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1. Introduction

An n-component oriented tame link ¢=k; U ... U k,, in the oriented 3-space R3 is
called a boundary link if there are mutually disjoint oriented surfaces F}, ..., F,, in R3
such that OF = ¢, OF; = k; for F = F; U...UF,, and each i = 1,...,n. Then F is
called the spanning surface of £.

It is known that boundary links are link-homotopic to a trivial link, [2].

For self #-equivalences (definition, see [11], [12], [13]) of boundary links, the
followings are known:

1. Boundary links are self #-equivalent(I) to a trivial link, [11], [13].

2. Boundary links are self #-equivalent(II) to a trivial link if and only if the Arf
invariant of each component is zero, [2].

In this paper, we consider another self local equivalence, called a self A-equiva-
lence, of boundary links. Namely, for a link ¢, let E3 be a 3-ball such that ¢ NE3
is a tangle illustrated in Fig.1(a). The transformation from Fig.1(a) to 1(b) is called a
A-move, [5].

Fig.1
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Especially if 3 arcs in Fig.1(a) are contained in a component of /, it is called a
self A-move. For two links £ and ¢', if £ can be deformed into ¢' by a finite sequence
of (self) A-moves, ¢ is said to be (self) A-equivalent to ¢'. It is known that self A-
equivalence implies self #-equivalence(I) of links, [1], [6] and [12]. But the converse
is not true, [7].

The aim of this paper is to give some partial answers to the follownig Conjecture.

Conjecture. Let { be an n-component boundary link. Then £ is self A-equivalent
to the trivial link.

A link ¢=k; U ... Uk, is called a boundary link in the strong sense if there are
mutually disjoint singular disks D, ..., D, in R3 such that 0D = ¢,0D; = k; for
D=DyU..UD, and each i =1,...,n.

If ¢ is a boundary link in the strong sense, there are disks Dy, ..., D, satisfying
the above. By the orientation preserving cut along each singularity of D;, we obtain
a spanning surface of /. Namely ¢ is the boundary link.(But the converse is not true,
namely there are links which are boundary links but not boundary links in the strong
sense by Proposition 4.3.)

Theorem 4.2. If £ is a boundary link in the strong sense, £ is self A-equivalent to
the trivial link.

A link ¢ is said to be p-trivial if there is a p-component sublink L of ¢ such that
L is the trivial link.

Theorem 4.5. Let £ be an n-component boundary link. If £ is (n — 1)-trivial, £ is
self A-equivalent to the trivial link.

Lastly, we shall prove the Conjecture is true for n = 2 by using Theorem 4.5.

Theorem 4.6. If { = ky U ky is a boundary link, £ is self A-equivalent to the
trivial link.

2. Ribbon A-cobordism of links.

To prove Theorems, we introduce the A-cobordism of links.

For two n-component links ¢, L in R3[a], R3[b] respectively for a < b, £ is
said to be A-cobordant to L if there are mutually disjoint annuli Ay, ..., A, in R3[a,b]
satisfying the followings for 4 = A; U ... U A,, where R"[a,b] = {(z0,...,Zn) €
R"*la < z, < b} and R™[c] = {(z0,...,Zn) € R"*!|z,, = ¢} : AN R3[a] = ¢ and
AN R3[b] = L, the reflect inverse of L, and A; N R3[a] # ¢, A; N R3[b] # ¢ for each
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¢t =1,...,n and A are locally flat except finite points contained in the interior of A,
which are the singularity of A, denoted by S(.A), such that, for each point P of S(A),
(ON(P : R%[a,b]),ON(P : A)) is the Borromean rings, Fig.2, where N(z : X) means
the regular neighborhood of z in X. The annuli A satisfying the above conditions are
called A-annuli between ¢ and L. Especially, for A-annuli A between ¢ (C R3[a]) and
L(C R3[b)) for a < b, if A do not have minimal points, [3], £ is said to be ribbon
A-cobordant to L. Moreover if S(A) = ¢, £ is said to be ribbon cobordant to L.
Therefore ¢ is a ribbon link, [15], if and only if £ is ribbon cobordant to the trivial
link.
The following is proved in [15].

OV

Fig.2

Lemma 2.1. Any ribbon link is self A-equivalent to the trivial link.

By using Lemma 2.1 and the similar proof to that of Lemma 1.19. in [10], we
easily obtain Lemma 2.2 which is an extention of Lemma 2.1.

