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Equilibrium thermodynamic theory explicitly including heat transport
for evaluation of temperature distributions in steady plane-wave fronts

Tomokazu Sano
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Yukio Sano®
Kobe University of Mercantile Marine, Higashi-Nada-Ku, Kobe 658-0022, Japan

(Received 30 July 2001; accepted for publication 23 August 2001

Previous theories that implicitly included heat transport predicted that temperatures were reduced in
proportion to the viscous stresses in the whole region of an overdriven steady wave front in 2024 Al
shocked at 80 GPa. Although there was a decrease in temperature caused by the shear stress, the
decrease was very slight. A more justifiable theory that includes a heat transport term, the coefficient
of which depends on the form and thickness of the effective part of a specific volume wave in the
steady wave front, was then developed. The range of appropriate thicknesses of the effective part of
the linear and sine forms for shocks up to 80 GPa in 2024 Al were determined. In these ranges, strain
increments were sufficiently small and effective temperature rise-times were sufficiently long on the
electron—phonon relaxation time scale to justify using equilibrium thermodynamics. In addition, the
efficacy of the inside temperature methffano and Abe, J. Appl. Phy89, 105 (2001)] was
illustrated by evaluating heat transport. The inside temperature distribution can be specified if the
thickness is measured because the distribution is not influenced to a great extent by the wave form.
© 2001 American Institute of Physic§DOI: 10.1063/1.14128237

I. INTRODUCTION stress component was sufficiently large compared with the
thermal stress component. Thus, the efficacy of thg IT
Sano and Abkdeveloped the inside temperature (/¥  method and the accuracy of the inside temperature distribu-
method implicitly including heat transport for estimating tions were verified. In addition, evaluation of the temperature
temperatures in steady wave fronts in a solid. Sano and Abgistributions in inviscid 2024 Al, Pt, and Fe solids indicated
applied this method to shocks up to 140 GPa in yttria-dopeghat viscous stress had a large influence. Here, an inviscid
tetragonal zirconidYTZ) and evaluated the temperature dis- solid means a solid in which no viscous stress is induced
tributions in mU|t|p|e structure waves and overdriven Shockduring Shock |Oading_ Fina”y, the presence Of the ||qu|d
waves. The evaluated temperatures behind the shocks wepRases in 2024 Al shocked at 80 GPa and in Pt shocked at
sufficiently correct and the evaluated inside temperature disy50 Gpa, and intermediate melting states in Fe were exam-
tributions were fairly correct. Therefore, the fundamental asineq. There was no liquid phase in 2024 Al and Pt. It was

sumption of thermodynamic equilibrium and the assumptioryemonstrated that there might be a solid—liquid—solid Hugo-
that heat transport and the work performed by thermal stresgiot for Fe. A series of a solid—liquid—solid Hugoniot and a
cancel each other out used in they/Tmethod were consid- gy id—solid Hugoniot, which is between a solid Hugoniot

ered valid and the theory was deemed effective. Heat trangjnq 4 |iquid Hugoniot, was estimated based on experimental
port greatly reduced the temperatures in the rear of strong,.,

wave fronts and influenced i_nside temperature to a greater Despite the advances in the evaluation of inside tempera-
extent than does thermoelastic stress. Sano and’ Saat- ture distributions, some questions remain as to the relation of

ated the temperature distributions, effective strain rates, a”ﬁ’]e effect of viscosity to viscous stress and how to quantify

;affectn;e terr]n pirature nzt(a)—tg;es_m Z%E(Zrit:vzgoﬁgidy.wiv?he effect of shear stress. Further, it is important to develop
ronts for shocks up to am ’ ain Pty more justifiable theory for using equilibrium thermo-

and 230 GPa in Fe using the equilibrium thermOdynam'Cdynamics.

theory (see Appendix A This theory demonstrated that the In the first half of the present study, we examined the

IT,»v method was appropriate for the temperature distribu- . . . .
. . ; effect of viscosity on the temperatures in an overdriven
tions in wave fronts in metals for shocks up to 200—300 GPa. . .

. T Steady wave front in 2024 Al shocked at 80 GPa. For this
For those shocks, the effective strain increments were suffi-

ciently small and the effective temperature rise-times weré }(erpoig, thg tdhlfff_rence tl)_etr\]/vetgn th(ta _ter_npc_arature '? atr; Invis-
sufficiently long on the electron—phonon relaxation time¢!d solld and thatin a so idthat is not inviscid, namely, the

scale for the fundamental assumption to be valid. The as@ﬁeCt of viscosity, was formulated using the Mie—Geisen

sumption of heat transport was also valid because the viscodgﬂe) equation. ngez_ifte_zr, a §ol|d that is not '”_V'SC'O_' IS re-
ferred to as a noninviscid solid. The effect of viscosity was

related to viscous stress by evaluating the ratio of the tem-
dElectronic mail: sano@cc.kshosen.ac.jp perature difference to the viscous stress over the whole spe-

