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Since the discovery of the Jones polynomial in 1984, several polynomial
invariants of the isotopy type of knots and links in a 3-sphere have been dis-
covered. In general, the relationships among them, together with the classical
Alexander polynomial, are as follows: the (many variable) Alexander polynomial
specializes to the reduced Alexander polynomial, the 2-variable Jones polyno-
mial, which is a skein invariant, specializes to both the reduced Alexander and
the Jones polynomials, and the Kauffman polynomial specializes to both the
Jones and the Q polynomials. Remember [17, Fig. 4]. For a 3-braid knot or
link, the 2-variable Jones and the Q polynomials are determined by the reduced
Alexander polynomial and the exponent sum [10, 22]. This is generalized to a
formula for the 2-variable Jones polynomial [21]. For a 2-bridge knot or link,
the Q polynomial is determined by the Jones polynomial [14]. The purpose of
this paper is to consider the independency of the polynomial invariants of the
2-bridge knots and links and the closed 3-braids.

In the previous paper [13], the following examples for the 2-bridge knots
and links are constructed: arbitrarily many 2-bridge knots with the same Jones
polynomial, arbitrarily many skein equivalent 2-bridge links with the same 2-
variable Alexander polynomial, and a pair of skein equivalent 2-bridge links with
distinct 2-variable Alexander polynomials. In Sect. 3, we construct: arbitrarily
many skein equivalent fibered 2-bridge knots (Theorem 1), arbitrarily many skein
equivalent 2-bridge links with mutually distinct 2-variable Alexander polyno-
mials (Theorem 2), and arbitrarily many 2-bridge links with the same 2-variable
Alexander polynomial but mutually distinct Jones polynomials (Theorem 3).

In Sect. 4, we construct the following examples concerning the Kauffman
polynomial of the 2-bridge knots and links: a pair of skein equivalent 2-bridge
knots with the same Kauffman polynomial (Theorem 4), a pair of 2-bridge
knots with the same Kauffman polynomial but distinct Alexander polynomials
(Theorem 5), a pair of skein equivalent 2-bridge links with the same Kauffman
and 2-variable Alexander polynomials (Theorem 6), and a pair of skein equivalent
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2-bridge links with the same Kauffman polynomial but distinct 2-variable Al-
exander polynomials (Theorem 7).

In [1], Birman constructed two examples of pairs of closed 3-braids with
the same Jones polynomials; each pair of the first one has distinct signatures and
the second one the same signature. In Sect. 5, the following examples are
constructed: a pair of skein equivalent 3-braid knots with distinct Kauffman
polynomials, in particular, nonamphicheiral 3-braid knots which are skein equi-
valent to their own mirror images—10,4 [26, Appendix C] is one of them (Ex-
ample 5.1), four 3-braid knots with the same Jones polynomial but have mutually
distinct Kauffman polynomials (Example 5.2), a pair of skein equivalent 3-braid
knots with the same Kauffman polynomial, in particular, a nonamphicheiral
3-braid knot K such that K and the mirror image of K are skein equivalent
and have the same Kauffman polynomial (Example 5.3). In Examples 5.2 and
5.3, we use a computer to distinguish the knot pairs.

1. Skein equivalence

We call (L, L_, L,) a skein triple if the L; are identical except near one
point where they are as in Fig. 1. Skein equivalence [4, 6, 19] is the smallest
equivalence relation ‘~' on the set of all oriented links in S3 such that (i) if L
and L' are ambient isotopic, which we denote by L~L’, then L~L’;

(it) if (L, L_, Ly) and (L%, LZ, Lg) are skein triples then

(@ L,~L, and L,~L§ implies L.~L., and
(b) L. ~L. and Ly,~L§ implies L, ~L;.

\\ /\/

L, _ L,
Fig. 1

The reduced Alexander polynomial A(L; t)E Z[t*'?], the Jones polynomial
V(L; t)€Z[t*?] [9], and the 2-variable Jones polynomial P(L; [, m)E Z[I*!, m*']
[5, 25] (Here we adopt the recurrence relation of Lickorish and Millett [19].)
are invariants of the isotopy type of an oriented knot or link L in a 3-sphere
S3.  The 2-variable Jones polynomial is defined by

P(U)=1 for the unknot U; (1.1)
IP(L)+17 P(L_)+-mP(Ly) = 0, (1.2)
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where (L, L_, L,) is a skein triple. The reduced Alexander polynomial and
the Jones polynomial are given by the formulas:

P(L; —i, i(82—1t7%) = A(L; 1), (1.3)
P(L;it, i(#2—t2)) = V(L3 1), (1.4)

where 7=+/—1. Thus the 2-variable Jones polynomial, and therefore, the
Jones and the reduced Alexander polynomials are skein invariants [19, Proposi-
tion 15].

