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ABSTRACT 

Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as 

proteins that function in axon guidance during neuronal development. However, semaphorins play 

crucial roles in other physiological and pathological processes, including immune responses, 

angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may 

be present as transmembrane and soluble forms and are implicated in the pathogenesis of various 

diseases. In this review, I discuss recent progress on the roles of class IV semaphorins determined by 

clinical and experimental pathology studies. 
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INTRODUCTION 

Semaphorins are secretory and/or membrane proteins characterized by a conserved amino-terminal 

Sema domain. They were initially identified as axon-guidance molecules during neuronal 

development,1-3 however, they also function in a wide range of other physiological processes, including 

immune responses,4 angiogenesis,5,6 and tissue homeostasis.7,8 Invertebrate semaphorins are grouped 

into classes I and II, and vertebrate semaphorins into classes III–VII.3 Semaphorins in classes IV–

VII are membrane bound, whereas semaphorins in class III are secreted. Human class IV 

semaphorins are seven in number: Sema4A–4G. All feature Sema domains, plexin-semaphorin-

integrin (PSI) domains, and immunoglobulin (Ig)-like domains (Fig. 1). The Sema domain is a highly 

conserved variant of the seven-blade beta-propeller fold and is the distinctive element of the 

semaphorins. The PSI domain is rich in cysteines and lies structurally adjacent to the Sema domain. 

The Ig-like domains of semaphorins are termed the C2-set domains; they resemble the antibody- 

constant domain. Sema4B, 4C, and 4F exhibit C-terminal PDZ-binding motifs that are known to 

mediate various types of signal transduction. Class IV semaphorins are implicated in the 

pathogenesis of, for example, autoimmune diseases, cancer, and degenerative diseases (Tables 1, 2). 

 

RECEPTORS OF SEMAPHORINS 

Two groups of transmembrane protein families, plexins and neuropilins (Nrps), are the main 

receptors for semaphorins (Fig. 1).9-13 Indeed, class IV semaphorins form receptor complexes with 



these molecules. These receptor complexes can encompass other transmembrane components, such 

as CD72 and the receptor tyrosine kinase, MET. Plexins B1, B2, and D1; neuropilin-1 (Nrp1), and 

TIM-2 serve as receptors for Sema4A. The CUB, LCCL-homology, coagulation factor V/VIII homology 

domains protein (CLCP1) serves as the receptor for Sema4B. The Plexin B2 receptor mediates 

Sema4C signaling. Sema4D binds to Plexins B1, B2, CD72, and MET. Plexin B2 may serve as a 

Sema4G receptor in the developing murine cerebellar cortex. The receptors for Sema4E and 4F have 

not been identified. 

 

SEMAPHORINS IN PATHOGENESIS 

Sema4A 

Sema4A is a class IV semaphorin involved in numerous physiological processes, including immune 

responses, retinal homeostasis, and angiogenesis. Sema4A is expressed in multiple types of immune 

cells and regulates their functions. For instance, Sema4A expressed in polarized type 1 helper T (TH1) 

cells is crucial in their differentiation.14 Indeed, Sema4A-deficient mice display impaired TH1 

responses to heat-killed Propionibacterium acnes, a TH1-inducing bacterium, in vivo. Conversely, 

Sema4A-deficient mice exhibit augmented type 2 helper T (TH2) cell responses against 

Nippostrongylus brasiliensis, a TH2-inducing intestinal nematode.14 

Sema4A also contributes to maintenance of regulatory T (TREG) cell functions.15 Sema4A 

expressed by immune cells and Nrp1 by TREG cells interact to potentiate TREG-cell function and 



survival. Ligation of Sema4A to Nrp1 abrogates Akt phosphorylation intracellularly and at the 

immunologic synapse by phosphatase and tensin homologue (PTEN), thereby promoting nuclear 

localization of the transcription factor FoxO3a. 

 

Sema4A in retinitis pigmentosa 

Retinitis pigmentosa (RP) is an inherited degenerative eye disease characterized by degeneration of 

photoreceptors leading to severe vision impairment. More than 100 mutations associated with RP 

pathogenesis have been discovered. Most of the proteins encoded by these genes are essential for 

maintenance of photoreceptor or retinal pigment epithelium (RPE) homeostasis.16 

Sema4A is involved in the pathogenesis of RP. Insertion of a gene trap vector into intron 11 

of the mouse Sema4A gene resulted in loss of the retinal photoreceptor layer.17 In addition, Sema4A-

deficient mice displayed marked photoreceptor degeneration.18 The outer segment of photoreceptors 

in these mice was disrupted at postnatal day 14 (P14) and they showed complete loss of photoreceptors 

by P28, largely a result of increased apoptosis. Sema4A regulates two distinct endosomal-sorting 

pathways critical for the survival of photoreceptor cells (Fig. 2). 18 Sema4A plays a role in Rab11/FIP2-

mediated endosomal sorting in RPE cells and contributes to maintenance of photoreceptor 

homeostasis (Fig.2a). In the absence of oxidative stress, the lysosomal precursor protein prosaposin 

is preferentially transported to lysosomes after binding to sortilin in late endosomes and is then 

processed to saposin. Some prosaposin is released via a transport mechanism of late endosomes, the 



multivesicular body (MVB), and exosomes. In response to oxidative stress, Sema4A switches the 

endosomal sorting of prosaposin from lysosomes to exosomes (which then release the protein). Late 

endosomes containing prosaposin fuse with Rab11/FLIP2-dependent early endosomes expressing 

