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Equilibrium thermodynamic theory for the evaluation of temperature
distributions in overdriven steady-plane wave fronts

Tomokazu Sanoa)

Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Yukio Sano
Kobe University of Mercantile Marine, Higashi-Nada-Ku, Kobe 658-0022, Japan

~Received 12 March 2001; accepted for publication 26 June 2001!

Temperature distributions in overdriven steady wave fronts in solid 2024 Al shocked up to 80 GPa,
in which no melting occurred in the wave fronts, were evaluated using the equilibrium
thermodynamic theory. The effective strain increments were sufficiently small and the effective
temperature rise times were sufficiently long with respect to electron–phonon relaxation times to
justify using equilibrium thermodynamics. In addition, the sufficiently large viscous-stress
components supported the efficacy of the thermodynamic theory. The same is true of shocks up to
250 GPa in solid Pt and 230 GPa in solid Fe. Furthermore, the influence of viscous stress was
examined by evaluating the temperature distributions for inviscid 2024 Al, Pt, and Fe solids using
the equations for temperature derived from the Mie–Gru¨neisen equation. Finally, we demonstrate
that there might be a solid–liquid–solid Hugoniot between the solid and liquid–solid Hugoniots for
Fe and estimate the solid–liquid–solid and liquid–solid Hugoniots. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1397278#

I. INTRODUCTION

Sano and Abe1 developed the inside temperature (ITIM)
method, which implicitly includes heat transport, to estimate
temperature distributions in steady wave fronts in a solid. In
this method, there is a fundamental assumption that the state
of the solid in the wave front is close to thermodynamic
equilibrium. In addition, there is an assumption that heat
transport cancels the work performed by thermal stress in the
region of the wave front so both can be neglected. This as-
sumption of heat transport is valid if the viscous component
of normal stress is sufficiently large compared with its ther-
mal component. Sano and Abe evaluated the temperature dis-
tributions in multiple-structure waves and overdriven shock
waves for shocks up to 140 GPa in yttria-doped tetragonal
zirconia. The evaluated temperatures behind the shocks were
sufficiently correct as compared with those obtained using
the Walsh–Christian~WC! theory2 or the shock temperature
method. The evaluated distributions were fairly correct be-
cause the viscous-stress component was sufficiently large.
Therefore, the fundamental assumption and the assumption
of heat transport used in the ITIM method were considered
valid and, as a result, this method was deemed effective. The
main purpose of the present study is to present a method for
calculating the temperature in shock fronts that have a physi-
cally reasonable variation of temperature through the shock
front, namely, an essentially linear variation of temperature
versus volume. This method is appropriate for temperature
distributions in the shock front for shocks up to 200–300
GPa in metals. The subsidiary purposes are~1! to examine

the validity of equilibrium thermodynamics for the tempera-
ture calculations, and~2! to look for intermediate states of
melting in shock fronts.

Strain rates inside overdriven shock wave fronts induced
by 200–300 GPa shocks might reach 1011– 1012 s21. The
deformation at any material point in the wave front does not
change greatly during electron–phonon relaxation times of
10214– 10213 s, which are dominant up to 200–300 GPa.
The homogeneous volumetric component of deformation is
even smaller because plastic flow, which is heterogeneous on
an atomic scale, is very large. Consequently, if the temporal
rates of change of the inside temperatures are slow compared
with the characteristic relaxation rates of temperature, then
the electron–phonon system can maintain itself near me-
chanical and thermal equilibrium for shocks up to 200–300
GPa. The homogeneous component supports a great part of
the stress on the Rayleigh line, which is used in thermody-
namics of irreversible processes. Therefore, irreversible ther-
modynamics is applicable to overdriven shocks up to 200–
300 GPa if strain rates are smaller than 1012 s21 and if the
state inside the shock wave front structure can be regarded as
being essentially at thermal equilibrium.

It is not known, however, whether irreversible thermo-
dynamics is a valid theory for overdriven shocks because the
thermodynamic equilibrium of the states has not yet been
determined. This equation is still open because macroscopic
treatment of a material process without thermodynamics is
conceptually difficult.3 One method to answer this question
is to verify that the system remains near thermodynamic
equilibrium throughout the shock process, namely that the
fundamental assumption is valid. This can be verified by first
calculating the process from irreversible thermodynamicsa!Electronic mail: sano@mapse.eng.osaka-u.ac.jp
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and then comparing the temporal rates of change with appro-
priate characteristic rates as described above.

