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Ginzburg-Landau 理論に基づいた数値シミュレーションによる

超伝導の磁場依存性の研究

兼安 洋乃、大塚 剛生、春名 信吾

兵庫県立大学 大学院理学研究科

1．磁場中の chiral 安定性と常磁性 chiral 電流1．磁場中の chiral 安定性と常磁性 chiral 電流

　超伝導では 2 電子が対を組んでおり、電子対のス

ピンと軌道の状態が超伝導の特性を決めている。ス

ピン状態は、平行と反平行のスピン一重項と三重項が

あり、軌道の状態との組み合わせも様々である。その

中でも、電子対の軌道角運動量がゼロでなく、内部

磁化を持つ状態を chiral 状態といい、chiral な d 波や p
波の状態などがある。（図 1）chiral 状態の内部磁化

が外部磁場と常磁性結合すると、chiral 安定化やそ

れに伴う chiral 電流を生じることが理論から示され

ている。（図 2）[1,2] この様な磁場誘起 chiral 現象は、

特に超伝導が不均一である場合に顕著となる。その

ため、磁場誘起 chiral 現象の特徴を理論的に調べて、

実験事実と比較した考察を行うことは、chiral 超伝

導を探る手掛かりとなる。[3]

図 1：超伝導電子対と：超伝導電子対と chiral 状態状態

図 2：磁場中の：磁場中の chiral 安定性と常磁性安定性と常磁性 chiral 電流電流

　本研究では不均一系の磁場誘起 chiral 現象につ

いて、Ginzburg-Landau 理論に基づいた研究を行っ

た。[3] ２成分の超伝導秩序変数で表された chiral
状態の Ginzburg-Landau 方程式を大阪大学サイバー

メディアセンターの SQUID を用いて数値的に解き、

磁場中の秩序変数成分と超伝導電流の解析を行っ

た。[4]

2．chiral 状態の秩序変数と不均一超伝導2．chiral 状態の秩序変数と不均一超伝導

　磁場誘起 chiral 現象の候補となる不均一な超伝導

状態として、自発磁化が μSR 測定などから報告さ

れている超伝導体 Sr2RuO4 の共晶系が挙げられる。

　[5,6] 共晶で、析出した金属 Ru と母物質 Sr2RuO4

の接合モデルを考える。（図 3）[6] Sr2RuO4 の結晶

構造は D4h 対称性であり、群論で許される既約 Eg

と Eu の chiral 状態を考える。この chiral 状態の超伝

導秩序変数は２成分で表現され、その成分を超伝導

/ 金属 - 接合境界に垂直な成分 ηp と平行成分 ηt とす

る。[4,6] 

図 3：秩序変数における：秩序変数における chiral 状態と状態と chiral 転移転移

　図 3 の RuO2 面上の接合モデルの左図は、その 2 成

分秩序変数の chiral 状態を示している。超伝導の不均

一性として、超伝導体端からの距離 x において、接

合面近くで臨界温度が高くなる不均一な超伝導臨界

温度を設定している。ゼロ磁場では、不均一超伝導

の生じ始める高い温度で、一成分 ηt のみが生じて

non-chiral 状態（図 3 右側）となるが、温度が下が

ると 2 成分目の ηp が生じて、2 成分状態の chiral 状
態（図 3 左側）に転移する。[4,6]
　このゼロ磁場での non-chiral 状態に、chiral 磁化

軸に平行な磁場を印加する場合を設定して、磁場に

よる 1 成分状態から 2 成分状態への chiral 転移、及

び chiral 安定化を Ginzburg-Landau 方程式の数値計

算で調べた。又、この chiral 安定化に伴う常磁性

chiral 電流の振る舞いを解析した。[3,4]
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3．Ginzburg-Landau 方程式の数値解析3．Ginzburg-Landau 方程式の数値解析

