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Letter 

Spatial and temporal heterogeneity of Kohlrausch–Williams–Watts stress 
relaxations in metallic glasses 

Akio Ishii 
Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan   

A R T I C L E  I N F O   
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A B S T R A C T   

We perform a molecular dynamics (MD) stress relaxation simulation for Zr50Cu40Al10 metallic glass to confirm 
that the time dependency of stress relaxation conforms with the Kohlrausch–Williams–Watts (KWW) equation, 
and to derive the temperature dependency of the Kohlrausch exponent βKWW. We also calculate local plastic 
deformation based on atomic strain, then discuss the morphology of relaxation and calculate the probability 
density of stress relaxation with respect to the characteristic time of relaxation from the number of deformed 
atoms. Afterward, we derive the time dependency of stress relaxation as a mode-averaged decay function, which 
expresses spatial and temporal heterogeneity. Both the results of simulation and calculation reproduce the KWW 
relaxation form and are in good agreement, confirming the spatially and temporally heterogeneous nature of 
KWW relaxation. The heterogeneity of the stress relaxation of metallic glass is determined by local stress changes 
caused by microscopic local plastic deformation.   

Kohlrausch–Williams–Watts (KWW) relaxation [1–3] is a well- 
known relaxation process that is often observed in glass and polymer 
materials. Its decay function is defined as follows: 

ϕKWW(t) = ϕKWW
0 exp

(

−
( t

τKWW

)βKWW )

. (1)  

ϕKWW
0 is a prefactor, and τKWW is the characteristic time of the KWW 

relaxation. βKWW is called the Kohlrausch exponent and usually ranges 
from 0 to 1 (stretched exponential). Reported values include βKWW ≈

0.35 for spin glass, and βKWW ≈ 0.6 for glassy materials and polymers 
[4–7]. Because the decay function form (1) of KWW relaxation is 
empirical, its physical origin is investigated both experimentally and 
theoretically to understand the mechanism of KWW relaxation [5,8–10]. 
In particular, for metallic glass, which is a promising structural material, 
understanding the mechanism of KWW relaxation, which is always 
observed as β relaxation at temperatures lower than the glass transition 
temperature Tg [11], is important because the mechanical properties of 
metallic glass are always affected by relaxation and rejuvenation pro-
cesses [12,13]. 

Recently, researchers derived the physical origin of KWW relaxation 
in terms of the spatial and temporal heterogeneity of relaxation [14], 
where heterogeneity increases as βKWW decreases. For metallic glass, 
both experimental and theoretical evidence of the spatial heterogeneity 

of β relaxation has been reported. For β relaxation, the morphology of 
the relaxation process is spatially heterogeneous, and βKWW decreases as 
the temperature decreases. By contrast, for homogeneous α relaxation, 
βKWW ≈ 1 at temperatures of approximately Tg [5,14–17]. Although the 
aforementioned efforts provide a clearer vision of the physical back-
ground of KWW relaxation, we believe that the detailed analysis is still 
insufficient. Conventionally, the decay function of a single relaxation is 
expressed in exponential form, 

ϕ(t) = ϕ0exp
(
−

t
τ

)
. (2)  

ϕ0 is a prefactor, and τ is the characteristic time of relaxation. When 
spatial or temporal heterogeneity exists in relaxation, multiple relaxa-
tion modes with different characteristic times τ are expected. Thus, the 
decay function is defined based on the integral of the decay function of 
each relaxation mode, which is based on the probability density g(τ)
(
∫∞

0 g(τ)dτ = 1) of that relaxation mode: 

ϕmod
(

t
)

= ϕ0

∫ ∞

0
g
(

τ
)

exp
(
−

t
τ

)
dτ = ϕ0

〈
exp

(
−

t
τ

)〉
. (3)  

Although Ranko suggests that this heterogeneity determines the nature 
of KWW relaxation, i.e., ϕKWW ≈ ϕmod[14], to our knowledge, few 
studies have directly related the KWW Eq. (1) to the aforementioned 
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mode-average decay function (3). Additionally, for metallic glass, some 
studies also reported βKWW > 1 (compressive exponential) KWW relax-
ation [9,18,19]. In this case, heterogeneity is not suitable for explaining 
KWW relaxation. 

