |

finite, and Proposition 7 implies Fφ^Zτ(R). Same for

4° The inequality

(V g m + 1 H \Yyι £*+1lΨl V
V? Π-μ|χ|2y/Vx Π + |λ|2V/

^ Σ

implies <py]rEzZT(R), if 9?,

Proposition 9. // 93 e ^4T(JR) Π Zτ

Moreover, iff e S(R),

Proof. (1) Let φ<=Aτ(R) f] ZT(R). D±<p<=ZT(R) by Proposition 8. Let

and take m, I eiV so that Σ £ m + 1 — ̂  L , is finite. Then we have

_ i 2

(m-\-2)l
Σ Sm+1φ(x)(Reψm+2\xTσe)+i lmψm+2)(χψτ6))\
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where σ, τ^*R and 0<cr, τ < l . We have, for

< * =

On the other hand, we have

(OT+2)!
ilmψm+2\xψτε))\

*|*) l(Re*/ f t l H

Hence we have D±φ(=Aτ(R) and Γ B ± f (/)=-Γ,(/') for/ecS(iS).
(2) Let <pGAτ(R)nZτ(R). Proposition 8 showed that λ^,

Let/e^(Λ) and take m, /eiV such that Σ ί - » + 1 _ ^ M L is finite. We can
then write * e X ( l+l^l 2 ) '

(m+2)!

where σ,τG*Λ and 0 θ , τ<l. We have

Σ ( 2 % ) * £ t " 1 Σεφ(χ)χ>*f(χ)

(cos 2^δσΛ?+i sin 2πSτx)xm +2

sin

If l^Λ^w+1, we have

The absolute value of remaining terms is bounded by

(2»)"+»e «+l 1 2 )' sin *)
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Hence we have Xφ<ΞAτ{R) and Γλφ(f)=Tφ(2π itf) for feS(R). Same for ϋφ.

Theorem 2. T(R)^AT(R) ΠZT{R).

Proof. Note that M1(R)^Mτ(R)nAτ(R)f]Zτ(R), which follows from
definitions of MT(R) and ZT(R), and from Proposition 4. On the other hand,
AT(R) Π ZT(R) is stable under D+y Z>_, λ and X (Proposition 9). Hence the
definition of T(R) leads us to the result.

Results in § 3, in particular Proposition 6, suggest that divided differences
and their finite sums of functions in MT(R) are easier to manipulate than general
functions in T(R). So we hope to "approximate" a function in T(R) by a
finite sum of divided differences of functions in MT{R). For this purpose, we
introduce an equivalence relation = in the space T(R). Let iV+= {weiV

DEFINITION. Let TQ(R) be the set of finite sums Σ ^ Φ,-, where
1 = 1

α, e*C, α f ~0 and φi^T{R) ( l^ i^n). For 99, ψeΓ(Λ), we write ^=i/r if

Lemma 5. Lei J\fr(*C) = {a e *C | α #
i) Ifφ,ψ<= T(R) and φ=Ξψ, then Γφ=Tφ.

ii) TTie relation = w compatible with addition, subtraction, multiplication by
elements of Ns(*C), λ, X, D±, F αwrf F.

iii) If a, β<ΞNs(*C), a~β and ^ , ψ E T(R), φ=ψ, then aφ=βψ.

We omit the proof.

Theorem 3. Every function φ in T(R) is equivalent ( = ) to a sum

Σ D™iDnJψi, where q<=N+, ψt-GMΓ(Λ) and miy n^N (l<Zi<Zq).
t = l

Proof. The definition of T(R) assures that φ is of the form φ —

Π (D'ZΦnJΛr*%sήψ where ψtΞMΛR). We proceed by induction on /. The
k = l

assertion is trivial for 7=1. Assume the result for 7—1. Then, we can write

where u&N+ and ψ^M 7 (/S), kiy 7,eiV (l^/<£κ). It suffices therefore to prove
the following assertion P(r, s, β, 7) with parameters r, s, ky 7 in N: if ψ<=Mτ(R)y

then we can write

where ί;eiV+ and Xj(ΞMτ(R), mjy n
First, P(0, 0, ^, 7) is trivial. We assume P(0, ί, ky 7) and show P(0, s+l,
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k, /). We have XS+1Z)* DLψ=i] XDyDL'Xj, and by Lemma 6,