0021-8979/2001/90(11)/5576/9/$18.00 5576 © 2001 American Institute of Physics
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cific volume range. In addition, to examine the effect of TABLE I. Input data for shock calculations in 2024 Al.
shear stress, the minimum shear stregs=0) partial solu-

! L ) > X lit 2024 Al
tion of Wallace>* which is applicable to inviscid solids, was Qualtty
extended to be applicable to noninviscid solids. This effect T0(103r:3) 0.293
was quantified by comparing the result with the temperature o (9/c™) 2.785
.. . . . ¢ (cm/us) 0.533
distribution obtained using the §J method. s 1338
In the second half of the present study, we developed an o 2.05
equilibrium thermodynamic theory[inside temperature 'y (107 cal/mole K) 3.30
(ITgx) method explicitly including heat transpgihcluding g 18
k (callcms K 0.48

a heat conduction term obtained using Fourier’s law, which
is more justifiable than the |y method. The thickness of the asee Ref. 4.

effective part of the wave fror(effective wave thicknegss

determined such that the calculated temperature behind the

wave front coincides with the temperature obtained using the

Walsh—Christian(WC) equatior (see Appendix B We Cy=3Nk+I'T, 1)
evaluated temperature distributions in linear and sine

effective-parts of overdriven steady wave fronts in 2024 Al

for shocks up to 80 GPa in the ranges of appropriat§yhereT is temperaturel is the number of atoms per mole,
effective-wave-thicknesses, together with effective wave an¢ s the Bolizmann constant, andl is given by T
temperature rise-times. Both effective rise times indicated_ T'o(V/Vo)?, whereV is specific volume, angd, V,, andl’,

that the fundamental assumption is valid. Evaluation of hea&re constantgsee Table )l Subscript O refers to an ambient
transport indicated that the assumption of the transport useg . an equation fof is obtained by substituting Eq1)
in the IT,, method is valid. In addition, the influences of the into ' the MG equation for thermal stressor

wave form and thickness on the temperature and entropy / T 2
o . = V C,dT.
distributions were determined. (70/Vo) JoCv

Il. EFFECTS OF VISCOUS AND SHEAR STRESSES

In this section, an equation for the difference between 1_— ~3Nk+ V(3NK)*+ 2T (Vo/ yo)op
temperatures in inviscid and noninviscid solids is first de- I ’
rived from the MG equation. Next, the-=0 partial solution
of Wallace is extended to be applicable to noninviscid solids.

Finally, .the effect of \{iscosity is related to visco.us stress byvvherey is the Grineisen parameter, angfV=y,/V, was
evaluating the equation fpr the temperature d!fference andssumed. If Eq(2) is applied to inviscid solids, thefT
the_effect of shear st_ress is _examme_d q_ua_ntltanvely l_3y COM=7  and o;=(o+),, While it is applied to noninviscid
paring _theTE=0 partial solutions for inviscid and noninvis- solids, thenT=T and o= o7, where @) =0—oc and
cid solids. o1=0g—oc, Whereo is the stress on the Rayleigh lineg
is the thermoelastic stress, ang is the cold stress. Sub-
script IV refers to an inviscid solide is evaluated accu-

The heat capacity at constant volun@®, used by rately using the WC equation. The following equation ob-
Wallace** is given by the sum of a lattice and an electrontained from Eq.(2) indicates that the differenceT(,—T)
part. depends on viscous stregs=o—og.

2

A. Equation for temperature difference

_ 2(Vol o),
V(BNK)Z+2T (Vo  yo) (o) + V(BNK)Z+ 2T (Vo yp) o

()

TIV

where o= (0g)y—0o¢c is used foror=0g—0o¢c, ando, B. Minimum shear stress partial solution
:U_(O-E)"\/I iS Used f0r O,=0— 0, Whel’e bE)lM iS
evaluated using the |y method.o is given by the Rayleigh
line equation.

Wallacé derived therz=0 partial solution that is appli-
cable to inviscid solids. This solution is extended to be ap-
plicable to noninviscid solids. The extended solution is the
__ 212 solution of the equation expressed by
dO'——pOUSdV, (4) aT Yo VO dPE

| o | | Cvav TV, VT 5 e TBe ) ©
wherep= 1/ is the material density ands is the velocity 0 Yo
of the wave front. where P¢ is the thermoelastic pressure aBdis the bulk
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FIG. 1. Temperature distributions for the 80 GPa shock in 2024 Al obtained=IG. 2. Viscous stresg,—V, temperature differenceT(,—T)—V, and
using Eq.(2) for noninviscid solids, 1T, method, and Wallace’s minimum  ratio (T,,—T)/o,—V distributions for the 80 GPa shock in 2024 Al. Sub-
shear stressrc=0) partial solution extended to be applicable to noninviscid script IV refers to an inviscid solid.