Lemma 2.2. Suppose that £ is a link ribbon A-cobordant to the trivial link. Then
¢ is self A-equivalent to the trivial link.

3. Local moves realizable by a finite sequence of (self) A-moves

In this section, we introduce some (self) local moves realizable by a finite sequence
of (self) A-moves, which are used to prove Theorems.
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(a) (b)

Fig.3
The following local moves of links are called a IT -move(Fig.3(a)) and a parallel
IT -move(Fig.3(b)) respectively.

Lemma 3.1. A Il-move and a parallel TI-move can be realized by a finite se-
quence of A-moves.

Proof. A II-move can be realized by a A-move by the following way, Fig.4

r
|

s

Fig.4

As a parallel II-move can be realized by a finite sequence of II-moves, it can be
done by a finite sequence of A-moves. O

As a parallel A-move illustrated in Fig.5 can be realized by a parallel II-move, we
obtain Lemma 3.2 by Lemma 3.1.

Lemma 3.2. A parallel A-move can be realized by a finite séquence of A-moves.
Next we consider the following move, called a C,,,-move , Fig.6.
Lemma 3.3. A C,,-move can be realized by a finite sequence of A-moves.

Proof. A Cp,-move can be realized by a finite sequence of II-moves, Fig.7. Hence
we obtain Lemma 3.3 by Lemma 3.1. O
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Lemma 3.4. A parallel C;-move illustrated in Fig.8 can be realized by a finite

sequence of A-moves.

Proof. A parallel C;j-move can be realized by 4-time Ch-moves illustrated in
Fig.8. Hence we obtain Lemma 3.4 by Lemma 3.2. O

— N
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4. Proof of Theorems.

Now let us prove Theorems.
To prove Theorem 4.2, we define a link, called a double link, which is a kind of

boudary link in the strong sence and prove Lemma 4.1.
Let V=V U...UV, be a disjoint union of n solid tori Vi, ...,V,, in R3 and k; a
doubled knot in V;, [16]. Then ¢ =k, U ... U k,, is called a doubled link (in V).

Lemma 4.1. Any doubled link is self A-equivalent to the trivial link.

Proof. Let ¢ =k; U ... Uk, be a doubled link in V=V7,U...U, V,,. Since the A-
move is a kind of unknotting operations of knots, [5], we obtain a doubled link ¢; =
KU —Fk)inV, = VUl —-W), ki C VY, such that V{ is a trivial solid torus

and ¢; is self A-equivalent to £ by Lemma 3.2. Hence, by choosing ¢; instead of ¢
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if necessary, we can assume that £ is a doubled link in V = V; U ... UV, such that
Vj is trivial in R3. Moreover, if k; is m-full twisted in V;, we apply m-time self A-
moves to k; in V; illustrated in Fig.9 and obtain the trivial knot, denoted by k; again,
in V. Hence there is a disk D; with D; = k;, where D, is obtained by connecting
2 parallel disk, each of which is parallel to the disk C; with dC;=(the longitude of
0V4), with a 1-full twisted band in V;. Deform D; into R?[1] by an ambient isotopy
o1 of R® and denote p1(D1),p1(¢), p1(ki), v1(V;i) and ¢1(c;) by Dy, £, k;, V; and c;
respectively again, where c¢; means the core of V;.

o —
TO0C= IL(g I = I
Fig.9

Suppose that D, N'V; # ¢ for some ¢ > 2. As the intersection number of D,
and c;, denoted by I(Dy,c;), is equal to Link(ki,c;)(= 0), there is the closure of
connected component Bf" of V; — Dy such that B? N D; is contained is the positive, or
negative side of D;, denoted by Dy, D] respectively, Fig.10(a).

Suppose that Dy Nky # ¢. Then D; N Vo # ¢ and there is B3 satisfying
the above, Fig.10(a). By deforming Bj slightly with D; fixed, we may assume that
B3 C R?[1,00)(or R?(—00,1]). Now let B C R%[1,00). Moreover we can deform
B3 unknotted in R?[1,00) by Lemma 3.2.

Let E? be a non-singular disk in R%[1,c0) with E2NB§ = 0E?N0B3(={an arc})
and E2N D, = OE? N 8D;(={an arc}). If ke N B3 does not contain the Hopf tangle,
deform it into B% illustrated in Fig.10(a), (b).
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If E>Nk; # ¢ for some i > 3, deform E? N k; into R%(—oo, 1] along E? by
an ambient isotopy of R2, Fig.10(a), (b). After this deformation, if E2 N ks # ¢, we
apply a finite sequence of self C;-move to ky, Fig.10(b), (c), and obtain a knot k)
from ky such that E2 Nk, = ¢. By deforming B3 along E? into R?(—o0,1], we
obtain a doubled link ¢' = k; Uk U ... U k], from ¢ such that ¢’ is a doubled link self
A-equivalent to £ by Lemma 3.3 and #(k}, N D;)= #(k2 N D7) — 4, where #(X) means
the number of points of X.

