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1. Introduction

An n-component oriented tame link ί-k\ U ... U kn in the oriented 3-space R3 is

called a boundary link if there are mutually disjoint oriented surfaces FI, ..., Fn in R3

such that dT = t, dFi = ki for T = FI U ... U Fn and each i = 1,..., n. Then T is

called the spanning surface of ί.

It is known that boundary links are link-homotopic to a trivial link, [2].

For self #-equivalences (definition, see [11], [12], [13]) of boundary links, the

followings are known:

1. Boundary links are self #-equivalent(I) to a trivial link, [11], [13].

2. Boundary links are self #-equivalent(II) to a trivial link if and only if the Arf

invariant of each component is zero, [2].

In this paper, we consider another self local equivalence, called a self Δ-equiva-

lence, of boundary links. Namely, for a link £, let E3 be a 3-ball such that £ Γ\E3

is a tangle illustrated in Fig.l(a). The transformation from Fig.l(a) to l(b) is called a

Δ-move, [5].

Fig.l
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Especially if 3 arcs in Fig.l(a) are contained in a component of £, it is called a
self Δ-move. For two links £ and £', if I can be deformed into ί! by a finite sequence
of (self) Δ-moves, I is said to be (self) Δ-equivalent to £''. It is known that self Δ-
equivalence implies self #-equivalence(I) of links, [1], [6] and [12]. But the converse
is not true, [7].

The aim of this paper is to give some partial answers to the follownig Conjecture.

Conjecture. Let £ be an n-component boundary link. Then £ is self Δ-equivalent
to the trivial link.

A link £=kι U ... U kn is called a boundary link in the strong sense if there are
mutually disjoint singular disks Dι,...,Dn in R3 such that dV = (,,dDι = ki for
V = DI U ... U Dn and each i = 1,..., n.

If I is a boundary link in the strong sense, there are disks D\, ...,Dn satisfying
the above. By the orientation preserving cut along each singularity of Ώ^ we obtain
a spanning surface of ί. Namely I is the boundary link. (But the converse is not true,
namely there are links which are boundary links but not boundary links in the strong
sense by Proposition 4.3.)

Theorem 4.2. If £ is a boundary link in the strong sense, £ is self Δ-equivalent to
the trivial link.

A link £ is said to be p-trivial if there is a p-component sublink L of £ such that

L is the trivial link.

Theorem 4.5. Let £ be an n-component boundary link. If i is (n — I)-trivial, £ is

self Δ-equivalent to the trivial link.

Lastly, we shall prove the Conjecture is true for n = 2 by using Theorem 4.5.

Theorem 4.6. If £ = k\ U k<2 is a boundary link, £ is self Δ-equivalent to the

trivial link.

2. Ribbon Δ-cobordism of links.

To prove Theorems, we introduce the Δ-cobordism of links.
For two n-component links £9 L in R3[a], R3[b] respectively for a < b , £ is

said to be Δ-cobordant to L if there are mutually disjoint annuli A\,..., An in Λ3[α, b]
satisfying the followings for A = AI U ... U An, where Rn[a,b] = {(XQ,...,XH) £

βn+1|α < xn < b} and Rn[c] = {(xQ,...,xn) <E Rn+l\xn = c} : ΛnR3[a] = £ and
A Π R3[b] = L, the reflect inverse of L, and A* Π R3[a] ± φ, At Π R3[b] φ φ for each
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i = 1, ...,n and A are locally flat except finite points contained in the interior of A,
which are the singularity of A, denoted by S(A), such that, for each point P of S(A),
(dN(P : R3[a,b]),dN(P : A)) is the Borromean rings, Fig.2, where N(x : X) means
the regular neighborhood of x in X. The annuli A satisfying the above conditions are
called Δ-annuli between i and L. Especially, for Δ-annuli A between £ (C #3[α]) and
L(c R3[b]) for α < 6, if A do not have minimal points, [3], I is said to be ribbon
Δ-cobordant to L. Moreover if S(A) = φ, I is said to be ribbon cobordant to L.
Therefore £ is a ribbon link, [15], if and only if i is ribbon cobordant to the trivial
link.