solids. Distributions of temperature behind shocks up to 80 GPa obtained

using Walsh—ChristiaWC) equation, Eq(2) for inviscid solids, and Wal-

lace’'s 7g=0 partial soluti Iso shown. . . . . .
aces7e=1 partial solfion are aiso shown sistent with that obtained using the WC equation. On the

other hand, the inviscidre=0 partial solution estimated
modulus on the Rayleigh line defined B~ —VdPs/dV higher temperatures behind the shocks than did the WC
where Pg is the isentropic pressure. Here, we use an exactduation.

equation derived foB (see Appendix € . A previqus_ stud§ revealed that the temperature distribu_—
tions in inviscid 2024 Al, Pt, and Fe solids were overesti-
B—_ 20y —ankl 20+ 1dll % ) ., 4Pc mated. Here, this overestimate, namely, the effect of viscos-
Vo Vo 2dV V, dav’ ity, was first related to viscous stress using Eg). I is

decreased monotonicallyg(),, is decreased after it is in-

where cold pressur®. is obtained correctly when theg ereaseel,_ and is increased menotonically yvith a decrease
—0 partial solution for inviscid solids is calculated. First, In SPecific volume. As a result, if the denominator of £8).
(og)w is used forPg in Eq. (5) to calculate & —V relation 1S constant, |rreepect|ve ef specmc_ volume, then the overes-
in the wave front. AP=—V relation is then calculated by the timate (T —T) is proportional to viscous stress, . Figure
MG equation using th@ —V relation. Next, the sequence is 2 Showso, =V and (T\y—T)—V distributions for the 80
repeated using the neRz—V relation for Pg in Eq. (5) to QPa shock calcyleted using th_e,,J{Ijmethod. Both distribu-
obtain theT—V and Pc—V relations. Each relation con- tions behaved similarly. A distribution of ratior, —T)/a,
verges as the calculation is repeated. is shown in Fig. 2. This distribution was essentially constant
in the whole specific-volume range due to their similar be-
havior, indicating that the effect of viscosity is proportional
to viscous stress to a good approximation. Thus, the tempera-
The data adopted by Wallat®for the calculations of ture at a position in the wave front was reduced in proportion
shocks in 2024 Al, which are listed in Table I, were usedto the viscous stress at the same position.
here. Figure 1 shows temperature distributions in 2024 Al for  Next, the noninviscidre=0 partial solution and the so-
the 80 GPa shock obtained using Hg) for noninviscid lution of noninviscid Eq.(2), which are shown in Fig. 1,
solids, the ITy method, and therg=0 partial solution for were compared. The difference between both solutions rep-
noninviscid solids. The distribution obtained using noninvis-resents the temperature reduction caused by shear stress.

cid Eq. (2) was very close to that obtained using theyT This difference was very slight, although it increased as spe-
method: The temperature behind the shock was 2372.1 K fagific volume decreased.

both cases. This is because thg), function was used for
og in EQ. (2). The distributions of temperature behind the
shock up to the 80 GPa shock obtained using the WC equ
tion, Eq. (2) for inviscid solids, and the=0 partial solu-
tion for inviscid solids are shown in Fig. 1. Because inviscid  In this section, thermodynamic equations explicitly in-
Eq. (2) correctly evaluates the temperature behind thecluding heat transport, which can be solved properly, are first
shock? the distribution obtained using this equation was con-derived. These equations are applied to the effective parts of

C. Influence of viscous and shear stress

[I. THEORY EXPLICITLY INCLUDING HEAT
RANSPORT
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specific volume waves in the wave fronts of linear and sine vV
forms. We next present a criterion for appropriate tempera-
ture distributions and an equation for effective temperature
thicknesses.

VOLUME V

A. Thermodynamic equations

The increase in entropydS given by Sancet al? takes 0 h1 h

the form. POSITION Z
TdS=—(0—0g)dV+dQ, () v,

v, ) N
VZ) 2)

