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We perform a molecular dynamics (MD) stress relaxation simulation for ZrsoCu4oAl;o metallic glass to confirm
that the time dependency of stress relaxation conforms with the Kohlrausch-Williams-Watts (KWW) equation,
and to derive the temperature dependency of the Kohlrausch exponent fX"WV. We also calculate local plastic
deformation based on atomic strain, then discuss the morphology of relaxation and calculate the probability

density of stress relaxation with respect to the characteristic time of relaxation from the number of deformed
atoms. Afterward, we derive the time dependency of stress relaxation as a mode-averaged decay function, which
expresses spatial and temporal heterogeneity. Both the results of simulation and calculation reproduce the KWW
relaxation form and are in good agreement, confirming the spatially and temporally heterogeneous nature of
KWW relaxation. The heterogeneity of the stress relaxation of metallic glass is determined by local stress changes
caused by microscopic local plastic deformation.

Kohlrausch-Williams-Watts (KWW) relaxation [1-3] is a well-
known relaxation process that is often observed in glass and polymer
materials. Its decay function is defined as follows:

t /))KWW
FV () = ¢UKWWeXp< - (W) ) . o)

KWW is a prefactor, and %"V is the characteristic time of the KWW

relaxation. g%V

is called the Kohlrausch exponent and usually ranges
from 0 to 1 (stretched exponential). Reported values include gXVV ~
0.35 for spin glass, and "V =~ 0.6 for glassy materials and polymers
[4-7]. Because the decay function form (1) of KWW relaxation is
empirical, its physical origin is investigated both experimentally and
theoretically to understand the mechanism of KWW relaxation [5,8-10].
In particular, for metallic glass, which is a promising structural material,
understanding the mechanism of KWW relaxation, which is always
observed as f§ relaxation at temperatures lower than the glass transition
temperature Ty [11], is important because the mechanical properties of
metallic glass are always affected by relaxation and rejuvenation pro-
cesses [12,13].

Recently, researchers derived the physical origin of KWW relaxation
in terms of the spatial and temporal heterogeneity of relaxation [14],
where heterogeneity increases as VWV decreases. For metallic glass,
both experimental and theoretical evidence of the spatial heterogeneity
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of f§ relaxation has been reported. For f relaxation, the morphology of
the relaxation process is spatially heterogeneous, and X"V decreases as
the temperature decreases. By contrast, for homogeneous a relaxation,
A"V 2 1 at temperatures of approximately T, [5,14-17]. Although the
aforementioned efforts provide a clearer vision of the physical back-
ground of KWW relaxation, we believe that the detailed analysis is still
insufficient. Conventionally, the decay function of a single relaxation is
expressed in exponential form,

#(0) = dnexo( ). @

¢, is a prefactor, and 7 is the characteristic time of relaxation. When
spatial or temporal heterogeneity exists in relaxation, multiple relaxa-
tion modes with different characteristic times 7 are expected. Thus, the
decay function is defined based on the integral of the decay function of
each relaxation mode, which is based on the probability density g(r)
(J5° g(r)dr = 1) of that relaxation mode:

(1) =0 [ () exn( = Dar = anfexn( 1) ). ®

Although Ranko suggests that this heterogeneity determines the nature
of KWW relaxation, i.e., ¢*"W ~ ¢™9[14], to our knowledge, few
studies have directly related the KWW Eq. (1) to the aforementioned
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Fig. 1. o(t) plot of MD stress relaxation simulation, (a) raw data of MD simu-
lation, (b) fitting curves of raw data using KWW stress relaxation Eq. (4).

Table 1
KWW p5VW values calculated via fitting of (a) direct MD data of ¢(t) and (b)
mode-averaged 6™ (t) using KWW stress relaxation Eq. (4).

Temperature K (@) (b

400 0.29 0.27
500 0.33 0.30
600 0.32 0.36
700 0.46 0.45
800 0.66 0.67

mode-average decay function (3). Additionally, for metallic glass, some
studies also reported "W > 1 (compressive exponential) KWW relax-
ation [9,18,19]. In this case, heterogeneity is not suitable for explaining
KWW relaxation.