The following is proved in [15].

Fig.2

Lemma 2.1. Any ribbon link is self ^.-equivalent to the trivial link.

By using Lemma 2.1 and the similar proof to that of Lemma 1.19. in [10], we
easily obtain Lemma 2.2 which is an extention of Lemma 2.1.

Lemma 2.2. Suppose that t is a link ribbon Δ-cobordant to the trivial link. Then

ί is self ^.-equivalent to the trivial link.

3. Local moves realizable by a finite sequence of (self) Δ-moves

In this section, we introduce some (self) local moves realizable by a finite sequence

of (self) Δ-moves, which are used to prove Theorems.
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Fig.3

The following local moves of links are called a Π -move(Fig.3(a)) and a parallel
Π -move(Fig.3(b)) respectively.

Lemma 3.1. A H-move and a parallel H-move can be realized by a finite se-
quence of Δ-moves.

Proof. A Π-move can be realized by a Δ-move by the following way, Fig.4

_L R-

Fig.4

As a parallel Π-move can be realized by a finite sequence of Π-moves, it can be
done by a finite sequence of Δ-moves. Π

As a parallel Δ-move illustrated in Fig.5 can be realized by a parallel Π-move, we

obtain Lemma 3.2 by Lemma 3.1.

Lemma 3.2. A parallel Δ-move can be realized by a finite sequence of Δ-moves.

Next we consider the following move, called a <7m-move , Fig.6.

Lemma 3.3. A Cm-move can be realized by a finite sequence of Δ-moves.

Proof. A Cm-move can be realized by a finite sequence of Π-moves, Fig.7. Hence
we obtain Lemma 3.3 by Lemma 3.1. Π
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Lemma 3.4. A parallel C\-move illustrated in Fig.8 can be realized by a finite

sequence of Δ-moves.

Proof. A parallel CΊ-move can be realized by 4-time C<ι -moves illustrated in

Fig.8. Hence we obtain Lemma 3.4 by Lemma 3.2. Π

a parallel GI -move

Δ -.

I I
I I

II II

ctt
I I
I i i

Fig.8

4. Proof of Theorems.

Now let us prove Theorems.
To prove Theorem 4.2, we define a link, called a double link, which is a kind of

boudary link in the strong sence and prove Lemma 4.1.

Let V = Vι U ... U Vn be a disjoint union of n solid tori VΊ,..., Vn in R3 and kι a

doubled knot in Vί, [16]. Then t =kι U ... U kn is called a doubled link (in V).

Lemma 4.1. Any doubled link is self /^-equivalent to the trivial link.

Proof. Let ί =kλ U ... U kn be a doubled link in V=Vi, U...U, Vn. Since the Δ-

move is a kind of unknotting operations of knots, [5], we obtain a doubled link i\ =

k( U (ί - fei) in Vi = V? U (V - Vi), fci C V?, such that V? is a trivial solid torus
and tι is self Δ-equivalent to t by Lemma 3.2. Hence, by choosing t\ instead of t
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if necessary, we can assume that ί is a doubled link in V = V\ U ... U Vn such that

V\ is trivial in R3. Moreover, if k\ is ra-full twisted in Vί, we apply m-time self Δ-
moves to k\ in Vί illustrated in Fig.9 and obtain the trivial knot, denoted by kι again,

in Vί. Hence there is a disk DI with dD\ = k\9 where DI is obtained by connecting
2 parallel disk, each of which is parallel to the disk C\ with #CΊ=(the longitude of
dVi), with a 1-full twisted band in Vi. Deform DI into R2[l] by an ambient isotopy

ψι of R3 and denote φι(Dι),φι(f),φι(ki),φι(Vϊ) and φ\(ci) by Όλ,ί,ki,Vi and Q
respectively again, where c» means the core of V*.

