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Abstract. Dispersion curves and wave structures for leaky Lamb waves were numerically analyzed with a semi-
analytical finite element method. Solving governing equations derived for a leaky plate mode and a total transmission
mode provided dispersion curves of fundamental Lamb modes and Scholte waves with several differences. The Scholte
waves in the non-dispersive region were modes with large vibration in the vicinity of a single interface between a plate
surface and fluid. Moreover, in low frequency-thickness product (fd) range in the dispersion curves, the Scholte waves
became highly dispersive modes. Wave structures obtained for the Scholte wave in the SAFE calculations implied that
the high dispersion in the low fd range is caused by the fact that wave energy of Scholte wave penetrates deeper in the
plate in lower fd range and that the the opposite boundary of the plate affects the Scholte wave.

INTRODUCTION

A semi-analytical finite element (SAFE) method has been widely used as one of the most suitable calculation
technique for guided wave propagation because the calculation technique that does not require descretizing the
propagation direction enables us to carry out very efficient calculation and modal analysis even for large plate-like
structures. The SAFE in a broad sense was firstly developed by Cheung [1] for analyzing static deformation of civil
engineering structures, and then Dong and Nelson [2], Datta et al. [3], and Kausel et al. [4] extended it to dynamic
problems, e. g. Lamb waves in a laminated plate. For noise analysis of a railway rail, Gavric [5], Gry [6], Thompson
and Jones [7] derived dispersion curves for a rail with a SAFE. Recently, Loveday [8], Castaings and Lowe [9],
Mazzotti et al. [10] and authors [11] have developed and performed SAFE calculations for the purpose of guided
wave nondestructive evaluation.

However, most of the SAFE calculations were developed on the assumption of stress free boundaries without
considering leakage to external media, and very few papers [9, 12] considered such leakage to external air, water
and soil that sometimes significantly affect actual guided wave nondestructive evaluation.

Authors then formulated a SAFE for a plate with external fluids using the characteristic that plane harmonic
wave propagates in the fluids for a certain mode and at a certain frequency [13]. This paper briefly describes the
formulation by comparing with one without external media, and then discusses fundamental modes and Scholte
waves obtained by the SAFE technique.

A SEMI-ANALYTICAL FINITE ELEMENT METHOD FOR LEAKY LAMB WAVE

When considering a plate with no leaky media and with stress-free boundaries as shown in Fig. 1 (a), a
governing equation is obtained in angular frequency @ domain and wave number &, domain as,
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where, letting N be the number of nodal lines in a plate with layered elements, K,, K,, K, and M are 2N x 2N

matrices obtained from known geometric and material parameters such as thickness of layered elements and material
properties, and U is a 2N vector consisting of nodal displacements. Suppose that angular frequency w is fixed, eq.
(1) can be regarded as the second order polynomial eigenvalue problem with respect to &, . Then it can be generally

developed into the following linear eigenvalue problem with 4Nx4N matrices A and B.
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Solving det(A—gZB):O, a necessary and sufficient condition for nontrivial solutions of eq. (2), provides 4N
eigenvalues &,, (m=1, 2,..., 4N). The eigenvalues represent wavenumbers of possible resonant modes for harmonic
wave with the angular frequency of @, and are classified into two types; 2N modes in the +z direction and 2N
modes in the -z direction.

On the other hand, when considering a plate surrounded by fluids with the same velocity (c;) and different
densities (o1, p2), the term of pressure from external fluids F is added to eq. (1) as,
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Since the term of external pressure F depends only on displacements in the y direction at plate surfaces, the
following relationship is established between F and U.
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As F is comprised of zero except y components at both upper and lower surfaces and the non-zero values depends

only on a displacement in the y direction at the surfaces, Q is a 2N x 2N matrix having non-zero values only at two

components. For example, when F and U are assigned in the order of y and z components at the node 1, y and z
components at node 2,...., Q is written as,
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where the first equation is obtained when positive &, is taken in the plus and minus directions in the upper and lower

fluids respectively, representing modes radiating from the plate to the external fluids. While, the second equation in
eq. (6) is obtained when positive & is taken in the plus direction in both upper and lower fluids, showing modes

propagating through the plate. These modes, being obtained theoretically by Chimenti and Rocklin [14], are called
leaky plate mode and total transmission mode, respectively.
Substituting eq. (5) into eq. (4) gives
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Because a plane harmonic wave propagates in fluids with the wavenumber of &, (= w/c; ), the following equation
hold between &, and &, ,