Sema4A, triggering MVB formation. Prosaposin binds to Sema4A in MVB, followed by exosome-

dependent secretion of the complex from the RPE. The secreted prosaposin prevents light-induced 

photoreceptor apoptosis. Also, Sema4A plays a role in the retinoid cycle. In the absence of oxidative 

stress, Sema4A appropriately sorts retinoid-binding proteins with retinoids between the cell surface 

and endoplasmic reticulum (ER), by which 11-cis-retinal, a phototransduction chromophore, is 

regenerated and returned to photoreceptors (Fig. 2b). All-trans-retinol is taken up in an 

interphotoreceptor retinoid-binding protein (IRBP)-dependent manner. Sema4A regulates 

Rab11/FLIP2-dependent endosomal trafficking of all-trans-retinol bound to the cellular retinol 

binding protein-1 (CRBP1) from the cell membrane surface to the ER, and also the trafficking of 11-

cis-retinal generated from all-trans-retinol in the ER [and then bound to cellular retinaldehyde-

binding protein (CRALBP)] from the ER to the cell membrane surface. 

Consistent with these experimental findings, D345H, F350C, and R713Q, mutations in 

Sema4A, have been identified in patients with retinal degenerative diseases.19 A series of knock-in 

mouse lines harboring Sema4A with the F350C mutation showed severe retinal degeneration.20 In 

the retina of knock-in mice, Sema4AF350C mutant protein showed abnormal aggregation and mis-

localization in RPE cells, leading to impaired endosomal sorting of factors such as prosaposin. Of note, 



lentivirus-mediated transfer of Sema4A into RPE cells in neonatal Sema4A-deficient mice prevented 

retinal degeneration. 

 

Sema4A in multiple sclerosis 

Multiple sclerosis (MS) is a myelin-directed autoimmune disease, in which malfunctioning immune 

cells destroy the fatty substance that coats and protects nerve fibers in the brain and spinal cord.21 

In MS, myelin sheath destruction is primarily caused by multifocal inflammation resulting from T-

cell and macrophage infiltration and oligodendrocyte death.22,23 Although the pathogenesis of MS is 

unclear, it is multifactorial and involves genetic and environmental factors. When genetically 

predisposed individuals are exposed to an environmental trigger, myelin-specific T cells are activated, 

and MS develops.24 Studies with animal models and/or patients with MS indicated that the 

involvement of T helper 17 (TH17) cells and TH1 cells is crucial for development of MS. Additionally, 

dysfunction of antigen-presenting cells is important for pathogenesis of MS—their inappropriate 

activation may trigger differentiation of myelin-specific T cells. The mouse model of autoimmune 

encephalomyelitis (EAE) is most commonly used to study autoimmune demyelinating diseases and is 

regarded as relevant to MS. In the EAE model, inflammatory responses and focal demyelination are 

observed in mice immunized with myelin proteins such as myelin basic protein, myelin 

oligodendrocyte glycoprotein, and proteolipid protein in combination with an adjuvant. EAE can also 

be reproducibly induced by the passive transfer of myelin antigen-reactive T cells. The EAE model 



reproduces the histopathological features of MS, including deleterious lymphocyte infiltration, 

demyelination, substantial axonal loss, and reactive gliosis. 

Sema4A is expressed in CD4+ T cells and is crucial for the activation and differentiation of 

helper T cells.13,14 Indeed, Sema4A-deficient mice showed attenuated responses in EAE and treatment 

with a monoclonal antibody against Sema4A blocked the development of EAE. In addition, the serum 

Sema4A levels are significantly higher in patients with MS than in healthy subjects or patients with 

other neurological diseases.25 Patients with MS who have high serum Sema4A levels showed 

significantly increased proportions of TH17 cells compared to healthy subjects or patients with low 

serum Sema4A levels. Sema4A is overexpressed on dendritic cells (DCs) in patients with MS, and 

shed from them in a metalloproteinase-dependent manner. Furthermore, the serum level of Sema4A 

is correlated with unresponsiveness to interferon β (IFN-β) therapy. These results strongly support a 

role for Sema4A in the TH17-mediated pathogenesis of MS. 

 

Sema4A in protection against infectious diseases 

Roles for Sema4A in T cell function and protection against bacterial infection have been reported. As 

described above, Sema4A is highly expressed in TH1 cells and is involved in their antigen-specific 

activation and differentiation. TH1 cells derived from Sema4A-deficient mice show attenuated 

responses to Propionibacterium acne,14 whereas Sema4A-deficient TH2 cells show potentiated 

responses against Nippostrongylus brasiliensis. Therefore, Sema4A is crucial for T-cell priming and 



regulating TH1/TH2 responses to bacterial infection. 

