

Title	On self Δ -equivalence of boundary links
Author(s)	Shibuya, Tetsuo
Citation	Osaka Journal of Mathematics. 2000, 37(1), p. 37-55
Version Type	VoR
URL	https://doi.org/10.18910/8933
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON SELF Δ -EQUIVALENCE OF BOUNDARY LINKS

TETSUO SHIBUYA

(Received March 20, 1998)

1. Introduction

An n -component oriented tame link $\ell = k_1 \cup \dots \cup k_n$ in the oriented 3-space R^3 is called a boundary link if there are mutually disjoint oriented surfaces F_1, \dots, F_n in R^3 such that $\partial \mathcal{F} = \ell$, $\partial F_i = k_i$ for $\mathcal{F} = F_1 \cup \dots \cup F_n$ and each $i = 1, \dots, n$. Then \mathcal{F} is called the spanning surface of ℓ .

It is known that boundary links are link-homotopic to a trivial link, [2].

For self $\#$ -equivalences (definition, see [11], [12], [13]) of boundary links, the followings are known:

1. Boundary links are self $\#$ -equivalent(I) to a trivial link, [11], [13].
2. Boundary links are self $\#$ -equivalent(II) to a trivial link if and only if the Arf invariant of each component is zero, [2].

In this paper, we consider another self local equivalence, called a self Δ -equivalence, of boundary links. Namely, for a link ℓ , let E^3 be a 3-ball such that $\ell \cap E^3$ is a tangle illustrated in Fig.1(a). The transformation from Fig.1(a) to 1(b) is called a Δ -move, [5].

Fig.1

Especially if 3 arcs in Fig.1(a) are contained in a component of ℓ , it is called a self Δ -move. For two links ℓ and ℓ' , if ℓ can be deformed into ℓ' by a finite sequence of (self) Δ -moves, ℓ is said to be (self) Δ -equivalent to ℓ' . It is known that self Δ -equivalence implies self # equivalence(I) of links, [1], [6] and [12]. But the converse is not true, [7].

The aim of this paper is to give some partial answers to the followning Conjecture.

Conjecture. *Let ℓ be an n -component boundary link. Then ℓ is self Δ -equivalent to the trivial link.*

A link $\ell = k_1 \cup \dots \cup k_n$ is called a boundary link in the strong sense if there are mutually disjoint singular disks D_1, \dots, D_n in R^3 such that $\partial D = \ell, \partial D_i = k_i$ for $D = D_1 \cup \dots \cup D_n$ and each $i = 1, \dots, n$.

If ℓ is a boundary link in the strong sense, there are disks D_1, \dots, D_n satisfying the above. By the orientation preserving cut along each singularity of D_i , we obtain a spanning surface of ℓ . Namely ℓ is the boundary link.(But the converse is not true, namely there are links which are boundary links but not boundary links in the strong sense by Proposition 4.3.)

Theorem 4.2. *If ℓ is a boundary link in the strong sense, ℓ is self Δ -equivalent to the trivial link.*

A link ℓ is said to be p -trivial if there is a p -component sublink L of ℓ such that L is the trivial link.

Theorem 4.5. *Let ℓ be an n -component boundary link. If ℓ is $(n-1)$ -trivial, ℓ is self Δ -equivalent to the trivial link.*

Lastly, we shall prove the Conjecture is true for $n = 2$ by using Theorem 4.5.

Theorem 4.6. *If $\ell = k_1 \cup k_2$ is a boundary link, ℓ is self Δ -equivalent to the trivial link.*

2. Ribbon Δ -cobordism of links.

To prove Theorems, we introduce the Δ -cobordism of links.

For two n -component links ℓ, L in $R^3[a], R^3[b]$ respectively for $a < b$, ℓ is said to be Δ -cobordant to L if there are mutually disjoint annuli A_1, \dots, A_n in $R^3[a, b]$ satisfying the followings for $\mathcal{A} = A_1 \cup \dots \cup A_n$, where $R^n[a, b] = \{(x_0, \dots, x_n) \in R^{n+1} \mid a \leq x_n \leq b\}$ and $R^n[c] = \{(x_0, \dots, x_n) \in R^{n+1} \mid x_n = c\} : \mathcal{A} \cap R^3[a] = \ell$ and $\mathcal{A} \cap R^3[b] = \tilde{L}$, the reflect inverse of L , and $A_i \cap R^3[a] \neq \emptyset, A_i \cap R^3[b] \neq \emptyset$ for each

$i = 1, \dots, n$ and \mathcal{A} are locally flat except finite points contained in the interior of \mathcal{A} , which are the singularity of \mathcal{A} , denoted by $\mathcal{S}(\mathcal{A})$, such that, for each point P of $\mathcal{S}(\mathcal{A})$, $(\partial N(P : R^3[a, b]), \partial N(P : \mathcal{A}))$ is the Borromean rings, Fig.2, where $N(x : X)$ means the regular neighborhood of x in X . The annuli \mathcal{A} satisfying the above conditions are called Δ -annuli between ℓ and L . Especially, for Δ -annuli \mathcal{A} between ℓ ($\subset R^3[a]$) and L ($\subset R^3[b]$) for $a < b$, if \mathcal{A} do not have minimal points, [3], ℓ is said to be ribbon Δ -cobordant to L . Moreover if $\mathcal{S}(\mathcal{A}) = \emptyset$, ℓ is said to be ribbon cobordant to L . Therefore ℓ is a ribbon link, [15], if and only if ℓ is ribbon cobordant to the trivial link.