IJDOO 3

Fig.9

Suppose that D\ Π VJ ^ φ for some z > 2. As the intersection number of DI
and Q, denoted by 7(Z>ι,Ci), is equal to Lίnk(kι,Ci)(= 0), there is the closure of
connected component Bf of V ΐ — DI such that Bf Π DI is contained is the positive, or

negative side of DI, denoted by D^,Df respectively, Fig.lO(a).

Suppose that DI Π A;2 / φ. Then DI Π V2 / φ and there is B| satisfying
the above, Fig.lO(a). By deforming B\ slightly with DI fixed, we may assume that

B\ C Λ2[l,oo)(or β2(-oo,l]). Now let B\ C JΪ2[l,oo). Moreover we can deform
B3 unknotted in Λ2[l, oo) by Lemma 3.2.

Let E2 be a non-singular disk in Λ2[l, oo) with E2ΠB% = dE2Γ\dB$(={an arc})

and E2 Π D! = dE2 Π 9Dι(={an arc}). If fc2 Π B| does not contain the Hopf tangle,

deform it into B3 illustrated in Fig.lO(a), (b).

Fig. 10
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If E2 Π ki φ φ for some i > 3, deform E2 ΓΊ h into Λ2(-oo, 1] along E2 by

an ambient isotopy of β3, Fig.lO(a), (b). After this deformation, if E2 Π k2 7^ 0, we

apply a finite sequence of self CΊ-move to k2, Fig.lO(b), (c), and obtain a knot k'2
from fc2 such that E2 Π &2 = </>• By deforming £f along E2 into R2(-oo, 1], we

obtain a doubled link f = kι U /c2 U ... U k'n from £ such that t' is a doubled link self

Δ-equivalent to ί by Lemma 3.3 and #(/cί> Π DI)= #(k2 Π £>ι) - 4, where #(X) means

the number of points of X.

By performing the above discussion successively, we obtain a doubled link L =

kι\JK2...\JKn self Δ-equivalent to ί such that K2ΠDι=φ

Next we apply the above discussion to K2. If K2 is not trivial, we can obtain

a doubled link Lf = K2 U (L - K2) such that K2 is trivial and K2 Π DI = φ by a

finite sequence of self Δ-moves. Hence we write L' and K2by L and K2 respectively

again. There is a disk D2 with dD2 — K2 by the same construction with that of DI

such that DI Π D2 = φ and an ambient isotopy φ2 of #3 such that ψ2(Dι) — DI

and ψ2(D2) C R2[2]. Let us denote φ2(D2) and ^(V?) for j > 3 by D2 and V,

respectively.

Suppose that D2 Π Va ^ φ. As /(D2, c3) = 0, there is the closure of a connected

component #| of V% — D\ — D2 such that £?f Π Dp is contained in D+ or L>~ for

p — 1 or 2 by the construction of DI and D2. Hence we can apply the same discussion,

which is used to remove B\ Π DI, to B^ Π Dp. By doing the above successively, we

obtain a doubled link C, — k\ U K2 U ̂ 3 U ... U κn self Δ-equivalent to L such that /ί3

is trivial and ̂ 3 Π (Dι U D2) = φ, where 9Dι = fci, dD2 = K2.

Performing the above in turn, we obtain the trivial link self Δ-equivalent to L Π

Let us prove Theorem 4.2 by using Lemmas 2.2 and 4.1.

Theorem 4.2. If t is a boundary link in the strong sense, t is self ^-equivalent

to the trivial link.

Proof. Suppose that l=kι U ... U kn is a boundary link in the strong sense. Then

there are mutually disjoint disks Ώ\,...,Dn with dV — ί,dDi = ki, where Ί) —

£>ιU.. .UL> n .