An n-braid is an element of the n-braid group generated by the elementary
braids S,, S,, :++, S,-; as shown in Fig. 2(a). An z-braid « is called a pure n-
braid, if the left j-th point and the right j-th point are connected by a string
for each j. An n-knit is an element of the free semigroup with identity element
1 generated by {S;, S7%, S7|j=1, 2, ---, n—1}, where S7 is the braid-like
element as shown in Fig. 2(b). For an n-knit «, a closed z-knit is an unoriented
diagram as shown in Fig. 3(a), which we denote by «~. If B is an n-braid, then
an oriented closed braid 8" is a diagram (or link according to the context) as
shown in Fig. 3(b).

Let T be a tangle and let 7'(m,n) and T (m, n) be oriented links with dia-
grams as shown in Fig. 4(a) and 4(b), respectively, where the rectangle labeled »
means a 2-knit S%, n€Z U {co}.

Lemma 1.1. If T\(&, &' )~T,&,¢&') for & &'=0, 1, then T\(m, n)~Ty(m, n)
for all m,neZ. In particular, if T(0,1)~T(1,0), then T(m,n)~T (n, m) for
allm,neZ.

Proof. Since (Ti(¢, n), Ti(&, n—2), T{E, n—1)), i=1,2 and €=0,1, is a
skein triple, by induction on n, T}(&, n)~T,(&, n) for all n=Z. Similarly, since
(Ty(m, n), Ty(m—2,n), T,(m—1, n)) is a skein triple, by induction on m, T(m, n)
~Ty(m, n) for all m,nsZ.

n n

J+2 j-2
jH1 _— i+

j /\ i > <
j—1 j—1

(a) (b)
Fig. 2
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(b)
Fig. 3

(a) (b)
Fig. 4
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In a similar way we can prove

_ Lemma 1.2. If T,(&, &)~T.(E, €') for & &'=0, oo, then T,(2m, 2n)~
Ty(2m, 2n) for all m,n€Z U {co}. In particular, if T (0, 00)~T (c0,0), then
T (2m, 2n)~T (2n, 2m) for all m,nsZ U {oo}. (We interpret 200 as co.)

2. Kauffman polynomial

The L-polynomial Ay(a, x)EZ[a*!, x*'] [15] is a 2-variable Laurent poly-
nomial invariant of the regular isotopy type of a diagram D in the plane of an
unoriented knot or link in S3, that is, an invariant under Reidemeister moves
II and III defined by the following formulas:

Ao =1 for asimple closed curve O; (2.1)
a—lAc+ = aAc_ = ACO; (2.2)
AD++AD_ = x(ADo—}—ADn) ’ (2-3)

where the C; are curls as shown in Fig. 5, and the D; are diagrams identical
except near one point where they are as shown in Fig. 6.

o i

AKX )=

Let D be a diagram of an oriented link L, and let the writhe of D be w,
which is the sum of the signs of the crossing points of D, according to the con-
vention explained in Fig. 7. Then the Kauffman polynomial defined by F(L;
a, x)=a"*Ap(a, x) is an isotopy type invariant of an oriented knot or link in .S3.
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The Jones polynomial and the Q polynomial Q(L; x)€Z [x*'] [2,8] are given by
the following formulas [16, 17]:

F(L; — 34, t~4 4 %) = V(L3 1), (2.4)
F(L; 1,5) = O(L; x) . (2.5)
+1 —1
Fig. 7

The Kauffman polynomial has the following property:

Proposition 2.1.

(1) F(L,#L,)=F(L,) F(L,), where L, #L, is any connected sum of L, and L,.
(2) ([15]) F(rL; a, x)=F(L; a™*, x), where rL is the mirror image of L.

(3) ([18, Theorem 3]) If L, is a mutant of L,, then F(L,)=F(L,).

The property (1) can be proved by using the linear skein theory, see [18].