By performing the above discussion successively, we obtain a doubled link L =
k1 U Ks... U K, self A-equivalent to £ such that Ko N Dy = ¢

Next we apply the above discussion to K,. If K, is not trivial, we can obtain
a doubled link L' = K5 U (L — K») such that K} is trivial and K5 N D; = ¢ by a
finite sequence of self A-moves. Hence we write L' and K by L and K respectively
again. There is a disk D, with D5 = K, by the same construction with that of D,
such that D1 N D, = ¢ and an ambient isotopy @, of R3 such that po(D;) = D,
and ¢2(D2) C R?[2]. Let us denote 2(Ds) and 2(V;) for j > 3 by Dy and V;
respectively.

Suppose that Dy N V3 # ¢. As I(Ds,c3) = 0, there is the closure of a connected
component Bg of V3 — D1 — Dy such that Bg N D, is contained in D; or D, for
p = 1 or 2 by the construction of D, and D,. Hence we can apply the same discussion,
which is used to remove B3 N Dy, to B3 N D,. By doing the above successively, we
obtain a doubled link £ = k; U K3 U k3 U ... U Ky, self A-equivalent to L such that x3
is trivial and k3 N (D1 U D3) = ¢, where 0D1 = k1, 0Ds = Ko.

Performing the above in turn, we obtain the trivial link self A-equivalent to £. [

Let us prove Theorem 4.2 by using Lemmas 2.2 and 4.1.

Theorem 4.2. If ¢ is a boundary link in the strong sense, { is self A-equivalent
to the trivial link.

Proof. Suppose that ¢=k; U ... U k,, is a boundary link in the strong sense. Then
there are mutually disjoint disks D,..., D, with 0D = ¢,0D; = k;, where D =
D, U...UD,.

Any singularity of D, denoted by S(D), can be deformed into simple (not self
intersection) clasp singularity, Fig.11, which does not intersect with each other by
deforming ¢ on D suitably, [9]. Hence we can assume that S(D) consists of mu-
tually disjoint simple arcs of clasp type. For an arc o of S(D;), the pre-images
a*,o/" of « are said to be next on the pre-image Dy of D; if there is an arc d of
0D} — o* — o/™ which does not contain a point of the pre-image of S(D;), Fig.12.
Suppose that a*,o'" are next on D} and d(C &D}) an arc as above and let §* =
ON(a*Ua/* Ud: D) — 0D}, Fig.12. Then 6*N (the pre-image of S(D;)) = ¢ by
the choice of a* and o/*. Performing the fission, [3], on D; along J, we obtain two
disks D;p,D;; on D; such that 8D;o is a doubled knot and S(D;;) = S(D;) — «,
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Fig.12(b).
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Next suppose that o*, o * are not next on Dy, namely there are 8*,3 *. the pre-
image (3 of S(D;), such that each of 8D} — o* — /" contains a point of 3* or one
of 3'*. In this case, exchange o and 3 along a subarc of &D; from Fig.13(a) to 13(b).
This deformation can be accomplished by a finite sequence of self A-moves. We write
the disk in Fig.13(b) by D;. If the pre-images &*,a’" of & of S(D;), Fig.13(b), are
next on Ij;-*, we perform the above fission. If they are not next on D~;‘, we perform the
deformations from Fig.13(a) to 13(b) again.
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By doing the above discussions for each D; successively, we obtain a doubled link
L self A-equivalent to the trivial link by Lemma 4.1. Since L is obtained by a finite
sequence of fissions of £, £ is ribbon A-cobordant to the trivial link &. Therefore ¢ is
self A-equivalent to & by Lemma 2.2. ]

By the following, there are links which are boundary links but not boundary links
in the strong sense.

Proposition 4.3. Let A be non-twisted annulus in R3. If S(A) = ¢, £(= 0A) is
a boundary link. But if ¢ is not the trivial link, ¢ is not the boundary link in the strong
sense.

Proof. If A is non-twisted and S(A) = ¢, i.e., A is non-singular, it is easily seen
that £ = k; U ko is a boundary link.