The following is proved in [15].

Fig.2

Lemma 2.1. *Any ribbon link is self Δ -equivalent to the trivial link.*

By using Lemma 2.1 and the similar proof to that of Lemma 1.19. in [10], we easily obtain Lemma 2.2 which is an extention of Lemma 2.1.

Lemma 2.2. *Suppose that ℓ is a link ribbon Δ -cobordant to the trivial link. Then ℓ is self Δ -equivalent to the trivial link.*

3. Local moves realizable by a finite sequence of (self) Δ -moves

In this section, we introduce some (self) local moves realizable by a finite sequence of (self) Δ -moves, which are used to prove Theorems.

Fig.3

The following local moves of links are called a Π -move(Fig.3(a)) and a parallel Π -move(Fig.3(b)) respectively.

Lemma 3.1. *A Π -move and a parallel Π -move can be realized by a finite sequence of Δ -moves.*

Proof. A Π -move can be realized by a Δ -move by the following way, Fig.4

Fig.4

As a parallel Π -move can be realized by a finite sequence of Π -moves, it can be done by a finite sequence of Δ -moves. \square

As a parallel Δ -move illustrated in Fig.5 can be realized by a parallel Π -move, we obtain Lemma 3.2 by Lemma 3.1.

Lemma 3.2. *A parallel Δ -move can be realized by a finite sequence of Δ -moves.*

Next we consider the following move, called a C_m -move, Fig.6.

Lemma 3.3. *A C_m -move can be realized by a finite sequence of Δ -moves.*

Proof. A C_m -move can be realized by a finite sequence of Π -moves, Fig.7. Hence we obtain Lemma 3.3 by Lemma 3.1. \square

Fig.5

Fig.6

Fig.7

Lemma 3.4. *A parallel C_1 -move illustrated in Fig.8 can be realized by a finite sequence of Δ -moves.*

Proof. A parallel C_1 -move can be realized by 4-time C_2 -moves illustrated in Fig.8. Hence we obtain Lemma 3.4 by Lemma 3.2. \square

Fig.8

4. Proof of Theorems.

Now let us prove Theorems.

To prove Theorem 4.2, we define a link, called a double link, which is a kind of boundary link in the strong sense and prove Lemma 4.1.

Let $\mathcal{V} = V_1 \cup \dots \cup V_n$ be a disjoint union of n solid tori V_1, \dots, V_n in \mathbb{R}^3 and k_i a doubled knot in V_i , [16]. Then $\ell = k_1 \cup \dots \cup k_n$ is called a doubled link (in \mathcal{V}).

Lemma 4.1. *Any doubled link is self Δ -equivalent to the trivial link.*

Proof. Let $\ell = k_1 \cup \dots \cup k_n$ be a doubled link in $\mathcal{V} = V_1 \cup \dots \cup V_n$. Since the Δ -move is a kind of unknotting operations of knots, [5], we obtain a doubled link $\ell_1 = k'_1 \cup (\ell - k_1)$ in $\mathcal{V}_1 = V'_1 \cup (\mathcal{V} - V_1)$, $k'_1 \subset V'_1$, such that V'_1 is a trivial solid torus and ℓ_1 is self Δ -equivalent to ℓ by Lemma 3.2. Hence, by choosing ℓ_1 instead of ℓ

if necessary, we can assume that ℓ is a doubled link in $\mathcal{V} = V_1 \cup \dots \cup V_n$ such that V_1 is trivial in R^3 . Moreover, if k_1 is m -full twisted in V_1 , we apply m -time self Δ -moves to k_1 in V_1 illustrated in Fig.9 and obtain the trivial knot, denoted by k_1 again, in V_1 . Hence there is a disk D_1 with $\partial D_1 = k_1$, where D_1 is obtained by connecting 2 parallel disk, each of which is parallel to the disk C_1 with ∂C_1 = (the longitude of ∂V_1), with a 1-full twisted band in V_1 . Deform D_1 into $R^2[1]$ by an ambient isotopy φ_1 of R^3 and denote $\varphi_1(D_1), \varphi_1(\ell), \varphi_1(k_1), \varphi_1(V_i)$ and $\varphi_1(c_i)$ by D_1, ℓ, k_1, V_i and c_i respectively again, where c_i means the core of V_i .