ElvEr=E0 (8)



In addition, a pair of possible resonance modes in plus and minus z directions always exists due to the symmetry of a
plate. Using the relationship of eq. (8) and the symmetry of possible modes, the nonlinear eigenvalue problem eq.
(7) can be converted into a linear eigenvalue problem with respect to &, as,

(A—¢B U =0, ©)
where A', B’ are known (4N+2) x (4N+2) matrices, and U’ is a 4N+2 vector comprised of the nodal displacement
vector U and wavenumber &, . Solving the linear eigenvalue problem gives 4N+2 eigenvalues for &, and then eq.

(8) provides 4N+2 pairs of =&, , which represents the symmetry of resonance modes in the z directions. Moreover,
eigenvectors obtained from eq. (9) provides cross-sectional displacement distributions (wave structures).

Boundary conditions:
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(a) Lamb waves in a plate "

with traction free boundaries (b) Leaky plate mode (c) Total transmission mode

FIGURE 1. Geometrical conditions for SAFE calculations.

CALCULATION RESULTS ON DISPERSION CURVES AND WAVE STRUCTURES

For a plate with no leaky media, eigenvalues of eq. (2) become wavenumbers of Lamb wave modes. Frequency
spectra of the wavenumber, called dispersion curves, are widely used because they indicate fundamental
characteristics of Lamb waves. For a plate with leaky media, eq. (9) and (8) provide wavenumbers in the y and z
directions &, and &, (Mm=1,2, ..., 4N+2).

In this section, we discuss dispersion curves and wave structures for an aluminum alloy plate (density of
2700kg/m?, longitudinal and transverse velocities of 6400m/s and 3100m/s) surrounded by water (density of
1000kg/m? and sound velocity of 1500m/s) as a typical example of leaky Lamb waves.

Dispersion Curves and Wave Structures of Leaky Plate Modes

Figure 2 shows dispersion curves for leaky plate modes obtained from the first equation of eq. (6) in the
representation of phase velocity (c,, = /¢, ), group velocity (c,, =oe/o¢, ), and attenuation (Im(,)). The only four

lowest order modes with Re(,,)>0 Or Re(,)=0 and Im(,,)>0, corresponding to modes heading in the +z

direction, are plotted. Horizontal axis stands for frequency - thickness product (fd).

We can find some differences from dispersion curves for a plate with no leaky media, which include the fact
that: (i) non-dispersive modes with almost identical velocity to sound velocity of external fluids, called Scholte wave,
exist, (ii) A0 and SO modes attenuate due to energy leakage to fluids, and (iii) the curve of A0 mode is not smooth in
the low fd range.

Figures 3, 4, and 5 show wave structures at the point A, B, and C on phase velocity dispersion curves in Fig. 2

(a). The wave structures denote displacement distributions at a certain moment in the 5d x 5d cross-sectional region

including the plate of thickness d and fluids, and the surface color presents displacement in the y direction. As
shown in Figs. 3 - 5, two different wave structures exist at A, B, and C on phase velocity dispersion curves,
respectively. In the case of Fig. 3 where SO mode propagates from left to right, outgoing and incoming modes are
obtained where plane harmonic waves propagate outward to and inward from external fluids depending on the sign
of Re(&,,). Energy leakage to external fluids attenuates the outgoing mode of SO mode, where attenuation of the



mode Im(&,,) is positive. While the incoming mode is amplified as it propagates due to an inflow of wave energy
from the external fluids, namely Im(&,,) is negative.