whereQ is the heat transferred to the materialis the nor-
mal stress on the Rayleigh line, amgo is the isentropic
stresso(V,Sy) that varies along an isentrope passing through
the reference state. The continuity equation for heat transport
in a steady wave front is expressed byQ/dZ
=(dJ/dZ)/(poUs), whereZ=X—Ugt.° Here, X is the La- v —
grangian coordinate andis time. The leading edge and the 0 hxh h
rear of the wave front are in a thermodynamic equilibrium POSITION Z or Z
state, so that heat flux is Jo,=0 at the leading edge and
Ju=0 at the rear, where subscript H refers to a state at the Y ©
rear, namely a Hugoniot state. We obtai®— Qg
=J/(poUg) by integrating @=dJ/(poUs) from the leading
edge to positiorZ in the wave front. ThereforeQu=Qq.
Strain ratede/dt is zero at the leading edge and the rear.
Therefore, ¥/dZ=0 and dQ/@=dJ/dZ=0 at both ends.
Because the important process of heat transport is not v
the propagation of thermal energy, but heat conduéticthe HO h hﬁ‘_h
constitutive equation for heat transport reduces to Fourier’s 1 _ 0
law of heat conduction. The heat conduction equation is then POSITION Z orZ
expressgq by=—«k(Vo/V) (QT/QZ)a wherex is the thermal  pi 3 schemaic diagrams ¢d) a real overdrivev(Z) wave of thickness
CondUC“V'ty(See Table)L which is assumed to be ConStém' h, (b) a IinearV(f) wave of effective thickneds and a lineav/(Z) wave of
For av/dZ+0, except for both ends of the wave front, the thicknessh, with an extended front zondg— h;), and(c) a sin&/(Z) wave
continuity equation is transformed as of effective thickness and a sin®(Z) wave of thicknesd, with an ex-
2T 1 dT) tended front zoneh(z—h,).

vz~ vav/?V
wherea=(«/pgUsg)(Vo/V)(dV/dZ). From Egs.(7) and(8)  (h;<Z=<h) of the V(Z) wave is gradual. We consider a
2T adT V(Z) wave in which this front zone with a gradual slope is
—— ——|dV. (9)  extended toh;<Z<h,. The front zone of the/(Z) wave

dve vdv from Z=h, to Z=hy must be sufficiently long for Eq10),

By equating Eq.(9) with thermodynamic identityfrdS  which includes the heat conduction term obtained using Fou-

=CydT+Cy(y0/Vo)TdV, we obtain a thermodynamic rier's law, to be solved properly. To obtain information re-
equation that explicitly includes heat transport, which is ex-gardinga in the front zonea is rewritten using a transfor-

VOLUME V

0

ShN
V(Z)

VZ)

VOLUME V

dQ=-a (8)

1
dSZ—?(O'—O'SO‘Fa

pressed by mation functionZ = f(2).
d2T+ o @ dT+y0C T 10 _ k Vodfdv 11
A2 vir VARV L (0—0s). (10 a= U<V dZdz' (11

The above equation can be solved under the boundary com 0<Zz<h,, df(Z)/dZ=1 orf(Z)=Z. In the front zone of
ditions thatT=T, at Vo and T=T, at V. Because coeffi- h,<z<h,, for the sake of simplicity, we usef(Z)/dZ
cient a includes &/dz, information on the real specific- =4 or f(Z)=aZ+(1—a)h;, where a=(h—h)/(hy
volume wave is necessary for determining/dZ. Here, —h,). It follows from dZ/dZ<1 thath<h,. Therefore, it
however, we determine what can be learned about the inﬂ%ight be assumed that=0 anda=0 or dQ=0 in the front
ence of heat transport on the temperature distribution withow e This is tantamount to assuming th@t=€l0 in the front
using any real wave forms. The specific-voluM&) wave  ,5ne fromz= h, to Z=h. Then, Eq.(10) reduces to

in a real overdriven-steady-wave front with thickndsss

shown schematically in Fig.(8). Because W/dZ=0 at the V£+ ECVT: —(o—0¢). (12)
leading edge as described above, the slope in the front zone dv  Vq %
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The _a_bove equation h_olds, independent of the form of theéween (1) ¢u/hmin @Nd (1) cn/Nmax, Whereh. refers to a

specific volume wave in the front zone. ~ maximum value ofh, the calculated temperatures increase
Here, the analysis is performed for two typicd(Z2) monotonically to the temperature behind the shock with a

waves of effective thicknesks to examine the influence of decrease in specific volume. If ratlo, /h is smaller than

the wave form on the temperature distribution in the wave(h;)¢i/hmax, then the calculated temperature reaches the

front. One is a lineaV(Z) wave, which is shown together temperature behind the shock at a specific volume, has a

with the corresponding linear(Z) wave in Fig. 3b), while ~ peak between the specific volume awg, and then de-

the other is a sine/(f) wave, which is shown together with C'€ases monotonically, and approaches the temperature be-

the corresponding sin€(Z) wave in Fig. 3c¢). The V(Z2) hind the shock av, . Because @/dV=0, as revealed by

4 . . . . . .
waves require sufficiently wide front-zones to properly per-Vallace; the temperature distribution including a portion
form the calculations illustrated below. where d'/dV>0 is inappropriate. Therefore, the criterion for

appropriate temperature distributions is given by the inequal-

1. Linear wave ity
The linearV(Z) wave is expressed by (h))en hy (hp)ery
s-—< . (17)
V V VO_VH? 13 hmax h hmin
~Vht h ' (13 The above inequality indicates that there is an effective

wave-thickness rangéhf,i,.<h=<h,,) for shock loading and

that there is an upper temperature distribution boundary at

(h1) eni/hmax, Where the distribution is@dv=0 atVy, and

A K b Vo—Vy (14 the lower boundary ath;) ¢;u/hmin- The same is true of the
poUs V h sine wave.