As in CD4+ T cells, Sema4A is abundantly expressed in CD8+ T cells and is crucial for their 

function.26 CD8+ T cells from Sema4A-deficient mice showed impaired IFN-γ and tumor necrosis 

factor α (TNF-α) production and granzyme B, perforin, and FAS-L induction. In addition, Sema4A-

deficient mice exhibited impaired pathogen-specific effector CD8+ T cell responses to ovalbumin 

(OVA)-expressing Listeria monocytogenes (LM-OVA) infection, an in vivo model of acute infection and 

responsive activation of CD8+ T cells. Furthermore, Sema4A-deficient CD8+ T cells showed 

significantly reduced mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity and, 

conversely, elevated mechanistic/mammalian target of rapamycin complex 2 (mTORC2) activity. This 

suggests that Sema4A is associated with activation of mTORC1 in CD8+ T cells.  

Sema4A is also involved in virus infection and its symptoms. Depletion of plasmacytoid 

dendritic cells (pDCs) during primary Pneumovirus infection predisposed adult mice to severe 

inflammation in the early phase and, subsequently, asthma upon reinfection.27 Sema4A expressed by 

pDCs contributed to expansion of functional Nrp1+ TREG cells. Sema4A-dependent TREG cell expansion 

induced by the microbial metabolite propionate protected against severe viral bronchiolitis and 

subsequent asthma in pDC-depleted neonatal mice. 

 

Sema4A in allergic diseases 

Allergic diseases including asthma, allergic dermatitis, and allergic rhinitis are prevalent chronic 



immunological diseases. Allergic diseases are influenced by multiple genetic and interacting 

environmental factors.28,29 These diseases have several shared clinical and histopathological features, 

including elevated serum levels of IgE and TH2-type cytokines and severe infiltration of eosinophils 

and mast cells.30 Fundamentally, allergy is an adaptive immune response to allergens. Various types 

of immune cells—including TH2 cells, allergen-specific IgE-producing cells, eosinophils, M2 

macrophages, and type 2 innate lymphoid cells (ILC2s)—are implicated in the pathogenesis of allergic 

diseases.31,32 

Sema4A is involved in the pathogenesis of allergic asthma. In a model of OVA-specific 

experimental asthma, Sema4A-deficient mice exhibited enhanced airway hyperreactivity.33 

Functional analysis revealed increased pulmonary eosinophil infiltration in knock-out mice, as well 

as increased levels of IgE and TH2 cytokines in bronchoalveolar lavage (BAL) fluid. These airway 

hyperreactivity symptoms and TH2-mediated responses were reduced by in vivo systemic 

administration of Sema4A-Fc protein. Moreover, the utility of Sema4A as a novel immunotherapeutic 

has been reported.34 Sema4A has also been implicated in the pathogenesis of allergic dermatitis. 

Sema4A-deficient mice spontaneously develop skin lesions resembling atopic dermatitis (AD) in 

human, and the diseased mice had severe mast cell infiltration of the skin and elevated serum levels 

of IgE.33 Furthermore, roles for Sema4A in allergic rhinitis have been suggested. Sema4 is highly 

expressed in eosinophils infiltrating nasal polyps.35 The serum levels of Sema4A were significantly 

elevated in patients with eosinophilic chronic rhinosinusitis (ECRS) and asthma. Sema4A supports 



eosinophil survival and activation via an IL-5R/STAT5-dependent pathway. 

 

Sema4A and inflammatory bowel disease 

Inflammatory bowel diseases (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), is a 

group of chronic inflammatory diseases of the gastrointestinal tract in which autoimmunity plays a 

direct pathogenic role. Sema4A is also involved in the pathogenesis of these diseases. The serum levels 

of Sema4A are significantly lower in patients with CD or UC compared to control subjects.36 

Immunohistochemistry showed increased expression of Sema4A in infiltrating lymphocytes of the 

lamina propria in active CD and UC, implicating Sema4A in regulating local tissue inflammation in 

the bowel. 

 

Sema4A in systemic sclerosis 

Systemic sclerosis (SSc) is a rare autoimmune inflammatory disease characterized by activation of 

the immune system and fibrosis of the skin and major internal organs.37,38 The resultant skin 

thickening and stiffness and loss of internal organ function lead to profound disability and premature 

death. The cause of SSc has not been elucidated, however, it is likely to involve environmental factors 

in a genetically primed individual. 

A role for Sema4A in SSc has been suggested.39 Serum levels of Sema4A were significantly 

higher in patients with SSc than in healthy subjects, and the former had elevated Sema4A expression 



in circulating monocytes and CD4+ T cells. Sema4A enhanced the production of TH17 cytokines 

induced by CD3/CD28. In addition, secreted interleukin-17 (IL-17) induced the production of 

chemokines and inflammatory mediators in dermal fibroblasts. Sema4A also plays a direct role in 

fibrosis by inducing the production of extracellular matrix components and the expression of the 

myofibroblast marker α-smooth muscle actin (α-SMA) in dermal fibroblasts. 

