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Abstract

The ribbon cocycle invariant is defined by means of a partition function using ternary coho-
mology of self-distributive structures (TSD) and colorings of ribbon diagrams of a framed link,
following the same paradigm introduced by Carter, Jelsovsky, Kamada, Langford and Saito
in Transactions of the American Mathematical Society 2003;355(10):3947-89, for the quandle
cocycle invariant. In this article we show that the ribbon cocycle invariant is a quantum invari-
ant. We do so by constructing a ribbon category from a TSD set whose twisting and braiding
morphisms entail a given TSD 2-cocycle. Then we show that the quantum invariant naturally
associated to this braided category coincides with the cocycle invariant. We generalize this
construction to symmetric monoidal categories and provide classes of examples obtained from
Hopf monoids and Lie algebras. We further introduce examples from Hopf-Frobenius algebras,
objects studied in quantum computing.
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1. Introduction

Self-distributivity of binary operations is well known to be an algebraic formulation of
the Reidemeister move III in knot theory. Sets with self-distributive operations (i.e. shelves)
satisfying extra conditions encoding Reidemeister moves I and II have been used, starting
in the 1980’s, to construct invariants of knots and links. For instance, Joyce and Matveev
independently defined what is now known as the fundamental quandle of a knot [15, 20],
whose construction is given as a presentation where the generators correspond to the arcs
of a knot diagram, while the relations formally correspond to the conjugation operation in
a group. Shelves satisfying the algebraic Reidemeister move II condition are called racks,
while those satisfying also the algebraic counterpart of Reidemeister move I are called quan-
dles.

More recently, the notion of (co)homology of quandles has been introduced, and a state-
sum invariant of links that utilizes quandle cohomology has been constructed in [4]. The
resulting “cocycle invariant” is obtined as a sum over all the colorings of a knot diagram,
the states, of all the products of Boltzmann weights, determined by quandle 2-cocycles. Al-
though computing cocycle invariants introduces a new problem, that of obtaining nontrivial
quandle second cohomology classes, it is in general easier to compare two cocycle invariants
rather than comparing the fundamental quandle of two knots.

Moreover, it is known that quandles induce solutions to the set-theoretic Yang-Baxter
equation and therefore, upon linearizing the corresponding set-theoretic map, they produce
Yang-Baxter operators [7]. In fact, given a quandle and a 2-cocycle @, one can construct
a Yetter-Drinfel’d module (i.e. a particular instance of a ribbon category) [13] and, conse-
quently, one can obtain quantum link invariants associated to the ribbon category following
a standard procedure as in [26]. It naturally arises the question of whether the two types of
invariant are somehow related. A positive answer has been given in [13], where it is shown
that the invariants coincide in a suitable sense.

Ternary self-distributive structures are generalizations of binary shelves to the setting of
ternary operations. A suitable diagrammatic interpretation of crossing of ribbons in terms of
ternary operations translates the fundamental moves for the isotopy equivalence of framed
links into a ternary analogue of rack. A corresponding state-sum invariant that uses coho-
mology of ternary racks and colorings of ribbon diagrams associated to framed links is then
constructed [27] following the same reasoning as in the binary case. This invariant, called
ribbon cocycle invariant, has been studied for a fundamental class of ternary racks, called
group heaps, and it has been seen to detect nontrivial framing of links [24].

On the other hand, group heaps can be generalized to certain structures, named quantum
heaps, that naturally arise from involutory Hopf algebras, i.e. having antipode that squares
to the identity map. A corresponding construction for Hopf monoids in symmetric monoidal
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categories exists [9], providing a large class of examples for ternary self-distributive objects
in symmetric monoidal categories, in the sense of [8] Section 8. It is therefore possible to
develop an analogue of the ternary set-theoretic theory in symmetric monoidal categories.

The scope of this article is that of using ternary self-distributive (TSD) structures and their
ternary cocycles to construct ribbon categories whose twisting morphisms are nontrivial,
and to study the corresponding link invariants. The starting point of this study follows the
paradigm that has been used in [13] to prove that the cocycle invariants are indeed quantum
invariants. We prove, in fact, that set-theoretic TSD structures and a choice of a ternary
2-cocycle are linearized to obtain a braiding in a suitably constructed symmetric monoidal
category. The construction is similar to that of the braid category [12, 16], but braiding and
twisting are induced by the TSD structure following the doubling functorial procedure in [8],
and using TSD cocycles to twist the morphisms obtained. Analogously to the fact that the
ribbon cocycle invariant detects nontrivial framings [24], we obtain that the twisting defined
in this category is nontrivial, as opposed to the case of Yetter-Drinfel’d modules associated
to (binary) quandle operations.

On the one hand, there is no strict need of defining a ribbon category out of the data of a
TSD and a ternary 2-cocycle, in the sense that we can obtain a representation of the framed
braid group in a similar fashion as in [26], from which a corresponding quantum invariant
would naturally arise. On the other hand, though, this construction easily generalises to
multiple objects where “self-distributive” ternary actions are defined. These produce a more
general family of ribbon categories where the twists are obtained by TSD operations as in the
previous case, while the braidings are obtained from ternary actions. Moreover, the braiding
and twisting morphisms can be deformed by cohomological classes that twist the weights
and entail the operations and mutual actions of the underlying structure. Among the exam-
ples that we present in this paper, we find mutually distributive structures and their labeled
cohomology, whose algebraic properties were studied in [8], and G-families of quandles
and their cohomology theory, extensively studied in connection with knotted handlebody
invariants [11, 21].

The approach mentioned above, in addition, is particularly suitable to be generalized to
the case of TSD objects in symmetric monoidal categories. As observed above, in fact,
the notion of heap has a counterpart obtained from involutory Hopf monoids in symmetric
monoidal categories, therefore providing a fertile ground for a general theory that associates
aribbon category to a symmetric monoidal category along with a TSD object in it. Using the
TSD morphism we obtain, in fact, a Yang-Baxter operator in the tensor product of the TSD
object we start with, and use this to define the braiding of the ribbon category. The twist is
obtained via the same procedure by interpreting twists as self-intersections of ribbons. In
other words, Reidemeister move I does not hold when we consider framed links, but it is
replaced by a twisting which can be defined using a variation of the braiding.

We have mentioned that we utilize TSD cohomology classes to deform the braiding and
twisting in the case of linearized TSD operations. When working in a symmetric monoidal
category, we can introduce a categorical version of the 2-cocycle condition. The setting,
here, generalizes the set-theoretic one in two fundamental ways. Recall the set-theoretic
2-cocycle condition, which reads

W(x,y,2) — Y([x,u,v], [y, u,v], [z, u,v]) = ¥(x,u,v) + Y([x,y,z],u,v) = 0
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for all x,y, z,u,v € X, where (X, [, —, —]) is a TSD set. Firstly, observe that certain elements
appear in more than one term, and therefore are repeated. This is no particular concern
when dealing with set-theoretic structures, but in a general symmetric monoidal category, it
is required that each instance of a repreated element is replaced by an instance of a comul-
tiplication morphism. In fact, the definition of TSD object, see for instace Section 8 in [8]
for n-ary case, implements this perspective already, and it is somehow natural to expect that
it carries on to the 2-cocycle condition. Secondly, in the set-theoretic case, coefficients of
cohomology are taken in a group, and linearization naturally requires the coefficients to be
represented in the ground field. In an arbitrary symmetric monoidal category, we interpret
this situation as an equality holding in the unit object of the category. The object of coef-
ficients naturally acts on the TSD object allowing the “cocycle” to perturb the Yang-Baxter
operator associated to the TSD morphism. If one thinks of the group algebra associated
to a group as being a Hopf algebra where the comultiplication is simply the splitting of an
element in two identical copies, then the categorical interpretation of the 2-cocycle condi-
tion seems to be on the same footing as the 2-cocycle condition in the ground field of the
linearization of a set-theoretic operation.

In the general situation, one further assumption is necessary, in order to apply the same
construction as in the category of vector spaces. Namely, one needs to assume that the
category is [-linear, where I is the unit object. Then the 2-cocycles are assumed to take
values in the ground object I and, moreover, they are supposed to satisfy a convolution
inversion formula, in order to allow the definition of inverses. This is naturally satisfied in
the linearized case, since comultiplication is simply diagonal, and coefficients in a group are
automatically invertible.