In this study, to determine the stress relaxation process of 
amorphous-structured metallic glass, we investigate the relationship 
between KWW relaxation and the spatial and temporal heterogeneity of 
relaxation. We perform molecular dynamics (MD) stress relaxation 
simulations [5,7] for Zr50Cu40Al10 metallic glass to confirm that the time 
dependency of stress relaxation conforms to the KWW relaxation Eq. (1), 
and to derive the temperature dependency of βKWW. On the other hand, 
parallel to the simulation, we calculate local plastic deformation based 
on atomic strain [20], then discuss the morphology of relaxation and 
calculate the probability density gsr(τ) of stress relaxation from the 
number of deformed atoms. Using the calculated gsr(τ), we derive the 

mode-averaged decay function of stress relaxation and compare it with 
the direct result of MD simulation. 

First, let us explain our MD simulation of stress relaxation. The 
Zr50Cu40Al10 atomic model, which consists of 125000 atoms, is prepared 
using Shen et al. embedded atom method (EAM) potential [21]. Mean-
while, LAMMPS [22] code is used for the simulation itself. The time step 
of MD simulation is set to 2 fs. We arrange the atoms randomly in the MD 
simulation box and melt the structure by keeping the model at 2000 K 
and zero stress for 1 ns under the NPT ensemble. Subsequently, a 
metallic glass model with a size of 13 × 13 × 13 nm is created via 
quenching of the melted model at a constant cooling rate of 4.0 ×

1011 K/s from 2000 K to 0 K. Based on discontinuity in the volume vs. 
temperature curve, we confirm that the glass transition temperature Tg 

is approximately 900 K. For the temperatures under Tg, i.e., 400 K, 500 
K, 600 K, 700 K, and 800 K, we apply 0.5 GPa uniaxial compressive stress 
for 0.4 ns to our metallic glass model under the NPT ensemble. We then 
implement 200 ns, 100 ns, and 50 ns NVT ensemble simulations as stress 
relaxation simulations for temperatures 400 K to 600 K, 700 K, and 800 
K. We confirm that the 0.5 GPa compressive stress is much lower than 
the yield stress of the metallic glass model at 300 K, which is 2.5 GPa. 

During the stress relaxation simulation, we observe that compressive 
stress decreases as time elapses, and eventually, we confirm that the 
stress relaxation follows Eq. (1), which is the KWW relaxation form. 
Furthermore, we evaluate the temperature dependency of the Kohl-
rausch exponent parameter βKWW by fitting the data to the following 

Fig. 1. σ(t) plot of MD stress relaxation simulation, (a) raw data of MD simu-
lation, (b) fitting curves of raw data using KWW stress relaxation Eq. (4). 

Table 1 
KWW βKWW values calculated via fitting of (a) direct MD data of σ(t) and (b) 
mode-averaged σmod(t) using KWW stress relaxation Eq. (4).  

Temperature K (a) (b) 

400 0.29 0.27 
500 0.33 0.30 
600 0.32 0.36 
700 0.46 0.45 
800 0.66 0.67  

Fig. 2. Calculated (a) N(τ) and (b) gsr(τ) curves at each temperature.  
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KWW stress relaxation form: 

σ(t) = σ0exp
(

−
( t

τKWW

)βKWW )

. (4)  

The initial stress σ0 (approximately 0.5 GPa), Kohlrausch exponent 

βKWW, and the characteristic time of KWW relaxation τKWW are fitting 
parameters. We show the raw data of the time vs. stress plot of the MD 
stress relaxation simulation in Fig. 1(a) and fitting curves in Fig. 1(b). 
The temperature dependency of the Kohlrausch exponent βKWW of the 
MD simulation is shown in Table 1(a). We confirm that the standard 
errors of all fitting curves are lower than 8%. According to Table 1(a), 
the βKWW values are in the range from 0.3 to 0.7 and decrease as 

Fig. 3. Atomic von Mises strain distribution [34] at certain plane in metallic glass model during MD stress relaxation simulation at 500 K. Atomic strain coloring is 
prepared using AtomEye [34]. 

Fig. 4. Calculated σmod(t) curves at each temperature. σ0 is set to 0.5 GPa.  

Fig. A.1. Inverse of temperature vs. log of KWW characteristic time τKWW of 
stress relaxation. τKWW is calculated via fitting of (a) MD data of σ(t) and (b) 
mode-averaged σmod(t) using KWW stress relaxation equation (Eq. (4)). 
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temperature decreases. This is consistent with a previous experimental 
result [5]. If the lower βKWW value indicates that the relaxation is more 
spatially or temporally heterogeneous, our result indicates that hetero-
geneity becomes more prominent as the temperature decreases. 