Fig.9

Suppose that $D_1 \cap V_i \neq \emptyset$ for some $i \geq 2$. As the intersection number of D_1 and c_i , denoted by $I(D_1, c_i)$, is equal to $\text{Link}(k_1, c_i) (= 0)$, there is the closure of connected component B_i^3 of $V_i - D_1$ such that $B_i^3 \cap D_1$ is contained in the positive, or negative side of D_1 , denoted by D_1^+, D_1^- respectively, Fig.10(a).

Suppose that $D_1 \cap k_2 \neq \emptyset$. Then $D_1 \cap V_2 \neq \emptyset$ and there is B_2^3 satisfying the above, Fig.10(a). By deforming B_2^3 slightly with D_1 fixed, we may assume that $B_2^3 \subset R^2[1, \infty)$ (or $R^2(-\infty, 1]$). Now let $B_2^3 \subset R^2[1, \infty)$. Moreover we can deform B_2^3 unknotted in $R^2[1, \infty)$ by Lemma 3.2.

Let E^2 be a non-singular disk in $R^2[1, \infty)$ with $E^2 \cap B_2^3 = \partial E^2 \cap \partial B_2^3$ (= {an arc}) and $E^2 \cap D_1 = \partial E^2 \cap \partial D_1$ (= {an arc}). If $k_2 \cap B_2^3$ does not contain the Hopf tangle, deform it into B_2^3 illustrated in Fig.10(a), (b).

Fig.10

If $E^2 \cap k_i \neq \phi$ for some $i \geq 3$, deform $E^2 \cap k_i$ into $R^2(-\infty, 1]$ along E^2 by an ambient isotopy of R^3 , Fig.10(a), (b). After this deformation, if $E^2 \cap k_2 \neq \phi$, we apply a finite sequence of self C_1 -move to k_2 , Fig.10(b), (c), and obtain a knot k'_2 from k_2 such that $E^2 \cap k'_2 = \phi$. By deforming B_2^3 along E^2 into $R^2(-\infty, 1]$, we obtain a doubled link $\ell' = k_1 \cup k'_2 \cup \dots \cup k'_n$ from ℓ such that ℓ' is a doubled link self Δ -equivalent to ℓ by Lemma 3.3 and $\#(k'_2 \cap D_1) = \#(k_2 \cap D_1) - 4$, where $\#(X)$ means the number of points of X .

By performing the above discussion successively, we obtain a doubled link $L = k_1 \cup K_2 \dots \cup K_n$ self Δ -equivalent to ℓ such that $K_2 \cap D_1 = \phi$

Next we apply the above discussion to K_2 . If K_2 is not trivial, we can obtain a doubled link $L' = K'_2 \cup (L - K_2)$ such that K'_2 is trivial and $K'_2 \cap D_1 = \phi$ by a finite sequence of self Δ -moves. Hence we write L' and K'_2 by L and K_2 respectively again. There is a disk D_2 with $\partial D_2 = K_2$ by the same construction with that of D_1 such that $D_1 \cap D_2 = \phi$ and an ambient isotopy φ_2 of R^3 such that $\varphi_2(D_1) = D_1$ and $\varphi_2(D_2) \subset R^2[2]$. Let us denote $\varphi_2(D_2)$ and $\varphi_2(V_j)$ for $j \geq 3$ by D_2 and V_j respectively.

Suppose that $D_2 \cap V_3 \neq \phi$. As $I(D_2, c_3) = 0$, there is the closure of a connected component B_3^3 of $V_3 - D_1 - D_2$ such that $B_3^3 \cap D_p$ is contained in D_p^+ or D_p^- for $p = 1$ or 2 by the construction of D_1 and D_2 . Hence we can apply the same discussion, which is used to remove $B_3^3 \cap D_1$, to $B_3^3 \cap D_p$. By doing the above successively, we obtain a doubled link $\mathcal{L} = k_1 \cup K_2 \cup \kappa_3 \cup \dots \cup \kappa_n$ self Δ -equivalent to L such that κ_3 is trivial and $\kappa_3 \cap (D_1 \cup D_2) = \phi$, where $\partial D_1 = k_1$, $\partial D_2 = K_2$.

Performing the above in turn, we obtain the trivial link self Δ -equivalent to ℓ . \square

Let us prove Theorem 4.2 by using Lemmas 2.2 and 4.1.

Theorem 4.2. *If ℓ is a boundary link in the strong sense, ℓ is self Δ -equivalent to the trivial link.*

Proof. Suppose that $\ell = k_1 \cup \dots \cup k_n$ is a boundary link in the strong sense. Then there are mutually disjoint disks D_1, \dots, D_n with $\partial \mathcal{D} = \ell$, $\partial D_i = k_i$, where $\mathcal{D} = D_1 \cup \dots \cup D_n$.