The A0 mode also has outgoing and incoming modes at the same point B on the dispersion curve of Fig. 2 (a), as
shown in Fig. 4. Unlike the fundamental Lamb modes, Scholte waves have two wave structures without propagating
in the y direction, which results from the wavenumber with Re(£,,)=0. As shown in Figs. 5 (a) and (b), the Scholte

waves forms symmetric and anti-symmetric distributions with respect to the center line of plate thickness. Because
the symmetric and anti-symmetric modes have identical phase and group velocities each other beyond the fd value
of about 1 MHz mm, modes obtained by taking their summation and difference can also be considered as the wave
structures at this point. Figures 5 (c) and (d) show that the summation and difference of the symmetric and anti-
symmetric modes gives the modes vibrating only at a single fluid region and a plate surface.
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FIGURE 2. Dispersion curves for leaky plate modes in an aluminum plate surrounded by water

(a) Outgoing mode (b) Incoming mode (a) Outgoing mode (b) Incoming mode

FIGURE 3. Wave structures for a point A in Fig. 2 (a). FIGURE 4. Wave structures for a point B in Fig. 2 (a).

(a) Symmetric Scholte wave (b) Anyi-symmetric (a) Summation of (a) and (b)  (b) Difference of (a) and (b)
Scholte wave

FIGURE 5. Wave structures at a point C in Fig. 2 (c) for Scholte waves



Dispersion Curves and Wave Structures of Total Transmission Modes

When solving eigenvalue problem of eq. (9) using the second equation of eq. (6), dispersion curves for total
transmission modes are obtained. As in leaky plate modes, we can find several differences in dispersion curves from
a plate with no leaky media which include existence of Scholte wave, attenuation of SO and A0 modes, and non-
smoothness of the A0 mode in low fd range. In addition, the A0 mode and the SO mode merge perfectly beyond the

fd value of about 3.5 MHz mm and group velocity is significantly changed and attenuation suddenly appears at the
fd value.
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FIGURE 6. Dispersion curves for total transmission modes in an aluminum plate surrounded by water

Figures 7, 8, 9, and 10 are wavestructures for the points A, B, C, and D in Fig. 6 (a), respectively. Like in leaky
plate modes, two different wave structures corresponding to a pair of +&,, exist as shown in Fig. 7 and 8, one being
an upward total transmission mode, and the other one being a downward mode. While four wave structures exist
beyond the fd value at which A0 and SO modes merge as shown in Fig. 9 for the point C. They are outgoing and
incoming modes vibrating in a single fluid region and their vertically inverted images. As in leaky plate modes,
outgoing modes having positive Im(&;,,) attenuate as they propagate due to energy leakage, while incoming modes
having negative Im(&,,) increase their amplitude as they propagate.

Scholte waves in Fig. 6 (a) have pure imaginary wave numbers of &, like in the case of leaky plate modes,
which means that vibration in one fluid region exponentially decay and vibration in the other fluid region
exponentially increase according to the distance from plate surfaces in the case of total transmission. However, at
the point D, Scholte wave exists only at the other fluid region as seen in Fig. 10 because displacement in the y
direction are zero at the surface contacting with the fluid region where the amplitude exponentially increase as going
further from it, which results in the same mode as the Scholte wavs obtained in Fig. 5 (c) and (d).

(a) Upward mode (b) Downward mode (a) Upward mode (b) Downward mode

FIGURE 7. Wave structures for a point A in Fig. 6 (a). FIGURE 8. Wave structures for a point B in Fig. 6 (a).



(a) Outgoing mode vibrating (b) Incoming mode vibrating (c) Outgoing mode vibrating  (d) Incoming mode vibrating
only at an upper region only at an upper region only at a lower region only at a lower region

FIGURE 9. Wave structures at a point C in Fig. 6 (a)

(a) Scholte wave propagating along the lower surface (b) Scholte wave propagating along the upper surface
FIGURE 10. Wave structures at a point D in Fig. 6 (a)

Scholte Waves in a Low fd Range

Scholte waves obtained from both leaky plate modes and total transmission modes are non-dispersive with the
identical phase velocities and group velocities in the high fd range, which results from the nature that the Scholte
waves are modes with the same wave structures vibrating at a single plate — fluid interface as seen in Fig. 5 (c), (d)
and Fig. 10 (a), (b).