Any singularity of T>, denoted by «S(D), can be deformed into simple (not self

intersection) clasp singularity, Fig. 11, which does not intersect with each other by

deforming ί on Ί) suitably, [9]. Hence we can assume that S(D) consists of mu-

tually disjoint simple arcs of clasp type. For an arc a of <S(A), the pre-images

α*,α'* of a are said to be next on the pre-image D* of Di if there is an arc d of

dD* — a* - af* which does not contain a point of the pre-image of <S(A), Fig. 12.

Suppose that α*,α/* are next on £>* and d(c dD*) an arc as above and let J* =

dN(a* U α7* U d : £>*) - <9£>*, Fig.12. Then ί*Π (the pre-image of <S(A)) = Φ by

the choice of α* and α/*. Performing the fission, [3], on Di along 5, we obtain two

disks Dio.Dn on A such that <9A0 is a doubled knot and <S(Aι) = <S(A) — «>
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Fig. 11

ot1 d *'*

fission

Fig. 12

Next suppose that α*, α'* are not next on D*, namely there are /?*,/?'*, the pre-
image β of S(Dι), such that each of dD* — a* — α'* contains a point of β* or one

of /?'*. In this case, exchange a and β along a subarc of dDi from Fig.l3(a) to 13(b).
This deformation can be accomplished by a finite sequence of self Δ-moves. We write

the disk in Fig.l3(b) by DI. If the pre-images a*,a' of a of <S(A), Fig.l3(b), are
next on D*9 we perform the above fission. If they are not next on D*, we perform the

deformations from Fig.l3(a) to 13(b) again.

Fig. 13
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By doing the above discussions for each DI successively, we obtain a doubled link
L self Δ-equivalent to the trivial link by Lemma 4.1. Since L is obtained by a finite
sequence of fissions of £, £ is ribbon Δ-cobordant to the trivial link G. Therefore ί is
self Δ-equivalent to & by Lemma 2.2. Q

By the following, there are links which are boundary links but not boundary links
in the strong sense.

Proposition 4.3. Let A be non-twisted annulus in R3. IfS(A) = φ, l(= dA) is
a boundary link. But if t is not the trivial link, t is not the boundary link in the strong
sense.

Proof. If A is non-twisted and S(A) = φ, i.e., A is non-singular, it is easily seen
that ί = kι U k<2 is a boundary link.

Suppose that £ is a boundary link in the strong sense. Namely there are mutually

disjoint disks Dι,D2 such that d(Dι U Z?2) = t, #A = fc». Since S(A) = φ and

DιΓ\D<2 = φ, A\JDι is a singular disk with d(A(jDι) = k2 such that fc2ΓuS(AUΓ>ι) =
φ. Hence fc2 is the trivial knot,[4], [8], and so ί is the trivial link. Therefore, if t is
not the trivial link, ί is not the boundary link in the strong sense. Π

Theorem 4.5. Let ί be an n-component boundary link. If i is (n — I)-trivial, I

is self Δ-equivalent to the trivial link.

Proof. If t = kι(J...Ukn is (n — 1)-trivial, there is a knot, say k\, such that ί—k\

is the trivial link. Hence there is an ambient isotopy ψ of R3 such that ψ(kj) C R2[j]
for j = 2, ...,n.

As ί is a boudary link, ψ(i) is also a boudary link. We denote φ(£),φ(ki) by
£,ki again respectively and so there is a spanning surface f = F\ U ...Fn of ^ with
dFi — ki, i = 1,..., n. Let FI consist of a disk DI and a disjoint union of 2p bands £S
with £>ιΠ^ = dDιΓ\d& =(4p arcs) for p = g(Fι). Since fcj is trivial for j = 2,...,n,

we may assume that Fj is obtained by attaching tubes to a disk Dj(c R2[j]) for
aD* = kj. Let S? = 7V(£>* : #3). Then £f,...,£3 are mutually disjoint 3-balls in

R3 such that (ί — k\) Π B3 = kj. By the construction of Fj, we may assume that the
connected component of Fj Π B3 whose boundary contains kj is a perforated disk.