Any singularity of \mathcal{D} , denoted by $\mathcal{S}(\mathcal{D})$, can be deformed into simple (not self intersection) clasp singularity, Fig.11, which does not intersect with each other by deforming ℓ on \mathcal{D} suitably, [9]. Hence we can assume that $\mathcal{S}(\mathcal{D})$ consists of mutually disjoint simple arcs of clasp type. For an arc α of $\mathcal{S}(D_i)$, the pre-images α^*, α'^* of α are said to be next on the pre-image D_i^* of D_i if there is an arc d of $\partial D_i^* - \alpha^* - \alpha'^*$ which does not contain a point of the pre-image of $\mathcal{S}(D_i)$, Fig.12. Suppose that α^*, α'^* are next on D_i^* and $d(\subset \partial D_i^*)$ an arc as above and let $\delta^* = \overline{\partial N(\alpha^* \cup \alpha'^* \cup d : D_i^*) - \partial D_i^*}$, Fig.12. Then $\delta^* \cap (\text{the pre-image of } \mathcal{S}(D_i)) = \phi$ by the choice of α^* and α'^* . Performing the fission, [3], on D_i along δ , we obtain two disks D_{i0}, D_{i1} on D_i such that ∂D_{i0} is a doubled knot and $\mathcal{S}(D_{i1}) = \mathcal{S}(D_i) - \alpha$,

Fig.12(b).

Fig.11

Fig.12

Next suppose that α^* , α'^* are not next on D_i^* , namely there are β^*, β'^* , the pre-image β of $S(D_i)$, such that each of $\partial D_i^* - \alpha^* - \alpha'^*$ contains a point of β^* or one of β'^* . In this case, exchange α and β along a subarc of ∂D_i from Fig.13(a) to 13(b). This deformation can be accomplished by a finite sequence of self Δ -moves. We write the disk in Fig.13(b) by \tilde{D}_i . If the pre-images $\tilde{\alpha}^*, \tilde{\alpha}'^*$ of $\tilde{\alpha}$ of $S(\tilde{D}_i)$, Fig.13(b), are next on \tilde{D}_i^* , we perform the above fission. If they are not next on \tilde{D}_i^* , we perform the deformations from Fig.13(a) to 13(b) again.

Fig.13

By doing the above discussions for each D_i successively, we obtain a doubled link L self Δ -equivalent to the trivial link by Lemma 4.1. Since L is obtained by a finite sequence of fissions of ℓ , ℓ is ribbon Δ -cobordant to the trivial link \mathcal{O} . Therefore ℓ is self Δ -equivalent to \mathcal{O} by Lemma 2.2. \square

By the following, there are links which are boundary links but not boundary links in the strong sense.

Proposition 4.3. *Let A be non-twisted annulus in R^3 . If $\mathcal{S}(A) = \phi$, $\ell (= \partial A)$ is a boundary link. But if ℓ is not the trivial link, ℓ is not the boundary link in the strong sense.*

Proof. If A is non-twisted and $\mathcal{S}(A) = \phi$, i.e., A is non-singular, it is easily seen that $\ell = k_1 \cup k_2$ is a boundary link.

Suppose that ℓ is a boundary link in the strong sense. Namely there are mutually disjoint disks D_1, D_2 such that $\partial(D_1 \cup D_2) = \ell$, $\partial D_i = k_i$. Since $\mathcal{S}(A) = \phi$ and $D_1 \cap D_2 = \phi$, $A \cup D_1$ is a singular disk with $\partial(A \cup D_1) = k_2$ such that $k_2 \cap \mathcal{S}(A \cup D_1) = \phi$. Hence k_2 is the trivial knot,[4], [8], and so ℓ is the trivial link. Therefore, if ℓ is not the trivial link, ℓ is not the boundary link in the strong sense. \square

Theorem 4.5. *Let ℓ be an n -component boundary link. If ℓ is $(n-1)$ -trivial, ℓ is self Δ -equivalent to the trivial link.*

Proof. If $\ell = k_1 \cup \dots \cup k_n$ is $(n-1)$ -trivial, there is a knot, say k_1 , such that $\ell - k_1$ is the trivial link. Hence there is an ambient isotopy φ of R^3 such that $\varphi(k_j) \subset R^2[j]$ for $j = 2, \dots, n$.