 

Sema4A in cancer 

Sema4A V78M germline mutation was identified by whole-exome sequencing in an Austrian kindred 

with familial colorectal cancer type X (FCCTX).40 The function of Sema4AV78M was dependent on 

enhanced mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) and 

phosphatidylinositol-3 kinase (PI3K)/Akt signaling. Two further Sema4A mutations, G484A and 

S326F, and the single-nucleotide polymorphism (SNP), P682S, were also identified. The P682S SNP 

was significantly correlated with the FCCTX phenotype, resulting in an increased risk of cancer. 

 Sema4A was identified as a novel therapeutic target of myeloma.41 Targeting Sema4A using 

an antibody-drug conjugate potently and selectively eradicated myeloma cells in vitro and in vivo. 

Sema4A conferred drug resistance on hepatocellular carcinoma by inducing the epithelial-

mesenchymal transition (EMT).42 Sema4A promoted the progression of breast cancer by preventing 

apoptosis induced by severe hypoxia.43 Enhanced expression of Sema4A attenuated the progression 

of oral squamous cell carcinoma cells by inhibiting angiogenesis, invasion, and migration.44 



 

Sema4B 

The function of Sema4B in lung cancer has been investigated. Sema4B plays important roles in 

immune cell responses. Sema4B expressed by T and B cells negatively regulates basophil function by 

promoting T cell–basophil interactions.45 Basophil is a rare type of white blood cell that accounts for 

less than 1% of peripheral blood leukocytes. These cells are responsible for the development of acute 

and chronic allergic diseases via IgE-mediated reactions. Sema4B-deficient mice have considerably 

elevated serum levels of IgE, although lymphocytes or DCs from these mice do not show impaired 

functions.45 In addition, Sema4B-deficient mice exhibit augmented basophil-mediated memory IgE 

production, implying involvement of Sema4B in basophil-mediated TH2 and humoral memory 

responses. 

 

Sema4B in lung cancer 

Important roles for Sema4B in non-small cell lung cancer (NSCLC) have been reported.46-49 Sema4B 

interacts with CLCP1 and enhanced the ubiquitination and proteasome degradation of CLCP1.46 

RNAi-mediated knockdown of CLCP1 expression significantly reduced the motility of NSCLC cells. 

In the cited report, CLCP1 was expressed by NSCLC cells but endogenous Sema4B expression was 

not clearly evident. However, some scholars have reported Sema4B expression in NSCLC cell lines 

and tumor tissues,47-49 suggesting co-expression of Sema4B and the receptor thereof (CLCP1) in 



NSCLC cells. In addition, the expression of Sema4B in NSCLC cells was repressed by hypoxia-

inducible factor 1 (HIF-1).47 Ectopic expression of Sema4B abrogated hypoxia-induced invasion of 

NSCLC cells. Overexpression of Sema4B decreased the expression of matrix metalloproteinase-9 

(MMP-9),48 decreasing NSCLC invasiveness. Sema4B is also linked to the growth of NSCLC cells.49 

FoxO1 nuclear retention by suppression of PI3K/Akt signaling was induced by Sema4B, inhibiting 

NSCLC cell growth.  

 

Sema4B in skin disease 

A genome-wide meta-analysis implicated variants in Sema4B in the risk of severe acne vulgaris.50 

Putative causal variants disrupt the coding region of WNT10A and a P63 transcription factor binding 

site in intron 1 of Sema4B at 15q26.1. 

 

Sema4C 

The role of the class IV semaphorin, Sema4C, in a variety of cancers has been investigated. 

 

Sema4C in cancers 

Sema4C–Plexin B2 axis is essential for the growth of breast carcinoma cells. Sema4C is expressed in 

human breast cancers and its elevated expression correlates with a poor outcome.51 Immunoblotting 

suggested that both Sema4C and its receptor Plexin B2 were expressed by various breast cancer cell 



lines. The underlying mechanism involves the activity of leukemia-associated Rho GEF (LARG), a 

plexin-associated RhoA exchanger protein. Sema4C/Plexin B2/LARG-dependent RhoA signaling is 

required to sustain breast cancer cell proliferation. Overexpression of Sema4C bestowed on breast 

cancer cells a luminal-type phenotype, leading to tamoxifen resistance, estrogen-independent growth, 

and metastasis. Targeting Sema4C-mediated signaling resulted in cell cycle arrest in the G2/M phase 

and cell senescence. Reverse signaling of Sema4C elicits invasive reprogramming of breast cancer 

cells.52 Although semaphorins ordinarily act as ligands via the intracellular domain of plexins, some 

transmembrane semaphorins act as receptors and mediate reverse signaling via their intracellular 

domains.53,54 Sema4C reverse signaling augmented expression of the transcriptional regulators ID1 

and ID3 via transforming growth factor β (TGF-β)/bone morphogenetic protein (BMP) receptor 

signaling and SMAD1/5 activation. Although this reprogramming suppressed the typical features of 

the EMT in invasive carcinoma cells, the resultant phenotype promoted metastatic colonization in 

vivo.  