Naturally, as in the set-theoretic case one can obtain ribbon categories from multiple TSD
sets having suitable ternary actions and families of ternary 2-cocycles, we can generalize
the previous construction in a symmetric monoidal category where multiple TSD objects
along with certain ternary morphisms are defined. An interesting class of examples arises
from ternary augmented racks, where the axioms of augmentation can be easily translated
from the case of vector spaces and Hopf algebras to that of Hopf monoids in a symmetric
monoidal category.

1.1. Main results. We proceed now to concisely summarize the main results of the pre-
sent article.

The first result (Theorem 4.3) is that starting from a TSD set (X, T') and a given ternary 2-
cocycle @ € Z*(X, A) with coefficients in an abelian group A, we construct a ribbon category
R.(X) whose braidings are constructed out of a Yang-Baxter operator arising from (X, T)
and deformed by the cocycle @. Moreover, it is shown that the ribbon category is well-
defined, up to equivalence of braided categories, with respect to the cohomology class of
a, in the sense that if 8 represents the same cohomology class, then there exists a braided
functor that gives an equivalence of categories between R} (X) and R;(X). Moreover, a
similar construction is shown to hold when starting with a family of TSD sets {X;};c; along
with maps T;; : X; X X; X X; — X; satisfying a generalized version of TSD condition
(Theorem 4.12). In this situation, we define the notion of ternary 2-cocycles for the family
{Xi}icr and use them to deform the Yang-Baxter operator associated to it. We therefore
construct a braiding and a twisting in order to obtain a ribbon category whose families
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of objects and morphisms are larger than those of R}, (X). In Theorem 5.1 we show that
the quantum invariants associated to the ribbon category R, (X) coincide with the (state-
sum) ribbon cocycle invariant in a suitable sense, i.e. when we take a representation of the
coefficient abelian group of cohomology in the ground field. This construction is generalized
to the setting of TSD objects in symmetric monoidal categories, of which TSD sets in the
category of sets are a particular instance. It is shown that in this setup, from a TSD object
we obtain a Yang-Baxter operator which is deformed by means of what is hereby called a
categorical 2-cocycle. The new Yang-Baxter operator is used then to construct the braiding
in what is shown to be a ribbon category (Theorem 7.16).

1.2. Organization of the article. This article is structured as follows. We review some
preliminary material in Section 2, where we recall binary and ternary self-distributive struc-
tures, the cocycle invariant and some basic notions regarding symmetric monoidal cate-
gories. In Section 3 we give a detailed account of the construction of the ribbon invariant of
framed links as well as a proof of its being well-posed. In Section 4 we show that starting
from the data of a TSD set and a ternary 2-cocycle, there exists a ribbon category determined
up to equivalence of categories with respect to the cohomology class of the 2-cocycle. More-
over, it is shown that a similar construction exists starting from a family of TSD structures
with some extra compatibility conditions and an analogue of the notion of ternary 2-cocycle.
The corresponding ribbon category has a wider class of objects and morpshims with respect
to the previous one. We then proceed to show, in Section 5, that the (state-sum) ribbon
cocycle invariant coincides with the quantum invariant associated to the ribbon category
arising in Section 4. Section 6 presents various examples to elucidate the construction in
practice. Section 7 is devoted to generalizing the theory developed in the previous sections
in the context of symmetric monoidal cateories and TSD objects. The notion of categorical
2-cocycle condition is introduced in order to deform the braidings obtained from TSD ob-
jects, in a fashion that follows the paradigm of Section 4. Quantum invariants associated to
this class of ribbon categories are discussed in Section 8. Finally, further examples arising
from ternary racks are given in the Appendix.

2. Preliminaries
In this section we provide preliminary material that is used throughout the article.

2.1. Racks, quandles and cocycle invariants. Racks are (non-associative) magmas sat-
isfying the self-distributive property given by (x * y) * z = (x * ) * (y * z) for all x, y, z, such
that the right multiplication maps are bijections. Self-distributivity is an “algebraization”
of the topological notion of Reidemeister move III, while the requirement that right mul-
tiplications be bijective corresponds to imposing Reidemeister move II. Idempotent racks
are called quandles, where idempotence corresponds to the remaining Reidemeister move
L. It is well known that knot and link isotopy classes in R?, or S3, can be characterized
combinatorially via their diagrams, i.e. projections on the plane satisfying certain regularity
properties, and Reidemeister moves I, II and III. Consequently, quandles have been used in
[4] to construct state-sum invariants of links, named cocycle invariants. Fundamental roles
in the definition and validity of the cocycle invariant are played by the notion of quandle
coloring of a knot/link diagram, and a cohomology theory associated to racks and quandles.
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Fig. 1. Coloring condition for positive crossings (left) and negative cross-
ings (right).

In fact, loosely speaking, the invariant is defined by considering all possible colorings of a
fixed given diagram of a link £, and multiplying the weights of each crossing of the dia-
gram, each of which defined by applying a pre-determined 2-cocycle to the colors meeting
at the crossing. When applying any of the Reidemeister moves to pass from one diagram of
L to the other, i.e. when performing an isotopy on L, the colors of the diagrams correspond
bijectively by virtue of the axioms defining a quandle, and the weights remain unchanged
because of the definition of quandle cohomology.

We proceed to briefly review the notion of quandle coloring of a link diagram, and the
definition of cohomology associated to a quandle Q. A reference for both definitions is
the article [4], where the cohomology utilizes abelian coefficients, while the case with non-
abelian coefficients is treated in [5]. Let £ be an oriented link, let D indicate an oriented
diagram of £, and let O be a quandle, with operation denoted by the symbol . A coloring of
Dby Qisamap C : R — Q, where R denotes the set of arcs of the diagram D, satisfying
the conditions given in Figure 1, for positive and negative crossings.

Let Q be a quandle and define chain groups C,(Q) to be the free abelian group generated
by the elements of Q" for each n. Then, we define the n'"-differential 9, on generators
according to the assignment

6n(x19 A ,xn)

= Z(—l)"[(xl,---,Xi—l,)?i,xnl,---,xn)
-2
_(xl * xi’ e ’xi—l * xi’ -),éi’-xi+1’ e ,xn)]

where we have used ~ to indicate omission of an element. Observe that the first term in the
sum is the “usual” simplicial term, while the second term contains the information associated
to the operation x*, determining the quandle structure. One proves directly that the maps 4,
satisfy the pre-simplicial conditions and it follows automatically that d,,_; o d, = 0, from
which we have a well defined chain complex and an associated homology theory called
rack homology. Quandle homology is obtained by quotienting out the sub-complex C,(Q)
generated as a free abelian group by n-tuples of Q" where x; = x;;; for some i. In fact,
it is the indempotency condition that induces well defined maps d,, when restricting on the
subgroups C,(Q). Taking A to be an abelian group and dualizing the rack and quandle chain
complexes, one obtains associated cohomology theories which we denote by H"(Q; A) and
Hy(Q; A), respectively. A representative ¢ of a second cohomology class [¢] € Hé(Q;A)
satisfies the 2-cocycle condition, which takes the form

d(x,y) — p(x * 2,y x2) — Pp(x,2) + px x y,2) = 0,
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for all x,y,z € Q. The 2-cocycle condition is related via a diagrammatic interpretation
to Reidemeister move III, as depicted in Figure 1 in [4], while the 3-cocycle condition,
which we do not explicitly consider herein, is related to the tetrahedron move and shadow
colorings.

Fix now a coloring C by a quandle Q, defining at each crossing 7; of Figure 1 a Boltzmann
sum, B(t;, C), as Y(x, y), for positive crossing (left panel), and y(x, y)‘1 for negative crossing
(right panel), where ¢ € Z*(Q,A) is a quandle 2-cocycle, one defines the state-sum (or

partition function)
> [B@.0
c i

for any given diagram of a knot, and where the sum runs over all the colorings C of the
fixed diagram, and the product runs over all the crossings. This state-sum, called cocycle
invariant, is shown to be an invariant of knots in [4], where it has been firstly introduced.
When dealing with a link, one proceeds analogously for each component and defines an
invariant that is a vector with as many entries as the components of the given link.