As ℓ is a boundary link, $\varphi(\ell)$ is also a boundary link. We denote $\varphi(\ell), \varphi(k_i)$ by ℓ, k_i again respectively and so there is a spanning surface $\mathcal{F} = F_1 \cup \dots \cup F_n$ of ℓ with $\partial F_i = k_i, i = 1, \dots, n$. Let F_1 consist of a disk D_1 and a disjoint union of $2p$ bands \mathcal{B} with $D_1 \cap \mathcal{B} = \partial D_1 \cap \partial \mathcal{B} = (4p \text{ arcs})$ for $p = g(F_1)$. Since k_j is trivial for $j = 2, \dots, n$, we may assume that F_j is obtained by attaching tubes to a disk $D_j^* (\subset R^2[j])$ for $\partial D_j^* = k_j$. Let $B_j^3 = N(D_j^* : R^3)$. Then B_2^3, \dots, B_n^3 are mutually disjoint 3-balls in R^3 such that $(\ell - k_1) \cap B_j^3 = k_j$. By the construction of F_j , we may assume that the connected component of $F_j \cap B_j^3$ whose boundary contains k_j is a perforated disk.

Since $F_1 \cap (\ell - K_1) = \phi$, we may assume that $F_1 \cap B_j^3 = \mathcal{B} \cap B_j^3$ by deforming F_1 suitably.

Let us denote $(\mathcal{F} - F_1) \cap \partial B_j^3$ by Γ_j . Then Γ_j consists of disjoint loops. If Γ_j contains a loop γ_0 such that there is a disk σ on ∂B_j^3 with $\partial \sigma = \gamma_0$ and $\sigma \cap \mathcal{B} = \phi$, we can eliminate γ_0 by attaching a 2-handle along to $\mathcal{F} - F_1$. Hence we may assume that, for each γ of Γ_j , each disk on ∂B_j^3 bounded by γ intersects with \mathcal{B} , Fig.14(a). Attach 2-handles to $\mathcal{F} - F_1$ along the disks on ∂B_j^3 bounded by loops of Γ_j , from an

innermost loop of Γ_j in turn, illustrated in Fig.14(b). Then we obtain a non-singular disk in B_j^3 and spheres from $\mathcal{F} - F_1$ which are mutually disjoint.

Fig.14

Now attach 1-handles \mathcal{J} along the bands \mathcal{B} such that, for each tube T of \mathcal{J} , $T \cap \partial B_j^3$ is a loop c_T and there is a disk σ_T of $\partial B_j^3 - c_T$ with $\sigma_T \cap \mathcal{B} = \{\text{an arc}\}$, Fig.14(c). As a result, we obtain a spanning surface $\mathcal{F}_0 = F_1 \cup F_{20} \cup \dots \cup F_{n_0}$ from $\mathcal{F} = F_1 \cup \dots \cup F_n$ such that each F_{j0} consists of a perforated disk E_j in B_j^3 and tubes $\mathcal{J}_j (= F_{j0} \cap \mathcal{J})$.

Let D_j be the disk in B_j^3 with $\partial D_j = k_j$ and $D_j \supset E_j$ and $\mathcal{D} = D_2 \cup \dots \cup D_n$ and T an outermost tube of \mathcal{J} , namely $T \cap \mathcal{D} = \partial T \cap \mathcal{D} = \{\text{two loops, say } \delta \text{ and } \delta'\}$. Suppose that $\partial T \subset D_2$. Let α be an arc on T which connects a point of δ and one of δ' . If α is knotted in $R^3 - D_2$, we may deform it unknotted by a finite sequence of self Δ -moves, for the Δ -move is an unknotting operation of knots, [5], and obtain an unknotted tube \tilde{T} from T and a boundary link $\tilde{\ell}$ which is $(n-1)$ -trivial and self Δ -equivalent to ℓ by Lemma 3.2. Therefore, by choosing \tilde{T} , $\tilde{\ell}$ instead of T , ℓ respectively, we may assume that T is unknotted. (If there is a tube T' of \mathcal{J} which runs along the inside of T , we deform T' and obtain a tube \tilde{T}' from T' such that \tilde{T}' runs along the inside of \tilde{T} .)

Since T is an outermost and unknotted tube of \mathcal{J} , we may take a disk σ in R^3 such that $\sigma \cap T = \alpha$ and $\sigma \cap \mathcal{D} = \sigma \cap E_2 = \{\text{an arc}\}$. If $\sigma \cap (\mathcal{J} - T) = \phi$, we deform T along σ and eliminate T , Fig.15. Next assume that $\sigma \cap (\mathcal{J} - T) \neq \phi$. Then there is a tube T_0 of $\mathcal{J} - T$ such that $\sigma \cap T_0 \neq \phi$. Then there is a band B of \mathcal{B} such that $\sigma \cap B \neq \phi$. Perform the fission, [3], of k_1 along $\sigma \cup T$ illustrated in Fig.16(b), we obtain a link $\ell_1 \cup \mathcal{L}_1$ from ℓ such that ℓ_1 is a boundary link and $(n-1)$ -trivial and \mathcal{L}_1 is a 2-component trivial link, Fig.16(b). Next deform \mathcal{L}_1 towards to the foot of a band B_0 which runs through the inside of T , Fig.16(b),(c). As a result, we obtain a 2-component link $\tilde{\mathcal{L}}_1$ from \mathcal{L}_1 . By doing the above fissions and deformations successively, we obtain a link $\ell_r \cup \tilde{\mathcal{L}}_1 \cup \dots \cup \tilde{\mathcal{L}}_r$ from ℓ such that ℓ_r is a boundary link which is $(n-1)$ -trivial with $\sigma \cap \ell_r = \phi$ and $\tilde{\mathcal{L}}_1 \cup \dots \cup \tilde{\mathcal{L}}_r$ is a $2r$ -component trivial link. Therefore, by deforming T along σ , we can eliminate T and so decrease $\#\mathcal{S}(\ell_r \cap \mathcal{D}) (= \#\mathcal{S}(\ell \cap \mathcal{D}))$.