 

Sema4C in neural development 

The Sema4C–Plexin B2 axis is reportedly involved in neural development. Sema4C-deficient mice, as 

well as Plexin B2-deficient mice, displayed exencephaly and distinctive defects of the cerebellar 

granule cell layer.55 Sema4C-deficient mice also showed ventral skin pigmentation defects, suggesting 

the involvement of Sema4C in melanocyte development. In situ hybridization revealed that Sema4C 



was expressed in both granule cells and Bergmann glial cells during cerebellar development. The 

receptor Plexin B2 was also expressed by granule cells in the developing cerebellum. 

 

Sema4D 

Sema4D, also known as CD100, is involved in multiple physiological processes including neural 

development, immune responses, and tissue regeneration. Sema4D expressed by oligodendrocytes, 

together with its receptor Plexin B1, functions in axon guidance and induces growth-cone collapse in 

the central nervous system.56 Sema4D is the first shown to exert immunoregulatory effects.57,58 The 

plexin B subfamily (B1, B2, and B3) and CD72 are the receptors for Sema4D in the immune 

system.13,59 Sema4D is expressed by activated B cells, T cells, DCs, and mast cells. Sema4D-deficient 

mice show abnormal B cells and altered antibody responses.59 Immunological assays revealed that 

the interaction of Plexin B1 on B cells with Sema4D enhances B-cell proliferation and lifespan.60 

Additionally, Sema4D–CD72 interactions between B cells contribute to maintenance of B-cell subsets 

by moderating B-cell receptor (BCR) signals. Sema4D is also expressed in germinal center B cells, 

and the Sema4D–CD72 axis may promote robust population expansion of these cells.61 Sema4D is 

also expressed by CD4+ T cells, which is associated with B cell-mediated immunity. After formation 

of germinal centers in lymphatic follicles, Sema4D expressed by T cells plays an important role in the 

interaction between helper T cells and germinal center B cells. Sema4D signaling promotes the 

survival of germinal center B cells and efficient selection of high-affinity B cells. Consistent with these 



functions, Sema4D-deficient mice display impaired antibody affinity maturation and poor generation 

of antigen-specific germinal center B cells when immunized with T cell-dependent antigens.62 

Sema4D expressed by gamma-delta T cells is crucial for healing of skin damage via interactions with 

Plexin B2.63 

 

Sema4D in vasculitis 

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is an autoimmune disease 

that manifests as severe, systemic, small-vessel vasculitis.64,65 AAV is characterized by the 

development of autoantibodies to myeloperoxidase (MPO-ANCA) and the neutrophil protein, 

leukocyte proteinase 3 (PR3)-ANCA. 

 Sema4D is associated with the pathogenesis of AAV. The serum levels of soluble Sema4D in 

patients with AAV were significantly higher than in healthy subjects and patients with other 

autoimmune diseases.66 Sema4D levels in patients with AAV were correlated with disease activity 

scores. By contrast, cell-surface expression of Sema4D was downregulated in neutrophils from 

patients with AAV, suggesting that proteolytic cleavage of membrane Sema4D is augmented. A direct 

cellular interaction between Sema4D on neutrophils and Plexin B2 on endothelial cells negatively 

regulated neutrophil extracellular trap (NET) formation in neutrophils (Fig. 3a). NETs are 

extracellular webs of chromatin released from activated neutrophils that induce local inflammation 

(mainly against infection).67 Such negative regulation of NETs by Sema4D prevents vasculitis. Indeed, 



recombinant Plexin B2 suppressed neutrophil Rac1 activation and inhibited ANCA-induced oxidative 

burst and resultant NET formation, suggesting that Sema4A has potential as a biomarker and 

therapeutic target for AAV. 

 Sema4D plays an important role in the pathogenesis of Kawasaki disease (KD).68 KD is a 

systemic medium-vessel vasculitis and is the most common type of childhood systemic vasculitis in 

which coronary arteries are most frequently affected.69,70 Serum levels of soluble Sema4D were 

elevated in KD patients, especially in those with coronary artery lesions. The Sema4D levels 

correlated positively with disease severity and the serum concentrations of IL-1β, IL-6, and IL-8. 

Sema4D released from neutrophils promotes inflammatory cytokine production in endothelial cells 

via binding with Plexin B1 and B2. 