We used Eq(12) from hg to h; or from V, to V; and Eq.
(10) with Eqg. (14) from h, to 0 or fromV; to V. These two _ _ o .
equations were solved using the difference method. The cal- Effective temperature thicknessZ is given by’

whereh is the effective thickness of the linear wave. For this
wave, Eq.(11) becomes

C. Effective temperature thickness

culation was begun frory and proceeded towandy . This k(Tu—To)
S0 ) . : H™ lo
method for estimating temperatures in the linear wave is re- AZ= TS (18
ferred to as an inside temperature £4I) method explicitly {(1=&) J}max
including heat transport. The equation for heat flux is obtained from the continuity
equation for heat transpdft.
2. Sine wave dQ
= J=U —&) 5o, 19
The sineV(Z) wave is expressed by s(en—2) dv (19

where dQ/dV is given by Eq.(8). Quantity{(1—e)J}naxin
, (15 Eq. (18) is determined by incorporating E@19) into the
ITex. and ITexs methods.

1 Z
V:E (V0+VH)_(V0_VH)C0 WH

whereh is the effective thickness of the sine wave. For the

sine wave IV. ASSUMPTIONS OF THERMODYNAMIC
EQUILIBRIUM AND HEAT TRANSPORT
a K VO VO_VH . Z .
a=5 poUsV N sin -/, (16) Ratios (1) ¢r/ Nmin=0.57 and §;) ¢/ himax= 0.4 3 for the

80 GPa shock ,=0.324) were obtained using the gy,
where  singZ/h)=2\(eley)(1—¢eley), where e=1  method. Effective wave thicknesskseffective temperature
—V/V,. Equation(12) was used fronV, to V,, Eq. (10)  thicknessedZ, effective wave rise-timeAts, and tempera-
with Eq. (16) was used fronV, to Vy,, and the calculation ture rise-timesAt for several (}h;/h) in the range of
proceeded towar®y, from V. This method for estimating 0.43<1—h;/h<0.57 are listed in Table I, wheretg
the temperatures in the sine wave is referred to as an insidgeh/Us and At=AZ/Ug, where Us=9409 m/s for the 80
temperature (Ifxs) method. GPa shock. The wave thickness increased with an increase in
(1—hy/h) from 0.19x10 8m at (1—h;/h)=0.43 to 5.2
X 10 8m at (1—h,/h)=0.57, while the temperature thick-

The calculated temperature behind the linear wave foness increased from 5&L0 8m at 0.43 to 7.% 10 8m at
shock loading can be fitted to the temperature behind th®.57. Calculations were also performed for the 20, 40, and 60
shock obtained accurately using the WC equation if effectiveaGPa shocksd,=0.1575,0.2364,0.2873). QuantitibsAZ,
wave thickness$ and ratioh,/h are chosen appropriately. andAt for 1—(h)¢u/Nminsd— (h1) eni/hmax @nd an interme-
For any values oh used, however, ih;/h is greater than diate value between them are listed in Table Ill. Both effec-
(h1) eru/ Nmin» Whereh,;, refers to a minimum value df, the  tive wave and temperature rise-times decreased with an in-
fitting is impossible because the calculated temperature at ttexease in shock loading for the same value of-{1 /h).
rear never rises to the temperature behind the shock. Faétor the 80 GPa shock, the effective wave rise-times were
appropriate thicknessds and appropriate ratiof;/h be-  between 0.2%X10 2 and 0.55 10 's and the effective

B. Criterion of temperature distributions
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TABLE II. Effective wave thicknessel, effective temperature thickness&Z, effective wave rise-timedt,, and effective temperature rise-timas for
1—(hy) e/ Nmine 1= (h1)en/hmae @nd several +h,/h between them calculated using theg{T and ITgxs methods for the 80 GPa shock in 2024 Al,
respectively.