In this study, to determine the stress relaxation process of
amorphous-structured metallic glass, we investigate the relationship
between KWW relaxation and the spatial and temporal heterogeneity of
relaxation. We perform molecular dynamics (MD) stress relaxation
simulations [5,7] for ZrsoCuspAl;o metallic glass to confirm that the time
dependency of stress relaxation conforms to the KWW relaxation Eq. (1),
and to derive the temperature dependency of f5"V. On the other hand,
parallel to the simulation, we calculate local plastic deformation based
on atomic strain [20], then discuss the morphology of relaxation and
calculate the probability density g.(z) of stress relaxation from the
number of deformed atoms. Using the calculated g.(z), we derive the
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Fig. 2. Calculated (a) N(z) and (b) g () curves at each temperature.

mode-averaged decay function of stress relaxation and compare it with
the direct result of MD simulation.

First, let us explain our MD simulation of stress relaxation. The
Zrs50CuygpAly atomic model, which consists of 125000 atoms, is prepared
using Shen et al. embedded atom method (EAM) potential [21]. Mean-
while, LAMMPS [22] code is used for the simulation itself. The time step
of MD simulation is set to 2 fs. We arrange the atoms randomly in the MD
simulation box and melt the structure by keeping the model at 2000 K
and zero stress for 1 ns under the NPT ensemble. Subsequently, a
metallic glass model with a size of 13 x 13 x 13 nm is created via
quenching of the melted model at a constant cooling rate of 4.0 x
10" K/s from 2000 K to 0 K. Based on discontinuity in the volume vs.
temperature curve, we confirm that the glass transition temperature T,
is approximately 900 K. For the temperatures under Tg, i.e., 400 K, 500
K, 600 K, 700 K, and 800 K, we apply 0.5 GPa uniaxial compressive stress
for 0.4 ns to our metallic glass model under the NPT ensemble. We then
implement 200 ns, 100 ns, and 50 ns NVT ensemble simulations as stress
relaxation simulations for temperatures 400 K to 600 K, 700 K, and 800
K. We confirm that the 0.5 GPa compressive stress is much lower than
the yield stress of the metallic glass model at 300 K, which is 2.5 GPa.

During the stress relaxation simulation, we observe that compressive
stress decreases as time elapses, and eventually, we confirm that the
stress relaxation follows Eq. (1), which is the KWW relaxation form.
Furthermore, we evaluate the temperature dependency of the Kohl-
rausch exponent parameter fX"WV by fitting the data to the following



A. Ishii

Computational Materials Science 198 (2021) 110673

2.0x10° ns

wF

Mises strain
0.5

0.1

Fig. 3. Atomic von Mises strain distribution [34] at certain plane in metallic glass model during MD stress relaxation simulation at 500 K. Atomic strain coloring is
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Fig. 4. Calculated ¢™(¢) curves at each temperature. oy is set to 0.5 GPa.
KWW stress relaxation form:

ﬂKWW
o(t) = aoeXP( - (ﬁ) ) 4

The initial stress oy (approximately 0.5 GPa), Kohlrausch exponent

In ("W ns)

s
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1/TK?
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KWW of

Fig. A.1. Inverse of temperature vs. log of KWW characteristic time 7!
stress relaxation. 7¥WV is calculated via fitting of (a) MD data of 4(t) and (b)

mode-averaged ¢™*(t) using KWW stress relaxation equation (Eq. (4)).

AEYVY and the characteristic time of KWW relaxation X"V are fitting
parameters. We show the raw data of the time vs. stress plot of the MD
stress relaxation simulation in Fig. 1(a) and fitting curves in Fig. 1(b).
The temperature dependency of the Kohlrausch exponent X"V of the
MD simulation is shown in Table 1(a). We confirm that the standard
errors of all fitting curves are lower than 8%. According to Table 1(a),

the p*VV values are in the range from 0.3 to 0.7 and decrease as
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Fig. B.1. Calculated 6™(t) curves and the raw data of 4(t) (plots) from MD
stress relaxation simulation.

temperature decreases. This is consistent with a previous experimental
result [5]. If the lower X"V value indicates that the relaxation is more
spatially or temporally heterogeneous, our result indicates that hetero-
geneity becomes more prominent as the temperature decreases.