Kauffman’s bracket polynomial (D> Z[A4*'] [16] is also an invariant of
the regular isotopy type of an unoriented link diagram defined by the following
formulas:

<O> =1 for a simple closed curve O; (2.6)
D> = (—A*—A7%)<D); (2.7)
D> = A*KDp+ATKD. , (2.8)

where D’ is the disjoint union of D and a simple closed curve, and the D; are
as in the above. 'Then the Jones polynomial V' (L; t) of an oriented link L hav-
ing diagram D is given by V(L; A*)=(—A4%)~*<{D)>. The bracket polynomial is
a special case of the L-polynomial Ap(a, x) as follows:

(D> = A(D; — 43, A+A (2.9)

Fig. 8
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n

Fig. 9

Let A, be the L-polynomial of the unoriented diagram DT(n) as shown in
Fig. 8, where T is a tangle. Then from (2.2) and (2.3),

N Ay =xA,Fa " xA., .
Putting A,=f, A,+8, Ao+h, A, Where f,, g,, h,EZ [a*', x*'], we have

Ay =N, —A,_+a"xA.,
= (xfn—fn—l) A1+(xgn—gn—l) A0+(xhn_hn-l+a_” x) A..

Let o, €Z [x*'] and 7, Z[a*', x*'] be the polynomials defined by: o,_;+0,,=
XG py Ty T Turi=%1,+a7"x, oy=1, op=70=7,=0. Note that o, is a symmetric
polynomial given in [13, Sect. 2]. Then we can express A, as follows:

Proposition 2.2. A,=o,A,—0c, A+ TpAw.

Let A,, , be the L-polynomial of the unoriented diagram DT (m, n) as shown
in Fig. 9, where T is a tangle. 'Then using this proposition, we readily get

Proposition 2.3.

Am,n—'An,m = (0',,,0',,_1——0',,0',,,_1) (AO,I_AI,O)
+(0'm Tn—On Tm) (A ,w_Am,1)+(am—1 TanOn-1 'rm) (AM,O_AO,w) .

Concerning the coefficients, the following holds.

Lemma2l. (1) o,0,.,=0,0,if m=n.
(2) O Ta=0nTn tf either m=n, m=0, or n=0.
(3) Opme1 Tw=0 -1 Tn Uf either m=n, m=1, or n=1.

Proof. We shall prove the “only if” part of (2). Let r; (resp. ;) be the
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maximum (resp. minimum) a-power of any term of 7,. By induction on #, if
n=2, then r;=1—n and r; £ —1, and if n<—2, then r; =0 and rj=—n—1.
So if |m|, |n|=2, then o, T,—=0, T, implies m=n. Since 7,=7,=0, r_,=x,
a=0, o;=1, o_,=—1, for other cases, o, 7,—=0, T, implies m=n or mn=0.
This completes the proof.

For the bracket polynomial, we have

Proposition 2.4. (cf. [13, Lemma 1.1 and Theorem 1}).

D7) = A<DTO>+LLZCED D1 (e,

<D, )>—<DT o, m)> =
A —H"_ 4 o) o)
A2+A —i o (A" —(—A47)") KDT(0, 00)>—<DT (o0, 0)) .
3. Skein equivalent 2-bridge knots and links

Let @ be a 3-braid. We denote a 3-knit S5 ™ S a---a™ Si» o with =
even and aS§ a™! Sz a---aS% a~! with # odd by a(ay, a,, -+, a,), a; EZ U {o}.
For n=0, we interpret a(a,, a,, ---, a,) as a. If a is a pure 3-braid and g; is
even, then we denote an oriented 2-bridge knot and an oriented 2-bridge link as
shown in Fig. 10 by Ky, 4,.s,)- If & is a trivial 3-braid, then we denote the

G )
C— a(a -+, @) <—>

n is odd

a(alt Tt (l,,) Q

n is even

Fig. 10
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2-bridge knot or link K., —sp,...-1)"12¢,) DY D(¢y, €3, +++, ¢,) as in [11, 13].  Any
2-bridge knot or link can be put in this form. Its reduced Alexander polynomial

has degree n, and so the genus is #/2 or (n—1)/2 according as if # is even or odd.
See [28].

Proposition 3.1. Let o, and o, be pure 3-braids. If the 2-bridge knots K,
and K,, are skein equivalent, then so are K, (4, 25, . 25,) a4 Koyyi5, 285,28, O EZ.