3.1 磁場中の chiral 安定性と超伝導秩序変数

　方程式の数値解として得た超伝導秩序変数成分と

ベクトルポテンシャルから、chiral 転移、chiral 安定

化とそれに伴う常磁性 chiral 電流の磁場・温度依存

性を解析した。不均一系接合モデルとして、接合面

近くで高い超伝導臨界温度のパラメータは、ゼロ磁

場で超伝導のオンセット温度 Tonset=3K で接合面近く

に non-chiral 状態が生じ、低温になると T*=2.3K で

chiral 転移して、Tc,bulk=1.5K で均一バルクの超伝

導転移温度と一致するように設定した。[3,4]
　計算結果として、図 4 は超伝導秩序変数成分 (ηt, 
iηp) の温度ごとの磁場依存性を示している。超伝

導のオンセット温度 Tonset=3K で接合面近くに 1 成

分 ηt のみの non-chiral 状態が生じ、温度が下がり

T*=2.3K になると、2 成分目の ηp が誘起して chiral
転移し、2 成分状態 ηt+iηp の chiral 状態となる。こ

の温度により chiral 転移が起こる T*=2.3K よりも

高い温度にある non-chiral 状態（ηt のみの１成分状

態）に対して、chiral 磁化軸に平行な磁場 Hz をかけ

ると、第 2 成分の ηp が誘起されて 2 成分状態 ηt+iηp

の chiral 状態に転移する。[4]

図 4：磁場による：磁場による chiral 安定化の磁場・温度依存性安定化の磁場・温度依存性

　図 5 は、T=2.65 K>T* の距離 x における超伝導

秩序変数成分 (ηt, iηp) の磁場依存性を示している。

T*=2.3K 以上の T=2.65 K では non-chiral 状態（ηt の

みの１成分状態）となっている。この non-chiral 状
態に chiral 磁化軸に平行な磁場 Hz をかけると、第 2
成分の ηp が誘起されて、2 成分状態 ηt+iηp の chiral
状態に転移する。この秩序変数の磁場依存性は、磁

場による chiral 状態の安定化を示している。[4]

図 5：T=2.65 K >T*における磁場誘起における磁場誘起 chiral 転移に転移に
対応した秩序変数の第対応した秩序変数の第 2 成分成分 ηp の誘起の誘起

3.2 chiral 状態安定化による chiral 電流の誘起

　図 6 は、数値解の超伝導秩序変数とベクトルポテ

ンシャルを用いて計算した、T=2.65 K の距離 x に

おける常磁性 chiral 電流 Jpar, c とスクリーニング電流 
Jscr の磁場依存性である。ゼロ磁場では non-chiral 状
態のために chiral 電流 Jpar, c は生じていないが、磁場

が印加されると chiral 状態に転移して常磁性 chiral
電流 Jpar, c が誘起される。この常磁性 chiral 電流の誘

起は、前述の図 5 における磁場による秩序変数第 2
成分 ηp の誘起の chiral 安定化と対応している。[4]

図 6：T=2.65 K >T*におけるにおける chiral 安定化による常安定化による常
磁性磁性 chiral 電流の誘起電流の誘起

　このように数値計算で示した磁場誘起 chiral 転移

の振る舞いは、トンネルコンダクタンスの磁場依存

性と定性的に整合しており、Sr2RuO4 共晶の低温バ

ルク状態において chiral 状態が期待出来る。[3,4]

 

 

 