In the present study, the validity of the fundamental as-
sumption for metals in a range of temperatures below their
melting points, namely, for shocks up to 80 GPa in 2024 Al,4

250 GPa in Pt,4 and 230 GPa in Fe,5 was examined by esti-
mating effective strain rates and temperature rise times using
the equilibrium thermodynamic theory (ITIM method!. In ad-
dition, the efficacy of this method was verified by the suffi-
ciently large viscous-stress components compared with the
thermal component evaluated for those shocks. Furthermore,
the influence of viscous stress was examined by evaluating
the temperature distributions in overdriven steady wave
fronts in an inviscid 2024 Al solid shocked up to 80 GPa
using an equation for temperature derived from the Mie–
Grüneisen equation and comparing with those evaluated us-
ing the ITIM method. Here, an inviscid solid means a solid in
which no viscous stress is induced during shock loading. The
influence of viscous stress was also examined for shocks up
to 250 GPa in Pt and 230 GPa in Fe. Finally, intermediate
states of melting in shock fronts were investigated in Fe.

II. EQUILIBRIUM THERMODYNAMIC THEORY

The ITIM method is first described. This method provides
adequate treatment of the temperature distributions in the
shock fronts. Next, a method for estimating effective tem-
perature thicknesses is presented. Finally, equations by
which the temperature distributions in inviscid solids can be
correctly estimated are derived.

A. ITIM method

Sano and Abe1 developed the ITIM method for estimating
temperatureT in a steady wave front in a solid. Normal stress
s in a steady wave front is related to specific volumeV by
the Rayleigh line equation

ds52r0
2US

2dV, ~1!

where US is a constant velocity of the wave front andr
51/V is material density. Subscript 0 refers to a reference
state. They derived the following approximate equation by
assuming that heat transport and the work performed by the
thermal stress could cancel each other out:

T dS52~s2sE!dV, ~2!

whereS is entropy andsE is the thermal component of the
normal stresss. This assumption is valid if the work per-
formed by viscous stress is sufficiently large compared with
the work performed by thermal stress and heat transport. The
set of equations used in this method consists of an irrevers-
ible thermodynamic equation obtained by equating Eq.~2!
with the thermodynamic identity, the equation for cold stress
sC , and the equation for thermoelastic stresssE . The ther-
modynamic equation is expressed by

CV

dT

dV
1

g0

V0
CVT52~s2sE!, ~3!

whereg is the Grüneisen parameter,CV is the heat capacity
at a constant volume on the Rayleigh line, andg/V

5g0 /V0 is assumed. The heat capacities for 2024 Al and Pt
are given by the sum of a lattice and an electron part.6

CV53Nk1GT, ~4a!

whereN is the number of atoms per mole,k is the Boltzmann
constant, andG is given byG5G0(V/V0)g. The values ofg
andG0 for 2024 Al and Pt are listed in Table I. For Fe,5

CV53Nk. ~4b!

The equation forsC is given by

sC5sH2sTH
, ~5!

wheresH is a known Hugoniot function for normal stress,
which is represented assH(V), andsTH

is a Hugoniot func-
tion for thermal stress,sTH

(V), which is expressed by

sTH
5

g0

V0
E

0

TH
CV dT,

whereTH is the temperature behind the wave front, namely,
the Hugoniot temperature. The equation forsE is given by

sE5sC1sT , ~6!

wheresT is the thermal stress expressed by

sT5
g0

V0
E

0

T

CV dT.

Equations~3!–~6! were analyzed by an iterative method us-
ing a known Hugoniot functionsH(V) and a known Ray-
leigh line-stress functions(V) to determine the temperature,
cold compression curve, thermoelastic stress, and viscous
stress.

B. Temperatures behind wave fronts

The solution of Eq.~3! is given by

T5T0e~g0 /V0!~V02V!2e2~g0 /V0!V

3E
V0

V 1

CV
~s2sE!e~g0 /V0!VdV.

The solution for the temperatures behind the wave frontsTH

is obtained by substitutingVH into V in the above equation.

TABLE I. Input data for shock calculations in 2024 Ala, Pta, and Feb.