By performing the above discussion from an outermost tube of \mathcal{J} in turn, we

obtain a link $L = \mathcal{L} \cup k_2 \cup \dots \cup k_n$ from ℓ such that $L - \mathcal{L} (= \ell - k_1)$ is the trivial link split from \mathcal{L} and \mathcal{L} is obtained by a finite sequence of fissions of k_1 , Fig.17.

Fig.15

Fig.16

Fig.17

Since \mathcal{L} is Δ -equivalent (not self) to the trivial link by [5], ℓ is ribbon Δ -cobordant to the trivial link. Hence ℓ is self Δ -equivalent to the trivial link by Lemma 2.2. \square

Lastly, let us prove Theorem 4.6.

Theorem 4.6. *If $\ell = k_1 \cup k_2$ is a boundary link, ℓ is self Δ -equivalent to the trivial link.*

To prove it, it is enough to do the following by Theorem 4.5.

Lemma 4.7. *For any 2-component boundary link $\ell = k_1 \cup k_2$, ℓ is self Δ -equivalent to a boundary link $L = K_1 \cup K_2$ such that K_1 is the trivial knot.*

To prove Lemma 4.7, we prepare some Lemmas.

For an n -component boundary link $\tilde{\ell}$, a spanning surface $\mathcal{F} = F_1 \cup \dots \cup F_n$ of $\tilde{\ell}$ is said to be normal if the bands of F_i are situated as illustrated in Fig.18 for each $i = 1, \dots, n$.

Fig.18

Since a Δ -move is a kind of unknotting operation of knots, [5], we obtain Lemma 4.8 by applying a finite sequence of self Δ -moves to each band B_{ij} of a normal surface \mathcal{F} of ℓ and by using Lemma 3.2.

Lemma 4.8. *For a boundary link ℓ and a normal surface \mathcal{F} of ℓ , there are a boundary link ℓ_0 self Δ -equivalent to ℓ and a normal surface \mathcal{F}_0 of ℓ_0 such that each band of \mathcal{F}_0 is unknotted.*

Since ℓ_0 is a boundary link self Δ -equivalent to ℓ , it is enough to prove Lemms 4.7 for ℓ_0 .

Lemma 4.9. *Let ℓ_0, \mathcal{F}_0 be those of Lemma 4.8. Then there are a boundary link ℓ_1 self Δ -equivalent to ℓ_0 and a normal surface \mathcal{F}_1 of ℓ_1 such that each band of \mathcal{F}_1 is unknotted and non-twisted in \mathbb{R}^3 .*

Proof. Let $\mathcal{F}_0 = F_1 \cup F_2$ be a normal surface of ℓ_0 satisfying Lemma 4.8 and $B (= B_{1j})$, $B' (= B_{1p_1+j})$ a pair of bands of F_1 associated to a genus, Fig.19.

Suppose that B is twisted, Fig.19(a). Now we deform one full twist of B from Fig.19(a) to 19(b) and transform it along $\partial(B \cup B')$ from Fig.19(b) to 19(c),(d). During these transformations, a circle c can jump the other twists of $B \cup B'$ and subarcs of ∂B_{1i} by a finite sequence of self Δ -moves, Fig.3(a). We can eliminate the twist in

Fig.19(d) by a finite sequence of self Δ -moves from Fig.19(d) to 19(e),(f). The link in Fig.19(f) is ambient isotopic to that of Fig.19(h) whose spanning surface $\mathcal{F}'_0 = F'_1 \cup F'_2$ is normal. By these deformations, we can eliminate a full twist of B without increasing the number of full twists of the other bands of \mathcal{F}'_0 . Moreover $\partial\mathcal{F}'_0$ is self Δ -equivalent to ℓ_0 .

Fig.19

By repeating these deformations successively, we obtain a link ℓ_1 and a normal surface \mathcal{F}_1 of ℓ_1 satisfying Lemma 4.9. \square

Let E^3 be a 3-ball and $\mathcal{L} = \kappa_1 \cup \kappa_2$ a 2-component link illustrated in Fig.20, where κ_i is the trivial knot and $\kappa_i \cap \partial E^3 (= \alpha_i)$ is an arc for $i = 1, 2$.