Proof. We prove by induction on n. Suppose that K, e, 2,2, and

K, (25,,280, 28 21€ Skein equivalent for p<<n. We have a skein triple (K, (2,285, -,

2
2byy—1,2b,=2)) Kw,-(zb;,zbz,u-,zb,,-l,zb,,)r Ku.-(zbl,zbz,--.,zb,,_l,oo))» i=1, 2. Since Ku,-(zl;l,zbz,~--,2b,,_1,oe))
=K, (28,255, 20,-p $Ki» Where K, is either K, or 7K, with its orientation re-
versed, according as if 7 is even or odd, and so K, and K, are skein equivalent.
Now Ky (261,200,265 1,0 13 Kay(2e1,20,,26,_) OF 2 trivial 2-component link according
as if n=2 or n=1, and s0 K, (3, 2s,, ..,y a0 Kyyp, 2,20, are skein equivalent

by induction on 4,. This completes the proof.

From Lemma 1.2, we have

Proposition 3.2. If a is a pure 3-braid, then the 2-bridge knots K ., 5.,y and

K, y are skein equivalent.

(2¢2,2¢;

Using Schubert’s classification theorem of 2-bridge knots and links [27],
we can prove the following in the same way as in [3, Proposition 12. 13].

Lemma 3.1. The oriented 2-bridge knots or links D(a, -, a,) and
D(b,, :+-, b,) are ambient isotopic iff m=n, and a;=b; or a;=b,,_;,,, 1 <i<m.

We give other well-known properties of 2-bridge knots and links.

Lemma 3.2. (¢f. [27, Satz 5]). A 2-bridge knot is amphicheiral iff it has
a presentation of the form D(ay, ay, ++, Gy, Gy, ***, Gy, a;).

Lemma 3.3. (¢f. [13, Lemma 6.3]). A 2-bridge knot or link D(a,, a,, -++, a,,)
is fibered iff a;=-1 for all 3.

In [13, Theorem 6], arbitrarily many 2-bridge knots with the same Jones
polynomial are constructed. But they may not be skein equivalent to one
another. In fact, 10,, and 10 in the table of Rolfsen [26], the simplest example
of a pair of 2-bridge knots constructed there, have distinct Alexander polynomi-
als. Here we have

Theorem 1. There exist arbitrarily many, skein equivalent, amphicheiral,
fibered, 2-bridge knots.

Proof. Let D(ay, ay, **+, @y, Gy, *++5 @y, @) and D(by, by, +++, by, by, +++, by, ),
|a;|=|b;|=1 for all 7, be distinct, skein equivalent, amphicheiral, fibered, 2-
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bridge knots. Then by Propositions 3.1 and 3.2, the following four 2-bridge
knots are distinct, skein equivalent, amphicheiral, and fibered:

D(a,, vy Gy, 1, — gy, o0, —ay, 1, ay, vy a2n) ,
D(al, ey Ay, — 1, —ay,, +, —ay, —1, a4y, -+, a2n) ,
D(bp *tt me 1, '_bzm ) —bp 1, bv ) bZn) ’
D(bp ) bzm -1, “bzm S _bl) -1, l’n ) b2n) ’

where a,=a,,_;1, and b;=b,,_;,,, 1<i<n. Beginning with D(1, 1), we get a
desired set of skein equivalent 2-bridge knots. Note that the second constructed
knots are D(1,1,1, —1, —1,1,1,1)and D(1, 1, —1, —1, —1, —1, 1, 1).

For 2-bridge links, although Theorem 7 of [13] claims the existence of
arbitrarily many skein equivalent fibered 2-bridge links with the same 2-vari-
able Alexander polynomial, we have the following, which is a stronger version
of Theorem 8 in [13].

Theorem 2. There exist arbitrarily many skein equivalent 2-bridge links
which have mutually distinct 2-variable Alexander polynomials.