 

Sema4D in rheumatoid arthritis 

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation. The 

pathogenesis of RA involves chronic inflammation of the synovial membrane, which also destroys 

articular cartilage and bone. Both genetic and environmental factors contribute to the pathogenesis 

of RA, in which several immune pathways involving various types of immune cells (T cells, B cells, 

macrophages, neutrophils, and DCs) and non-immune cells (fibroblasts and chondrocytes), play 

crucial roles. Sema4D is also involved in the pathogenesis of RA.71 Serum and synovial-fluid levels of 

soluble Sema4D were elevated in patients with RA and were correlated with disease activity. Soluble 



Sema4D is proteolytically shed by a disintegrin and metalloproteinase with thrombospondin motifs 4 

(ADAMTS4). The resultant soluble Sema4D enhanced the production of TNFα and IL-6 by monocytes, 

thereby upregulating ADAMTS4 expression in synovial cells. Therefore, Sema4D-mediated RA 

pathogenesis involves a positive-feedback loop. Treatment with an anti-Sema4D antibody reduced 

inflammation in a collagen-induced arthritis (CIA) mouse model. This indicates that Sema4D could 

be a potential therapeutic target for RA. An anti-Sema4D antibody (VX15/2503) showed promise in 

phase I clinical trials involving patients with advanced solid tumor (NCT01313065)72 and multiple 

sclerosis (NCT01764737).73 VX15/2503 inhibits the interaction between Sema4D and Plexin B1,74,75 

and is expected to exert a therapeutic effect by preventing tumor angiogenesis and the recruitment 

of tumor associated macrophages (TAMs) in antitumor immunity76,77 or by impairing inflammatory 

responses and demyelination in multiple sclerosis.73 

 

Sema4D in eosinophilic chronic rhinosinusitis 

Eosinophilic chronic rhinosinusitis (ECRS) is a type of chronic rhinosinusitis characterized by severe 

eosinophilic infiltration. Although the causes of ECRS are unclear, stimulation of TH2 cells and 

resultant IgE production are thought to be key factors. Sema4D is involved in the pathogenesis of 

ECRS.78 Serum levels of soluble Sema4D were elevated in patients with ECRS and positively 

correlated with disease severity. Expression of Sema4D in tissue-infiltrating eosinophils in nasal 

polyps was higher in patients with ERS than in healthy subjects. Sema4D expression on the surface 



of eosinophils was decreased in an MMP-9-mediated manner. Sema4D increases the permeability of 

vascular endothelial cells by binding to Plexin B1 and activating RhoA.76,79 Therefore, the increased 

number of eosinophils in ERS is a result of the Sema4D–Plexin B1 axis-mediated increased vascular 

permeability (Fig.3b). Indeed, blockade of Sema4D by a therapeutic antibody ameliorated eosinophilic 

infiltration in sinus tissues and nasal lavage fluid in an ECRS animal model. 

 

Sema4D in primary sclerosing cholangitis 

Whole-exome sequencing analysis demonstrated the involvement of Sema4D in primary sclerosing 

cholangitis (PSC).80 PSC is a severe hepatobiliary disease characterized by inflammatory and fibrotic 

bile duct lesions, in which multiple genetic and environmental factors are implicated.81 There are 

neither early diagnostic markers nor effective therapies for PSC. PSC causes considerable morbidity 

and mortality via the subsequent development of liver cirrhosis and high risk of 

cholangiocarcinoma.82,83 A large number of PSC susceptibility genes have been identified. Whole-

exome sequencing in a family with autosomal dominant inheritance of PSC revealed a heterozygous 

germline missense mutation in Sema4D encoding a K849T variant.80 This mutation was associated 

with impairment of T-cell functions and INF-γ secretion. Notably, knock-in mice harboring the 

Sema4D K849T mutation developed severe cholangitis phenotypes in an in vivo model of cholestatic 

disease induced by a diet rich in 3,5-diethoxycarbonyl-1,4-dihydrocollidine. 

 



Sema4D in osteoporosis/osteopetrosis 

The Sema4D signaling axis plays an important role in bone homeostasis. Sema4D-deficient mice, as 

well as its receptor Plexin B1-deficient mice, show impaired osteoclast differentiation and the 

phenotype of osteopetrosis.7 Binding of Sema4D on osteoclasts to Plexin B1 on osteoblasts maintained 

osteoblast motility by activating the small GTPase, RhoA, and suppressing insulin-like growth factor 

1 (IGF-1) signaling; the dysregulation of this homeostasis led to osteopetrosis (Fig. 3c). A Sema4D-

specific antibody markedly suppressed bone loss in animal models of postmenopausal osteoporosis. 