Linear waves Sine waves

1-hy/h hx10® (m)  AZx10° (m)  Atx10'% ()  Atx10"(s)  hx1® (m)  AZX10° (m)  Atgx10%(s)  Atx10™ (9
0.43 0.1945 5.791 0.0207 0.6155 0.2660 5.8060 0.0283 0.6171
0.44 0.4675 5.905 0.0497 0.6276 0.6360 5.9440 0.0676 0.6317
0.45 0.75 6.025 0.0797 0.6403 1.0140 6.0900 0.1078 0.6473
0.46 1.0420 6.1510 0.1107 0.6537 1.399 6.2460 0.1487 0.6638
0.47 1.345 6.282 0.1429 0.6677 1.792 6.411 0.1905 0.6814
0.48 1.659 6.419 0.1763 0.6822 2.195 6.587 0.2333 0.7001
0.49 1.986 6.561 0.2111 0.6973 2.608 6.774 0.2772 0.7199
0.50 2.327 6.710 0.2473 0.7131 3.031 6.974 0.3221 0.7412
0.51 2.683 6.865 0.2851 0.7296 3.465 7.185 0.3683 0.7636
0.52 3.055 7.026 0.3246 0.7467 3.911 7.411 0.4157 0.7877
0.53 3.444 7.193 0.3660 0.7645 4.370 7.651 0.4644 0.8132
0.54 3.852 7.367 0.4094 0.7830 4.844 7.905 0.5148 0.8402
0.55 4.282 7.545 0.4551 0.8019
0.56 4.734 7.729 0.5031 0.8214
0.57 5.211 7.918 0.5538 0.8415

strain rates were on the order of'468°* except for in the Figure 6 shows the lower and upper boundaries of the

neighborhood of % (hy)er/Nmin=0.43. The electron— distributions obtained for % (h;)ey/hmin=0.43 and 1
phonon relaxation times, which are dominant for shocks up~ (h1)ci/hmax=0.57, respectively. Both curves are similar.
to 200—300 GPa in metals, are on the order of 8. Con-  The curves shifted continuously from the lower curve to the
sequently, the strain increases during the relaxation times atgpper curve with an increase in {1, /h). The distribution
only on the order of 10°. On the other hand, the tempera- obtained using the I, method is shown in Fig. 6. This
ture rise times between 0.8210 ! and 0.84 10 !'s for  distribution was estimated lower, because the assumption
the 80 GPa shock are sufficiently long compared with thedQ=—dW"<0 was used in the whole range of specific vol-
electron—phonon relaxation times. Therefore, the fundamenime in the I, method, despite the fact thaQe=0 in the

tal assumption is valid for shocks up to 80 GPa. larger specific volume range.

Figure 4 shows a temperature distribution in the linear  Ratios (1) ¢y/hmin=0.57 and 1) ¢;j/hmax= 0.46 for the
wave for 1-h;/h=0.49 in the case of the 80 GPa shock, 80 GPa shock were obtained using the,Jdmethod. Quan-
together with that calculated using they\Tmethod. Both titiesh, AZ, At,, andAt for several (:-h,/h) are listed in
distributions coincided comparatively well. This demon- Table II. Both thicknesses also increased with an increase in
strates that the |f; method is effective. To further demon- (1—h,/h) in this case. The quantities for the 20, 40, 60 GPa
strate its efficacy, W'=—0,dV, dW"=—(og—0g)dV,  shocks are listed in Table Ill. At the same value of (1
and dQ, = —a{d’T/dv2— (1IN)dT/dV}dV, where &= (V, —h,/h) for each shock, the strain increment in the relax-
—Vy)/100, for 1-h,;/h=0.49, are calculated using the ation time is only slightly larger and the effective tempera-
ITgy, method and are shown in Fig. 5\Wi>dW"+dQ, ture rise-time is longer for the sine wave, and therefore, the
except for in the neighborhood &f, . This is the primary fundamental assumption is also valid for this wave. In addi-
evidence of the efficacy of the ] method. tion, thed Qg distribution for 1—h, /h=0.49, which was cal-

TABLE IlI. Effective wave thicknesseh, effective temperature thickness&g, effective wave rise-timeatg, and effective temperature rise-timas for
1—(hy)cru/Nmine 1= (hy)en/hmaxe and an intermediate value calculated using thglTand ITexs methods for the 20, 40, and 60 GPa shocks in 2024 Al,
respectively.

Linear waves Sine waves
Shocks
(GPa  1-hy/h hx10P(m) AZX10° (m) Atx10%(9) Atx10™(s) 1—-hy/h hx10® (m) AZX1CP (m) Atx10M(s) Atx10M(s)
0.42 0.2150 6.8120 0.025 0.7866 0.42 0.2990 6.8540 0.035 0.7915
60 0.50 2.947 8.265 0.3403 0.954 0.48 2.906 8.100 0.336 0.935
0.59 7.499 10.570 0.8660 1.221 0.54 5.950 9.999 0.6871 1.155
0.41 0.2880 8.9670 0.033 1.0355 0.41 0.4080 8.9680 0.047 1.0356
40 0.50 3.906 11.670 0.4510 1.348 0.48 4.024 11.380 0.4647 1.315
0.60 10.46 16.45 1.2079 1.90 0.55 8.468 15.530 0.9779 1.79
0.41 0.5160 17.6500 0.076 2.6142 0.41 0.7550 17.7900 0.112 2.6345
20 0.51 6.024 26.520 0.8921 3.93 0.49 6.450 25.450 0.9552 3.77

0.62 19.06 47.98 2.8225 7.10 0.58 16.00 48.80 2.3694 7.23
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FIG. 4. Temperature distributions for-1h, /h=0.49 calculated using the
ITexy, ITexs and 1Ty, methods for the 80 GPa shock in 2024 Al.