Suppose that £ is a boundary link in the strong sense. Namely there are mutually
disjoint disks D;, Dy such that 8(Dy U D2) = ¢, D; = k;. Since S(A) = ¢ and
DiND; = ¢, AUD; is a singular disk with 9(AUD;) = ko such that koNS(AUD,) =
¢. Hence ks is the trivial knot,[4], [8], and so £ is the trivial link. Therefore, if ¢ is
not the trivial link, £ is not the boundary link in the strong sense. 0

Theorem 4.5. Let ¢ be an n-component boundary link. If £ is (n — 1)-trivial, £
is self A-equivalent to the trivial link.

Proof. If £ = kyU...Uk, is (n—1)-trivial, there is a knot, say k;, such that £—k;
is the trivial link. Hence there is an ambient isotopy ¢ of R® such that ¢(k;) C R?[j]
for j =2,...,n.

As ¢ is a boudary link, ¢(¢) is also a boudary link. We denote ¢(£),p(k;) by
¢,k; again respectively and so there is a spanning surface F = Fj U ...F,, of £ with
OF; = k;,i=1,...,n. Let F; consist of a disk D; and a disjoint union of 2p bands #
with D;N% = D1 NI =(4p arcs) for p = g(Fy). Since k; is trivial for j = 2, ..., n,
we may assume that F} is obtained by attaching tubes to a disk Dj(C R?[j]) for
dD} = k;. Let B} = N(Dj : R®). Then Bj,..., B} are mutually disjoint 3-balls in
R3 such that (€ — k1) N B} = k;. By the construction of F};, we may assume that the
connected component of F; N B;’ whose boundary contains k; is a perforated disk.

Since F1 N (¢ — K1) = ¢, we may assume that F; N B = 2N B} by deforming
F suitably.

Let us denote (F — Fy) N &B? by I';. Then I'; consists of disjoint loops. If I}
contains a loop 7y such that there is a disk o on t?B;.5 with 0o = 79 and c N & = ¢,
we can eliminate 7, by attaching a 2-handle along to F — F;. Hence we may assume
that, for each vy of I, each disk on 63? bounded by ~ intersects with &, Fig.14(a).
Attach 2-handles to F — F} along the disks on BB? bounded by loops of I';, from an
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innermost loop of I’ in turn, illustrated in Fig.14(b). Then we obtain a non-singular
disk in B? and spheres from F — F; which are mutually disjoint.
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(a) (b) (e}
Fig.14

Now attach 1-handles 7 along the bands % such that, for each tube T of 7,T N
dB? is a loop cr and there is a disk op of 8B} — cr with o7 N & = {an arc},
Fig.14(c). As a result, we obtain a spanning surface Fy = F} U Fyo U ... U Fy9 from
F = F1 U ...UF, such that each Fjo consists of a perforated disk E; in B? and tubes
Ji(= FjonJ).

Let D; be the disk in B? with 0D; = k; and D; > E;j and D = D, U ...U D,
and T an outermost tube of J, namely T ND = §T N D = {two loops, say & and
&' }. Suppose that 8T C D;. Let a be an arc on T which connects a point of &
and one of §'. If « is knotted in R® — D, we may deform it unknotted by a finite
sequence of self A-moves, for the A-move is an unknotting operation of knots, [5],
and obtain an unknotted tube 7" from 7" and a boundary link ¢ which is (n — 1)-trivial
and self A-equivalent to ¢ by Lemma 3.2. Therefore, by choosing 7', ¢ instead of T,
¢ respectively, we may assume that T is unknotted. (If there is a tube T' of J which
runs along the inside of T, we deform 7’ and obtain a tube 7" from 7" such that 7"
runs along the inside of T.)

Since T is an outermost and unknotted tube of 7, we may take a disk ¢ in R3
such that cNT = and cND =0 N Ey ={an arc}. f c N (J — T) = ¢, we deform
T along o and eliminate T, Fig.15. Next assume that 0 N (J — T') # ¢. Then there
is a tube Ty of J — T such that 0 N Ty # ¢. Then there is a band B of £ such that
ocNB # ¢. Perform the fission, [3], of k1 along cUT illustrated in Fig.16(b), we obtain
a link ¢; U £; from £ such that ¢; is a boundary link and (n — 1)-trivial and £, is a
2-component trivial link, Fig.16(b). Next deform £, towards to the foot of a band By
which runs through the inside of 7', Fig.16(b),(c). As a result, we obtain a 2-component
link £, from £;. By doing the above fissions and deformations successively, we obtain
alink ¢, ULy U...UL, from ¢ such that ¢, is a boundary link which is (n — 1)-trivial
with N4, = ¢ and £1U...UL, is a 2r-component trivial link. Therefore, by deforming
T along o, we can eliminate 7' and so decrease #S(¢, N D)(= #S(¢ N D)).