2.2. Framed links and their diagrams. Framed links are embeddings of finitely many
copies of S' x D?, i.e. solid tori, in the three dimensional space R>, or its compactification
S3. Alternatively, framed links can be defined as links along with a choice of a section of
their normal bundle. Diagrammatically, a framed link L is represented by a link diagram
whose arcs are thickened to be ribbons. This thickening is obtained in a standard way by
doubling each arc so to obtain a second copy of the link diagram, parallel to the first one.
The one lets the second copy mimick the over/under passing information of the first diagram.
Such a thickened diagram is called blackboard framing. A crossing of a diagram whose arcs
have been thickened into a ribbon is represented in Figure 2. From the figure is clear that the
coloring paradigm corresponding to that of quandles changes. We can think of each crossing
as two arcs, each of them underpassing two arcs. The coloring rule is suitably defined by
means of ternary racks. This concept, introduced to the author by M. Saito, is formalized in
Section 3, where it is also given a construction of the ribbon cocycle invariant.

Reidemeister moves (R moves for short) of type II and III translate directly into analo-
gously defined moves where each arc is thickened to a ribbon, while R move I does not hold
in the context of framed links, since it introduces a twist, i.e. a change in the framing. This
is depicted in Figure 3. Throughout this article we will depict positive, resp. negative, twists
by a rectangle inserted in a ribbon with a positive, resp. negative, integer indicating the
number of twists and their orientations. Isotopy equivalence of framed links is characterized
by moves RII, RIII and the cancellation of twists depicted in Figure 4, where each twist is
thought of as a self-crossing as in Figure 3 (with negative twists obtained by kinks in the
opposite direction).

2.3. Ternary racks and their self-distributive cohomology. Ternary racks are general-
izations of racks to sets with ternary operations. Specifically, we have the following.

Dermnition 2.1. Let X be a set endowed with a ternary operation 7 : X X X X X — X.
Then if T satisfies the condition

T(T(x,y,z2),u,v) = T(T(x,u,v), T(y,u,v), T(z,u,v)),
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Z
/

Fig.2. Crossing of a blackboard framing of a framed link.

+1

I

Fig.3. Self-crossing of a ribbon introduces twists.

I

(1
i

Fig.4. Twists with opposite signs annihilate each other.

for all x,y,z,u,v € X, (X, T) is said to be a ternary self-distributive (TSD) set. A TSD set
such that the map X — X defined by T (e, x, i) is a bijection for all x,y € X is said to be a
ternary rack. A ternary rack whose ternary operation further satisfies 7'(x, x, x) = x for all
x € X is called ternary quandle.

A notable example of TSD structure is the heap of a group, i.e. a group G with 7" operation
defined by the assignment (x,y,z) — xy~'z. We note that the heap of a group is a ternary
quandle. Heap operations have been considered and studied in [24], in relation to their
ribbon cocycle invariants (see Section 3 below). TSD operations naturally arise also by
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composing binary self-distributive operations. For instance, if (Q, *) is a rack, or quandle,
then the operation 7'(x,y,z) := (x * y) * z can be seen to endow Q with a ternary rack, or
quandle, structure [8].

We recall the notion of TSD (co)homology of ternary racks [14] and, more specifi-
cally, the TSD 2-cocycle condition, since the ribbon cocycle invariant utilizes 2-cocycles
as weights, in a fashion similar to the original cocycle invariant introduced in [4]. Let (X, T)
be a TSD set, and define C,(X) to be the free abelian group generated by (2n + 1)-tuples of
elements of X. Define maps 9, : C,,(X) — C,-1(X) by

an(xl’ ey x2n+l)
n
Z(—l)l[(XI, L) xzi—la xmv x2i+27 ceey x2n+l)
izl
—(T(x1, X20, X2i1)s « + s T(X2i—15 X245 X2i41)s X2iXiw 15 X2i425 « « > Xona1)],

and extended by Z-linearity. A (long) direct computation shows that the maps 9, are ob-
tained as the alternating sum 8, = Y_,(—1)'d}, where the maps &, satisfy the usual pre-
simplicial module axioms and, consequently, (C,(X),d,) defines a chain complex whose
associated homology, written H,,(X), is called TSD homology. Given an abelian group A we
obtain, upon dualizing the previous chain complex, TSD cochain groups and associated co-
homology. We indicate these groups with the symbols C*(X;A) and H"(X; A), respectively.
The 2-cocycle condition, for a 2-cochain i : X3 — A, takes the form

l/’(x’ Y, Z) - lﬁ(T(x, u, U)’ T(!/’ u, U), T(Z’ u, U))
= IJ/(X, u, U) - ¢(T(x’ Y, Z)’ u, U)

for all x,y, z,u,v € X. As it will be seen in Section 3, the ternary 2-cocycle condition, along
with an appropriate interpretation of colorings of blackboard framings by ternary racks, is
invariant under moves RII, RIII and cancellation move. It is therefore possible to define
Boltzmann weights by means of ternary 2-cocycles and introduce a state-sum invariant of
framed links. Given a 1-cochain f : X — A, the first cohomology differential 6' maps it to
the function

(X, y,2) 8" f(x,y,2) := f(x) = f(T(x,y,2)).

Therefore two 2-cocycles ¢ and ¢ are in the same second cohomology class if they differ by
a term &' f as above, for some 1-cochain f. As it will be proved in Section 3, changing the
representative of a second cohomology class changes the ribbon cocycle invariant by a well
understood term, so that the invariant is a well defined function, up to a known equivalence
relation, of the cohomology group H*(X; A). This observation did not appear in the original
construction in [27], and has been proved when T is the heap operation in [24].

RemMaARk 2.2. TSD operations naturally give rise to binary self-distributive operations by
doubling the base set. Specifically, given a TSD set (X, T'), one has that the map (x, y) X
(z,w) = (T(x,z,w), T(y,z, w)) defines a binary self-distributive operation on X X X. In [8],
it was seen that the cohomology of TSD operations and the cohomology of the associated
doubled operations are related by homomorphisms from the ternary cohomology groups
to the binary ones. Lastly, we point out that the cohomology theory used to provide the
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previous result is related to the cohomology of G-families of quandles used by Ishii, Iwakiri,
Jang and Oshiro to construct cocycle invariants of handlebodies in [11].

2.4. Braided monoidal categories and ribbon categories. Recall that given a monoidal
category (C,®), a braiding in C is a natural family of isomorphisms cxy : X® Y — Y ® X
such that the Hexagon Axiom is satisfied [16], Chapter XIII. Specifically, it is required that
the diagram

XoYeZ) X% vez)eX

(XQY)®Z Y ®(Z®X)

YoX)9Z 2y e (X®Z)

where « indicates the associativity constraint of the category C, and we have omitted the
subscript of the identity morphism, as no confusion arises. A similar diagram for the inverse
of cxy is required to commute, but this can be obtained from the commutativity of the
previous one. Therefore, it is not an independent axiom, see comment in [16] right above
Definition XIII.1.1. A monoidal category endowed with a braiding is said to be a braided
monoidal category. Observe that for any object X € C, the braiding cx x is a solution to the
braid (Yang-Baxter) equation. In fact, the diagrammatic interpretation coincides with the
RII move for knot/link diagrams.

In this article we will consider our monoidal categories to be strict, so that the associativity
constraints will not be written now on. This assumption is not particularly restrictive, as any
monoidal category can be seen to be equivalent to a strict monoidal category.

Typical examples of braided monoidal categories arise from braided bialgebras (see Chap-
ter VIII in [16]), where the category of H-modules, of a braided bialgebra H, has a braided
structure associated to the universal R-matrix of H. Another important class of examples
arises from crossed G-sets, where the braiding is obtained using the crossed action. Lin-
earizing these structures produces bradings in some subcategory of vector spaces. More
generally, one can use a quandle operation, which generalizes the axioms of crossed G-set.

A left dual of X in a braided monoidal category is an object X* such that there exist
morphisms coev : I — X ® X" and ev : X* ® X — I such that the equalities (1 ® ev) o
(coev® 1) =1 and (coev® 1) o (I ®ev) = 1 hold. A similar definition for right duals can be
made. A category such that left and right duals exist for all objects is said to be autonomous,
and in this case left and right duals coincide. In what follows, we will refer to left duality
simply as “duality”, if not otherwise specified.