However, looking at the dispersion curves in the low fd range below about 1 MHz mm, Scholte waves have
differences between leaky plate mode and total transmission mode. Figure 11 is phase velocity dispersion curves in
the low fd range below 2 MHz mm. In the leaky plate mode in Fig. 11 (a), anti-symmetric and symmetric Scholte
waves separate apart at about fd = 0.7 MHz mm, and an anti-symmetric Scholte wave goes to origin of the graph
while a symmetric Scholte wave keeps straight with the constant velocity. Figures 12 (a) and (b) are wave structures
of Scholte waves at the two points A and B on fd = 0.2 MHz mm obtained from leaky plate modes. The anti-
symmetric Scholte wave at the point A shown in Fig. 12 (a) vibrates whole thickness of a plate mainly in the
thickness direction as well as the fluid regions close to the plate — fluid interface. Figures 10 and 12 (a) represent
that energy of vibration concentrates at a single side of plate surfaces in the high fd range, while it penetrates deeper
as an fd value becomes lower and a whole cross-section of a plate vibrates at the point of A in Fig. 11 (a). Therefore,
the dispersion curve is dependent on the fd value. While, in the symmetric mode Fig. 12 (b) at the point B, vibration
in the thickness direction concentrates only at the both plate surfaces. Since this mode vibrates horizontally in fluid
regions as a plane longitudinal wave, the non-dispersive mode has almost the same velocity as sound speed of the
fluid (water).

For comparison, Fig. 12 (c) shows a wave structure of an A0 mode at the point C in Fig. 11. Although the A0
mode is similar to the mode in Fig. 12 (a) in terms of vibrating a whole cross-section in the thickness direction, the
mode propagates in very short distance due to its high attenuation.

Scholte waves obtained as total transmission modes also exist two modes with different wave structures, but
these two modes have the identical phase velocities over the whole fd range. Figures. 13 (a) and (b) show the two
wave structures of Scholte waves at the point D in Fig. 11 (b). Although Scholte waves obtained as total
transmission modes in Fig. 10 vibrate only a single side of plate surfaces in the high fd range, displacement
distributions at the plate surface penetrate deeper as fd range become lower, resulting in vibration at the opposite



surface in the fd range at the point D and the exponentially increasing displacement distribution in the opposite fluid
region.
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FIGURE 11. Low fd range of phase velocity dispersion curves

(a) point A. (b) point B (c) point C.
Anti-symmetric Scholte wave. Symmetric Scholte wave. A0 mode
FIGURE 12. Wave structures for points A-C in Fig. 11(a) obtained as leaky Lamb waves
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(a) Exponentially increasing displacement distribution ~ (b) Exponentially increasing displacement distribution
in the upper fluid region in the lower fluid region
FIGURE 13. Wave structures for a point D in Fig. 11(b) obtained as total transmission waves

CONCLUSIONS

This paper described the formulation of a SAFE method for Lamb waves in a plate with leaky media by
comparing with a SAFE for a plate with no leaky media, and then fundamental modes of Lamb waves and Scholte
waves were analyzed with their dispersion curves and wave structures.

Solutions are classified into leaky plate modes and total transmission modes by the way how positive directions
of plane harmonic wave in fluids are assigned. Their phase velocity dispersion curves and ones with no leaky media
are slightly different each other. In particular, dispersion curves for SO and A0 modes are identical beyond a certain

fd value in total transmission modes and four different modes with symmetric wave structures exist in the high fd
range.



Scholte waves obtained as leaky plate modes consist of two modes with the same phase velocity, group velocity
and attenuation in the high fd range over fd = 1 MHz mm showing anti-symmetric and symmetric wave structures
with respect to the plate center. Taking summation or difference of these two wave structures, these modes can be
regarded as a Scholte wave propagating only at a single side of plate surfaces. Scholte wave obtained as total
transmission modes also consist of two modes with different wave structures. In the high fd range over 1 MHz mm,
these modes have the identical dispersion curves and wave structures vibrating only at a single plate surface.

In the low fd range below about 1MHz mm, dispersion curves of Scholte waves are significantly different in
these two cases, which results in the fact that vibration at a plate surface affects the opposite surface due to low fd
value.
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