WV DlJ Xj = D^J Ώli{\X)+2πi{mj D^r1
 DUJX+UJD^J Dlr1),

and we get P(0, s+l9 k, I) because X%eΛfΓ(/2).
Next, we assume P(r, s, k, 1) and show P(r+1, s, k, I). We have

Xr+1HsDk

+DLψ=Σl XDΐiDϊJX and by Lemma 6,

and we get P(r+1, ί, Λ, /). We have thus proved P(r, sy k, I) for all r, ί, Λ,
and so Theorem 3 is proved.

Theorem 4. 1) // φ<ΞT(R). then Γφ^S'{R) and TD±φ = (Tφ)\ Tλφ =
(2π it)Γφ, TXφ=(-2π it)Tφ.

2) Ifφe T(R), then TFφ=ζFTφ and Ypφ=3Yφ.
3) The map: φ)->Γφfrom T(R) to S\R) is suήective.

Proof, (due to T. Nakamura). 1) By Theorem 3, we can assume that
9>Ξ=D*DI<ψ>, where m, n^N and ψ<=Mτ(R). As D1ΐDtLψ^T(R), we have
Yφ=YDrnDnJil hj Lemma 5. T(R)^AT(R) Π ZT(R) (Theorem 2) and Proposition
9 imply+that ΓZ )-D«ψ(/)-(-l) l w +Tψ(/ ( w + Λ )), we have Y^^S\R) by ψ<=Mτ{R)
and Proposition 4. Hence we have

where (Γψ)(w+Λ) is (m-\-n)-th derivative of Γψ in the sense of distribution. We
have therefore Yv=(Y^)(m+n)&S'(R). By Proposition 9, we get the result.

2) By Lemma 5 ii) and Proposition 3, we have

ΞΞFDΐD'L'ψ = (-ί)nXmXιFψ

and therefore YFφ=(—l)nΓλmx«Fψ
By Theorem 2 and Proposition 9, we have

for/e<S(JR), and by Proposition 6

TFψ((2π it)'+f) = ΓΨ(3-((2,r Λ)-»+»/)) =

= (SΓΨ)(f),

and hence we get YFφ=SFYφ. The same for F.
3) Let TGcS'(Λ). By the structure theorem of S'(R), there exist a

bounded complex measure S and rc, k<=N such that Γ = {(1+ | * \2)kS} °° (see [3]).
By our previous paper [1], there exists ψ^M^R) such that S(g)=°*Σ £ty*g for
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gtΞ3)(R). We have therefore S\3)(R)=Ti\3){R) and hence S=T+. If we
put φ=Dn

+(l+ \X\2)kψy then φ(=T(R) and Tφ=T.

5. Spaces Q(R) and S(R)

Recall definitions in § 1. U(R) is the set of functions φ in R(X) such that
φ(x) is finite for all x^X and that φ{x)^φ(y) whenever x, J / G J and χc^.y.
U(R) is the set of bounded and uniformly continuous C-valued functions on R.
For a function 9) in £/(/£), yφ is a function R-+C defined by vφ(t)=°(φ(H)) for
*GJB, where H=maκ{xeX\x^t} and °α is the standard part of α^Ns(*C).
These definitions and the following theorem are due to Robinson [4].

Theorem 5. 1) If φ^ U(R), then v ^ e U(R) and Yφ= Tvφ, where Tvφ is

the distribution defined by vφ: Tφ(f)=\ yφfdμ{ftΞS(R)).

2) //AeE7(Λ), then *h\X*ΞU(R) and \*h\ X)=h.

DEFINITION. 1) For a function φ in R(X), let Y(φ) be the set of finite sums
of functions of the form a\lrKmD%Dί.φ, where a^Ns(*C) and I, m, nyk^N.