In a braided monoidal category, the notion of dual introduces a diagrammatic interpreta-
tion with different types of crossing orientations. The corresponding RIII moves with new
orientations are seen to be induced by the original diagrammatic RIII, as in Figure 10 in
[26]. See [16], Chapter XIV, for the diagrammatic interpretation of duality.

Given a braided monoidal category with duals, a twist is a natural family of isomorphisms
Ox such that Oxgy = (Bx®0y)ocyx ocxy. Moreover, 6 is required to behave well with respect
to dual objects, in the sense that Oy = (0x)".
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In the previous example of braided monoidal categories arising from linearization of
crossed G-sets, linear duals, and evaluation and coevaluation maps in vector spaces give
a ribbon category structure along with trivial twists. In fact, triviality of twists can be in-
terpreted as a consequence of the fact that quandles are idempotent following Figure 3. A
twist is introduced by means of a self-crossing, and the corresponding effect of applying
a quandle operation is trivial, due to idempotence. As it will be seen below, using ternary
operations and their diagrammatic interpretation gives rise to ribbon categories, following a
similar paradigm, whose twisting morphisms are nontrivial. Consequently the correspond-
ing invariants detect the framing of knot/link.

3. Ribbon cocycle invariants

Following [4, 5], it is introduced in this section an invariant of framed links, using color-
ings of ribbon diagrams by ternary racks, and ternary racks 2-cocycles. This invariant was
originally introduced in [27], and studied in [24] in the case of heap invariants. We give the
details of the construction, as they are relevant for the rest of the article.

Framed links are represented in the rest of the paper by their blackboard framing. There-
fore the arcs of a projection on the plane are represented by ribbons bounded by two parallel
arcs. Orientations of the ribbons are specified by orientations of the parallel arcs, which will
be always assumed to be concordant. The framing of a ribbon, which is an integer number,
is obtained by twisting the two arcs delimiting the ribbon. This is given by consecutive
self-intersections, and therefore a specified orientation of the ribbon determines whether n
consecutive twists are positive or negative. A diagram whose edges are specified by two
parallel arcs, therefore defining a ribbon, is called ribbon diagram. 1t follows from the
definitions that the blackboard framing of a framed link is a ribbon diagram.

Let X be a ternary quandle and let D be a diagram of a framed link. Suppose for the
moment that the link has a single component, in other words it is a diagram of a framed
knot. To each ribbon arc in D, associate a color by a pair of elements (x;,x;) € X X X,
corresponding to each side of the ribbon. At a positive crossing 7 of D, where the arcs
colored by (x7,x]) and (y{,y5) meet, let the overpassing ribbon mantain the same color,
while change the color of the underpassing ribbon to (7'(x1, y1,y2), T(x2,Y1,y2)). When a
crossing 7 is negative, we change the color of the underpassing ribbon to (z;, z2), where z;
is the unique element of X such that 7'(y;, x1, x») = z;, whose existence is guaranteed by the
axioms of ternary rack. We now pose the following.

Dermnition 3.1. Let D be a ribbon diagram whose set of ribbon arcs is denoted by R, and
let X be a ternary rack. Then, a coloring of D by X, is a (set-theoretic) map

C:R— XXX,

that is consistent with the coloring rule above. The set of colorings of a framed link is
defined to be the set of colorings of a ribbon diagram of the link.

Lemma 3.2. Let X be a ternary rack and D a ribbon diagram of a framed link. Then the
set of colorings C of D by X is invariant under Reidemeister moves Il and 111, and moreover
it respects cancelling of kinks.
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As a consequence, the notion of coloring of a framed link is well posed, and the set of
colorings of a framed link is an isotopy invariant.

Suppose ¢ is a ternary rack 2-cocycle of X, with coefficients in A. For a given crossing
7, define the Boltzmann weight at 7, depending on the coloring C and the 2-cocycle ¢ by
(d(x7], 47, yg)f(”, &(x3, Y1 yg)G(T)) € AX A, where the sign €(7) is that of the crossing. Now we
can define the 2-cocycle invariant of a link L with respect to a ternary rack X and a ternary
2-cocycle ¥ € Z*(X, A) as follows. First we give the definition in the case of framed knots,
and then generalize it to framed links.

Dermnition 3.3. Let D be a ribbon diagram of a framed knot K having k crossings 71, - -,
i, and let € Z*(X,A) be a ternary 2-cocycle. Define the cocycle invariant of K, by the
2-cocycle i as

Op(X. T, 1) = Z(]_I VEHRTRRTIO RS ]_[ VZESRTHRTIO RN

where e(t;) is the sign of the i”* crossing, and the sum runs over all colorings C of the
diagram D. We sometimes shorten notation by writing ®, instead of ®p(X, T, ¢), and name
®Op(X, T, ¥) the ribbon cocycle invariant. Each term w(x”, -’/1 Y, 7T, j = 1,2, is also called
the Boltzmann weight at 7, relative to the coloring C and the 2-cocycle . It is denoted by
the symbol B;(C, 7).

It remains to prove that the 2-cocycle invariant does not depend on the choice of ribbon
diagram D used in Definition 3.3.

Theorem 3.4. The cocycle invariant does not depend on the equivalence class of the
ribbon diagram D. Therefore, it is well defined and it is an invariant of framed knots.
Moreover, changing a 2-cocycle  to another representative of the same second cohomology
class [y] € H*(X, A), changes the invariant to an integer multiple of the unit (e, e) € A X A.

Proof. The Theorem is proved by showing that the state sum is invariant with respect
to Reidemeister moves II and III, and with respect to kink cancellation. Compare with the
moves T1-T5 and T6, given in [12], page 166, and with rel;-relg in [23], page 14. As seen in
Lemma 3.2, applying a Reidemeister move II or III, or applying the kink cancellation move
transforms one coloring of a diagram to another coloring. Assuming that the colors at the top
strands, then changing colorings between Reidemeister move 11, are (x, y)X(z, w), we see that
the consecutive crossings 7, and 7, contribute with a cocycle weight of (Y (x, z, w), ¥ (y, z, w)
and (Y(x, z,w)™", Y(y, z, w)™") respectively. So the contributions cancel. Reidemeister mover
III coincides with with the ternary 2-cocycle condition, and the corresponding invariance is
guaranteed. Cancellation of kinks is similar to the case of Reidemeister move II, and the
sign in Definition 3.3 ensures that the state sum does not change. Suppose ¥ is a cobound-
ary, i.e. ¥ = of, for some f : X — A. Let C be a fixed coloring and suppose we order
the crossings 7y, .. ., T, starting from an arbitrarily chosen arc, and numbering the crossings
as we encounter them following the arc along the knot. Consider 7; and 7;;;, and assume
without loss of generality that 7; is a positive crossing. Then the Boltzmann sum contri-
bution on the first entry of the state sum is given by f(x)f(T(x,z, w))~!, assuming that the
colorings on top of 7; are (x,y) X (z, w). Likewise, the contribution on the second entry is
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f)f(T(y,z,w))~". Now, suppose i, is positive, and let (z’, w’) overpass at 7;,;. Then the
Boltzmann sum is given by f(T(x,z, w))f(T(T(x,z,w),z,w’))~", which shows that the two
terms f(T(x,z w)) and f(T(x,z,w))"! cancel. Similarly for the second entry of the Boltz-
mann weight. If 7;;; is negative, and we let (z’, w’) be underpassing, we see that the terms
f(T(x,z,w))and f(T(y,z, w)) again appear in both crossings with opposite signs, and cancel
out again. Proceeding in this fashion we see that when we have 7, and 7| the remaining
terms cancel out, since have assumed that C is a colorng, hence it is well defined. Each col-
oring in the state sum contributes with a trivial term, so the invariant of a coboundary simply
counts the number of colorings. Consequently, it is an integer multiple of (e, e). This fact
implies that if ¢ and ¢ differ by a coboundary, their invariants differ by an integer multiple
of (e,e). A more concise argument, based on an interpretation of the state-sum invariant in
terms of Kronecker pairing first described in [4], is given in Theorem 5.8 of [24] for the case
when T is the heap of a group. The reader can verify that it is applicable also for general
TSD operations. |

Remark 3.5. The invariant @p(X, T, ) is, by construction, an element of the group ring
Z[AXA]. Since there is an isomorphism Z[AXA] = Z[A]®Z[A], we can identify Op(X, T, ¢)
with a sum of tensor products of elements of A.