Proof. Let {D(a;, a;, -+, a;,,)| 1=i=<k} be the set of skein equivalent 2-
bridge knots such that the 2k integers N;=|a;; |+ |ais| + -+ | ;301 |5 pi=1a5]
4@yl ++ 41 21, 1S1<k, are mutually distinct. From this set, we get 2%
skein equivalent 2-bridge links {D(a;y, @;, ***5 @i 0y @y —; 50y ***5 — @iy, —ay),
D(a; gpy *+*» Qigy iyy Ay — a3y, — @iy +++, —a; 5,) | 1<i<k} by Proposition 3.1 or [13,
Lemma 6.5]. Their 2-variable Alexander polynomials have ¢,-degrees 2x;+ |d |
—1,2u;+|d| —1,1<i=<k [11, Theorem 3], which are mutually distinct. Also
from the above set of 2-bridge knots, we get the set of 2k skein equivalent 2-
bridge knots

{D(aih °ety ai,Zn)P) —Q; om *ty — 5y q, @y ai,Zn) )
D(ai,Zn’ *ty Ay P) — Q15 s —Qion @ Ai2my 0 ail)l lélék}

by Proposition 3.1, where p and g are integers such that the 4% integers 3n;+ | p|,
3uitlql, 3w+ 1Pl 3nv+1q], 1=i<k, are mutually distinct. So beginning
with D(1, 2), we can obtain the desired set of 2-bridge links.

Conversely we have

Theorem 3. There exist arbitrarily many 2-bridge links with the same 2-
variable Alexander polynomial, but have mutually distinct Jonmes polynomials.

Proof. For a pure 3-braid «, we denote a 2-bridge link as shown in Fig.
11by L,. Let us consider the 2-bridge links L, , where &, ,=aS{" a™ St" «
with « a pure 3-braid. Using Propositions 3.1 and 3.2 in [13], we can readily
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compute the 2-variable Alexander polynomial of this link to obtain:

A(L,,,,) = A(Ly) {mn(t,—1)* (1,—1)* A(L) A(Ly-1)+1}

Using Lemma 1.1 in [13], we obtain its Jones polynomial as follows:
V(L,,,) = V(L) {#"—=1) (#*—1) p7® V(L) V(Lg-1)+- "2 =27}

where py=—t/2—t""* is the Jones polynomial of the trivial 2-component link.
Thus choosing a pure 3-braid « and a set {(m,, n), -++, (my, ;) |m; n,=c} ap-
propriately, we get a desired set of 2-bridge links.

D
D

Fig. 11

4. Kauffman polynomials of 2-bridge knots and links

For a 3-braid a, let G,(s,,4,,.-,4,) be the unoriented diagram as shown in Fig.
12 and A(4,,65,,0,) D€ its L polynomial.

C D
(. a(ay, -, a,) —)

n is odd

C— a(al, ...’a")

n is even

Fig. 12




476 T. KANENOBU

Proposition 4.1. If B is a 3-braid of the form (S% Stz--+) (---S7% ST%) and
P, ¢, TEZ, then

AB(pr rq)_'Aﬂ(qr rp)a

Aﬁ(r rpqr r)"‘AB(r VP Q, Dy t) )
g
J J' i i

where 1, j=0.

Proof. We prove only the first equation, since the proof of the second one
is similar. For /=0, the following hold:

— =1
Ago,y = Apa,p = a " Ag,
Apr,e) = Ap(eo,y = Apary Mg »
Apgee,y = Apo,) = SAp,

where 8=x"'(a+a"')—1. Thus by Proposition 2.3, Ag, y=~Ap(.pn- Foriz=l,
the following hold:

Aﬂ(l r, r 0 — =a" Aﬂ(l r, r) )
i —1
Ap(o r 1) T a” AB(r -7,1) 9
——
i i-1
AB(I r . 7,00) T AB(I r, r) AB )
l‘ H
IXB(m r or,1) — Aﬂ(f . 7,1) AB )

i l

AB(wr rO)'_Aﬂ(Or ,“,)-—Cl AB(f 7)) °
i i i-1

Thus by induction on 7 and Proposition 2.3, the first equation follows.

Theorem 4. There exist a pair of fibered, amphicheiral, skein equivalent,
2-bridge knots with the same Kauffman polynomial.

Proof. Using Proposition 3.2, Lemmas 3.1-3.3, and Proposition 4.1, we
are convinced that D(1, 1,1, —1, —1, 1,1, 1) and D(1, 1, —1, -1, —1, —1,1, 1)
are such a pair. See the proof of Theorem 1.