2) Q(R) is the set of functions φ in U(R) such that Y(φ)cU(R).

Proposition 10. If φeQ(R) and \<^p<oo, then *Σ6\φ\p is finite. In
particular, Q(R) c Mλ(R) c Γ(Λ). X

Proof. Take /eiV such that ( l + | λ | 2 ) " l e A f i ( Λ ) . As ( l + | λ | 2 ) / + > G
C7(JB), there exists ί G Λ such that (l+\\\2)ι\φ\^c. Hence | ^ | ^ c ( l + | λ | 2 ) " /

and |<p

Lemma 7. For φ, ψ^R(X)> we have

*= Σ (T£)f( * ) Σ

Proof. Induction on w.

Lemma 8. If φ<=R{X), then Y(D)φ±, Y(Xφ) and Y(λφ) are included in Y(φ).

Proof. Y(D±φ) c: Y{φ) follows from the definition. By Lemma 4 we have

and hence

We have therefore



858 M. KINOSHITA

D+(Xφ) =
C7

D_(\φ) = V

c

For the proof of Y(\φ)^Y(φ) and Y(λφ)^Y(φ), it suffices to show the fol-
lowing assertion P(ny k) with parameters n,

and D% Dί{Xφ) e Y(φ) .

P(0, 0) is trivial. Assume P(0, *) and show P(0, Jfe+l). By the second
formula above, we have

Dί+1(Xφ) - Dί(D_(\φ)) - Dt

The first and the last terms belong to Y(D_φ) by the induction hypothesis
and so to Y(φ). The third term belongs to Y{φ) by the induction hypothesis
and the second and the fourth terms belong to Y(φ) by the definition, and we
get P(0, k+1). Similar for Hφ.

Next, assume P{n, k). We show P(/z+l, k). By the first formula above,
we have

Dk_{\D+φ).

The same argument shows that five terms belong to Y{φ) Similar for Xφ.

Theorem 6. Q(R) is stable under multiplication and operations D+i D_, λ,
X, F, F.

Proof. 1° Let φ, ψ£ΞQ(R). Lemma 7 shows Y(φψ)^Y(φ)Y(ψ) and
hence Y(φψ)^U(R).

2° Let <p(=Q(R). Lemma 8 shows Y(D±φ)y Y(Xφ), Y(Xφ)^ Y{φ), which
imply D±φ, Xφ, \φ^Q(R).

3° Let φζΞQ(R) and we shall first show Fφξ=U(R). \Fφ(x)\ =
\ΣGe~*"xyφ(y)\^ΊlS\φ(y)\, which is finite because Q{R)^MX{R) (Proposi-\ φ ( y ) \

tion 10). Let xy Λ ' G ! and take /eiV and c<=R such that Σ 6(1+ | λ | 2 ) " 7 is
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finite (Proposition 5) and that (1 +1 λ 12)'+11φ\ ^c. We have

\Fφ(x)-Fφ(x') I = '

__ I es«-(*-*'»-1 I (1 + I λ(y) I ψi, φ{y) i

ήέc i+|λ(.y) | 2 ( i+lλooi 2 ) '

As we can write

#*ι<β-J)y-.\ = (2πi(x-x')y)(cos2π(x-x')τy-tsin2π(x-x')σy))

where T, ere*/2and 0<σ, τ < l , we have

x'\\y\^π . ,.

4 h ''1+lλθθl1

Therefore we have

\/

If Λ?=^Λ:', then Fφ(x)—Fφ(x'\ that is, i ^ e Z7(Λ).
4° We shall show Y(Fφ)^U(R), which will complete the proof of

Theorem 6. Let a^N5(*C) and /, m, n, k^N. By Proposition 3, we have

The right-hand side belongs to U(R), because DlDl(X,n\k<p)&Q(R). Hence
we have aXιTD\Di.Fφ<= U(R), which says Y(Fφ)^U(R).