Quality 2024 Al Pt Fe

T0 (103 K! 0.293 0.293 0.293
r0 (g/cm3) 2.785 21.44 7.85
c ~cm/ms! 0.533 0.363 0.3574
s 1.338 1.472 1.920
q ~ms/cm! — — 20.68
g0 2.05 2.66 1.69
G0 (1024 cal /mole K2) 3.30 16.4 —
g 1.8 2.28 —
k ~cal/cm s K! 0.48 0.20 0.10

aSee Ref. 6.
bSee Ref. 10.
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TH5T0e~g0 /V0!~V02VH!2e2~g0 /V0!VH

3E
V0

VH 1

CV
~s2sE!e~g0 /V0!VdV. ~7!

The left side of the WC equation, which is expressed by Eq.
~A7!, is calculated using the above solution to become

CVH

dTH

dVH
1CVH

g0

V0
TH

52CVHe2~g0 /V0!VH
d

dVH
E

V0

VH 1

CV
~s2sE!e~g0 /V0!VdV.

~8!

The following equation holds:

d

dVH
E

V0

VH 1

CV
~s2sE!e~g0 /V0!VdV

5F d

dVH
E

V0

VH 1

CV
~s2sE!dVGe~g0 /V0!VH.

Consequently, Eq.~8! is reduced to

CVH

dTH

dVH
1CVH

g0

V0
TH52CVH

d

dVH
E

V0

VH 1

CV
~s2sE!dV.

~9!

The solution Eq.~7! thus satisfies Eq.~9!.
If CV is constant, then Eq.~9! is reduced to

CVH

dTH

dVH
1CVH

g0

V0
TH52

d

dVH
E

V0

VH
~s2sE!dV. ~10a!

If CV53Nk1GT with GT/3Nk!1, then an approximate
equation is obtained from Eq.~9!

CVH

dTH

dVH
1CVH

g0

V0
TH

52S 11
GHTH

3Nk D d

dVH
E

V0

VH
~s2sE!dV. ~10b!

The right sides of Eqs.~10a! and ~10b! are transformed as

d

dVH
E

V0

VH
~sE2sV!dV

52
d

dVH
E

V0

VH
~s2sH!dV1

d

dVH
E

V0

VH
~sE2sH!dV,

where the first term of the right side is the derivative of the
crescent area enclosed by a Rayleigh line and the Hugoniot
with respect toVH , which is expressed by1

2
d

dVH
E

V0

VH
~s2sH!dV5

1

2

dsH

dVH
~V02VH!1

1

2
~sH2s0!,

whereas the second term is zero because

2
d

dVH
E

V0

VH
~s2sE!dV5sE~VH!2sH~VH!50.

Therefore, Eq.~10a! is of the same form as the WC equation

CVH

dTH

dVH
1CVH

g0

V0
TH5

1

2

dsH

dVH
~V02VH!1

1

2
~sH2s0!.

~11!

Thus, the temperatures behind the wave fronts obtained us-
ing the ITIM method are consistent with the correct values
obtained using the WC equation ifCV is constant. In addi-
tion, for shocks up to 200–300 GPa in metals, the ITIM

method is a reasonable approximation to the standard
method becauseGT/3Nk!1. Therefore, the ITIM method is
expected to estimate the temperature distributions in the
wave fronts to a sufficient approximation if the fundamental
assumption and the assumption of heat transport are valid.

C. Effective temperature thickness

The effective thickness of the spatial profile of tempera-
ture ~effective temperature thickness! DZ is defined by6,7

DT

DZ
5UdT

dZU
max

, ~12!

whereZ is the Lagrangian coordinate moving with the same
velocity as the constant velocity of an overdriven steady
wave front, which is of an infinite width,8 and DT5TH

2T0 . The heat flux is thus assumed to vary spatially slowly
everywhere in the wave front. In general, the effective tem-
perature thickness is greater than the effective specific-
volume thickness.6 DerivativedT/dZ is related to heat flux
J(Z) by the steady heat conduction equation

J52
k

12«

dT

dZ
, ~13!

where k is the thermal conductivity and«(Z)51
2V(Z)/V0 is the strain. DerivativeudT/dZu is its maximum
when (12«)J is maximum, and this yields

DZ5
k~TH2T0!

$~12«!J%max

. ~14!