We now generalize Definition 3.3 to framed links with multiple components. First, if a
link £ has  components £ = K U---U K, we label the crossings 7 of £ with the number of
the component the underpassing ribbon belongs to. Therefore, for example, if at the crossing
7 the underpassing ribbon belongs to the component i, 7 is denoted by 7;. For j = 1,2 we
define the Boltzmann weight B;i)(C ,T;) relative to the crossing 7;, in the i component, as
U(xj, y1,y2)<, where (y1,y») is the coloring of the overpassing ribbon (not necessarily in
the component K;) and (x1, x») is the coloring of the underpassing ribbon (in the component
K; by assumption). In the following definition, we denote a vector with multiple entries
being pairs with the notation (a, b) X - - - X (a’, b").

DeriniTiON 3.6. Let the notation be as in the previous paragraph. Then the (vector) ribbon
cocycle invariant of L, relative to the ternary rack X and the ternary 2-cocycle ¢ is defined
as

ki) k(i)
Bo(X, T,p) = > (| | BiC.mion, | | Bo(C. 7o),
C s=1 s=1

where k(i) is the number of crossings in the i component, 7;(s) indicates the s crossing
in the i component, and the sum indicates that in each component of the vector we are
summing over all possible colorings C.

An argument similar to that of Theorem 3.4, applied to each component, shows that
the (vector) ribbon cocycle invariant does not depend on the isotopy class of the framed
link £ and it is therefore well defined. Moreover, changing ¢ to another 2-cocycle in the
same second cohomology class changes the invariant by an integer multiple of the vector
(e, e)X- - -X(e, e), where e is the neutral element of the coefficient group used for cohomology.

Before concluding this subsection, we mention the main difference between using TSD
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operations and binary ones. Recall that, as observed above, TSD operations naturally give
rise to binary self-distributive operations by doubling the base set via the map (x, y)X(z, w) —
(T(x,z,w), T(y, z,w)), which defines a binary self-distributive operation on X X X, from a
starting TSD set (X, 7). When constructing the ribbon cocycle invariant for (X, T'), the di-
agrammatic interpretation of the definition of Boltzmann weights employs the fact that a
single edge underpasses a pair of edges (i.e. a framed edge), and ¥ (x,y,z) is the corre-
sponding weight, where ¢ is a ternary 2-cocycle, x is the color of the underpassing edge,
while y, z are the colors of the overpassing (framed) edge. For each connected component
of a given framed link we obtain two products of Boltzmann weights (for each given color)
and, consequently, the associated ribbon cocycle invariant lives in Z[A] ® Z[A], where A is
the abelian group of coefficients for the cohomology. This is well depicted in Figure 3 of
[8], where we have a Reidemeister III type move where two framed arcs overpass a single
edge. In contrast, using the binary operation on X X X and the binary operation induced by T
gives a single Botlzmann weight for each crossing, corresponding to ¢((x, x’), (¢, z)), where
(x, x") is the color of the underpassing edge, (y, z) is the color of the overpassing edge and
¢ is a binary 2-cocycle for X x X with coefficients in A. The corresponding invariant is an
element of Z[A]. As a further difference between the ternary approach and the associated bi-
nary one, we can define, in the ternary case of group heap operations, the fundamental heap
of a framed link, see [24]. In general, this invariant of framed links is different from the
fundamental quandle of the corresponding doubled operation and, consequently, the X x X
quandle colorings are different from the X heap colorings.

4. Ribbon categories from self-distributive ternary operations

In this section it is given a generalization of known constructions that allow to define a
Yetter-Drinfeld module from a set-theoretic quandle [13]. More specifically, the aim of this
section is to define a ribbon category given a ternary self-distributive object in the symmetric
monoidal category of vector spaces. As opposed to the case of a quandle, the ribbon category
that is obtained in this procedure admits nontrivial twisting morphisms. These are defined
by means of a self-crossing, similar to the Reidemeister move I, which in this case is not
the trivial map. In this section, along with sections 5 and 6 we focus on the case of ternary
self-distributive objects obtained via linearization of set-theoretic structures. We use ternary
cohomology in the usual sense [8]. It will be shown in Section 7 that this construction can be
generalized to the case of ternary self-distributive objects in symmetric monoidal categories
endowed with duals, using a generalized version of 2-cocycle condition with coefficients in
a group object of the given category.

Let Q := {xy, ..., x,} be a (finite) ternary rack with operation 7 : QX Q X Q — Q. Then
linearizing the operation over a ground field k gives a ternary self-distributive object in the
category of k-vector spaces, (X, T), where X := k(xi,..., x,) and the linearized operation
is indicated with the same symbol 7.

Let H*(Q, A) indicate the second ternary self-distributive cohomology group of Q, with
coeflicients in the multiplicative (abelian) group A. Fix a nontrivial 2-cocycle @ : Q X Q X
Q — A. In the examples treated below we have the case when A C k* or, more generally,
when it is given a group character of A in the group of units of k. The group A therefore
acts on the vector space X and its tensor products via scalar multiplication of k. We will
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use the symbol - to indicate this action, for clarity, and we use juxtaposition to denote the
multiplication in A.
Using this data, we define the brading ¢® : X®? ® X®> — X®2 ® X®? by the assignment

xRy ®(zZzew) — alx,z,waly,z,w) (Z@w) ® (T(x,z,w) ® T (y,z,w)),

having used a comma to separate the entries of 7" instead of the symbol ® to shorten notation.
As it is proved below, the morphism ¢ satisfies the braid equation if and only if @ is a 2-
cocycle, i.e. [a] € H*(Q,A) (cf. with Proposition 3.3 in [13]). The twisting morphism
65 : X®2 — X®? is defined by extending the assignement

x®y - alx, x,y)aly, x,y) - T(x,x,y) @ T(y, x,y).

This definition is motivated by introducing a complete twist in a ribbon by self crossing,
Figure 3.

We introduce now the ribbon category whose objects are all even tensor powers of the
vector space X and generated by braiding and twisting given above. See[16] Chapter XII,
Section XII.1, for the general definition of presentation of a category. We give a very explicit
definition below, to describe the morphisms in detail.

Dermnition 4.1. Let (X, T) be a ternary self-distributive object in Vy, as above, and [a] €
H?(Q,A). Define the category R,(X) as follows. The objects are even powers X®*" of X
in the category Vy. The tensor product of two objects Y and Z, written ¥ ® Z, is defined
to be the tensor product ® in V. The trivial power X° is set to be k by definition. The
morphisms of this category are defined as follows. The set Hom(X®2, X®2) consists of the
identity map and twists (6%)°", where m € Z and o indicates composition. The set Hom(Y, Z)
is empty if ¥ # Z. The morphism set Hom(X®*, X®*) is the free monoid generated under
composition by twofold tensor products of f,g € Hom(X®2, X®?), and the braiding ¢ :=
¢5,- The set Hom(X®%", X®?") is defined inductively as the free monoid generated under
composition by tensor products f € Hom(X®*™, X®?™) and g € Hom(X®*"™, X®2") with
my + my = n. The braidings ¢, : X®*" ® X®*" — X®" ® X®¥ are the morphisms
Xx2ntm) sy x20+m) corresponding to block permutation switching X®2" and X®2™, obtained

by subsequent applications of ¢J ,.

Endow the category R,(X) with duals by setting (X®2m)* = (X*)®2", where X* is the
linear dual of X. The evaluation map ev is determined by x® y ® f ® g — f(y)g(x), and the
coevaluation map coev by 1 — x; ® x; ® x' ® x/, where the Einstein summation convention
is used. Let R, (X) indicate the category R, (X) with the addition of duals.

Remark 4.2. Direct inspection shows that the twisting morphism 6 defined above coin-
cides with the self-intersection morphism obtained by means of ev and coev maps as com-
position: (ev ® 1%2) o (1%? ® ¢?) o (coev ® 1%?), cf. Figure 3.