Lemma 4.10. *Let E^3, \mathcal{L} and α_i be those of the above. Suppose that $L = K_1 \cup K_2$ be a 2-component link such that each K_i is the trivial knot with $\text{Link}(K_1, K_2) = q$ and $K_i \cap \partial E^3 = \alpha_i$. Then L can be deformed into \mathcal{L} by a finite sequence of Δ -moves and an ambient isotopy of E^3 with $\alpha_1 \cup \alpha_2$ fixed.*

Proof. Since each K_i is trivial, there is a non-singular disk D_i in E^3 with $\partial D_i = K_i$ such that $\mathcal{S}(D_1 \cap D_2)$ consists of finite simple clasp singularities. The alternation of upper and under passes and the elimination of twists of bands, the change of order of clasps of $\mathcal{S}(D_1 \cap D_2)$ on D_1, D_2 can be realized by a finite sequence of Δ -moves (not self Δ -moves) illustrated in Fig.21(a),(b) and (c) respectively. Since these Δ -moves can

Fig.20

be done in the interior of E^3 , $\alpha_1 \cup \alpha_2$ is fixed. Hence we obtain the link \mathcal{L} illustrated in Fig.20 from L by a finite sequence of Δ -moves and ambient isotopy of E^3 with $\alpha_1 \cup \alpha_2$ fixed. \square

Fig.21

Let ℓ_1 and $\mathcal{F}_1 (= F_1 \cup F_2)$ be those of Lemma 4.9. Two bands B_{ij}, B_{ip_i+j} associated to a genus of \mathcal{F}_1 are said to be well-situated if B_{ij} and B_{ip_i+j} are situated illustrated in Fig.22. Moreover \mathcal{F}_1 is said to be well-situated if each pair B_{ij}, B_{ip_i+j} of \mathcal{F}_1 is well-situated for $i = 1, 2$ and $j = 1, \dots, p_i (= g(F_i))$.

Fig.22

The following is easily obtained by Lemma 3.4 and 4.10.

Lemma 4.11. *Let ℓ_1 and \mathcal{F}_1 be those of Lemma 4.9. Then there are a boundary link ℓ_2 self Δ -equivalent to ℓ_1 and a normal surface \mathcal{F}_2 of ℓ_2 which is well-situated.*

Proof of Lemma 4.7. We write ℓ_2, \mathcal{F}_2 satisfying Lemma 4.11 by $\ell, \mathcal{F} (= F_1 \cup F_2)$ again respectively and let F_i consist of a disk D_i and $2p_i$ bands B_{ij} of \mathcal{B}_i illustrated in Fig.18.

Suppose that the bands B_{11}, B_{1p_1+1} of $F_1 (\subset \mathcal{F})$ have q parallel full twists, Fig.23(a). Deform B_{1p_1+1} along B_{11} from Fig.23(a) to 23(b) and from 23(b) to 23(c) by an ambient isotopy φ of R^3 such that $\tilde{B}_{11} \subset D_1$, where $\tilde{B}_{ij} = \varphi(B_{ij})$. Let D_{11} be a disk of $D_1 - \tilde{B}_{11}$ illustrated in Fig.23(c). If there is a band \tilde{B}_{2i} such that $\tilde{B}_{2i} \cap D_{11} \neq \emptyset$, we deform \tilde{B}_{2i} on $D_{11} \cup \tilde{B}_{1p_1+1}$ from Fig.23(c) to 23(d) and obtain \tilde{B}'_{2i} from \tilde{B}_{2i} satisfying that $\tilde{B}'_{2i} \cap D_{11} = \emptyset$. By repeating these deformations, we obtain a surface $\mathcal{F}' = F'_1 \cup F'_2$ from $\mathcal{F} = F_1 \cup F_2$ such that $F'_2 \cap D_{11} = \emptyset$. Then we can apply Lemma 3.3 to $\partial F'_1$ in Fig.23(d) and obtain the link ℓ' in Fig.23(e) by a finite sequence of self Δ -moves. After this, we deform $\tilde{B}_{11} \cap \tilde{B}'_{2i}$ into D_{11} along \tilde{B}_{11} from Fig.23(e) to 23(f) and obtain a link ℓ'' which is ambient isotopic to ℓ' and so self Δ -equivalent to ℓ . Moreover we easily see that ℓ'' is the boundary link and ambient isotopic to the link $\ell^{(1)}$ illustrated in Fig.23(g). By applying the above deformations to B_{11}, B_{1p_1+1} successively, we obtain the bands $B_{11}^{(q)}, B_{1p_1+1}^{(q)}$ and the link $\ell^{(q)}$ illustrated in Fig.23(h) such that $\ell^{(q)}$ is the boundary link self Δ -equivalent to ℓ .