― 27 ―

4. 不均一系における chiral 状態の磁場中の解析4. 不均一系における chiral 状態の磁場中の解析

4.1 Ginzburg-Landau 方程式による磁場中の chiral

安定化と超伝導電流の解析

　超伝導秩序変数とベクトルポテンシャルに対する

変分で導かれた Ginzburg-Landau 方程式を数値的に

解き、数値解の超伝導秩序の２成分とベクトルポテ

ンシャルを得る。又、超伝導電流が得られる。

　Ginzburg-Landau 方程式は秩序変数による変分から、

が得られる。[3,4,6] 又、ベクトルポテンシャルによ

る変分から超伝導電流の式、

が得られる。秩序変数成分とベクトルポテンシャル

は x のみに依存している。z 軸方向の磁化 B= ∇×

Aを導くベクトルポテンシャルは、A=(0,Ay(x),0) と
設定した。又、a(T,x)=a′(T–Tc(x))/Tc,bulk(x) で、超伝導

臨界温度は境界面付近で高いTc(x)= Tc + T0/ cosh (x/w)
で設定される。係数比は b=4a′/15 と K1/3=K2=K3=K4

である。

　超伝導電流は y軸に沿って流れ、1項目はスクリー

ニング電流、2 項目が常磁性 chiral 電流である。接

合面の境界条件は秩序変数成分について、

である。係数 gpは接合面から金属側への超伝導の

侵入の幅 1/√gpに関係する。ベクトルポテンシャル

についての境界条件は、超伝導体端の外部磁場との

連続性により設定される。[3,4,6]
　この境界条件付き連立微分方程式の Ginzburg-
Landau 方程式を、quasi-Newton 法に従って数値的

に解き、自己無撞着に超伝導秩序成分とベクトルポ

テンシャルを数値解として得て、超伝導電流を計算

する。この数値計算のフローチャートを図 7 に示し

ている。[4]
　このような常磁性結合による磁場誘起 chiral 現象

の数値解析では、chiral 安定化と常磁性 chiral 電流

に加えて、距離上の chiral 磁化反転の現象も同時に

導かれる。（図 8）[3,4,8] 常磁性結合による自由エ

ネルギー利得から導かれる chiral 安定化と常磁性

chiral 電流、chiral 磁化反転と、Ginzburg-Landau 方

程式の数値解である秩序変数、ベクトルポテンシャ

ルとの関係を図 8 に示している。[4]

図 7：Ginzburg-Landau 方程式の方程式の quasi-Newton 法に法に
よる計算フローチャートよる計算フローチャート

4.2 Ginzburg-Landau 方程式の計算高速化

　内部磁化と外部磁場の常磁性結合により、外部磁

場の印加で chiral 安定化する様子を調べるには、外

部磁場を小幅で変化させた解析が必要となる。この

様な解析を、Ginzburg-Landau 方程式で超伝導秩序

変数とベクトルポテンシャルを自己無撞着に求める

数値計算（図 7）において行うと計算時間が長くな

り、計算の高速化を行う必要がある。そのため、秩

序変数とベクトルポテンシャルの超伝導体端からの

距離上のデータの計算について、大阪大学サイバー

メディアセンターの SQUID; SX-Aurora TSUBASA
でベクトル化 [9,10] を用いた高速化を行った。[4,11]
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図 8：常磁性結合による磁場誘起：常磁性結合による磁場誘起 chiral 現象の現象の
Ginzburg-Landau 方程式によるシミュレーション方程式によるシミュレーション

5．おわりに5．おわりに

　数値計算で示した磁場誘起 chiral 転移の振る舞い

は Sr2RuO4 共晶に限らず、一軸圧下 Sr2RuO4 や圧力

下 UTe2 についても、不均一な状態が考えられる場

合には磁場誘起 chiral 現象の可能性がある。[12,13]
　今後は chiral 状態に限らず、時間反転対称性の破

れた幾つかの状態についても、Ginzburg-Landau 方

程式による磁場中シミュレーションを発展させるこ

とが考えられる。[4]
　この研究報告は今年度の公募利用の成果である

論文 [4] の一部をまとめたものである。また、春

名の卒業論文 [14] に関係する。SQUID; SX-Aurora 
TSUBASA での計算高速化について、大阪大学サイ

バーメディアセンターの伊達進氏と大阪大学工学部

博士課程前期の吉田薪史氏に協力して頂き、chiral
状態の現象論について ETH Zurich の M. Sigrist 氏に

議論して頂きました。感謝致します。
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