The continuity equation for heat transport is given by

dJ

dZ
5r0US

dQ

dV

dV

dZ
, ~15!

whereQ is the heat transferred to the material. The specific
volume wave in the steady wave front is assumed to extend
from Z50 to Z5`. By integrating both sides of Eq.~15!
from 0 to Z and then usingJ(0)5JH50, the equation for
heat flux is obtained:

J5US~«H2«!
dQ

dV
, ~16!

where«H512VH /V0 .
The quantity$(12«)J%max in Eq. ~14! is determined by

incorporating Eq.~16! into the ITIM method, where it was
assumed thatdQ/dV5sE2sS0

, wheresS0
is the stress that

varies along an isentrope passing through the reference state.
The effective temperature thickness is calculated, irrespec-
tive of the form and the effective thickness of the specific
volume wave.
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D. Temperature in inviscid solids

A quadratic equation for the temperature in the wave
front T is obtained by substituting Eq.~4a! into the equation
for sT shown above. The solution of this quadratic equation
is given by

T5
23Nk1A~3Nk!212G~V0 /g0!sT

G
, ~17a!

wheresT5sE2sC for an inviscid solid.s is correctly given
by Eq.~1! andsC is evaluated correctly using the WC equa-
tion. Therefore, Eq.~17a! correctly estimates temperature
distributions in the wave fronts in an inviscid solid. On the
other hand, for Eq.~4b!

T5
1

3Nk

V0

g0
sT . ~17b!

Equations~17a! and~17b! are used to examine the influence
of viscous stress on the temperature distributions.

III. RESULTS

A. Thermodynamic equilibrium

The data used for calculating the shocks in 2024 Al are
listed in Table I.6 The effective temperature thicknessesDZ
and rise timesDt for 20, 40, 60, and 80 GPa shocks obtained
using the equilibrium thermodynamic theory are given in
Table II, whereDt5DZ/US . The very small effective tem-
perature thicknesses indicate that there is a region where
temperatures change rapidly in each wave front, despite the
fact that the heat flux was assumed to vary gradually every-
where spatially. In this region plastic flow, which is hetero-
geneous on an atomic scale, is very large. Effective strain
rates«̇ calculated by«̇5«H /Dts for 20, 40, 60, and 80 GPa
shocks using Hugoniot strain«H andDts>Dt/3 ~see Ref. 6!
are listed in Table III. The effective strain rate of approxi-
mately 1.131011 s21, in which a relatively large plastic-

flow-deformation component was included, was obtained for
the 80 GPa shock. Even this large strain rate only yields an
increase in strain on the order of 1023 during the electron–
phonon relaxation times for metals~on the order of 10214 s!,
which are dominant at temperatures above the Debye tem-
perature for shocks up to 200–300 GPa. In addition, the
temperature rise time of approximately 0.89310211 s for the
80 GPa shock was sufficiently long compared with the relax-
ation times. Wallace9 discussed the question of equilibrium
in solid metals in detail. It is clear from Wallace’s discussion
that the electron–phonon system remains near thermody-
namic equilibrium even in the region where temperatures
vary rapidly due to the sufficiently small strain increase and
long temperature rise times on the relaxation time scale.
Therefore, the fundamental assumption is valid in 2024 Al
for up to 80 GPa. The data used for calculating the shocks in
Pt are listed in Table I. For 100, 150, 200, and 250 GPa
shocks, the values ofDZ andDt are given in Table II and the
values of«̇ are given in Table III. The fundamental assump-
tion is also valid up to 250 GPa in Pt for the same reason as
for 2024 Al. We used the data of McQueenet al.,10 which are
listed in Table I, andCV53Nk as in Ref. 5 for Fe. For 100,
150, 200, and 230 GPa shocks, the values ofDZ andDt are
given in Table II and the values of«̇ are given in Table III.
The fundamental assumption was also valid up to 230 GPa in
Fe.

B. Efficacy of the IT IM method

Figures 1~a!–1~d! show thermoelastic stress distributions
for the 20, 40, 60, and 80 GPa shocks in 2024 Al obtained
using the ITIM method, together with the Rayleigh line and
the Hugoniot curve. These figures demonstrate that the
viscous-stress componentssv5s2sE are sufficiently large
compared with the thermal-stress componentsT5sE2sC .
Therefore, the assumption of heat transport was valid for
shocks up to 80 GPa. Thus, the temperature distributions in

TABLE II. Effective temperature thicknessesDZ obtained using the equilibrium thermodynamic theory, shock wave velocities, and effective temperature rise
timesDt for 20, 40, 60, and 80 GPa shocks in 2024 Al, for 100, 150, 200, and 250 GPa shocks in Pt, and for 100, 150, 200, and 230 GPa shocks in Fe.