In addition, the bone resorption phenotype in Sema4D-deficient mice was dependent on ovarian 

function; ovariectomy significantly abrogated the osteopetrotic phenotype.84 Spatial segregation of 

osteoblasts and osteoclasts is essential for bone homeostasis. The Sema4D–Plexin-B1 signaling axis 

is essential in contact inhibition of locomotion between osteoblasts and osteoclasts.85 Osteoclasts 

express Sema4D and induce contact inhibition of locomotion in osteoblasts, the morphological changes 

of which are associated with reorganization of myosin II, phosphatidylinositol (3,4,5)-trisphosphate 

(PIP3), and adhesion and active cell division cycle 42 (Cdc42). The serum Sema4D levels were 

significantly higher in postmenopausal patients with osteoporosis, compared to healthy subjects.86 In 

these patients, the serum Sema4D levels were positively correlated with those of bone resorption 

markers such as tartrate-resistant acid phosphatase 5b (TRACP-5b) and N-terminal telopeptide 

(NTX) and negatively correlated with those of bone formation markers such as bone alkaline 

phosphatase and osteocalcin. Additionally, Sema4D might be involved in the pathogenesis of other 



skeletal diseases. Copy number loss of the Sema4D region that confers a risk of acetabular dysplasia, 

a major and common cause of secondary hip osteoarthritis, was identified by whole-genome 

screening.87 

 

Sema4D in cancer 

Sema4D is associated with the etiology of various types of cancer.88,89 Roles for Sema4D have been 

demonstrated in breast cancer,90-101 colorectal carcer,102-108 gastric cancer,109 esophageal cancer,110,111 

lung cancer,112-114 pancreatic cancer,107,115-117 cholangiocarcinoma,118 prostatic cancer,119-123 bladder 

cancer,124,125 kidney cancer,125 cervical cancer,126 ovarian cancer,127-130 malignant melanoma,131 

osteosarcoma,132 head-and-neck cancer,133-137 medulloblastoma,138 leukemia,139-143 malignant 

lymphoma,144 and multiple myeloma (Fig. 4).145 Cancer cells express Sema4D or its receptor, which 

are typically up- or down-regulated in tumors compared to normal tissues. These Sema4D-mediated 

signals can promote or inhibit the proliferation, survival, migration, and chemotherapy resistance of 

cancer cells. The effects can switch from positive to negative and vice versa, depending on the 

situation. For instance, in breast carcinoma cells, switching of the expression of the receptor tyrosine 

kinases, ErbB2 and Met, results in a shift from activation to inactivation of RhoA, leading to 

conversion from chemotaxis to inhibition of migration.90 The significance of Sema4D in breast cancer 

cells was confirmed by genome-wide sequencing. Metastatic variants of circulating tumor cells (CTCs) 

from breast cancer patients suggested that Sema4D regulates tumor-cell transmigration through the 



blood–brain barrier.91 Sema4D mediates brain metastasis by promoting CTC transmigration through 

the blood–brain barrier (BBB), in initial step of which Sema4D is crucial. Amplification of the 

oncoprotein MYC may cooperate with Sema4D to promote brain metastasis. Sema4D and MYC 

expression levels were significantly associated in breast cancer cells with the brain metastatic 

phenotype.  

Sema4D is a critical factor in the tumor microenvironment, particularly for angiogenesis. 

The development of new blood vessels is a crucial step in cancer progression because tumors require 

a sufficient supply of oxygen and nutrients for growth. Thus, tumors release pro-angiogenic stimuli 

and depend on angiogenesis for their growth and survival, which explains the tumor shrinkage 

induced by anti-angiogenics. These drugs are associated with tissue hypoxia, which induces neo-

angiogenesis–sustaining signals and may enhance the invasive/metastatic behavior of cancer 

cells.146,147 Sema4D exerts a potent proangiogenic effect in vitro and in vivo by binding to the high-

affinity receptors Plexin B1 and B2 on endothelial cells.148 A study in Sema4D-deficient mice indicated 

that Sema4D is not essential for developmental angiogenesis. However, many human cancers express 

Sema4D, which can be released in soluble form and induce endothelial cell chemotaxis and blood 

vessel growth in vivo.149 In addition, experimental tumors grown in Sema4D-deficient mice contained 

smaller and aberrant vessels poorly lined with pericytes, and both cancer growth and metastases 

were strikingly reduced.76 Notably, in addition to being produced by cancer cells, Sema4D may be 

released into the tumor microenvironment by inflammatory cells, tumor-associated macrophages,76 



and, potentially, platelets.150 

 

Sema4E 

The physiological and pathological roles of Sema4E in mammals are unclear. However, in a zebrafish 

model, Sema4E functioned as a repellant factor for facial and gill motor axons within the pharyngeal 

arches.151 

 

Sema4F 

The importance of Sema4F in neural development and cancer biology has been reported. Sema4F 

interacts with scaffolding proteins such as postsynaptic density protein 95 (PSD-95) in the CNS.152 

The participation of Sema4F in oligodendrocyte precursor migration was also reported.153 

 

Sema4F in cancer 

Sema4F is implicated in breast cancer99 and prostate cancer.154 Sema4F overexpression induces the 

proliferation and migration of, and may be involved in perineural invasion by, prostate cancer cells.154 

Sema4F might be a critical regulator of the interaction between cancer and nerves and contribute to 

cancer-induced neurogenesis. Patients with prostate cancer with high Sema4F expression are at 

significantly higher risk of biochemical recurrence, suggesting the utility of Sema4F as a biomarker. 