Since FI Π (ί - KI) = φ, we may assume that FI Π Bf = & Π B^ by deforming

FI suitably.
Let us denote (T - FI) Π 95| by Γj. Then Γj consists of disjoint loops. If Γj

contains a loop 70 such that there is a disk σ on OB3 with <9σ = 70 and σ Π 3$ = φ,
we can eliminate 70 by attaching a 2-handle along to F — F\. Hence we may assume
that, for each 7 of Γj, each disk on OB3 bounded by 7 intersects with ,̂ Fig.l4(a).
Attach 2-handles to T — F\ along the disks on dB^ bounded by loops of Γj, from an
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innermost loop of Γj in turn, illustrated in Fig.l4(b). Then we obtain a non-singular
disk in B? and spheres from T — FI which are mutually disjoint.

τΉ-lΣZV- //S/Λ "JTTΛ ~.<Λ'/, ? ,"

Fig. 14

Now attach 1-handles J along the bands &} such that, for each tube T of J,T Π
is a loop CT and there is a disk σ^ of <9-£?| — CT with σ^ Π ̂  = {an arc},

Fig.l4(c). As a result, we obtain a spanning surface T$ = FI U F2o U ... U Fn0 from
λT7 = FI U ... U Fn such that each FJQ consists of a perforated disk Ej in B* and tubes
JX=F j ( )nj).

Let Dj be the disk in β| with cλD, = fy and ̂  D I?,- and V = D2 U ... U Dn

and Γ an outermost tube of J, namely TΠV = d T Π Ί ) = {two loops, say δ and
δ' }. Suppose that dT c £>2 Let α be an arc on T which connects a point of δ
and one of δ f . If a is knotted in R3 — J92, we may deform it unknotted by a finite
sequence of self Δ-moves, for the Δ-move is an unknotting operation of knots, [5],
and obtain an unknotted tube f from T and a boundary link I which is (n — 1)-trivial
and self Δ-equivalent to i by Lemma 3.2. Therefore, by choosing Γ, I instead of T,
£ respectively, we may assume that T is unknotted. (If there is a tube T' of J which
runs along the inside of T, we deform T' and obtain a tube T' from T' such that f'
runs along the inside of T.)

Since T is an outermost and unknotted tube of J, we may take a disk σ in /£3

such that σ Π T = a and σ Π V = σ Π E2 ={an arc}. If σΓ\(J -T) = φ, we deform
Γ along σ and eliminate T, Fig. 15. Next assume that σ Π (JΓ - Γ) φ φ. Then there
is a tube T0 of J - T such that σΓ\T0 ^ φ. Then there is a band B of ̂  such that
σΓ\B ^ φ. Perform the fission, [3], of k\ along σUT illustrated in Fig.l6(b), we obtain
a link ί\ U L\ from £ such that t\ is a boundary link and (n — l)-trivial and C\ is a
2-component trivial link, Fig.l6(b). Next deform £ι towards to the foot of a band BQ
which runs through the inside of T, Fig.l6(b),(c). As a result, we obtain a 2-component
link L\ from C\. By doing the above fissions and deformations successively, we obtain
a link ίr U L\ U ... U Lτ from £ such that £r is a boundary link which is (n — 1)-trivial
with σ(Ί£r = φ and £ιU...U£r is a 2r-component trivial link. Therefore, by deforming
T along σ, we can eliminate T and so decrease #S(tr Π £>)(= #<S(^ Π £>)).

By performing the above discussion from an outermost tube of J in turn, we
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obtain a link L = C U k2 U ... U kn from t such that L - £(= ί - kι) is the trivial link

split from £ and £ is obtained by a finite sequence of fissions of fci, Fig. 17.

Fig.15

Fig. 16

'.m rv.r

Fig. 17

Since £ is Δ-equivalent (not self) to the trivial link by [5], i is ribbon Δ-cobordant

to the trivial link. Hence ί is self Δ-equivalent to the trivial link by Lemma 2.2. Π

Lastly, let us prove Theorem 4.6.