Afterward, we identify the local plastic deformation by calculating
the atomic strain [20], and then discuss the morphology of relaxation
and calculate the probability density g, (7) of stress relaxation from the
number of deformed atoms. To the atomic structure of the MD stress
relaxation simulation at a certain temperature and time, we first
implement O K structural relaxation to remove thermal vibration effect
on the atomic strain and to relax the atomic structure to its “plastic-
deformed” local minima, and then calculate the atomic strain for each
structural-relaxed atom based on a reference atomic structure, which is
the atomic structure at time zero. Under the assumption that the char-
acteristic time 7 of stress relaxation is equivalent to the time of occur-
rence of local plastic deformation, we count the number of deformed
atoms per 10,000 MD time steps and calculate continuous N(7) curves
via data fitting. The probability density g (r) for stress relaxation is
calculated as the derivative of N(z):

Ly
Ninax dr’

gsr(T) = Npax = rlimN(T)‘ (5)

— 00

Deformed atoms are defined as atoms with von Mises atomic strains of
0.1 or higher. The von Mises atomic strain refers to the conventional
plastic strain value of shear deformation of the shear transformation
zone, which is an atomic cluster for local plastic deformation in metallic
glass [23]. Using Eq. (3), we calculate the mode-averaged stress relax-
ation as

mod _ * _ E
o™(1) = 60/0 gS,(T)exp( T)dr. 6)

In contrast to a number of past studies, where spatial heterogeneity was
investigated with respect to non-affine atomic displacement in MD
simulations of metallic glass [7,9,24,25], in this study, we adopt atomic
strain, which indicates affine atomic displacement, to directly determine
local plastic deformation and change in stress. Conventionally, non-
affine (or shuffling) and affine atomic displacement are cooperative,
but sometimes, the cooperation is quite weak [26-28].

In Fig. 2, we show calculated (a) N(z) and (b) g« () curves at each
temperature. As the order of time increases, the number of deformed
atoms increases, causing stress relaxation. At high temperatures, i.e.,
700 and 800 K, N(z) becomes a constant value (=~ 107,000) at a certain
time, which is regarded as N,,,,. The decrease in temperature flattens the
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g+(7) curve, indicating that stress relaxation becomes more heteroge-
neous. g, (r) distribution seems to transfer from a decaying mode to a
flatter Gaussian like mode as temperature decreases, this is in good
agreement with the estimation from energy barrier samplings by Han
et al. [29]. Fig. 3 shows the atomic strain morphology change with
respect to time on a certain plane of our metallic glass model (thickness
is 1 nm) at 500 K. Clearly, we can observe that spatial and temporal
heterogeneity exists. As time elapses, subsequent local plastic defor-
mation occurs around the deformed region, increasing the number of
deformed atoms N(z), although the atomic strain in the already
deformed region does not increase. This indicates that the spatially
heterogeneous (or local) plastic deformation does not concentrate at a
specific region but spreads to the entire metallic glass, reducing the
macroscopic stress of metallic glass. Because heterogeneous plastic
deformation is a thermally activated process, the characteristic time 7
for the relaxation is associated with activation free energy AG of
relaxation, which is dependent on local stress o}, [30,31], as follows:

AG(“Ic))

kT )’ @

T= Toexp(

79 is a prefactor. In this sense, the subsequent plastic deformation in the
deformed region is prevented by a reduction in local stress. On the other
hand, the plastic deformation around the deformed region is activated
by the increase in local stress caused by the local plastic strain in the
deformed region [31,32]. Thus, the spatial or temporal heterogeneity is
determined by local stress changes caused by microscopic local plastic
deformation. Moreover, from atomic strain morphology, the temporal
evolutions of atomic strain distribution seems to involve three processes:
activation of plastic deformation events of individual shear trans-
formation zone, cascade or cluster of plastic deformation events, and
percolation of plastic deformation events, that agrees with the recent
Cao et al. study, which reveals atomic strains activated on three levels of
energy barrier hopping [33].