Theorem 7. Let
1) v^> e cS(JB) α/ίi Γ^= Tvφy whereis Tvφ is the distribution on R defined by
2)
3)

Proof. Theorem 5 says that (Tvφy=(Γφy=TD±φ= Tv(D±φ). By Theorem 7
in Schwartz [3], Ch. 2, § 6, ̂ φ^C\R) and (» '=(Z) ± 9 >). Therefore > 6 ^ ( i 2 ) .
On the other hand, T2€it(yφ)=2πitT^φ=^2πitTφ==Tλφ=Tv(λφh which leads to
(2πityφ=v(\φ)^U(R) and therefore V?>(Ξ^(Λ) Finally we have Tv(Fφ) =

y and so

Theorem 8. // h^S(R)} then *h\X<=Q(R) and \*h\X)=h. In parti-
cular, the map: φ\-*wφfronι Q(R) to S(R) is surjective.

Proof. Write *λ for *h\X. If we show Y(*h)^U(R), then *h(=Q(R)
by the definition of Q(R). Then, *h(*t)^h(t) for t^R and

, which will complete the proof.
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For showing Y(*A)c; U(R)i it suffices to prove the following two assertions
(l)and(2):

(1) \lX*DSDkJ*h^\i7Lu*h<n+k> for /, w, ny k(=N.
(2) \{x)*h{x)
In fact, we have for x

Xι(x)JLm (x)Dn

+ D ί * A(Λ?) — ( - l)m(2πix)ι+m

Hence there exists ctΞR such that | λ'(tf)X%\0o+°-*%) I £c9 for all i G l , that
is, λ1 XwDiDl*A is bounded. Next, let x,y^X and x^y. Then the function
t\->tι+mh(n+k\t) is uniformly continuous, and we have

We have therefore λ'X"2)iZ)l :*Ael7(Jϊ), hence F(*A)εf/(Λ).
To show the assertions (1) and (2), we provide two lemmas.

Lemma 9. Let t e C°°(R) and put

A+f(x) = /(^+A)-/(^), AJ(χ) = ftχ)-flχ-h)

for x,h^R. Then, for ny k^N+, there exist uhuΊ,vhv'ι^R (l^l^ή) and
sjf s'j^R ( l ^ j <:k) such that 0<uh u\3 vh v'u sj} ^ < 1 and that

An

+Aίf(x)-hn+ψn+k\x)

(Refn+k+1\x+lu,h)+tlmfJ' +ll+1)(x+lu'lh)
2 V=ί

k

v-jSjh)-iImf<'+k+1\x-js/j h))}

Proof. Taylor's theorem and induction.

Lemma 10. Let h(=S(R), a<=Ns(*R) and /, m(ΞN. Then \'(x)7LM(x)* X
(Rεh)(x+aS) and \\x)Xm(xY{lmh){x+ae) are finite for x^X.

Proof is direct.

Proof of the assertions (1) and (2) in Theorem 8.
(1) PutA1-ReA ( Λ +* )andA2=ImA^+* ). By Lemma 9,

I Xι(x)Jim(x)(Dl Dί *h)(x)-Xι(x)Xm(x)*h<n+kXx) \
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'(*)r(*)Γ-f- {Σ (*hl(x+rp£)+i*hί(x+rp!6))
L L r = l

Σ {*h[{x-sσsε)+i*h'2{x-σ'sε))}—^ Σ Σ {*Aί'(*+(n r-ίσ s))ε

2-J €2 ΣI λ'WX-W Aί^
4

where pr, τ r, pi, T^G^iί, 0<p r , T f , pi, τ £ < l (1 ̂ r^rt) and σs, σ ί e Λ , 0<<rs,
σ ί < l ( l ^ ί ^ Λ ) . The coefficients of £/2 and £2/4 i n t h e right-hand side are
finite by Lemma 10, so the assertion (1) is proved.

(2) As we have

X(x)—2πix = £(2τr/#)2(cos 2π€σx+i sin 2πSτx),

where σ, τG*Λ and 0<σ, τ < l , we have

which completes the proof of Theorem 8.
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