By performing the above discussion from an outermost tube of J in turn, we
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obtain a link L = LUk U...Uk, from ¢ such that L — L(= £ — k;) is the trivial link
split from £ and £ is obtained by a finite sequence of fissions of ki, Fig.17.

AR, =

Fig.15
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Since £ is A-equivalent (not self) to the trivial link by [5], £ is ribbon A-cobordant
to the trivial link. Hence ¢ is self A-equivalent to the trivial link by Lemma 2.2. [

Lastly, let us prove Theorem 4.6.

Theorem 4.6. If ¢ = ky U ko is a boundary link, ¢ is self A-equivalent to the
trivial link.
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To prove it, it is enough to do the following by Theorem 4.5.

Lemma 4.7. For any 2-component boundary link £ = ki Uks, £ is self A-equiva-
lent to a boundary link L = K, U K3 such that K is the trivial knot.

To prove Lemma 4.7, we prepare some Lemmas.

For an n-component boundary link ¢, a spanning surface 7 = F; U...U F,, of
¢ is said to be normal if the bands of F; are situated as illustrated in Fig.18 for each
i=1,..,n.

12pi
Fig.18

Since a A-move is a kind of unknotting operation of knots, [5], we obtain Lemma
4.8 by applying a finite sequence of self A-moves to each band B;; of a normal surface
F of £ and by using Lemma 3.2.

Lemma 4.8. For a boundary link ¢ and a normal surface F of {, there are a
boundary link £y self A-equivalent to £ and a normal surface Fo of £y such that each
band of Fy is unknotted.

Since £y is a boundary link self A-equivalent to /, it is enough to prove Lemms
4.7 for €.

Lemma 4.9. Let ¢y, Fo be those of Lemma 4.8. Then there are a boundary link
¢y self A-equivalent to £y and a normal surface Fy of £1 such that each band of F, is
unknotted and non-twisted in R3.

Proof. Let Fy = F; U F» be a normal surface of ¢, satisfying Lemma 4.8 and
B(= By;), B'(= Bip,+;) a pair of bands of F; associated to a genus, Fig.19.

Suppose that B is twisted, Fig.19(a). Now we deform one full twist of B from
Fig.19(a) to 19(b) and transform it along 9(BU B’) from Fig.19(b) to 19(c),(d). During
these transformations, a circle ¢ can jump the other twists of B U B’ and subarcs of
0Bj; by a finite sequence of self A-moves, Fig.3(a). We can eliminate the twist in
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Fig.19(d) by a finite sequence of self A-moves from Fig.19(d) to 19(e),(f). The link in
Fig.19(f) is ambient isotopic to that of Fig.19(h) whose spanning surface ) = F] U F}

is normal. By these deformations, we can eliminate a full twist of B without increasing
the number of full twists of the other bands of F;). Moreover d.F; is self A-equivalent

to 4p.
&vwx 2 o S,
L Ei = i

g.\: \JL/ \\;/,
—S‘—A>i‘" 3_{55(/‘ 7 7 \\7
I 19 - 24
NG\ SN
e\ T\ % ~
| _r< M\_@ i f}“' U\W

Fig.19
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By repeating these deformations successively, we obtain a link ¢; and a normal
surface F; of ¢; satisfying Lemma 4.9. O

Let E3 be a 3-ball and £ = k1 Ukq a 2-component link illustrated in Fig.20, where
K; is the trivial knot and k; N OE3(= ;) is an arc for i = 1,2.

Lemma 4.10. Let E3 L and o; be those of the above. Suppose that L = K1UK>
be a 2-component link such that each K; is the trivial knot with Link(K1, K3) = q and
K; NOFE3 = a;. Then L can be deformed into L by a finite sequence of A-moves and
an ambient isotopy of E3 with a; U az fixed.