Afterward, we identify the local plastic deformation by calculating 
the atomic strain [20], and then discuss the morphology of relaxation 
and calculate the probability density gsr(τ) of stress relaxation from the 
number of deformed atoms. To the atomic structure of the MD stress 
relaxation simulation at a certain temperature and time, we first 
implement 0 K structural relaxation to remove thermal vibration effect 
on the atomic strain and to relax the atomic structure to its “plastic- 
deformed” local minima, and then calculate the atomic strain for each 
structural-relaxed atom based on a reference atomic structure, which is 
the atomic structure at time zero. Under the assumption that the char-
acteristic time τ of stress relaxation is equivalent to the time of occur-
rence of local plastic deformation, we count the number of deformed 
atoms per 10,000 MD time steps and calculate continuous N(τ) curves 
via data fitting. The probability density gsr(τ) for stress relaxation is 
calculated as the derivative of N(τ): 

gsr(τ) =
1

Nmax

dN
dτ ,Nmax = lim

τ→∞
N(τ). (5)  

Deformed atoms are defined as atoms with von Mises atomic strains of 
0.1 or higher. The von Mises atomic strain refers to the conventional 
plastic strain value of shear deformation of the shear transformation 
zone, which is an atomic cluster for local plastic deformation in metallic 
glass [23]. Using Eq. (3), we calculate the mode-averaged stress relax-
ation as 

σmod(t) = σ0

∫ ∞

0
gsr(τ)exp

(
−

t
τ

)
dτ. (6)  

In contrast to a number of past studies, where spatial heterogeneity was 
investigated with respect to non-affine atomic displacement in MD 
simulations of metallic glass [7,9,24,25], in this study, we adopt atomic 
strain, which indicates affine atomic displacement, to directly determine 
local plastic deformation and change in stress. Conventionally, non- 
affine (or shuffling) and affine atomic displacement are cooperative, 
but sometimes, the cooperation is quite weak [26–28]. 

In Fig. 2, we show calculated (a) N(τ) and (b) gsr(τ) curves at each 
temperature. As the order of time increases, the number of deformed 
atoms increases, causing stress relaxation. At high temperatures, i.e., 
700 and 800 K, N(τ) becomes a constant value (≈ 107,000) at a certain 
time, which is regarded as Nmax. The decrease in temperature flattens the 

gsr(τ) curve, indicating that stress relaxation becomes more heteroge-
neous. gsr(τ) distribution seems to transfer from a decaying mode to a 
flatter Gaussian like mode as temperature decreases, this is in good 
agreement with the estimation from energy barrier samplings by Han 
et al. [29]. Fig. 3 shows the atomic strain morphology change with 
respect to time on a certain plane of our metallic glass model (thickness 
is 1 nm) at 500 K. Clearly, we can observe that spatial and temporal 
heterogeneity exists. As time elapses, subsequent local plastic defor-
mation occurs around the deformed region, increasing the number of 
deformed atoms N(τ), although the atomic strain in the already 
deformed region does not increase. This indicates that the spatially 
heterogeneous (or local) plastic deformation does not concentrate at a 
specific region but spreads to the entire metallic glass, reducing the 
macroscopic stress of metallic glass. Because heterogeneous plastic 
deformation is a thermally activated process, the characteristic time τ 
for the relaxation is associated with activation free energy ΔG of 
relaxation, which is dependent on local stress σlc [30,31], as follows: 

τ = τ0exp
(

ΔG(σlc)

kBT

)

. (7)  

τ0 is a prefactor. In this sense, the subsequent plastic deformation in the 
deformed region is prevented by a reduction in local stress. On the other 
hand, the plastic deformation around the deformed region is activated 
by the increase in local stress caused by the local plastic strain in the 
deformed region [31,32]. Thus, the spatial or temporal heterogeneity is 
determined by local stress changes caused by microscopic local plastic 
deformation. Moreover, from atomic strain morphology, the temporal 
evolutions of atomic strain distribution seems to involve three processes: 
activation of plastic deformation events of individual shear trans-
formation zone, cascade or cluster of plastic deformation events, and 
percolation of plastic deformation events, that agrees with the recent 
Cao et al. study, which reveals atomic strains activated on three levels of 
energy barrier hopping [33]. 