Remark. Although D(1,2,p, —2,—1,4,1,2) and D(1, 2, —¢q, —2, —1,
—p, 1, 2) are skein equivalent by Proposition 3.2, they have distinct Kauffman
polynomials. In fact, let =S5 S7* Then Ayon=Auwr0r Aat=)=2AsMu)
A y=AeAyy, and Age,p=~Agu0,«), where a’=S3*S} Since Aup; 1+
Aatos 1,-11=%(ad+Ayp) and Agpo; 1,0+ Autos -1,1=%(ad+ Ay ), where a[0;p, q]
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=(aSsa™! S{)" (see Sect. 5), and A,p; —1.117% Aulo; 1,-11 2pplying [22, Theorem
12.2] by a calculation of computer, Ay, o3 Agig,p)-

Theorem 5. There exist a pair of 2-bridge knots wiih the same Kauffman
polynomial but distinct Alexander polynomials.

Proof. The 2-bridge knots with the diagrams Gy, and Gg(_,,5), where
B=3S3% Si? are such a pair. In fact the former is D(1, 2, —1, —1, 2, —1),
which has genus 3, and the latter is D(—1, 1, 1, —2, 1, —1, 1, 1), which has
genus 4.

REMARK. At the Santa Cruz conference on Artin’s braid group in July
1986, W.B.R. Lickorish mentioned the example of the two 11 crossing knots
with the same Kauffman polynomial but distinct Alexander polynomials.

In order to prove Theorem 6 below, we consider the Conway potential
function instead of the Alexander polynomial, see [4, 7]. The Conway poten-
tial function V(L; ¢, &, -+, t,) EZ[tT, t7, +-+, tF'] is a uniquely determined in-
variant of the isotopy type of an oriented link with » components L=L,UL,U
--«UL,, where L; corresponds to the label ¢;, This is related to the Alexander
polynomial up to multiplication by a unit = #}1 #32--+£}v by the following formula:

(H—t) V(Ls ty) if »=1,

A(L; 8, 8, o) 2 :{
( v ) V(L;th tzv""tv) if »>1.

2m

Fig. 13

Let T'(2m) be the oriented link as shown in Fig. 13, where the 2-braid
consists of the different components L; and L;. Let V,, be the potential func-
tion of T'(2m). Then

Lemma 4.1. V,+V_, = (¢ t;+t7' 7)) V,.

Lemma 4.2. If L* is obtained from L by reversing the orientation of the
i-th component, then V (L*; ), -+, t;, +=+, £,)=—V(L; 8}, *=+, 71, ==+, 1,).

From Lemma 4.1, we have
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Proposition 4.2« Vz,,———'o'” Vz—{"a'”..l VO) Where 0'p=¢fq(ti t,).

Let V2. be the potential function of T'(2m, 2x) (Fig. 4(a)), where each
2-braid consists of the different components L; and L;. Then we have

V2m,2n = OOy V2,2~a'm Op-1 Vz,o—o'm—1 Oy Vo,2+°'m—1 On-1 VO,O ’
and so we obtain
Pl‘OpOSlthl’l 4.3. Vzm,Zn—VZn,Zmz(a'm Ope1"Om-1 6',,) (VO.Z'—VZ,O) .

Theorem 6. There exist a pair of fibered, skein equivalent, 2-bridge links
with the same 2-variable Alexander and Kauffman polynomials.

Proof. Using Propositions 3.1, 4.1 and 4.3 and Lemmas 3.1-3.3 and 4.2,
we are convinced that D(1,1,1, —1, —1,1,1,1, —1, —1, —1) and D(1, 1, —1,
—1,—-1,1,1,1,1, —1, —1) are such a pair.

Theorem 7. There exist a pair of skein equivalent 2-bridge links with the
same Kauffman polynomial but distinct 2-variable Alexander polynomials.

Proof. Let @ be a 3-braid of the form (S3%: S%2-..) (---S7%% S7%1) and &,
I,meZ. For a 3-braid a=g(k, 2, m), let L, be the oriented 2-bridge knot or
link as shown in Fig. 14. Consider the pair of 2-bridge knots or links Lg, 5, ,
and Lg(, 5.5, Where p, ¢, v €Z. From Proposition 4.1, they have the same
Kauffman polynomial. Since Lg(,,0~Lg,2,1, by Lemma 1.1, Lg, ., and
Lg(,.2r.p) are skein equivalent.