Finally, we show ¢™(t) plot and XV values calculated using g (7)
and Eq. (6) in Fig. 4 and Table 1(b), respectively. f5"WV values were
calculated via fitting of mode-averaged ¢™¢(t) using the KWW stress
relaxation Eq. (4). These calculated values were compared with the
direct result of the MD simulation, i.e., Fig. 1 and Table 1(a). Although
little discrepancy exists between the characteristic time %WV of the MD
simulation result for ¢(t) and 6™ (¢) from the fitting curves, we believe
both results generally have good agreement. Eventually, we successfully
reproduced the KWW relaxation Eq. (4) from the mode-average decay
function (3) for the stress relaxation of metallic glass. For the exact value
of the discrepancy and the comparison between o(t) and ¢™*(t) curves,
the reader can refer to our appendix figures, Figs. A.1 and B.1.

In summary, for the stress relaxation process of amorphous-
structured metallic glass, we investigated the relationship between
KWW relaxation and the spatial and temporal heterogeneity of relaxa-
tion. We perform a MD stress relaxation simulation for ZrsoCuspAl;g
metallic glass to confirm that the time dependency of stress relaxation
conforms to the KWW relaxation form, and to derive the temperature
dependency of the gWW¥. Meanwhile, parallel to the simulation, we
identify the local plastic deformation by calculating the atomic strain,
then discuss the morphology of relaxation and calculate the probability
density g (7) of stress relaxation from the number of deformed atoms.
Using the calculated probability density g.(z), we derive the time de-
pendency of stress relaxation as a mode-averaged decay function, which
describes the spatial and time heterogeneity of relaxation, and compare
it with the direct result of MD simulation. Both results reproduce the
KWW relaxation form and are in good agreement, confirming the spatial
and time heterogeneous nature of KWW relaxation. The heterogeneity of
the stress relaxation of metallic glass is dependent on local stress
changes caused by microscopic local plastic deformation. Additionally,
in the appendix, we also provide the activation energy data of the KWW
stress relaxation derived from the Arrhenius equation.
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Appendix A. Activation energy of KWW stress relaxation

We also calculated the temperature dependency of the characteristic time WV of KWW stress relaxation by fitting the MD data and mode-
averaged 6™ (t) using KWW stress relaxation (Eq. (4)), as shown in the log plots of 7VW(1/T) in the Fig. A.1(a) and (b), respectively. Except for
the result at 400 K, the log plot of 7YY generally has a linear relationship with the inverse of temperature. Based on the Arrhenius equation,

A GKWW )

T (A1)

KWW _ KWW
T =1, exp(

The macroscopic activation energy of KWW stress relaxation is derived from the gradient of the log plot of zXWW with respect to the inverse of

temperature. The estimated activation energies from the gradients of the log plots (except for 400 K) are 0.83(a) and 0.70(b) eV, which are consistent
with previous experiment and simulation results 0.37-1.2 eV for f relaxation of Zr-based metallic glass [35,36,10]. The outlier at 400 K is due to
insufficient stress data due to the limitation of the MD time scale, and accelerated MD simulation [27,37] will be conducted in the future to solve the

time scale problem. Related to this, although the empirical Vogel-Fulcher-Tammann (VFT) law 7 = 7gexp (%) (D, Ty is parameters) is often used to
describe the temperature dependency of X"V [14], we do not discuss it in this study because the %W data at low temperatures are not sufficient

because of the limitation of the MD simulation time scale.

Appendix B. Figure including ¢™!(t) curves and 4(t) plots

We provide a figure including both calculated ¢™(t) stress relaxation curves (in Fig. 4) and the raw data of ¢(t) from MD stress relaxation
simulation (in Fig. 1(a)) as Fig. B.1. The reader can refer this figure for the comparison between calculated 6™*(t) curves and o(t) from direct MD stress
relaxation simulation. As we mentioned in the main text, the difference between ¢™(t) curve and o(t) plot is mainly caused by the discrepancy

between the characteristic time X"V of the MD simulation result for ¢(t) and ¢™(t).
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