Theorem 4.3. With the same notation as above, the category R (X) with braiding in-
duced by ¢ and twisting morphisms induced by 0 is a ribbon category. Moreover, if
[a] = [B], then the two categories R(X) and R;(X) are equivalent.
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Proof. The fact that R,(X) is a tensor category is a consequence of the fact that Vy is
a tensor category, and the definitions. To verify naturality of the braiding, it is enough to
verify the commutativity of the square

X ®2n [q X ®2m “an,2m X ®2m [g] X ®2n

lf@g l&ﬂf
X ®2n [q Y ®2m n,2m X ®2m 7] X ®2n

for all morphisms f and g. This follows from the fact that the morphisms are defined as
block braidings induced by ¢*. So the naturality is a direct consequence of the definition
of morphisms, and the fact that ¢® satisfies the braid equation (proved below) in the same
way it is proved for the braid category. The fact that ¢ is a family of isomorphisms is a
consequence of the invertibility of 7 axiom, holding for ternary racks. To verify that ¢ is
indeed a braiding, it has to be shown that it satisfies the braid equation. To this objective,
observe first that it is enough to prove that ¢5 , satisfies the braid equation

(5, @T)o(lrcy,)o(ch,®I)=(IrcT,) o (ch,®I1)o(1lwcY,),

since the general case would follow from iterations of this specific case. Using the shorthand
notation 7¥° = T(x, y, z), on a general basis vector x ® y ® z ® w ® u ® v, the left hand side
equals

(5, @) o(Ircy,)o(ch, RIxRYRZOUWRURV
= ax, z,wa(y,z,w)a(T", u, v)a(T;’"’, u, v)a(z, u, v)a(w, u, v)

u@UR T ® T, =’ T ® T,

T;.w b
while the right hand side equals

(Imcfy)o(cy, @) o (IR, ®YRZOWRURY

= a(z, u,v)a(w, u, v)a(x, u,v)a(y, u, v)a(T", T, T )T, , T, T,")

u@uR TR T =TS,
uuR T} w T

wo i
TZ Ty

® T

The two terms are seen to coincide by applying the 2-cocycle condition to x, z, w, u, v and
y,z,w, u, v separately, and the definition of self-distributivity of 7. The fact that the duals
turn R, (X) into a rigid category is standard. It is left to prove that the twisting morphisms
are naturural with respect to the braiding, i.e. that

B"ROYoc* =c" o0 ("R EHY),
and that
Oyaz = Czy © Cyz © (6 B O7).

The latter follows immediately from the definition of 6* as extension of 6. To prove natu-
rality, observe that it is enough to show that

("mTL)oc, =c5,0 (1RO

and
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12

Fig.5. A twist can be slid over a crossing.

(Ir@)oc, =c5,0(0" 1),

since the general naturality with respect of the braiding is obtained diagrammatically by
sliding twists below and above a crossing, as in Figure 5. The case of a twist being slid
below a crossing is similarly depicted. On simple tensors x ® y ® z ® w, the left hand side of
the first equality becomes
(@"m1)ocs,x@YyRZOW
= a(x, x,y)aly, x, ya(Ty", z,w)a(T,;", z, w)
ZQWK T;‘“ ® T;/‘“

while the right hand side is

ro(IrRONX®YRZOW
= o(x.zw)aly, 2T, T, TEa(T5", T3, T5")

X X Yy ’ X
T T T e
Z,W Z,W x oty x ody
T eT el el

These are seen to coincide upon applying the 2-cocycle condition twice to x, x,y, z, w and
Y, x,y,z,w, and using self-distributivity of 7. Similarly, for the second equality to be verified
one has on the left hand side

(IrO)och,x@YyRzOW

= a(z, z,waw,z,walx, T, T5)aly, T2V, TSY)

TZ»W Tz.w T:",w TZ,LU
Z,W Z,Ww z z dw
TeT, " ’Ty 7" ®T," " .

To verify that they are the same, apply the 2-cocycle condition to T+, z, w, z, w and observe
that
T(x,z,w)
T(T(T(x,z,w),z,w),z, W)
I(T(T(x,z,w),z,w)T(z,z,w), T (w, z,w))
T(x, T(z,z,w), T(w, z, w)),

and similarly 7'(y, z, w) = T(y, T (z, z, w), T (w, z, w)). This sequence of equalities is motivated
diagrammatically by sliding a ribbon beneath a self crossing.

Suppose now that [@] = [B], i.e. there exists f : X — A such that a(x,y,z) =
By, ) f(T(x,y,2)”" forall x,y,z. Set f: X2 — X as f(x®y) 1= f(0)f(y) - x®y,
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and extended by linearity. The map £ has an inverse given by £~ (x®y) := f(x)"' f(y)~"-x®y.
The definition of f and its inverse clearly extends to objects of R (X) and R;(X). Define
a functor F : RZ(X) — R (X) as follows. On objects F is defined to be the identity.
On morphisms 7 € Hom(X®?", X®") define F(t) = (f~")®" o 7 o (f®"). This assignment is
functorial, and moreover maps Qg to 65 and Cg,Q to ¢3,, since

&Ny

(FOFWIBCx, x, By, x, ) f(T(x, x, )" F(T(y, x,1))™")
Xy

alx, x,y)a(y, x,y) - x®y
0 (x®y)

(fE,Nxeyrzew)

(FOfWBCx, 2, w)BWY, 7, w) F(T(x, 2, w) ™ F(T(y, z,w) ™)
Z2@wWRT((x,z,w)® T((y,z, w)

a(x,z,wya(y,z,w) - zQ@wR T((x,z,w) @ T((y, z,w)
0y,(x®Y Rz w).

The definition of F' clearly respects tensor products and due to the inductive definition of
twists and braiding in the categories R, (X) and R;(X), it follows that F' is a braided tensor
functor. Since F is essentially surjective on objects (it is the identity), and fully faithful on
morphisms (due to invertibility of £), F is an equivalence of braided tensor categories that
respects the twisting structure. This completes the proof. O

ReMARK 4.4. Observe that the twisting morphisms 6* are in general nontrivial, even for a
trivial a.

The main purpose of the construction of Theorem 4.3, is to show that the natural invariants
associated to the ribbon category coincide with the cocycle invariants defined in Section 3.
It is in fact possible to bypass this construction and prove that the twisting morphsism 6% and
the braiding morphism c3, induce a representation of the infinite framed braid group (the
inductive limit of the framed braid groups F B, of [18]) similarly to [26], using the linear
map @, of Section 5 (given below). It is convenient, though, to define a ribbon category
from a ternary self-distributive structure and a ternary 2-cocycle since this is suitable for a
generalization to multiple compatible self-distributive structures.

DerINITION 4.5. A compatible system of ternary self-distributive structures is a finite fam-
ily {(Q;, T1)}ies of ternary self-distributive sets along with actions

T;j: Qix0Q;xQ;— 0,
of Q;x Qjon Q;foralli,j=1,...n,satisfying the compatibility condition
Ty o (T;;x 1 x 1) =Tijo(Ty x Ty X Tjr) oo (1 x Az x Az),

where A; = (A X 1) o A and WU is the permutation map corresponding to ternary self-
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distributivity. Such a system is denoted {Q;, T}, where it is implicitly assumed that T;; := T;.

Linearizing such a system of compatible structues gives a multi-object analogue of ternary
self-distributive object in the category of vector spaces. We will sometime call the linearized
object a compatible system of self-distributive structures, since no confusion will arise.

RemMARk 4.6. There are infinitely many examples of the structure given in Definition 4.5
arising from mutually distributive structures as in [8]. In fact let (X, T, 71) be a mutually
self-distributive set (with X finite). Linearizing Ty and T over a field k and defining 7o =
To = Too and Ty, = T, = T, over the vector space, it is seen by direct inspection that the
structure {k(X), T;;}; j-0,1 is a compatible system of ternary self-distributive structures.

In Section 6 it will be seen that compositions of G-families of quandles provide other
natural examples of these structures. Furthermore, in the Appendix, more examples from
augmented Hopf modules will be introduced. In particular it will be seen that there are
compatible systems with multiple base spaces.

To the notion of compatible system of ternary self-distributive structures, there corre-
sponds the notion of compatible system of ternary 2-cocycles as follows.