2024 Al Pt Fe

Shock
~GPa!

DZ3107

~m!
US

~m/s!
Dt31011

~s!
Shock
~GPa!

DZ3107

~m!
US

~m/s!
Dt31011

~s!
Shock
~GPa!

DZ3107

~m!
US

~m/s!
Dt31011

~s!

20 3.602 6753 5.334 100 0.7053 5003 1.410 100 0.2373 6891 0.3444
40 1.495 7795 1.918 150 0.4784 5502 0.8696 150 0.1832 7847 0.2334
60 1.036 8659 1.196 200 0.3719 5941 0.6260 200 0.1547 8643 0.1789
80 0.8334 9409 0.8858 250 0.3079 6338 0.4858 230 0.1429 9068 0.1576

TABLE III. Hugoniot strains«H and effective strain rates«̇ for 20, 40, 60, and 80 GPa shocks in 2024 Al, for 100, 150, 200, and 250 GPa shocks in Pt, and
for 100, 150, 200, and 230 GPa shocks in Fe.

2024 Al Pt Fe

Shock~GPa! «H «̇310211 (s21) Shock~GPa! «H «̇310211 (s21) Shock~GPa! «H «̇310211 (s21)

20 0.1575 0.08857 100 0.1864 0.3966 100 0.2683 2.337
40 0.2364 0.3697 150 0.2311 0.7974 150 0.3104 3.989
60 0.2873 0.7208 200 0.2643 1.267 200 0.3411 5.719
80 0.3242 1.098 250 0.2903 1.793 230 0.3563 6.783
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the wave fronts~inside temperature distributions! were pre-
dicted to a good approximation. The assumption of heat
transport was valid and the inside temperature distributions
were also predicted fairly accurately for shocks up to 250
GPa in Pt and 230 GPa in Fe.

Temperatures behind the wave frontsTH for shocks up
to 80 GPa in 2024 Al are calculated using the WC equation
and the ITIM method and are compared in Table IV. The
TH2VH distribution obtained using the ITIM method was
very close to the correct value obtained using the WC equa-
tion, becauseGT/3Nk!1. In fact, the temperature at 80 GPa
was 2374.3 K using the WC equation, while it was 2372.3 K
using the ITIM method. For the same reason, bothTH2VH

distributions were fairly close up to 250 GPa in Pt, as com-
pared in Table IV. For 2024 Al and Pt, however, the differ-
ence between both temperatures increased a little with shock
loading due toGT increasing with shock loading. On the
other hand, for Fe, bothTH2VH distributions for any shock
loading were completely coincident, becauseCV53Nk was
used@see Eq.~11!#. In addition, theTH2sH distribution up

to 230 GPa was consistent with that estimated by Basset al.5

from their experimental data. These accurate evaluations of
the temperatures behind the wave fronts provide further sup-
port for the efficacy of the ITIM method.

C. Influence of viscous stress

Figure 2 shows the inside temperature distribution for a
80 GPa shock in an inviscid 2024 Al solid calculated using
Eq. ~17a!. This distribution is convex upward, becauseG
decreases monotonically, but thermal stress (sT) IV5s2sC

decreases and then increases with a decrease in specific vol-
ume. Heres is the stress on the Rayleigh line and subscript
IV refers to an inviscid solid. It was much higher than that
obtained using the ITIM method, as shown in Fig. 2. The
reason for this is accounted for using Eq.~17a!.

For an inviscid solid,sE5s, so that (sT) IV5s2sC as
described above. On the other hand,sE5sEoS for a solid
that is not inviscid, wheresEoS is the stress on the equation-
of-state surface of the solid, so thatsT5sEoS2sC . Because
s is not equal tosEoS, the thermal stresses differ. It follows
from (sT) IV2sT5sv that (sT) IV.sT . Equation~17a! in-
dicates that when thermal stress is large, the temperature is
high. Therefore, the higher temperatures for the inviscid
2024 Al solid were due to the viscous stress included in the
calculation of temperature. Figures 1~a!–1~d! show that the
viscous-stress component for any shock was sufficiently

FIG. 1. Thermoelastic stress distributions obtained using the ITIM method,
Hugoniot curves, and Rayleigh lines for:~a! 20, ~b! 40, ~c! 60, and~d! 80
GPa shocks in 2024 Al.