Theorem 4.6. If I = k\ U /c2 is a boundary link, ί is self Δ-equivalent to the

trivial link.
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To prove it, it is enough to do the following by Theorem 4.5.

Lemma 4.7. For any 2-component boundary link ί = k\ U k<2, ί is self ^.-equiva-
lent to a boundary link L = K\ U K<2 such that K\ is the trivial knot.

To prove Lemma 4.7, we prepare some Lemmas.
For an n-component boundary link I, a spanning surface T = F\ U ... U Fn of

I is said to be normal if the bands of Fi are situated as illustrated in Fig. 18 for each

i = 1, ...,ra.

Fig.18

Since a Δ-move is a kind of unknotting operation of knots, [5], we obtain Lemma
4.8 by applying a finite sequence of self Δ-moves to each band BΪJ of a normal surface
•J of £ and by using Lemma 3.2.

Lemma 4.8. For a boundary link ί and a normal surface T of I, there are a
boundary link IQ self ^-equivalent to ί and a normal surface T§ of IQ such that each
band o T§ is unknotted.

Since £0 is a boundary link self Δ-equivalent to £, it is enough to prove Lemms

4.7 for £0.

Lemma 4.9. Let IQ, J^o be those of Lemma 4.8. Then there are a boundary link
t\ self Δ-equivalent to IQ and a normal surface J:\ of i\ such that each band of J-\ is
unknotted and non-twisted in R3.

Proof. Let FQ = FI U F2 be a normal surface of £0 satisfying Lemma 4.8 and

B(= BIJ), B'(= -Bipi+j) a pair of bands of FI associated to a genus, Fig.19.
Suppose that B is twisted, Fig.l9(a). Now we deform one full twist of B from

Fig.l9(a) to 19(b) and transform it along d(B(JB') from Fig.l9(b) to 19(c),(d). During
these transformations, a circle c can jump the other twists of B U B' and subarcs of
dBu by a finite sequence of self Δ-moves, Fig.3(a). We can eliminate the twist in
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Fig.l9(d) by a finite sequence of self Δ-moves from Fig.l9(d) to 19(e),(f). The link in
Fig.l9(f) is ambient isotopic to that of Fig.l9(h) whose spanning surface T§ = F[(JF2

is normal. By these deformations, we can eliminate a full twist of B without increasing
the number of full twists of the other bands of T§. Moreover dT'§ is self Δ-equivalent

to 4

Fig. 19

By repeating these deformations successively, we obtain a link t\ and a normal
surface T\ of ί\ satisfying Lemma 4.9. Π

Let E3 be a 3-ball and £ = κι\Jκ2 a 2-component link illustrated in Fig.20, where
Ki is the trivial knot and Ki Π dE3(= α*) is an arc for i = 1, 2.

Lemma 4.10. Let E3,£ and a» te ί/ι0se 0/f/ze α&ove. Suppose that L — KιUK2

be a 2 -component link such that each Ki is the trivial knot "with Link(Kι,K2) = q and
Ki Π dE3 = Oίi. Then L can be deformed into H by a finite sequence of Δ-moves and

an ambient isotopy of E3 with aι U #2 fixed.

Proof. Since each Ki is trivial, there is a non-singular disk DI in E3 with dDi =
Ki such that <S(.Dι Γ\D2) consists of finite simple clasp singularities. The alternation of
upper and under passes and the elimination of twists of bands, the change of order of
clasps of S(Dι ΠD2) on Dι9D2 can be realized by a finite sequenece of Δ-moves (not
self Δ-moves) illustrated in Fig.21(a),(b) and (c) respectively. Since these Δ-moves can
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ς-full twists

Fig.20

be done in the interior of E3,&ι U a% is fixed. Hence we obtain the link C illustrated

in Fig.20 from L by a finite sequence of Δ-moves and ambient isotopy of E3 with

ai U Q.2 fixed. Π

I I I I I i
•— " *~*Γ"| v twice d-moves L_ . - . —

(b)