Moreover, Sema4F suppressed the proliferation of differentiated Schwann cells ensheathing axonal 



processes in peripheral nerves.155 Loss of neurofibromin in Schwann cells leads to disruption of 

Schwann cell/axonal interactions by upregulating the Ras/Raf/ERK signaling pathway. Thus, Sema4F 

is involved in the mechanism by which heterotypic cell-cell contacts control cell proliferation and 

suppress tumorigenesis. 

 

Sema4G 

Although the roles of Sema4G are unclear, a study in a mouse model showed that Sema4G gene 

deletion causes no overt phenotype, but combined deletion of Sema4C and Sema4G results in an 

enhanced cerebellar phenotype.55 The work suggested that Plexin B2 served as a receptor for Sema4G. 

In addition, the Sema4G gene is a component of the signatures of cancers,156-158 schizophrenia,159 and 

diabetes mellitus.160 

 

SUMMARY AND PERSPECTIVES 

Semaphorins and their receptors, axon guidance factors, are implicated in the pathogenesis of several 

diseases. A deeper understanding of semaphorin-dependent pathogenesis could lead to development 

of therapies and prognostic methods for various diseases. Inhibitory semaphorin signals that restrict 

disease phenotypes in preclinical mouse models might be therapeutic targets. Indeed, drugs targeting 

certain semaphorins or their receptors, including Sema4D and Plexin A1, are under development. 

Because the semaphorin signaling network is complex and their functions are cell-context dependent, 



further studies are needed to establish their value members as prognostic predictors and putative 

therapeutic targets. Because semaphorins function in diverse physiological processes, drugs based on 

them might have unexpected side effects, particularly in the central nervous and vascular systems. 

To develop safer drugs, further data are needed. Finally, deciphering semaphorin-mediated 

pathogenesis will facilitate the development of novel therapeutics for a variety of diseases. 
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FIGURE LEGENDS 

Figure 1. Structure of class Ⅳ semaphorins and their receptors. Class Ⅳ semaphorins (Sema4A-G) 

are membrane-bound proteins composed of a signal peptide (SP), Sema domain (Sema), plexin-

semaphorin-integrin domain (PSI), immunoglobulin-like domain (Ig), and transmembrane domain 

(TM). Semaphorins bind to class B and D plexins. Associations between Plexin B1 and Sema4A and 

4D; Plexin B2 and Sema4A, 4C, and 4D; and Plexin D1 and Sema4A have been reported. In addition, 

SemaA binds to neuropilin-1 and TIM-2 (T-cell, immunoglobulin, and mucin domain protein 2). 

Sema4D binds to MET and CD72. Sema4B binds to CLCP1 (CUB,LCCL-homology, coagulation factor 

V/VIII homology domains protein). 

 

Figure 2. Roles of Sema4A in retinal homeostasis. (a) Schematic of Sema4A-mediated endosomal 

sorting. Sema4A contributes to the appropriate secretion of prosaposin via the Rab11/FIP2 

endosomal-sorting pathway. Upon exposure to light, prosaposin preferentially binds to Sema4A in the 

multivesicular body (MVB), from which exosomes containing prosaposin are secreted. Secreted 

prosaposin functions as an antiapoptotic factor for photoreceptors. (b) Schematic of Sema4A-mediated 

intracellular sorting of retinoid-binding proteins in the retinoid cycle. Sorting of CRALBP and CRBP1, 

which are associated with all-trans-retinol and 11-cis-retinal transport, depends on Sema4A and the 

Rab11/FIP2-mediated endosomal-sorting machinery. 

 



Figure 3. Roles of Sema4D in the pathogenesis of autoimmune diseases. (a) Schematic of Sema4D-

mediated pathogenesis of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). 

In health, Sema4D on neutrophils binds Plexin B2 on endothelial cells and inhibits excessive Rac1 

activation of neutrophils. In AAV, Sema4D on the neutrophil surface is shed, resulting in aberrant 

activation of neutrophils with generation of reactive oxygen species (ROS) and neutrophil 

extracellular trap (NET) formation. (b) Schematic of Sema4D-mediated pathogenesis of eosinophilic 

chronic rhinosinusitis (ECRS). In nasal polyps from patients with ECRS, Sema4D on eosinophils is 

shed by the action of matrix metalloproteinase-9 (MMP-9) and secreted as a soluble form. Soluble 

Sema4D enhances eosinophil transendothelial migration by increasing endothelial permeability. (c) 

Schematic of Sema4D-mediated pathogenesis of osteopetrosis. Sema4D binds to Plexin B1 on 

osteoblasts and activates RhoA, inhibiting bone formation by suppressing insulin-like growth factor-

1 (IGF-1) signaling and by modulating osteoblast motility. Inappropriate activation or inactivation of 

these Sema4D/Plexin B1-mediated signals could be associated with the pathogenesis of osteoporosis 

and/or osteopetrosis. 

 

Figure 4. Roles of class Ⅳ semaphorins in cancer. Class IV semaphorins are associated not only with 

various processes in cancer cells but also in the tumor microenvironment, including tumor-infiltrating 

immune cells, angiogenesis, and neurogenesis. 

 