TABLE IV. Temperatures behind steady wave fronts for 20, 40, 60, and 80 GPa shocks in 2024 Al, for 100, 150, 200, and 250 GPa shocks in Pt, and for 100,
150, 200, and 230 GPa shocks in Fe obtained using the Walsh–Christian~WC! equation and the ITIM method.

2024 Al Pt Fe

Shock~GPa! TWC ~K! TIM ~K! Shock~GPa! TWC ~K! TIM ~K! Shock~GPa! TWC ~K! TIM ~K!

20 500.77 500.77 100 1138.5 1138.5 100 1948.2 1948.2
40 933.80 933.72 150 2047.5 2045.7 150 3467.9 3467.9
60 1575.4 1574.8 200 3162.7 3155.8 200 5258.2 5258.2
80 2374.3 2372.3 250 4411.3 4394.7 230 6434.4 6434.4

FIG. 2. Temperature distributions in a steady wave front for 80 GPa shock
in 2024 Al obtained using the ITIM method and in inviscid 2024 Al solid
obtained using Eq.~17a!.
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large and the viscous-stress component increased with shock
loading. As a result, the difference between the temperature
distributions in both solids increased with shock loading.

Figure 3 shows inside temperature distributions for the
250 GPa shock in Pt calculated using the ITIM method and
Eq. ~17a!. The higher distribution for an inviscid Pt solid
indicates that the viscous-stress components were also great
in this case. Both inside temperature distributions in Fig. 4,
which were calculated using the ITIM method and Eq.~17b!,
also indicated that the same was true of the 230 GPa shock in
Fe.

IV. MELTING

According to the Kraut–Kennedy rule of melting
temperature,4 which increases in proportion to strain, the
melting temperature on the Hugoniot is 2715 K at 88 GPa for
2024 Al and is 5800 K at 304 GPa for Pt.6 The temperature

on the Hugoniot for the 80 GPa shock in 2024 Al was suffi-
ciently low compared with the melting temperature. In addi-
tion, as shown in Fig. 2, the inside temperature (T–V) dis-
tribution was below the straight line connecting points
(V0 ,T0) and (VH ,TH) in the range of large specific volume
and was near the line in the range of small specific volume.
Therefore, this shock was not expected to cause it to melt on
the Rayleigh line or in the wave front. The same was true of
the 250 GPa shock in Pt.

Many investigators have performed extensive melting
studies for Fe, and have advanced both theoretical and ex-
perimental aspects of melting temperature–stress relations
~for Fe and other metals, see Ahrens and co-workers,5,11–16

Brown and McQueen,17 Boehler,18 Nellis and Yoo,19 Yoo
et al.,20,21 Saxenaet al.,22 and Duba23,24!. Figure 5 shows a
solid-Hugoniot temperature (TH2sH) distribution up to 230
GPa and an inside temperature (T2s) distribution for the
230 GPa shock in Fe obtained using the ITIM method, to-
gether with the melting temperature–stress (TM –s) distri-
bution of Fe~see Fig. 6 in Ref. 5 and Fig. 7 in Ref. 15!, a
new liquid-Hugoniot temperature (TH2sH) distribution of
Fe measured by Yooet al., and a new melting-temperature
(TMY –s) distribution determined using the solid-Hugoniot
temperature distribution measured by Yooet al. and the new
liquid-Hugoniot temperature distribution~see Fig. 3 in Ref.
21!. The Hugoniot temperature distribution is a locus of end
states of temperature and stress (TH versussH) and the in-
side temperature distribution isT versuss through a single
shock front~curve labeled ITIM). Point e~300 GPa, 6750 K!
on theTMY –s curve is the starting point of the liquid Hugo-
niot. The solid Hugoniot and theTMY –s curves intersect at
point b and the endpoint c of the solid Hugoniot is between
both melting curves. Figure 5 also shows some experimental
data of intermediate states of melting in shock fronts. The

FIG. 3. Temperature distributions in a steady wave front for 250 GPa shock
in Pt obtained using the ITIM method and in inviscid Pt solid obtained using
Eq. ~17a!.

FIG. 4. Temperature distributions in a steady wave front for 230 GPa shock
in Fe obtained using the ITIM method and in inviscid Fe solid obtained using
Eq. ~17b!.