Now we denote the bands obtained by these deformations of \mathcal{B}_i by $\mathcal{B}_i^{(q)}$. If the other band $B_{1s}^{(q)} (s \neq 1, p_1 + 1)$ of $\mathcal{B}_1^{(q)}$ does not link with $B_{11}^{(q)}, B_{11}^{(q)} \cup B_{1p_1+1}^{(q)}$ can be removed by an ambient isotopy of R^3 , Fig.24(a),(b).

Fig.23

Next suppose that there is a band $B_{1s}^{(q)}$ ($s \neq 1, p_1 + 1$) which links with $B_{11}^{(q)}$. If there is a band $B_{2j}^{(q)}$ of $\mathcal{B}_2^{(q)}$ which links with $B_{11}^{(q)}$, deform $B_{2j}^{(q)}$ along $B_{1p_1+1}^{(q)}$ illustrated in Fig.25(a),(b). (If there is not a band $B_{2j}^{(q)}$ of $\mathcal{B}_2^{(q)}$ satisfying the above, it is not necessary to do the above deformation, Fig.25(a),(b).) After this deformation, we perform a finite sequence of self Δ -moves, Lemma 3.3, to $\mathcal{B}_1^{(q)}$ and obtain the bands $B_{11}^{(q)'}, B_{1p_1+1}^{(q)'}$ ($\subset \mathcal{B}_1^{(q)'}$) from $B_{11}^{(q)}, B_{1p_1+1}^{(q)}$ ($\subset \mathcal{B}_1^{(q)}$) such that $B_{1p_1+1}^{(q)'}$ is non-twisted and does not link with the other bands of $\mathcal{B}_1^{(q)'}$, Fig.25(b),(c) and deform $B_{2j}^{(q)'}$ along $B_{1p_1+1}^{(q)'}$ from Fig.25(c) to 25(d) and apply the deformation illustrated in Fig.24 to $B_{1p_1+1}^{(q)'}$ instead of $B_{11}^{(q)}$.

Fig.24

By doing the above discussions for each band of \mathcal{B}_1 , we obtain a link $L = K_1 \cup K_2$ such that L is self Δ -equivalent to ℓ and K_1 is the trivial knot. Moreover we easily see that L is the boundary link by the above deformations.

Now the proof of Lemma 4.7 is complete. \square

Fig.25

References

- [1] H.Aida: *The oriented Δ_{ij} -moves of links*, Kobe J. Math. **9** (1992), 163–170
- [2] L. Cervantes and R.A. Fenn: *Boundary links are homotopy trivial*, Quart. J. Math. Oxford, **39** (1988), 151–158.
- [3] A. Kawauchi, T. Shibuya and S. Suzuki: *Descriptions on surfaces in four space, I*, Math. Sem. Notes, Kobe Univ., **10** (1982), 75–125.

- [4] T. Homma: *On Dehn's lemma for S^3* , Yokohama Math. J., **5** (1954), 223–244.
- [5] H. Murakami and Y. Nakanishi: *On a certain move generating link-homology*, Math. Ann., **284**(1989), 75–89.
- [6] Y. Nakanishi: *Replacement in the Conway third identity*, Tokyo J. Math., **14**(1992), 197–203.
- [7] Y. Nakanishi and T. Shibuya: *Relations among self Δ -equivalence and self $\#$ -equivalences of links*, Preprint.
- [8] C.D. Papakyriakopoulos: *On Dehn's lemma and the asphericity of knots*, Ann. of Math., **66** (1957), 1–26.
- [9] T. Shibuya: *Some relations among various numerical invariants for links*, Osaka J. Math., **11** (1974), 313–322.
- [10] T. Shibuya: *On the homotopy of links*, Kobe J. Math., **5** (1988), 87–96.
- [11] T. Shibuya: *Self $\#$ -unknotting operation of links*, Memo. Osaka Insti. Tech., **34** (1989), 9–17.
- [12] T. Shibuya: *Two self $\#$ -equivalences of links in solid tori*, Memo. Osaka Insti. Tech., **35** (1990), 13–24.
- [13] T. Shibuya: *Self $\#$ -equivalences of homology boundary links*, Kobe J. Math., **9** (1992), 159–162.
- [14] T. Shibuya: *Mutation and self $\#$ -equivalences of links*, Kobe J. Math., **10** (1993), 23–37.
- [15] T. Shibuya: *Self Δ -equivalence of ribbon links*, Osaka J. Math., **31** (1996), 751–760.
- [16] J.W.C. Whitehead: *On doubled knots*, J. London Math. Soc., **12**(1937), 63–71.

Department of Mathematics
 Osaka Institute of Technology
 Osaka 535-8585, Japan