Ly, 2.0 is a 2-bridge link, iff both p and ¢ are odd or even. If both p and
q are even, then Lg, ,, .y and Ly, 4, have the same 2-variable Alexander poly-
nomial by Proposition 4.3. If 8=.S% St? then Lgs, y~D(—1,2,—1,1,1,
—-1,1,1,—1,—-2,1) and Ly, ,9~D(—1,1,2, —1, 1,1, —2, 1, —1, —1, 1).
The former has ¢,-degree 5 and the latter 7 by [11, Theorem 3], and so they are
the desired pair of 2-bridge links.

G
"D

Fig. 14

5. Closed 3-braids
Let « be a 3-braid and let a[2n; p, ¢] be the closed 3-knit (A aS? a™! S9)",
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where A?=(S, S, S,)? is a generator of the center of B;,nEZ, p,q=Z U {oo},
and 7, j=1,2. Then from Lemma 1.1, we have

Proposition 5.1. If a is a 3-braid and n, p, q=Z, then a[2n; p, q] and
al2n; q, p] are skein equivalent.

Proposition 5.2. If a is a 3-braid and p, q=Z, then the closed 3-braids
a[0; —q, —p] and ra[0; p, q], the mirror image of a[0; p, q], are skein equivalent.
In particular, a[0; p, —p] is skein equivalent to its own mirror image.

Proof. ra[0; p, q] is ambient isotopic to @[0; —p, —g] with its orienta-
tion of every component reversed, which is skein equivalent to «[0; —p, —q]
[19, p. 129]. Thus the proposition follows from Proposition 5.1.

Since a[27; 1, 0] and @ [2%; 0, 1] are regular isotopic, Az ; «,01="ulzn ; 0,1=
a8, Auton; 1,01= 4" Ayl 1,01 30 Aglz s 0 11= a7 Ay ; 11, from Proposition
2.3 we have

Proposition 5.3. Ifm,nEZ, then Ayizp; mal—Nalzp: n.m1 =8 (O Tu— 04 Tm)
(Alos 1,01 Aglo; ,01).  (Note that F(a[2n; p, q)=a~ "D A, p,; 2a1")

ExampLE 5.1. Let us consider the case a=S} S7% i=1,j=2. By Proposi-
tion 5.1, the closed 3-braids «[2n; p, q] and a[2#r; g, p] are skein equivalent.
Since a[0; o0, 1] is 105 and «[0; 1, co] is 10, in the table of Rolfsen [26],
by Proposition 5.3, Ayon;p.ad—Aalen: g.1= 08" (0, T,— 0, T5) (F(1055)—F(10,)).
Lickorish [18] calculated that F(10,)=4=F(105), and so by Lemma 2.1,
F(a[2n;p, q))=F(a[2n; g, p]) iff p=q or pg=0. Thus a[2xn; p, gl~a[2n; g, p]
iff p=qor p¢g=0. In particular, a[0; p, —p] (¢[0; 1, —1]=10,, see [10, Table])
is skein equivalent to its own mirror image «[0; —p, p], but nonamphicheiral.
Now we combine this with Birman’s construction [1]. Let [0;p, ¢]=/41 and
a[0; ¢, p]=pB7, and p>0>¢. Then B,=S% S73 S S;1 81 871 S, S§*! and B,
=S, Sz%.S; 8§ 83 .Sz% S47! S;! are alternating principal braids, each of which
has the exponent sum p+¢q. If p+qg=6r=+0,r=Z, then by [1, Proposition 2],
BF and (AY Y = a[4r; —p, —q],i=1, 2, have the same Jones polynomial
but have distinct signatures: the former has 67, and the latter 2r. Therefore the
four 3-braid knots «[0; p, q], a0, ¢, p], a[4r; —p, —q], a[47r;—q,—p] have the
same Jones polynomial, and so the same 2-variable Jones and Q polynomials
[10, 21, 22], but they have mutually distinct Kauffman polynomials [22, Sect. 14].

Proposition 5.4. If ot is a 3-braid and p, q= Z, then

<al0;p, g> = AP~ AP (A A A
H—(— A7) (1= (= A7) (— 4= A7) ar[0; o2, o]} .

In particular, {a[0; 1, —1]>=<Ca[0; o0, co]>.
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Since [0 o0, oo] is a connected sum of two 2-bridge knots or links, com-
bining this proposition with Theorem 6 or 7 in [13], or Theorem 1, we might
construct arbitrarily many closed 3-braids with the same Jones polynomials.
The following example shows the possibility.