FIG. 5. Solid-Hugoniot temperature (TH2sH) distribution up to 230 GPa
and inside-temperature (T2s) distribution for the 230 GPa shock in Fe
obtained using the ITIM method, melting-temperature (TM2s) distribution
of Fe ~see Refs. 5 and 15!, new liquid-Hugoniot temperature (TH2sH)
distribution of Fe measured by Yooet al. ~see Ref. 21!, and new melting-
temperature (TMY2s) distribution determined by Yooet al. using the
liquid-Hugoniot temperature distribution. Four experimental data of inter-
mediate states of melting in shock fronts are also shown.

3759J. Appl. Phys., Vol. 90, No. 8, 15 October 2001 T. Sano and Y. Sano



cross indicates the shock-melting point at 243 GPa~Ref. 5!,
the box indicates the shock-melting point at 240 GPa~Ref.
17!, and the circles indicate the shock-melting points at 235
and 300 GPa~Ref. 20!.

Intermediate states of melting in shock fronts are looked
for using theTMY –s curve. TheTMY –s curve was adapted
as the melting curve because this curve was determined us-
ing the new solid Hugoniot and liquid Hugoniot as described
above, and the transition into a liquid phase from a solid
phase in the shock front was assumed to be instantaneous.
The T–s curve for the 207 GPa shock contacted with the
TMY –s curve at approximately 105 GPa. This means that
the solid Hugoniot is up to point a~207 GPa, 5525 K! and
curve abc represents no Hugoniot. For a shock beyond point
a, the front and rear portions of the wave front might be of
solid phases, whereas the middle portion might be of liquid
phases. Consequently, the curve from point a to a point on
the melting curve between point b and point e might be a
solid–liquid–solid Hugoniot. This Hugoniot curve, curve ad,
is shown schematically in Fig. 5. Because the temperature
rise in a wave portion where solid phases transit into liquid
phases is reduced due to the heat of fusion, curve ad is below
curve ab. Curve ad is convex upward if the phase transition
layer extends with rates increasing with shock loading. For a
shock beyond point d, the rear portion of the wave front is of
liquid phases. Curve df is a schematic of a liquid–solid
Hugoniot. Curve df is concave upward if the phase transition
layer extends with rates decreasing with shock loading. It is
a difficult problem to theoretically determine point d, point f,
and Hugoniot curve adf, even if the phase transition is as-
sumed to be instantaneous.

V. CONCLUSIONS

The temperature distributions in overdriven steady wave
fronts for shocks up to 80 GPa in 2024 Al, 250 GPa in Pt,
and 230 GPa in Fe were evaluated using the equilibrium
thermodynamic theory. Equilibrium thermodynamics are ap-
plicable for these shocks, the assumption of heat transport
was valid, and the temperatures behind the wave fronts were
correct. Thus, the inside temperature distributions were
evaluated fairly accurately. The overestimation of the inside
temperature distributions in inviscid 2024 Al, Pt, and Fe sol-
ids indicated that viscous stress has a large influence on the
distributions. Finally, the presence of liquid phases in the
wave fronts was examined. A solid–liquid–solid Hugoniot
was presented between the solid Hugoniot and liquid–solid
Hugoniot for Fe and the solid–liquid–solid and liquid–solid
Hugoniots that were a best fit to the experimental data were
estimated. We are attempting to develop an equilibrium ther-
modynamic theory that explicitly includes heat transport, re-
examine the applicability of equilibrium thermodynamics,
and clarify the dependence of the temperature thickness on
the specific volume thickness.

APPENDIX

1. Hugoniot stress

The Hugoniot jump equation for stress is expressed by

sH5r0USUP , ~A1!

whereUS is the velocity of a steady wave front andUP is the
particle velocity behind the wave front, which are expressed
for 2024 Al and Pt by

US5c1sUP , ~A2!

UP5
c«H

12s«H
, ~A3!

where«H512VH /V0 . The values ofc and s are listed in
Table I. For Fe,

US5c1sUP1qUP
2 , ~A5!

UP5
12s«H2A122s«H1~s224cq!«H

2

2q«H
. ~A6!

The values ofc, s, andq are listed in Table I.

2. Walsh and Christian theory

The thermodynamic equilibrium equation derived by
Walsh and Christian2 is

CV

dT

dV
1

g0

V0
CVT5

1

2

ds

dV
~V02V!1

1

2
~s2s0!, ~A7!

whereCV , s, T, andV are the quantities in a Hugoniot state.
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