DermniTion 4.7. Let {(Q;, Ti;)} be a compatible system of ternary self-distributive struc-
tures. A compatible system of 2-cocycles with coefficients in A (abelian group with multi-
plicative notation) is a family of maps «;; : X; X X; X X; — A such that

a;i(x,y,2) - ap(T;j(x,y,2),u,v)

= apx, u,0) - @i (Tu(x, u,0), Ty, u, ), T ji(z, u, v)),

for all x € X;, y,z € X; and u,v € X; and all i, j, k. Such a family of maps is denoted by the
symbol {«;;}, where parentheses can be omitted to shorten notation.

DerniTion 4.8, A compatible system of 2-cocycles {a;;} is said to be trivial, or
cobounded, if there exists a family of maps f; : X; — A such that

Sfi(x X y1 X y2) = fi()[i(Tif(x X y1 X y2)) ™' = aij(x X y1 X ya)

forall i, jand all x € X;, y1,y> € X.
Two systems of 2-cocycles, {a;;} and {5;;} are said to be equivalent if the system {«; jﬁg}}
is trivial.

ReMARrk 4.9. Observe that when i = j = k it follows that each «;; is a ternary 2-cocycle for
the ternary self-distributive structure 7;, and moreover the triviality condition gives that «;;
represents the trivial class in second ternary self-distributive cohomology group. It follows
that if «;; is not cobounded in the ternary self-distributive cochain, then a compatible system
of 2-cocycles is nontrivial in the sense of Definition 4.8.

RemARk 4.10. Definitions 4.7 and 4.8 are clearly reminiscent of a cohomology theory.
It is natural to ask whether such a theory derives from a deformation theory of compatible
systems. The answer is no, in that infinitesimal deformations of compatible systems require
more conditions to be satisfied, than just the 2-cocycle condition of Definition 4.7.
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Remark 4.11. In the case of Remark 4.6, when a system of compatible structures is de-
fined on the same base space, a compatible system of 2-cocycles is the same as a 2-cocycle
in the labeled cohomology of [8].

Let {(Q;, T;j)} be a compatible system of ternary self-distributive structures and let {a;;}
be a compatible system of 2-cocycles. Let X; = k(Q;) and denote the linearized maps T;; by
the same symbols. To these data it is possible to associate twisting morphisms and braidings
as follows. For each X there is a twisting 6%/ : X; ® X; — X; ® X; defined by extending the
assignment

x®y = a;i(x, x, Py, x,y) - Ti(x, x,y) @ Ti(y, x, y).

For each pair of objects X; and X there is a braiding ¢® : X®*® Xj?z — X;Z’Q ® X*? induced
by

(x®Y) ®(Z®w) = a;i(x,z,wa;j(y,z,w) - 2@ w) ® (T;j(x,z,w) ® T;j(y, 2, w)).

The construction of Definition 4.1 is adapted to this case and the corresponding category
is denoted by R;‘%}({X,-}).

Theorem 4.12. The category RLU}(
above is a ribbon category. Moreover, if two systems {a;;} and {B; ;} are equivalent, then
R?a__}({Xi}) and RE};__}({X,-}) are equivalent.

ij ij

{X;}) with braiding and twisting morpshisms defined

Proof. The proof is substantially the same as that of Theorem 4.3, where the 2-cocycle
condition of a is replaced by compatibility condition of the family {a;;} and self-distributivity
of T is replaced by compatibility of the system {7;;}. When {«;;} and {§;;} are equivalent,
one can construct maps f; as in Theorem 4.3 and show that these induce an equivalence of
ribbon categories. O

Observe that R?a__}({Xi}) is a ribbon category with “distinguished” objects X; ® X;, and
other objects given by tensor products obtained from the distinguished ones.

S. The Ribbon cocycle invariant is a quantum invariant

The ribbon category R, (X) allows to define an invariant of framed links from any rack
and a fixed ternary 2-cocycle, following standard procedures [26]. Let (X, T) be a ternary
self-distributive object arising from a set-theoretic ternary rack Q as above, and [a] €
H?*(Q,A) be fixed. A framed link is represented by the closure of an element b € FB,
of the framed braid group on n ribbons [18] where, since twisting of the ribbon and cross-
ings commute, it is assumed that the twists are on top of the braid. Using the same notation
of [18],

b:l"{l-..t:l”.‘r’

where r; are integers indicating the number of twists of the i ribbon and 7 is an element of
the braid group B,.

Then, the quantum invariant associated to (X, 7)) and «, is obtained by considering the
object X? ® -+ ® X? (n-fold product) in R (X) and taking the trace of the morphism @, :
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X’®---®X* — X?R---RX? corresponding to b as follows. Each generator ¢ corresponds to
(6%)"1, and each crossing 0';—'1 in the product defining 7 corresponds to (¢ 2)il. This invariant
is denoted by the symbol

Yo(X.T,a),

where D is the ribbon diagram representing b.
The following theorem establishes that the two procedures described in Section 3 and this
section coincide.

Theorem 5.1. Let L be a framed link, with presentation given by a framed braid b as
above, (X, T) be a ternary self-distributive structure that is linearized over k, and a a 2-
cocycle of (X, T) with coefficitents in A. Suppose that y : A — K> is a group character.
Fix a diagram D of L. Then the ribbon cocycle invariant y®Op(X, T, @) and the quantum
invariant Yp(X, T, y o @) coincide.

Proof. The proof is very similar to that of Theorem 3.5 in [13]. Observe that in order to

compute WYp (X, T, @), one has to consider all combinations of basis vectors xfl(i]) ®--- ®xl.i(i”)
e
e ® xjij "1t follows that the only nontrivial contributions to Wp(X, T, @) are obtained when
xjfj V. ® x;(j”) = x;di‘) Q- ® x;E(i”), by definition of ev and coev maps in R:(X). At
each crossing, whether corresponding to a twisting #'* or one of the factors of the braid 7, @,

contributes with a scalar given by either

apply the endomorphism @, and therefore apply it to all the possible combinations x

a(z1,21,22)(22, 21, 22),
or
a(z1, wi, wp)a(wy, wy, wa),

where it has been assumed that 6 is applied to the vector z; ® z, and ¢? is applied to the
vector 7; ® 7, ® w; ® w,. The vector output is given by either

T(z1,21,22) ® T(22,21, 22),
or
w1 @wy R T (zy, wr,wz) ® T(wa, wy, wy).

It therefore follows that the only nontrivial contribution to Wp(X, T, @) corresponds to the
colorings of D by X and each contribution equals one of the summands that define Op(X, T,
a). The proof is complete. O

The quantum invariant Wp(X, T, @) does not only provide a differennt interpretation of
the ribbon cocycle invariant @p(X, T, ), but it is also suitable for a generalization to framed
braids (not necessarily closed).

Theorem 5.2. Let F be a diagram of a framed braid b € FB,,. Then ®, defined as above
is an invariant of F.
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6. Examples and Computations

6.1. Examples from compositions of binary quandles. In this subsection it is showed
that the notions of G-family of quandles and G-family of 2-cocycles [11, 21] provide in-
teresting examples of compatible systems of TSD structures. An explicit example using
Nosaka cocycles is also shown in detail.

Recall first, that a G-family of quandles is a set X along with a family of quandle op-
erations *¢ indexed by a group G (i.e. g € G for all g), and satisfying the compatibility
conditions

(xxy) sy = xx9y,

h'gh

)tz = (" (Y 2.

Given a G-family of quandles one can construct a compatible system of ternary self-
distributive operations as follows. Linearize the base set X to obtain V = k(X). Then
define maps Ty, : V® V®V —> V by the assignment x® y ® z > (x + y) S A
direct computation shows that the system so defined is indeed compatible. Observe that 7'y,
being self-distributive is an instance of the fact that composing mutually distributive binary
operations produces a ternary self-distributive operation, as in [8].

DermniTion 6.1. The compatible system constructed above from the G-family of quandles
(X, *9)4eq 1s called the compatible system associated to a G-family.

Since the main construction of Section 4 associate a ribbon category to a compatible sys-
tem of distributive structures by means of a system of 2-cocycles, it is fundamental to obtain
such objects for compatible system associated to G-families. As shown in the next result,
it is possible to do so using the notion of G-family 2-cocycles, see [11, 21] for the defini-
tion of G-family (co)homology. In what follows it is assumed that the X-set Y appearing in
G-family cohomology is a singleton endowed with the trivial G-family action. The set Y is
therefore omitted without further notice, but this should not cause any difficulties.