SPECIFIC VOLUME V (10 m%/kg)

SPECIFIC VOLUME V (10 m¥/kg)

FIG. 6. Upper and lower boundaries of temperature distributions calculated
using the Iy, and ITgxs methods for the 80 GPa shock in 2024 Al.

culated using the Igys method and shown in Fig. 5, is close distributions coincided well except for in the neighborhood
to thedQ, distribution. This also demonstrates the efficacyof V,,. NearV,, the distribution was a little lower for the
of the T, method. The lower and upper boundaries of thelinear wave. In Eqs(10) and (12), used for estimating the
distributions in the sine wave are shown in Fig. 6. Bothtemperatures, only coefficieatdepends on the wave form.
boundaries are closer for the sine wave.

V. INFLUENCES OF WAVE FORM AND THICKNESS

A. Temperature distributions

Therefore, the difference in temperature was causedQy d
BecausedQ, | increased more thgd Qg| with a decrease in
specific volume as shown in Fig. 5, the temperature rose with
a slower speed for the linear wave. For any-(i; /h), how-
ever,|(dQ,_—dQs)/dQ, | was sufficiently small in the whole

~ For any (1-h,/h), as listed in Table II, the effective gspecific volume range, as was the case with Fig. 5. Further-
thickness of the linear wave was approximately equal to thafore, in the case where both thicknesses were similar, the
of the sine wave and, as shown in Fig. 4, both temperaturgamperature distributions also coincided well. The same was

SPECIFIC VOLUME V (10* m¥/kg)

true of the 20, 40, 60 GPa shocks. Thus, for shocks up to 80
GPa, the wave form barely influenced the temperature

2 distribution® In contrast, the thickness greatly influenced the
1.5+ temperature distribution. Consequently, the temperature dis-
e tribution can be specified if the thickness is measured by a
2 1 shock experiment. This is very advantageous because it is
= difficult to experimentally measure the distribution accu-
NP rately.
S 0.5 Yy
&,
% 0 B. Entropy distributions
:) i Figure 7 shows the §—S;) distribution for 1-h;/h
= 0.5 =0.49 in the case of the 80 GPa shock calculated using the
Ef.]) a ITex. method. The change in entropy is explained using Eq.
& -1 (7) and Fig. 5. Entropy is increased with a decrease in spe-
L5 AN cific volume by work ®V=dW'+dW' = — (o0~ 0g)dV in
o dQ 0, the whole specific-volume region and heat transpQtd
2 | | l from VotoV;. Because Qz 0 fromV, to V,, however, the
2 26 3 34 38 influence of @ is very slight. On the other hand, the rate of

increase in entropy is reduced by the increase in the tempera-
ture in the wave fronT in the whole specific-volume and by

dQ<0 from V; to V. The same is true of the entropy
distribution in the sine wave. A similar distribution was ob-
tained using the g method(Fig. 7). The reason for this is

FIG. 5. dV—V, dW"-V, and (dW"+dQ,) -V distributions for -h; /h
=0.49 calculated using the ¢}, method and @s—V distribution calcu-
lated using the IExs method for the 80 GPa shock in 2024 Al.
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1.5 times were sufficiently long on the electron—phonon relax-
D § ation scale for the assumption of thermodynamic equilibrium
/ to be valid. The primary evidence demonstrating that the
inside temperature (|;) method is effective was obtained
EXL by evaluating heat transport. In addition, it was clarified that
1 the wave form did not influence the temperature distributions
to a great extent. Therefore, the temperature distribution can
be specified after the wave thickness has been determined.

APPENDIX A: EQUILIBRIUM THERMODYNAMIC
THEORY (IT,y METHOD)

ENTROPY §-5 (J/gK)
o
wn
|

Sano and Abkderived the following irreversible ther-
modynamic equation by assuming that heat transport and the
work performed by the thermal stress could cancel each
other out.