Proof. Since each K; is trivial, there is a non-singular disk D; in E2 with 8D; =
K; such that S(D; N D,) consists of finite simple clasp singularities. The alternation of
upper and under passes and the elimination of twists of bands, the change of order of
clasps of S(D;ND3) on Dy,D; can be realized by a finite sequenece of A-moves (not
self A-moves) illustrated in Fig.21(a),(b) and (c) respectively. Since these A-moves can



ON SELF A-EQUIVALENCE OF BOUNDARY LINKS 51

- Fig.20

be done in the interior of E3,a; U s is fixed. Hence we obtain the link £ illustrated
in Fig.20 from L by a finite sequence of A-moves and ambient isotopy of E3 with
ay Uas fixed. D

' twice Cy-moves L - - L '
fop mese i
|

(a)

L Lo Loy | c1 L) | '
r/f—'P"r-Q\—/|7“—>r—Q’|W erl)

(b)

l ' | L1
A ﬂ) C, -mov

(c)

Fig.21

Let ¢; and Fy(= Fi U F3) be those of Lemma 4.9. Two bands B;;,Bip,+; as-
sociated to a genus of F; are said to be well-situated if B;; and B;p,; are situated
illustrated in Fig.22. Moreover F; is said to be well-situated if each pair B;;,B;p,+;
of F, is well-situated for ¢ = 1,2 and j = 1, ..., p;(= g(F3)).
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Fig.22

The following is easily obtained by Lemma 3.4 and 4.10.

Lemma 4.11. Let {1 and F; be those of Lemma 4.9. Then there are a boundary
link £9 self A-equivalent to ¢, and a normal surface F» of €2 which is well-situated.

Proof of Lemma 4.7. We write {2,F; satisfying Lemma 4.11 by ¢, F(= F; U F5)
again respectively and let F; consist of a disk D; and 2p; bands B;; of %; illustrated
in Fig.18.

Suppose that the bands Bq1,B1p,+1 of F1(C F) have ¢ parallel full twists, Fig.23
(a). Deform Bip, 41 along By; from Fig.23(a) to 23(b) and from 23(b) to 23(c) by an
ambient isotopy ¢ of R? such that Bi1 C Dy, where Eij = ¢(Bj). Let Dy; be a disk
of Dy — By, illustrated in Fig.23(c). If there is a band By; such that By; N Dy; # &,
we deform Bgi on Dy, U Blp1+1 from Fig.23(c) to 23(d) and obtain E"zi from Bzi
satisfying that B'y;N Dy = ¢. By repeating these deformations, we obtain a surface
F' = F{ UF} from F = F; UF; such that F, N D1y = ¢. Then we can apply Lemma
3.3 to OF] in Fig.23(d) and obtain the link ¢’ in Fig.23(e) by a finite sequence of self
A-moves. After this, we deform B;; N B o; into D;; along 311 from Fig.23(e) to
23(f) and obtain a link ¢ which is ambient isotopic to ¢’ and so self A-equivalent to
¢. Moreover we easily see that ¢ is the boundary link and ambient isotopic to the
link ¢(V) illustrated in Fig.23(g). By applying the above deformations to B, Bip, +1
successively, we obtain the bands Bll),Bfg) +1 and the link ¢(9) illustrated in Fig.23(h)
such that £(9) is the boudary link self A-equivalent to £.

Now we denote the bands obtained by these deformations of %; by Q(q). If the
other band B{? (s # 1,p; + 1) of B9 does not link with B{?,B{? U Blp +1 can be
removed by an ambient isotopy of R3, Fig.24(a),(b).
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Next suppose that there is a band Bfg)(s # 1,p1 + 1) which links with Bi‘{).

If there is a band Bg) of 2 which links with B?, deform Bé‘;) along B{;’,)l 41

illustrated in Fig.25(a),(b).(If there is not a band Bé;’.) of %éq) satisfying the above,
it is not necessary to do the above deformation, Fig.25(a),(b).) After this deforma-
tion, we perform a finite sequence of self A-moves, Lemma 3.3, to ‘@g‘” and obtain

the bands B§‘{)/,B§Z)ll+1(c 93{‘”') from B\ B9 (e 29) such that Bg{H is non-

1py

twisted and does not link with the other bands of %%, Fig.25(b),(c) and deform B!’
along ng)ll 41 from Fig.25(c) to 25(d) and apply the deformation illustrated in Fig.24

to Big)ll ., instead of B{Y.
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(q)!
. ~ sz
l BIpl +1
(a) (b)
Fig.24

By doing the above discussions for each band of %, we obtain a link L = K; U
K such that L is self A-equivalent to £ and K] is the trivial knot. Moreover we easily
see that L is the boundary link by the above deformatinos.

Now the proof of Lemma 4.7 is complete. ]
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