Finally, we show σmod(t) plot and βKWW values calculated using gsr(τ)
and Eq. (6) in Fig. 4 and Table 1(b), respectively. βKWW values were 
calculated via fitting of mode-averaged σmod(t) using the KWW stress 
relaxation Eq. (4). These calculated values were compared with the 
direct result of the MD simulation, i.e., Fig. 1 and Table 1(a). Although 
little discrepancy exists between the characteristic time τKWW of the MD 
simulation result for σ(t) and σmod(t) from the fitting curves, we believe 
both results generally have good agreement. Eventually, we successfully 
reproduced the KWW relaxation Eq. (4) from the mode-average decay 
function (3) for the stress relaxation of metallic glass. For the exact value 
of the discrepancy and the comparison between σ(t) and σmod(t) curves, 
the reader can refer to our appendix figures, Figs. A.1 and B.1. 

In summary, for the stress relaxation process of amorphous- 
structured metallic glass, we investigated the relationship between 
KWW relaxation and the spatial and temporal heterogeneity of relaxa-
tion. We perform a MD stress relaxation simulation for Zr50Cu40Al10 
metallic glass to confirm that the time dependency of stress relaxation 
conforms to the KWW relaxation form, and to derive the temperature 
dependency of the βKWW. Meanwhile, parallel to the simulation, we 
identify the local plastic deformation by calculating the atomic strain, 
then discuss the morphology of relaxation and calculate the probability 
density gsr(τ) of stress relaxation from the number of deformed atoms. 
Using the calculated probability density gsr(τ), we derive the time de-
pendency of stress relaxation as a mode-averaged decay function, which 
describes the spatial and time heterogeneity of relaxation, and compare 
it with the direct result of MD simulation. Both results reproduce the 
KWW relaxation form and are in good agreement, confirming the spatial 
and time heterogeneous nature of KWW relaxation. The heterogeneity of 
the stress relaxation of metallic glass is dependent on local stress 
changes caused by microscopic local plastic deformation. Additionally, 
in the appendix, we also provide the activation energy data of the KWW 
stress relaxation derived from the Arrhenius equation. 

Fig. B.1. Calculated σmod(t) curves and the raw data of σ(t) (plots) from MD 
stress relaxation simulation. 

A. Ishii                                                                                                                                                                                                                                            
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Appendix A. Activation energy of KWW stress relaxation 

We also calculated the temperature dependency of the characteristic time τKWW of KWW stress relaxation by fitting the MD data and mode- 
averaged σmod(t) using KWW stress relaxation (Eq. (4)), as shown in the log plots of τKWW(1/T) in the Fig. A.1(a) and (b), respectively. Except for 
the result at 400 K, the log plot of τKWW generally has a linear relationship with the inverse of temperature. Based on the Arrhenius equation, 

τKWW = τKWW
0 exp

(
ΔGKWW

kBT

)

. (A.1)  

The macroscopic activation energy of KWW stress relaxation is derived from the gradient of the log plot of τKWW with respect to the inverse of 
temperature. The estimated activation energies from the gradients of the log plots (except for 400 K) are 0.83(a) and 0.70(b) eV, which are consistent 
with previous experiment and simulation results 0.37–1.2 eV for β relaxation of Zr-based metallic glass [35,36,10]. The outlier at 400 K is due to 
insufficient stress data due to the limitation of the MD time scale, and accelerated MD simulation [27,37] will be conducted in the future to solve the 

time scale problem. Related to this, although the empirical Vogel–Fulcher–Tammann (VFT) law τ = τ0exp
(

DT0
(T− T0)

)

(D,T0 is parameters) is often used to 

describe the temperature dependency of τKWW [14], we do not discuss it in this study because the τKWW data at low temperatures are not sufficient 
because of the limitation of the MD simulation time scale. 

Appendix B. Figure including σmod(t) curves and σ(t) plots 

We provide a figure including both calculated σmod(t) stress relaxation curves (in Fig. 4) and the raw data of σ(t) from MD stress relaxation 
simulation (in Fig. 1(a)) as Fig. B.1. The reader can refer this figure for the comparison between calculated σmod(t) curves and σ(t) from direct MD stress 
relaxation simulation. As we mentioned in the main text, the difference between σmod(t) curve and σ(t) plot is mainly caused by the discrepancy 
between the characteristic time τKWW of the MD simulation result for σ(t) and σmod(t). 
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