0 T T T d Yo
22 2.6 3 3.4 3.8 Cvd—v + 7 CT=—(0—0¢), (A1)

Vo
-4 3
SPECIFIC VOLUME ¥ (10** m*/ke) where o is a known Rayleigh-line-stress functian(V). A

FIG. 7. Entropy distributions for ¢ h, /h=0.49 calculated using the %, set of equations used in the ;f method consists of Eg.
and ITgxs methods for the 80 GPa shock in 2024 Al. (A1), the equation for cold stressc, and the equation for
thermoelastic stressg. The equation fowr is given by

that the difference ifT between both waves was very slight, OCc=OH 0T, (A2)
there was no difference i, and the difference in@ was
sufficiently small compared with @ itself, as described
above. In short, even ne¥f, , where the difference in@ is
greatest, 8 differed only slightly. Furthermore, in the case T,(V) expressed by
where both thicknesses were similar, the entropy distribu- vo (Th

tions also coincided well. Thus, the wave form barely influ- o1 = A C,dT.
enced the entropy distribution. 070

where oy is a known Hugoniot function for normal stress
oy(V) and oT, is a Hugoniot function for thermal stress

The equation fow is given by

C. Values of
“ oe=octor, (A3)

Without assumingr=0, that is, using only Eq.10), the :
value of o was estimated for the linear wave. The temper('sl-v\/hereaT is the thermal stress expressed by
ture behind the shock for-1h,/h=0.49 was 2374.3 K with vo (T
a<1.1x10"* andhy=1.2x10"*m. Because 1410 * is 7TV, J CvdT
nearly zero, the temperature distributions fo1.1x 104
coincided very well with that forr=0 calculated above. For Equations (A1)—(A3) were calculated by the iterative
1—h,;/h=0.49 in the case of the sine wave, the temperaturénethod using the Hugoniot function and the Rayleigh-line-
behind the shock was 2374.3 K with<1.8x10 % andh,  stress function to determine the temperature, cold compres-

=1.0x10 *m. sion curve, and thermoelastic stress.
Sano and Sarfalerived the following equation using Eq.
VI. CONCLUSIONS (A).
In the first half of the present study, the effects of vis- dTy

Ty (1 do
+CVHVL;)TH:(1+ H H)[ H

cous and shear stresses on the temperature distribution in the CVHdVH 3Nk /|2 dVy (Vo
overdriven steady wave front in 2024 Al shocked at 80 GPa 1
were examined using theories that implicitly include heat _VH)+§(UH_0—O)]- (Ad)

transport. The inside temperatures decreased greatly in pro-

portion to the viscous stresses, but were reduced onlfne apove equation is close to the WC equafisee Eq.
slightly by the shear stresses. In the second half, a MOr&1)] for shocks up to 200—300 GPa in metals because
justifiable theory that explicitly includes heat transport wasp1/3nk<1. Thus, they demonstrated that thej Tnethod is
developed. The temperature distributions were evaluated i§ reasonable approximation to the standard method

the range of the appropriate effective thicknesses of linear
and sine specmc—volume waves, together W|_th the eﬁefCt'V?APPENDlX B- WALSH AND CHRISTIAN THEORY
wave and temperature rise-times. The effective strain incre-

ments that were estimated using the effective wave rise-times The thermodynamic equilibrium equation derived by

were sufficiently small and the effective temperature riseWalsh and Christiahis
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dT 1do 1 whereTg is expressed by
CVd_V + V_OCVT: > d—V(Vo—V)“‘ 5 (o= ao), (Bl

whereCy,o,T,V are the quantities in a Hugoniot function. Tg=Tre (NVoV=VH), (CH

APPENDIX C: BULK MODULUS whereT* is the temperature at the specific volumé in a

Bulk modulus is defined by steady wave front. By substitutingl Ps/dV)|y.y« , which is
obtained from Eq(C2) with (C3), into Eq. (C1) and then
dPs MU
B=—-V— (C1) replacingV* with V, we get

dv’

where ds/dv=(dP/dV)s. The isentropic pres;ur@s is. Yo v 1dl v, dPc
given as the sum of the cold pressitg and the isentropic B=— —VT| =3Nk| — |+ |z —— I |T|-V——.
thermal pressur® Vo Vo/ 12dV V, dv

e (C5)
Ps=PctPr, (C2

where 1y, Sano and A. Abe, J. Appl. Phy89, 105 (2001).

- 2T. Sano and Y. Sano, J. Appl. Phya0, 3754(2001).
P = ﬁ SC dT 3D. C. Wallace, Phys. Rev. B4, 5597(1981).
Ts Vo Jo vE 4D. C. Wallace, Phys. Rev. B4, 5607(1981).
5J. M. Walsh and R. H. Christian, Phys. R&7, 1544 (1955.
whereTg is the isentropic temperature and we have assumedD. C. Wallace, Thermoelastic-Plastic Flow in Solidd.A-10119, Los

that y/V=1y,/V,. By substituting Eq.(1) into the above Alamos National Laboratory, Los Alamos, 1985 _
Ya. B. Zel'dovich and Yu. P. Raizer, iRhysics of Shock Waves and High-

equation Temperature Hydrodynamic Phenomeeéited by W. D. Hayes and R. F.
1 Probstein(Academic, Orlando, FL, 1966
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