Fig.21

Let t\ and JΓι(= FI U F2) be those of Lemma 4.9. Two bands Bij,Bipi+j as-

sociated to a genus of J Ί are said to be well-situated if BIJ and Bipi+j are situated

illustrated in Fig.22. Moreover T\ is said to be well-situated if each pair Bij,

of T\ is well-situated for i = 1,2 and j = 1, ...,£>;(= g(Fi)).
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,,--.. one parallel ful l twist

Fig.22

The following is easily obtained by Lemma 3.4 and 4.10.

Lemma 4.11. Let ί\ and T\ be those of Lemma 4.9. Then there are a boundary

link £2 self Δ-equivalent to ί\ and a normal surface J-2 of £2 which is well-situated.

Proof of Lemma 4.7. We write £2^2 satisfying Lemma 4.11 by I, T(= FI U F2)

again respectively and let Fi consist of a disk Di and 2pi bands BIJ of ̂  illustrated

in Fig. 18.
Suppose that the bands Bn,Bιpl+ι of FI(C J7) have q parallel full twists, Fig.23

(a). Deform BIPI+I along BU from Fig.23(a) to 23(b) and from 23(b) to 23(c) by an
ambient isotopy φ of R3 such that B\\ C Ό\, where BIJ = φ(Bij). Let DU be a disk

of DI - BU illustrated in Fig.23(c). If there is a band B2i such that B2i Π DU Φ φ,

we deform B2i on DU U #ιpl+ι from Fig.23(c) to 23(d) and obtain B'2i from B2i

satisfying that B'^i Π DU — φ. By repeating these deformations, we obtain a surface

F = F[ U F2 from F = FI U F2 such that F2Γ\Du = Φ Then we can apply Lemma
3.3 to dF[ in Fig.23(d) and obtain the link lf in Fig.23(e) by a finite sequence of self

Δ-moves. After this, we deform BU Π B'2i into DU along BU from Fig.23(e) to

23(f) and obtain a link t" which is ambient isotopic to t' and so self Δ-equivalent to

L Moreover we easily see that t" is the boundary link and ambient isotopic to the

link t^ illustrated in Fig.23(g). By applying the above deformations to Bu,Bιpl+\

successively, we obtain the bands B[\ ,J5χp1+ι and the link t^ illustrated in Fig.23(h)

such that l^ is the boudary link self Δ-equivalent to L

Now we denote the bands obtained by these deformations of ̂  by 3S\q'. If the

other band B($(s Φ l,pι + 1) of &(q) does not link with B$,B(qJ U B[q

p\+l can be

removed by an ambient isotopy of R3, Fig.24(a),(b).



ON SELF Δ-EQUIVALENCE OF BOUNDARY LINKS 53

q-full twists

( h )

Fig.23

Next suppose that there is a band B[^(S Φ \,p\ + 1) which links with

If there is a band B^ of ̂  which links with B^, deform B^ along B

illustrated in Fig.25(a),(b).(If there is not a band B^ of 38%' satisfying the above,

it is not necessary to do the above deformation, Fig.25(a),(b).) After this deforma-

tion, we perform a finite sequence of self Δ-moves, Lemma 3.3, to

the bands B^B^'.^C 36

and obtain

from is non-^}ς;) such that

twisted and does not link with the other bands of £&]" , Fig.25(b),(c) and deform

along -Bipi+i from Fig.25(c) to 25(d) and apply the deformation illustrated in Fig.24

toB^! instead of B(

l

q

l

} .
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I F "5?''

-U-
(a) (b)

Fig.24

By doing the above discussions for each band of <^Ί, we obtain a link L = KI U

K2 such that L is self Δ-equivalent to ί and K\ is the trivial knot. Moreover we easily

see that L is the boundary link by the above deformatinos.

Now the proof of Lemma 4.7 is complete. Π

(a) (b)

(d)

Fig.25
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