Proposition 6.2. Let (X, %) e and (V, Typ)gnec be a G-family of quandles and the as-
sociated compatible system of self-distributive structures, respectively. Let 0 be a G-family
2-cocycle. Then there is an associated compatible system of 2-cocycles 6, defined as follows

Ogn(x X y X 2) 1= 0((x, €) X (y, 9)) + O((x +7 y, €) X (2, h)).

REmARK 6.3. A couple of observations are due. Firstly, notice that since X acts trivially on
Y, the two terms corresponding to deleting the first entry of 6, according to the definition of
G-family 2-cocycle cancel each other, so that it is reasonable to arbitrarily choose on element
of G to label all the first entries x, where the obvious choice falls upon the neutral element e
of G. Secondly, there is a parallel between labels assignment in the definition of chain maps
in “labeled cohomology” of Theorem 5.3 in [8], particularly clear from Remark 5.7 in the
same article, and the group element enriching y or z to a pair (y, g) or (z, h), respectively.

Proof of 6.2. Using Remark 6.3, the proof is almost immediate. In fact, the condition
that 6, has to satisfy is (in additive notation)

Org(x Xy X 2) + (T j(x X y X 2) X u X 0)
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= Opm(x XuX0)+ 07y (Trp(x X uX0), Typ(y X u X v) X Typ(z X u X0)).

Using the definition of 6, the G-family 2-cocycle condition becomes equivalent to labeled
cohomology 2-cocycle condition, since terms obtained by deleting x cancel. Now the same
proof as in Remark 5.7 of [8] can be applied, mutatis mutandis, to complete. |

Let now G = SL(2;Z3) and X = Z3 X Z3, with operations {*7},cc defined as follows
[11], x 9y := gx+ (1 — g)y for all x,y € X and g € G, where G acts on X by matrix
multiplication on column vectors, and 1 is the identity of G. A direct computation shows
that these operations define a G-family structure on (X, G) (Proposition 2.3 in [11]). From
this data, Nosaka has constructed [21] a G-family 2-cocycle, that has been employed in [11]
to compute cocycle invariants of certain handlebody knots and distinguish them from their
mirror images. As pointed out above, it is not restrictive to omit the singleton set Y := {y} in
the original construction. Define @ : (X X G)? — 7 by

(x,9) X (y, ) = Ag)det(x -y, (1 = h)~'y),
where A is the abelianization function, defined by A(A) = (a + d)(b — ¢)(1 — bc), for a
matrix A := a b
“\e d

Proposition 6.2 is a compatible system of 2-cocycles.

). Then a is a G-family 2-cocycle and it follows that {a,} defined as in

ExampLE 6.4. Applying Theorem 4.12 to the compatible system of 2-cocycles {6,}g.nec
associated to Nosaka’s G-family 2-cocycle « via Proposition 6.2 one obtains a ribbon cate-
gory. The braiding at level 2 is given explicitly by the maps

Xgh

GHx@yRzW) = a((xe),(z ga((x+ ze), (w,h)
a((y, e), (z, g)a((x 7 z, €), (w, h))
Z2OwWR(x+ (h'=1)z+ 1 -hw) ®
(y+ ' =1z + A - hyw),

while twisting morphisms are given by

0"x®y) = a((xe),(x,g)a((x,e),(y,h))
a((y, e), (x, g)a((y + x, e), (w, h))
(Wx+ A -y ek —=Dx-hy).

6.2. Examples from heap structures. Recall that given a group G, the heap operation
G X G x G — G defined by x X y X z — xy~'z, defines a ternary quandle structure on G.
Linearizing this assignment over a field k produces a ternary quandle object in the category
of vector spaces, where the diagonal map is induced by x — x ® x ® x. This definition in
fact coincides with the quantum heap of the Hopf algebra structure on the group ring k[G],
as it can be seen directly.

ExampLE 6.5. Let Z; be the cyclic group of order 2 and let C[Z;] be the structure de-
fined above, obtained by linearizing the heap operation of Z,. The elements of Z, are
identified with the symbols e,, with x € Z,, generating the two dimensional vector space.
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A direct computation shows that H*(Z,,Z,) = Z, ® Z, with generators corresponding
to the equivalence classes of characteristic functions x0,0,0) and x(,1,1)- Fix the cocycle
0,1) € HX(Z»,7,), i.e. the map ¢(x,y,z) = 1if (x,y,2) = (0,1, 1) and ¢(x, y, z) = 0 other-
wise. Identifying Z, with (—1) € C* one gets a nontrivial cohomology class in H*(Z,, C*),
still denoted by ¢. The corresponding twisting morphisms and braiding morphism are as
follows

Flex®e,) = (“DIIU ey @eyiny
= ¢,®ey,
that is, the twisting morphism is given by transposition, and

C¢(ex ey Re: @ ey) = (_1)¢(x,z,w)+¢(y,z,w) ce;®ey M ez Cyiziy

{ez®ew|2|ex®ey Z=w,

e, ®e,Re ®eyy otherwise,

ExampLE 6.6. Let X be the abelian group Z, with group heap structure, and set A = Z
taken with multiplicative notation, with generator g. Suppose p is a given group character
mapping A in the group of units of k. In [24], Lemma 3.7, it is shown that the 2-cochain
¢; : X* — Z defined by the formula

n—1
¢i = Z[Z/\/(x,j,jﬂ‘)],

x€Z, j=0

where x/(x,..) is the characteristic function at the triple (x, y,z) € X>? is a nontrivial 2-cocycle
for any choice of i = 1,...,n — 1. It is in fact thereby proved that [¢;] # [¢«] in the second
cohomology group, whenever i # k in Z,. The ribbon category corresponding to ¢, for some
choice of n €e N and 0 # i € Z, is determined by braiding and twisting morphisms obtained
as follows. For all ey, e,,e;, e, € Kk[X], the linearization of X over k coinciding with the
group algebra of Z,,, cﬁfz maps simple tensors according to the assignment

cgfz(x QyrzewW) = pg? T Np(gh Y e, @ ey B ey rpy ® ey—z+w

2
= p(g ¢(x’z’w))ez ey ex iy @ ey—ziw

p(gz)ez®ew|2'ex+i®ey+i ifw-z=1,
e.®e,Be ey ifw—z=k#1.

The twisting morphism 9;5" maps simple tensors as
0 (ec®e,) = plg"Mp(gh e, ® ey
= p(g2¢i(x,x,y))ey ® €2y—x

p(ghe, ® eysi ify — x =1,
e, ey ify—x=k#1.

We note that the twisting morphism Hg" is determined, up to scalar multiplication, by the
Takasaki quandle operation x * y = 2y — x associated with the abelian group Z,. This is
in fact a general feature of the twisting morphism of an abelian heap. It is also easy to
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see that for non-abelian heaps one obtains the core of a quandle, instead of the Takasaki
structure. Generalization of the preceding braiding and twisting structure to the case of
linear combinations of ¢;’s is easily obtained from the previous equations.

ExampLE 6.7. Let X = D; be the dihedral group on 6 elements, with presentation (s, r | s>
=7 =1, srs = r!). Once again consider the group heap strucutre on X and linearize it to
obtain a quantum heap on the group ring C[X]. Denote characteristic functions /.., those
cochains with coefficients in Z3 defined by x(r (X", y’,2) = 1if (X', y’,2) = (x,y,2),and 0
otherwise. Define the 2-cochain

lr[/ = Z[/\/(x,l,r) + X(x.r?) +X(x,r2,l)] + Z[X(x,s,sr) + X (x,57,512) +X(x,sr2,s)]-
X X

A direct computation shows that ¢ satisfies the 2-cocycle condition and it is therefore a 2-
cocycle. moreover ¥ is nontrivial [24], Example 5.13 and Proposition 5.14, so that [y] # O.
Mapping Z3 to the 3" roots of unity Gz we obtain y € Z?(Zs, G3), where G5 acts on C[Z3],
and therefore on C[Z3] ® C[Z3], by scalar multiplication. Twisting morphisms are obtained
as

2ni
9(//( X®y) = o3 Wlexy+ylyxy) | y® yx_l Y,

where the scalar e ¢C-)W.x9) is nontrivial if and only if x~'y = r, in which 