ExampLE 5.2. Let ay=a(1, 1, —1), a,=a(—1, 1, 1), 2;=08(1, 1, —1), and
a,=B(—1,1,1), where =53 St® and 8=S3 S7%. Then the four diagrams of
2-bridge knots G,,, i=1, 2, 3, 4, have the same bracket polynomial, see [13,
Lemma 6.2]. Thus the four 3-braid knots (a; S% a7' S3)™ with p, ¢ odd have
the same bracket polynomial and the same exponent sum by Proposition 5.4.
However we can see that the four knots (; S3 a;? S7°)" have distinct Kauffman
polynomials applying [22, Theorem 12.2] by a calculation of computer.

RemaRk. Let @ be a pure 3-braid and let B[1/m, 1/n], m,neZ U {co}, be
the knot or link as shown in Fig. 15. For m=0 and oo, we interpret 1/m as oo
and 0, respectively. 'The family of knots K, , in [12] is B[1/2p, 1/2q] and K(a, b)
in [13, Sect. 4] is B[—1/a, —1/b] with B=S7S7t% If either m=oco or
n=oo, then B[1/m, 1/n] is the trivial 2-component link, so we can show that
B[1/m, 1n]~B[1/m’', 1/n'] if m+n=m'4n" and m=m’, n=n" (mod 2), see [13,
Proposition 4.3]. Using Proposition 2.4, we have {B[l/m, 1/n]>=A""""(<B
[00, co]>—1+(—AY™*"), in particular, {B[1/m, —1[/m]>={B[c0, =], see [13,
Proposition 4.2].

C )

—m

Fig. 15

For a 3-braid «, let a[2n; p, g, 7, 5] be the closed 3-knit (A* aS% o™ S{ a S}
a”t SHM

Proposition 5.5. If o is a 3-braid of the form (S Siz---)(---Sz% St%)
and n, p, q, 1, SEZ, then
Aw[Zn YW RN Aw[z:z HYWR ) |

Proof. Let a[2n;p, g]=(aS} a™ S{)*. Since Auzn; p1,r,0=Nalzns p,0,r,11=
Autons prrad Autons p,1,r,=o]:a_2” Am(p,l,r):a_zn ANuir1,0=Nalon : p,00,7.1 by Proposition



ExaMPLES ON POLYNOMIAL INVARIANTS 481

4.1, and Ay ; poo0,r,00=Dalzn s 5,0,r,1=08"2* Ayipip), the equation follows from Pro-
position 2.3.

If a=(S}1 Stz--+) (-++S7% S7%), then the mirror image of the closed 3-braid
a[0; p, ¢, 7, 5] is ambient isotopic to a[0; —s, —r, —q, —p] with the orientation
of every component reversed. Thus from Propositions 5.1 and 5.5, we have

Proposition 5.6. If a=(Sj S%z---)(---Sz% S7h), then the closed 3-braids
«[0; p, q, —p, —q] and its mirror image are skein equivalent and have the same
Kauffman polynomial.

ExampLE 5.3. Let us consider the case a=S%S72. J. Murakami [23,
Proposition (2.4.7)] shows that «[0; 1,3, —1, 1] and «[0; 1,1, —1, 3] are not
ambient isotopic considering the Jones polynomials of their 3-parallel links with
the help of computer. By the above proposition, a[0; p, ¢, —p, —q] and its
mirror image are skein equivalent and have the same Kauffman polynomial.
But «[0; p, g, —p, —q]~(S3 St2 S5 S S, ST2.S47 1 St S, STt S, 8177 8% St!
S, S179%, so a[0;p, g, —p, —q] and its mirror image have distinct normal
forms, if p>¢>0, see [24]. In fact we can show that «[0; 2,1, —2, —1] is
nonamphicheiral using the above method of J. Murakami.

ReMaRk. Birman [1, Lemma 4] discovered a family of pairs of closed 3-
braids with the same Jones polynomial and the exponent sum. Morton and
Short [20] calculate the Jones polynomials of the 2-cable knots of some of them
and J. Murakami [22, Sect. 14] calculates the Kauffman polynomials to dis-
tinguish them. Note that the Jones polynomial of the 2-parallel link of a knot
K is produced from the Kauffman polynomial of K [29], so the Jones polynomial
of the 2-cable knot of K is also produced from the Kauffman polynomial of K.
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